blob: 25ac4cbde1b6be025f5884d5519f5faeeb5a3ac2 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Anton Korobeynikovc6c98af2007-04-29 18:02:48 +000027 <li><a href="#aliasstructure">Aliases</a>
Reid Spencerca86e162006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000029 <li><a href="#gc">Garbage Collector Names</a></li>
Devang Patelcdc06692008-09-04 23:10:26 +000030 <li><a href="#notes">Function Notes</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000031 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000032 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000033 </ol>
34 </li>
Chris Lattner00950542001-06-06 20:29:01 +000035 <li><a href="#typesystem">Type System</a>
36 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000038 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000039 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000040 <li><a href="#t_floating">Floating Point Types</a></li>
41 <li><a href="#t_void">Void Type</a></li>
42 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000043 </ol>
44 </li>
Chris Lattner00950542001-06-06 20:29:01 +000045 <li><a href="#t_derived">Derived Types</a>
46 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000047 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000048 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000049 <li><a href="#t_function">Function Type</a></li>
50 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000051 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000052 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000053 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000054 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000055 </ol>
56 </li>
57 </ol>
58 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000059 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000060 <ol>
61 <li><a href="#simpleconstants">Simple Constants</a>
62 <li><a href="#aggregateconstants">Aggregate Constants</a>
63 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
64 <li><a href="#undefvalues">Undefined Values</a>
65 <li><a href="#constantexprs">Constant Expressions</a>
66 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000067 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000068 <li><a href="#othervalues">Other Values</a>
69 <ol>
70 <li><a href="#inlineasm">Inline Assembler Expressions</a>
71 </ol>
72 </li>
Chris Lattner00950542001-06-06 20:29:01 +000073 <li><a href="#instref">Instruction Reference</a>
74 <ol>
75 <li><a href="#terminators">Terminator Instructions</a>
76 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000077 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
78 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000079 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
80 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000082 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000083 </ol>
84 </li>
Chris Lattner00950542001-06-06 20:29:01 +000085 <li><a href="#binaryops">Binary Operations</a>
86 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000087 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
88 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
89 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000090 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
91 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
92 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000093 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
94 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
95 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000096 </ol>
97 </li>
Chris Lattner00950542001-06-06 20:29:01 +000098 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
99 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000100 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
101 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
102 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000103 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000104 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000105 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000106 </ol>
107 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000108 <li><a href="#vectorops">Vector Operations</a>
109 <ol>
110 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
111 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
112 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000113 </ol>
114 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000115 <li><a href="#aggregateops">Aggregate Operations</a>
116 <ol>
117 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
118 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
119 </ol>
120 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000121 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000122 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000123 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
124 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
125 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000126 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
127 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
128 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000129 </ol>
130 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000131 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000132 <ol>
133 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
134 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000138 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
140 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
141 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000142 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
143 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000144 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000145 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000146 <li><a href="#otherops">Other Operations</a>
147 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000148 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
149 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000150 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
151 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000152 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000153 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000154 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000155 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Devang Patelc3fc6df2008-03-10 20:49:15 +0000156 <li><a href="#i_getresult">'<tt>getresult</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000157 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000158 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000159 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000160 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000161 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000162 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000163 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
164 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000165 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
167 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000168 </ol>
169 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000170 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
171 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000172 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
174 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000175 </ol>
176 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000177 <li><a href="#int_codegen">Code Generator Intrinsics</a>
178 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000179 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
181 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
182 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
183 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
184 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
185 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000186 </ol>
187 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000188 <li><a href="#int_libc">Standard C Library Intrinsics</a>
189 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000190 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000195 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000198 </ol>
199 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000200 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000201 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000202 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000203 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
205 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000206 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000208 </ol>
209 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000210 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000211 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000212 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000213 <ol>
214 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000215 </ol>
216 </li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000217 <li><a href="#int_atomics">Atomic intrinsics</a>
218 <ol>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000219 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
Mon P Wang28873102008-06-25 08:15:39 +0000220 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000221 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Mon P Wang28873102008-06-25 08:15:39 +0000222 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
223 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
224 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
225 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
226 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
227 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
228 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
229 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
230 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
231 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000232 </ol>
233 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000234 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000235 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000236 <li><a href="#int_var_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000237 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000238 <li><a href="#int_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000239 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000240 <li><a href="#int_trap">
241 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000242 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000243 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000244 </ol>
245 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000246</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000247
248<div class="doc_author">
249 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
250 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000251</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000252
Chris Lattner00950542001-06-06 20:29:01 +0000253<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000254<div class="doc_section"> <a name="abstract">Abstract </a></div>
255<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000256
Misha Brukman9d0919f2003-11-08 01:05:38 +0000257<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000258<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000259LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000260type safety, low-level operations, flexibility, and the capability of
261representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000262representation used throughout all phases of the LLVM compilation
263strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000264</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000265
Chris Lattner00950542001-06-06 20:29:01 +0000266<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000267<div class="doc_section"> <a name="introduction">Introduction</a> </div>
268<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000269
Misha Brukman9d0919f2003-11-08 01:05:38 +0000270<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
Chris Lattner261efe92003-11-25 01:02:51 +0000272<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000273different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000274representation (suitable for fast loading by a Just-In-Time compiler),
275and as a human readable assembly language representation. This allows
276LLVM to provide a powerful intermediate representation for efficient
277compiler transformations and analysis, while providing a natural means
278to debug and visualize the transformations. The three different forms
279of LLVM are all equivalent. This document describes the human readable
280representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000281
John Criswellc1f786c2005-05-13 22:25:59 +0000282<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000283while being expressive, typed, and extensible at the same time. It
284aims to be a "universal IR" of sorts, by being at a low enough level
285that high-level ideas may be cleanly mapped to it (similar to how
286microprocessors are "universal IR's", allowing many source languages to
287be mapped to them). By providing type information, LLVM can be used as
288the target of optimizations: for example, through pointer analysis, it
289can be proven that a C automatic variable is never accessed outside of
290the current function... allowing it to be promoted to a simple SSA
291value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000292
Misha Brukman9d0919f2003-11-08 01:05:38 +0000293</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000294
Chris Lattner00950542001-06-06 20:29:01 +0000295<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000296<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000297
Misha Brukman9d0919f2003-11-08 01:05:38 +0000298<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000299
Chris Lattner261efe92003-11-25 01:02:51 +0000300<p>It is important to note that this document describes 'well formed'
301LLVM assembly language. There is a difference between what the parser
302accepts and what is considered 'well formed'. For example, the
303following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000304
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000305<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000306<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000307%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000308</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000309</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000310
Chris Lattner261efe92003-11-25 01:02:51 +0000311<p>...because the definition of <tt>%x</tt> does not dominate all of
312its uses. The LLVM infrastructure provides a verification pass that may
313be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000314automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000315the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000316by the verifier pass indicate bugs in transformation passes or input to
317the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000318</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000319
Chris Lattnercc689392007-10-03 17:34:29 +0000320<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000321
Chris Lattner00950542001-06-06 20:29:01 +0000322<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000323<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000324<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000325
Misha Brukman9d0919f2003-11-08 01:05:38 +0000326<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000327
Reid Spencer2c452282007-08-07 14:34:28 +0000328 <p>LLVM identifiers come in two basic types: global and local. Global
329 identifiers (functions, global variables) begin with the @ character. Local
330 identifiers (register names, types) begin with the % character. Additionally,
331 there are three different formats for identifiers, for different purposes:
Chris Lattnerd7923912004-05-23 21:06:01 +0000332
Chris Lattner00950542001-06-06 20:29:01 +0000333<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000334 <li>Named values are represented as a string of characters with their prefix.
335 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
336 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000337 Identifiers which require other characters in their names can be surrounded
Reid Spencer2c452282007-08-07 14:34:28 +0000338 with quotes. In this way, anything except a <tt>&quot;</tt> character can
339 be used in a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000340
Reid Spencer2c452282007-08-07 14:34:28 +0000341 <li>Unnamed values are represented as an unsigned numeric value with their
342 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000343
Reid Spencercc16dc32004-12-09 18:02:53 +0000344 <li>Constants, which are described in a <a href="#constants">section about
345 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000346</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000347
Reid Spencer2c452282007-08-07 14:34:28 +0000348<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000349don't need to worry about name clashes with reserved words, and the set of
350reserved words may be expanded in the future without penalty. Additionally,
351unnamed identifiers allow a compiler to quickly come up with a temporary
352variable without having to avoid symbol table conflicts.</p>
353
Chris Lattner261efe92003-11-25 01:02:51 +0000354<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000355languages. There are keywords for different opcodes
356('<tt><a href="#i_add">add</a></tt>',
357 '<tt><a href="#i_bitcast">bitcast</a></tt>',
358 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000359href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000360and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000361none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000362
363<p>Here is an example of LLVM code to multiply the integer variable
364'<tt>%X</tt>' by 8:</p>
365
Misha Brukman9d0919f2003-11-08 01:05:38 +0000366<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000367
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000368<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000369<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000370%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000371</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000372</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000373
Misha Brukman9d0919f2003-11-08 01:05:38 +0000374<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000375
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000376<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000377<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000378%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000379</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000380</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000381
Misha Brukman9d0919f2003-11-08 01:05:38 +0000382<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000383
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000384<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000385<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000386<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
387<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
388%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000389</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000390</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000391
Chris Lattner261efe92003-11-25 01:02:51 +0000392<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
393important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000394
Chris Lattner00950542001-06-06 20:29:01 +0000395<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000396
397 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
398 line.</li>
399
400 <li>Unnamed temporaries are created when the result of a computation is not
401 assigned to a named value.</li>
402
Misha Brukman9d0919f2003-11-08 01:05:38 +0000403 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000404
Misha Brukman9d0919f2003-11-08 01:05:38 +0000405</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000406
John Criswelle4c57cc2005-05-12 16:52:32 +0000407<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000408demonstrating instructions, we will follow an instruction with a comment that
409defines the type and name of value produced. Comments are shown in italic
410text.</p>
411
Misha Brukman9d0919f2003-11-08 01:05:38 +0000412</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000413
414<!-- *********************************************************************** -->
415<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
416<!-- *********************************************************************** -->
417
418<!-- ======================================================================= -->
419<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
420</div>
421
422<div class="doc_text">
423
424<p>LLVM programs are composed of "Module"s, each of which is a
425translation unit of the input programs. Each module consists of
426functions, global variables, and symbol table entries. Modules may be
427combined together with the LLVM linker, which merges function (and
428global variable) definitions, resolves forward declarations, and merges
429symbol table entries. Here is an example of the "hello world" module:</p>
430
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000431<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000432<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000433<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
434 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000435
436<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000437<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000438
439<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000440define i32 @main() { <i>; i32()* </i>
Reid Spencerca86e162006-12-31 07:07:53 +0000441 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000442 %cast210 = <a
Chris Lattner6c0955b2007-06-12 17:01:15 +0000443 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000444
445 <i>; Call puts function to write out the string to stdout...</i>
446 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000447 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000448 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000449 href="#i_ret">ret</a> i32 0<br>}<br>
450</pre>
451</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000452
453<p>This example is made up of a <a href="#globalvars">global variable</a>
454named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
455function, and a <a href="#functionstructure">function definition</a>
456for "<tt>main</tt>".</p>
457
Chris Lattnere5d947b2004-12-09 16:36:40 +0000458<p>In general, a module is made up of a list of global values,
459where both functions and global variables are global values. Global values are
460represented by a pointer to a memory location (in this case, a pointer to an
461array of char, and a pointer to a function), and have one of the following <a
462href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000463
Chris Lattnere5d947b2004-12-09 16:36:40 +0000464</div>
465
466<!-- ======================================================================= -->
467<div class="doc_subsection">
468 <a name="linkage">Linkage Types</a>
469</div>
470
471<div class="doc_text">
472
473<p>
474All Global Variables and Functions have one of the following types of linkage:
475</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000476
477<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000478
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000479 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000480
481 <dd>Global values with internal linkage are only directly accessible by
482 objects in the current module. In particular, linking code into a module with
483 an internal global value may cause the internal to be renamed as necessary to
484 avoid collisions. Because the symbol is internal to the module, all
485 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000486 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000487 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000488
Chris Lattnerfa730212004-12-09 16:11:40 +0000489 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000490
Chris Lattner4887bd82007-01-14 06:51:48 +0000491 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
492 the same name when linkage occurs. This is typically used to implement
493 inline functions, templates, or other code which must be generated in each
494 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
495 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000496 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000497
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000498 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
499
500 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
501 linkage, except that unreferenced <tt>common</tt> globals may not be
502 discarded. This is used for globals that may be emitted in multiple
503 translation units, but that are not guaranteed to be emitted into every
504 translation unit that uses them. One example of this is tentative
505 definitions in C, such as "<tt>int X;</tt>" at global scope.
506 </dd>
507
Chris Lattnerfa730212004-12-09 16:11:40 +0000508 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000509
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000510 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
511 that some targets may choose to emit different assembly sequences for them
512 for target-dependent reasons. This is used for globals that are declared
513 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000514 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000515
Chris Lattnerfa730212004-12-09 16:11:40 +0000516 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000517
518 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
519 pointer to array type. When two global variables with appending linkage are
520 linked together, the two global arrays are appended together. This is the
521 LLVM, typesafe, equivalent of having the system linker append together
522 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000523 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000524
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000525 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000526 <dd>The semantics of this linkage follow the ELF object file model: the
527 symbol is weak until linked, if not linked, the symbol becomes null instead
528 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000529 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000530
Chris Lattnerfa730212004-12-09 16:11:40 +0000531 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000532
533 <dd>If none of the above identifiers are used, the global is externally
534 visible, meaning that it participates in linkage and can be used to resolve
535 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000536 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000537</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000538
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000539 <p>
540 The next two types of linkage are targeted for Microsoft Windows platform
541 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000542 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000543 </p>
544
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000545 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000546 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
547
548 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
549 or variable via a global pointer to a pointer that is set up by the DLL
550 exporting the symbol. On Microsoft Windows targets, the pointer name is
551 formed by combining <code>_imp__</code> and the function or variable name.
552 </dd>
553
554 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
555
556 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
557 pointer to a pointer in a DLL, so that it can be referenced with the
558 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
559 name is formed by combining <code>_imp__</code> and the function or variable
560 name.
561 </dd>
562
Chris Lattnerfa730212004-12-09 16:11:40 +0000563</dl>
564
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000565<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000566variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
567variable and was linked with this one, one of the two would be renamed,
568preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
569external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000570outside of the current module.</p>
571<p>It is illegal for a function <i>declaration</i>
572to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000573or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000574<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
575linkages.
Chris Lattnerfa730212004-12-09 16:11:40 +0000576</div>
577
578<!-- ======================================================================= -->
579<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000580 <a name="callingconv">Calling Conventions</a>
581</div>
582
583<div class="doc_text">
584
585<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
586and <a href="#i_invoke">invokes</a> can all have an optional calling convention
587specified for the call. The calling convention of any pair of dynamic
588caller/callee must match, or the behavior of the program is undefined. The
589following calling conventions are supported by LLVM, and more may be added in
590the future:</p>
591
592<dl>
593 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
594
595 <dd>This calling convention (the default if no other calling convention is
596 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000597 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000598 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000599 </dd>
600
601 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
602
603 <dd>This calling convention attempts to make calls as fast as possible
604 (e.g. by passing things in registers). This calling convention allows the
605 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000606 without having to conform to an externally specified ABI (Application Binary
607 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000608 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
609 supported. This calling convention does not support varargs and requires the
610 prototype of all callees to exactly match the prototype of the function
611 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000612 </dd>
613
614 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
615
616 <dd>This calling convention attempts to make code in the caller as efficient
617 as possible under the assumption that the call is not commonly executed. As
618 such, these calls often preserve all registers so that the call does not break
619 any live ranges in the caller side. This calling convention does not support
620 varargs and requires the prototype of all callees to exactly match the
621 prototype of the function definition.
622 </dd>
623
Chris Lattnercfe6b372005-05-07 01:46:40 +0000624 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000625
626 <dd>Any calling convention may be specified by number, allowing
627 target-specific calling conventions to be used. Target specific calling
628 conventions start at 64.
629 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000630</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000631
632<p>More calling conventions can be added/defined on an as-needed basis, to
633support pascal conventions or any other well-known target-independent
634convention.</p>
635
636</div>
637
638<!-- ======================================================================= -->
639<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000640 <a name="visibility">Visibility Styles</a>
641</div>
642
643<div class="doc_text">
644
645<p>
646All Global Variables and Functions have one of the following visibility styles:
647</p>
648
649<dl>
650 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
651
Chris Lattnerd3eda892008-08-05 18:29:16 +0000652 <dd>On targets that use the ELF object file format, default visibility means
653 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000654 modules and, in shared libraries, means that the declared entity may be
655 overridden. On Darwin, default visibility means that the declaration is
656 visible to other modules. Default visibility corresponds to "external
657 linkage" in the language.
658 </dd>
659
660 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
661
662 <dd>Two declarations of an object with hidden visibility refer to the same
663 object if they are in the same shared object. Usually, hidden visibility
664 indicates that the symbol will not be placed into the dynamic symbol table,
665 so no other module (executable or shared library) can reference it
666 directly.
667 </dd>
668
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000669 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
670
671 <dd>On ELF, protected visibility indicates that the symbol will be placed in
672 the dynamic symbol table, but that references within the defining module will
673 bind to the local symbol. That is, the symbol cannot be overridden by another
674 module.
675 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000676</dl>
677
678</div>
679
680<!-- ======================================================================= -->
681<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000682 <a name="globalvars">Global Variables</a>
683</div>
684
685<div class="doc_text">
686
Chris Lattner3689a342005-02-12 19:30:21 +0000687<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000688instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000689an explicit section to be placed in, and may have an optional explicit alignment
690specified. A variable may be defined as "thread_local", which means that it
691will not be shared by threads (each thread will have a separated copy of the
692variable). A variable may be defined as a global "constant," which indicates
693that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000694optimization, allowing the global data to be placed in the read-only section of
695an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000696cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000697
698<p>
699LLVM explicitly allows <em>declarations</em> of global variables to be marked
700constant, even if the final definition of the global is not. This capability
701can be used to enable slightly better optimization of the program, but requires
702the language definition to guarantee that optimizations based on the
703'constantness' are valid for the translation units that do not include the
704definition.
705</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000706
707<p>As SSA values, global variables define pointer values that are in
708scope (i.e. they dominate) all basic blocks in the program. Global
709variables always define a pointer to their "content" type because they
710describe a region of memory, and all memory objects in LLVM are
711accessed through pointers.</p>
712
Christopher Lamb284d9922007-12-11 09:31:00 +0000713<p>A global variable may be declared to reside in a target-specifc numbered
714address space. For targets that support them, address spaces may affect how
715optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000716the variable. The default address space is zero. The address space qualifier
717must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000718
Chris Lattner88f6c462005-11-12 00:45:07 +0000719<p>LLVM allows an explicit section to be specified for globals. If the target
720supports it, it will emit globals to the section specified.</p>
721
Chris Lattner2cbdc452005-11-06 08:02:57 +0000722<p>An explicit alignment may be specified for a global. If not present, or if
723the alignment is set to zero, the alignment of the global is set by the target
724to whatever it feels convenient. If an explicit alignment is specified, the
725global is forced to have at least that much alignment. All alignments must be
726a power of 2.</p>
727
Christopher Lamb284d9922007-12-11 09:31:00 +0000728<p>For example, the following defines a global in a numbered address space with
729an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000730
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000731<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000732<pre>
Christopher Lamb284d9922007-12-11 09:31:00 +0000733@G = constant float 1.0 addrspace(5), section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000734</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000735</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000736
Chris Lattnerfa730212004-12-09 16:11:40 +0000737</div>
738
739
740<!-- ======================================================================= -->
741<div class="doc_subsection">
742 <a name="functionstructure">Functions</a>
743</div>
744
745<div class="doc_text">
746
Reid Spencerca86e162006-12-31 07:07:53 +0000747<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
748an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000749<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000750<a href="#callingconv">calling convention</a>, a return type, an optional
751<a href="#paramattrs">parameter attribute</a> for the return type, a function
752name, a (possibly empty) argument list (each with optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000753<a href="#paramattrs">parameter attributes</a>), an optional section, an
Devang Patelf8b94812008-09-04 23:05:13 +0000754optional alignment, an optional <a href="#gc">garbage collector name</a>,
755an optional <a href="#notes">function notes</a>, an
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000756opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000757
758LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
759optional <a href="#linkage">linkage type</a>, an optional
760<a href="#visibility">visibility style</a>, an optional
761<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000762<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000763name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000764<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000765
Chris Lattnerd3eda892008-08-05 18:29:16 +0000766<p>A function definition contains a list of basic blocks, forming the CFG
767(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000768the function. Each basic block may optionally start with a label (giving the
769basic block a symbol table entry), contains a list of instructions, and ends
770with a <a href="#terminators">terminator</a> instruction (such as a branch or
771function return).</p>
772
Chris Lattner4a3c9012007-06-08 16:52:14 +0000773<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000774executed on entrance to the function, and it is not allowed to have predecessor
775basic blocks (i.e. there can not be any branches to the entry block of a
776function). Because the block can have no predecessors, it also cannot have any
777<a href="#i_phi">PHI nodes</a>.</p>
778
Chris Lattner88f6c462005-11-12 00:45:07 +0000779<p>LLVM allows an explicit section to be specified for functions. If the target
780supports it, it will emit functions to the section specified.</p>
781
Chris Lattner2cbdc452005-11-06 08:02:57 +0000782<p>An explicit alignment may be specified for a function. If not present, or if
783the alignment is set to zero, the alignment of the function is set by the target
784to whatever it feels convenient. If an explicit alignment is specified, the
785function is forced to have at least that much alignment. All alignments must be
786a power of 2.</p>
787
Chris Lattnerfa730212004-12-09 16:11:40 +0000788</div>
789
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000790
791<!-- ======================================================================= -->
792<div class="doc_subsection">
793 <a name="aliasstructure">Aliases</a>
794</div>
795<div class="doc_text">
796 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000797 function, global variable, another alias or bitcast of global value). Aliases
798 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000799 optional <a href="#visibility">visibility style</a>.</p>
800
801 <h5>Syntax:</h5>
802
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000803<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000804<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000805@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000806</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000807</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000808
809</div>
810
811
812
Chris Lattner4e9aba72006-01-23 23:23:47 +0000813<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000814<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
815<div class="doc_text">
816 <p>The return type and each parameter of a function type may have a set of
817 <i>parameter attributes</i> associated with them. Parameter attributes are
818 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000819 a function. Parameter attributes are considered to be part of the function,
820 not of the function type, so functions with different parameter attributes
821 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000822
Reid Spencer950e9f82007-01-15 18:27:39 +0000823 <p>Parameter attributes are simple keywords that follow the type specified. If
824 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000825 example:</p>
826
827<div class="doc_code">
828<pre>
Duncan Sandsdc024672007-11-27 13:23:08 +0000829declare i32 @printf(i8* noalias , ...) nounwind
830declare i32 @atoi(i8*) nounwind readonly
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000831</pre>
832</div>
833
Duncan Sandsdc024672007-11-27 13:23:08 +0000834 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
835 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000836
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000837 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000838 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000839 <dt><tt>zeroext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000840 <dd>This indicates that the parameter should be zero extended just before
841 a call to this function.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000842
Reid Spencer9445e9a2007-07-19 23:13:04 +0000843 <dt><tt>signext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000844 <dd>This indicates that the parameter should be sign extended just before
845 a call to this function.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000846
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000847 <dt><tt>inreg</tt></dt>
848 <dd>This indicates that the parameter should be placed in register (if
Anton Korobeynikov66a8c8c2007-01-28 15:27:21 +0000849 possible) during assembling function call. Support for this attribute is
850 target-specific</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000851
852 <dt><tt>byval</tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000853 <dd>This indicates that the pointer parameter should really be passed by
854 value to the function. The attribute implies that a hidden copy of the
855 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000856 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000857 pointer arguments. It is generally used to pass structs and arrays by
858 value, but is also valid on scalars (even though this is silly).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000859
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000860 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000861 <dd>This indicates that the pointer parameter specifies the address of a
862 structure that is the return value of the function in the source program.
Duncan Sandsb7f0c082008-03-17 12:17:41 +0000863 Loads and stores to the structure are assumed not to trap.
Duncan Sandse26dec62008-02-18 04:19:38 +0000864 May only be applied to the first parameter.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000865
Zhou Shengfebca342007-06-05 05:28:26 +0000866 <dt><tt>noalias</tt></dt>
Owen Anderson117bbd32008-02-18 04:09:01 +0000867 <dd>This indicates that the parameter does not alias any global or any other
868 parameter. The caller is responsible for ensuring that this is the case,
869 usually by placing the value in a stack allocation.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000870
Reid Spencer2dc52012007-03-22 02:18:56 +0000871 <dt><tt>noreturn</tt></dt>
872 <dd>This function attribute indicates that the function never returns. This
873 indicates to LLVM that every call to this function should be treated as if
874 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000875
Reid Spencer67606122007-03-22 02:02:11 +0000876 <dt><tt>nounwind</tt></dt>
Duncan Sandsb7f0c082008-03-17 12:17:41 +0000877 <dd>This function attribute indicates that no exceptions unwind out of the
878 function. Usually this is because the function makes no use of exceptions,
879 but it may also be that the function catches any exceptions thrown when
880 executing it.</dd>
881
Duncan Sands50f19f52007-07-27 19:57:41 +0000882 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000883 <dd>This indicates that the pointer parameter can be excised using the
Duncan Sands50f19f52007-07-27 19:57:41 +0000884 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Duncan Sandsed4a2f12007-11-22 20:23:04 +0000885 <dt><tt>readonly</tt></dt>
Duncan Sandsf04d5842007-11-14 21:14:02 +0000886 <dd>This function attribute indicates that the function has no side-effects
Duncan Sandsed4a2f12007-11-22 20:23:04 +0000887 except for producing a return value or throwing an exception. The value
888 returned must only depend on the function arguments and/or global variables.
889 It may use values obtained by dereferencing pointers.</dd>
890 <dt><tt>readnone</tt></dt>
891 <dd>A <tt>readnone</tt> function has the same restrictions as a <tt>readonly</tt>
Duncan Sandsf04d5842007-11-14 21:14:02 +0000892 function, but in addition it is not allowed to dereference any pointer arguments
893 or global variables.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000894 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000895
Reid Spencerca86e162006-12-31 07:07:53 +0000896</div>
897
898<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000899<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000900 <a name="gc">Garbage Collector Names</a>
901</div>
902
903<div class="doc_text">
904<p>Each function may specify a garbage collector name, which is simply a
905string.</p>
906
907<div class="doc_code"><pre
908>define void @f() gc "name" { ...</pre></div>
909
910<p>The compiler declares the supported values of <i>name</i>. Specifying a
911collector which will cause the compiler to alter its output in order to support
912the named garbage collection algorithm.</p>
913</div>
914
915<!-- ======================================================================= -->
916<div class="doc_subsection">
Devang Patelf8b94812008-09-04 23:05:13 +0000917 <a name="notes">Function Notes</a>
918</div>
919
920<div class="doc_text">
Devang Patelcdc06692008-09-04 23:10:26 +0000921<p>The function definition may list function notes which are used by
922various passes.</p>
Devang Patelf8b94812008-09-04 23:05:13 +0000923
924<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000925<pre>
926define void @f() notes(inline=Always) { ... }
927define void @f() notes(inline=Always,opt-size) { ... }
928define void @f() notes(inline=Never,opt-size) { ... }
929define void @f() notes(opt-size) { ... }
930</pre>
Devang Patelf8b94812008-09-04 23:05:13 +0000931</div>
932
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000933<dl>
934<dt><tt>inline=Always</tt></dt>
935<dd>This note requests inliner to inline this function irrespective of inlining
936size threshold for this function.</dd>
937
938<dt><tt>inline=Never</tt></dt>
939<dd>This note requests inliner to never inline this function in any situation.
940This note may not be used together with <tt>inline=Always</tt> note.</dd>
941
942<dt><tt>opt-size</tt></dt>
943<dd>This note suggests optimization passes and code generator passes to make
944choices that help reduce code size.</dd>
945
946</dl>
947
948<p>Any notes that are not documented here are considered invalid notes.</p>
Devang Patelf8b94812008-09-04 23:05:13 +0000949</div>
950
951<!-- ======================================================================= -->
952<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000953 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000954</div>
955
956<div class="doc_text">
957<p>
958Modules may contain "module-level inline asm" blocks, which corresponds to the
959GCC "file scope inline asm" blocks. These blocks are internally concatenated by
960LLVM and treated as a single unit, but may be separated in the .ll file if
961desired. The syntax is very simple:
962</p>
963
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000964<div class="doc_code">
965<pre>
966module asm "inline asm code goes here"
967module asm "more can go here"
968</pre>
969</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000970
971<p>The strings can contain any character by escaping non-printable characters.
972 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
973 for the number.
974</p>
975
976<p>
977 The inline asm code is simply printed to the machine code .s file when
978 assembly code is generated.
979</p>
980</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000981
Reid Spencerde151942007-02-19 23:54:10 +0000982<!-- ======================================================================= -->
983<div class="doc_subsection">
984 <a name="datalayout">Data Layout</a>
985</div>
986
987<div class="doc_text">
988<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +0000989data is to be laid out in memory. The syntax for the data layout is simply:</p>
990<pre> target datalayout = "<i>layout specification</i>"</pre>
991<p>The <i>layout specification</i> consists of a list of specifications
992separated by the minus sign character ('-'). Each specification starts with a
993letter and may include other information after the letter to define some
994aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +0000995<dl>
996 <dt><tt>E</tt></dt>
997 <dd>Specifies that the target lays out data in big-endian form. That is, the
998 bits with the most significance have the lowest address location.</dd>
999 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001000 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001001 the bits with the least significance have the lowest address location.</dd>
1002 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1003 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1004 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1005 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1006 too.</dd>
1007 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1008 <dd>This specifies the alignment for an integer type of a given bit
1009 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1010 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1011 <dd>This specifies the alignment for a vector type of a given bit
1012 <i>size</i>.</dd>
1013 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1014 <dd>This specifies the alignment for a floating point type of a given bit
1015 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1016 (double).</dd>
1017 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1018 <dd>This specifies the alignment for an aggregate type of a given bit
1019 <i>size</i>.</dd>
1020</dl>
1021<p>When constructing the data layout for a given target, LLVM starts with a
1022default set of specifications which are then (possibly) overriden by the
1023specifications in the <tt>datalayout</tt> keyword. The default specifications
1024are given in this list:</p>
1025<ul>
1026 <li><tt>E</tt> - big endian</li>
1027 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1028 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1029 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1030 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1031 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001032 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001033 alignment of 64-bits</li>
1034 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1035 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1036 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1037 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1038 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1039</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001040<p>When LLVM is determining the alignment for a given type, it uses the
Reid Spencerde151942007-02-19 23:54:10 +00001041following rules:
1042<ol>
1043 <li>If the type sought is an exact match for one of the specifications, that
1044 specification is used.</li>
1045 <li>If no match is found, and the type sought is an integer type, then the
1046 smallest integer type that is larger than the bitwidth of the sought type is
1047 used. If none of the specifications are larger than the bitwidth then the the
1048 largest integer type is used. For example, given the default specifications
1049 above, the i7 type will use the alignment of i8 (next largest) while both
1050 i65 and i256 will use the alignment of i64 (largest specified).</li>
1051 <li>If no match is found, and the type sought is a vector type, then the
1052 largest vector type that is smaller than the sought vector type will be used
1053 as a fall back. This happens because <128 x double> can be implemented in
1054 terms of 64 <2 x double>, for example.</li>
1055</ol>
1056</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001057
Chris Lattner00950542001-06-06 20:29:01 +00001058<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001059<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1060<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001061
Misha Brukman9d0919f2003-11-08 01:05:38 +00001062<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001063
Misha Brukman9d0919f2003-11-08 01:05:38 +00001064<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001065intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001066optimizations to be performed on the intermediate representation directly,
1067without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001068extra analyses on the side before the transformation. A strong type
1069system makes it easier to read the generated code and enables novel
1070analyses and transformations that are not feasible to perform on normal
1071three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001072
1073</div>
1074
Chris Lattner00950542001-06-06 20:29:01 +00001075<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001076<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001077Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001078<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001079<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001080classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001081
1082<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001083 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001084 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001085 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001086 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001087 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001088 </tr>
1089 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001090 <td><a href="#t_floating">floating point</a></td>
1091 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001092 </tr>
1093 <tr>
1094 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001095 <td><a href="#t_integer">integer</a>,
1096 <a href="#t_floating">floating point</a>,
1097 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001098 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001099 <a href="#t_struct">structure</a>,
1100 <a href="#t_array">array</a>,
Dan Gohmanade5faa2008-05-23 22:50:26 +00001101 <a href="#t_label">label</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001102 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001103 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001104 <tr>
1105 <td><a href="#t_primitive">primitive</a></td>
1106 <td><a href="#t_label">label</a>,
1107 <a href="#t_void">void</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001108 <a href="#t_floating">floating point</a>.</td>
1109 </tr>
1110 <tr>
1111 <td><a href="#t_derived">derived</a></td>
1112 <td><a href="#t_integer">integer</a>,
1113 <a href="#t_array">array</a>,
1114 <a href="#t_function">function</a>,
1115 <a href="#t_pointer">pointer</a>,
1116 <a href="#t_struct">structure</a>,
1117 <a href="#t_pstruct">packed structure</a>,
1118 <a href="#t_vector">vector</a>,
1119 <a href="#t_opaque">opaque</a>.
1120 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001121 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001122</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001123
Chris Lattner261efe92003-11-25 01:02:51 +00001124<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1125most important. Values of these types are the only ones which can be
1126produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001127instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001128</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001129
Chris Lattner00950542001-06-06 20:29:01 +00001130<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001131<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001132
Chris Lattner4f69f462008-01-04 04:32:38 +00001133<div class="doc_text">
1134<p>The primitive types are the fundamental building blocks of the LLVM
1135system.</p>
1136
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001137</div>
1138
Chris Lattner4f69f462008-01-04 04:32:38 +00001139<!-- _______________________________________________________________________ -->
1140<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1141
1142<div class="doc_text">
1143 <table>
1144 <tbody>
1145 <tr><th>Type</th><th>Description</th></tr>
1146 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1147 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1148 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1149 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1150 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1151 </tbody>
1152 </table>
1153</div>
1154
1155<!-- _______________________________________________________________________ -->
1156<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1157
1158<div class="doc_text">
1159<h5>Overview:</h5>
1160<p>The void type does not represent any value and has no size.</p>
1161
1162<h5>Syntax:</h5>
1163
1164<pre>
1165 void
1166</pre>
1167</div>
1168
1169<!-- _______________________________________________________________________ -->
1170<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1171
1172<div class="doc_text">
1173<h5>Overview:</h5>
1174<p>The label type represents code labels.</p>
1175
1176<h5>Syntax:</h5>
1177
1178<pre>
1179 label
1180</pre>
1181</div>
1182
1183
1184<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001185<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001186
Misha Brukman9d0919f2003-11-08 01:05:38 +00001187<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001188
Chris Lattner261efe92003-11-25 01:02:51 +00001189<p>The real power in LLVM comes from the derived types in the system.
1190This is what allows a programmer to represent arrays, functions,
1191pointers, and other useful types. Note that these derived types may be
1192recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001193
Misha Brukman9d0919f2003-11-08 01:05:38 +00001194</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001195
Chris Lattner00950542001-06-06 20:29:01 +00001196<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001197<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1198
1199<div class="doc_text">
1200
1201<h5>Overview:</h5>
1202<p>The integer type is a very simple derived type that simply specifies an
1203arbitrary bit width for the integer type desired. Any bit width from 1 bit to
12042^23-1 (about 8 million) can be specified.</p>
1205
1206<h5>Syntax:</h5>
1207
1208<pre>
1209 iN
1210</pre>
1211
1212<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1213value.</p>
1214
1215<h5>Examples:</h5>
1216<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001217 <tbody>
1218 <tr>
1219 <td><tt>i1</tt></td>
1220 <td>a single-bit integer.</td>
1221 </tr><tr>
1222 <td><tt>i32</tt></td>
1223 <td>a 32-bit integer.</td>
1224 </tr><tr>
1225 <td><tt>i1942652</tt></td>
1226 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001227 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001228 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001229</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001230</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001231
1232<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001233<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001234
Misha Brukman9d0919f2003-11-08 01:05:38 +00001235<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001236
Chris Lattner00950542001-06-06 20:29:01 +00001237<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001238
Misha Brukman9d0919f2003-11-08 01:05:38 +00001239<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001240sequentially in memory. The array type requires a size (number of
1241elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001242
Chris Lattner7faa8832002-04-14 06:13:44 +00001243<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001244
1245<pre>
1246 [&lt;# elements&gt; x &lt;elementtype&gt;]
1247</pre>
1248
John Criswelle4c57cc2005-05-12 16:52:32 +00001249<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001250be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001251
Chris Lattner7faa8832002-04-14 06:13:44 +00001252<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001253<table class="layout">
1254 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001255 <td class="left"><tt>[40 x i32]</tt></td>
1256 <td class="left">Array of 40 32-bit integer values.</td>
1257 </tr>
1258 <tr class="layout">
1259 <td class="left"><tt>[41 x i32]</tt></td>
1260 <td class="left">Array of 41 32-bit integer values.</td>
1261 </tr>
1262 <tr class="layout">
1263 <td class="left"><tt>[4 x i8]</tt></td>
1264 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001265 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001266</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001267<p>Here are some examples of multidimensional arrays:</p>
1268<table class="layout">
1269 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001270 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1271 <td class="left">3x4 array of 32-bit integer values.</td>
1272 </tr>
1273 <tr class="layout">
1274 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1275 <td class="left">12x10 array of single precision floating point values.</td>
1276 </tr>
1277 <tr class="layout">
1278 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1279 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001280 </tr>
1281</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001282
John Criswell0ec250c2005-10-24 16:17:18 +00001283<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1284length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001285LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1286As a special case, however, zero length arrays are recognized to be variable
1287length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001288type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001289
Misha Brukman9d0919f2003-11-08 01:05:38 +00001290</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001291
Chris Lattner00950542001-06-06 20:29:01 +00001292<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001293<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001294<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001295
Chris Lattner00950542001-06-06 20:29:01 +00001296<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001297
Chris Lattner261efe92003-11-25 01:02:51 +00001298<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001299consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001300return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001301If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001302class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001303
Chris Lattner00950542001-06-06 20:29:01 +00001304<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001305
1306<pre>
1307 &lt;returntype list&gt; (&lt;parameter list&gt;)
1308</pre>
1309
John Criswell0ec250c2005-10-24 16:17:18 +00001310<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001311specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001312which indicates that the function takes a variable number of arguments.
1313Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001314 href="#int_varargs">variable argument handling intrinsic</a> functions.
1315'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1316<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001317
Chris Lattner00950542001-06-06 20:29:01 +00001318<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001319<table class="layout">
1320 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001321 <td class="left"><tt>i32 (i32)</tt></td>
1322 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001323 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001324 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001325 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001326 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001327 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1328 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001329 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001330 <tt>float</tt>.
1331 </td>
1332 </tr><tr class="layout">
1333 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1334 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001335 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001336 which returns an integer. This is the signature for <tt>printf</tt> in
1337 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001338 </td>
Devang Patela582f402008-03-24 05:35:41 +00001339 </tr><tr class="layout">
1340 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel3a5bff82008-03-24 18:10:52 +00001341 <td class="left">A function taking an <tt>i32></tt>, returning two
1342 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001343 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001344 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001345</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001346
Misha Brukman9d0919f2003-11-08 01:05:38 +00001347</div>
Chris Lattner00950542001-06-06 20:29:01 +00001348<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001349<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001350<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001351<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001352<p>The structure type is used to represent a collection of data members
1353together in memory. The packing of the field types is defined to match
1354the ABI of the underlying processor. The elements of a structure may
1355be any type that has a size.</p>
1356<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1357and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1358field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1359instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001360<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001361<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001362<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001363<table class="layout">
1364 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001365 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1366 <td class="left">A triple of three <tt>i32</tt> values</td>
1367 </tr><tr class="layout">
1368 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1369 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1370 second element is a <a href="#t_pointer">pointer</a> to a
1371 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1372 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001373 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001374</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001375</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001376
Chris Lattner00950542001-06-06 20:29:01 +00001377<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001378<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1379</div>
1380<div class="doc_text">
1381<h5>Overview:</h5>
1382<p>The packed structure type is used to represent a collection of data members
1383together in memory. There is no padding between fields. Further, the alignment
1384of a packed structure is 1 byte. The elements of a packed structure may
1385be any type that has a size.</p>
1386<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1387and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1388field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1389instruction.</p>
1390<h5>Syntax:</h5>
1391<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1392<h5>Examples:</h5>
1393<table class="layout">
1394 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001395 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1396 <td class="left">A triple of three <tt>i32</tt> values</td>
1397 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001398 <td class="left">
1399<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001400 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1401 second element is a <a href="#t_pointer">pointer</a> to a
1402 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1403 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001404 </tr>
1405</table>
1406</div>
1407
1408<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001409<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001410<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001411<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001412<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001413reference to another object, which must live in memory. Pointer types may have
1414an optional address space attribute defining the target-specific numbered
1415address space where the pointed-to object resides. The default address space is
1416zero.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001417<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001418<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001419<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001420<table class="layout">
1421 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001422 <td class="left"><tt>[4x i32]*</tt></td>
1423 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1424 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1425 </tr>
1426 <tr class="layout">
1427 <td class="left"><tt>i32 (i32 *) *</tt></td>
1428 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001429 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001430 <tt>i32</tt>.</td>
1431 </tr>
1432 <tr class="layout">
1433 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1434 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1435 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001436 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001437</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001438</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001439
Chris Lattnera58561b2004-08-12 19:12:28 +00001440<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001441<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001442<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001443
Chris Lattnera58561b2004-08-12 19:12:28 +00001444<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001445
Reid Spencer485bad12007-02-15 03:07:05 +00001446<p>A vector type is a simple derived type that represents a vector
1447of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001448are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001449A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001450elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001451of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001452considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001453
Chris Lattnera58561b2004-08-12 19:12:28 +00001454<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001455
1456<pre>
1457 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1458</pre>
1459
John Criswellc1f786c2005-05-13 22:25:59 +00001460<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001461be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001462
Chris Lattnera58561b2004-08-12 19:12:28 +00001463<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001464
Reid Spencerd3f876c2004-11-01 08:19:36 +00001465<table class="layout">
1466 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001467 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1468 <td class="left">Vector of 4 32-bit integer values.</td>
1469 </tr>
1470 <tr class="layout">
1471 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1472 <td class="left">Vector of 8 32-bit floating-point values.</td>
1473 </tr>
1474 <tr class="layout">
1475 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1476 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001477 </tr>
1478</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001479</div>
1480
Chris Lattner69c11bb2005-04-25 17:34:15 +00001481<!-- _______________________________________________________________________ -->
1482<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1483<div class="doc_text">
1484
1485<h5>Overview:</h5>
1486
1487<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001488corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001489In LLVM, opaque types can eventually be resolved to any type (not just a
1490structure type).</p>
1491
1492<h5>Syntax:</h5>
1493
1494<pre>
1495 opaque
1496</pre>
1497
1498<h5>Examples:</h5>
1499
1500<table class="layout">
1501 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001502 <td class="left"><tt>opaque</tt></td>
1503 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001504 </tr>
1505</table>
1506</div>
1507
1508
Chris Lattnerc3f59762004-12-09 17:30:23 +00001509<!-- *********************************************************************** -->
1510<div class="doc_section"> <a name="constants">Constants</a> </div>
1511<!-- *********************************************************************** -->
1512
1513<div class="doc_text">
1514
1515<p>LLVM has several different basic types of constants. This section describes
1516them all and their syntax.</p>
1517
1518</div>
1519
1520<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001521<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001522
1523<div class="doc_text">
1524
1525<dl>
1526 <dt><b>Boolean constants</b></dt>
1527
1528 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001529 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001530 </dd>
1531
1532 <dt><b>Integer constants</b></dt>
1533
Reid Spencercc16dc32004-12-09 18:02:53 +00001534 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001535 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001536 integer types.
1537 </dd>
1538
1539 <dt><b>Floating point constants</b></dt>
1540
1541 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1542 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001543 notation (see below). The assembler requires the exact decimal value of
1544 a floating-point constant. For example, the assembler accepts 1.25 but
1545 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1546 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001547
1548 <dt><b>Null pointer constants</b></dt>
1549
John Criswell9e2485c2004-12-10 15:51:16 +00001550 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001551 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1552
1553</dl>
1554
John Criswell9e2485c2004-12-10 15:51:16 +00001555<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001556of floating point constants. For example, the form '<tt>double
15570x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
15584.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001559(and the only time that they are generated by the disassembler) is when a
1560floating point constant must be emitted but it cannot be represented as a
1561decimal floating point number. For example, NaN's, infinities, and other
1562special values are represented in their IEEE hexadecimal format so that
1563assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001564
1565</div>
1566
1567<!-- ======================================================================= -->
1568<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1569</div>
1570
1571<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001572<p>Aggregate constants arise from aggregation of simple constants
1573and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001574
1575<dl>
1576 <dt><b>Structure constants</b></dt>
1577
1578 <dd>Structure constants are represented with notation similar to structure
1579 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001580 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1581 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001582 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001583 types of elements must match those specified by the type.
1584 </dd>
1585
1586 <dt><b>Array constants</b></dt>
1587
1588 <dd>Array constants are represented with notation similar to array type
1589 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001590 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001591 constants must have <a href="#t_array">array type</a>, and the number and
1592 types of elements must match those specified by the type.
1593 </dd>
1594
Reid Spencer485bad12007-02-15 03:07:05 +00001595 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001596
Reid Spencer485bad12007-02-15 03:07:05 +00001597 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001598 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001599 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001600 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001601 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001602 match those specified by the type.
1603 </dd>
1604
1605 <dt><b>Zero initialization</b></dt>
1606
1607 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1608 value to zero of <em>any</em> type, including scalar and aggregate types.
1609 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001610 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001611 initializers.
1612 </dd>
1613</dl>
1614
1615</div>
1616
1617<!-- ======================================================================= -->
1618<div class="doc_subsection">
1619 <a name="globalconstants">Global Variable and Function Addresses</a>
1620</div>
1621
1622<div class="doc_text">
1623
1624<p>The addresses of <a href="#globalvars">global variables</a> and <a
1625href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001626constants. These constants are explicitly referenced when the <a
1627href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001628href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1629file:</p>
1630
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001631<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001632<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001633@X = global i32 17
1634@Y = global i32 42
1635@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001636</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001637</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001638
1639</div>
1640
1641<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001642<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001643<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001644 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001645 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001646 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001647
Reid Spencer2dc45b82004-12-09 18:13:12 +00001648 <p>Undefined values indicate to the compiler that the program is well defined
1649 no matter what value is used, giving the compiler more freedom to optimize.
1650 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001651</div>
1652
1653<!-- ======================================================================= -->
1654<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1655</div>
1656
1657<div class="doc_text">
1658
1659<p>Constant expressions are used to allow expressions involving other constants
1660to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001661href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001662that does not have side effects (e.g. load and call are not supported). The
1663following is the syntax for constant expressions:</p>
1664
1665<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001666 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1667 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001668 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001669
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001670 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1671 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001672 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001673
1674 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1675 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001676 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001677
1678 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1679 <dd>Truncate a floating point constant to another floating point type. The
1680 size of CST must be larger than the size of TYPE. Both types must be
1681 floating point.</dd>
1682
1683 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1684 <dd>Floating point extend a constant to another type. The size of CST must be
1685 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1686
Reid Spencer1539a1c2007-07-31 14:40:14 +00001687 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001688 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001689 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1690 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1691 of the same number of elements. If the value won't fit in the integer type,
1692 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001693
Reid Spencerd4448792006-11-09 23:03:26 +00001694 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001695 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001696 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1697 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1698 of the same number of elements. If the value won't fit in the integer type,
1699 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001700
Reid Spencerd4448792006-11-09 23:03:26 +00001701 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001702 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001703 constant. TYPE must be a scalar or vector floating point type. CST must be of
1704 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1705 of the same number of elements. If the value won't fit in the floating point
1706 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001707
Reid Spencerd4448792006-11-09 23:03:26 +00001708 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001709 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001710 constant. TYPE must be a scalar or vector floating point type. CST must be of
1711 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1712 of the same number of elements. If the value won't fit in the floating point
1713 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001714
Reid Spencer5c0ef472006-11-11 23:08:07 +00001715 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1716 <dd>Convert a pointer typed constant to the corresponding integer constant
1717 TYPE must be an integer type. CST must be of pointer type. The CST value is
1718 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1719
1720 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1721 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1722 pointer type. CST must be of integer type. The CST value is zero extended,
1723 truncated, or unchanged to make it fit in a pointer size. This one is
1724 <i>really</i> dangerous!</dd>
1725
1726 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001727 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1728 identical (same number of bits). The conversion is done as if the CST value
1729 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001730 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001731 vector types to any other type, as long as they have the same bit width. For
Dan Gohman500233a2008-09-08 16:45:59 +00001732 pointers it is only valid to cast to another pointer type. It is not valid
1733 to bitcast to or from an aggregate type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001734 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001735
1736 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1737
1738 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1739 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1740 instruction, the index list may have zero or more indexes, which are required
1741 to make sense for the type of "CSTPTR".</dd>
1742
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001743 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1744
1745 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001746 constants.</dd>
1747
1748 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1749 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1750
1751 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1752 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001753
Nate Begemanac80ade2008-05-12 19:01:56 +00001754 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1755 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1756
1757 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1758 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1759
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001760 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1761
1762 <dd>Perform the <a href="#i_extractelement">extractelement
1763 operation</a> on constants.
1764
Robert Bocchino05ccd702006-01-15 20:48:27 +00001765 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1766
1767 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001768 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001769
Chris Lattnerc1989542006-04-08 00:13:41 +00001770
1771 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1772
1773 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001774 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001775
Chris Lattnerc3f59762004-12-09 17:30:23 +00001776 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1777
Reid Spencer2dc45b82004-12-09 18:13:12 +00001778 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1779 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001780 binary</a> operations. The constraints on operands are the same as those for
1781 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001782 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001783</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001784</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001785
Chris Lattner00950542001-06-06 20:29:01 +00001786<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001787<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1788<!-- *********************************************************************** -->
1789
1790<!-- ======================================================================= -->
1791<div class="doc_subsection">
1792<a name="inlineasm">Inline Assembler Expressions</a>
1793</div>
1794
1795<div class="doc_text">
1796
1797<p>
1798LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1799Module-Level Inline Assembly</a>) through the use of a special value. This
1800value represents the inline assembler as a string (containing the instructions
1801to emit), a list of operand constraints (stored as a string), and a flag that
1802indicates whether or not the inline asm expression has side effects. An example
1803inline assembler expression is:
1804</p>
1805
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001806<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001807<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001808i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001809</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001810</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001811
1812<p>
1813Inline assembler expressions may <b>only</b> be used as the callee operand of
1814a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1815</p>
1816
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001817<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001818<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001819%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001820</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001821</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001822
1823<p>
1824Inline asms with side effects not visible in the constraint list must be marked
1825as having side effects. This is done through the use of the
1826'<tt>sideeffect</tt>' keyword, like so:
1827</p>
1828
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001829<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001830<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001831call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001832</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001833</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001834
1835<p>TODO: The format of the asm and constraints string still need to be
1836documented here. Constraints on what can be done (e.g. duplication, moving, etc
1837need to be documented).
1838</p>
1839
1840</div>
1841
1842<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001843<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1844<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001845
Misha Brukman9d0919f2003-11-08 01:05:38 +00001846<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001847
Chris Lattner261efe92003-11-25 01:02:51 +00001848<p>The LLVM instruction set consists of several different
1849classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001850instructions</a>, <a href="#binaryops">binary instructions</a>,
1851<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001852 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1853instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001854
Misha Brukman9d0919f2003-11-08 01:05:38 +00001855</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001856
Chris Lattner00950542001-06-06 20:29:01 +00001857<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001858<div class="doc_subsection"> <a name="terminators">Terminator
1859Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001860
Misha Brukman9d0919f2003-11-08 01:05:38 +00001861<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001862
Chris Lattner261efe92003-11-25 01:02:51 +00001863<p>As mentioned <a href="#functionstructure">previously</a>, every
1864basic block in a program ends with a "Terminator" instruction, which
1865indicates which block should be executed after the current block is
1866finished. These terminator instructions typically yield a '<tt>void</tt>'
1867value: they produce control flow, not values (the one exception being
1868the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001869<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001870 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1871instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001872the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1873 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1874 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001875
Misha Brukman9d0919f2003-11-08 01:05:38 +00001876</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001877
Chris Lattner00950542001-06-06 20:29:01 +00001878<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001879<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1880Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001881<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001882<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001883<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001884 ret void <i>; Return from void function</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001885 ret &lt;type&gt; &lt;value&gt;, &lt;type&gt; &lt;value&gt; <i>; Return two values from a non-void function </i>
Chris Lattner00950542001-06-06 20:29:01 +00001886</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001887
Chris Lattner00950542001-06-06 20:29:01 +00001888<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001889
Chris Lattner261efe92003-11-25 01:02:51 +00001890<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
John Criswellc1f786c2005-05-13 22:25:59 +00001891value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001892<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001893returns value(s) and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00001894control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001895
Chris Lattner00950542001-06-06 20:29:01 +00001896<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001897
1898<p>The '<tt>ret</tt>' instruction may return zero, one or multiple values.
1899The type of each return value must be a '<a href="#t_firstclass">first
1900class</a>' type. Note that a function is not <a href="#wellformed">well
1901formed</a> if there exists a '<tt>ret</tt>' instruction inside of the
1902function that returns values that do not match the return type of the
1903function.</p>
1904
Chris Lattner00950542001-06-06 20:29:01 +00001905<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001906
Chris Lattner261efe92003-11-25 01:02:51 +00001907<p>When the '<tt>ret</tt>' instruction is executed, control flow
1908returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001909 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001910the instruction after the call. If the caller was an "<a
1911 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001912at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001913returns a value, that value shall set the call or invoke instruction's
Devang Patelc3fc6df2008-03-10 20:49:15 +00001914return value. If the instruction returns multiple values then these
Devang Patel0dbb4a12008-03-11 05:51:59 +00001915values can only be accessed through a '<a href="#i_getresult"><tt>getresult</tt>
1916</a>' instruction.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001917
Chris Lattner00950542001-06-06 20:29:01 +00001918<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001919
1920<pre>
1921 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001922 ret void <i>; Return from a void function</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001923 ret i32 4, i8 2 <i>; Return two values 4 and 2 </i>
Chris Lattner00950542001-06-06 20:29:01 +00001924</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001925</div>
Chris Lattner00950542001-06-06 20:29:01 +00001926<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001927<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001928<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001929<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001930<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001931</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001932<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001933<p>The '<tt>br</tt>' instruction is used to cause control flow to
1934transfer to a different basic block in the current function. There are
1935two forms of this instruction, corresponding to a conditional branch
1936and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001937<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001938<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00001939single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00001940unconditional form of the '<tt>br</tt>' instruction takes a single
1941'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001942<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001943<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001944argument is evaluated. If the value is <tt>true</tt>, control flows
1945to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1946control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001947<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001948<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00001949 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001950</div>
Chris Lattner00950542001-06-06 20:29:01 +00001951<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001952<div class="doc_subsubsection">
1953 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1954</div>
1955
Misha Brukman9d0919f2003-11-08 01:05:38 +00001956<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001957<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001958
1959<pre>
1960 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1961</pre>
1962
Chris Lattner00950542001-06-06 20:29:01 +00001963<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001964
1965<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1966several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001967instruction, allowing a branch to occur to one of many possible
1968destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001969
1970
Chris Lattner00950542001-06-06 20:29:01 +00001971<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001972
1973<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1974comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1975an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1976table is not allowed to contain duplicate constant entries.</p>
1977
Chris Lattner00950542001-06-06 20:29:01 +00001978<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001979
Chris Lattner261efe92003-11-25 01:02:51 +00001980<p>The <tt>switch</tt> instruction specifies a table of values and
1981destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00001982table is searched for the given value. If the value is found, control flow is
1983transfered to the corresponding destination; otherwise, control flow is
1984transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001985
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001986<h5>Implementation:</h5>
1987
1988<p>Depending on properties of the target machine and the particular
1989<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00001990ways. For example, it could be generated as a series of chained conditional
1991branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001992
1993<h5>Example:</h5>
1994
1995<pre>
1996 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00001997 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00001998 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001999
2000 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002001 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002002
2003 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002004 switch i32 %val, label %otherwise [ i32 0, label %onzero
2005 i32 1, label %onone
2006 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002007</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002008</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002009
Chris Lattner00950542001-06-06 20:29:01 +00002010<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002011<div class="doc_subsubsection">
2012 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2013</div>
2014
Misha Brukman9d0919f2003-11-08 01:05:38 +00002015<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002016
Chris Lattner00950542001-06-06 20:29:01 +00002017<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002018
2019<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002020 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00002021 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002022</pre>
2023
Chris Lattner6536cfe2002-05-06 22:08:29 +00002024<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002025
2026<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2027function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002028'<tt>normal</tt>' label or the
2029'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002030"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2031"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002032href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Devang Patelc3fc6df2008-03-10 20:49:15 +00002033continued at the dynamically nearest "exception" label. If the callee function
Devang Patel0dbb4a12008-03-11 05:51:59 +00002034returns multiple values then individual return values are only accessible through
2035a '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002036
Chris Lattner00950542001-06-06 20:29:01 +00002037<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002038
Misha Brukman9d0919f2003-11-08 01:05:38 +00002039<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002040
Chris Lattner00950542001-06-06 20:29:01 +00002041<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002042 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002043 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002044 convention</a> the call should use. If none is specified, the call defaults
2045 to using C calling conventions.
2046 </li>
2047 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2048 function value being invoked. In most cases, this is a direct function
2049 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2050 an arbitrary pointer to function value.
2051 </li>
2052
2053 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2054 function to be invoked. </li>
2055
2056 <li>'<tt>function args</tt>': argument list whose types match the function
2057 signature argument types. If the function signature indicates the function
2058 accepts a variable number of arguments, the extra arguments can be
2059 specified. </li>
2060
2061 <li>'<tt>normal label</tt>': the label reached when the called function
2062 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2063
2064 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2065 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2066
Chris Lattner00950542001-06-06 20:29:01 +00002067</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002068
Chris Lattner00950542001-06-06 20:29:01 +00002069<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002070
Misha Brukman9d0919f2003-11-08 01:05:38 +00002071<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002072href="#i_call">call</a></tt>' instruction in most regards. The primary
2073difference is that it establishes an association with a label, which is used by
2074the runtime library to unwind the stack.</p>
2075
2076<p>This instruction is used in languages with destructors to ensure that proper
2077cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2078exception. Additionally, this is important for implementation of
2079'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2080
Chris Lattner00950542001-06-06 20:29:01 +00002081<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002082<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002083 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002084 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002085 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002086 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002087</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002088</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002089
2090
Chris Lattner27f71f22003-09-03 00:41:47 +00002091<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002092
Chris Lattner261efe92003-11-25 01:02:51 +00002093<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2094Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002095
Misha Brukman9d0919f2003-11-08 01:05:38 +00002096<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002097
Chris Lattner27f71f22003-09-03 00:41:47 +00002098<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002099<pre>
2100 unwind
2101</pre>
2102
Chris Lattner27f71f22003-09-03 00:41:47 +00002103<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002104
2105<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2106at the first callee in the dynamic call stack which used an <a
2107href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2108primarily used to implement exception handling.</p>
2109
Chris Lattner27f71f22003-09-03 00:41:47 +00002110<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002111
Chris Lattner72ed2002008-04-19 21:01:16 +00002112<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002113immediately halt. The dynamic call stack is then searched for the first <a
2114href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2115execution continues at the "exceptional" destination block specified by the
2116<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2117dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002118</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002119
2120<!-- _______________________________________________________________________ -->
2121
2122<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2123Instruction</a> </div>
2124
2125<div class="doc_text">
2126
2127<h5>Syntax:</h5>
2128<pre>
2129 unreachable
2130</pre>
2131
2132<h5>Overview:</h5>
2133
2134<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2135instruction is used to inform the optimizer that a particular portion of the
2136code is not reachable. This can be used to indicate that the code after a
2137no-return function cannot be reached, and other facts.</p>
2138
2139<h5>Semantics:</h5>
2140
2141<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2142</div>
2143
2144
2145
Chris Lattner00950542001-06-06 20:29:01 +00002146<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002147<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002148<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002149<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002150program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002151produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002152multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002153The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002154<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002155</div>
Chris Lattner00950542001-06-06 20:29:01 +00002156<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002157<div class="doc_subsubsection">
2158 <a name="i_add">'<tt>add</tt>' Instruction</a>
2159</div>
2160
Misha Brukman9d0919f2003-11-08 01:05:38 +00002161<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002162
Chris Lattner00950542001-06-06 20:29:01 +00002163<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002164
2165<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002166 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002167</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002168
Chris Lattner00950542001-06-06 20:29:01 +00002169<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002170
Misha Brukman9d0919f2003-11-08 01:05:38 +00002171<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002172
Chris Lattner00950542001-06-06 20:29:01 +00002173<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002174
2175<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2176 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2177 <a href="#t_vector">vector</a> values. Both arguments must have identical
2178 types.</p>
2179
Chris Lattner00950542001-06-06 20:29:01 +00002180<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002181
Misha Brukman9d0919f2003-11-08 01:05:38 +00002182<p>The value produced is the integer or floating point sum of the two
2183operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002184
Chris Lattner5ec89832008-01-28 00:36:27 +00002185<p>If an integer sum has unsigned overflow, the result returned is the
2186mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2187the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002188
Chris Lattner5ec89832008-01-28 00:36:27 +00002189<p>Because LLVM integers use a two's complement representation, this
2190instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002191
Chris Lattner00950542001-06-06 20:29:01 +00002192<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002193
2194<pre>
2195 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002196</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002197</div>
Chris Lattner00950542001-06-06 20:29:01 +00002198<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002199<div class="doc_subsubsection">
2200 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2201</div>
2202
Misha Brukman9d0919f2003-11-08 01:05:38 +00002203<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002204
Chris Lattner00950542001-06-06 20:29:01 +00002205<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002206
2207<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002208 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002209</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002210
Chris Lattner00950542001-06-06 20:29:01 +00002211<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002212
Misha Brukman9d0919f2003-11-08 01:05:38 +00002213<p>The '<tt>sub</tt>' instruction returns the difference of its two
2214operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002215
2216<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2217'<tt>neg</tt>' instruction present in most other intermediate
2218representations.</p>
2219
Chris Lattner00950542001-06-06 20:29:01 +00002220<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002221
2222<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2223 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2224 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2225 types.</p>
2226
Chris Lattner00950542001-06-06 20:29:01 +00002227<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002228
Chris Lattner261efe92003-11-25 01:02:51 +00002229<p>The value produced is the integer or floating point difference of
2230the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002231
Chris Lattner5ec89832008-01-28 00:36:27 +00002232<p>If an integer difference has unsigned overflow, the result returned is the
2233mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2234the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002235
Chris Lattner5ec89832008-01-28 00:36:27 +00002236<p>Because LLVM integers use a two's complement representation, this
2237instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002238
Chris Lattner00950542001-06-06 20:29:01 +00002239<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002240<pre>
2241 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002242 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002243</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002244</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002245
Chris Lattner00950542001-06-06 20:29:01 +00002246<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002247<div class="doc_subsubsection">
2248 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2249</div>
2250
Misha Brukman9d0919f2003-11-08 01:05:38 +00002251<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002252
Chris Lattner00950542001-06-06 20:29:01 +00002253<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002254<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002255</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002256<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002257<p>The '<tt>mul</tt>' instruction returns the product of its two
2258operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002259
Chris Lattner00950542001-06-06 20:29:01 +00002260<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002261
2262<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2263href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2264or <a href="#t_vector">vector</a> values. Both arguments must have identical
2265types.</p>
2266
Chris Lattner00950542001-06-06 20:29:01 +00002267<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002268
Chris Lattner261efe92003-11-25 01:02:51 +00002269<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002270two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002271
Chris Lattner5ec89832008-01-28 00:36:27 +00002272<p>If the result of an integer multiplication has unsigned overflow,
2273the result returned is the mathematical result modulo
22742<sup>n</sup>, where n is the bit width of the result.</p>
2275<p>Because LLVM integers use a two's complement representation, and the
2276result is the same width as the operands, this instruction returns the
2277correct result for both signed and unsigned integers. If a full product
2278(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2279should be sign-extended or zero-extended as appropriate to the
2280width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002281<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002282<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002283</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002284</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002285
Chris Lattner00950542001-06-06 20:29:01 +00002286<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002287<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2288</a></div>
2289<div class="doc_text">
2290<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002291<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002292</pre>
2293<h5>Overview:</h5>
2294<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2295operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002296
Reid Spencer1628cec2006-10-26 06:15:43 +00002297<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002298
Reid Spencer1628cec2006-10-26 06:15:43 +00002299<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002300<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2301values. Both arguments must have identical types.</p>
2302
Reid Spencer1628cec2006-10-26 06:15:43 +00002303<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002304
Chris Lattner5ec89832008-01-28 00:36:27 +00002305<p>The value produced is the unsigned integer quotient of the two operands.</p>
2306<p>Note that unsigned integer division and signed integer division are distinct
2307operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2308<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002309<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002310<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002311</pre>
2312</div>
2313<!-- _______________________________________________________________________ -->
2314<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2315</a> </div>
2316<div class="doc_text">
2317<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002318<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002319 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002320</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002321
Reid Spencer1628cec2006-10-26 06:15:43 +00002322<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002323
Reid Spencer1628cec2006-10-26 06:15:43 +00002324<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2325operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002326
Reid Spencer1628cec2006-10-26 06:15:43 +00002327<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002328
2329<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2330<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2331values. Both arguments must have identical types.</p>
2332
Reid Spencer1628cec2006-10-26 06:15:43 +00002333<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002334<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002335<p>Note that signed integer division and unsigned integer division are distinct
2336operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2337<p>Division by zero leads to undefined behavior. Overflow also leads to
2338undefined behavior; this is a rare case, but can occur, for example,
2339by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002340<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002341<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002342</pre>
2343</div>
2344<!-- _______________________________________________________________________ -->
2345<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002346Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002347<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002348<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002349<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002350 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002351</pre>
2352<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002353
Reid Spencer1628cec2006-10-26 06:15:43 +00002354<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002355operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002356
Chris Lattner261efe92003-11-25 01:02:51 +00002357<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002358
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002359<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002360<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2361of floating point values. Both arguments must have identical types.</p>
2362
Chris Lattner261efe92003-11-25 01:02:51 +00002363<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002364
Reid Spencer1628cec2006-10-26 06:15:43 +00002365<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002366
Chris Lattner261efe92003-11-25 01:02:51 +00002367<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002368
2369<pre>
2370 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002371</pre>
2372</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002373
Chris Lattner261efe92003-11-25 01:02:51 +00002374<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002375<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2376</div>
2377<div class="doc_text">
2378<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002379<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002380</pre>
2381<h5>Overview:</h5>
2382<p>The '<tt>urem</tt>' instruction returns the remainder from the
2383unsigned division of its two arguments.</p>
2384<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002385<p>The two arguments to the '<tt>urem</tt>' instruction must be
2386<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2387values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002388<h5>Semantics:</h5>
2389<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002390This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002391<p>Note that unsigned integer remainder and signed integer remainder are
2392distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2393<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002394<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002395<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002396</pre>
2397
2398</div>
2399<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002400<div class="doc_subsubsection">
2401 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2402</div>
2403
Chris Lattner261efe92003-11-25 01:02:51 +00002404<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002405
Chris Lattner261efe92003-11-25 01:02:51 +00002406<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002407
2408<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002409 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002410</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002411
Chris Lattner261efe92003-11-25 01:02:51 +00002412<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002413
Reid Spencer0a783f72006-11-02 01:53:59 +00002414<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002415signed division of its two operands. This instruction can also take
2416<a href="#t_vector">vector</a> versions of the values in which case
2417the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002418
Chris Lattner261efe92003-11-25 01:02:51 +00002419<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002420
Reid Spencer0a783f72006-11-02 01:53:59 +00002421<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002422<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2423values. Both arguments must have identical types.</p>
2424
Chris Lattner261efe92003-11-25 01:02:51 +00002425<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002426
Reid Spencer0a783f72006-11-02 01:53:59 +00002427<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002428has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2429operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002430a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002431 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002432Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002433please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002434Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002435<p>Note that signed integer remainder and unsigned integer remainder are
2436distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2437<p>Taking the remainder of a division by zero leads to undefined behavior.
2438Overflow also leads to undefined behavior; this is a rare case, but can occur,
2439for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2440(The remainder doesn't actually overflow, but this rule lets srem be
2441implemented using instructions that return both the result of the division
2442and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002443<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002444<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002445</pre>
2446
2447</div>
2448<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002449<div class="doc_subsubsection">
2450 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2451
Reid Spencer0a783f72006-11-02 01:53:59 +00002452<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002453
Reid Spencer0a783f72006-11-02 01:53:59 +00002454<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002455<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002456</pre>
2457<h5>Overview:</h5>
2458<p>The '<tt>frem</tt>' instruction returns the remainder from the
2459division of its two operands.</p>
2460<h5>Arguments:</h5>
2461<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002462<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2463of floating point values. Both arguments must have identical types.</p>
2464
Reid Spencer0a783f72006-11-02 01:53:59 +00002465<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002466
Chris Lattnera73afe02008-04-01 18:45:27 +00002467<p>This instruction returns the <i>remainder</i> of a division.
2468The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002469
Reid Spencer0a783f72006-11-02 01:53:59 +00002470<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002471
2472<pre>
2473 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002474</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002475</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002476
Reid Spencer8e11bf82007-02-02 13:57:07 +00002477<!-- ======================================================================= -->
2478<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2479Operations</a> </div>
2480<div class="doc_text">
2481<p>Bitwise binary operators are used to do various forms of
2482bit-twiddling in a program. They are generally very efficient
2483instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002484instructions. They require two operands of the same type, execute an operation on them,
2485and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002486</div>
2487
Reid Spencer569f2fa2007-01-31 21:39:12 +00002488<!-- _______________________________________________________________________ -->
2489<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2490Instruction</a> </div>
2491<div class="doc_text">
2492<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002493<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002494</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002495
Reid Spencer569f2fa2007-01-31 21:39:12 +00002496<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002497
Reid Spencer569f2fa2007-01-31 21:39:12 +00002498<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2499the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002500
Reid Spencer569f2fa2007-01-31 21:39:12 +00002501<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002502
Reid Spencer569f2fa2007-01-31 21:39:12 +00002503<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002504 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002505type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002506
Reid Spencer569f2fa2007-01-31 21:39:12 +00002507<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002508
Gabor Greiffb224a22008-08-07 21:46:00 +00002509<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2510where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
2511equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002512
Reid Spencer569f2fa2007-01-31 21:39:12 +00002513<h5>Example:</h5><pre>
2514 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2515 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2516 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002517 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002518</pre>
2519</div>
2520<!-- _______________________________________________________________________ -->
2521<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2522Instruction</a> </div>
2523<div class="doc_text">
2524<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002525<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002526</pre>
2527
2528<h5>Overview:</h5>
2529<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002530operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002531
2532<h5>Arguments:</h5>
2533<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002534<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002535type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002536
2537<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002538
Reid Spencer569f2fa2007-01-31 21:39:12 +00002539<p>This instruction always performs a logical shift right operation. The most
2540significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002541shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
2542the number of bits in <tt>op1</tt>, the result is undefined.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002543
2544<h5>Example:</h5>
2545<pre>
2546 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2547 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2548 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2549 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002550 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002551</pre>
2552</div>
2553
Reid Spencer8e11bf82007-02-02 13:57:07 +00002554<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002555<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2556Instruction</a> </div>
2557<div class="doc_text">
2558
2559<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002560<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002561</pre>
2562
2563<h5>Overview:</h5>
2564<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002565operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002566
2567<h5>Arguments:</h5>
2568<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002569<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002570type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002571
2572<h5>Semantics:</h5>
2573<p>This instruction always performs an arithmetic shift right operation,
2574The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00002575of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
2576larger than the number of bits in <tt>op1</tt>, the result is undefined.
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002577</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002578
2579<h5>Example:</h5>
2580<pre>
2581 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2582 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2583 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2584 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002585 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002586</pre>
2587</div>
2588
Chris Lattner00950542001-06-06 20:29:01 +00002589<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002590<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2591Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002592
Misha Brukman9d0919f2003-11-08 01:05:38 +00002593<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002594
Chris Lattner00950542001-06-06 20:29:01 +00002595<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002596
2597<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002598 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002599</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002600
Chris Lattner00950542001-06-06 20:29:01 +00002601<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002602
Chris Lattner261efe92003-11-25 01:02:51 +00002603<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2604its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002605
Chris Lattner00950542001-06-06 20:29:01 +00002606<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002607
2608<p>The two arguments to the '<tt>and</tt>' instruction must be
2609<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2610values. Both arguments must have identical types.</p>
2611
Chris Lattner00950542001-06-06 20:29:01 +00002612<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002613<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002614<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002615<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002616<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002617 <tbody>
2618 <tr>
2619 <td>In0</td>
2620 <td>In1</td>
2621 <td>Out</td>
2622 </tr>
2623 <tr>
2624 <td>0</td>
2625 <td>0</td>
2626 <td>0</td>
2627 </tr>
2628 <tr>
2629 <td>0</td>
2630 <td>1</td>
2631 <td>0</td>
2632 </tr>
2633 <tr>
2634 <td>1</td>
2635 <td>0</td>
2636 <td>0</td>
2637 </tr>
2638 <tr>
2639 <td>1</td>
2640 <td>1</td>
2641 <td>1</td>
2642 </tr>
2643 </tbody>
2644</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002645</div>
Chris Lattner00950542001-06-06 20:29:01 +00002646<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002647<pre>
2648 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002649 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2650 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002651</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002652</div>
Chris Lattner00950542001-06-06 20:29:01 +00002653<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002654<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002655<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002656<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002657<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002658</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002659<h5>Overview:</h5>
2660<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2661or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002662<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002663
2664<p>The two arguments to the '<tt>or</tt>' instruction must be
2665<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2666values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002667<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002668<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002669<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002670<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002671<table border="1" cellspacing="0" cellpadding="4">
2672 <tbody>
2673 <tr>
2674 <td>In0</td>
2675 <td>In1</td>
2676 <td>Out</td>
2677 </tr>
2678 <tr>
2679 <td>0</td>
2680 <td>0</td>
2681 <td>0</td>
2682 </tr>
2683 <tr>
2684 <td>0</td>
2685 <td>1</td>
2686 <td>1</td>
2687 </tr>
2688 <tr>
2689 <td>1</td>
2690 <td>0</td>
2691 <td>1</td>
2692 </tr>
2693 <tr>
2694 <td>1</td>
2695 <td>1</td>
2696 <td>1</td>
2697 </tr>
2698 </tbody>
2699</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002700</div>
Chris Lattner00950542001-06-06 20:29:01 +00002701<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002702<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2703 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2704 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002705</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002706</div>
Chris Lattner00950542001-06-06 20:29:01 +00002707<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002708<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2709Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002710<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002711<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002712<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002713</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002714<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002715<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2716or of its two operands. The <tt>xor</tt> is used to implement the
2717"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002718<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002719<p>The two arguments to the '<tt>xor</tt>' instruction must be
2720<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2721values. Both arguments must have identical types.</p>
2722
Chris Lattner00950542001-06-06 20:29:01 +00002723<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002724
Misha Brukman9d0919f2003-11-08 01:05:38 +00002725<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002726<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002727<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002728<table border="1" cellspacing="0" cellpadding="4">
2729 <tbody>
2730 <tr>
2731 <td>In0</td>
2732 <td>In1</td>
2733 <td>Out</td>
2734 </tr>
2735 <tr>
2736 <td>0</td>
2737 <td>0</td>
2738 <td>0</td>
2739 </tr>
2740 <tr>
2741 <td>0</td>
2742 <td>1</td>
2743 <td>1</td>
2744 </tr>
2745 <tr>
2746 <td>1</td>
2747 <td>0</td>
2748 <td>1</td>
2749 </tr>
2750 <tr>
2751 <td>1</td>
2752 <td>1</td>
2753 <td>0</td>
2754 </tr>
2755 </tbody>
2756</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002757</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002758<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002759<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002760<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2761 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2762 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2763 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002764</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002765</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002766
Chris Lattner00950542001-06-06 20:29:01 +00002767<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002768<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002769 <a name="vectorops">Vector Operations</a>
2770</div>
2771
2772<div class="doc_text">
2773
2774<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002775target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002776vector-specific operations needed to process vectors effectively. While LLVM
2777does directly support these vector operations, many sophisticated algorithms
2778will want to use target-specific intrinsics to take full advantage of a specific
2779target.</p>
2780
2781</div>
2782
2783<!-- _______________________________________________________________________ -->
2784<div class="doc_subsubsection">
2785 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2786</div>
2787
2788<div class="doc_text">
2789
2790<h5>Syntax:</h5>
2791
2792<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002793 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002794</pre>
2795
2796<h5>Overview:</h5>
2797
2798<p>
2799The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002800element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002801</p>
2802
2803
2804<h5>Arguments:</h5>
2805
2806<p>
2807The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002808value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002809an index indicating the position from which to extract the element.
2810The index may be a variable.</p>
2811
2812<h5>Semantics:</h5>
2813
2814<p>
2815The result is a scalar of the same type as the element type of
2816<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2817<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2818results are undefined.
2819</p>
2820
2821<h5>Example:</h5>
2822
2823<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002824 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002825</pre>
2826</div>
2827
2828
2829<!-- _______________________________________________________________________ -->
2830<div class="doc_subsubsection">
2831 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2832</div>
2833
2834<div class="doc_text">
2835
2836<h5>Syntax:</h5>
2837
2838<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00002839 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002840</pre>
2841
2842<h5>Overview:</h5>
2843
2844<p>
2845The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002846element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002847</p>
2848
2849
2850<h5>Arguments:</h5>
2851
2852<p>
2853The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002854value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002855scalar value whose type must equal the element type of the first
2856operand. The third operand is an index indicating the position at
2857which to insert the value. The index may be a variable.</p>
2858
2859<h5>Semantics:</h5>
2860
2861<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002862The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002863element values are those of <tt>val</tt> except at position
2864<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2865exceeds the length of <tt>val</tt>, the results are undefined.
2866</p>
2867
2868<h5>Example:</h5>
2869
2870<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002871 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002872</pre>
2873</div>
2874
2875<!-- _______________________________________________________________________ -->
2876<div class="doc_subsubsection">
2877 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2878</div>
2879
2880<div class="doc_text">
2881
2882<h5>Syntax:</h5>
2883
2884<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002885 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002886</pre>
2887
2888<h5>Overview:</h5>
2889
2890<p>
2891The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2892from two input vectors, returning a vector of the same type.
2893</p>
2894
2895<h5>Arguments:</h5>
2896
2897<p>
2898The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2899with types that match each other and types that match the result of the
2900instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerca86e162006-12-31 07:07:53 +00002901of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattner3df241e2006-04-08 23:07:04 +00002902</p>
2903
2904<p>
2905The shuffle mask operand is required to be a constant vector with either
2906constant integer or undef values.
2907</p>
2908
2909<h5>Semantics:</h5>
2910
2911<p>
2912The elements of the two input vectors are numbered from left to right across
2913both of the vectors. The shuffle mask operand specifies, for each element of
2914the result vector, which element of the two input registers the result element
2915gets. The element selector may be undef (meaning "don't care") and the second
2916operand may be undef if performing a shuffle from only one vector.
2917</p>
2918
2919<h5>Example:</h5>
2920
2921<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002922 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002923 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002924 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2925 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattner3df241e2006-04-08 23:07:04 +00002926</pre>
2927</div>
2928
Tanya Lattner09474292006-04-14 19:24:33 +00002929
Chris Lattner3df241e2006-04-08 23:07:04 +00002930<!-- ======================================================================= -->
2931<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00002932 <a name="aggregateops">Aggregate Operations</a>
2933</div>
2934
2935<div class="doc_text">
2936
2937<p>LLVM supports several instructions for working with aggregate values.
2938</p>
2939
2940</div>
2941
2942<!-- _______________________________________________________________________ -->
2943<div class="doc_subsubsection">
2944 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
2945</div>
2946
2947<div class="doc_text">
2948
2949<h5>Syntax:</h5>
2950
2951<pre>
2952 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
2953</pre>
2954
2955<h5>Overview:</h5>
2956
2957<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002958The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
2959or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002960</p>
2961
2962
2963<h5>Arguments:</h5>
2964
2965<p>
2966The first operand of an '<tt>extractvalue</tt>' instruction is a
2967value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002968type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00002969in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00002970'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2971</p>
2972
2973<h5>Semantics:</h5>
2974
2975<p>
2976The result is the value at the position in the aggregate specified by
2977the index operands.
2978</p>
2979
2980<h5>Example:</h5>
2981
2982<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00002983 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00002984</pre>
2985</div>
2986
2987
2988<!-- _______________________________________________________________________ -->
2989<div class="doc_subsubsection">
2990 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
2991</div>
2992
2993<div class="doc_text">
2994
2995<h5>Syntax:</h5>
2996
2997<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00002998 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00002999</pre>
3000
3001<h5>Overview:</h5>
3002
3003<p>
3004The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003005into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003006</p>
3007
3008
3009<h5>Arguments:</h5>
3010
3011<p>
3012The first operand of an '<tt>insertvalue</tt>' instruction is a
3013value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3014The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003015The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003016indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003017indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003018'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3019The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003020by the indices.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003021
3022<h5>Semantics:</h5>
3023
3024<p>
3025The result is an aggregate of the same type as <tt>val</tt>. Its
3026value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003027specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003028</p>
3029
3030<h5>Example:</h5>
3031
3032<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003033 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003034</pre>
3035</div>
3036
3037
3038<!-- ======================================================================= -->
3039<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003040 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003041</div>
3042
Misha Brukman9d0919f2003-11-08 01:05:38 +00003043<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003044
Chris Lattner261efe92003-11-25 01:02:51 +00003045<p>A key design point of an SSA-based representation is how it
3046represents memory. In LLVM, no memory locations are in SSA form, which
3047makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003048allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003049
Misha Brukman9d0919f2003-11-08 01:05:38 +00003050</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003051
Chris Lattner00950542001-06-06 20:29:01 +00003052<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003053<div class="doc_subsubsection">
3054 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3055</div>
3056
Misha Brukman9d0919f2003-11-08 01:05:38 +00003057<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003058
Chris Lattner00950542001-06-06 20:29:01 +00003059<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003060
3061<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003062 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003063</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003064
Chris Lattner00950542001-06-06 20:29:01 +00003065<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003066
Chris Lattner261efe92003-11-25 01:02:51 +00003067<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003068heap and returns a pointer to it. The object is always allocated in the generic
3069address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003070
Chris Lattner00950542001-06-06 20:29:01 +00003071<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003072
3073<p>The '<tt>malloc</tt>' instruction allocates
3074<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003075bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003076appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003077number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003078If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003079be aligned to at least that boundary. If not specified, or if zero, the target can
3080choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003081
Misha Brukman9d0919f2003-11-08 01:05:38 +00003082<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003083
Chris Lattner00950542001-06-06 20:29:01 +00003084<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003085
Chris Lattner261efe92003-11-25 01:02:51 +00003086<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattner72ed2002008-04-19 21:01:16 +00003087a pointer is returned. The result of a zero byte allocattion is undefined. The
3088result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003089
Chris Lattner2cbdc452005-11-06 08:02:57 +00003090<h5>Example:</h5>
3091
3092<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003093 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003094
Bill Wendlingaac388b2007-05-29 09:42:13 +00003095 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3096 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3097 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3098 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3099 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003100</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003101</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003102
Chris Lattner00950542001-06-06 20:29:01 +00003103<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003104<div class="doc_subsubsection">
3105 <a name="i_free">'<tt>free</tt>' Instruction</a>
3106</div>
3107
Misha Brukman9d0919f2003-11-08 01:05:38 +00003108<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003109
Chris Lattner00950542001-06-06 20:29:01 +00003110<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003111
3112<pre>
3113 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003114</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003115
Chris Lattner00950542001-06-06 20:29:01 +00003116<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003117
Chris Lattner261efe92003-11-25 01:02:51 +00003118<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003119memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003120
Chris Lattner00950542001-06-06 20:29:01 +00003121<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003122
Chris Lattner261efe92003-11-25 01:02:51 +00003123<p>'<tt>value</tt>' shall be a pointer value that points to a value
3124that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3125instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003126
Chris Lattner00950542001-06-06 20:29:01 +00003127<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003128
John Criswell9e2485c2004-12-10 15:51:16 +00003129<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003130after this instruction executes. If the pointer is null, the operation
3131is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003132
Chris Lattner00950542001-06-06 20:29:01 +00003133<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003134
3135<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003136 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3137 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003138</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003139</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003140
Chris Lattner00950542001-06-06 20:29:01 +00003141<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003142<div class="doc_subsubsection">
3143 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3144</div>
3145
Misha Brukman9d0919f2003-11-08 01:05:38 +00003146<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003147
Chris Lattner00950542001-06-06 20:29:01 +00003148<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003149
3150<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003151 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003152</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003153
Chris Lattner00950542001-06-06 20:29:01 +00003154<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003155
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003156<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3157currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003158returns to its caller. The object is always allocated in the generic address
3159space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003160
Chris Lattner00950542001-06-06 20:29:01 +00003161<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003162
John Criswell9e2485c2004-12-10 15:51:16 +00003163<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003164bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003165appropriate type to the program. If "NumElements" is specified, it is the
3166number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003167If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003168to be aligned to at least that boundary. If not specified, or if zero, the target
3169can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003170
Misha Brukman9d0919f2003-11-08 01:05:38 +00003171<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003172
Chris Lattner00950542001-06-06 20:29:01 +00003173<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003174
Chris Lattner72ed2002008-04-19 21:01:16 +00003175<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3176there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003177memory is automatically released when the function returns. The '<tt>alloca</tt>'
3178instruction is commonly used to represent automatic variables that must
3179have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003180 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003181instructions), the memory is reclaimed. Allocating zero bytes
3182is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003183
Chris Lattner00950542001-06-06 20:29:01 +00003184<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003185
3186<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003187 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003188 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3189 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003190 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003191</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003192</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003193
Chris Lattner00950542001-06-06 20:29:01 +00003194<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003195<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3196Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003197<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003198<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003199<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003200<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003201<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003202<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003203<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003204address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003205 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003206marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003207the number or order of execution of this <tt>load</tt> with other
3208volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3209instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003210<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003211The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003212(that is, the alignment of the memory address). A value of 0 or an
3213omitted "align" argument means that the operation has the preferential
3214alignment for the target. It is the responsibility of the code emitter
3215to ensure that the alignment information is correct. Overestimating
3216the alignment results in an undefined behavior. Underestimating the
3217alignment may produce less efficient code. An alignment of 1 is always
3218safe.
3219</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003220<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003221<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003222<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003223<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003224 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003225 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3226 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003227</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003228</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003229<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003230<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3231Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003232<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003233<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003234<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3235 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003236</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003237<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003238<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003239<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003240<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003241to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003242operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3243of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003244operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003245optimizer is not allowed to modify the number or order of execution of
3246this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3247 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003248<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003249The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003250(that is, the alignment of the memory address). A value of 0 or an
3251omitted "align" argument means that the operation has the preferential
3252alignment for the target. It is the responsibility of the code emitter
3253to ensure that the alignment information is correct. Overestimating
3254the alignment results in an undefined behavior. Underestimating the
3255alignment may produce less efficient code. An alignment of 1 is always
3256safe.
3257</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003258<h5>Semantics:</h5>
3259<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3260at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003261<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003262<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003263 store i32 3, i32* %ptr <i>; yields {void}</i>
3264 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003265</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003266</div>
3267
Chris Lattner2b7d3202002-05-06 03:03:22 +00003268<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003269<div class="doc_subsubsection">
3270 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3271</div>
3272
Misha Brukman9d0919f2003-11-08 01:05:38 +00003273<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003274<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003275<pre>
3276 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
3277</pre>
3278
Chris Lattner7faa8832002-04-14 06:13:44 +00003279<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003280
3281<p>
3282The '<tt>getelementptr</tt>' instruction is used to get the address of a
3283subelement of an aggregate data structure.</p>
3284
Chris Lattner7faa8832002-04-14 06:13:44 +00003285<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003286
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003287<p>This instruction takes a list of integer operands that indicate what
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003288elements of the aggregate object to index to. The actual types of the arguments
3289provided depend on the type of the first pointer argument. The
3290'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00003291levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerca86e162006-12-31 07:07:53 +00003292structure, only <tt>i32</tt> integer constants are allowed. When indexing
Chris Lattner05d67092008-04-24 05:59:56 +00003293into an array or pointer, only integers of 32 or 64 bits are allowed; 32-bit
3294values will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003295
Chris Lattner261efe92003-11-25 01:02:51 +00003296<p>For example, let's consider a C code fragment and how it gets
3297compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003298
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003299<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003300<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003301struct RT {
3302 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003303 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003304 char C;
3305};
3306struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003307 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003308 double Y;
3309 struct RT Z;
3310};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003311
Chris Lattnercabc8462007-05-29 15:43:56 +00003312int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003313 return &amp;s[1].Z.B[5][13];
3314}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003315</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003316</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003317
Misha Brukman9d0919f2003-11-08 01:05:38 +00003318<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003319
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003320<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003321<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003322%RT = type { i8 , [10 x [20 x i32]], i8 }
3323%ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003324
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003325define i32* %foo(%ST* %s) {
3326entry:
3327 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3328 ret i32* %reg
3329}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003330</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003331</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003332
Chris Lattner7faa8832002-04-14 06:13:44 +00003333<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003334
3335<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00003336on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003337and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencer42ddd842006-12-03 16:53:48 +00003338<a href="#t_integer">integer</a> type but the value will always be sign extended
Chris Lattner4316dec2008-04-02 00:38:26 +00003339to 64-bits. <a href="#t_struct">Structure</a> and <a href="#t_pstruct">packed
3340structure</a> types require <tt>i32</tt> <b>constants</b>.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003341
Misha Brukman9d0919f2003-11-08 01:05:38 +00003342<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003343type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003344}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003345the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3346i8 }</tt>' type, another structure. The third index indexes into the second
3347element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003348array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003349'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3350to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003351
Chris Lattner261efe92003-11-25 01:02:51 +00003352<p>Note that it is perfectly legal to index partially through a
3353structure, returning a pointer to an inner element. Because of this,
3354the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003355
3356<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003357 define i32* %foo(%ST* %s) {
3358 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003359 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3360 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003361 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3362 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3363 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003364 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003365</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003366
3367<p>Note that it is undefined to access an array out of bounds: array and
3368pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003369The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003370defined to be accessible as variable length arrays, which requires access
3371beyond the zero'th element.</p>
3372
Chris Lattner884a9702006-08-15 00:45:58 +00003373<p>The getelementptr instruction is often confusing. For some more insight
3374into how it works, see <a href="GetElementPtr.html">the getelementptr
3375FAQ</a>.</p>
3376
Chris Lattner7faa8832002-04-14 06:13:44 +00003377<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003378
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003379<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003380 <i>; yields [12 x i8]*:aptr</i>
3381 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003382</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003383</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003384
Chris Lattner00950542001-06-06 20:29:01 +00003385<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003386<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003387</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003388<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003389<p>The instructions in this category are the conversion instructions (casting)
3390which all take a single operand and a type. They perform various bit conversions
3391on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003392</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003393
Chris Lattner6536cfe2002-05-06 22:08:29 +00003394<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003395<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003396 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3397</div>
3398<div class="doc_text">
3399
3400<h5>Syntax:</h5>
3401<pre>
3402 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3403</pre>
3404
3405<h5>Overview:</h5>
3406<p>
3407The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3408</p>
3409
3410<h5>Arguments:</h5>
3411<p>
3412The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3413be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003414and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003415type. The bit size of <tt>value</tt> must be larger than the bit size of
3416<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003417
3418<h5>Semantics:</h5>
3419<p>
3420The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003421and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3422larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3423It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003424
3425<h5>Example:</h5>
3426<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003427 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003428 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3429 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003430</pre>
3431</div>
3432
3433<!-- _______________________________________________________________________ -->
3434<div class="doc_subsubsection">
3435 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3436</div>
3437<div class="doc_text">
3438
3439<h5>Syntax:</h5>
3440<pre>
3441 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3442</pre>
3443
3444<h5>Overview:</h5>
3445<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3446<tt>ty2</tt>.</p>
3447
3448
3449<h5>Arguments:</h5>
3450<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003451<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3452also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003453<tt>value</tt> must be smaller than the bit size of the destination type,
3454<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003455
3456<h5>Semantics:</h5>
3457<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003458bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003459
Reid Spencerb5929522007-01-12 15:46:11 +00003460<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003461
3462<h5>Example:</h5>
3463<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003464 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003465 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003466</pre>
3467</div>
3468
3469<!-- _______________________________________________________________________ -->
3470<div class="doc_subsubsection">
3471 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3472</div>
3473<div class="doc_text">
3474
3475<h5>Syntax:</h5>
3476<pre>
3477 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3478</pre>
3479
3480<h5>Overview:</h5>
3481<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3482
3483<h5>Arguments:</h5>
3484<p>
3485The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003486<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3487also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003488<tt>value</tt> must be smaller than the bit size of the destination type,
3489<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003490
3491<h5>Semantics:</h5>
3492<p>
3493The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3494bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003495the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003496
Reid Spencerc78f3372007-01-12 03:35:51 +00003497<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003498
3499<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003500<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003501 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003502 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003503</pre>
3504</div>
3505
3506<!-- _______________________________________________________________________ -->
3507<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003508 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3509</div>
3510
3511<div class="doc_text">
3512
3513<h5>Syntax:</h5>
3514
3515<pre>
3516 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3517</pre>
3518
3519<h5>Overview:</h5>
3520<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3521<tt>ty2</tt>.</p>
3522
3523
3524<h5>Arguments:</h5>
3525<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3526 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3527cast it to. The size of <tt>value</tt> must be larger than the size of
3528<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3529<i>no-op cast</i>.</p>
3530
3531<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003532<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3533<a href="#t_floating">floating point</a> type to a smaller
3534<a href="#t_floating">floating point</a> type. If the value cannot fit within
3535the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003536
3537<h5>Example:</h5>
3538<pre>
3539 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3540 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3541</pre>
3542</div>
3543
3544<!-- _______________________________________________________________________ -->
3545<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003546 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3547</div>
3548<div class="doc_text">
3549
3550<h5>Syntax:</h5>
3551<pre>
3552 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3553</pre>
3554
3555<h5>Overview:</h5>
3556<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3557floating point value.</p>
3558
3559<h5>Arguments:</h5>
3560<p>The '<tt>fpext</tt>' instruction takes a
3561<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003562and a <a href="#t_floating">floating point</a> type to cast it to. The source
3563type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003564
3565<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003566<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003567<a href="#t_floating">floating point</a> type to a larger
3568<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003569used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003570<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003571
3572<h5>Example:</h5>
3573<pre>
3574 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3575 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3576</pre>
3577</div>
3578
3579<!-- _______________________________________________________________________ -->
3580<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003581 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003582</div>
3583<div class="doc_text">
3584
3585<h5>Syntax:</h5>
3586<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003587 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003588</pre>
3589
3590<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003591<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003592unsigned integer equivalent of type <tt>ty2</tt>.
3593</p>
3594
3595<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003596<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003597scalar or vector <a href="#t_floating">floating point</a> value, and a type
3598to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3599type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3600vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003601
3602<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003603<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003604<a href="#t_floating">floating point</a> operand into the nearest (rounding
3605towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3606the results are undefined.</p>
3607
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003608<h5>Example:</h5>
3609<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003610 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003611 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003612 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003613</pre>
3614</div>
3615
3616<!-- _______________________________________________________________________ -->
3617<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003618 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003619</div>
3620<div class="doc_text">
3621
3622<h5>Syntax:</h5>
3623<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003624 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003625</pre>
3626
3627<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003628<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003629<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003630</p>
3631
Chris Lattner6536cfe2002-05-06 22:08:29 +00003632<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003633<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003634scalar or vector <a href="#t_floating">floating point</a> value, and a type
3635to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3636type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3637vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003638
Chris Lattner6536cfe2002-05-06 22:08:29 +00003639<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003640<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003641<a href="#t_floating">floating point</a> operand into the nearest (rounding
3642towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3643the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003644
Chris Lattner33ba0d92001-07-09 00:26:23 +00003645<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003646<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003647 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003648 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003649 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003650</pre>
3651</div>
3652
3653<!-- _______________________________________________________________________ -->
3654<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003655 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003656</div>
3657<div class="doc_text">
3658
3659<h5>Syntax:</h5>
3660<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003661 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003662</pre>
3663
3664<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003665<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003666integer and converts that value to the <tt>ty2</tt> type.</p>
3667
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003668<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003669<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3670scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3671to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3672type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3673floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003674
3675<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003676<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003677integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003678the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003679
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003680<h5>Example:</h5>
3681<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003682 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003683 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003684</pre>
3685</div>
3686
3687<!-- _______________________________________________________________________ -->
3688<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003689 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003690</div>
3691<div class="doc_text">
3692
3693<h5>Syntax:</h5>
3694<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003695 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003696</pre>
3697
3698<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003699<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003700integer and converts that value to the <tt>ty2</tt> type.</p>
3701
3702<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003703<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3704scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3705to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3706type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3707floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003708
3709<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003710<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003711integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003712the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003713
3714<h5>Example:</h5>
3715<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003716 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003717 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003718</pre>
3719</div>
3720
3721<!-- _______________________________________________________________________ -->
3722<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003723 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3724</div>
3725<div class="doc_text">
3726
3727<h5>Syntax:</h5>
3728<pre>
3729 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3730</pre>
3731
3732<h5>Overview:</h5>
3733<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3734the integer type <tt>ty2</tt>.</p>
3735
3736<h5>Arguments:</h5>
3737<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003738must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Reid Spencer72679252006-11-11 21:00:47 +00003739<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3740
3741<h5>Semantics:</h5>
3742<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3743<tt>ty2</tt> by interpreting the pointer value as an integer and either
3744truncating or zero extending that value to the size of the integer type. If
3745<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3746<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003747are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3748change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003749
3750<h5>Example:</h5>
3751<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003752 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3753 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003754</pre>
3755</div>
3756
3757<!-- _______________________________________________________________________ -->
3758<div class="doc_subsubsection">
3759 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3760</div>
3761<div class="doc_text">
3762
3763<h5>Syntax:</h5>
3764<pre>
3765 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3766</pre>
3767
3768<h5>Overview:</h5>
3769<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3770a pointer type, <tt>ty2</tt>.</p>
3771
3772<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003773<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003774value to cast, and a type to cast it to, which must be a
Anton Korobeynikov7f705592007-01-12 19:20:47 +00003775<a href="#t_pointer">pointer</a> type.
Reid Spencer72679252006-11-11 21:00:47 +00003776
3777<h5>Semantics:</h5>
3778<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3779<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3780the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3781size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3782the size of a pointer then a zero extension is done. If they are the same size,
3783nothing is done (<i>no-op cast</i>).</p>
3784
3785<h5>Example:</h5>
3786<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003787 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3788 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3789 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003790</pre>
3791</div>
3792
3793<!-- _______________________________________________________________________ -->
3794<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003795 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003796</div>
3797<div class="doc_text">
3798
3799<h5>Syntax:</h5>
3800<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003801 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003802</pre>
3803
3804<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003805
Reid Spencer5c0ef472006-11-11 23:08:07 +00003806<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003807<tt>ty2</tt> without changing any bits.</p>
3808
3809<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003810
Reid Spencer5c0ef472006-11-11 23:08:07 +00003811<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00003812a non-aggregate first class value, and a type to cast it to, which must also be
3813a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
3814<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003815and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00003816type is a pointer, the destination type must also be a pointer. This
3817instruction supports bitwise conversion of vectors to integers and to vectors
3818of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003819
3820<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003821<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003822<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3823this conversion. The conversion is done as if the <tt>value</tt> had been
3824stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3825converted to other pointer types with this instruction. To convert pointers to
3826other types, use the <a href="#i_inttoptr">inttoptr</a> or
3827<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003828
3829<h5>Example:</h5>
3830<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003831 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003832 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3833 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003834</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003835</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003836
Reid Spencer2fd21e62006-11-08 01:18:52 +00003837<!-- ======================================================================= -->
3838<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3839<div class="doc_text">
3840<p>The instructions in this category are the "miscellaneous"
3841instructions, which defy better classification.</p>
3842</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003843
3844<!-- _______________________________________________________________________ -->
3845<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3846</div>
3847<div class="doc_text">
3848<h5>Syntax:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003849<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003850</pre>
3851<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003852<p>The '<tt>icmp</tt>' instruction returns a boolean value or
3853a vector of boolean values based on comparison
3854of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003855<h5>Arguments:</h5>
3856<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003857the condition code indicating the kind of comparison to perform. It is not
3858a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003859<ol>
3860 <li><tt>eq</tt>: equal</li>
3861 <li><tt>ne</tt>: not equal </li>
3862 <li><tt>ugt</tt>: unsigned greater than</li>
3863 <li><tt>uge</tt>: unsigned greater or equal</li>
3864 <li><tt>ult</tt>: unsigned less than</li>
3865 <li><tt>ule</tt>: unsigned less or equal</li>
3866 <li><tt>sgt</tt>: signed greater than</li>
3867 <li><tt>sge</tt>: signed greater or equal</li>
3868 <li><tt>slt</tt>: signed less than</li>
3869 <li><tt>sle</tt>: signed less or equal</li>
3870</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003871<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00003872<a href="#t_pointer">pointer</a>
3873or integer <a href="#t_vector">vector</a> typed.
3874They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003875<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003876<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00003877the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00003878yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003879<ol>
3880 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3881 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3882 </li>
3883 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3884 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3885 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003886 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003887 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003888 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003889 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003890 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003891 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003892 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003893 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003894 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003895 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003896 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003897 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003898 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003899 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003900 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003901</ol>
3902<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00003903values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003904<p>If the operands are integer vectors, then they are compared
3905element by element. The result is an <tt>i1</tt> vector with
3906the same number of elements as the values being compared.
3907Otherwise, the result is an <tt>i1</tt>.
3908</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003909
3910<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003911<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3912 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3913 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3914 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3915 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3916 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003917</pre>
3918</div>
3919
3920<!-- _______________________________________________________________________ -->
3921<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3922</div>
3923<div class="doc_text">
3924<h5>Syntax:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003925<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003926</pre>
3927<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003928<p>The '<tt>fcmp</tt>' instruction returns a boolean value
3929or vector of boolean values based on comparison
3930of its operands.
3931<p>
3932If the operands are floating point scalars, then the result
3933type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
3934</p>
3935<p>If the operands are floating point vectors, then the result type
3936is a vector of boolean with the same number of elements as the
3937operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003938<h5>Arguments:</h5>
3939<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003940the condition code indicating the kind of comparison to perform. It is not
3941a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003942<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00003943 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003944 <li><tt>oeq</tt>: ordered and equal</li>
3945 <li><tt>ogt</tt>: ordered and greater than </li>
3946 <li><tt>oge</tt>: ordered and greater than or equal</li>
3947 <li><tt>olt</tt>: ordered and less than </li>
3948 <li><tt>ole</tt>: ordered and less than or equal</li>
3949 <li><tt>one</tt>: ordered and not equal</li>
3950 <li><tt>ord</tt>: ordered (no nans)</li>
3951 <li><tt>ueq</tt>: unordered or equal</li>
3952 <li><tt>ugt</tt>: unordered or greater than </li>
3953 <li><tt>uge</tt>: unordered or greater than or equal</li>
3954 <li><tt>ult</tt>: unordered or less than </li>
3955 <li><tt>ule</tt>: unordered or less than or equal</li>
3956 <li><tt>une</tt>: unordered or not equal</li>
3957 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003958 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003959</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003960<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00003961<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003962<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
3963either a <a href="#t_floating">floating point</a> type
3964or a <a href="#t_vector">vector</a> of floating point type.
3965They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003966<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003967<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003968according to the condition code given as <tt>cond</tt>.
3969If the operands are vectors, then the vectors are compared
3970element by element.
3971Each comparison performed
3972always yields an <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003973<ol>
3974 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003975 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003976 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003977 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003978 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003979 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003980 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003981 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003982 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003983 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003984 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003985 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003986 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003987 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3988 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00003989 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003990 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00003991 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003992 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00003993 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003994 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00003995 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003996 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00003997 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003998 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00003999 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004000 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004001 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4002</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004003
4004<h5>Example:</h5>
4005<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004006 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4007 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4008 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004009</pre>
4010</div>
4011
Reid Spencer2fd21e62006-11-08 01:18:52 +00004012<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004013<div class="doc_subsubsection">
4014 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4015</div>
4016<div class="doc_text">
4017<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004018<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004019</pre>
4020<h5>Overview:</h5>
4021<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4022element-wise comparison of its two integer vector operands.</p>
4023<h5>Arguments:</h5>
4024<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4025the condition code indicating the kind of comparison to perform. It is not
4026a value, just a keyword. The possible condition code are:
4027<ol>
4028 <li><tt>eq</tt>: equal</li>
4029 <li><tt>ne</tt>: not equal </li>
4030 <li><tt>ugt</tt>: unsigned greater than</li>
4031 <li><tt>uge</tt>: unsigned greater or equal</li>
4032 <li><tt>ult</tt>: unsigned less than</li>
4033 <li><tt>ule</tt>: unsigned less or equal</li>
4034 <li><tt>sgt</tt>: signed greater than</li>
4035 <li><tt>sge</tt>: signed greater or equal</li>
4036 <li><tt>slt</tt>: signed less than</li>
4037 <li><tt>sle</tt>: signed less or equal</li>
4038</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004039<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004040<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4041<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004042<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004043according to the condition code given as <tt>cond</tt>. The comparison yields a
4044<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4045identical type as the values being compared. The most significant bit in each
4046element is 1 if the element-wise comparison evaluates to true, and is 0
4047otherwise. All other bits of the result are undefined. The condition codes
4048are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
4049instruction</a>.
4050
4051<h5>Example:</h5>
4052<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004053 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4054 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004055</pre>
4056</div>
4057
4058<!-- _______________________________________________________________________ -->
4059<div class="doc_subsubsection">
4060 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4061</div>
4062<div class="doc_text">
4063<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004064<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004065<h5>Overview:</h5>
4066<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4067element-wise comparison of its two floating point vector operands. The output
4068elements have the same width as the input elements.</p>
4069<h5>Arguments:</h5>
4070<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4071the condition code indicating the kind of comparison to perform. It is not
4072a value, just a keyword. The possible condition code are:
4073<ol>
4074 <li><tt>false</tt>: no comparison, always returns false</li>
4075 <li><tt>oeq</tt>: ordered and equal</li>
4076 <li><tt>ogt</tt>: ordered and greater than </li>
4077 <li><tt>oge</tt>: ordered and greater than or equal</li>
4078 <li><tt>olt</tt>: ordered and less than </li>
4079 <li><tt>ole</tt>: ordered and less than or equal</li>
4080 <li><tt>one</tt>: ordered and not equal</li>
4081 <li><tt>ord</tt>: ordered (no nans)</li>
4082 <li><tt>ueq</tt>: unordered or equal</li>
4083 <li><tt>ugt</tt>: unordered or greater than </li>
4084 <li><tt>uge</tt>: unordered or greater than or equal</li>
4085 <li><tt>ult</tt>: unordered or less than </li>
4086 <li><tt>ule</tt>: unordered or less than or equal</li>
4087 <li><tt>une</tt>: unordered or not equal</li>
4088 <li><tt>uno</tt>: unordered (either nans)</li>
4089 <li><tt>true</tt>: no comparison, always returns true</li>
4090</ol>
4091<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4092<a href="#t_floating">floating point</a> typed. They must also be identical
4093types.</p>
4094<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004095<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004096according to the condition code given as <tt>cond</tt>. The comparison yields a
4097<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4098an identical number of elements as the values being compared, and each element
4099having identical with to the width of the floating point elements. The most
4100significant bit in each element is 1 if the element-wise comparison evaluates to
4101true, and is 0 otherwise. All other bits of the result are undefined. The
4102condition codes are evaluated identically to the
4103<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.
4104
4105<h5>Example:</h5>
4106<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004107 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4108 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt; <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004109</pre>
4110</div>
4111
4112<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004113<div class="doc_subsubsection">
4114 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4115</div>
4116
Reid Spencer2fd21e62006-11-08 01:18:52 +00004117<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004118
Reid Spencer2fd21e62006-11-08 01:18:52 +00004119<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004120
Reid Spencer2fd21e62006-11-08 01:18:52 +00004121<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4122<h5>Overview:</h5>
4123<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4124the SSA graph representing the function.</p>
4125<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004126
Jeff Cohenb627eab2007-04-29 01:07:00 +00004127<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004128field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4129as arguments, with one pair for each predecessor basic block of the
4130current block. Only values of <a href="#t_firstclass">first class</a>
4131type may be used as the value arguments to the PHI node. Only labels
4132may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004133
Reid Spencer2fd21e62006-11-08 01:18:52 +00004134<p>There must be no non-phi instructions between the start of a basic
4135block and the PHI instructions: i.e. PHI instructions must be first in
4136a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004137
Reid Spencer2fd21e62006-11-08 01:18:52 +00004138<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004139
Jeff Cohenb627eab2007-04-29 01:07:00 +00004140<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4141specified by the pair corresponding to the predecessor basic block that executed
4142just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004143
Reid Spencer2fd21e62006-11-08 01:18:52 +00004144<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004145<pre>
4146Loop: ; Infinite loop that counts from 0 on up...
4147 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4148 %nextindvar = add i32 %indvar, 1
4149 br label %Loop
4150</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004151</div>
4152
Chris Lattnercc37aae2004-03-12 05:50:16 +00004153<!-- _______________________________________________________________________ -->
4154<div class="doc_subsubsection">
4155 <a name="i_select">'<tt>select</tt>' Instruction</a>
4156</div>
4157
4158<div class="doc_text">
4159
4160<h5>Syntax:</h5>
4161
4162<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004163 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4164
4165 <i>selty</i> is either i1 or {&lt;N x i1&gt}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004166</pre>
4167
4168<h5>Overview:</h5>
4169
4170<p>
4171The '<tt>select</tt>' instruction is used to choose one value based on a
4172condition, without branching.
4173</p>
4174
4175
4176<h5>Arguments:</h5>
4177
4178<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004179The '<tt>select</tt>' instruction requires an 'i1' value or
4180a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004181condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004182type. If the val1/val2 are vectors and
4183the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004184individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004185</p>
4186
4187<h5>Semantics:</h5>
4188
4189<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004190If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004191value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004192</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004193<p>
4194If the condition is a vector of i1, then the value arguments must
4195be vectors of the same size, and the selection is done element
4196by element.
4197</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004198
4199<h5>Example:</h5>
4200
4201<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004202 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004203</pre>
4204</div>
4205
Robert Bocchino05ccd702006-01-15 20:48:27 +00004206
4207<!-- _______________________________________________________________________ -->
4208<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004209 <a name="i_call">'<tt>call</tt>' Instruction</a>
4210</div>
4211
Misha Brukman9d0919f2003-11-08 01:05:38 +00004212<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004213
Chris Lattner00950542001-06-06 20:29:01 +00004214<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004215<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004216 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00004217</pre>
4218
Chris Lattner00950542001-06-06 20:29:01 +00004219<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004220
Misha Brukman9d0919f2003-11-08 01:05:38 +00004221<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004222
Chris Lattner00950542001-06-06 20:29:01 +00004223<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004224
Misha Brukman9d0919f2003-11-08 01:05:38 +00004225<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004226
Chris Lattner6536cfe2002-05-06 22:08:29 +00004227<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004228 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004229 <p>The optional "tail" marker indicates whether the callee function accesses
4230 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004231 function call is eligible for tail call optimization. Note that calls may
4232 be marked "tail" even if they do not occur before a <a
4233 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00004234 </li>
4235 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004236 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004237 convention</a> the call should use. If none is specified, the call defaults
4238 to using C calling conventions.
4239 </li>
4240 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004241 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4242 the type of the return value. Functions that return no value are marked
4243 <tt><a href="#t_void">void</a></tt>.</p>
4244 </li>
4245 <li>
4246 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4247 value being invoked. The argument types must match the types implied by
4248 this signature. This type can be omitted if the function is not varargs
4249 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004250 </li>
4251 <li>
4252 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4253 be invoked. In most cases, this is a direct function invocation, but
4254 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004255 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004256 </li>
4257 <li>
4258 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004259 function signature argument types. All arguments must be of
4260 <a href="#t_firstclass">first class</a> type. If the function signature
4261 indicates the function accepts a variable number of arguments, the extra
4262 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004263 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004264</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004265
Chris Lattner00950542001-06-06 20:29:01 +00004266<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004267
Chris Lattner261efe92003-11-25 01:02:51 +00004268<p>The '<tt>call</tt>' instruction is used to cause control flow to
4269transfer to a specified function, with its incoming arguments bound to
4270the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4271instruction in the called function, control flow continues with the
4272instruction after the function call, and the return value of the
Chris Lattner772fccf2008-03-21 17:24:17 +00004273function is bound to the result argument. If the callee returns multiple
4274values then the return values of the function are only accessible through
4275the '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004276
Chris Lattner00950542001-06-06 20:29:01 +00004277<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004278
4279<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004280 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004281 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4282 %X = tail call i32 @foo() <i>; yields i32</i>
4283 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4284 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004285
4286 %struct.A = type { i32, i8 }
Chris Lattner772fccf2008-03-21 17:24:17 +00004287 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
4288 %gr = getresult %struct.A %r, 0 <i>; yields i32</i>
4289 %gr1 = getresult %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004290</pre>
4291
Misha Brukman9d0919f2003-11-08 01:05:38 +00004292</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004293
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004294<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004295<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004296 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004297</div>
4298
Misha Brukman9d0919f2003-11-08 01:05:38 +00004299<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004300
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004301<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004302
4303<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004304 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004305</pre>
4306
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004307<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004308
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004309<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004310the "variable argument" area of a function call. It is used to implement the
4311<tt>va_arg</tt> macro in C.</p>
4312
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004313<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004314
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004315<p>This instruction takes a <tt>va_list*</tt> value and the type of
4316the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004317increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004318actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004319
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004320<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004321
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004322<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4323type from the specified <tt>va_list</tt> and causes the
4324<tt>va_list</tt> to point to the next argument. For more information,
4325see the variable argument handling <a href="#int_varargs">Intrinsic
4326Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004327
4328<p>It is legal for this instruction to be called in a function which does not
4329take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004330function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004331
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004332<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004333href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004334argument.</p>
4335
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004336<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004337
4338<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4339
Misha Brukman9d0919f2003-11-08 01:05:38 +00004340</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004341
Devang Patelc3fc6df2008-03-10 20:49:15 +00004342<!-- _______________________________________________________________________ -->
4343<div class="doc_subsubsection">
4344 <a name="i_getresult">'<tt>getresult</tt>' Instruction</a>
4345</div>
4346
4347<div class="doc_text">
4348
4349<h5>Syntax:</h5>
4350<pre>
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004351 &lt;resultval&gt; = getresult &lt;type&gt; &lt;retval&gt;, &lt;index&gt;
Devang Patelc3fc6df2008-03-10 20:49:15 +00004352</pre>
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004353
Devang Patelc3fc6df2008-03-10 20:49:15 +00004354<h5>Overview:</h5>
4355
4356<p> The '<tt>getresult</tt>' instruction is used to extract individual values
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004357from a '<tt><a href="#i_call">call</a></tt>'
4358or '<tt><a href="#i_invoke">invoke</a></tt>' instruction that returns multiple
4359results.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004360
4361<h5>Arguments:</h5>
4362
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004363<p>The '<tt>getresult</tt>' instruction takes a call or invoke value as its
Chris Lattner1c406d72008-04-23 04:06:52 +00004364first argument, or an undef value. The value must have <a
4365href="#t_struct">structure type</a>. The second argument is a constant
4366unsigned index value which must be in range for the number of values returned
4367by the call.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004368
4369<h5>Semantics:</h5>
4370
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004371<p>The '<tt>getresult</tt>' instruction extracts the element identified by
4372'<tt>index</tt>' from the aggregate value.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004373
4374<h5>Example:</h5>
4375
4376<pre>
4377 %struct.A = type { i32, i8 }
4378
4379 %r = call %struct.A @foo()
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004380 %gr = getresult %struct.A %r, 0 <i>; yields i32:%gr</i>
4381 %gr1 = getresult %struct.A %r, 1 <i>; yields i8:%gr1</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004382 add i32 %gr, 42
4383 add i8 %gr1, 41
4384</pre>
4385
4386</div>
4387
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004388<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004389<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4390<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004391
Misha Brukman9d0919f2003-11-08 01:05:38 +00004392<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004393
4394<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004395well known names and semantics and are required to follow certain restrictions.
4396Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004397language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004398adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004399
John Criswellfc6b8952005-05-16 16:17:45 +00004400<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004401prefix is reserved in LLVM for intrinsic names; thus, function names may not
4402begin with this prefix. Intrinsic functions must always be external functions:
4403you cannot define the body of intrinsic functions. Intrinsic functions may
4404only be used in call or invoke instructions: it is illegal to take the address
4405of an intrinsic function. Additionally, because intrinsic functions are part
4406of the LLVM language, it is required if any are added that they be documented
4407here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004408
Chandler Carruth69940402007-08-04 01:51:18 +00004409<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4410a family of functions that perform the same operation but on different data
4411types. Because LLVM can represent over 8 million different integer types,
4412overloading is used commonly to allow an intrinsic function to operate on any
4413integer type. One or more of the argument types or the result type can be
4414overloaded to accept any integer type. Argument types may also be defined as
4415exactly matching a previous argument's type or the result type. This allows an
4416intrinsic function which accepts multiple arguments, but needs all of them to
4417be of the same type, to only be overloaded with respect to a single argument or
4418the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004419
Chandler Carruth69940402007-08-04 01:51:18 +00004420<p>Overloaded intrinsics will have the names of its overloaded argument types
4421encoded into its function name, each preceded by a period. Only those types
4422which are overloaded result in a name suffix. Arguments whose type is matched
4423against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4424take an integer of any width and returns an integer of exactly the same integer
4425width. This leads to a family of functions such as
4426<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4427Only one type, the return type, is overloaded, and only one type suffix is
4428required. Because the argument's type is matched against the return type, it
4429does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004430
4431<p>To learn how to add an intrinsic function, please see the
4432<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004433</p>
4434
Misha Brukman9d0919f2003-11-08 01:05:38 +00004435</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004436
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004437<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004438<div class="doc_subsection">
4439 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4440</div>
4441
Misha Brukman9d0919f2003-11-08 01:05:38 +00004442<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004443
Misha Brukman9d0919f2003-11-08 01:05:38 +00004444<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004445 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004446intrinsic functions. These functions are related to the similarly
4447named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004448
Chris Lattner261efe92003-11-25 01:02:51 +00004449<p>All of these functions operate on arguments that use a
4450target-specific value type "<tt>va_list</tt>". The LLVM assembly
4451language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004452transformations should be prepared to handle these functions regardless of
4453the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004454
Chris Lattner374ab302006-05-15 17:26:46 +00004455<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004456instruction and the variable argument handling intrinsic functions are
4457used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004458
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004459<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004460<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004461define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004462 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004463 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004464 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004465 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004466
4467 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004468 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004469
4470 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004471 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004472 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004473 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004474 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004475
4476 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004477 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004478 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004479}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004480
4481declare void @llvm.va_start(i8*)
4482declare void @llvm.va_copy(i8*, i8*)
4483declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004484</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004485</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004486
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004487</div>
4488
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004489<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004490<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004491 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004492</div>
4493
4494
Misha Brukman9d0919f2003-11-08 01:05:38 +00004495<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004496<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004497<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004498<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004499<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
4500<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4501href="#i_va_arg">va_arg</a></tt>.</p>
4502
4503<h5>Arguments:</h5>
4504
4505<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4506
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004507<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004508
4509<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4510macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004511<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004512<tt>va_arg</tt> will produce the first variable argument passed to the function.
4513Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004514last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004515
Misha Brukman9d0919f2003-11-08 01:05:38 +00004516</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004517
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004518<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004519<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004520 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004521</div>
4522
Misha Brukman9d0919f2003-11-08 01:05:38 +00004523<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004524<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004525<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004526<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004527
Jeff Cohenb627eab2007-04-29 01:07:00 +00004528<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004529which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004530or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004531
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004532<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004533
Jeff Cohenb627eab2007-04-29 01:07:00 +00004534<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004535
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004536<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004537
Misha Brukman9d0919f2003-11-08 01:05:38 +00004538<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004539macro available in C. In a target-dependent way, it destroys the
4540<tt>va_list</tt> element to which the argument points. Calls to <a
4541href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4542<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4543<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004544
Misha Brukman9d0919f2003-11-08 01:05:38 +00004545</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004546
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004547<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004548<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004549 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004550</div>
4551
Misha Brukman9d0919f2003-11-08 01:05:38 +00004552<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004553
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004554<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004555
4556<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004557 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004558</pre>
4559
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004560<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004561
Jeff Cohenb627eab2007-04-29 01:07:00 +00004562<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4563from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004564
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004565<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004566
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004567<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004568The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004569
Chris Lattnerd7923912004-05-23 21:06:01 +00004570
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004571<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004572
Jeff Cohenb627eab2007-04-29 01:07:00 +00004573<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4574macro available in C. In a target-dependent way, it copies the source
4575<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4576intrinsic is necessary because the <tt><a href="#int_va_start">
4577llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4578example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004579
Misha Brukman9d0919f2003-11-08 01:05:38 +00004580</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004581
Chris Lattner33aec9e2004-02-12 17:01:32 +00004582<!-- ======================================================================= -->
4583<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004584 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4585</div>
4586
4587<div class="doc_text">
4588
4589<p>
4590LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004591Collection</a> (GC) requires the implementation and generation of these
4592intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004593These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004594stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004595href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004596Front-ends for type-safe garbage collected languages should generate these
4597intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4598href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4599</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004600
4601<p>The garbage collection intrinsics only operate on objects in the generic
4602 address space (address space zero).</p>
4603
Chris Lattnerd7923912004-05-23 21:06:01 +00004604</div>
4605
4606<!-- _______________________________________________________________________ -->
4607<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004608 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004609</div>
4610
4611<div class="doc_text">
4612
4613<h5>Syntax:</h5>
4614
4615<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004616 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004617</pre>
4618
4619<h5>Overview:</h5>
4620
John Criswell9e2485c2004-12-10 15:51:16 +00004621<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004622the code generator, and allows some metadata to be associated with it.</p>
4623
4624<h5>Arguments:</h5>
4625
4626<p>The first argument specifies the address of a stack object that contains the
4627root pointer. The second pointer (which must be either a constant or a global
4628value address) contains the meta-data to be associated with the root.</p>
4629
4630<h5>Semantics:</h5>
4631
Chris Lattner05d67092008-04-24 05:59:56 +00004632<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004633location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004634the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4635intrinsic may only be used in a function which <a href="#gc">specifies a GC
4636algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004637
4638</div>
4639
4640
4641<!-- _______________________________________________________________________ -->
4642<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004643 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004644</div>
4645
4646<div class="doc_text">
4647
4648<h5>Syntax:</h5>
4649
4650<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004651 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004652</pre>
4653
4654<h5>Overview:</h5>
4655
4656<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4657locations, allowing garbage collector implementations that require read
4658barriers.</p>
4659
4660<h5>Arguments:</h5>
4661
Chris Lattner80626e92006-03-14 20:02:51 +00004662<p>The second argument is the address to read from, which should be an address
4663allocated from the garbage collector. The first object is a pointer to the
4664start of the referenced object, if needed by the language runtime (otherwise
4665null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004666
4667<h5>Semantics:</h5>
4668
4669<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4670instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004671garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4672may only be used in a function which <a href="#gc">specifies a GC
4673algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004674
4675</div>
4676
4677
4678<!-- _______________________________________________________________________ -->
4679<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004680 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004681</div>
4682
4683<div class="doc_text">
4684
4685<h5>Syntax:</h5>
4686
4687<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004688 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004689</pre>
4690
4691<h5>Overview:</h5>
4692
4693<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4694locations, allowing garbage collector implementations that require write
4695barriers (such as generational or reference counting collectors).</p>
4696
4697<h5>Arguments:</h5>
4698
Chris Lattner80626e92006-03-14 20:02:51 +00004699<p>The first argument is the reference to store, the second is the start of the
4700object to store it to, and the third is the address of the field of Obj to
4701store to. If the runtime does not require a pointer to the object, Obj may be
4702null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004703
4704<h5>Semantics:</h5>
4705
4706<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4707instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004708garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4709may only be used in a function which <a href="#gc">specifies a GC
4710algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004711
4712</div>
4713
4714
4715
4716<!-- ======================================================================= -->
4717<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004718 <a name="int_codegen">Code Generator Intrinsics</a>
4719</div>
4720
4721<div class="doc_text">
4722<p>
4723These intrinsics are provided by LLVM to expose special features that may only
4724be implemented with code generator support.
4725</p>
4726
4727</div>
4728
4729<!-- _______________________________________________________________________ -->
4730<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004731 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004732</div>
4733
4734<div class="doc_text">
4735
4736<h5>Syntax:</h5>
4737<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004738 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004739</pre>
4740
4741<h5>Overview:</h5>
4742
4743<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004744The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4745target-specific value indicating the return address of the current function
4746or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004747</p>
4748
4749<h5>Arguments:</h5>
4750
4751<p>
4752The argument to this intrinsic indicates which function to return the address
4753for. Zero indicates the calling function, one indicates its caller, etc. The
4754argument is <b>required</b> to be a constant integer value.
4755</p>
4756
4757<h5>Semantics:</h5>
4758
4759<p>
4760The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4761the return address of the specified call frame, or zero if it cannot be
4762identified. The value returned by this intrinsic is likely to be incorrect or 0
4763for arguments other than zero, so it should only be used for debugging purposes.
4764</p>
4765
4766<p>
4767Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004768aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004769source-language caller.
4770</p>
4771</div>
4772
4773
4774<!-- _______________________________________________________________________ -->
4775<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004776 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004777</div>
4778
4779<div class="doc_text">
4780
4781<h5>Syntax:</h5>
4782<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004783 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004784</pre>
4785
4786<h5>Overview:</h5>
4787
4788<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004789The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4790target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004791</p>
4792
4793<h5>Arguments:</h5>
4794
4795<p>
4796The argument to this intrinsic indicates which function to return the frame
4797pointer for. Zero indicates the calling function, one indicates its caller,
4798etc. The argument is <b>required</b> to be a constant integer value.
4799</p>
4800
4801<h5>Semantics:</h5>
4802
4803<p>
4804The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4805the frame address of the specified call frame, or zero if it cannot be
4806identified. The value returned by this intrinsic is likely to be incorrect or 0
4807for arguments other than zero, so it should only be used for debugging purposes.
4808</p>
4809
4810<p>
4811Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004812aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004813source-language caller.
4814</p>
4815</div>
4816
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004817<!-- _______________________________________________________________________ -->
4818<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004819 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004820</div>
4821
4822<div class="doc_text">
4823
4824<h5>Syntax:</h5>
4825<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004826 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004827</pre>
4828
4829<h5>Overview:</h5>
4830
4831<p>
4832The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004833the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004834<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4835features like scoped automatic variable sized arrays in C99.
4836</p>
4837
4838<h5>Semantics:</h5>
4839
4840<p>
4841This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004842href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004843<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4844<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4845state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4846practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4847that were allocated after the <tt>llvm.stacksave</tt> was executed.
4848</p>
4849
4850</div>
4851
4852<!-- _______________________________________________________________________ -->
4853<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004854 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004855</div>
4856
4857<div class="doc_text">
4858
4859<h5>Syntax:</h5>
4860<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004861 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004862</pre>
4863
4864<h5>Overview:</h5>
4865
4866<p>
4867The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4868the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004869href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004870useful for implementing language features like scoped automatic variable sized
4871arrays in C99.
4872</p>
4873
4874<h5>Semantics:</h5>
4875
4876<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004877See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004878</p>
4879
4880</div>
4881
4882
4883<!-- _______________________________________________________________________ -->
4884<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004885 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004886</div>
4887
4888<div class="doc_text">
4889
4890<h5>Syntax:</h5>
4891<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004892 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004893</pre>
4894
4895<h5>Overview:</h5>
4896
4897
4898<p>
4899The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004900a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4901no
4902effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004903characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004904</p>
4905
4906<h5>Arguments:</h5>
4907
4908<p>
4909<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4910determining if the fetch should be for a read (0) or write (1), and
4911<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004912locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004913<tt>locality</tt> arguments must be constant integers.
4914</p>
4915
4916<h5>Semantics:</h5>
4917
4918<p>
4919This intrinsic does not modify the behavior of the program. In particular,
4920prefetches cannot trap and do not produce a value. On targets that support this
4921intrinsic, the prefetch can provide hints to the processor cache for better
4922performance.
4923</p>
4924
4925</div>
4926
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004927<!-- _______________________________________________________________________ -->
4928<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004929 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004930</div>
4931
4932<div class="doc_text">
4933
4934<h5>Syntax:</h5>
4935<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004936 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004937</pre>
4938
4939<h5>Overview:</h5>
4940
4941
4942<p>
John Criswellfc6b8952005-05-16 16:17:45 +00004943The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00004944(PC) in a region of
4945code to simulators and other tools. The method is target specific, but it is
4946expected that the marker will use exported symbols to transmit the PC of the
4947marker.
4948The marker makes no guarantees that it will remain with any specific instruction
4949after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00004950optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00004951correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004952</p>
4953
4954<h5>Arguments:</h5>
4955
4956<p>
4957<tt>id</tt> is a numerical id identifying the marker.
4958</p>
4959
4960<h5>Semantics:</h5>
4961
4962<p>
4963This intrinsic does not modify the behavior of the program. Backends that do not
4964support this intrinisic may ignore it.
4965</p>
4966
4967</div>
4968
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004969<!-- _______________________________________________________________________ -->
4970<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004971 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004972</div>
4973
4974<div class="doc_text">
4975
4976<h5>Syntax:</h5>
4977<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004978 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004979</pre>
4980
4981<h5>Overview:</h5>
4982
4983
4984<p>
4985The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4986counter register (or similar low latency, high accuracy clocks) on those targets
4987that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4988As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4989should only be used for small timings.
4990</p>
4991
4992<h5>Semantics:</h5>
4993
4994<p>
4995When directly supported, reading the cycle counter should not modify any memory.
4996Implementations are allowed to either return a application specific value or a
4997system wide value. On backends without support, this is lowered to a constant 0.
4998</p>
4999
5000</div>
5001
Chris Lattner10610642004-02-14 04:08:35 +00005002<!-- ======================================================================= -->
5003<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005004 <a name="int_libc">Standard C Library Intrinsics</a>
5005</div>
5006
5007<div class="doc_text">
5008<p>
Chris Lattner10610642004-02-14 04:08:35 +00005009LLVM provides intrinsics for a few important standard C library functions.
5010These intrinsics allow source-language front-ends to pass information about the
5011alignment of the pointer arguments to the code generator, providing opportunity
5012for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005013</p>
5014
5015</div>
5016
5017<!-- _______________________________________________________________________ -->
5018<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005019 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005020</div>
5021
5022<div class="doc_text">
5023
5024<h5>Syntax:</h5>
5025<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005026 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005027 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005028 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005029 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005030</pre>
5031
5032<h5>Overview:</h5>
5033
5034<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005035The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005036location to the destination location.
5037</p>
5038
5039<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005040Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5041intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005042</p>
5043
5044<h5>Arguments:</h5>
5045
5046<p>
5047The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005048the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005049specifying the number of bytes to copy, and the fourth argument is the alignment
5050of the source and destination locations.
5051</p>
5052
Chris Lattner3301ced2004-02-12 21:18:15 +00005053<p>
5054If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005055the caller guarantees that both the source and destination pointers are aligned
5056to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005057</p>
5058
Chris Lattner33aec9e2004-02-12 17:01:32 +00005059<h5>Semantics:</h5>
5060
5061<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005062The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005063location to the destination location, which are not allowed to overlap. It
5064copies "len" bytes of memory over. If the argument is known to be aligned to
5065some boundary, this can be specified as the fourth argument, otherwise it should
5066be set to 0 or 1.
5067</p>
5068</div>
5069
5070
Chris Lattner0eb51b42004-02-12 18:10:10 +00005071<!-- _______________________________________________________________________ -->
5072<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005073 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005074</div>
5075
5076<div class="doc_text">
5077
5078<h5>Syntax:</h5>
5079<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005080 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005081 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005082 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005083 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005084</pre>
5085
5086<h5>Overview:</h5>
5087
5088<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005089The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5090location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005091'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005092</p>
5093
5094<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005095Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5096intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005097</p>
5098
5099<h5>Arguments:</h5>
5100
5101<p>
5102The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005103the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005104specifying the number of bytes to copy, and the fourth argument is the alignment
5105of the source and destination locations.
5106</p>
5107
Chris Lattner3301ced2004-02-12 21:18:15 +00005108<p>
5109If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005110the caller guarantees that the source and destination pointers are aligned to
5111that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005112</p>
5113
Chris Lattner0eb51b42004-02-12 18:10:10 +00005114<h5>Semantics:</h5>
5115
5116<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005117The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005118location to the destination location, which may overlap. It
5119copies "len" bytes of memory over. If the argument is known to be aligned to
5120some boundary, this can be specified as the fourth argument, otherwise it should
5121be set to 0 or 1.
5122</p>
5123</div>
5124
Chris Lattner8ff75902004-01-06 05:31:32 +00005125
Chris Lattner10610642004-02-14 04:08:35 +00005126<!-- _______________________________________________________________________ -->
5127<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005128 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005129</div>
5130
5131<div class="doc_text">
5132
5133<h5>Syntax:</h5>
5134<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005135 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005136 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005137 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005138 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005139</pre>
5140
5141<h5>Overview:</h5>
5142
5143<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005144The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005145byte value.
5146</p>
5147
5148<p>
5149Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5150does not return a value, and takes an extra alignment argument.
5151</p>
5152
5153<h5>Arguments:</h5>
5154
5155<p>
5156The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005157byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005158argument specifying the number of bytes to fill, and the fourth argument is the
5159known alignment of destination location.
5160</p>
5161
5162<p>
5163If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005164the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005165</p>
5166
5167<h5>Semantics:</h5>
5168
5169<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005170The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5171the
Chris Lattner10610642004-02-14 04:08:35 +00005172destination location. If the argument is known to be aligned to some boundary,
5173this can be specified as the fourth argument, otherwise it should be set to 0 or
51741.
5175</p>
5176</div>
5177
5178
Chris Lattner32006282004-06-11 02:28:03 +00005179<!-- _______________________________________________________________________ -->
5180<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005181 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005182</div>
5183
5184<div class="doc_text">
5185
5186<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005187<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005188floating point or vector of floating point type. Not all targets support all
5189types however.
Chris Lattnera4d74142005-07-21 01:29:16 +00005190<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005191 declare float @llvm.sqrt.f32(float %Val)
5192 declare double @llvm.sqrt.f64(double %Val)
5193 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5194 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5195 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005196</pre>
5197
5198<h5>Overview:</h5>
5199
5200<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005201The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005202returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005203<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005204negative numbers other than -0.0 (which allows for better optimization, because
5205there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5206defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005207</p>
5208
5209<h5>Arguments:</h5>
5210
5211<p>
5212The argument and return value are floating point numbers of the same type.
5213</p>
5214
5215<h5>Semantics:</h5>
5216
5217<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005218This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005219floating point number.
5220</p>
5221</div>
5222
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005223<!-- _______________________________________________________________________ -->
5224<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005225 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005226</div>
5227
5228<div class="doc_text">
5229
5230<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005231<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005232floating point or vector of floating point type. Not all targets support all
5233types however.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005234<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005235 declare float @llvm.powi.f32(float %Val, i32 %power)
5236 declare double @llvm.powi.f64(double %Val, i32 %power)
5237 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5238 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5239 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005240</pre>
5241
5242<h5>Overview:</h5>
5243
5244<p>
5245The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5246specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005247multiplications is not defined. When a vector of floating point type is
5248used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005249</p>
5250
5251<h5>Arguments:</h5>
5252
5253<p>
5254The second argument is an integer power, and the first is a value to raise to
5255that power.
5256</p>
5257
5258<h5>Semantics:</h5>
5259
5260<p>
5261This function returns the first value raised to the second power with an
5262unspecified sequence of rounding operations.</p>
5263</div>
5264
Dan Gohman91c284c2007-10-15 20:30:11 +00005265<!-- _______________________________________________________________________ -->
5266<div class="doc_subsubsection">
5267 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5268</div>
5269
5270<div class="doc_text">
5271
5272<h5>Syntax:</h5>
5273<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5274floating point or vector of floating point type. Not all targets support all
5275types however.
5276<pre>
5277 declare float @llvm.sin.f32(float %Val)
5278 declare double @llvm.sin.f64(double %Val)
5279 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5280 declare fp128 @llvm.sin.f128(fp128 %Val)
5281 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5282</pre>
5283
5284<h5>Overview:</h5>
5285
5286<p>
5287The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5288</p>
5289
5290<h5>Arguments:</h5>
5291
5292<p>
5293The argument and return value are floating point numbers of the same type.
5294</p>
5295
5296<h5>Semantics:</h5>
5297
5298<p>
5299This function returns the sine of the specified operand, returning the
5300same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005301conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005302</div>
5303
5304<!-- _______________________________________________________________________ -->
5305<div class="doc_subsubsection">
5306 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5307</div>
5308
5309<div class="doc_text">
5310
5311<h5>Syntax:</h5>
5312<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5313floating point or vector of floating point type. Not all targets support all
5314types however.
5315<pre>
5316 declare float @llvm.cos.f32(float %Val)
5317 declare double @llvm.cos.f64(double %Val)
5318 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5319 declare fp128 @llvm.cos.f128(fp128 %Val)
5320 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5321</pre>
5322
5323<h5>Overview:</h5>
5324
5325<p>
5326The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5327</p>
5328
5329<h5>Arguments:</h5>
5330
5331<p>
5332The argument and return value are floating point numbers of the same type.
5333</p>
5334
5335<h5>Semantics:</h5>
5336
5337<p>
5338This function returns the cosine of the specified operand, returning the
5339same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005340conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005341</div>
5342
5343<!-- _______________________________________________________________________ -->
5344<div class="doc_subsubsection">
5345 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5346</div>
5347
5348<div class="doc_text">
5349
5350<h5>Syntax:</h5>
5351<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5352floating point or vector of floating point type. Not all targets support all
5353types however.
5354<pre>
5355 declare float @llvm.pow.f32(float %Val, float %Power)
5356 declare double @llvm.pow.f64(double %Val, double %Power)
5357 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5358 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5359 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5360</pre>
5361
5362<h5>Overview:</h5>
5363
5364<p>
5365The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5366specified (positive or negative) power.
5367</p>
5368
5369<h5>Arguments:</h5>
5370
5371<p>
5372The second argument is a floating point power, and the first is a value to
5373raise to that power.
5374</p>
5375
5376<h5>Semantics:</h5>
5377
5378<p>
5379This function returns the first value raised to the second power,
5380returning the
5381same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005382conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005383</div>
5384
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005385
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005386<!-- ======================================================================= -->
5387<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005388 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005389</div>
5390
5391<div class="doc_text">
5392<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005393LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005394These allow efficient code generation for some algorithms.
5395</p>
5396
5397</div>
5398
5399<!-- _______________________________________________________________________ -->
5400<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005401 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005402</div>
5403
5404<div class="doc_text">
5405
5406<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005407<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carruth69940402007-08-04 01:51:18 +00005408type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Nate Begeman7e36c472006-01-13 23:26:38 +00005409<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005410 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5411 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5412 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005413</pre>
5414
5415<h5>Overview:</h5>
5416
5417<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005418The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005419values with an even number of bytes (positive multiple of 16 bits). These are
5420useful for performing operations on data that is not in the target's native
5421byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005422</p>
5423
5424<h5>Semantics:</h5>
5425
5426<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005427The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005428and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5429intrinsic returns an i32 value that has the four bytes of the input i32
5430swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005431i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5432<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005433additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005434</p>
5435
5436</div>
5437
5438<!-- _______________________________________________________________________ -->
5439<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005440 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005441</div>
5442
5443<div class="doc_text">
5444
5445<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005446<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5447width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005448<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005449 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5450 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005451 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005452 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5453 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005454</pre>
5455
5456<h5>Overview:</h5>
5457
5458<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005459The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5460value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005461</p>
5462
5463<h5>Arguments:</h5>
5464
5465<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005466The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005467integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005468</p>
5469
5470<h5>Semantics:</h5>
5471
5472<p>
5473The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5474</p>
5475</div>
5476
5477<!-- _______________________________________________________________________ -->
5478<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005479 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005480</div>
5481
5482<div class="doc_text">
5483
5484<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005485<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5486integer bit width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005487<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005488 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5489 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005490 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005491 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5492 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005493</pre>
5494
5495<h5>Overview:</h5>
5496
5497<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005498The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5499leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005500</p>
5501
5502<h5>Arguments:</h5>
5503
5504<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005505The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005506integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005507</p>
5508
5509<h5>Semantics:</h5>
5510
5511<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005512The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5513in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005514of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005515</p>
5516</div>
Chris Lattner32006282004-06-11 02:28:03 +00005517
5518
Chris Lattnereff29ab2005-05-15 19:39:26 +00005519
5520<!-- _______________________________________________________________________ -->
5521<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005522 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005523</div>
5524
5525<div class="doc_text">
5526
5527<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005528<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5529integer bit width. Not all targets support all bit widths however.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005530<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005531 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5532 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005533 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005534 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5535 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005536</pre>
5537
5538<h5>Overview:</h5>
5539
5540<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005541The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5542trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005543</p>
5544
5545<h5>Arguments:</h5>
5546
5547<p>
5548The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005549integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005550</p>
5551
5552<h5>Semantics:</h5>
5553
5554<p>
5555The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5556in a variable. If the src == 0 then the result is the size in bits of the type
5557of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5558</p>
5559</div>
5560
Reid Spencer497d93e2007-04-01 08:27:01 +00005561<!-- _______________________________________________________________________ -->
5562<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005563 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005564</div>
5565
5566<div class="doc_text">
5567
5568<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005569<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005570on any integer bit width.
5571<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005572 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5573 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005574</pre>
5575
5576<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005577<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005578range of bits from an integer value and returns them in the same bit width as
5579the original value.</p>
5580
5581<h5>Arguments:</h5>
5582<p>The first argument, <tt>%val</tt> and the result may be integer types of
5583any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005584arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005585
5586<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005587<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005588of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5589<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5590operates in forward mode.</p>
5591<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5592right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005593only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5594<ol>
5595 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5596 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5597 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5598 to determine the number of bits to retain.</li>
5599 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5600 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5601</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005602<p>In reverse mode, a similar computation is made except that the bits are
5603returned in the reverse order. So, for example, if <tt>X</tt> has the value
5604<tt>i16 0x0ACF (101011001111)</tt> and we apply
5605<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5606<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005607</div>
5608
Reid Spencerf86037f2007-04-11 23:23:49 +00005609<div class="doc_subsubsection">
5610 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5611</div>
5612
5613<div class="doc_text">
5614
5615<h5>Syntax:</h5>
5616<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5617on any integer bit width.
5618<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005619 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5620 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005621</pre>
5622
5623<h5>Overview:</h5>
5624<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5625of bits in an integer value with another integer value. It returns the integer
5626with the replaced bits.</p>
5627
5628<h5>Arguments:</h5>
5629<p>The first argument, <tt>%val</tt> and the result may be integer types of
5630any bit width but they must have the same bit width. <tt>%val</tt> is the value
5631whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5632integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5633type since they specify only a bit index.</p>
5634
5635<h5>Semantics:</h5>
5636<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5637of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5638<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5639operates in forward mode.</p>
5640<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5641truncating it down to the size of the replacement area or zero extending it
5642up to that size.</p>
5643<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5644are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5645in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5646to the <tt>%hi</tt>th bit.
Reid Spencerc6749c42007-05-14 16:50:20 +00005647<p>In reverse mode, a similar computation is made except that the bits are
5648reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5649<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
Reid Spencerf86037f2007-04-11 23:23:49 +00005650<h5>Examples:</h5>
5651<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005652 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005653 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5654 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5655 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005656 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005657</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00005658</div>
5659
Chris Lattner8ff75902004-01-06 05:31:32 +00005660<!-- ======================================================================= -->
5661<div class="doc_subsection">
5662 <a name="int_debugger">Debugger Intrinsics</a>
5663</div>
5664
5665<div class="doc_text">
5666<p>
5667The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5668are described in the <a
5669href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5670Debugging</a> document.
5671</p>
5672</div>
5673
5674
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005675<!-- ======================================================================= -->
5676<div class="doc_subsection">
5677 <a name="int_eh">Exception Handling Intrinsics</a>
5678</div>
5679
5680<div class="doc_text">
5681<p> The LLVM exception handling intrinsics (which all start with
5682<tt>llvm.eh.</tt> prefix), are described in the <a
5683href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5684Handling</a> document. </p>
5685</div>
5686
Tanya Lattner6d806e92007-06-15 20:50:54 +00005687<!-- ======================================================================= -->
5688<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005689 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005690</div>
5691
5692<div class="doc_text">
5693<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005694 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005695 the <tt>nest</tt> attribute, from a function. The result is a callable
5696 function pointer lacking the nest parameter - the caller does not need
5697 to provide a value for it. Instead, the value to use is stored in
5698 advance in a "trampoline", a block of memory usually allocated
5699 on the stack, which also contains code to splice the nest value into the
5700 argument list. This is used to implement the GCC nested function address
5701 extension.
5702</p>
5703<p>
5704 For example, if the function is
5705 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00005706 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005707<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005708 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5709 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5710 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5711 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005712</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00005713 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5714 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005715</div>
5716
5717<!-- _______________________________________________________________________ -->
5718<div class="doc_subsubsection">
5719 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5720</div>
5721<div class="doc_text">
5722<h5>Syntax:</h5>
5723<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005724declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005725</pre>
5726<h5>Overview:</h5>
5727<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005728 This fills the memory pointed to by <tt>tramp</tt> with code
5729 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005730</p>
5731<h5>Arguments:</h5>
5732<p>
5733 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5734 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5735 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005736 intrinsic. Note that the size and the alignment are target-specific - LLVM
5737 currently provides no portable way of determining them, so a front-end that
5738 generates this intrinsic needs to have some target-specific knowledge.
5739 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005740</p>
5741<h5>Semantics:</h5>
5742<p>
5743 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005744 dependent code, turning it into a function. A pointer to this function is
5745 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005746 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005747 before being called. The new function's signature is the same as that of
5748 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5749 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5750 of pointer type. Calling the new function is equivalent to calling
5751 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5752 missing <tt>nest</tt> argument. If, after calling
5753 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5754 modified, then the effect of any later call to the returned function pointer is
5755 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005756</p>
5757</div>
5758
5759<!-- ======================================================================= -->
5760<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005761 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5762</div>
5763
5764<div class="doc_text">
5765<p>
5766 These intrinsic functions expand the "universal IR" of LLVM to represent
5767 hardware constructs for atomic operations and memory synchronization. This
5768 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00005769 is aimed at a low enough level to allow any programming models or APIs
5770 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005771 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5772 hardware behavior. Just as hardware provides a "universal IR" for source
5773 languages, it also provides a starting point for developing a "universal"
5774 atomic operation and synchronization IR.
5775</p>
5776<p>
5777 These do <em>not</em> form an API such as high-level threading libraries,
5778 software transaction memory systems, atomic primitives, and intrinsic
5779 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5780 application libraries. The hardware interface provided by LLVM should allow
5781 a clean implementation of all of these APIs and parallel programming models.
5782 No one model or paradigm should be selected above others unless the hardware
5783 itself ubiquitously does so.
5784
5785</p>
5786</div>
5787
5788<!-- _______________________________________________________________________ -->
5789<div class="doc_subsubsection">
5790 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5791</div>
5792<div class="doc_text">
5793<h5>Syntax:</h5>
5794<pre>
5795declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5796i1 &lt;device&gt; )
5797
5798</pre>
5799<h5>Overview:</h5>
5800<p>
5801 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5802 specific pairs of memory access types.
5803</p>
5804<h5>Arguments:</h5>
5805<p>
5806 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5807 The first four arguments enables a specific barrier as listed below. The fith
5808 argument specifies that the barrier applies to io or device or uncached memory.
5809
5810</p>
5811 <ul>
5812 <li><tt>ll</tt>: load-load barrier</li>
5813 <li><tt>ls</tt>: load-store barrier</li>
5814 <li><tt>sl</tt>: store-load barrier</li>
5815 <li><tt>ss</tt>: store-store barrier</li>
5816 <li><tt>device</tt>: barrier applies to device and uncached memory also.
5817 </ul>
5818<h5>Semantics:</h5>
5819<p>
5820 This intrinsic causes the system to enforce some ordering constraints upon
5821 the loads and stores of the program. This barrier does not indicate
5822 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5823 which they occur. For any of the specified pairs of load and store operations
5824 (f.ex. load-load, or store-load), all of the first operations preceding the
5825 barrier will complete before any of the second operations succeeding the
5826 barrier begin. Specifically the semantics for each pairing is as follows:
5827</p>
5828 <ul>
5829 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5830 after the barrier begins.</li>
5831
5832 <li><tt>ls</tt>: All loads before the barrier must complete before any
5833 store after the barrier begins.</li>
5834 <li><tt>ss</tt>: All stores before the barrier must complete before any
5835 store after the barrier begins.</li>
5836 <li><tt>sl</tt>: All stores before the barrier must complete before any
5837 load after the barrier begins.</li>
5838 </ul>
5839<p>
5840 These semantics are applied with a logical "and" behavior when more than one
5841 is enabled in a single memory barrier intrinsic.
5842</p>
5843<p>
5844 Backends may implement stronger barriers than those requested when they do not
5845 support as fine grained a barrier as requested. Some architectures do not
5846 need all types of barriers and on such architectures, these become noops.
5847</p>
5848<h5>Example:</h5>
5849<pre>
5850%ptr = malloc i32
5851 store i32 4, %ptr
5852
5853%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5854 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5855 <i>; guarantee the above finishes</i>
5856 store i32 8, %ptr <i>; before this begins</i>
5857</pre>
5858</div>
5859
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005860<!-- _______________________________________________________________________ -->
5861<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00005862 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005863</div>
5864<div class="doc_text">
5865<h5>Syntax:</h5>
5866<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00005867 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5868 any integer bit width and for different address spaces. Not all targets
5869 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005870
5871<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005872declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5873declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5874declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5875declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005876
5877</pre>
5878<h5>Overview:</h5>
5879<p>
5880 This loads a value in memory and compares it to a given value. If they are
5881 equal, it stores a new value into the memory.
5882</p>
5883<h5>Arguments:</h5>
5884<p>
Mon P Wang28873102008-06-25 08:15:39 +00005885 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005886 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5887 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5888 this integer type. While any bit width integer may be used, targets may only
5889 lower representations they support in hardware.
5890
5891</p>
5892<h5>Semantics:</h5>
5893<p>
5894 This entire intrinsic must be executed atomically. It first loads the value
5895 in memory pointed to by <tt>ptr</tt> and compares it with the value
5896 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5897 loaded value is yielded in all cases. This provides the equivalent of an
5898 atomic compare-and-swap operation within the SSA framework.
5899</p>
5900<h5>Examples:</h5>
5901
5902<pre>
5903%ptr = malloc i32
5904 store i32 4, %ptr
5905
5906%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00005907%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005908 <i>; yields {i32}:result1 = 4</i>
5909%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5910%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5911
5912%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00005913%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005914 <i>; yields {i32}:result2 = 8</i>
5915%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5916
5917%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5918</pre>
5919</div>
5920
5921<!-- _______________________________________________________________________ -->
5922<div class="doc_subsubsection">
5923 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5924</div>
5925<div class="doc_text">
5926<h5>Syntax:</h5>
5927
5928<p>
5929 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5930 integer bit width. Not all targets support all bit widths however.</p>
5931<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005932declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5933declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5934declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5935declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005936
5937</pre>
5938<h5>Overview:</h5>
5939<p>
5940 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5941 the value from memory. It then stores the value in <tt>val</tt> in the memory
5942 at <tt>ptr</tt>.
5943</p>
5944<h5>Arguments:</h5>
5945
5946<p>
Mon P Wang28873102008-06-25 08:15:39 +00005947 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005948 <tt>val</tt> argument and the result must be integers of the same bit width.
5949 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5950 integer type. The targets may only lower integer representations they
5951 support.
5952</p>
5953<h5>Semantics:</h5>
5954<p>
5955 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5956 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5957 equivalent of an atomic swap operation within the SSA framework.
5958
5959</p>
5960<h5>Examples:</h5>
5961<pre>
5962%ptr = malloc i32
5963 store i32 4, %ptr
5964
5965%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00005966%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005967 <i>; yields {i32}:result1 = 4</i>
5968%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5969%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5970
5971%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00005972%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005973 <i>; yields {i32}:result2 = 8</i>
5974
5975%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
5976%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
5977</pre>
5978</div>
5979
5980<!-- _______________________________________________________________________ -->
5981<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00005982 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005983
5984</div>
5985<div class="doc_text">
5986<h5>Syntax:</h5>
5987<p>
Mon P Wang28873102008-06-25 08:15:39 +00005988 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005989 integer bit width. Not all targets support all bit widths however.</p>
5990<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005991declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5992declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5993declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5994declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005995
5996</pre>
5997<h5>Overview:</h5>
5998<p>
5999 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6000 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6001</p>
6002<h5>Arguments:</h5>
6003<p>
6004
6005 The intrinsic takes two arguments, the first a pointer to an integer value
6006 and the second an integer value. The result is also an integer value. These
6007 integer types can have any bit width, but they must all have the same bit
6008 width. The targets may only lower integer representations they support.
6009</p>
6010<h5>Semantics:</h5>
6011<p>
6012 This intrinsic does a series of operations atomically. It first loads the
6013 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6014 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6015</p>
6016
6017<h5>Examples:</h5>
6018<pre>
6019%ptr = malloc i32
6020 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006021%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006022 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006023%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006024 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006025%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006026 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006027%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006028</pre>
6029</div>
6030
Mon P Wang28873102008-06-25 08:15:39 +00006031<!-- _______________________________________________________________________ -->
6032<div class="doc_subsubsection">
6033 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6034
6035</div>
6036<div class="doc_text">
6037<h5>Syntax:</h5>
6038<p>
6039 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006040 any integer bit width and for different address spaces. Not all targets
6041 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006042<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006043declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6044declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6045declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6046declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006047
6048</pre>
6049<h5>Overview:</h5>
6050<p>
6051 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6052 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6053</p>
6054<h5>Arguments:</h5>
6055<p>
6056
6057 The intrinsic takes two arguments, the first a pointer to an integer value
6058 and the second an integer value. The result is also an integer value. These
6059 integer types can have any bit width, but they must all have the same bit
6060 width. The targets may only lower integer representations they support.
6061</p>
6062<h5>Semantics:</h5>
6063<p>
6064 This intrinsic does a series of operations atomically. It first loads the
6065 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6066 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6067</p>
6068
6069<h5>Examples:</h5>
6070<pre>
6071%ptr = malloc i32
6072 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006073%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006074 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006075%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006076 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006077%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006078 <i>; yields {i32}:result3 = 2</i>
6079%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6080</pre>
6081</div>
6082
6083<!-- _______________________________________________________________________ -->
6084<div class="doc_subsubsection">
6085 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6086 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6087 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6088 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6089
6090</div>
6091<div class="doc_text">
6092<h5>Syntax:</h5>
6093<p>
6094 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6095 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006096 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6097 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006098<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006099declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6100declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6101declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6102declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006103
6104</pre>
6105
6106<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006107declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6108declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6109declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6110declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006111
6112</pre>
6113
6114<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006115declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6116declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6117declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6118declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006119
6120</pre>
6121
6122<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006123declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6124declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6125declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6126declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006127
6128</pre>
6129<h5>Overview:</h5>
6130<p>
6131 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6132 the value stored in memory at <tt>ptr</tt>. It yields the original value
6133 at <tt>ptr</tt>.
6134</p>
6135<h5>Arguments:</h5>
6136<p>
6137
6138 These intrinsics take two arguments, the first a pointer to an integer value
6139 and the second an integer value. The result is also an integer value. These
6140 integer types can have any bit width, but they must all have the same bit
6141 width. The targets may only lower integer representations they support.
6142</p>
6143<h5>Semantics:</h5>
6144<p>
6145 These intrinsics does a series of operations atomically. They first load the
6146 value stored at <tt>ptr</tt>. They then do the bitwise operation
6147 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6148 value stored at <tt>ptr</tt>.
6149</p>
6150
6151<h5>Examples:</h5>
6152<pre>
6153%ptr = malloc i32
6154 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006155%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006156 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006157%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006158 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006159%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006160 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006161%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006162 <i>; yields {i32}:result3 = FF</i>
6163%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6164</pre>
6165</div>
6166
6167
6168<!-- _______________________________________________________________________ -->
6169<div class="doc_subsubsection">
6170 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6171 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6172 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6173 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6174
6175</div>
6176<div class="doc_text">
6177<h5>Syntax:</h5>
6178<p>
6179 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6180 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006181 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6182 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006183 support all bit widths however.</p>
6184<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006185declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6186declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6187declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6188declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006189
6190</pre>
6191
6192<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006193declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6194declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6195declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6196declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006197
6198</pre>
6199
6200<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006201declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6202declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6203declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6204declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006205
6206</pre>
6207
6208<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006209declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6210declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6211declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6212declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006213
6214</pre>
6215<h5>Overview:</h5>
6216<p>
6217 These intrinsics takes the signed or unsigned minimum or maximum of
6218 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6219 original value at <tt>ptr</tt>.
6220</p>
6221<h5>Arguments:</h5>
6222<p>
6223
6224 These intrinsics take two arguments, the first a pointer to an integer value
6225 and the second an integer value. The result is also an integer value. These
6226 integer types can have any bit width, but they must all have the same bit
6227 width. The targets may only lower integer representations they support.
6228</p>
6229<h5>Semantics:</h5>
6230<p>
6231 These intrinsics does a series of operations atomically. They first load the
6232 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6233 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6234 the original value stored at <tt>ptr</tt>.
6235</p>
6236
6237<h5>Examples:</h5>
6238<pre>
6239%ptr = malloc i32
6240 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006241%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006242 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006243%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006244 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006245%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006246 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006247%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006248 <i>; yields {i32}:result3 = 8</i>
6249%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6250</pre>
6251</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006252
6253<!-- ======================================================================= -->
6254<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006255 <a name="int_general">General Intrinsics</a>
6256</div>
6257
6258<div class="doc_text">
6259<p> This class of intrinsics is designed to be generic and has
6260no specific purpose. </p>
6261</div>
6262
6263<!-- _______________________________________________________________________ -->
6264<div class="doc_subsubsection">
6265 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6266</div>
6267
6268<div class="doc_text">
6269
6270<h5>Syntax:</h5>
6271<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006272 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006273</pre>
6274
6275<h5>Overview:</h5>
6276
6277<p>
6278The '<tt>llvm.var.annotation</tt>' intrinsic
6279</p>
6280
6281<h5>Arguments:</h5>
6282
6283<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006284The first argument is a pointer to a value, the second is a pointer to a
6285global string, the third is a pointer to a global string which is the source
6286file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006287</p>
6288
6289<h5>Semantics:</h5>
6290
6291<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006292This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006293This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006294annotations. These have no other defined use, they are ignored by code
6295generation and optimization.
6296</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006297</div>
6298
Tanya Lattnerb6367882007-09-21 22:59:12 +00006299<!-- _______________________________________________________________________ -->
6300<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006301 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006302</div>
6303
6304<div class="doc_text">
6305
6306<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006307<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6308any integer bit width.
6309</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006310<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006311 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6312 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6313 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6314 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6315 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006316</pre>
6317
6318<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006319
6320<p>
6321The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006322</p>
6323
6324<h5>Arguments:</h5>
6325
6326<p>
6327The first argument is an integer value (result of some expression),
6328the second is a pointer to a global string, the third is a pointer to a global
6329string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006330It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006331</p>
6332
6333<h5>Semantics:</h5>
6334
6335<p>
6336This intrinsic allows annotations to be put on arbitrary expressions
6337with arbitrary strings. This can be useful for special purpose optimizations
6338that want to look for these annotations. These have no other defined use, they
6339are ignored by code generation and optimization.
6340</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006341
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006342<!-- _______________________________________________________________________ -->
6343<div class="doc_subsubsection">
6344 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6345</div>
6346
6347<div class="doc_text">
6348
6349<h5>Syntax:</h5>
6350<pre>
6351 declare void @llvm.trap()
6352</pre>
6353
6354<h5>Overview:</h5>
6355
6356<p>
6357The '<tt>llvm.trap</tt>' intrinsic
6358</p>
6359
6360<h5>Arguments:</h5>
6361
6362<p>
6363None
6364</p>
6365
6366<h5>Semantics:</h5>
6367
6368<p>
6369This intrinsics is lowered to the target dependent trap instruction. If the
6370target does not have a trap instruction, this intrinsic will be lowered to the
6371call of the abort() function.
6372</p>
6373</div>
6374
Chris Lattner00950542001-06-06 20:29:01 +00006375<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00006376<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006377<address>
6378 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6379 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6380 <a href="http://validator.w3.org/check/referer"><img
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006381 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006382
6383 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00006384 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006385 Last modified: $Date$
6386</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006387
Misha Brukman9d0919f2003-11-08 01:05:38 +00006388</body>
6389</html>