blob: 25db30dfe7131e776b1fcf3c23e50e822ee5add0 [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000020#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000028#include "Support/Debug.h"
29#include <vector>
Chris Lattner98599d02004-07-11 02:48:28 +000030#include <iostream>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000031using namespace llvm;
32
33namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000034 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
35 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000036 ///
37 enum TypeClass {
Misha Brukman7e898c32004-07-20 00:41:46 +000038 cByte, cShort, cInt, cFP32, cFP64, cLong
Misha Brukman5dfe3a92004-06-21 16:55:25 +000039 };
40}
41
42/// getClass - Turn a primitive type into a "class" number which is based on the
43/// size of the type, and whether or not it is floating point.
44///
45static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000046 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000047 case Type::SByteTyID:
48 case Type::UByteTyID: return cByte; // Byte operands are class #0
49 case Type::ShortTyID:
50 case Type::UShortTyID: return cShort; // Short operands are class #1
51 case Type::IntTyID:
52 case Type::UIntTyID:
Misha Brukman2834a4d2004-07-07 20:07:22 +000053 case Type::PointerTyID: return cInt; // Ints and pointers are class #2
Misha Brukman5dfe3a92004-06-21 16:55:25 +000054
Misha Brukman7e898c32004-07-20 00:41:46 +000055 case Type::FloatTyID: return cFP32; // Single float is #3
56 case Type::DoubleTyID: return cFP64; // Double Point is #4
Misha Brukman5dfe3a92004-06-21 16:55:25 +000057
58 case Type::LongTyID:
Misha Brukman7e898c32004-07-20 00:41:46 +000059 case Type::ULongTyID: return cLong; // Longs are class #5
Misha Brukman5dfe3a92004-06-21 16:55:25 +000060 default:
61 assert(0 && "Invalid type to getClass!");
62 return cByte; // not reached
63 }
64}
65
66// getClassB - Just like getClass, but treat boolean values as ints.
67static inline TypeClass getClassB(const Type *Ty) {
68 if (Ty == Type::BoolTy) return cInt;
69 return getClass(Ty);
70}
71
72namespace {
73 struct ISel : public FunctionPass, InstVisitor<ISel> {
74 TargetMachine &TM;
75 MachineFunction *F; // The function we are compiling into
76 MachineBasicBlock *BB; // The current MBB we are compiling
77 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Misha Brukman5dfe3a92004-06-21 16:55:25 +000078
Misha Brukman313efcb2004-07-09 15:45:07 +000079 std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
Misha Brukman5dfe3a92004-06-21 16:55:25 +000080
Misha Brukman2834a4d2004-07-07 20:07:22 +000081 // External functions used in the Module
Misha Brukman7e898c32004-07-20 00:41:46 +000082 Function *fmodfFn, *fmodFn, *__moddi3Fn, *__divdi3Fn, *__umoddi3Fn,
83 *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__floatdisfFn, *__floatdidfFn,
84 *mallocFn, *freeFn;
Misha Brukman2834a4d2004-07-07 20:07:22 +000085
Misha Brukman5dfe3a92004-06-21 16:55:25 +000086 // MBBMap - Mapping between LLVM BB -> Machine BB
87 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
88
89 // AllocaMap - Mapping from fixed sized alloca instructions to the
90 // FrameIndex for the alloca.
91 std::map<AllocaInst*, unsigned> AllocaMap;
92
93 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
94
Misha Brukman2834a4d2004-07-07 20:07:22 +000095 bool doInitialization(Module &M) {
Misha Brukmanb0932592004-07-07 15:36:18 +000096 // Add external functions that we may call
Misha Brukman2834a4d2004-07-07 20:07:22 +000097 Type *d = Type::DoubleTy;
Misha Brukmanf3f63822004-07-08 19:41:16 +000098 Type *f = Type::FloatTy;
Misha Brukman2834a4d2004-07-07 20:07:22 +000099 Type *l = Type::LongTy;
100 Type *ul = Type::ULongTy;
Misha Brukman313efcb2004-07-09 15:45:07 +0000101 Type *voidPtr = PointerType::get(Type::SByteTy);
Misha Brukman7e898c32004-07-20 00:41:46 +0000102 // float fmodf(float, float);
103 fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000104 // double fmod(double, double);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000105 fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000106 // long __moddi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000107 __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000108 // long __divdi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000109 __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000110 // unsigned long __umoddi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000111 __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000112 // unsigned long __udivdi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000113 __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
Misha Brukman7e898c32004-07-20 00:41:46 +0000114 // long __fixsfdi(float)
115 __fixdfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
Misha Brukmanf3f63822004-07-08 19:41:16 +0000116 // long __fixdfdi(double)
117 __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
118 // float __floatdisf(long)
119 __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
120 // double __floatdidf(long)
121 __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
Misha Brukman313efcb2004-07-09 15:45:07 +0000122 // void* malloc(size_t)
123 mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
124 // void free(void*)
125 freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000126 return false;
127 }
Misha Brukmand18a31d2004-07-06 22:51:53 +0000128
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000129 /// runOnFunction - Top level implementation of instruction selection for
130 /// the entire function.
131 ///
132 bool runOnFunction(Function &Fn) {
133 // First pass over the function, lower any unknown intrinsic functions
134 // with the IntrinsicLowering class.
135 LowerUnknownIntrinsicFunctionCalls(Fn);
136
137 F = &MachineFunction::construct(&Fn, TM);
138
139 // Create all of the machine basic blocks for the function...
140 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
141 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
142
143 BB = &F->front();
144
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000145 // Copy incoming arguments off of the stack...
146 LoadArgumentsToVirtualRegs(Fn);
147
148 // Instruction select everything except PHI nodes
149 visit(Fn);
150
151 // Select the PHI nodes
152 SelectPHINodes();
153
154 RegMap.clear();
155 MBBMap.clear();
156 AllocaMap.clear();
157 F = 0;
158 // We always build a machine code representation for the function
159 return true;
160 }
161
162 virtual const char *getPassName() const {
163 return "PowerPC Simple Instruction Selection";
164 }
165
166 /// visitBasicBlock - This method is called when we are visiting a new basic
167 /// block. This simply creates a new MachineBasicBlock to emit code into
168 /// and adds it to the current MachineFunction. Subsequent visit* for
169 /// instructions will be invoked for all instructions in the basic block.
170 ///
171 void visitBasicBlock(BasicBlock &LLVM_BB) {
172 BB = MBBMap[&LLVM_BB];
173 }
174
175 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
176 /// function, lowering any calls to unknown intrinsic functions into the
177 /// equivalent LLVM code.
178 ///
179 void LowerUnknownIntrinsicFunctionCalls(Function &F);
180
181 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
182 /// from the stack into virtual registers.
183 ///
184 void LoadArgumentsToVirtualRegs(Function &F);
185
186 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
187 /// because we have to generate our sources into the source basic blocks,
188 /// not the current one.
189 ///
190 void SelectPHINodes();
191
192 // Visitation methods for various instructions. These methods simply emit
193 // fixed PowerPC code for each instruction.
194
195 // Control flow operators
196 void visitReturnInst(ReturnInst &RI);
197 void visitBranchInst(BranchInst &BI);
198
199 struct ValueRecord {
200 Value *Val;
201 unsigned Reg;
202 const Type *Ty;
203 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
204 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
205 };
206 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +0000207 const std::vector<ValueRecord> &Args, bool isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000208 void visitCallInst(CallInst &I);
209 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
210
211 // Arithmetic operators
212 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
213 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
214 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
215 void visitMul(BinaryOperator &B);
216
217 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
218 void visitRem(BinaryOperator &B) { visitDivRem(B); }
219 void visitDivRem(BinaryOperator &B);
220
221 // Bitwise operators
222 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
223 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
224 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
225
226 // Comparison operators...
227 void visitSetCondInst(SetCondInst &I);
228 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
229 MachineBasicBlock *MBB,
230 MachineBasicBlock::iterator MBBI);
231 void visitSelectInst(SelectInst &SI);
232
233
234 // Memory Instructions
235 void visitLoadInst(LoadInst &I);
236 void visitStoreInst(StoreInst &I);
237 void visitGetElementPtrInst(GetElementPtrInst &I);
238 void visitAllocaInst(AllocaInst &I);
239 void visitMallocInst(MallocInst &I);
240 void visitFreeInst(FreeInst &I);
241
242 // Other operators
243 void visitShiftInst(ShiftInst &I);
244 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
245 void visitCastInst(CastInst &I);
246 void visitVANextInst(VANextInst &I);
247 void visitVAArgInst(VAArgInst &I);
248
249 void visitInstruction(Instruction &I) {
250 std::cerr << "Cannot instruction select: " << I;
251 abort();
252 }
253
254 /// promote32 - Make a value 32-bits wide, and put it somewhere.
255 ///
256 void promote32(unsigned targetReg, const ValueRecord &VR);
257
258 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
259 /// constant expression GEP support.
260 ///
261 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
262 Value *Src, User::op_iterator IdxBegin,
263 User::op_iterator IdxEnd, unsigned TargetReg);
264
265 /// emitCastOperation - Common code shared between visitCastInst and
266 /// constant expression cast support.
267 ///
268 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
269 Value *Src, const Type *DestTy, unsigned TargetReg);
270
271 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
272 /// and constant expression support.
273 ///
274 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
275 MachineBasicBlock::iterator IP,
276 Value *Op0, Value *Op1,
277 unsigned OperatorClass, unsigned TargetReg);
278
279 /// emitBinaryFPOperation - This method handles emission of floating point
280 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
281 void emitBinaryFPOperation(MachineBasicBlock *BB,
282 MachineBasicBlock::iterator IP,
283 Value *Op0, Value *Op1,
284 unsigned OperatorClass, unsigned TargetReg);
285
286 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
287 Value *Op0, Value *Op1, unsigned TargetReg);
288
Misha Brukman1013ef52004-07-21 20:09:08 +0000289 void doMultiply(MachineBasicBlock *MBB,
290 MachineBasicBlock::iterator IP,
291 unsigned DestReg, Value *Op0, Value *Op1);
292
293 /// doMultiplyConst - This method will multiply the value in Op0Reg by the
294 /// value of the ContantInt *CI
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000295 void doMultiplyConst(MachineBasicBlock *MBB,
Misha Brukman1013ef52004-07-21 20:09:08 +0000296 MachineBasicBlock::iterator IP,
297 unsigned DestReg, Value *Op0, ConstantInt *CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000298
299 void emitDivRemOperation(MachineBasicBlock *BB,
300 MachineBasicBlock::iterator IP,
301 Value *Op0, Value *Op1, bool isDiv,
302 unsigned TargetReg);
303
304 /// emitSetCCOperation - Common code shared between visitSetCondInst and
305 /// constant expression support.
306 ///
307 void emitSetCCOperation(MachineBasicBlock *BB,
308 MachineBasicBlock::iterator IP,
309 Value *Op0, Value *Op1, unsigned Opcode,
310 unsigned TargetReg);
311
312 /// emitShiftOperation - Common code shared between visitShiftInst and
313 /// constant expression support.
314 ///
315 void emitShiftOperation(MachineBasicBlock *MBB,
316 MachineBasicBlock::iterator IP,
317 Value *Op, Value *ShiftAmount, bool isLeftShift,
318 const Type *ResultTy, unsigned DestReg);
319
320 /// emitSelectOperation - Common code shared between visitSelectInst and the
321 /// constant expression support.
322 void emitSelectOperation(MachineBasicBlock *MBB,
323 MachineBasicBlock::iterator IP,
324 Value *Cond, Value *TrueVal, Value *FalseVal,
325 unsigned DestReg);
326
327 /// copyConstantToRegister - Output the instructions required to put the
328 /// specified constant into the specified register.
329 ///
330 void copyConstantToRegister(MachineBasicBlock *MBB,
331 MachineBasicBlock::iterator MBBI,
332 Constant *C, unsigned Reg);
333
334 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
335 unsigned LHS, unsigned RHS);
336
337 /// makeAnotherReg - This method returns the next register number we haven't
338 /// yet used.
339 ///
340 /// Long values are handled somewhat specially. They are always allocated
341 /// as pairs of 32 bit integer values. The register number returned is the
Misha Brukman1013ef52004-07-21 20:09:08 +0000342 /// high 32 bits of the long value, and the regNum+1 is the low 32 bits.
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000343 ///
344 unsigned makeAnotherReg(const Type *Ty) {
345 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
346 "Current target doesn't have PPC reg info??");
347 const PowerPCRegisterInfo *MRI =
348 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
349 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
350 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
351 // Create the lower part
352 F->getSSARegMap()->createVirtualRegister(RC);
353 // Create the upper part.
354 return F->getSSARegMap()->createVirtualRegister(RC)-1;
355 }
356
357 // Add the mapping of regnumber => reg class to MachineFunction
358 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
359 return F->getSSARegMap()->createVirtualRegister(RC);
360 }
361
362 /// getReg - This method turns an LLVM value into a register number.
363 ///
364 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
365 unsigned getReg(Value *V) {
366 // Just append to the end of the current bb.
367 MachineBasicBlock::iterator It = BB->end();
368 return getReg(V, BB, It);
369 }
370 unsigned getReg(Value *V, MachineBasicBlock *MBB,
371 MachineBasicBlock::iterator IPt);
Misha Brukman1013ef52004-07-21 20:09:08 +0000372
373 /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
374 /// is okay to use as an immediate argument to a certain binary operation
375 bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000376
377 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
378 /// that is to be statically allocated with the initial stack frame
379 /// adjustment.
380 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
381 };
382}
383
384/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
385/// instruction in the entry block, return it. Otherwise, return a null
386/// pointer.
387static AllocaInst *dyn_castFixedAlloca(Value *V) {
388 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
389 BasicBlock *BB = AI->getParent();
390 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
391 return AI;
392 }
393 return 0;
394}
395
396/// getReg - This method turns an LLVM value into a register number.
397///
398unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
399 MachineBasicBlock::iterator IPt) {
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000400 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattnera51e4f62004-07-18 18:45:01 +0000401 unsigned Reg = makeAnotherReg(V->getType());
402 copyConstantToRegister(MBB, IPt, C, Reg);
403 return Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000404 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
405 // Do not emit noop casts at all.
406 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
407 return getReg(CI->getOperand(0), MBB, IPt);
408 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
409 unsigned Reg = makeAnotherReg(V->getType());
410 unsigned FI = getFixedSizedAllocaFI(AI);
411 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
412 return Reg;
413 }
414
415 unsigned &Reg = RegMap[V];
416 if (Reg == 0) {
417 Reg = makeAnotherReg(V->getType());
418 RegMap[V] = Reg;
419 }
420
421 return Reg;
422}
423
Misha Brukman1013ef52004-07-21 20:09:08 +0000424/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
425/// is okay to use as an immediate argument to a certain binary operator.
426///
427/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
428bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator)
429{
430 ConstantSInt *Op1Cs;
431 ConstantUInt *Op1Cu;
432
433 // ADDI, Compare, and non-indexed Load take SIMM
Misha Brukman17a90002004-07-21 20:22:06 +0000434 bool cond1 = (Operator == 0)
435 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
Misha Brukman1013ef52004-07-21 20:09:08 +0000436 && (Op1Cs->getValue() <= 32767)
Misha Brukman17a90002004-07-21 20:22:06 +0000437 && (Op1Cs->getValue() >= -32768);
Misha Brukman1013ef52004-07-21 20:09:08 +0000438
439 // SUBI takes -SIMM since it is a mnemonic for ADDI
Misha Brukman17a90002004-07-21 20:22:06 +0000440 bool cond2 = (Operator == 1)
441 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
Misha Brukman1013ef52004-07-21 20:09:08 +0000442 && (Op1Cs->getValue() <= 32768)
Misha Brukman17a90002004-07-21 20:22:06 +0000443 && (Op1Cs->getValue() >= -32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000444
445 // ANDIo, ORI, and XORI take unsigned values
Misha Brukman17a90002004-07-21 20:22:06 +0000446 bool cond3 = (Operator >= 2)
447 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
448 && (Op1Cs->getValue() <= 32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000449
450 // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
Misha Brukman17a90002004-07-21 20:22:06 +0000451 bool cond4 = (Operator < 2)
452 && (Op1Cu = dyn_cast<ConstantUInt>(CI))
453 && (Op1Cu->getValue() <= 32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000454
455 // ANDIo, ORI, and XORI take UIMMs, so they can be larger
Misha Brukman17a90002004-07-21 20:22:06 +0000456 bool cond5 = (Operator >= 2)
457 && (Op1Cu = dyn_cast<ConstantUInt>(CI))
458 && (Op1Cu->getValue() <= 65535);
Misha Brukman1013ef52004-07-21 20:09:08 +0000459
460 if (cond1 || cond2 || cond3 || cond4 || cond5)
461 return true;
462
463 return false;
464}
465
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000466/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
467/// that is to be statically allocated with the initial stack frame
468/// adjustment.
469unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
470 // Already computed this?
471 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
472 if (I != AllocaMap.end() && I->first == AI) return I->second;
473
474 const Type *Ty = AI->getAllocatedType();
475 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
476 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
477 TySize *= CUI->getValue(); // Get total allocated size...
478 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
479
480 // Create a new stack object using the frame manager...
481 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
482 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
483 return FrameIdx;
484}
485
486
487/// copyConstantToRegister - Output the instructions required to put the
488/// specified constant into the specified register.
489///
490void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
491 MachineBasicBlock::iterator IP,
492 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000493 if (C->getType()->isIntegral()) {
494 unsigned Class = getClassB(C->getType());
495
496 if (Class == cLong) {
497 // Copy the value into the register pair.
498 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman7e898c32004-07-20 00:41:46 +0000499
500 if (Val < (1ULL << 16)) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000501 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
502 BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addSImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000503 } else if (Val < (1ULL << 32)) {
504 unsigned Temp = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +0000505 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
506 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm((Val >> 16) & 0xFFFF);
507 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(Temp).addImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000508 } else if (Val < (1ULL << 48)) {
509 unsigned Temp = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +0000510 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm((Val >> 32) & 0xFFFF);
511 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm((Val >> 16) & 0xFFFF);
512 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(Temp).addImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000513 } else {
514 unsigned TempLo = makeAnotherReg(Type::IntTy);
515 unsigned TempHi = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +0000516 BuildMI(*MBB, IP, PPC32::LIS, 1, TempHi).addSImm((Val >> 48) & 0xFFFF);
517 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TempHi)
Misha Brukman7e898c32004-07-20 00:41:46 +0000518 .addImm((Val >> 32) & 0xFFFF);
Misha Brukman1013ef52004-07-21 20:09:08 +0000519 BuildMI(*MBB, IP, PPC32::LIS, 1, TempLo).addSImm((Val >> 16) & 0xFFFF);
520 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(TempLo)
521 .addImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000522 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000523 return;
524 }
525
526 assert(Class <= cInt && "Type not handled yet!");
527
528 if (C->getType() == Type::BoolTy) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000529 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000530 } else if (Class == cByte || Class == cShort) {
531 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukman1013ef52004-07-21 20:09:08 +0000532 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000533 } else {
534 ConstantInt *CI = cast<ConstantInt>(C);
535 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
536 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000537 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000538 } else {
539 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +0000540 BuildMI(*MBB, IP, PPC32::LIS, 1, TmpReg)
Misha Brukman1013ef52004-07-21 20:09:08 +0000541 .addSImm(CI->getRawValue() >> 16);
Misha Brukman911afde2004-06-25 14:50:41 +0000542 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
543 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000544 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000545 }
546 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000547 // We need to spill the constant to memory...
548 MachineConstantPool *CP = F->getConstantPool();
549 unsigned CPI = CP->getConstantPoolIndex(CFP);
550 const Type *Ty = CFP->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000551
Misha Brukmand18a31d2004-07-06 22:51:53 +0000552 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukmanfc879c32004-07-08 18:02:38 +0000553
554 // Load addr of constant to reg; constant is located at PC + distance
555 unsigned CurPC = makeAnotherReg(Type::IntTy);
556 unsigned Reg1 = makeAnotherReg(Type::IntTy);
557 unsigned Reg2 = makeAnotherReg(Type::IntTy);
558 // Move PC to destination reg
559 BuildMI(*MBB, IP, PPC32::MovePCtoLR, 0, CurPC);
560 // Move value at PC + distance into return reg
561 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
562 .addConstantPoolIndex(CPI);
Misha Brukmanec6319a2004-07-20 15:51:37 +0000563 BuildMI(*MBB, IP, PPC32::LOADLoDirect, 2, Reg2).addReg(Reg1)
Misha Brukmanfc879c32004-07-08 18:02:38 +0000564 .addConstantPoolIndex(CPI);
565
Misha Brukmand18a31d2004-07-06 22:51:53 +0000566 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukman1013ef52004-07-21 20:09:08 +0000567 BuildMI(*MBB, IP, LoadOpcode, 2, R).addSImm(0).addReg(Reg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000568 } else if (isa<ConstantPointerNull>(C)) {
569 // Copy zero (null pointer) to the register.
Misha Brukman1013ef52004-07-21 20:09:08 +0000570 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
Chris Lattner67910e12004-07-18 07:29:35 +0000571 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000572 // GV is located at PC + distance
573 unsigned CurPC = makeAnotherReg(Type::IntTy);
574 unsigned TmpReg = makeAnotherReg(GV->getType());
Misha Brukmanbf417a62004-07-20 20:43:05 +0000575 unsigned Opcode = (GV->hasWeakLinkage() || GV->isExternal()) ?
576 PPC32::LOADLoIndirect : PPC32::LOADLoDirect;
Misha Brukmanec6319a2004-07-20 15:51:37 +0000577
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000578 // Move PC to destination reg
579 BuildMI(*MBB, IP, PPC32::MovePCtoLR, 0, CurPC);
580 // Move value at PC + distance into return reg
581 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, TmpReg).addReg(CurPC)
582 .addGlobalAddress(GV);
Misha Brukmanec6319a2004-07-20 15:51:37 +0000583 BuildMI(*MBB, IP, Opcode, 2, R).addReg(TmpReg).addGlobalAddress(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000584 } else {
Chris Lattner76e2df22004-07-15 02:14:30 +0000585 std::cerr << "Offending constant: " << *C << "\n";
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000586 assert(0 && "Type not handled yet!");
587 }
588}
589
590/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
591/// the stack into virtual registers.
592///
593/// FIXME: When we can calculate which args are coming in via registers
594/// source them from there instead.
595void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000596 unsigned ArgOffset = 20; // FIXME why is this not 24?
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000597 unsigned GPR_remaining = 8;
598 unsigned FPR_remaining = 13;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000599 unsigned GPR_idx = 0, FPR_idx = 0;
600 static const unsigned GPR[] = {
601 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
602 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
603 };
604 static const unsigned FPR[] = {
Misha Brukman32caa8d2004-07-14 17:57:04 +0000605 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7,
Misha Brukman2834a4d2004-07-07 20:07:22 +0000606 PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13
Misha Brukmand18a31d2004-07-06 22:51:53 +0000607 };
Misha Brukman422791f2004-06-21 17:41:12 +0000608
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000609 MachineFrameInfo *MFI = F->getFrameInfo();
Misha Brukmand18a31d2004-07-06 22:51:53 +0000610
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000611 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
612 bool ArgLive = !I->use_empty();
613 unsigned Reg = ArgLive ? getReg(*I) : 0;
614 int FI; // Frame object index
615
616 switch (getClassB(I->getType())) {
617 case cByte:
618 if (ArgLive) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000619 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000620 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000621 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000622 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
623 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000624 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000625 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000626 }
627 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000628 break;
629 case cShort:
630 if (ArgLive) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000631 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000632 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000633 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000634 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
635 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000636 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000637 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000638 }
639 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000640 break;
641 case cInt:
642 if (ArgLive) {
643 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000644 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000645 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000646 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
647 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000648 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000649 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000650 }
651 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000652 break;
653 case cLong:
654 if (ArgLive) {
655 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000656 if (GPR_remaining > 1) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000657 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
658 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
Misha Brukman313efcb2004-07-09 15:45:07 +0000659 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
660 .addReg(GPR[GPR_idx]);
661 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
662 .addReg(GPR[GPR_idx+1]);
Misha Brukman422791f2004-06-21 17:41:12 +0000663 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +0000664 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
665 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
Misha Brukman422791f2004-06-21 17:41:12 +0000666 }
667 }
Misha Brukman1013ef52004-07-21 20:09:08 +0000668 // longs require 4 additional bytes and use 2 GPRs
669 ArgOffset += 4;
Misha Brukman422791f2004-06-21 17:41:12 +0000670 if (GPR_remaining > 1) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000671 GPR_remaining--;
Misha Brukman422791f2004-06-21 17:41:12 +0000672 GPR_idx++;
673 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000674 break;
Misha Brukman7e898c32004-07-20 00:41:46 +0000675 case cFP32:
676 if (ArgLive) {
677 FI = MFI->CreateFixedObject(4, ArgOffset);
678
Misha Brukman422791f2004-06-21 17:41:12 +0000679 if (FPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000680 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000681 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
682 FPR_remaining--;
683 FPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000684 } else {
Misha Brukman7e898c32004-07-20 00:41:46 +0000685 addFrameReference(BuildMI(BB, PPC32::LFS, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000686 }
687 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000688 break;
689 case cFP64:
690 if (ArgLive) {
691 FI = MFI->CreateFixedObject(8, ArgOffset);
692
693 if (FPR_remaining > 0) {
694 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
695 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
696 FPR_remaining--;
697 FPR_idx++;
698 } else {
699 addFrameReference(BuildMI(BB, PPC32::LFD, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000700 }
701 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000702
703 // doubles require 4 additional bytes and use 2 GPRs of param space
704 ArgOffset += 4;
705 if (GPR_remaining > 0) {
706 GPR_remaining--;
707 GPR_idx++;
708 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000709 break;
710 default:
711 assert(0 && "Unhandled argument type!");
712 }
713 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000714 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000715 GPR_remaining--; // uses up 2 GPRs
716 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000717 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000718 }
719
720 // If the function takes variable number of arguments, add a frame offset for
721 // the start of the first vararg value... this is used to expand
722 // llvm.va_start.
723 if (Fn.getFunctionType()->isVarArg())
724 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
725}
726
727
728/// SelectPHINodes - Insert machine code to generate phis. This is tricky
729/// because we have to generate our sources into the source basic blocks, not
730/// the current one.
731///
732void ISel::SelectPHINodes() {
733 const TargetInstrInfo &TII = *TM.getInstrInfo();
734 const Function &LF = *F->getFunction(); // The LLVM function...
735 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
736 const BasicBlock *BB = I;
737 MachineBasicBlock &MBB = *MBBMap[I];
738
739 // Loop over all of the PHI nodes in the LLVM basic block...
740 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
741 for (BasicBlock::const_iterator I = BB->begin();
742 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
743
744 // Create a new machine instr PHI node, and insert it.
745 unsigned PHIReg = getReg(*PN);
746 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
747 PPC32::PHI, PN->getNumOperands(), PHIReg);
748
749 MachineInstr *LongPhiMI = 0;
750 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
751 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
752 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
753
754 // PHIValues - Map of blocks to incoming virtual registers. We use this
755 // so that we only initialize one incoming value for a particular block,
756 // even if the block has multiple entries in the PHI node.
757 //
758 std::map<MachineBasicBlock*, unsigned> PHIValues;
759
760 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Misha Brukman313efcb2004-07-09 15:45:07 +0000761 MachineBasicBlock *PredMBB = 0;
762 for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
763 PE = MBB.pred_end (); PI != PE; ++PI)
764 if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
765 PredMBB = *PI;
766 break;
767 }
768 assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
769
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000770 unsigned ValReg;
771 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
772 PHIValues.lower_bound(PredMBB);
773
774 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
775 // We already inserted an initialization of the register for this
776 // predecessor. Recycle it.
777 ValReg = EntryIt->second;
778
779 } else {
780 // Get the incoming value into a virtual register.
781 //
782 Value *Val = PN->getIncomingValue(i);
783
784 // If this is a constant or GlobalValue, we may have to insert code
785 // into the basic block to compute it into a virtual register.
786 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
787 isa<GlobalValue>(Val)) {
788 // Simple constants get emitted at the end of the basic block,
789 // before any terminator instructions. We "know" that the code to
790 // move a constant into a register will never clobber any flags.
791 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
792 } else {
793 // Because we don't want to clobber any values which might be in
794 // physical registers with the computation of this constant (which
795 // might be arbitrarily complex if it is a constant expression),
796 // just insert the computation at the top of the basic block.
797 MachineBasicBlock::iterator PI = PredMBB->begin();
798
799 // Skip over any PHI nodes though!
800 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
801 ++PI;
802
803 ValReg = getReg(Val, PredMBB, PI);
804 }
805
806 // Remember that we inserted a value for this PHI for this predecessor
807 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
808 }
809
810 PhiMI->addRegOperand(ValReg);
811 PhiMI->addMachineBasicBlockOperand(PredMBB);
812 if (LongPhiMI) {
813 LongPhiMI->addRegOperand(ValReg+1);
814 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
815 }
816 }
817
818 // Now that we emitted all of the incoming values for the PHI node, make
819 // sure to reposition the InsertPoint after the PHI that we just added.
820 // This is needed because we might have inserted a constant into this
821 // block, right after the PHI's which is before the old insert point!
822 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
823 ++PHIInsertPoint;
824 }
825 }
826}
827
828
829// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
830// it into the conditional branch or select instruction which is the only user
831// of the cc instruction. This is the case if the conditional branch is the
832// only user of the setcc, and if the setcc is in the same basic block as the
Misha Brukman1013ef52004-07-21 20:09:08 +0000833// conditional branch.
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000834//
835static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
836 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
837 if (SCI->hasOneUse()) {
838 Instruction *User = cast<Instruction>(SCI->use_back());
839 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
Misha Brukmanbebde752004-07-16 21:06:24 +0000840 SCI->getParent() == User->getParent())
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000841 return SCI;
842 }
843 return 0;
844}
845
846// Return a fixed numbering for setcc instructions which does not depend on the
847// order of the opcodes.
848//
849static unsigned getSetCCNumber(unsigned Opcode) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000850 switch (Opcode) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000851 default: assert(0 && "Unknown setcc instruction!");
852 case Instruction::SetEQ: return 0;
853 case Instruction::SetNE: return 1;
854 case Instruction::SetLT: return 2;
855 case Instruction::SetGE: return 3;
856 case Instruction::SetGT: return 4;
857 case Instruction::SetLE: return 5;
858 }
859}
860
Misha Brukmane9c65512004-07-06 15:32:44 +0000861static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
862 switch (Opcode) {
863 default: assert(0 && "Unknown setcc instruction!");
864 case Instruction::SetEQ: return PPC32::BEQ;
865 case Instruction::SetNE: return PPC32::BNE;
866 case Instruction::SetLT: return PPC32::BLT;
867 case Instruction::SetGE: return PPC32::BGE;
868 case Instruction::SetGT: return PPC32::BGT;
869 case Instruction::SetLE: return PPC32::BLE;
870 }
871}
872
873static unsigned invertPPCBranchOpcode(unsigned Opcode) {
874 switch (Opcode) {
875 default: assert(0 && "Unknown PPC32 branch opcode!");
876 case PPC32::BEQ: return PPC32::BNE;
877 case PPC32::BNE: return PPC32::BEQ;
878 case PPC32::BLT: return PPC32::BGE;
879 case PPC32::BGE: return PPC32::BLT;
880 case PPC32::BGT: return PPC32::BLE;
881 case PPC32::BLE: return PPC32::BGT;
882 }
883}
884
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000885/// emitUCOM - emits an unordered FP compare.
886void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
887 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000888 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000889}
890
Misha Brukmanbebde752004-07-16 21:06:24 +0000891/// EmitComparison - emits a comparison of the two operands, returning the
892/// extended setcc code to use. The result is in CR0.
893///
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000894unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
895 MachineBasicBlock *MBB,
896 MachineBasicBlock::iterator IP) {
897 // The arguments are already supposed to be of the same type.
898 const Type *CompTy = Op0->getType();
899 unsigned Class = getClassB(CompTy);
900 unsigned Op0r = getReg(Op0, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +0000901
902 // Use crand for lt, gt and crandc for le, ge
903 unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC32::CRAND : PPC32::CRANDC;
904 // ? cr1[lt] : cr1[gt]
905 unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 4 : 5;
906 // ? cr0[lt] : cr0[gt]
907 unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000908
909 // Special case handling of: cmp R, i
910 if (isa<ConstantPointerNull>(Op1)) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000911 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000912 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
913 if (Class == cByte || Class == cShort || Class == cInt) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000914 unsigned Op1v = CI->getRawValue() & 0xFFFF;
915 unsigned Opcode = CompTy->isSigned() ? PPC32::CMPW : PPC32::CMPLW;
916 unsigned OpcodeImm = CompTy->isSigned() ? PPC32::CMPWI : PPC32::CMPLWI;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000917
Misha Brukman1013ef52004-07-21 20:09:08 +0000918 // Treat compare like ADDI for the purposes of immediate suitability
919 if (canUseAsImmediateForOpcode(CI, 0)) {
920 BuildMI(*MBB, IP, OpcodeImm, 2, PPC32::CR0).addReg(Op0r).addSImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000921 } else {
922 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +0000923 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000924 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000925 return OpNum;
926 } else {
927 assert(Class == cLong && "Unknown integer class!");
928 unsigned LowCst = CI->getRawValue();
929 unsigned HiCst = CI->getRawValue() >> 32;
930 if (OpNum < 2) { // seteq, setne
Misha Brukman1013ef52004-07-21 20:09:08 +0000931 unsigned LoLow = makeAnotherReg(Type::IntTy);
932 unsigned LoTmp = makeAnotherReg(Type::IntTy);
933 unsigned HiLow = makeAnotherReg(Type::IntTy);
934 unsigned HiTmp = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000935 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +0000936
937 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r+1)
938 .addImm(LowCst & 0xFFFF);
939 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
940 .addImm(LowCst >> 16);
941 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r)
942 .addImm(HiCst & 0xFFFF);
943 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
944 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000945 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000946 return OpNum;
947 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +0000948 unsigned ConstReg = makeAnotherReg(CompTy);
Misha Brukmanbebde752004-07-16 21:06:24 +0000949 copyConstantToRegister(MBB, IP, CI, ConstReg);
950
Misha Brukman1013ef52004-07-21 20:09:08 +0000951 // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
952 BuildMI(*MBB, IP, PPC32::CMPW, 2, PPC32::CR0).addReg(Op0r)
Misha Brukmanbebde752004-07-16 21:06:24 +0000953 .addReg(ConstReg);
Misha Brukman1013ef52004-07-21 20:09:08 +0000954 BuildMI(*MBB, IP, PPC32::CMPW, 2, PPC32::CR1).addReg(Op0r+1)
955 .addReg(ConstReg+1);
956 BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
957 BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
958 .addImm(2);
Misha Brukman422791f2004-06-21 17:41:12 +0000959 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000960 }
961 }
962 }
963
964 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +0000965 unsigned Opcode = CompTy->isSigned() ? PPC32::CMPW : PPC32::CMPLW;
966
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000967 switch (Class) {
968 default: assert(0 && "Unknown type class!");
969 case cByte:
970 case cShort:
971 case cInt:
Misha Brukman1013ef52004-07-21 20:09:08 +0000972 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000973 break;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000974
Misha Brukman7e898c32004-07-20 00:41:46 +0000975 case cFP32:
976 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000977 emitUCOM(MBB, IP, Op0r, Op1r);
978 break;
979
980 case cLong:
981 if (OpNum < 2) { // seteq, setne
982 unsigned LoTmp = makeAnotherReg(Type::IntTy);
983 unsigned HiTmp = makeAnotherReg(Type::IntTy);
984 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +0000985 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r);
986 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000987 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000988 break; // Allow the sete or setne to be generated from flags set by OR
989 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +0000990 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
991 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +0000992
993 // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
994 BuildMI(*MBB, IP, PPC32::CMPW, 2, PPC32::CR0).addReg(Op0r)
Misha Brukmanbebde752004-07-16 21:06:24 +0000995 .addReg(Op1r);
Misha Brukman1013ef52004-07-21 20:09:08 +0000996 BuildMI(*MBB, IP, PPC32::CMPW, 2, PPC32::CR1).addReg(Op1r)
997 .addReg(Op1r+1);
998 BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
999 BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
1000 .addImm(2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001001 return OpNum;
1002 }
1003 }
1004 return OpNum;
1005}
1006
Misha Brukmand18a31d2004-07-06 22:51:53 +00001007/// visitSetCondInst - emit code to calculate the condition via
1008/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001009///
1010void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001011 if (canFoldSetCCIntoBranchOrSelect(&I))
Misha Brukmane9c65512004-07-06 15:32:44 +00001012 return;
Misha Brukmanbebde752004-07-16 21:06:24 +00001013
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001014 unsigned DestReg = getReg(I);
Misha Brukman2834a4d2004-07-07 20:07:22 +00001015 unsigned OpNum = I.getOpcode();
Misha Brukman425ff242004-07-01 21:34:10 +00001016 const Type *Ty = I.getOperand (0)->getType();
1017
Misha Brukmand18a31d2004-07-06 22:51:53 +00001018 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
1019
1020 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
Misha Brukman425ff242004-07-01 21:34:10 +00001021 MachineBasicBlock *thisMBB = BB;
1022 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001023 ilist<MachineBasicBlock>::iterator It = BB;
1024 ++It;
1025
Misha Brukman425ff242004-07-01 21:34:10 +00001026 // thisMBB:
1027 // ...
1028 // cmpTY cr0, r1, r2
1029 // bCC copy1MBB
1030 // b copy0MBB
1031
1032 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1033 // if we could insert other, non-terminator instructions after the
1034 // bCC. But MBB->getFirstTerminator() can't understand this.
1035 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001036 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001037 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1038 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001039 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001040 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
Misha Brukman1013ef52004-07-21 20:09:08 +00001041 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1042 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001043 // Update machine-CFG edges
1044 BB->addSuccessor(copy1MBB);
1045 BB->addSuccessor(copy0MBB);
1046
Misha Brukman425ff242004-07-01 21:34:10 +00001047 // copy1MBB:
1048 // %TrueValue = li 1
Misha Brukmane9c65512004-07-06 15:32:44 +00001049 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +00001050 BB = copy1MBB;
1051 unsigned TrueValue = makeAnotherReg (I.getType ());
Misha Brukman1013ef52004-07-21 20:09:08 +00001052 BuildMI(BB, PPC32::LI, 1, TrueValue).addSImm(1);
Misha Brukman425ff242004-07-01 21:34:10 +00001053 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1054 // Update machine-CFG edges
1055 BB->addSuccessor(sinkMBB);
1056
Misha Brukman1013ef52004-07-21 20:09:08 +00001057 // copy0MBB:
1058 // %FalseValue = li 0
1059 // fallthrough
1060 BB = copy0MBB;
1061 unsigned FalseValue = makeAnotherReg(I.getType());
1062 BuildMI(BB, PPC32::LI, 1, FalseValue).addSImm(0);
1063 // Update machine-CFG edges
1064 BB->addSuccessor(sinkMBB);
1065
Misha Brukman425ff242004-07-01 21:34:10 +00001066 // sinkMBB:
1067 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1068 // ...
1069 BB = sinkMBB;
1070 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1071 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001072}
1073
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001074void ISel::visitSelectInst(SelectInst &SI) {
1075 unsigned DestReg = getReg(SI);
1076 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001077 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1078 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001079}
1080
1081/// emitSelect - Common code shared between visitSelectInst and the constant
1082/// expression support.
1083/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
1084/// no select instruction. FSEL only works for comparisons against zero.
1085void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1086 MachineBasicBlock::iterator IP,
1087 Value *Cond, Value *TrueVal, Value *FalseVal,
1088 unsigned DestReg) {
1089 unsigned SelectClass = getClassB(TrueVal->getType());
Misha Brukman7e898c32004-07-20 00:41:46 +00001090 unsigned Opcode;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001091
Misha Brukmanbebde752004-07-16 21:06:24 +00001092 // See if we can fold the setcc into the select instruction, or if we have
1093 // to get the register of the Cond value
Misha Brukmanbebde752004-07-16 21:06:24 +00001094 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1095 // We successfully folded the setcc into the select instruction.
1096
1097 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1098 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
1099 IP);
1100 Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
1101 } else {
1102 unsigned CondReg = getReg(Cond, MBB, IP);
1103
Misha Brukman1013ef52004-07-21 20:09:08 +00001104 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(CondReg).addSImm(0);
Misha Brukmanbebde752004-07-16 21:06:24 +00001105 Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001106 }
Misha Brukmanbebde752004-07-16 21:06:24 +00001107
1108 // thisMBB:
1109 // ...
1110 // cmpTY cr0, r1, r2
1111 // bCC copy1MBB
1112 // b copy0MBB
1113
1114 MachineBasicBlock *thisMBB = BB;
1115 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001116 ilist<MachineBasicBlock>::iterator It = BB;
1117 ++It;
Misha Brukmanbebde752004-07-16 21:06:24 +00001118
1119 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1120 // if we could insert other, non-terminator instructions after the
1121 // bCC. But MBB->getFirstTerminator() can't understand this.
1122 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001123 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001124 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1125 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001126 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001127 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
Misha Brukman1013ef52004-07-21 20:09:08 +00001128 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1129 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001130 // Update machine-CFG edges
1131 BB->addSuccessor(copy1MBB);
1132 BB->addSuccessor(copy0MBB);
1133
Misha Brukmanbebde752004-07-16 21:06:24 +00001134 // copy1MBB:
1135 // %TrueValue = ...
1136 // b sinkMBB
1137 BB = copy1MBB;
1138 unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
1139 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1140 // Update machine-CFG edges
1141 BB->addSuccessor(sinkMBB);
1142
Misha Brukman1013ef52004-07-21 20:09:08 +00001143 // copy0MBB:
1144 // %FalseValue = ...
1145 // fallthrough
1146 BB = copy0MBB;
1147 unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
1148 // Update machine-CFG edges
1149 BB->addSuccessor(sinkMBB);
1150
Misha Brukmanbebde752004-07-16 21:06:24 +00001151 // sinkMBB:
1152 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1153 // ...
1154 BB = sinkMBB;
1155 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1156 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukmana31f1f72004-07-21 20:30:18 +00001157 // For a register pair representing a long value, define the second reg
1158 if (getClass(TrueVal->getType()) == cLong)
1159 BuildMI(BB, PPC32::LI, 1, DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001160 return;
1161}
1162
1163
1164
1165/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1166/// operand, in the specified target register.
1167///
1168void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1169 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1170
1171 Value *Val = VR.Val;
1172 const Type *Ty = VR.Ty;
1173 if (Val) {
1174 if (Constant *C = dyn_cast<Constant>(Val)) {
1175 Val = ConstantExpr::getCast(C, Type::IntTy);
1176 Ty = Type::IntTy;
1177 }
1178
Misha Brukman2fec9902004-06-21 20:22:03 +00001179 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001180 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1181 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1182
1183 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001184 BuildMI(BB, PPC32::LI, 1, targetReg).addSImm(TheVal);
Misha Brukman422791f2004-06-21 17:41:12 +00001185 } else {
1186 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001187 BuildMI(BB, PPC32::LIS, 1, TmpReg).addSImm(TheVal >> 16);
Misha Brukman2fec9902004-06-21 20:22:03 +00001188 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1189 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001190 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001191 return;
1192 }
1193 }
1194
1195 // Make sure we have the register number for this value...
1196 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1197
1198 switch (getClassB(Ty)) {
1199 case cByte:
1200 // Extend value into target register (8->32)
1201 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001202 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1203 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001204 else
1205 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1206 break;
1207 case cShort:
1208 // Extend value into target register (16->32)
1209 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001210 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1211 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001212 else
1213 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1214 break;
1215 case cInt:
1216 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001217 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001218 break;
1219 default:
1220 assert(0 && "Unpromotable operand class in promote32");
1221 }
1222}
1223
Misha Brukman2fec9902004-06-21 20:22:03 +00001224/// visitReturnInst - implemented with BLR
1225///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001226void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001227 // Only do the processing if this is a non-void return
1228 if (I.getNumOperands() > 0) {
1229 Value *RetVal = I.getOperand(0);
1230 switch (getClassB(RetVal->getType())) {
1231 case cByte: // integral return values: extend or move into r3 and return
1232 case cShort:
1233 case cInt:
1234 promote32(PPC32::R3, ValueRecord(RetVal));
1235 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001236 case cFP32:
1237 case cFP64: { // Floats & Doubles: Return in f1
Misha Brukmand47bbf72004-06-25 19:04:27 +00001238 unsigned RetReg = getReg(RetVal);
1239 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1240 break;
1241 }
1242 case cLong: {
1243 unsigned RetReg = getReg(RetVal);
1244 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1245 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1246 break;
1247 }
1248 default:
1249 visitInstruction(I);
1250 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001251 }
1252 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1253}
1254
1255// getBlockAfter - Return the basic block which occurs lexically after the
1256// specified one.
1257static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1258 Function::iterator I = BB; ++I; // Get iterator to next block
1259 return I != BB->getParent()->end() ? &*I : 0;
1260}
1261
1262/// visitBranchInst - Handle conditional and unconditional branches here. Note
1263/// that since code layout is frozen at this point, that if we are trying to
1264/// jump to a block that is the immediate successor of the current block, we can
1265/// just make a fall-through (but we don't currently).
1266///
1267void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001268 // Update machine-CFG edges
1269 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1270 if (BI.isConditional())
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001271 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001272
1273 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
Misha Brukmane9c65512004-07-06 15:32:44 +00001274
Misha Brukman2fec9902004-06-21 20:22:03 +00001275 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmane9c65512004-07-06 15:32:44 +00001276 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001277 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1278 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001279 }
1280
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001281 // See if we can fold the setcc into the branch itself...
1282 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1283 if (SCI == 0) {
1284 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1285 // computed some other way...
1286 unsigned condReg = getReg(BI.getCondition());
Misha Brukmane9c65512004-07-06 15:32:44 +00001287 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(condReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00001288 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001289 if (BI.getSuccessor(1) == NextBB) {
1290 if (BI.getSuccessor(0) != NextBB)
Misha Brukmane9c65512004-07-06 15:32:44 +00001291 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001292 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001293 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001294 BuildMI(BB, PPC32::BEQ, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001295 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001296
1297 if (BI.getSuccessor(0) != NextBB)
1298 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1299 }
1300 return;
1301 }
1302
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001303 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukmane9c65512004-07-06 15:32:44 +00001304 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001305 MachineBasicBlock::iterator MII = BB->end();
1306 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001307
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001308 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001309 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001310 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001311 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001312 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001313 } else {
1314 // Change to the inverse condition...
1315 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001316 Opcode = invertPPCBranchOpcode(Opcode);
1317 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukman2fec9902004-06-21 20:22:03 +00001318 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001319 }
1320 }
1321}
1322
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001323/// doCall - This emits an abstract call instruction, setting up the arguments
1324/// and the return value as appropriate. For the actual function call itself,
1325/// it inserts the specified CallMI instruction into the stream.
1326///
1327/// FIXME: See Documentation at the following URL for "correct" behavior
1328/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1329void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +00001330 const std::vector<ValueRecord> &Args, bool isVarArg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001331 // Count how many bytes are to be pushed on the stack...
1332 unsigned NumBytes = 0;
1333
1334 if (!Args.empty()) {
1335 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1336 switch (getClassB(Args[i].Ty)) {
1337 case cByte: case cShort: case cInt:
1338 NumBytes += 4; break;
1339 case cLong:
1340 NumBytes += 8; break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001341 case cFP32:
1342 NumBytes += 4; break;
1343 case cFP64:
1344 NumBytes += 8; break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001345 break;
1346 default: assert(0 && "Unknown class!");
1347 }
1348
1349 // Adjust the stack pointer for the new arguments...
Misha Brukman1013ef52004-07-21 20:09:08 +00001350 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addSImm(NumBytes);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001351
1352 // Arguments go on the stack in reverse order, as specified by the ABI.
Misha Brukman7e898c32004-07-20 00:41:46 +00001353 // Offset to the paramater area on the stack is 24.
1354 unsigned ArgOffset = 24;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001355 int GPR_remaining = 8, FPR_remaining = 13;
Misha Brukmanfc879c32004-07-08 18:02:38 +00001356 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001357 static const unsigned GPR[] = {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001358 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1359 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1360 };
Misha Brukmand18a31d2004-07-06 22:51:53 +00001361 static const unsigned FPR[] = {
Misha Brukman2834a4d2004-07-07 20:07:22 +00001362 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6,
1363 PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12,
1364 PPC32::F13
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001365 };
Misha Brukman422791f2004-06-21 17:41:12 +00001366
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001367 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1368 unsigned ArgReg;
1369 switch (getClassB(Args[i].Ty)) {
1370 case cByte:
1371 case cShort:
1372 // Promote arg to 32 bits wide into a temporary register...
1373 ArgReg = makeAnotherReg(Type::UIntTy);
1374 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001375
1376 // Reg or stack?
1377 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001378 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001379 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001380 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukman422791f2004-06-21 17:41:12 +00001381 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001382 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001383 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001384 }
1385 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001386 case cInt:
1387 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1388
Misha Brukman422791f2004-06-21 17:41:12 +00001389 // Reg or stack?
1390 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001391 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001392 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001393 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukman422791f2004-06-21 17:41:12 +00001394 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001395 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001396 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001397 }
1398 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001399 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001400 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001401
Misha Brukmanec6319a2004-07-20 15:51:37 +00001402 // Reg or stack? Note that PPC calling conventions state that long args
1403 // are passed rN = hi, rN+1 = lo, opposite of LLVM.
Misha Brukman422791f2004-06-21 17:41:12 +00001404 if (GPR_remaining > 1) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001405 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanec6319a2004-07-20 15:51:37 +00001406 .addReg(ArgReg);
Misha Brukman1013ef52004-07-21 20:09:08 +00001407 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
1408 .addReg(ArgReg+1);
Misha Brukman7e898c32004-07-20 00:41:46 +00001409 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1410 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
Misha Brukman422791f2004-06-21 17:41:12 +00001411 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001412 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001413 .addReg(PPC32::R1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001414 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001415 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001416 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001417
1418 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001419 GPR_remaining -= 1; // uses up 2 GPRs
1420 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001421 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001422 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001423 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman7e898c32004-07-20 00:41:46 +00001424 // Reg or stack?
1425 if (FPR_remaining > 0) {
1426 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1427 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1428 FPR_remaining--;
1429 FPR_idx++;
1430
1431 // If this is a vararg function, and there are GPRs left, also
1432 // pass the float in an int. Otherwise, put it on the stack.
1433 if (isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001434 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001435 .addReg(PPC32::R1);
1436 if (GPR_remaining > 0) {
1437 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx])
Misha Brukman1013ef52004-07-21 20:09:08 +00001438 .addSImm(ArgOffset).addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001439 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1440 }
Misha Brukman1916bf92004-06-24 21:56:15 +00001441 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001442 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001443 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001444 .addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001445 }
1446 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001447 case cFP64:
1448 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1449 // Reg or stack?
1450 if (FPR_remaining > 0) {
1451 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1452 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1453 FPR_remaining--;
1454 FPR_idx++;
1455 // For vararg functions, must pass doubles via int regs as well
1456 if (isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001457 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001458 .addReg(PPC32::R1);
1459
1460 if (GPR_remaining > 1) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001461 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001462 .addReg(PPC32::R1);
1463 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx+1])
Misha Brukman1013ef52004-07-21 20:09:08 +00001464 .addSImm(ArgOffset+4).addReg(PPC32::R1);
Misha Brukman7e898c32004-07-20 00:41:46 +00001465 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1466 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
1467 }
1468 }
1469 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001470 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001471 .addReg(PPC32::R1);
1472 }
1473 // Doubles use 8 bytes, and 2 GPRs worth of param space
1474 ArgOffset += 4;
1475 GPR_remaining--;
1476 GPR_idx++;
1477 break;
1478
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001479 default: assert(0 && "Unknown class!");
1480 }
1481 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001482 GPR_remaining--;
1483 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001484 }
1485 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001486 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001487 }
1488
1489 BB->push_back(CallMI);
Misha Brukman1013ef52004-07-21 20:09:08 +00001490 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addSImm(NumBytes);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001491
1492 // If there is a return value, scavenge the result from the location the call
1493 // leaves it in...
1494 //
1495 if (Ret.Ty != Type::VoidTy) {
1496 unsigned DestClass = getClassB(Ret.Ty);
1497 switch (DestClass) {
1498 case cByte:
1499 case cShort:
1500 case cInt:
1501 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001502 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001503 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001504 case cFP32: // Floating-point return values live in f1
1505 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001506 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1507 break;
Misha Brukmanec6319a2004-07-20 15:51:37 +00001508 case cLong: // Long values are in r3 hi:r4 lo
Misha Brukman1013ef52004-07-21 20:09:08 +00001509 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1510 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001511 break;
1512 default: assert(0 && "Unknown class!");
1513 }
1514 }
1515}
1516
1517
1518/// visitCallInst - Push args on stack and do a procedure call instruction.
1519void ISel::visitCallInst(CallInst &CI) {
1520 MachineInstr *TheCall;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001521 Function *F = CI.getCalledFunction();
1522 if (F) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001523 // Is it an intrinsic function call?
1524 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1525 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1526 return;
1527 }
1528
1529 // Emit a CALL instruction with PC-relative displacement.
1530 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1531 } else { // Emit an indirect call through the CTR
1532 unsigned Reg = getReg(CI.getCalledValue());
Misha Brukman7e898c32004-07-20 00:41:46 +00001533 BuildMI(BB, PPC32::MTCTR, 1).addReg(Reg);
1534 TheCall = BuildMI(PPC32::CALLindirect, 2).addZImm(20).addZImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001535 }
1536
1537 std::vector<ValueRecord> Args;
1538 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1539 Args.push_back(ValueRecord(CI.getOperand(i)));
1540
1541 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001542 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1543 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001544}
1545
1546
1547/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1548///
1549static Value *dyncastIsNan(Value *V) {
1550 if (CallInst *CI = dyn_cast<CallInst>(V))
1551 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001552 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001553 return CI->getOperand(1);
1554 return 0;
1555}
1556
1557/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1558/// or's whos operands are all calls to the isnan predicate.
1559static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1560 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1561
1562 // Check all uses, which will be or's of isnans if this predicate is true.
1563 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1564 Instruction *I = cast<Instruction>(*UI);
1565 if (I->getOpcode() != Instruction::Or) return false;
1566 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1567 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1568 }
1569
1570 return true;
1571}
1572
1573/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1574/// function, lowering any calls to unknown intrinsic functions into the
1575/// equivalent LLVM code.
1576///
1577void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1578 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1579 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1580 if (CallInst *CI = dyn_cast<CallInst>(I++))
1581 if (Function *F = CI->getCalledFunction())
1582 switch (F->getIntrinsicID()) {
1583 case Intrinsic::not_intrinsic:
1584 case Intrinsic::vastart:
1585 case Intrinsic::vacopy:
1586 case Intrinsic::vaend:
1587 case Intrinsic::returnaddress:
1588 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001589 // FIXME: should lower this ourselves
1590 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001591 // We directly implement these intrinsics
1592 break;
1593 case Intrinsic::readio: {
1594 // On PPC, memory operations are in-order. Lower this intrinsic
1595 // into a volatile load.
1596 Instruction *Before = CI->getPrev();
1597 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1598 CI->replaceAllUsesWith(LI);
1599 BB->getInstList().erase(CI);
1600 break;
1601 }
1602 case Intrinsic::writeio: {
1603 // On PPC, memory operations are in-order. Lower this intrinsic
1604 // into a volatile store.
1605 Instruction *Before = CI->getPrev();
Misha Brukman8d442c22004-07-14 15:29:51 +00001606 StoreInst *SI = new StoreInst(CI->getOperand(1),
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001607 CI->getOperand(2), true, CI);
Misha Brukman8d442c22004-07-14 15:29:51 +00001608 CI->replaceAllUsesWith(SI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001609 BB->getInstList().erase(CI);
1610 break;
1611 }
1612 default:
1613 // All other intrinsic calls we must lower.
1614 Instruction *Before = CI->getPrev();
1615 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1616 if (Before) { // Move iterator to instruction after call
1617 I = Before; ++I;
1618 } else {
1619 I = BB->begin();
1620 }
1621 }
1622}
1623
1624void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1625 unsigned TmpReg1, TmpReg2, TmpReg3;
1626 switch (ID) {
1627 case Intrinsic::vastart:
1628 // Get the address of the first vararg value...
1629 TmpReg1 = getReg(CI);
Misha Brukmanec6319a2004-07-20 15:51:37 +00001630 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex,
1631 0, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001632 return;
1633
1634 case Intrinsic::vacopy:
1635 TmpReg1 = getReg(CI);
1636 TmpReg2 = getReg(CI.getOperand(1));
1637 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1638 return;
1639 case Intrinsic::vaend: return;
1640
1641 case Intrinsic::returnaddress:
Misha Brukmanec6319a2004-07-20 15:51:37 +00001642 TmpReg1 = getReg(CI);
1643 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1644 MachineFrameInfo *MFI = F->getFrameInfo();
1645 unsigned NumBytes = MFI->getStackSize();
1646
Misha Brukman1013ef52004-07-21 20:09:08 +00001647 BuildMI(BB, PPC32::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
Misha Brukmanec6319a2004-07-20 15:51:37 +00001648 .addReg(PPC32::R1);
1649 } else {
1650 // Values other than zero are not implemented yet.
Misha Brukman1013ef52004-07-21 20:09:08 +00001651 BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
Misha Brukmanec6319a2004-07-20 15:51:37 +00001652 }
1653 return;
1654
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001655 case Intrinsic::frameaddress:
1656 TmpReg1 = getReg(CI);
1657 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00001658 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(PPC32::R1).addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001659 } else {
1660 // Values other than zero are not implemented yet.
Misha Brukman1013ef52004-07-21 20:09:08 +00001661 BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001662 }
1663 return;
1664
Misha Brukmana2916ce2004-06-21 17:58:36 +00001665#if 0
1666 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001667 case Intrinsic::isnan:
1668 // If this is only used by 'isunordered' style comparisons, don't emit it.
1669 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1670 TmpReg1 = getReg(CI.getOperand(1));
1671 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001672 TmpReg2 = makeAnotherReg(Type::IntTy);
1673 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001674 TmpReg3 = getReg(CI);
1675 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1676 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001677#endif
1678
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001679 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1680 }
1681}
1682
1683/// visitSimpleBinary - Implement simple binary operators for integral types...
1684/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1685/// Xor.
1686///
1687void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1688 unsigned DestReg = getReg(B);
1689 MachineBasicBlock::iterator MI = BB->end();
1690 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1691 unsigned Class = getClassB(B.getType());
1692
1693 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1694}
1695
1696/// emitBinaryFPOperation - This method handles emission of floating point
1697/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1698void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1699 MachineBasicBlock::iterator IP,
1700 Value *Op0, Value *Op1,
1701 unsigned OperatorClass, unsigned DestReg) {
1702
1703 // Special case: op Reg, <const fp>
1704 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001705 // Create a constant pool entry for this constant.
1706 MachineConstantPool *CP = F->getConstantPool();
1707 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1708 const Type *Ty = Op1->getType();
Misha Brukmand9aa7832004-07-12 23:49:47 +00001709 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001710
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001711 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001712 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1713 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001714 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001715
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001716 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001717 unsigned Op1Reg = getReg(Op1C, BB, IP);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001718 unsigned Op0r = getReg(Op0, BB, IP);
Misha Brukmana596f8c2004-07-13 15:35:45 +00001719 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001720 return;
1721 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001722
1723 // Special case: R1 = op <const fp>, R2
Misha Brukmana596f8c2004-07-13 15:35:45 +00001724 if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
1725 if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001726 // -0.0 - X === -X
1727 unsigned op1Reg = getReg(Op1, BB, IP);
1728 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1729 return;
1730 } else {
1731 // R1 = op CST, R2 --> R1 = opr R2, CST
1732
1733 // Create a constant pool entry for this constant.
1734 MachineConstantPool *CP = F->getConstantPool();
Misha Brukmana596f8c2004-07-13 15:35:45 +00001735 unsigned CPI = CP->getConstantPoolIndex(Op0C);
1736 const Type *Ty = Op0C->getType();
1737 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001738
1739 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001740 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1741 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001742 };
1743
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001744 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001745 unsigned Op0Reg = getReg(Op0C, BB, IP);
1746 unsigned Op1Reg = getReg(Op1, BB, IP);
1747 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001748 return;
1749 }
1750
1751 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001752 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001753 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1754 };
1755
1756 unsigned Opcode = OpcodeTab[OperatorClass];
1757 unsigned Op0r = getReg(Op0, BB, IP);
1758 unsigned Op1r = getReg(Op1, BB, IP);
1759 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1760}
1761
1762/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1763/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1764/// Or, 4 for Xor.
1765///
1766/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1767/// and constant expression support.
1768///
1769void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1770 MachineBasicBlock::iterator IP,
1771 Value *Op0, Value *Op1,
1772 unsigned OperatorClass, unsigned DestReg) {
1773 unsigned Class = getClassB(Op0->getType());
1774
Misha Brukman422791f2004-06-21 17:41:12 +00001775 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001776 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001777 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1778 };
Misha Brukman1013ef52004-07-21 20:09:08 +00001779 static const unsigned ImmOpcodeTab[] = {
1780 PPC32::ADDI, PPC32::SUBI, PPC32::ANDIo, PPC32::ORI, PPC32::XORI
1781 };
1782
Misha Brukman422791f2004-06-21 17:41:12 +00001783 // Otherwise, code generate the full operation with a constant.
1784 static const unsigned BottomTab[] = {
1785 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1786 };
1787 static const unsigned TopTab[] = {
1788 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1789 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001790
Misha Brukman7e898c32004-07-20 00:41:46 +00001791 if (Class == cFP32 || Class == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001792 assert(OperatorClass < 2 && "No logical ops for FP!");
1793 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1794 return;
1795 }
1796
1797 if (Op0->getType() == Type::BoolTy) {
1798 if (OperatorClass == 3)
1799 // If this is an or of two isnan's, emit an FP comparison directly instead
1800 // of or'ing two isnan's together.
1801 if (Value *LHS = dyncastIsNan(Op0))
1802 if (Value *RHS = dyncastIsNan(Op1)) {
1803 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001804 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001805 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001806 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001807 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1808 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001809 return;
1810 }
1811 }
1812
1813 // sub 0, X -> neg X
Misha Brukman1013ef52004-07-21 20:09:08 +00001814 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001815 if (OperatorClass == 1 && CI->isNullValue()) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001816 unsigned Op1r = getReg(Op1, MBB, IP);
1817
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001818 if (Class == cLong) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001819 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, DestReg+1).addReg(Op1r+1).addSImm(0);
1820 BuildMI(*MBB, IP, PPC32::SUBFZE, 1, DestReg).addReg(Op1r);
1821 } else {
1822 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001823 }
1824 return;
1825 }
Misha Brukman1013ef52004-07-21 20:09:08 +00001826 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001827
1828 // Special case: op Reg, <const int>
1829 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1830 unsigned Op0r = getReg(Op0, MBB, IP);
1831
1832 // xor X, -1 -> not X
1833 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1834 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
Misha Brukman1013ef52004-07-21 20:09:08 +00001835 if (Class == cLong) // Invert the low part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001836 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1837 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001838 return;
1839 }
Misha Brukman1013ef52004-07-21 20:09:08 +00001840
1841 // FIXME: We're not handling ANDI right now since it could trash the CR
1842 if (Class != cLong) {
1843 if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
1844 int immediate = Op1C->getRawValue() & 0xFFFF;
1845
1846 if (OperatorClass < 2)
1847 BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
1848 .addSImm(immediate);
1849 else
1850 BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
1851 .addZImm(immediate);
1852 } else {
1853 unsigned Op1r = getReg(Op1, MBB, IP);
1854 BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
1855 .addReg(Op1r);
1856 }
1857 return;
1858 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001859
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001860 unsigned Op1r = getReg(Op1, MBB, IP);
1861
Misha Brukman1013ef52004-07-21 20:09:08 +00001862 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001863 .addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001864 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
1865 .addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001866 return;
1867 }
1868
1869 unsigned Op0r = getReg(Op0, MBB, IP);
1870 unsigned Op1r = getReg(Op1, MBB, IP);
1871
1872 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001873 unsigned Opcode = OpcodeTab[OperatorClass];
1874 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001875 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001876 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001877 .addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001878 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
1879 .addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001880 }
1881 return;
1882}
1883
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001884// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1885// returns zero when the input is not exactly a power of two.
1886static unsigned ExactLog2(unsigned Val) {
1887 if (Val == 0 || (Val & (Val-1))) return 0;
1888 unsigned Count = 0;
1889 while (Val != 1) {
1890 Val >>= 1;
1891 ++Count;
1892 }
Misha Brukman1013ef52004-07-21 20:09:08 +00001893 return Count;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001894}
1895
Misha Brukman1013ef52004-07-21 20:09:08 +00001896/// doMultiply - Emit appropriate instructions to multiply together the
1897/// Values Op0 and Op1, and put the result in DestReg.
Misha Brukman2fec9902004-06-21 20:22:03 +00001898///
Misha Brukman1013ef52004-07-21 20:09:08 +00001899void ISel::doMultiply(MachineBasicBlock *MBB,
1900 MachineBasicBlock::iterator IP,
1901 unsigned DestReg, Value *Op0, Value *Op1) {
1902 unsigned Class0 = getClass(Op0->getType());
1903 unsigned Class1 = getClass(Op1->getType());
1904
1905 unsigned Op0r = getReg(Op0, MBB, IP);
1906 unsigned Op1r = getReg(Op1, MBB, IP);
1907
1908 // 64 x 64 -> 64
1909 if (Class0 == cLong && Class1 == cLong) {
1910 unsigned Tmp1 = makeAnotherReg(Type::IntTy);
1911 unsigned Tmp2 = makeAnotherReg(Type::IntTy);
1912 unsigned Tmp3 = makeAnotherReg(Type::IntTy);
1913 unsigned Tmp4 = makeAnotherReg(Type::IntTy);
1914 BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
1915 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
1916 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
1917 BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
1918 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
1919 BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
1920 return;
1921 }
1922
1923 // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
1924 if (Class0 == cLong && Class1 <= cInt) {
1925 unsigned Tmp0 = makeAnotherReg(Type::IntTy);
1926 unsigned Tmp1 = makeAnotherReg(Type::IntTy);
1927 unsigned Tmp2 = makeAnotherReg(Type::IntTy);
1928 unsigned Tmp3 = makeAnotherReg(Type::IntTy);
1929 unsigned Tmp4 = makeAnotherReg(Type::IntTy);
1930 if (Op1->getType()->isSigned())
1931 BuildMI(*MBB, IP, PPC32::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
1932 else
1933 BuildMI(*MBB, IP, PPC32::LI, 2, Tmp0).addSImm(0);
1934 BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
1935 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
1936 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
1937 BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
1938 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
1939 BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
1940 return;
1941 }
1942
1943 // 32 x 32 -> 32
1944 if (Class0 <= cInt && Class1 <= cInt) {
1945 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
1946 return;
1947 }
1948
1949 assert(0 && "doMultiply cannot operate on unknown type!");
1950}
1951
1952/// doMultiplyConst - This method will multiply the value in Op0 by the
1953/// value of the ContantInt *CI
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001954void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1955 MachineBasicBlock::iterator IP,
Misha Brukman1013ef52004-07-21 20:09:08 +00001956 unsigned DestReg, Value *Op0, ConstantInt *CI) {
1957 unsigned Class = getClass(Op0->getType());
1958
1959 // Mul op0, 0 ==> 0
1960 if (CI->isNullValue()) {
1961 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
1962 if (Class == cLong)
1963 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001964 return;
Misha Brukman1013ef52004-07-21 20:09:08 +00001965 }
1966
1967 // Mul op0, 1 ==> op0
1968 if (CI->equalsInt(1)) {
1969 unsigned Op0r = getReg(Op0, MBB, IP);
1970 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1971 if (Class == cLong)
1972 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001973 return;
1974 }
1975
1976 // If the element size is exactly a power of 2, use a shift to get it.
Misha Brukman1013ef52004-07-21 20:09:08 +00001977 if (unsigned Shift = ExactLog2(CI->getRawValue())) {
1978 ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
1979 emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
1980 return;
1981 }
1982
1983 // If 32 bits or less and immediate is in right range, emit mul by immediate
1984 if (Class == cByte || Class == cShort || Class == cInt)
1985 {
1986 if (canUseAsImmediateForOpcode(CI, 0)) {
1987 unsigned Op0r = getReg(Op0, MBB, IP);
1988 unsigned imm = CI->getRawValue() & 0xFFFF;
1989 BuildMI(*MBB, IP, PPC32::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001990 return;
1991 }
1992 }
1993
Misha Brukman1013ef52004-07-21 20:09:08 +00001994 doMultiply(MBB, IP, DestReg, Op0, CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001995}
1996
1997void ISel::visitMul(BinaryOperator &I) {
1998 unsigned ResultReg = getReg(I);
1999
2000 Value *Op0 = I.getOperand(0);
2001 Value *Op1 = I.getOperand(1);
2002
2003 MachineBasicBlock::iterator IP = BB->end();
2004 emitMultiply(BB, IP, Op0, Op1, ResultReg);
2005}
2006
2007void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
2008 Value *Op0, Value *Op1, unsigned DestReg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002009 TypeClass Class = getClass(Op0->getType());
2010
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002011 switch (Class) {
2012 case cByte:
2013 case cShort:
2014 case cInt:
Misha Brukman1013ef52004-07-21 20:09:08 +00002015 case cLong:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002016 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002017 doMultiplyConst(MBB, IP, DestReg, Op0, CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002018 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00002019 doMultiply(MBB, IP, DestReg, Op0, Op1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002020 }
2021 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002022 case cFP32:
2023 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002024 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2025 return;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002026 break;
2027 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002028}
2029
2030
2031/// visitDivRem - Handle division and remainder instructions... these
2032/// instruction both require the same instructions to be generated, they just
2033/// select the result from a different register. Note that both of these
2034/// instructions work differently for signed and unsigned operands.
2035///
2036void ISel::visitDivRem(BinaryOperator &I) {
2037 unsigned ResultReg = getReg(I);
2038 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2039
2040 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00002041 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
2042 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002043}
2044
2045void ISel::emitDivRemOperation(MachineBasicBlock *BB,
2046 MachineBasicBlock::iterator IP,
2047 Value *Op0, Value *Op1, bool isDiv,
2048 unsigned ResultReg) {
2049 const Type *Ty = Op0->getType();
2050 unsigned Class = getClass(Ty);
2051 switch (Class) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002052 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002053 if (isDiv) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002054 // Floating point divide...
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002055 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2056 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002057 } else {
2058 // Floating point remainder via fmodf(float x, float y);
2059 unsigned Op0Reg = getReg(Op0, BB, IP);
2060 unsigned Op1Reg = getReg(Op1, BB, IP);
2061 MachineInstr *TheCall =
2062 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
2063 std::vector<ValueRecord> Args;
2064 Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
2065 Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
2066 doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
2067 }
2068 return;
2069 case cFP64:
2070 if (isDiv) {
2071 // Floating point divide...
2072 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2073 return;
2074 } else {
2075 // Floating point remainder via fmod(double x, double y);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002076 unsigned Op0Reg = getReg(Op0, BB, IP);
2077 unsigned Op1Reg = getReg(Op1, BB, IP);
2078 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002079 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002080 std::vector<ValueRecord> Args;
2081 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2082 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002083 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002084 }
2085 return;
2086 case cLong: {
Misha Brukman7e898c32004-07-20 00:41:46 +00002087 static Function* const Funcs[] =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002088 { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002089 unsigned Op0Reg = getReg(Op0, BB, IP);
2090 unsigned Op1Reg = getReg(Op1, BB, IP);
2091 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2092 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002093 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002094
2095 std::vector<ValueRecord> Args;
2096 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2097 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002098 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002099 return;
2100 }
2101 case cByte: case cShort: case cInt:
2102 break; // Small integrals, handled below...
2103 default: assert(0 && "Unknown class!");
2104 }
2105
2106 // Special case signed division by power of 2.
2107 if (isDiv)
2108 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2109 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2110 int V = CI->getValue();
2111
2112 if (V == 1) { // X /s 1 => X
2113 unsigned Op0Reg = getReg(Op0, BB, IP);
2114 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
2115 return;
2116 }
2117
2118 if (V == -1) { // X /s -1 => -X
2119 unsigned Op0Reg = getReg(Op0, BB, IP);
2120 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
2121 return;
2122 }
2123
Misha Brukmanec6319a2004-07-20 15:51:37 +00002124 unsigned log2V = ExactLog2(V);
2125 if (log2V != 0 && Ty->isSigned()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002126 unsigned Op0Reg = getReg(Op0, BB, IP);
2127 unsigned TmpReg = makeAnotherReg(Op0->getType());
Misha Brukmanec6319a2004-07-20 15:51:37 +00002128
Misha Brukman1013ef52004-07-21 20:09:08 +00002129 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
Misha Brukmanec6319a2004-07-20 15:51:37 +00002130 BuildMI(*BB, IP, PPC32::ADDZE, 1, ResultReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002131 return;
2132 }
2133 }
2134
2135 unsigned Op0Reg = getReg(Op0, BB, IP);
2136 unsigned Op1Reg = getReg(Op1, BB, IP);
Misha Brukmanec6319a2004-07-20 15:51:37 +00002137 unsigned Opcode = Ty->isSigned() ? PPC32::DIVW : PPC32::DIVWU;
2138
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002139 if (isDiv) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00002140 BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002141 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002142 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2143 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2144
Misha Brukmanec6319a2004-07-20 15:51:37 +00002145 BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002146 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2147 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002148 }
2149}
2150
2151
2152/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2153/// for constant immediate shift values, and for constant immediate
2154/// shift values equal to 1. Even the general case is sort of special,
2155/// because the shift amount has to be in CL, not just any old register.
2156///
2157void ISel::visitShiftInst(ShiftInst &I) {
2158 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002159 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2160 I.getOpcode () == Instruction::Shl, I.getType (),
2161 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002162}
2163
2164/// emitShiftOperation - Common code shared between visitShiftInst and
2165/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002166///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002167void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2168 MachineBasicBlock::iterator IP,
2169 Value *Op, Value *ShiftAmount, bool isLeftShift,
2170 const Type *ResultTy, unsigned DestReg) {
2171 unsigned SrcReg = getReg (Op, MBB, IP);
2172 bool isSigned = ResultTy->isSigned ();
2173 unsigned Class = getClass (ResultTy);
2174
2175 // Longs, as usual, are handled specially...
2176 if (Class == cLong) {
2177 // If we have a constant shift, we can generate much more efficient code
2178 // than otherwise...
2179 //
2180 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2181 unsigned Amount = CUI->getValue();
2182 if (Amount < 32) {
2183 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002184 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002185 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2186 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman1013ef52004-07-21 20:09:08 +00002187 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2188 .addImm(Amount).addImm(32-Amount).addImm(31);
2189 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2190 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002191 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002192 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002193 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2194 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman1013ef52004-07-21 20:09:08 +00002195 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2196 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2197 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2198 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002199 }
2200 } else { // Shifting more than 32 bits
2201 Amount -= 32;
2202 if (isLeftShift) {
2203 if (Amount != 0) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002204 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002205 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002206 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002207 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2208 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002209 }
Misha Brukman1013ef52004-07-21 20:09:08 +00002210 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
2211 } else {
2212 if (Amount != 0) {
2213 if (isSigned)
2214 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(SrcReg)
2215 .addImm(Amount);
2216 else
2217 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2218 .addImm(32-Amount).addImm(Amount).addImm(31);
2219 } else {
2220 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2221 .addReg(SrcReg);
2222 }
2223 BuildMI(*MBB, IP,PPC32::LI, 1, DestReg).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002224 }
2225 }
2226 } else {
2227 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2228 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002229 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2230 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2231 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2232 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2233 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2234
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002235 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002236 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002237 .addSImm(32);
2238 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002239 .addReg(ShiftAmountReg);
Misha Brukman1013ef52004-07-21 20:09:08 +00002240 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg3).addReg(SrcReg+1).addReg(TmpReg1);
2241 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
Misha Brukman2fec9902004-06-21 20:22:03 +00002242 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002243 .addSImm(-32);
2244 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg6).addReg(SrcReg+1).addReg(TmpReg5);
2245 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
Misha Brukman2fec9902004-06-21 20:22:03 +00002246 .addReg(TmpReg6);
Misha Brukman1013ef52004-07-21 20:09:08 +00002247 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg+1).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002248 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002249 } else {
2250 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002251 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002252 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002253 std::cerr << "Unimplemented: signed right shift\n";
2254 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002255 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002256 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002257 .addSImm(32);
2258 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002259 .addReg(ShiftAmountReg);
Misha Brukman1013ef52004-07-21 20:09:08 +00002260 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002261 .addReg(TmpReg1);
2262 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2263 .addReg(TmpReg3);
2264 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002265 .addSImm(-32);
2266 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002267 .addReg(TmpReg5);
Misha Brukman1013ef52004-07-21 20:09:08 +00002268 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
Misha Brukman2fec9902004-06-21 20:22:03 +00002269 .addReg(TmpReg6);
Misha Brukman1013ef52004-07-21 20:09:08 +00002270 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002271 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002272 }
2273 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002274 }
2275 return;
2276 }
2277
2278 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2279 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2280 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2281 unsigned Amount = CUI->getValue();
2282
Misha Brukman422791f2004-06-21 17:41:12 +00002283 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002284 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2285 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002286 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002287 if (isSigned) {
2288 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2289 } else {
2290 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2291 .addImm(32-Amount).addImm(Amount).addImm(31);
2292 }
Misha Brukman422791f2004-06-21 17:41:12 +00002293 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002294 } else { // The shift amount is non-constant.
2295 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2296
Misha Brukman422791f2004-06-21 17:41:12 +00002297 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002298 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2299 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002300 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002301 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2302 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002303 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002304 }
2305}
2306
2307
2308/// visitLoadInst - Implement LLVM load instructions
2309///
2310void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002311 static const unsigned Opcodes[] = {
2312 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2313 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002314 unsigned Class = getClassB(I.getType());
2315 unsigned Opcode = Opcodes[Class];
2316 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2317
2318 unsigned DestReg = getReg(I);
2319
2320 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002321 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002322 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002323 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2324 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002325 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002326 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002327 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002328 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002329 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002330
2331 if (Class == cLong) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002332 BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
2333 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002334 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00002335 BuildMI(BB, Opcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002336 }
2337 }
2338}
2339
2340/// visitStoreInst - Implement LLVM store instructions
2341///
2342void ISel::visitStoreInst(StoreInst &I) {
2343 unsigned ValReg = getReg(I.getOperand(0));
2344 unsigned AddressReg = getReg(I.getOperand(1));
2345
2346 const Type *ValTy = I.getOperand(0)->getType();
2347 unsigned Class = getClassB(ValTy);
2348
2349 if (Class == cLong) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002350 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
2351 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002352 return;
2353 }
2354
2355 static const unsigned Opcodes[] = {
2356 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2357 };
2358 unsigned Opcode = Opcodes[Class];
2359 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
Misha Brukman1013ef52004-07-21 20:09:08 +00002360 BuildMI(BB, Opcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002361}
2362
2363
2364/// visitCastInst - Here we have various kinds of copying with or without sign
2365/// extension going on.
2366///
2367void ISel::visitCastInst(CastInst &CI) {
2368 Value *Op = CI.getOperand(0);
2369
2370 unsigned SrcClass = getClassB(Op->getType());
2371 unsigned DestClass = getClassB(CI.getType());
2372 // Noop casts are not emitted: getReg will return the source operand as the
2373 // register to use for any uses of the noop cast.
2374 if (DestClass == SrcClass)
2375 return;
2376
2377 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2378 // of the case are GEP instructions, then the cast does not need to be
2379 // generated explicitly, it will be folded into the GEP.
2380 if (DestClass == cLong && SrcClass == cInt) {
2381 bool AllUsesAreGEPs = true;
2382 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2383 if (!isa<GetElementPtrInst>(*I)) {
2384 AllUsesAreGEPs = false;
2385 break;
2386 }
2387
2388 // No need to codegen this cast if all users are getelementptr instrs...
2389 if (AllUsesAreGEPs) return;
2390 }
2391
2392 unsigned DestReg = getReg(CI);
2393 MachineBasicBlock::iterator MI = BB->end();
2394 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2395}
2396
2397/// emitCastOperation - Common code shared between visitCastInst and constant
2398/// expression cast support.
2399///
Misha Brukman7e898c32004-07-20 00:41:46 +00002400void ISel::emitCastOperation(MachineBasicBlock *MBB,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002401 MachineBasicBlock::iterator IP,
2402 Value *Src, const Type *DestTy,
2403 unsigned DestReg) {
2404 const Type *SrcTy = Src->getType();
2405 unsigned SrcClass = getClassB(SrcTy);
2406 unsigned DestClass = getClassB(DestTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002407 unsigned SrcReg = getReg(Src, MBB, IP);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002408
2409 // Implement casts to bool by using compare on the operand followed by set if
2410 // not zero on the result.
2411 if (DestTy == Type::BoolTy) {
2412 switch (SrcClass) {
2413 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002414 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002415 case cInt: {
2416 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00002417 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
Misha Brukman7e898c32004-07-20 00:41:46 +00002418 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002419 break;
2420 }
2421 case cLong: {
2422 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2423 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002424 BuildMI(*MBB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00002425 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1);
Misha Brukmanbf417a62004-07-20 20:43:05 +00002426 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg)
2427 .addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002428 break;
2429 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002430 case cFP32:
2431 case cFP64:
2432 // FSEL perhaps?
Misha Brukmand18a31d2004-07-06 22:51:53 +00002433 std::cerr << "Cast fp-to-bool not implemented!";
2434 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002435 }
2436 return;
2437 }
2438
2439 // Implement casts between values of the same type class (as determined by
2440 // getClass) by using a register-to-register move.
2441 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002442 if (SrcClass <= cInt) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002443 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2444 } else if (SrcClass == cFP32 || SrcClass == cFP64) {
2445 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002446 } else if (SrcClass == cLong) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002447 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2448 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002449 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002450 } else {
2451 assert(0 && "Cannot handle this type of cast instruction!");
2452 abort();
2453 }
2454 return;
2455 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002456
2457 // Handle cast of Float -> Double
2458 if (SrcClass == cFP32 && DestClass == cFP64) {
2459 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2460 return;
2461 }
2462
2463 // Handle cast of Double -> Float
2464 if (SrcClass == cFP64 && DestClass == cFP32) {
2465 BuildMI(*MBB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
2466 return;
2467 }
2468
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002469 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2470 // or zero extension, depending on whether the source type was signed.
2471 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2472 SrcClass < DestClass) {
2473 bool isLong = DestClass == cLong;
Misha Brukman1013ef52004-07-21 20:09:08 +00002474 if (isLong) {
2475 DestClass = cInt;
2476 ++DestReg;
2477 }
2478
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002479 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2480 if (SrcClass < cInt) {
2481 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002482 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002483 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2484 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002485 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002486 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2487 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002488 }
2489 } else {
2490 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2491 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002492
2493 if (isLong) { // Handle upper 32 bits as appropriate...
Misha Brukman1013ef52004-07-21 20:09:08 +00002494 --DestReg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002495 if (isUnsigned) // Zero out top bits...
Misha Brukman1013ef52004-07-21 20:09:08 +00002496 BuildMI(*BB, IP, PPC32::LI, 1, DestReg).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002497 else // Sign extend bottom half...
Misha Brukman1013ef52004-07-21 20:09:08 +00002498 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg).addReg(DestReg).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002499 }
2500 return;
2501 }
2502
2503 // Special case long -> int ...
2504 if (SrcClass == cLong && DestClass == cInt) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002505 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1).addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002506 return;
2507 }
2508
2509 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2510 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2511 && SrcClass > DestClass) {
2512 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman1013ef52004-07-21 20:09:08 +00002513 unsigned source = (SrcClass == cLong) ? SrcReg+1 : SrcReg;
2514
Misha Brukman422791f2004-06-21 17:41:12 +00002515 if (isUnsigned) {
2516 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman1013ef52004-07-21 20:09:08 +00002517 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(source).addZImm(0)
Misha Brukman2fec9902004-06-21 20:22:03 +00002518 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002519 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002520 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
Misha Brukman1013ef52004-07-21 20:09:08 +00002521 DestReg).addReg(source);
Misha Brukman422791f2004-06-21 17:41:12 +00002522 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002523 return;
2524 }
2525
2526 // Handle casts from integer to floating point now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002527 if (DestClass == cFP32 || DestClass == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002528
Misha Brukman422791f2004-06-21 17:41:12 +00002529 // Emit a library call for long to float conversion
2530 if (SrcClass == cLong) {
2531 std::vector<ValueRecord> Args;
2532 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002533 Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002534 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002535 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002536 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002537 return;
2538 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002539
Misha Brukman7e898c32004-07-20 00:41:46 +00002540 // Make sure we're dealing with a full 32 bits
2541 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2542 promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
2543
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002544 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002545
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002546 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002547 // Also spill room for a special conversion constant
2548 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002549 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2550 int ValueFrameIdx =
2551 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2552
Misha Brukman422791f2004-06-21 17:41:12 +00002553 unsigned constantHi = makeAnotherReg(Type::IntTy);
2554 unsigned constantLo = makeAnotherReg(Type::IntTy);
2555 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2556 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2557
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002558 if (!SrcTy->isSigned()) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002559 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
2560 BuildMI(*BB, IP, PPC32::LI, 1, constantLo).addSImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002561 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2562 ConstantFrameIndex);
2563 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2564 ConstantFrameIndex, 4);
2565 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2566 ValueFrameIdx);
2567 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2568 ValueFrameIdx, 4);
2569 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2570 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002571 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2572 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2573 } else {
2574 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00002575 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
2576 BuildMI(*BB, IP, PPC32::LIS, 1, constantLo).addSImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002577 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2578 ConstantFrameIndex);
2579 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2580 ConstantFrameIndex, 4);
2581 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2582 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002583 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002584 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2585 ValueFrameIdx, 4);
2586 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2587 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002588 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002589 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002590 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002591 return;
2592 }
2593
2594 // Handle casts from floating point to integer now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002595 if (SrcClass == cFP32 || SrcClass == cFP64) {
Misha Brukman422791f2004-06-21 17:41:12 +00002596 // emit library call
2597 if (DestClass == cLong) {
2598 std::vector<ValueRecord> Args;
2599 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002600 Function *floatFn = (DestClass == cFP32) ? __fixsfdiFn : __fixdfdiFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002601 MachineInstr *TheCall =
Misha Brukman7e898c32004-07-20 00:41:46 +00002602 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002603 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002604 return;
2605 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002606
2607 int ValueFrameIdx =
Misha Brukman7e898c32004-07-20 00:41:46 +00002608 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002609
Misha Brukman7e898c32004-07-20 00:41:46 +00002610 if (DestTy->isSigned()) {
2611 unsigned LoadOp = (DestClass == cShort) ? PPC32::LHA : PPC32::LWZ;
Misha Brukman422791f2004-06-21 17:41:12 +00002612 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002613
2614 // Convert to integer in the FP reg and store it to a stack slot
Misha Brukman422791f2004-06-21 17:41:12 +00002615 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002616 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2617 .addReg(TempReg), ValueFrameIdx);
Misha Brukman7e898c32004-07-20 00:41:46 +00002618
2619 // There is no load signed byte opcode, so we must emit a sign extend
2620 if (DestClass == cByte) {
2621 unsigned TempReg2 = makeAnotherReg(DestTy);
2622 addFrameReference(BuildMI(*BB, IP, LoadOp, 2, TempReg2),
Misha Brukmanec6319a2004-07-20 15:51:37 +00002623 ValueFrameIdx, 4);
Misha Brukman7e898c32004-07-20 00:41:46 +00002624 BuildMI(*MBB, IP, PPC32::EXTSB, DestReg).addReg(TempReg2);
2625 } else {
2626 addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg),
Misha Brukmanec6319a2004-07-20 15:51:37 +00002627 ValueFrameIdx, 4);
Misha Brukman7e898c32004-07-20 00:41:46 +00002628 }
2629 } else {
2630 std::cerr << "Cast fp-to-unsigned not implemented!";
2631 abort();
2632 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002633 return;
2634 }
2635
2636 // Anything we haven't handled already, we can't (yet) handle at all.
2637 assert(0 && "Unhandled cast instruction!");
2638 abort();
2639}
2640
2641/// visitVANextInst - Implement the va_next instruction...
2642///
2643void ISel::visitVANextInst(VANextInst &I) {
2644 unsigned VAList = getReg(I.getOperand(0));
2645 unsigned DestReg = getReg(I);
2646
2647 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002648 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002649 default:
2650 std::cerr << I;
2651 assert(0 && "Error: bad type for va_next instruction!");
2652 return;
2653 case Type::PointerTyID:
2654 case Type::UIntTyID:
2655 case Type::IntTyID:
2656 Size = 4;
2657 break;
2658 case Type::ULongTyID:
2659 case Type::LongTyID:
2660 case Type::DoubleTyID:
2661 Size = 8;
2662 break;
2663 }
2664
2665 // Increment the VAList pointer...
Misha Brukman1013ef52004-07-21 20:09:08 +00002666 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002667}
2668
2669void ISel::visitVAArgInst(VAArgInst &I) {
2670 unsigned VAList = getReg(I.getOperand(0));
2671 unsigned DestReg = getReg(I);
2672
Misha Brukman358829f2004-06-21 17:25:55 +00002673 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002674 default:
2675 std::cerr << I;
2676 assert(0 && "Error: bad type for va_next instruction!");
2677 return;
2678 case Type::PointerTyID:
2679 case Type::UIntTyID:
2680 case Type::IntTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00002681 BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002682 break;
2683 case Type::ULongTyID:
2684 case Type::LongTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00002685 BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
2686 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002687 break;
2688 case Type::DoubleTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00002689 BuildMI(BB, PPC32::LFD, 2, DestReg).addSImm(0).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002690 break;
2691 }
2692}
2693
2694/// visitGetElementPtrInst - instruction-select GEP instructions
2695///
2696void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2697 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002698 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2699 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002700}
2701
Misha Brukman1013ef52004-07-21 20:09:08 +00002702/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
2703/// constant expression GEP support.
2704///
Misha Brukman17a90002004-07-21 20:22:06 +00002705void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2706 MachineBasicBlock::iterator IP,
2707 Value *Src, User::op_iterator IdxBegin,
2708 User::op_iterator IdxEnd, unsigned TargetReg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002709 const TargetData &TD = TM.getTargetData ();
2710 const Type *Ty = Src->getType ();
2711 unsigned basePtrReg = getReg (Src, MBB, IP);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002712
Misha Brukman1013ef52004-07-21 20:09:08 +00002713 // GEPs have zero or more indices; we must perform a struct access
2714 // or array access for each one.
2715 for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
2716 ++oi) {
2717 Value *idx = *oi;
2718 unsigned nextBasePtrReg = makeAnotherReg (Type::UIntTy);
2719 if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
2720 // It's a struct access. idx is the index into the structure,
2721 // which names the field. Use the TargetData structure to
2722 // pick out what the layout of the structure is in memory.
2723 // Use the (constant) structure index's value to find the
2724 // right byte offset from the StructLayout class's list of
2725 // structure member offsets.
2726 unsigned fieldIndex = cast<ConstantUInt> (idx)->getValue ();
2727 unsigned memberOffset =
2728 TD.getStructLayout (StTy)->MemberOffsets[fieldIndex];
2729 // Emit an ADDI to add memberOffset to the basePtr.
2730 BuildMI (*MBB, IP, PPC32::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
2731 .addSImm(memberOffset);
2732 // The next type is the member of the structure selected by the
2733 // index.
2734 Ty = StTy->getElementType (fieldIndex);
2735 } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
Misha Brukman313efcb2004-07-09 15:45:07 +00002736 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
2737 // operand. Handle this case directly now...
2738 if (CastInst *CI = dyn_cast<CastInst>(idx))
2739 if (CI->getOperand(0)->getType() == Type::IntTy ||
2740 CI->getOperand(0)->getType() == Type::UIntTy)
2741 idx = CI->getOperand(0);
Misha Brukman1013ef52004-07-21 20:09:08 +00002742
2743 Ty = SqTy->getElementType();
2744 unsigned elementSize = TD.getTypeSize (Ty);
2745
Misha Brukman313efcb2004-07-09 15:45:07 +00002746 if (idx == Constant::getNullValue(idx->getType())) {
2747 // GEP with idx 0 is a no-op
Misha Brukman1013ef52004-07-21 20:09:08 +00002748 nextBasePtrReg = basePtrReg;
Misha Brukman313efcb2004-07-09 15:45:07 +00002749 } else if (elementSize == 1) {
2750 // If the element size is 1, we don't have to multiply, just add
2751 unsigned idxReg = getReg(idx, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00002752 BuildMI(*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
2753 .addReg(idxReg);
Misha Brukman313efcb2004-07-09 15:45:07 +00002754 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00002755 // It's an array or pointer access: [ArraySize x ElementType].
2756 // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
2757 // must find the size of the pointed-to type (Not coincidentally, the next
2758 // type is the type of the elements in the array).
2759 unsigned OffsetReg = makeAnotherReg(idx->getType());
2760 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, elementSize);
2761 doMultiplyConst(MBB, IP, OffsetReg, idx, CUI);
Misha Brukman7e898c32004-07-20 00:41:46 +00002762
Misha Brukman1013ef52004-07-21 20:09:08 +00002763 // Deal with long indices
2764 if (getClass(idx->getType()) == cLong) ++OffsetReg;
2765
2766 // Emit an ADD to add OffsetReg to the basePtr.
2767 BuildMI (*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
2768 .addReg(OffsetReg);
Misha Brukman313efcb2004-07-09 15:45:07 +00002769 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002770 }
Misha Brukman1013ef52004-07-21 20:09:08 +00002771 basePtrReg = nextBasePtrReg;
Misha Brukman2fec9902004-06-21 20:22:03 +00002772 }
Misha Brukman1013ef52004-07-21 20:09:08 +00002773 // After we have processed all the indices, the result is left in
2774 // basePtrReg. Move it to the register where we were expected to
2775 // put the answer.
2776 BuildMI (BB, PPC32::OR, 2, TargetReg).addReg(basePtrReg).addReg(basePtrReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002777}
2778
2779/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2780/// frame manager, otherwise do it the hard way.
2781///
2782void ISel::visitAllocaInst(AllocaInst &I) {
2783 // If this is a fixed size alloca in the entry block for the function, we
2784 // statically stack allocate the space, so we don't need to do anything here.
2785 //
2786 if (dyn_castFixedAlloca(&I)) return;
2787
2788 // Find the data size of the alloca inst's getAllocatedType.
2789 const Type *Ty = I.getAllocatedType();
2790 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2791
2792 // Create a register to hold the temporary result of multiplying the type size
2793 // constant by the variable amount.
2794 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002795
2796 // TotalSizeReg = mul <numelements>, <TypeSize>
2797 MachineBasicBlock::iterator MBBI = BB->end();
Misha Brukman1013ef52004-07-21 20:09:08 +00002798 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
2799 doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002800
2801 // AddedSize = add <TotalSizeReg>, 15
2802 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00002803 BuildMI(BB, PPC32::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002804
2805 // AlignedSize = and <AddedSize>, ~15
2806 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukmana31f1f72004-07-21 20:30:18 +00002807 BuildMI(BB, PPC32::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
Misha Brukman2fec9902004-06-21 20:22:03 +00002808 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002809
2810 // Subtract size from stack pointer, thereby allocating some space.
2811 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2812
2813 // Put a pointer to the space into the result register, by copying
2814 // the stack pointer.
2815 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2816
2817 // Inform the Frame Information that we have just allocated a variable-sized
2818 // object.
2819 F->getFrameInfo()->CreateVariableSizedObject();
2820}
2821
2822/// visitMallocInst - Malloc instructions are code generated into direct calls
2823/// to the library malloc.
2824///
2825void ISel::visitMallocInst(MallocInst &I) {
2826 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2827 unsigned Arg;
2828
2829 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2830 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2831 } else {
2832 Arg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002833 MachineBasicBlock::iterator MBBI = BB->end();
Misha Brukman1013ef52004-07-21 20:09:08 +00002834 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
2835 doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002836 }
2837
2838 std::vector<ValueRecord> Args;
2839 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002840 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002841 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002842 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002843}
2844
2845
2846/// visitFreeInst - Free instructions are code gen'd to call the free libc
2847/// function.
2848///
2849void ISel::visitFreeInst(FreeInst &I) {
2850 std::vector<ValueRecord> Args;
2851 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002852 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002853 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(freeFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002854 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002855}
2856
2857/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2858/// into a machine code representation is a very simple peep-hole fashion. The
2859/// generated code sucks but the implementation is nice and simple.
2860///
2861FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2862 return new ISel(TM);
2863}