blob: 83f63452750e1c30b2cfa73e3fbf2ade1435de78 [file] [log] [blame]
Chris Lattner1e60a912003-12-20 01:22:19 +00001//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswell856ba762003-10-21 15:17:13 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswell856ba762003-10-21 15:17:13 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
Chris Lattner3501fea2003-01-14 22:00:31 +000017#include "llvm/Target/TargetInstrInfo.h"
Nicolas Geoffray52e724a2008-04-16 20:10:13 +000018#include "X86.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "X86RegisterInfo.h"
Dan Gohmand68a0762009-01-05 17:59:02 +000020#include "llvm/ADT/DenseMap.h"
Dan Gohman6f0d0242008-02-10 18:45:23 +000021#include "llvm/Target/TargetRegisterInfo.h"
Chris Lattner72614082002-10-25 22:55:53 +000022
Brian Gaeked0fde302003-11-11 22:41:34 +000023namespace llvm {
Evan Cheng25ab6902006-09-08 06:48:29 +000024 class X86RegisterInfo;
Evan Chengaa3c1412006-05-30 21:45:53 +000025 class X86TargetMachine;
Brian Gaeked0fde302003-11-11 22:41:34 +000026
Chris Lattner7fbe9722006-10-20 17:42:20 +000027namespace X86 {
28 // X86 specific condition code. These correspond to X86_*_COND in
29 // X86InstrInfo.td. They must be kept in synch.
30 enum CondCode {
31 COND_A = 0,
32 COND_AE = 1,
33 COND_B = 2,
34 COND_BE = 3,
35 COND_E = 4,
36 COND_G = 5,
37 COND_GE = 6,
38 COND_L = 7,
39 COND_LE = 8,
40 COND_NE = 9,
41 COND_NO = 10,
42 COND_NP = 11,
43 COND_NS = 12,
Dan Gohman653456c2009-01-07 00:15:08 +000044 COND_O = 13,
45 COND_P = 14,
46 COND_S = 15,
Dan Gohman279c22e2008-10-21 03:29:32 +000047
48 // Artificial condition codes. These are used by AnalyzeBranch
49 // to indicate a block terminated with two conditional branches to
50 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
51 // which can't be represented on x86 with a single condition. These
52 // are never used in MachineInstrs.
53 COND_NE_OR_P,
54 COND_NP_OR_E,
55
Chris Lattner7fbe9722006-10-20 17:42:20 +000056 COND_INVALID
57 };
Christopher Lamb6634e262008-03-13 05:47:01 +000058
Chris Lattner7fbe9722006-10-20 17:42:20 +000059 // Turn condition code into conditional branch opcode.
60 unsigned GetCondBranchFromCond(CondCode CC);
Chris Lattner9cd68752006-10-21 05:52:40 +000061
62 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63 /// e.g. turning COND_E to COND_NE.
64 CondCode GetOppositeBranchCondition(X86::CondCode CC);
65
Chris Lattner7fbe9722006-10-20 17:42:20 +000066}
67
Chris Lattner9d177402002-10-30 01:09:34 +000068/// X86II - This namespace holds all of the target specific flags that
69/// instruction info tracks.
70///
71namespace X86II {
Chris Lattner3b6b36d2009-07-10 06:29:59 +000072 /// Target Operand Flag enum.
73 enum TOF {
Chris Lattner6aab9cf2002-11-18 05:37:11 +000074 //===------------------------------------------------------------------===//
Chris Lattnerac5e8872009-06-25 17:38:33 +000075 // X86 Specific MachineOperand flags.
76
77 MO_NO_FLAG = 0,
78
79 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
80 /// relocation of:
Chris Lattner55e7c822009-06-26 00:43:52 +000081 /// SYMBOL_LABEL + [. - PICBASELABEL]
Chris Lattnerac5e8872009-06-25 17:38:33 +000082 MO_GOT_ABSOLUTE_ADDRESS = 1,
83
Chris Lattner55e7c822009-06-26 00:43:52 +000084 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
85 /// immediate should get the value of the symbol minus the PIC base label:
86 /// SYMBOL_LABEL - PICBASELABEL
87 MO_PIC_BASE_OFFSET = 2,
88
Chris Lattnerb903bed2009-06-26 21:20:29 +000089 /// MO_GOT - On a symbol operand this indicates that the immediate is the
90 /// offset to the GOT entry for the symbol name from the base of the GOT.
91 ///
92 /// See the X86-64 ELF ABI supplement for more details.
93 /// SYMBOL_LABEL @GOT
94 MO_GOT = 3,
Chris Lattner55e7c822009-06-26 00:43:52 +000095
Chris Lattnerb903bed2009-06-26 21:20:29 +000096 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
97 /// the offset to the location of the symbol name from the base of the GOT.
98 ///
99 /// See the X86-64 ELF ABI supplement for more details.
100 /// SYMBOL_LABEL @GOTOFF
101 MO_GOTOFF = 4,
102
103 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
104 /// offset to the GOT entry for the symbol name from the current code
105 /// location.
106 ///
107 /// See the X86-64 ELF ABI supplement for more details.
108 /// SYMBOL_LABEL @GOTPCREL
109 MO_GOTPCREL = 5,
110
111 /// MO_PLT - On a symbol operand this indicates that the immediate is
112 /// offset to the PLT entry of symbol name from the current code location.
113 ///
114 /// See the X86-64 ELF ABI supplement for more details.
115 /// SYMBOL_LABEL @PLT
116 MO_PLT = 6,
117
118 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
119 /// some TLS offset.
120 ///
121 /// See 'ELF Handling for Thread-Local Storage' for more details.
122 /// SYMBOL_LABEL @TLSGD
123 MO_TLSGD = 7,
124
125 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
126 /// some TLS offset.
127 ///
128 /// See 'ELF Handling for Thread-Local Storage' for more details.
129 /// SYMBOL_LABEL @GOTTPOFF
130 MO_GOTTPOFF = 8,
131
132 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
133 /// some TLS offset.
134 ///
135 /// See 'ELF Handling for Thread-Local Storage' for more details.
136 /// SYMBOL_LABEL @INDNTPOFF
137 MO_INDNTPOFF = 9,
138
139 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
140 /// some TLS offset.
141 ///
142 /// See 'ELF Handling for Thread-Local Storage' for more details.
143 /// SYMBOL_LABEL @TPOFF
144 MO_TPOFF = 10,
145
146 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
147 /// some TLS offset.
148 ///
149 /// See 'ELF Handling for Thread-Local Storage' for more details.
150 /// SYMBOL_LABEL @NTPOFF
151 MO_NTPOFF = 11,
Chris Lattnerac5e8872009-06-25 17:38:33 +0000152
Chris Lattner4aa21aa2009-07-09 00:58:53 +0000153 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
154 /// reference is actually to the "__imp_FOO" symbol. This is used for
155 /// dllimport linkage on windows.
156 MO_DLLIMPORT = 12,
157
Chris Lattner74e726e2009-07-09 05:27:35 +0000158 /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
159 /// reference is actually to the "FOO$stub" symbol. This is used for calls
160 /// and jumps to external functions on Tiger and before.
161 MO_DARWIN_STUB = 13,
162
Chris Lattner75cdf272009-07-09 06:59:17 +0000163 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
164 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
165 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
166 MO_DARWIN_NONLAZY = 14,
167
168 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
169 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
170 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
171 MO_DARWIN_NONLAZY_PIC_BASE = 15,
172
173 /// MO_DARWIN_HIDDEN_NONLAZY - On a symbol operand "FOO", this indicates
174 /// that the reference is actually to the "FOO$non_lazy_ptr" symbol, which
175 /// is a non-PIC-base-relative reference to a hidden dyld lazy pointer stub.
176 MO_DARWIN_HIDDEN_NONLAZY = 16,
177
178 /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
179 /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
180 /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
181 /// stub.
Chris Lattner281bada2009-07-10 06:06:17 +0000182 MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE = 17
Chris Lattner281bada2009-07-10 06:06:17 +0000183 };
184}
185
Chris Lattner3b6b36d2009-07-10 06:29:59 +0000186/// isGlobalStubReference - Return true if the specified TargetFlag operand is
Chris Lattner281bada2009-07-10 06:06:17 +0000187/// a reference to a stub for a global, not the global itself.
Chris Lattner3b6b36d2009-07-10 06:29:59 +0000188inline static bool isGlobalStubReference(unsigned char TargetFlag) {
189 switch (TargetFlag) {
Chris Lattner281bada2009-07-10 06:06:17 +0000190 case X86II::MO_DLLIMPORT: // dllimport stub.
191 case X86II::MO_GOTPCREL: // rip-relative GOT reference.
192 case X86II::MO_GOT: // normal GOT reference.
193 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
194 case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
195 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
196 case X86II::MO_DARWIN_HIDDEN_NONLAZY: // Hidden $non_lazy_ptr ref.
197 return true;
198 default:
199 return false;
200 }
201}
202
203/// X86II - This namespace holds all of the target specific flags that
204/// instruction info tracks.
205///
206namespace X86II {
207 enum {
Chris Lattnerac5e8872009-06-25 17:38:33 +0000208 //===------------------------------------------------------------------===//
209 // Instruction encodings. These are the standard/most common forms for X86
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000210 // instructions.
211 //
212
Chris Lattner4c299f52002-12-25 05:09:59 +0000213 // PseudoFrm - This represents an instruction that is a pseudo instruction
214 // or one that has not been implemented yet. It is illegal to code generate
215 // it, but tolerated for intermediate implementation stages.
216 Pseudo = 0,
217
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000218 /// Raw - This form is for instructions that don't have any operands, so
219 /// they are just a fixed opcode value, like 'leave'.
Chris Lattner4c299f52002-12-25 05:09:59 +0000220 RawFrm = 1,
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000221
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000222 /// AddRegFrm - This form is used for instructions like 'push r32' that have
223 /// their one register operand added to their opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +0000224 AddRegFrm = 2,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000225
226 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
227 /// to specify a destination, which in this case is a register.
228 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000229 MRMDestReg = 3,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000230
231 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
232 /// to specify a destination, which in this case is memory.
233 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000234 MRMDestMem = 4,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000235
236 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
237 /// to specify a source, which in this case is a register.
238 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000239 MRMSrcReg = 5,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000240
241 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
242 /// to specify a source, which in this case is memory.
243 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000244 MRMSrcMem = 6,
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000245
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000246 /// MRM[0-7][rm] - These forms are used to represent instructions that use
Chris Lattner85b39f22002-11-21 17:08:49 +0000247 /// a Mod/RM byte, and use the middle field to hold extended opcode
248 /// information. In the intel manual these are represented as /0, /1, ...
249 ///
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000250
Chris Lattner85b39f22002-11-21 17:08:49 +0000251 // First, instructions that operate on a register r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000252 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
253 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +0000254
255 // Next, instructions that operate on a memory r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000256 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
257 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +0000258
Evan Cheng3c55c542006-02-01 06:13:50 +0000259 // MRMInitReg - This form is used for instructions whose source and
260 // destinations are the same register.
261 MRMInitReg = 32,
262
263 FormMask = 63,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000264
265 //===------------------------------------------------------------------===//
266 // Actual flags...
267
Chris Lattner11e53e32002-11-21 01:32:55 +0000268 // OpSize - Set if this instruction requires an operand size prefix (0x66),
269 // which most often indicates that the instruction operates on 16 bit data
270 // instead of 32 bit data.
Evan Cheng3c55c542006-02-01 06:13:50 +0000271 OpSize = 1 << 6,
Brian Gaeke86764d72002-12-05 08:30:40 +0000272
Evan Cheng25ab6902006-09-08 06:48:29 +0000273 // AsSize - Set if this instruction requires an operand size prefix (0x67),
274 // which most often indicates that the instruction address 16 bit address
275 // instead of 32 bit address (or 32 bit address in 64 bit mode).
276 AdSize = 1 << 7,
277
278 //===------------------------------------------------------------------===//
Chris Lattner4c299f52002-12-25 05:09:59 +0000279 // Op0Mask - There are several prefix bytes that are used to form two byte
Chris Lattner915e5e52004-02-12 17:53:22 +0000280 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
281 // used to obtain the setting of this field. If no bits in this field is
282 // set, there is no prefix byte for obtaining a multibyte opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +0000283 //
Evan Cheng25ab6902006-09-08 06:48:29 +0000284 Op0Shift = 8,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000285 Op0Mask = 0xF << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000286
287 // TB - TwoByte - Set if this instruction has a two byte opcode, which
288 // starts with a 0x0F byte before the real opcode.
Chris Lattner2959b6e2003-08-06 15:32:20 +0000289 TB = 1 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000290
Chris Lattner915e5e52004-02-12 17:53:22 +0000291 // REP - The 0xF3 prefix byte indicating repetition of the following
292 // instruction.
293 REP = 2 << Op0Shift,
294
Chris Lattner4c299f52002-12-25 05:09:59 +0000295 // D8-DF - These escape opcodes are used by the floating point unit. These
296 // values must remain sequential.
Chris Lattner915e5e52004-02-12 17:53:22 +0000297 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
298 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
299 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
300 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
Jeff Cohen9eb59ec2005-07-27 05:53:44 +0000301
Nate Begemanf63be7d2005-07-06 18:59:04 +0000302 // XS, XD - These prefix codes are for single and double precision scalar
303 // floating point operations performed in the SSE registers.
Bill Wendlingbb1ee052007-04-10 22:10:25 +0000304 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
305
306 // T8, TA - Prefix after the 0x0F prefix.
307 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000308
Chris Lattner0c514f42003-01-13 00:49:24 +0000309 //===------------------------------------------------------------------===//
Evan Cheng25ab6902006-09-08 06:48:29 +0000310 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
311 // They are used to specify GPRs and SSE registers, 64-bit operand size,
312 // etc. We only cares about REX.W and REX.R bits and only the former is
313 // statically determined.
314 //
315 REXShift = 12,
316 REX_W = 1 << REXShift,
317
318 //===------------------------------------------------------------------===//
319 // This three-bit field describes the size of an immediate operand. Zero is
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000320 // unused so that we can tell if we forgot to set a value.
Evan Cheng25ab6902006-09-08 06:48:29 +0000321 ImmShift = 13,
322 ImmMask = 7 << ImmShift,
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000323 Imm8 = 1 << ImmShift,
324 Imm16 = 2 << ImmShift,
325 Imm32 = 3 << ImmShift,
Evan Cheng25ab6902006-09-08 06:48:29 +0000326 Imm64 = 4 << ImmShift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000327
Chris Lattner0c514f42003-01-13 00:49:24 +0000328 //===------------------------------------------------------------------===//
329 // FP Instruction Classification... Zero is non-fp instruction.
330
Chris Lattner2959b6e2003-08-06 15:32:20 +0000331 // FPTypeMask - Mask for all of the FP types...
Evan Cheng25ab6902006-09-08 06:48:29 +0000332 FPTypeShift = 16,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000333 FPTypeMask = 7 << FPTypeShift,
334
Chris Lattner79b13732004-01-30 22:24:18 +0000335 // NotFP - The default, set for instructions that do not use FP registers.
336 NotFP = 0 << FPTypeShift,
337
Chris Lattner0c514f42003-01-13 00:49:24 +0000338 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
Chris Lattner2959b6e2003-08-06 15:32:20 +0000339 ZeroArgFP = 1 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000340
341 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
Chris Lattner2959b6e2003-08-06 15:32:20 +0000342 OneArgFP = 2 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000343
344 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
345 // result back to ST(0). For example, fcos, fsqrt, etc.
346 //
Chris Lattner2959b6e2003-08-06 15:32:20 +0000347 OneArgFPRW = 3 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000348
349 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
350 // explicit argument, storing the result to either ST(0) or the implicit
351 // argument. For example: fadd, fsub, fmul, etc...
Chris Lattner2959b6e2003-08-06 15:32:20 +0000352 TwoArgFP = 4 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000353
Chris Lattnerab8decc2004-06-11 04:41:24 +0000354 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
355 // explicit argument, but have no destination. Example: fucom, fucomi, ...
356 CompareFP = 5 << FPTypeShift,
357
Chris Lattner1c54a852004-03-31 22:02:13 +0000358 // CondMovFP - "2 operand" floating point conditional move instructions.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000359 CondMovFP = 6 << FPTypeShift,
Chris Lattner1c54a852004-03-31 22:02:13 +0000360
Chris Lattner0c514f42003-01-13 00:49:24 +0000361 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000362 SpecialFP = 7 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000363
Andrew Lenharthea7da502008-03-01 13:37:02 +0000364 // Lock prefix
365 LOCKShift = 19,
366 LOCK = 1 << LOCKShift,
367
Anton Korobeynikovef93cec2008-10-11 19:09:15 +0000368 // Segment override prefixes. Currently we just need ability to address
369 // stuff in gs and fs segments.
370 SegOvrShift = 20,
371 SegOvrMask = 3 << SegOvrShift,
372 FS = 1 << SegOvrShift,
373 GS = 2 << SegOvrShift,
374
375 // Bits 22 -> 23 are unused
Evan Cheng25ab6902006-09-08 06:48:29 +0000376 OpcodeShift = 24,
Chris Lattnerd74ea2b2006-05-24 17:04:05 +0000377 OpcodeMask = 0xFF << OpcodeShift
Chris Lattner9d177402002-10-30 01:09:34 +0000378 };
379}
380
Rafael Espindola094fad32009-04-08 21:14:34 +0000381const int X86AddrNumOperands = 5;
Rafael Espindolada945e32009-03-28 18:55:31 +0000382
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000383inline static bool isScale(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000384 return MO.isImm() &&
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000385 (MO.getImm() == 1 || MO.getImm() == 2 ||
386 MO.getImm() == 4 || MO.getImm() == 8);
387}
388
Rafael Espindola094fad32009-04-08 21:14:34 +0000389inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
Dan Gohmand735b802008-10-03 15:45:36 +0000390 if (MI->getOperand(Op).isFI()) return true;
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000391 return Op+4 <= MI->getNumOperands() &&
Dan Gohmand735b802008-10-03 15:45:36 +0000392 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
393 MI->getOperand(Op+2).isReg() &&
394 (MI->getOperand(Op+3).isImm() ||
395 MI->getOperand(Op+3).isGlobal() ||
396 MI->getOperand(Op+3).isCPI() ||
397 MI->getOperand(Op+3).isJTI());
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000398}
399
Rafael Espindola094fad32009-04-08 21:14:34 +0000400inline static bool isMem(const MachineInstr *MI, unsigned Op) {
401 if (MI->getOperand(Op).isFI()) return true;
402 return Op+5 <= MI->getNumOperands() &&
403 MI->getOperand(Op+4).isReg() &&
404 isLeaMem(MI, Op);
405}
406
Chris Lattner64105522008-01-01 01:03:04 +0000407class X86InstrInfo : public TargetInstrInfoImpl {
Evan Chengaa3c1412006-05-30 21:45:53 +0000408 X86TargetMachine &TM;
Chris Lattner72614082002-10-25 22:55:53 +0000409 const X86RegisterInfo RI;
Owen Anderson43dbe052008-01-07 01:35:02 +0000410
411 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
412 /// RegOp2MemOpTable2 - Load / store folding opcode maps.
413 ///
414 DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
415 DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
416 DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
417 DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
418
419 /// MemOp2RegOpTable - Load / store unfolding opcode map.
420 ///
421 DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
422
Chris Lattner72614082002-10-25 22:55:53 +0000423public:
Dan Gohman950a4c42008-03-25 22:06:05 +0000424 explicit X86InstrInfo(X86TargetMachine &tm);
Chris Lattner72614082002-10-25 22:55:53 +0000425
Chris Lattner3501fea2003-01-14 22:00:31 +0000426 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
Chris Lattner72614082002-10-25 22:55:53 +0000427 /// such, whenever a client has an instance of instruction info, it should
428 /// always be able to get register info as well (through this method).
429 ///
Dan Gohmanc9f5f3f2008-05-14 01:58:56 +0000430 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
Chris Lattner72614082002-10-25 22:55:53 +0000431
Evan Cheng04ee5a12009-01-20 19:12:24 +0000432 /// Return true if the instruction is a register to register move and return
433 /// the source and dest operands and their sub-register indices by reference.
434 virtual bool isMoveInstr(const MachineInstr &MI,
435 unsigned &SrcReg, unsigned &DstReg,
436 unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
437
Dan Gohmancbad42c2008-11-18 19:49:32 +0000438 unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
439 unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
Evan Chengca1267c2008-03-31 20:40:39 +0000440
Bill Wendling9f8fea32008-05-12 20:54:26 +0000441 bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
Evan Chengca1267c2008-03-31 20:40:39 +0000442 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
443 unsigned DestReg, const MachineInstr *Orig) const;
444
Dan Gohmancbad42c2008-11-18 19:49:32 +0000445 bool isInvariantLoad(const MachineInstr *MI) const;
Bill Wendling627c00b2007-12-17 23:07:56 +0000446
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000447 /// convertToThreeAddress - This method must be implemented by targets that
448 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
449 /// may be able to convert a two-address instruction into a true
450 /// three-address instruction on demand. This allows the X86 target (for
451 /// example) to convert ADD and SHL instructions into LEA instructions if they
452 /// would require register copies due to two-addressness.
453 ///
454 /// This method returns a null pointer if the transformation cannot be
455 /// performed, otherwise it returns the new instruction.
456 ///
Evan Chengba59a1e2006-12-01 21:52:58 +0000457 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
458 MachineBasicBlock::iterator &MBBI,
Owen Andersonf660c172008-07-02 23:41:07 +0000459 LiveVariables *LV) const;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000460
Chris Lattner41e431b2005-01-19 07:11:01 +0000461 /// commuteInstruction - We have a few instructions that must be hacked on to
462 /// commute them.
463 ///
Evan Cheng58dcb0e2008-06-16 07:33:11 +0000464 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
Chris Lattner41e431b2005-01-19 07:11:01 +0000465
Chris Lattner7fbe9722006-10-20 17:42:20 +0000466 // Branch analysis.
Dale Johannesen318093b2007-06-14 22:03:45 +0000467 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
Chris Lattner7fbe9722006-10-20 17:42:20 +0000468 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
469 MachineBasicBlock *&FBB,
Evan Chengdc54d312009-02-09 07:14:22 +0000470 SmallVectorImpl<MachineOperand> &Cond,
471 bool AllowModify) const;
Evan Cheng6ae36262007-05-18 00:18:17 +0000472 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
473 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
474 MachineBasicBlock *FBB,
Owen Anderson44eb65c2008-08-14 22:49:33 +0000475 const SmallVectorImpl<MachineOperand> &Cond) const;
Owen Anderson940f83e2008-08-26 18:03:31 +0000476 virtual bool copyRegToReg(MachineBasicBlock &MBB,
Owen Andersond10fd972007-12-31 06:32:00 +0000477 MachineBasicBlock::iterator MI,
478 unsigned DestReg, unsigned SrcReg,
479 const TargetRegisterClass *DestRC,
480 const TargetRegisterClass *SrcRC) const;
Owen Andersonf6372aa2008-01-01 21:11:32 +0000481 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
482 MachineBasicBlock::iterator MI,
483 unsigned SrcReg, bool isKill, int FrameIndex,
484 const TargetRegisterClass *RC) const;
485
486 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
487 SmallVectorImpl<MachineOperand> &Addr,
488 const TargetRegisterClass *RC,
489 SmallVectorImpl<MachineInstr*> &NewMIs) const;
490
491 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
492 MachineBasicBlock::iterator MI,
493 unsigned DestReg, int FrameIndex,
494 const TargetRegisterClass *RC) const;
495
496 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
497 SmallVectorImpl<MachineOperand> &Addr,
498 const TargetRegisterClass *RC,
499 SmallVectorImpl<MachineInstr*> &NewMIs) const;
Owen Andersond94b6a12008-01-04 23:57:37 +0000500
501 virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
502 MachineBasicBlock::iterator MI,
503 const std::vector<CalleeSavedInfo> &CSI) const;
504
505 virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
506 MachineBasicBlock::iterator MI,
507 const std::vector<CalleeSavedInfo> &CSI) const;
508
Owen Anderson43dbe052008-01-07 01:35:02 +0000509 /// foldMemoryOperand - If this target supports it, fold a load or store of
510 /// the specified stack slot into the specified machine instruction for the
511 /// specified operand(s). If this is possible, the target should perform the
512 /// folding and return true, otherwise it should return false. If it folds
513 /// the instruction, it is likely that the MachineInstruction the iterator
514 /// references has been changed.
Dan Gohmanc54baa22008-12-03 18:43:12 +0000515 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
516 MachineInstr* MI,
517 const SmallVectorImpl<unsigned> &Ops,
518 int FrameIndex) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000519
520 /// foldMemoryOperand - Same as the previous version except it allows folding
521 /// of any load and store from / to any address, not just from a specific
522 /// stack slot.
Dan Gohmanc54baa22008-12-03 18:43:12 +0000523 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
524 MachineInstr* MI,
525 const SmallVectorImpl<unsigned> &Ops,
526 MachineInstr* LoadMI) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000527
528 /// canFoldMemoryOperand - Returns true if the specified load / store is
529 /// folding is possible.
Dan Gohman8e8b8a22008-10-16 01:49:15 +0000530 virtual bool canFoldMemoryOperand(const MachineInstr*,
531 const SmallVectorImpl<unsigned> &) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000532
533 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
534 /// a store or a load and a store into two or more instruction. If this is
535 /// possible, returns true as well as the new instructions by reference.
536 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
537 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
538 SmallVectorImpl<MachineInstr*> &NewMIs) const;
539
540 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
541 SmallVectorImpl<SDNode*> &NewNodes) const;
542
543 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
544 /// instruction after load / store are unfolded from an instruction of the
545 /// specified opcode. It returns zero if the specified unfolding is not
546 /// possible.
547 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
548 bool UnfoldLoad, bool UnfoldStore) const;
549
Dan Gohman8e8b8a22008-10-16 01:49:15 +0000550 virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
Owen Anderson44eb65c2008-08-14 22:49:33 +0000551 virtual
552 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
Chris Lattner41e431b2005-01-19 07:11:01 +0000553
Evan Cheng4350eb82009-02-06 17:17:30 +0000554 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
555 /// instruction that defines the specified register class.
556 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
Evan Cheng23066282008-10-27 07:14:50 +0000557
Chris Lattnerf21dfcd2002-11-18 06:56:24 +0000558 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
Duncan Sandsee465742007-08-29 19:01:20 +0000559 // specified machine instruction.
Chris Lattnerf21dfcd2002-11-18 06:56:24 +0000560 //
Chris Lattner749c6f62008-01-07 07:27:27 +0000561 unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
Evan Cheng19f2ffc2006-12-05 04:01:03 +0000562 return TID->TSFlags >> X86II::OpcodeShift;
Chris Lattner4d18d5c2003-08-03 21:56:22 +0000563 }
Chris Lattnercc8cd0c2008-01-07 02:48:55 +0000564 unsigned char getBaseOpcodeFor(unsigned Opcode) const {
Duncan Sandsee465742007-08-29 19:01:20 +0000565 return getBaseOpcodeFor(&get(Opcode));
566 }
Nicolas Geoffray52e724a2008-04-16 20:10:13 +0000567
568 static bool isX86_64NonExtLowByteReg(unsigned reg) {
569 return (reg == X86::SPL || reg == X86::BPL ||
570 reg == X86::SIL || reg == X86::DIL);
571 }
572
573 static unsigned sizeOfImm(const TargetInstrDesc *Desc);
Nicolas Geoffray52e724a2008-04-16 20:10:13 +0000574 static bool isX86_64ExtendedReg(const MachineOperand &MO);
575 static unsigned determineREX(const MachineInstr &MI);
576
577 /// GetInstSize - Returns the size of the specified MachineInstr.
578 ///
579 virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000580
Dan Gohman57c3dac2008-09-30 00:58:23 +0000581 /// getGlobalBaseReg - Return a virtual register initialized with the
582 /// the global base register value. Output instructions required to
583 /// initialize the register in the function entry block, if necessary.
Dan Gohman8b746962008-09-23 18:22:58 +0000584 ///
Dan Gohman57c3dac2008-09-30 00:58:23 +0000585 unsigned getGlobalBaseReg(MachineFunction *MF) const;
Dan Gohman8b746962008-09-23 18:22:58 +0000586
Owen Anderson43dbe052008-01-07 01:35:02 +0000587private:
Dan Gohmanc54baa22008-12-03 18:43:12 +0000588 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
589 MachineInstr* MI,
590 unsigned OpNum,
Dan Gohmand68a0762009-01-05 17:59:02 +0000591 const SmallVectorImpl<MachineOperand> &MOs) const;
Chris Lattner72614082002-10-25 22:55:53 +0000592};
593
Brian Gaeked0fde302003-11-11 22:41:34 +0000594} // End llvm namespace
595
Chris Lattner72614082002-10-25 22:55:53 +0000596#endif