blob: 80f56e1c22b9ea286748b59f5cf83778b6a4690c [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Daniel Dunbara8dfb792010-02-13 09:27:52 +000017#include "X86FixupKinds.h"
Chris Lattner45762472010-02-03 21:24:49 +000018#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000019#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000020#include "llvm/MC/MCInst.h"
21#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000022using namespace llvm;
23
24namespace {
25class X86MCCodeEmitter : public MCCodeEmitter {
26 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
27 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000028 const TargetMachine &TM;
29 const TargetInstrInfo &TII;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000030 MCContext &Ctx;
Chris Lattner1ac23b12010-02-05 02:18:40 +000031 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000032public:
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000033 X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
34 : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000035 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000036 }
37
38 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000039
40 unsigned getNumFixupKinds() const {
Chris Lattner0f53cf22010-03-18 18:10:56 +000041 return 4;
Daniel Dunbar73c55742010-02-09 22:59:55 +000042 }
43
Chris Lattner8d31de62010-02-11 21:27:18 +000044 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
45 const static MCFixupKindInfo Infos[] = {
Daniel Dunbarb36052f2010-03-19 10:43:23 +000046 { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
47 { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel },
48 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
49 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }
Daniel Dunbar73c55742010-02-09 22:59:55 +000050 };
Chris Lattner8d31de62010-02-11 21:27:18 +000051
52 if (Kind < FirstTargetFixupKind)
53 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000054
Chris Lattner8d31de62010-02-11 21:27:18 +000055 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000056 "Invalid kind!");
57 return Infos[Kind - FirstTargetFixupKind];
58 }
Chris Lattner45762472010-02-03 21:24:49 +000059
Chris Lattner28249d92010-02-05 01:53:19 +000060 static unsigned GetX86RegNum(const MCOperand &MO) {
61 return X86RegisterInfo::getX86RegNum(MO.getReg());
62 }
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000063
64 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
65 // 0-7 and the difference between the 2 groups is given by the REX prefix.
66 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
67 // in 1's complement form, example:
68 //
69 // ModRM field => XMM9 => 1
70 // VEX.VVVV => XMM9 => ~9
71 //
72 // See table 4-35 of Intel AVX Programming Reference for details.
73 static unsigned char getVEXRegisterEncoding(const MCInst &MI,
74 unsigned OpNum) {
75 unsigned SrcReg = MI.getOperand(OpNum).getReg();
76 unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
77 if (SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15)
78 SrcRegNum += 8;
79
80 // The registers represented through VEX_VVVV should
81 // be encoded in 1's complement form.
82 return (~SrcRegNum) & 0xf;
83 }
Chris Lattner28249d92010-02-05 01:53:19 +000084
Chris Lattner37ce80e2010-02-10 06:41:02 +000085 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000086 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000087 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000088 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000089
Chris Lattner37ce80e2010-02-10 06:41:02 +000090 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
91 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000092 // Output the constant in little endian byte order.
93 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000094 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000095 Val >>= 8;
96 }
97 }
Chris Lattner0e73c392010-02-05 06:16:07 +000098
Chris Lattnercf653392010-02-12 22:36:47 +000099 void EmitImmediate(const MCOperand &Disp,
100 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000101 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000102 SmallVectorImpl<MCFixup> &Fixups,
103 int ImmOffset = 0) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000104
105 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
106 unsigned RM) {
107 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
108 return RM | (RegOpcode << 3) | (Mod << 6);
109 }
110
111 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000112 unsigned &CurByte, raw_ostream &OS) const {
113 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000114 }
115
Chris Lattner0e73c392010-02-05 06:16:07 +0000116 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000117 unsigned &CurByte, raw_ostream &OS) const {
118 // SIB byte is in the same format as the ModRMByte.
119 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000120 }
121
122
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000123 void EmitSegmentOverridePrefix(const MCOperand &Op, unsigned TSFlags,
124 unsigned &CurByte, raw_ostream &OS) const;
125
Chris Lattner1ac23b12010-02-05 02:18:40 +0000126 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Chris Lattner1b670602010-02-11 06:49:52 +0000127 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000128 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000129 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000130
Daniel Dunbar73c55742010-02-09 22:59:55 +0000131 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
132 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000133
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000134 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
135 const MCInst &MI, const TargetInstrDesc &Desc,
136 raw_ostream &OS) const;
137
138 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
139 const MCInst &MI, const TargetInstrDesc &Desc,
140 raw_ostream &OS) const;
Chris Lattner45762472010-02-03 21:24:49 +0000141};
142
143} // end anonymous namespace
144
145
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000146MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000147 TargetMachine &TM,
148 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000149 return new X86MCCodeEmitter(TM, Ctx, false);
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000150}
151
152MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000153 TargetMachine &TM,
154 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000155 return new X86MCCodeEmitter(TM, Ctx, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000156}
157
Chris Lattner1ac23b12010-02-05 02:18:40 +0000158/// isDisp8 - Return true if this signed displacement fits in a 8-bit
159/// sign-extended field.
160static bool isDisp8(int Value) {
161 return Value == (signed char)Value;
162}
163
Chris Lattnercf653392010-02-12 22:36:47 +0000164/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
165/// in an instruction with the specified TSFlags.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000166static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
Chris Lattnercf653392010-02-12 22:36:47 +0000167 unsigned Size = X86II::getSizeOfImm(TSFlags);
168 bool isPCRel = X86II::isImmPCRel(TSFlags);
169
Chris Lattnercf653392010-02-12 22:36:47 +0000170 switch (Size) {
171 default: assert(0 && "Unknown immediate size");
172 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
173 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
174 case 2: assert(!isPCRel); return FK_Data_2;
175 case 8: assert(!isPCRel); return FK_Data_8;
176 }
177}
178
179
Chris Lattner0e73c392010-02-05 06:16:07 +0000180void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000181EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000182 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000183 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000184 // If this is a simple integer displacement that doesn't require a relocation,
185 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000186 if (DispOp.isImm()) {
Chris Lattnera08b5872010-02-16 05:03:17 +0000187 // FIXME: is this right for pc-rel encoding?? Probably need to emit this as
188 // a fixup if so.
Chris Lattner835acab2010-02-12 23:00:36 +0000189 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000190 return;
191 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000192
Chris Lattner835acab2010-02-12 23:00:36 +0000193 // If we have an immoffset, add it to the expression.
194 const MCExpr *Expr = DispOp.getExpr();
Chris Lattnera08b5872010-02-16 05:03:17 +0000195
196 // If the fixup is pc-relative, we need to bias the value to be relative to
197 // the start of the field, not the end of the field.
198 if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000199 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
200 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
Chris Lattnera08b5872010-02-16 05:03:17 +0000201 ImmOffset -= 4;
202 if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
203 ImmOffset -= 1;
204
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000205 if (ImmOffset)
Chris Lattnera08b5872010-02-16 05:03:17 +0000206 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000207 Ctx);
Chris Lattner835acab2010-02-12 23:00:36 +0000208
Chris Lattner5dccfad2010-02-10 06:52:12 +0000209 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000210 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000211 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000212}
213
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000214void X86MCCodeEmitter::EmitSegmentOverridePrefix(const MCOperand &Op,
215 unsigned TSFlags,
216 unsigned &CurByte,
217 raw_ostream &OS) const {
218 // If no segment register is present, we don't need anything.
219 if (Op.getReg() == 0)
220 return;
221
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000222 // Check if we need an override.
223 switch (Op.getReg()) {
224 case X86::CS: EmitByte(0x2E, CurByte, OS); return;
225 case X86::SS: EmitByte(0x36, CurByte, OS); return;
226 case X86::DS: EmitByte(0x3E, CurByte, OS); return;
227 case X86::ES: EmitByte(0x26, CurByte, OS); return;
228 case X86::FS: EmitByte(0x64, CurByte, OS); return;
229 case X86::GS: EmitByte(0x65, CurByte, OS); return;
230 }
231
232 assert(0 && "Invalid segment register!");
233}
Chris Lattner0e73c392010-02-05 06:16:07 +0000234
Chris Lattner1ac23b12010-02-05 02:18:40 +0000235void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
236 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000237 uint64_t TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000238 raw_ostream &OS,
239 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000240 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000241 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000242 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000243 const MCOperand &IndexReg = MI.getOperand(Op+2);
244 unsigned BaseReg = Base.getReg();
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000245
246 // Handle %rip relative addressing.
247 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Eric Christopher497f1eb2010-06-08 22:57:33 +0000248 assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode");
249 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000250 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattner835acab2010-02-12 23:00:36 +0000251
Chris Lattner0f53cf22010-03-18 18:10:56 +0000252 unsigned FixupKind = X86::reloc_riprel_4byte;
253
254 // movq loads are handled with a special relocation form which allows the
255 // linker to eliminate some loads for GOT references which end up in the
256 // same linkage unit.
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000257 if (MI.getOpcode() == X86::MOV64rm ||
258 MI.getOpcode() == X86::MOV64rm_TC)
Chris Lattner0f53cf22010-03-18 18:10:56 +0000259 FixupKind = X86::reloc_riprel_4byte_movq_load;
260
Chris Lattner835acab2010-02-12 23:00:36 +0000261 // rip-relative addressing is actually relative to the *next* instruction.
262 // Since an immediate can follow the mod/rm byte for an instruction, this
263 // means that we need to bias the immediate field of the instruction with
264 // the size of the immediate field. If we have this case, add it into the
265 // expression to emit.
266 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
Chris Lattnera08b5872010-02-16 05:03:17 +0000267
Chris Lattner0f53cf22010-03-18 18:10:56 +0000268 EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
Chris Lattner835acab2010-02-12 23:00:36 +0000269 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000270 return;
271 }
272
273 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Chris Lattnerecfb3c32010-02-11 08:45:56 +0000274
Chris Lattnera8168ec2010-02-09 21:57:34 +0000275 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000276 // If no BaseReg, issue a RIP relative instruction only if the MCE can
277 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
278 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000279
Chris Lattnera8168ec2010-02-09 21:57:34 +0000280 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000281 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000282 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
283 // encode to an R/M value of 4, which indicates that a SIB byte is
284 // present.
285 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000286 // If there is no base register and we're in 64-bit mode, we need a SIB
287 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
288 (!Is64BitMode || BaseReg != 0)) {
289
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000290 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000291 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000292 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000293 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000294 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000295
Chris Lattnera8168ec2010-02-09 21:57:34 +0000296 // If the base is not EBP/ESP and there is no displacement, use simple
297 // indirect register encoding, this handles addresses like [EAX]. The
298 // encoding for [EBP] with no displacement means [disp32] so we handle it
299 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000300 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000301 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000302 return;
303 }
304
305 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000306 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000307 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000308 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000309 return;
310 }
311
312 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000313 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000314 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000315 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000316 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000317
318 // We need a SIB byte, so start by outputting the ModR/M byte first
319 assert(IndexReg.getReg() != X86::ESP &&
320 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
321
322 bool ForceDisp32 = false;
323 bool ForceDisp8 = false;
324 if (BaseReg == 0) {
325 // If there is no base register, we emit the special case SIB byte with
326 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000327 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000328 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000329 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000330 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000331 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000332 ForceDisp32 = true;
Chris Lattner618d0ed2010-03-18 20:04:36 +0000333 } else if (Disp.getImm() == 0 &&
334 // Base reg can't be anything that ends up with '5' as the base
335 // reg, it is the magic [*] nomenclature that indicates no base.
336 BaseRegNo != N86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000337 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000338 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000339 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000340 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000341 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000342 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
343 } else {
344 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000345 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000346 }
347
348 // Calculate what the SS field value should be...
349 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
350 unsigned SS = SSTable[Scale.getImm()];
351
352 if (BaseReg == 0) {
353 // Handle the SIB byte for the case where there is no base, see Intel
354 // Manual 2A, table 2-7. The displacement has already been output.
355 unsigned IndexRegNo;
356 if (IndexReg.getReg())
357 IndexRegNo = GetX86RegNum(IndexReg);
358 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
359 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000360 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000361 } else {
362 unsigned IndexRegNo;
363 if (IndexReg.getReg())
364 IndexRegNo = GetX86RegNum(IndexReg);
365 else
366 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000367 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000368 }
369
370 // Do we need to output a displacement?
371 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000372 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000373 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnercf653392010-02-12 22:36:47 +0000374 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000375}
376
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000377/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
378/// called VEX.
379void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
380 const MCInst &MI, const TargetInstrDesc &Desc,
381 raw_ostream &OS) const {
382
383 // Pseudo instructions never have a VEX prefix.
384 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
385 return;
386
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000387 bool HasVEX_4V = false;
388 if ((TSFlags >> 32) & X86II::VEX_4V)
389 HasVEX_4V = true;
390
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000391 // VEX_R: opcode externsion equivalent to REX.R in
392 // 1's complement (inverted) form
393 //
394 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
395 // 0: Same as REX_R=1 (64 bit mode only)
396 //
397 unsigned char VEX_R = 0x1;
398
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000399 // VEX_X: equivalent to REX.X, only used when a
400 // register is used for index in SIB Byte.
401 //
402 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
403 // 0: Same as REX.X=1 (64-bit mode only)
404 unsigned char VEX_X = 0x1;
405
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000406 // VEX_B:
407 //
408 // 1: Same as REX_B=0 (ignored in 32-bit mode)
409 // 0: Same as REX_B=1 (64 bit mode only)
410 //
411 unsigned char VEX_B = 0x1;
412
413 // VEX_W: opcode specific (use like REX.W, or used for
414 // opcode extension, or ignored, depending on the opcode byte)
415 unsigned char VEX_W = 0;
416
417 // VEX_5M (VEX m-mmmmm field):
418 //
419 // 0b00000: Reserved for future use
420 // 0b00001: implied 0F leading opcode
421 // 0b00010: implied 0F 38 leading opcode bytes
422 // 0b00011: implied 0F 3A leading opcode bytes
423 // 0b00100-0b11111: Reserved for future use
424 //
425 unsigned char VEX_5M = 0x1;
426
427 // VEX_4V (VEX vvvv field): a register specifier
428 // (in 1's complement form) or 1111 if unused.
429 unsigned char VEX_4V = 0xf;
430
431 // VEX_L (Vector Length):
432 //
433 // 0: scalar or 128-bit vector
434 // 1: 256-bit vector
435 //
436 unsigned char VEX_L = 0;
437
438 // VEX_PP: opcode extension providing equivalent
439 // functionality of a SIMD prefix
440 //
441 // 0b00: None
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000442 // 0b01: 66
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000443 // 0b10: F3
444 // 0b11: F2
445 //
446 unsigned char VEX_PP = 0;
447
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000448 // Encode the operand size opcode prefix as needed.
449 if (TSFlags & X86II::OpSize)
450 VEX_PP = 0x01;
451
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000452 switch (TSFlags & X86II::Op0Mask) {
453 default: assert(0 && "Invalid prefix!");
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000454 case X86II::T8: // 0F 38
455 VEX_5M = 0x2;
456 break;
457 case X86II::TA: // 0F 3A
458 VEX_5M = 0x3;
459 break;
460 case X86II::TF: // F2 0F 38
461 VEX_PP = 0x3;
462 VEX_5M = 0x2;
463 break;
464 case X86II::XS: // F3 0F
465 VEX_PP = 0x2;
466 break;
467 case X86II::XD: // F2 0F
468 VEX_PP = 0x3;
469 break;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000470 case X86II::TB: // Bypass: Not used by VEX
471 case 0:
472 break; // No prefix!
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000473 }
474
475 unsigned NumOps = MI.getNumOperands();
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000476 unsigned CurOp = 0;
477
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000478 switch (TSFlags & X86II::FormMask) {
479 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000480 case X86II::MRM0m: case X86II::MRM1m:
481 case X86II::MRM2m: case X86II::MRM3m:
482 case X86II::MRM4m: case X86II::MRM5m:
483 case X86II::MRM6m: case X86II::MRM7m:
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000484 case X86II::MRMDestMem:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000485 NumOps = CurOp = X86AddrNumOperands;
486 case X86II::MRMSrcMem:
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000487 case X86II::MRMSrcReg:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000488 if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000489 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000490 VEX_R = 0x0;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000491
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000492 // CurOp and NumOps are equal when VEX_R represents a register used
493 // to index a memory destination (which is the last operand)
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000494 CurOp = (CurOp == NumOps) ? 0 : CurOp+1;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000495
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000496 if (HasVEX_4V) {
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000497 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000498 CurOp++;
499 }
500
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000501 for (; CurOp != NumOps; ++CurOp) {
502 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000503 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
504 VEX_B = 0x0;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000505 if (!VEX_B && MO.isReg() &&
506 ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000507 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
508 VEX_X = 0x0;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000509 }
510 break;
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000511 default: // MRM0r-MRM7r
512 if (HasVEX_4V)
513 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
514
515 CurOp++;
516 for (; CurOp != NumOps; ++CurOp) {
517 const MCOperand &MO = MI.getOperand(CurOp);
518 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
519 VEX_B = 0x0;
520 }
521 break;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000522 assert(0 && "Not implemented!");
523 }
524
525 // VEX opcode prefix can have 2 or 3 bytes
526 //
527 // 3 bytes:
528 // +-----+ +--------------+ +-------------------+
529 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
530 // +-----+ +--------------+ +-------------------+
531 // 2 bytes:
532 // +-----+ +-------------------+
533 // | C5h | | R | vvvv | L | pp |
534 // +-----+ +-------------------+
535 //
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000536 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
537
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000538 if (VEX_B && VEX_X) { // 2 byte VEX prefix
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000539 EmitByte(0xC5, CurByte, OS);
540 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
541 return;
542 }
543
544 // 3 byte VEX prefix
545 EmitByte(0xC4, CurByte, OS);
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000546 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_5M, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000547 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
548}
549
Chris Lattner39a612e2010-02-05 22:10:22 +0000550/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
551/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
552/// size, and 3) use of X86-64 extended registers.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000553static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
Chris Lattner39a612e2010-02-05 22:10:22 +0000554 const TargetInstrDesc &Desc) {
Chris Lattner1cea10a2010-02-13 19:16:53 +0000555 // Pseudo instructions never have a rex byte.
556 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
557 return 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000558
Chris Lattner7e851802010-02-11 22:39:10 +0000559 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000560 if (TSFlags & X86II::REX_W)
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000561 REX |= 1 << 3; // set REX.W
Chris Lattner39a612e2010-02-05 22:10:22 +0000562
563 if (MI.getNumOperands() == 0) return REX;
564
565 unsigned NumOps = MI.getNumOperands();
566 // FIXME: MCInst should explicitize the two-addrness.
567 bool isTwoAddr = NumOps > 1 &&
568 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
569
570 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
571 unsigned i = isTwoAddr ? 1 : 0;
572 for (; i != NumOps; ++i) {
573 const MCOperand &MO = MI.getOperand(i);
574 if (!MO.isReg()) continue;
575 unsigned Reg = MO.getReg();
576 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000577 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
578 // that returns non-zero.
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000579 REX |= 0x40; // REX fixed encoding prefix
Chris Lattner39a612e2010-02-05 22:10:22 +0000580 break;
581 }
582
583 switch (TSFlags & X86II::FormMask) {
584 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
585 case X86II::MRMSrcReg:
586 if (MI.getOperand(0).isReg() &&
587 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000588 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000589 i = isTwoAddr ? 2 : 1;
590 for (; i != NumOps; ++i) {
591 const MCOperand &MO = MI.getOperand(i);
592 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000593 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000594 }
595 break;
596 case X86II::MRMSrcMem: {
597 if (MI.getOperand(0).isReg() &&
598 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000599 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000600 unsigned Bit = 0;
601 i = isTwoAddr ? 2 : 1;
602 for (; i != NumOps; ++i) {
603 const MCOperand &MO = MI.getOperand(i);
604 if (MO.isReg()) {
605 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000606 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000607 Bit++;
608 }
609 }
610 break;
611 }
612 case X86II::MRM0m: case X86II::MRM1m:
613 case X86II::MRM2m: case X86II::MRM3m:
614 case X86II::MRM4m: case X86II::MRM5m:
615 case X86II::MRM6m: case X86II::MRM7m:
616 case X86II::MRMDestMem: {
617 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
618 i = isTwoAddr ? 1 : 0;
619 if (NumOps > e && MI.getOperand(e).isReg() &&
620 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000621 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000622 unsigned Bit = 0;
623 for (; i != e; ++i) {
624 const MCOperand &MO = MI.getOperand(i);
625 if (MO.isReg()) {
626 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000627 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000628 Bit++;
629 }
630 }
631 break;
632 }
633 default:
634 if (MI.getOperand(0).isReg() &&
635 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000636 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000637 i = isTwoAddr ? 2 : 1;
638 for (unsigned e = NumOps; i != e; ++i) {
639 const MCOperand &MO = MI.getOperand(i);
640 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000641 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000642 }
643 break;
644 }
645 return REX;
646}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000647
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000648/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
649void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
650 const MCInst &MI, const TargetInstrDesc &Desc,
651 raw_ostream &OS) const {
Chris Lattner1e80f402010-02-03 21:57:59 +0000652
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000653 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000654 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000655 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000656
657 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000658 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000659 default: assert(0 && "Invalid segment!");
660 case 0: break; // No segment override!
661 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000662 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000663 break;
664 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000665 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000666 break;
667 }
668
Chris Lattner1e80f402010-02-03 21:57:59 +0000669 // Emit the repeat opcode prefix as needed.
670 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000671 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000672
Chris Lattner1e80f402010-02-03 21:57:59 +0000673 // Emit the operand size opcode prefix as needed.
674 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000675 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000676
677 // Emit the address size opcode prefix as needed.
678 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000679 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000680
681 bool Need0FPrefix = false;
682 switch (TSFlags & X86II::Op0Mask) {
683 default: assert(0 && "Invalid prefix!");
684 case 0: break; // No prefix!
685 case X86II::REP: break; // already handled.
686 case X86II::TB: // Two-byte opcode prefix
687 case X86II::T8: // 0F 38
688 case X86II::TA: // 0F 3A
689 Need0FPrefix = true;
690 break;
691 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000692 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000693 Need0FPrefix = true;
694 break;
695 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000696 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000697 Need0FPrefix = true;
698 break;
699 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000700 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000701 Need0FPrefix = true;
702 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000703 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
704 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
705 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
706 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
707 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
708 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
709 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
710 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000711 }
712
713 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000714 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000715 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000716 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000717 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000718 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000719
720 // 0x0F escape code must be emitted just before the opcode.
721 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000722 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000723
724 // FIXME: Pull this up into previous switch if REX can be moved earlier.
725 switch (TSFlags & X86II::Op0Mask) {
726 case X86II::TF: // F2 0F 38
727 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000728 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000729 break;
730 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000731 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000732 break;
733 }
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000734}
735
736void X86MCCodeEmitter::
737EncodeInstruction(const MCInst &MI, raw_ostream &OS,
738 SmallVectorImpl<MCFixup> &Fixups) const {
739 unsigned Opcode = MI.getOpcode();
740 const TargetInstrDesc &Desc = TII.get(Opcode);
741 uint64_t TSFlags = Desc.TSFlags;
742
743 // Keep track of the current byte being emitted.
744 unsigned CurByte = 0;
745
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000746 // Is this instruction encoded using the AVX VEX prefix?
747 bool HasVEXPrefix = false;
748
749 // It uses the VEX.VVVV field?
750 bool HasVEX_4V = false;
751
752 if ((TSFlags >> 32) & X86II::VEX)
753 HasVEXPrefix = true;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000754 if ((TSFlags >> 32) & X86II::VEX_4V)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000755 HasVEX_4V = true;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000756
757 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
758 // in order to provide diffability.
759
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000760 if (!HasVEXPrefix)
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000761 EmitOpcodePrefix(TSFlags, CurByte, MI, Desc, OS);
762 else
763 EmitVEXOpcodePrefix(TSFlags, CurByte, MI, Desc, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000764
765 // If this is a two-address instruction, skip one of the register operands.
766 unsigned NumOps = Desc.getNumOperands();
767 unsigned CurOp = 0;
768 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
769 ++CurOp;
770 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
771 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
772 --NumOps;
773
Chris Lattner74a21512010-02-05 19:24:13 +0000774 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000775 unsigned SrcRegNum = 0;
Chris Lattner1e80f402010-02-03 21:57:59 +0000776 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000777 case X86II::MRMInitReg:
778 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000779 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000780 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner1cea10a2010-02-13 19:16:53 +0000781 case X86II::Pseudo: return; // Pseudo instructions encode to nothing.
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000782 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000783 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000784 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000785
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000786 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000787 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000788 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000789
790 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000791 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000792 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000793 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000794 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000795 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000796
797 case X86II::MRMDestMem:
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000798 EmitSegmentOverridePrefix(MI.getOperand(CurOp + 4), TSFlags, CurByte, OS);
Chris Lattner37ce80e2010-02-10 06:41:02 +0000799 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000800 EmitMemModRMByte(MI, CurOp,
801 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner835acab2010-02-12 23:00:36 +0000802 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000803 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000804 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000805
806 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000807 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000808 SrcRegNum = CurOp + 1;
809
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000810 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000811 SrcRegNum++;
812
813 EmitRegModRMByte(MI.getOperand(SrcRegNum),
814 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
815 CurOp = SrcRegNum + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000816 break;
817
818 case X86II::MRMSrcMem: {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000819 int AddrOperands = X86AddrNumOperands;
820 unsigned FirstMemOp = CurOp+1;
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000821 if (HasVEX_4V) {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000822 ++AddrOperands;
823 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
824 }
Chris Lattnerdaa45552010-02-05 19:04:37 +0000825
826 // FIXME: Maybe lea should have its own form? This is a horrible hack.
Chris Lattnerdaa45552010-02-05 19:04:37 +0000827 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
828 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000829 --AddrOperands; // No segment register
Chris Lattnerdaa45552010-02-05 19:04:37 +0000830 else
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000831 EmitSegmentOverridePrefix(MI.getOperand(FirstMemOp+4),
832 TSFlags, CurByte, OS);
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000833
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000834 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000835
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000836
837 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000838 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000839 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000840 break;
841 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000842
843 case X86II::MRM0r: case X86II::MRM1r:
844 case X86II::MRM2r: case X86II::MRM3r:
845 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000846 case X86II::MRM6r: case X86II::MRM7r:
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000847 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
848 CurOp++;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000849 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000850 EmitRegModRMByte(MI.getOperand(CurOp++),
851 (TSFlags & X86II::FormMask)-X86II::MRM0r,
852 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000853 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000854 case X86II::MRM0m: case X86II::MRM1m:
855 case X86II::MRM2m: case X86II::MRM3m:
856 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000857 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000858 EmitSegmentOverridePrefix(MI.getOperand(CurOp+4), TSFlags, CurByte, OS);
Chris Lattner37ce80e2010-02-10 06:41:02 +0000859 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000860 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000861 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000862 CurOp += X86AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000863 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000864 case X86II::MRM_C1:
865 EmitByte(BaseOpcode, CurByte, OS);
866 EmitByte(0xC1, CurByte, OS);
867 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000868 case X86II::MRM_C2:
869 EmitByte(BaseOpcode, CurByte, OS);
870 EmitByte(0xC2, CurByte, OS);
871 break;
872 case X86II::MRM_C3:
873 EmitByte(BaseOpcode, CurByte, OS);
874 EmitByte(0xC3, CurByte, OS);
875 break;
876 case X86II::MRM_C4:
877 EmitByte(BaseOpcode, CurByte, OS);
878 EmitByte(0xC4, CurByte, OS);
879 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000880 case X86II::MRM_C8:
881 EmitByte(BaseOpcode, CurByte, OS);
882 EmitByte(0xC8, CurByte, OS);
883 break;
884 case X86II::MRM_C9:
885 EmitByte(BaseOpcode, CurByte, OS);
886 EmitByte(0xC9, CurByte, OS);
887 break;
888 case X86II::MRM_E8:
889 EmitByte(BaseOpcode, CurByte, OS);
890 EmitByte(0xE8, CurByte, OS);
891 break;
892 case X86II::MRM_F0:
893 EmitByte(BaseOpcode, CurByte, OS);
894 EmitByte(0xF0, CurByte, OS);
895 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000896 case X86II::MRM_F8:
897 EmitByte(BaseOpcode, CurByte, OS);
898 EmitByte(0xF8, CurByte, OS);
899 break;
Chris Lattnerb7790332010-02-13 03:42:24 +0000900 case X86II::MRM_F9:
901 EmitByte(BaseOpcode, CurByte, OS);
902 EmitByte(0xF9, CurByte, OS);
903 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000904 }
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000905
906 // If there is a remaining operand, it must be a trailing immediate. Emit it
907 // according to the right size for the instruction.
908 if (CurOp != NumOps)
Chris Lattnercf653392010-02-12 22:36:47 +0000909 EmitImmediate(MI.getOperand(CurOp++),
910 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000911 CurByte, OS, Fixups);
Chris Lattner28249d92010-02-05 01:53:19 +0000912
913#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000914 // FIXME: Verify.
915 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000916 errs() << "Cannot encode all operands of: ";
917 MI.dump();
918 errs() << '\n';
919 abort();
920 }
921#endif
Chris Lattner45762472010-02-03 21:24:49 +0000922}