blob: 8c212dcf14a3b94ceadb3b21d437ea6c86d423ea [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000020#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000028#include "Support/Debug.h"
29#include <vector>
Chris Lattner98599d02004-07-11 02:48:28 +000030#include <iostream>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000031using namespace llvm;
32
33namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000034 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
35 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000036 ///
37 enum TypeClass {
Misha Brukman7e898c32004-07-20 00:41:46 +000038 cByte, cShort, cInt, cFP32, cFP64, cLong
Misha Brukman5dfe3a92004-06-21 16:55:25 +000039 };
40}
41
42/// getClass - Turn a primitive type into a "class" number which is based on the
43/// size of the type, and whether or not it is floating point.
44///
45static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000046 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000047 case Type::SByteTyID:
48 case Type::UByteTyID: return cByte; // Byte operands are class #0
49 case Type::ShortTyID:
50 case Type::UShortTyID: return cShort; // Short operands are class #1
51 case Type::IntTyID:
52 case Type::UIntTyID:
Misha Brukman2834a4d2004-07-07 20:07:22 +000053 case Type::PointerTyID: return cInt; // Ints and pointers are class #2
Misha Brukman5dfe3a92004-06-21 16:55:25 +000054
Misha Brukman7e898c32004-07-20 00:41:46 +000055 case Type::FloatTyID: return cFP32; // Single float is #3
56 case Type::DoubleTyID: return cFP64; // Double Point is #4
Misha Brukman5dfe3a92004-06-21 16:55:25 +000057
58 case Type::LongTyID:
Misha Brukman7e898c32004-07-20 00:41:46 +000059 case Type::ULongTyID: return cLong; // Longs are class #5
Misha Brukman5dfe3a92004-06-21 16:55:25 +000060 default:
61 assert(0 && "Invalid type to getClass!");
62 return cByte; // not reached
63 }
64}
65
66// getClassB - Just like getClass, but treat boolean values as ints.
67static inline TypeClass getClassB(const Type *Ty) {
68 if (Ty == Type::BoolTy) return cInt;
69 return getClass(Ty);
70}
71
72namespace {
73 struct ISel : public FunctionPass, InstVisitor<ISel> {
74 TargetMachine &TM;
75 MachineFunction *F; // The function we are compiling into
76 MachineBasicBlock *BB; // The current MBB we are compiling
77 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Misha Brukman5dfe3a92004-06-21 16:55:25 +000078
Misha Brukman313efcb2004-07-09 15:45:07 +000079 std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
Misha Brukman5dfe3a92004-06-21 16:55:25 +000080
Misha Brukman2834a4d2004-07-07 20:07:22 +000081 // External functions used in the Module
Misha Brukman7e898c32004-07-20 00:41:46 +000082 Function *fmodfFn, *fmodFn, *__moddi3Fn, *__divdi3Fn, *__umoddi3Fn,
83 *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__floatdisfFn, *__floatdidfFn,
84 *mallocFn, *freeFn;
Misha Brukman2834a4d2004-07-07 20:07:22 +000085
Misha Brukman5dfe3a92004-06-21 16:55:25 +000086 // MBBMap - Mapping between LLVM BB -> Machine BB
87 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
88
89 // AllocaMap - Mapping from fixed sized alloca instructions to the
90 // FrameIndex for the alloca.
91 std::map<AllocaInst*, unsigned> AllocaMap;
92
93 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
94
Misha Brukman2834a4d2004-07-07 20:07:22 +000095 bool doInitialization(Module &M) {
Misha Brukmanb0932592004-07-07 15:36:18 +000096 // Add external functions that we may call
Misha Brukman2834a4d2004-07-07 20:07:22 +000097 Type *d = Type::DoubleTy;
Misha Brukmanf3f63822004-07-08 19:41:16 +000098 Type *f = Type::FloatTy;
Misha Brukman2834a4d2004-07-07 20:07:22 +000099 Type *l = Type::LongTy;
100 Type *ul = Type::ULongTy;
Misha Brukman313efcb2004-07-09 15:45:07 +0000101 Type *voidPtr = PointerType::get(Type::SByteTy);
Misha Brukman7e898c32004-07-20 00:41:46 +0000102 // float fmodf(float, float);
103 fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000104 // double fmod(double, double);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000105 fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000106 // long __moddi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000107 __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000108 // long __divdi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000109 __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000110 // unsigned long __umoddi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000111 __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000112 // unsigned long __udivdi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000113 __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
Misha Brukman7e898c32004-07-20 00:41:46 +0000114 // long __fixsfdi(float)
115 __fixdfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
Misha Brukmanf3f63822004-07-08 19:41:16 +0000116 // long __fixdfdi(double)
117 __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
118 // float __floatdisf(long)
119 __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
120 // double __floatdidf(long)
121 __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
Misha Brukman313efcb2004-07-09 15:45:07 +0000122 // void* malloc(size_t)
123 mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
124 // void free(void*)
125 freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000126 return false;
127 }
Misha Brukmand18a31d2004-07-06 22:51:53 +0000128
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000129 /// runOnFunction - Top level implementation of instruction selection for
130 /// the entire function.
131 ///
132 bool runOnFunction(Function &Fn) {
133 // First pass over the function, lower any unknown intrinsic functions
134 // with the IntrinsicLowering class.
135 LowerUnknownIntrinsicFunctionCalls(Fn);
136
137 F = &MachineFunction::construct(&Fn, TM);
138
139 // Create all of the machine basic blocks for the function...
140 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
141 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
142
143 BB = &F->front();
144
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000145 // Copy incoming arguments off of the stack...
146 LoadArgumentsToVirtualRegs(Fn);
147
148 // Instruction select everything except PHI nodes
149 visit(Fn);
150
151 // Select the PHI nodes
152 SelectPHINodes();
153
154 RegMap.clear();
155 MBBMap.clear();
156 AllocaMap.clear();
157 F = 0;
158 // We always build a machine code representation for the function
159 return true;
160 }
161
162 virtual const char *getPassName() const {
163 return "PowerPC Simple Instruction Selection";
164 }
165
166 /// visitBasicBlock - This method is called when we are visiting a new basic
167 /// block. This simply creates a new MachineBasicBlock to emit code into
168 /// and adds it to the current MachineFunction. Subsequent visit* for
169 /// instructions will be invoked for all instructions in the basic block.
170 ///
171 void visitBasicBlock(BasicBlock &LLVM_BB) {
172 BB = MBBMap[&LLVM_BB];
173 }
174
175 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
176 /// function, lowering any calls to unknown intrinsic functions into the
177 /// equivalent LLVM code.
178 ///
179 void LowerUnknownIntrinsicFunctionCalls(Function &F);
180
181 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
182 /// from the stack into virtual registers.
183 ///
184 void LoadArgumentsToVirtualRegs(Function &F);
185
186 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
187 /// because we have to generate our sources into the source basic blocks,
188 /// not the current one.
189 ///
190 void SelectPHINodes();
191
192 // Visitation methods for various instructions. These methods simply emit
193 // fixed PowerPC code for each instruction.
194
195 // Control flow operators
196 void visitReturnInst(ReturnInst &RI);
197 void visitBranchInst(BranchInst &BI);
198
199 struct ValueRecord {
200 Value *Val;
201 unsigned Reg;
202 const Type *Ty;
203 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
204 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
205 };
206 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +0000207 const std::vector<ValueRecord> &Args, bool isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000208 void visitCallInst(CallInst &I);
209 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
210
211 // Arithmetic operators
212 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
213 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
214 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
215 void visitMul(BinaryOperator &B);
216
217 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
218 void visitRem(BinaryOperator &B) { visitDivRem(B); }
219 void visitDivRem(BinaryOperator &B);
220
221 // Bitwise operators
222 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
223 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
224 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
225
226 // Comparison operators...
227 void visitSetCondInst(SetCondInst &I);
228 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
229 MachineBasicBlock *MBB,
230 MachineBasicBlock::iterator MBBI);
231 void visitSelectInst(SelectInst &SI);
232
233
234 // Memory Instructions
235 void visitLoadInst(LoadInst &I);
236 void visitStoreInst(StoreInst &I);
237 void visitGetElementPtrInst(GetElementPtrInst &I);
238 void visitAllocaInst(AllocaInst &I);
239 void visitMallocInst(MallocInst &I);
240 void visitFreeInst(FreeInst &I);
241
242 // Other operators
243 void visitShiftInst(ShiftInst &I);
244 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
245 void visitCastInst(CastInst &I);
246 void visitVANextInst(VANextInst &I);
247 void visitVAArgInst(VAArgInst &I);
248
249 void visitInstruction(Instruction &I) {
250 std::cerr << "Cannot instruction select: " << I;
251 abort();
252 }
253
254 /// promote32 - Make a value 32-bits wide, and put it somewhere.
255 ///
256 void promote32(unsigned targetReg, const ValueRecord &VR);
257
258 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
259 /// constant expression GEP support.
260 ///
261 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
262 Value *Src, User::op_iterator IdxBegin,
263 User::op_iterator IdxEnd, unsigned TargetReg);
264
265 /// emitCastOperation - Common code shared between visitCastInst and
266 /// constant expression cast support.
267 ///
268 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
269 Value *Src, const Type *DestTy, unsigned TargetReg);
270
271 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
272 /// and constant expression support.
273 ///
274 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
275 MachineBasicBlock::iterator IP,
276 Value *Op0, Value *Op1,
277 unsigned OperatorClass, unsigned TargetReg);
278
279 /// emitBinaryFPOperation - This method handles emission of floating point
280 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
281 void emitBinaryFPOperation(MachineBasicBlock *BB,
282 MachineBasicBlock::iterator IP,
283 Value *Op0, Value *Op1,
284 unsigned OperatorClass, unsigned TargetReg);
285
286 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
287 Value *Op0, Value *Op1, unsigned TargetReg);
288
289 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
290 unsigned DestReg, const Type *DestTy,
291 unsigned Op0Reg, unsigned Op1Reg);
292 void doMultiplyConst(MachineBasicBlock *MBB,
293 MachineBasicBlock::iterator MBBI,
294 unsigned DestReg, const Type *DestTy,
295 unsigned Op0Reg, unsigned Op1Val);
296
297 void emitDivRemOperation(MachineBasicBlock *BB,
298 MachineBasicBlock::iterator IP,
299 Value *Op0, Value *Op1, bool isDiv,
300 unsigned TargetReg);
301
302 /// emitSetCCOperation - Common code shared between visitSetCondInst and
303 /// constant expression support.
304 ///
305 void emitSetCCOperation(MachineBasicBlock *BB,
306 MachineBasicBlock::iterator IP,
307 Value *Op0, Value *Op1, unsigned Opcode,
308 unsigned TargetReg);
309
310 /// emitShiftOperation - Common code shared between visitShiftInst and
311 /// constant expression support.
312 ///
313 void emitShiftOperation(MachineBasicBlock *MBB,
314 MachineBasicBlock::iterator IP,
315 Value *Op, Value *ShiftAmount, bool isLeftShift,
316 const Type *ResultTy, unsigned DestReg);
317
318 /// emitSelectOperation - Common code shared between visitSelectInst and the
319 /// constant expression support.
320 void emitSelectOperation(MachineBasicBlock *MBB,
321 MachineBasicBlock::iterator IP,
322 Value *Cond, Value *TrueVal, Value *FalseVal,
323 unsigned DestReg);
324
325 /// copyConstantToRegister - Output the instructions required to put the
326 /// specified constant into the specified register.
327 ///
328 void copyConstantToRegister(MachineBasicBlock *MBB,
329 MachineBasicBlock::iterator MBBI,
330 Constant *C, unsigned Reg);
331
332 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
333 unsigned LHS, unsigned RHS);
334
335 /// makeAnotherReg - This method returns the next register number we haven't
336 /// yet used.
337 ///
338 /// Long values are handled somewhat specially. They are always allocated
339 /// as pairs of 32 bit integer values. The register number returned is the
340 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
341 /// of the long value.
342 ///
343 unsigned makeAnotherReg(const Type *Ty) {
344 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
345 "Current target doesn't have PPC reg info??");
346 const PowerPCRegisterInfo *MRI =
347 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
348 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
349 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
350 // Create the lower part
351 F->getSSARegMap()->createVirtualRegister(RC);
352 // Create the upper part.
353 return F->getSSARegMap()->createVirtualRegister(RC)-1;
354 }
355
356 // Add the mapping of regnumber => reg class to MachineFunction
357 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
358 return F->getSSARegMap()->createVirtualRegister(RC);
359 }
360
361 /// getReg - This method turns an LLVM value into a register number.
362 ///
363 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
364 unsigned getReg(Value *V) {
365 // Just append to the end of the current bb.
366 MachineBasicBlock::iterator It = BB->end();
367 return getReg(V, BB, It);
368 }
369 unsigned getReg(Value *V, MachineBasicBlock *MBB,
370 MachineBasicBlock::iterator IPt);
371
372 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
373 /// that is to be statically allocated with the initial stack frame
374 /// adjustment.
375 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
376 };
377}
378
379/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
380/// instruction in the entry block, return it. Otherwise, return a null
381/// pointer.
382static AllocaInst *dyn_castFixedAlloca(Value *V) {
383 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
384 BasicBlock *BB = AI->getParent();
385 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
386 return AI;
387 }
388 return 0;
389}
390
391/// getReg - This method turns an LLVM value into a register number.
392///
393unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
394 MachineBasicBlock::iterator IPt) {
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000395 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattnera51e4f62004-07-18 18:45:01 +0000396 unsigned Reg = makeAnotherReg(V->getType());
397 copyConstantToRegister(MBB, IPt, C, Reg);
398 return Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000399 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
400 // Do not emit noop casts at all.
401 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
402 return getReg(CI->getOperand(0), MBB, IPt);
403 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
404 unsigned Reg = makeAnotherReg(V->getType());
405 unsigned FI = getFixedSizedAllocaFI(AI);
406 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
407 return Reg;
408 }
409
410 unsigned &Reg = RegMap[V];
411 if (Reg == 0) {
412 Reg = makeAnotherReg(V->getType());
413 RegMap[V] = Reg;
414 }
415
416 return Reg;
417}
418
419/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
420/// that is to be statically allocated with the initial stack frame
421/// adjustment.
422unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
423 // Already computed this?
424 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
425 if (I != AllocaMap.end() && I->first == AI) return I->second;
426
427 const Type *Ty = AI->getAllocatedType();
428 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
429 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
430 TySize *= CUI->getValue(); // Get total allocated size...
431 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
432
433 // Create a new stack object using the frame manager...
434 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
435 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
436 return FrameIdx;
437}
438
439
440/// copyConstantToRegister - Output the instructions required to put the
441/// specified constant into the specified register.
442///
443void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
444 MachineBasicBlock::iterator IP,
445 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000446 if (C->getType()->isIntegral()) {
447 unsigned Class = getClassB(C->getType());
448
449 if (Class == cLong) {
450 // Copy the value into the register pair.
451 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman7e898c32004-07-20 00:41:46 +0000452
453 if (Val < (1ULL << 16)) {
454 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(Val & 0xFFFF);
455 BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addImm(0);
456 } else if (Val < (1ULL << 32)) {
457 unsigned Temp = makeAnotherReg(Type::IntTy);
458 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addImm((Val >> 16) & 0xFFFF);
459 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(Temp).addImm(Val & 0xFFFF);
460 BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addImm(0);
461 } else if (Val < (1ULL << 48)) {
462 unsigned Temp = makeAnotherReg(Type::IntTy);
463 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addImm((Val >> 16) & 0xFFFF);
464 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(Temp).addImm(Val & 0xFFFF);
465 BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addImm((Val >> 32) & 0xFFFF);
466 } else {
467 unsigned TempLo = makeAnotherReg(Type::IntTy);
468 unsigned TempHi = makeAnotherReg(Type::IntTy);
469 BuildMI(*MBB, IP, PPC32::LIS, 1, TempLo).addImm((Val >> 16) & 0xFFFF);
470 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TempLo).addImm(Val & 0xFFFF);
471 BuildMI(*MBB, IP, PPC32::LIS, 1, TempHi).addImm((Val >> 48) & 0xFFFF);
472 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(TempHi)
473 .addImm((Val >> 32) & 0xFFFF);
474 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000475 return;
476 }
477
478 assert(Class <= cInt && "Type not handled yet!");
479
480 if (C->getType() == Type::BoolTy) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000481 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000482 } else if (Class == cByte || Class == cShort) {
483 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukmanbebde752004-07-16 21:06:24 +0000484 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000485 } else {
486 ConstantInt *CI = cast<ConstantInt>(C);
487 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
488 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000489 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000490 } else {
491 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +0000492 BuildMI(*MBB, IP, PPC32::LIS, 1, TmpReg)
Misha Brukman911afde2004-06-25 14:50:41 +0000493 .addImm(CI->getRawValue() >> 16);
494 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
495 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000496 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000497 }
498 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000499 // We need to spill the constant to memory...
500 MachineConstantPool *CP = F->getConstantPool();
501 unsigned CPI = CP->getConstantPoolIndex(CFP);
502 const Type *Ty = CFP->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000503
Misha Brukmand18a31d2004-07-06 22:51:53 +0000504 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukmanfc879c32004-07-08 18:02:38 +0000505
506 // Load addr of constant to reg; constant is located at PC + distance
507 unsigned CurPC = makeAnotherReg(Type::IntTy);
508 unsigned Reg1 = makeAnotherReg(Type::IntTy);
509 unsigned Reg2 = makeAnotherReg(Type::IntTy);
510 // Move PC to destination reg
511 BuildMI(*MBB, IP, PPC32::MovePCtoLR, 0, CurPC);
512 // Move value at PC + distance into return reg
513 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
514 .addConstantPoolIndex(CPI);
Misha Brukmanec6319a2004-07-20 15:51:37 +0000515 BuildMI(*MBB, IP, PPC32::LOADLoDirect, 2, Reg2).addReg(Reg1)
Misha Brukmanfc879c32004-07-08 18:02:38 +0000516 .addConstantPoolIndex(CPI);
517
Misha Brukmand18a31d2004-07-06 22:51:53 +0000518 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukmanfc879c32004-07-08 18:02:38 +0000519 BuildMI(*MBB, IP, LoadOpcode, 2, R).addImm(0).addReg(Reg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000520 } else if (isa<ConstantPointerNull>(C)) {
521 // Copy zero (null pointer) to the register.
Misha Brukmanbebde752004-07-16 21:06:24 +0000522 BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(0);
Chris Lattner67910e12004-07-18 07:29:35 +0000523 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000524 // GV is located at PC + distance
525 unsigned CurPC = makeAnotherReg(Type::IntTy);
526 unsigned TmpReg = makeAnotherReg(GV->getType());
Misha Brukmanbf417a62004-07-20 20:43:05 +0000527 unsigned Opcode = (GV->hasWeakLinkage() || GV->isExternal()) ?
528 PPC32::LOADLoIndirect : PPC32::LOADLoDirect;
Misha Brukmanec6319a2004-07-20 15:51:37 +0000529
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000530 // Move PC to destination reg
531 BuildMI(*MBB, IP, PPC32::MovePCtoLR, 0, CurPC);
532 // Move value at PC + distance into return reg
533 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, TmpReg).addReg(CurPC)
534 .addGlobalAddress(GV);
Misha Brukmanec6319a2004-07-20 15:51:37 +0000535 BuildMI(*MBB, IP, Opcode, 2, R).addReg(TmpReg).addGlobalAddress(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000536 } else {
Chris Lattner76e2df22004-07-15 02:14:30 +0000537 std::cerr << "Offending constant: " << *C << "\n";
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000538 assert(0 && "Type not handled yet!");
539 }
540}
541
542/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
543/// the stack into virtual registers.
544///
545/// FIXME: When we can calculate which args are coming in via registers
546/// source them from there instead.
547void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000548 unsigned ArgOffset = 20; // FIXME why is this not 24?
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000549 unsigned GPR_remaining = 8;
550 unsigned FPR_remaining = 13;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000551 unsigned GPR_idx = 0, FPR_idx = 0;
552 static const unsigned GPR[] = {
553 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
554 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
555 };
556 static const unsigned FPR[] = {
Misha Brukman32caa8d2004-07-14 17:57:04 +0000557 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7,
Misha Brukman2834a4d2004-07-07 20:07:22 +0000558 PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13
Misha Brukmand18a31d2004-07-06 22:51:53 +0000559 };
Misha Brukman422791f2004-06-21 17:41:12 +0000560
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000561 MachineFrameInfo *MFI = F->getFrameInfo();
Misha Brukmand18a31d2004-07-06 22:51:53 +0000562
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000563 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
564 bool ArgLive = !I->use_empty();
565 unsigned Reg = ArgLive ? getReg(*I) : 0;
566 int FI; // Frame object index
567
568 switch (getClassB(I->getType())) {
569 case cByte:
570 if (ArgLive) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000571 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000572 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000573 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000574 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
575 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000576 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000577 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000578 }
579 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000580 break;
581 case cShort:
582 if (ArgLive) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000583 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000584 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000585 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000586 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
587 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000588 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000589 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000590 }
591 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000592 break;
593 case cInt:
594 if (ArgLive) {
595 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000596 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000597 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000598 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
599 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000600 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000601 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000602 }
603 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000604 break;
605 case cLong:
606 if (ArgLive) {
607 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000608 if (GPR_remaining > 1) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000609 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
610 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
Misha Brukman313efcb2004-07-09 15:45:07 +0000611 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
612 .addReg(GPR[GPR_idx]);
613 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
614 .addReg(GPR[GPR_idx+1]);
Misha Brukman422791f2004-06-21 17:41:12 +0000615 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +0000616 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
617 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
Misha Brukman422791f2004-06-21 17:41:12 +0000618 }
619 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000620 ArgOffset += 4; // longs require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000621 if (GPR_remaining > 1) {
622 GPR_remaining--; // uses up 2 GPRs
623 GPR_idx++;
624 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000625 break;
Misha Brukman7e898c32004-07-20 00:41:46 +0000626 case cFP32:
627 if (ArgLive) {
628 FI = MFI->CreateFixedObject(4, ArgOffset);
629
Misha Brukman422791f2004-06-21 17:41:12 +0000630 if (FPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000631 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000632 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
633 FPR_remaining--;
634 FPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000635 } else {
Misha Brukman7e898c32004-07-20 00:41:46 +0000636 addFrameReference(BuildMI(BB, PPC32::LFS, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000637 }
638 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000639 break;
640 case cFP64:
641 if (ArgLive) {
642 FI = MFI->CreateFixedObject(8, ArgOffset);
643
644 if (FPR_remaining > 0) {
645 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
646 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
647 FPR_remaining--;
648 FPR_idx++;
649 } else {
650 addFrameReference(BuildMI(BB, PPC32::LFD, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000651 }
652 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000653
654 // doubles require 4 additional bytes and use 2 GPRs of param space
655 ArgOffset += 4;
656 if (GPR_remaining > 0) {
657 GPR_remaining--;
658 GPR_idx++;
659 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000660 break;
661 default:
662 assert(0 && "Unhandled argument type!");
663 }
664 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000665 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000666 GPR_remaining--; // uses up 2 GPRs
667 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000668 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000669 }
670
671 // If the function takes variable number of arguments, add a frame offset for
672 // the start of the first vararg value... this is used to expand
673 // llvm.va_start.
674 if (Fn.getFunctionType()->isVarArg())
675 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
676}
677
678
679/// SelectPHINodes - Insert machine code to generate phis. This is tricky
680/// because we have to generate our sources into the source basic blocks, not
681/// the current one.
682///
683void ISel::SelectPHINodes() {
684 const TargetInstrInfo &TII = *TM.getInstrInfo();
685 const Function &LF = *F->getFunction(); // The LLVM function...
686 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
687 const BasicBlock *BB = I;
688 MachineBasicBlock &MBB = *MBBMap[I];
689
690 // Loop over all of the PHI nodes in the LLVM basic block...
691 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
692 for (BasicBlock::const_iterator I = BB->begin();
693 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
694
695 // Create a new machine instr PHI node, and insert it.
696 unsigned PHIReg = getReg(*PN);
697 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
698 PPC32::PHI, PN->getNumOperands(), PHIReg);
699
700 MachineInstr *LongPhiMI = 0;
701 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
702 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
703 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
704
705 // PHIValues - Map of blocks to incoming virtual registers. We use this
706 // so that we only initialize one incoming value for a particular block,
707 // even if the block has multiple entries in the PHI node.
708 //
709 std::map<MachineBasicBlock*, unsigned> PHIValues;
710
711 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Misha Brukman313efcb2004-07-09 15:45:07 +0000712 MachineBasicBlock *PredMBB = 0;
713 for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
714 PE = MBB.pred_end (); PI != PE; ++PI)
715 if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
716 PredMBB = *PI;
717 break;
718 }
719 assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
720
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000721 unsigned ValReg;
722 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
723 PHIValues.lower_bound(PredMBB);
724
725 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
726 // We already inserted an initialization of the register for this
727 // predecessor. Recycle it.
728 ValReg = EntryIt->second;
729
730 } else {
731 // Get the incoming value into a virtual register.
732 //
733 Value *Val = PN->getIncomingValue(i);
734
735 // If this is a constant or GlobalValue, we may have to insert code
736 // into the basic block to compute it into a virtual register.
737 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
738 isa<GlobalValue>(Val)) {
739 // Simple constants get emitted at the end of the basic block,
740 // before any terminator instructions. We "know" that the code to
741 // move a constant into a register will never clobber any flags.
742 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
743 } else {
744 // Because we don't want to clobber any values which might be in
745 // physical registers with the computation of this constant (which
746 // might be arbitrarily complex if it is a constant expression),
747 // just insert the computation at the top of the basic block.
748 MachineBasicBlock::iterator PI = PredMBB->begin();
749
750 // Skip over any PHI nodes though!
751 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
752 ++PI;
753
754 ValReg = getReg(Val, PredMBB, PI);
755 }
756
757 // Remember that we inserted a value for this PHI for this predecessor
758 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
759 }
760
761 PhiMI->addRegOperand(ValReg);
762 PhiMI->addMachineBasicBlockOperand(PredMBB);
763 if (LongPhiMI) {
764 LongPhiMI->addRegOperand(ValReg+1);
765 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
766 }
767 }
768
769 // Now that we emitted all of the incoming values for the PHI node, make
770 // sure to reposition the InsertPoint after the PHI that we just added.
771 // This is needed because we might have inserted a constant into this
772 // block, right after the PHI's which is before the old insert point!
773 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
774 ++PHIInsertPoint;
775 }
776 }
777}
778
779
780// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
781// it into the conditional branch or select instruction which is the only user
782// of the cc instruction. This is the case if the conditional branch is the
783// only user of the setcc, and if the setcc is in the same basic block as the
784// conditional branch. We also don't handle long arguments below, so we reject
785// them here as well.
786//
787static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
788 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
789 if (SCI->hasOneUse()) {
790 Instruction *User = cast<Instruction>(SCI->use_back());
791 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
Misha Brukmanbebde752004-07-16 21:06:24 +0000792 SCI->getParent() == User->getParent())
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000793 return SCI;
794 }
795 return 0;
796}
797
798// Return a fixed numbering for setcc instructions which does not depend on the
799// order of the opcodes.
800//
801static unsigned getSetCCNumber(unsigned Opcode) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000802 switch (Opcode) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000803 default: assert(0 && "Unknown setcc instruction!");
804 case Instruction::SetEQ: return 0;
805 case Instruction::SetNE: return 1;
806 case Instruction::SetLT: return 2;
807 case Instruction::SetGE: return 3;
808 case Instruction::SetGT: return 4;
809 case Instruction::SetLE: return 5;
810 }
811}
812
Misha Brukmane9c65512004-07-06 15:32:44 +0000813static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
814 switch (Opcode) {
815 default: assert(0 && "Unknown setcc instruction!");
816 case Instruction::SetEQ: return PPC32::BEQ;
817 case Instruction::SetNE: return PPC32::BNE;
818 case Instruction::SetLT: return PPC32::BLT;
819 case Instruction::SetGE: return PPC32::BGE;
820 case Instruction::SetGT: return PPC32::BGT;
821 case Instruction::SetLE: return PPC32::BLE;
822 }
823}
824
825static unsigned invertPPCBranchOpcode(unsigned Opcode) {
826 switch (Opcode) {
827 default: assert(0 && "Unknown PPC32 branch opcode!");
828 case PPC32::BEQ: return PPC32::BNE;
829 case PPC32::BNE: return PPC32::BEQ;
830 case PPC32::BLT: return PPC32::BGE;
831 case PPC32::BGE: return PPC32::BLT;
832 case PPC32::BGT: return PPC32::BLE;
833 case PPC32::BLE: return PPC32::BGT;
834 }
835}
836
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000837/// emitUCOM - emits an unordered FP compare.
838void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
839 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000840 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000841}
842
Misha Brukmanbebde752004-07-16 21:06:24 +0000843/// EmitComparison - emits a comparison of the two operands, returning the
844/// extended setcc code to use. The result is in CR0.
845///
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000846unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
847 MachineBasicBlock *MBB,
848 MachineBasicBlock::iterator IP) {
849 // The arguments are already supposed to be of the same type.
850 const Type *CompTy = Op0->getType();
851 unsigned Class = getClassB(CompTy);
852 unsigned Op0r = getReg(Op0, MBB, IP);
853
854 // Special case handling of: cmp R, i
855 if (isa<ConstantPointerNull>(Op1)) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000856 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000857 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
858 if (Class == cByte || Class == cShort || Class == cInt) {
859 unsigned Op1v = CI->getRawValue();
860
861 // Mask off any upper bits of the constant, if there are any...
862 Op1v &= (1ULL << (8 << Class)) - 1;
863
Misha Brukman422791f2004-06-21 17:41:12 +0000864 // Compare immediate or promote to reg?
865 if (Op1v <= 32767) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000866 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
867 PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000868 } else {
869 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2fec9902004-06-21 20:22:03 +0000870 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
871 PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000872 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000873 return OpNum;
874 } else {
875 assert(Class == cLong && "Unknown integer class!");
876 unsigned LowCst = CI->getRawValue();
877 unsigned HiCst = CI->getRawValue() >> 32;
878 if (OpNum < 2) { // seteq, setne
879 unsigned LoTmp = Op0r;
880 if (LowCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000881 unsigned LoLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000882 unsigned LoTmp = makeAnotherReg(Type::IntTy);
883 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000884 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
885 .addImm(LowCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000886 }
887 unsigned HiTmp = Op0r+1;
888 if (HiCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000889 unsigned HiLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000890 unsigned HiTmp = makeAnotherReg(Type::IntTy);
891 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000892 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
893 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000894 }
895 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
896 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000897 return OpNum;
898 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +0000899 unsigned ConstReg = makeAnotherReg(CompTy);
900 unsigned CondReg = makeAnotherReg(Type::IntTy);
901 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
902 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
903 copyConstantToRegister(MBB, IP, CI, ConstReg);
904
905 // FIXME: this is inefficient, but avoids branches
906
907 // compare hi word -> cr0
908 // compare lo word -> cr1
909 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
910 PPC32::CR0).addImm(0).addReg(Op0r+1).addReg(ConstReg+1);
911 BuildMI(*MBB, IP, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(Op0r)
912 .addReg(ConstReg);
913 BuildMI(*MBB, IP, PPC32::MFCR, 0, CondReg);
914 // shift amount = 4 * CR0[EQ]
915 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg1).addReg(CondReg).addImm(5)
916 .addImm(29).addImm(29);
917 // shift cr1 into cr0 position if op0.hi and const.hi were equal
918 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(CondReg)
919 .addReg(TmpReg1);
920 // cr0 == ( op0.hi != const.hi ) ? cr0 : cr1
921 BuildMI(*MBB, IP, PPC32::MTCRF, 2).addImm(1).addReg(TmpReg2);
922
Misha Brukman422791f2004-06-21 17:41:12 +0000923 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000924 }
925 }
926 }
927
928 unsigned Op1r = getReg(Op1, MBB, IP);
929 switch (Class) {
930 default: assert(0 && "Unknown type class!");
931 case cByte:
932 case cShort:
933 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +0000934 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
935 PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000936 break;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000937
Misha Brukman7e898c32004-07-20 00:41:46 +0000938 case cFP32:
939 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000940 emitUCOM(MBB, IP, Op0r, Op1r);
941 break;
942
943 case cLong:
944 if (OpNum < 2) { // seteq, setne
945 unsigned LoTmp = makeAnotherReg(Type::IntTy);
946 unsigned HiTmp = makeAnotherReg(Type::IntTy);
947 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
948 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
949 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
950 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000951 break; // Allow the sete or setne to be generated from flags set by OR
952 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +0000953 unsigned CondReg = makeAnotherReg(Type::IntTy);
954 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
955 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
956
957 // FIXME: this is inefficient, but avoids branches
958
959 // compare hi word -> cr0
960 // compare lo word -> cr1
961 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
962 PPC32::CR0).addImm(0).addReg(Op0r+1).addReg(Op1r+1);
963 BuildMI(*MBB, IP, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(Op0r)
964 .addReg(Op1r);
965 BuildMI(*MBB, IP, PPC32::MFCR, 0, CondReg);
966 // shift amount = 4 * CR0[EQ]
967 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg1).addReg(CondReg).addImm(5)
968 .addImm(29).addImm(29);
969 // shift cr1 into cr0 position if op0.hi and op1.hi were equal
970 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(CondReg)
971 .addReg(TmpReg1);
972 // cr0 == ( op0.hi != op1.hi ) ? cr0 : cr1
973 BuildMI(*MBB, IP, PPC32::MTCRF, 2).addImm(1).addReg(TmpReg2);
974
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000975 return OpNum;
976 }
977 }
978 return OpNum;
979}
980
Misha Brukmand18a31d2004-07-06 22:51:53 +0000981/// visitSetCondInst - emit code to calculate the condition via
982/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000983///
984void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000985 if (canFoldSetCCIntoBranchOrSelect(&I))
Misha Brukmane9c65512004-07-06 15:32:44 +0000986 return;
Misha Brukmanbebde752004-07-16 21:06:24 +0000987
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000988 unsigned DestReg = getReg(I);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000989 unsigned OpNum = I.getOpcode();
Misha Brukman425ff242004-07-01 21:34:10 +0000990 const Type *Ty = I.getOperand (0)->getType();
991
Misha Brukmand18a31d2004-07-06 22:51:53 +0000992 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
993
994 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
Misha Brukman425ff242004-07-01 21:34:10 +0000995 MachineBasicBlock *thisMBB = BB;
996 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +0000997 ilist<MachineBasicBlock>::iterator It = BB;
998 ++It;
999
Misha Brukman425ff242004-07-01 21:34:10 +00001000 // thisMBB:
1001 // ...
1002 // cmpTY cr0, r1, r2
1003 // bCC copy1MBB
1004 // b copy0MBB
1005
1006 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1007 // if we could insert other, non-terminator instructions after the
1008 // bCC. But MBB->getFirstTerminator() can't understand this.
1009 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001010 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001011 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1012 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001013 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001014 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
1015 // Update machine-CFG edges
1016 BB->addSuccessor(copy1MBB);
1017 BB->addSuccessor(copy0MBB);
1018
1019 // copy0MBB:
1020 // %FalseValue = li 0
Misha Brukmane9c65512004-07-06 15:32:44 +00001021 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +00001022 BB = copy0MBB;
1023 unsigned FalseValue = makeAnotherReg(I.getType());
Misha Brukmanbebde752004-07-16 21:06:24 +00001024 BuildMI(BB, PPC32::LI, 1, FalseValue).addImm(0);
Misha Brukman425ff242004-07-01 21:34:10 +00001025 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001026 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001027 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1028 // Update machine-CFG edges
1029 BB->addSuccessor(sinkMBB);
1030
1031 DEBUG(std::cerr << "thisMBB is at " << (void*)thisMBB << "\n");
1032 DEBUG(std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n");
1033 DEBUG(std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n");
1034 DEBUG(std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n");
1035
1036 // copy1MBB:
1037 // %TrueValue = li 1
Misha Brukmane9c65512004-07-06 15:32:44 +00001038 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +00001039 BB = copy1MBB;
1040 unsigned TrueValue = makeAnotherReg (I.getType ());
Misha Brukmanbebde752004-07-16 21:06:24 +00001041 BuildMI(BB, PPC32::LI, 1, TrueValue).addImm(1);
Misha Brukman425ff242004-07-01 21:34:10 +00001042 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1043 // Update machine-CFG edges
1044 BB->addSuccessor(sinkMBB);
1045
1046 // sinkMBB:
1047 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1048 // ...
1049 BB = sinkMBB;
1050 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1051 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001052}
1053
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001054void ISel::visitSelectInst(SelectInst &SI) {
1055 unsigned DestReg = getReg(SI);
1056 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001057 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1058 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001059}
1060
1061/// emitSelect - Common code shared between visitSelectInst and the constant
1062/// expression support.
1063/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
1064/// no select instruction. FSEL only works for comparisons against zero.
1065void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1066 MachineBasicBlock::iterator IP,
1067 Value *Cond, Value *TrueVal, Value *FalseVal,
1068 unsigned DestReg) {
1069 unsigned SelectClass = getClassB(TrueVal->getType());
Misha Brukman7e898c32004-07-20 00:41:46 +00001070 unsigned Opcode;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001071
Misha Brukmanbebde752004-07-16 21:06:24 +00001072 // See if we can fold the setcc into the select instruction, or if we have
1073 // to get the register of the Cond value
Misha Brukmanbebde752004-07-16 21:06:24 +00001074 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1075 // We successfully folded the setcc into the select instruction.
1076
1077 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1078 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
1079 IP);
1080 Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
1081 } else {
1082 unsigned CondReg = getReg(Cond, MBB, IP);
1083
1084 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(CondReg).addImm(0);
1085 Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001086 }
Misha Brukmanbebde752004-07-16 21:06:24 +00001087
1088 // thisMBB:
1089 // ...
1090 // cmpTY cr0, r1, r2
1091 // bCC copy1MBB
1092 // b copy0MBB
1093
1094 MachineBasicBlock *thisMBB = BB;
1095 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001096 ilist<MachineBasicBlock>::iterator It = BB;
1097 ++It;
Misha Brukmanbebde752004-07-16 21:06:24 +00001098
1099 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1100 // if we could insert other, non-terminator instructions after the
1101 // bCC. But MBB->getFirstTerminator() can't understand this.
1102 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001103 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001104 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1105 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001106 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001107 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
1108 // Update machine-CFG edges
1109 BB->addSuccessor(copy1MBB);
1110 BB->addSuccessor(copy0MBB);
1111
1112 // FIXME: spill code is being generated after the branch and before copy1MBB
1113 // this is bad, since it will never be run
1114
1115 // copy0MBB:
1116 // %FalseValue = ...
1117 // b sinkMBB
1118 BB = copy0MBB;
1119 unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
1120 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001121 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001122 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1123 // Update machine-CFG edges
1124 BB->addSuccessor(sinkMBB);
1125
1126 // copy1MBB:
1127 // %TrueValue = ...
1128 // b sinkMBB
1129 BB = copy1MBB;
1130 unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
1131 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1132 // Update machine-CFG edges
1133 BB->addSuccessor(sinkMBB);
1134
1135 // sinkMBB:
1136 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1137 // ...
1138 BB = sinkMBB;
1139 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1140 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001141 return;
1142}
1143
1144
1145
1146/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1147/// operand, in the specified target register.
1148///
1149void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1150 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1151
1152 Value *Val = VR.Val;
1153 const Type *Ty = VR.Ty;
1154 if (Val) {
1155 if (Constant *C = dyn_cast<Constant>(Val)) {
1156 Val = ConstantExpr::getCast(C, Type::IntTy);
1157 Ty = Type::IntTy;
1158 }
1159
Misha Brukman2fec9902004-06-21 20:22:03 +00001160 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001161 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1162 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1163
1164 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukmanbebde752004-07-16 21:06:24 +00001165 BuildMI(BB, PPC32::LI, 1, targetReg).addImm(TheVal);
Misha Brukman422791f2004-06-21 17:41:12 +00001166 } else {
1167 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00001168 BuildMI(BB, PPC32::LIS, 1, TmpReg).addImm(TheVal >> 16);
Misha Brukman2fec9902004-06-21 20:22:03 +00001169 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1170 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001171 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001172 return;
1173 }
1174 }
1175
1176 // Make sure we have the register number for this value...
1177 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1178
1179 switch (getClassB(Ty)) {
1180 case cByte:
1181 // Extend value into target register (8->32)
1182 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001183 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1184 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001185 else
1186 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1187 break;
1188 case cShort:
1189 // Extend value into target register (16->32)
1190 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001191 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1192 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001193 else
1194 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1195 break;
1196 case cInt:
1197 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001198 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001199 break;
1200 default:
1201 assert(0 && "Unpromotable operand class in promote32");
1202 }
1203}
1204
Misha Brukman2fec9902004-06-21 20:22:03 +00001205/// visitReturnInst - implemented with BLR
1206///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001207void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001208 // Only do the processing if this is a non-void return
1209 if (I.getNumOperands() > 0) {
1210 Value *RetVal = I.getOperand(0);
1211 switch (getClassB(RetVal->getType())) {
1212 case cByte: // integral return values: extend or move into r3 and return
1213 case cShort:
1214 case cInt:
1215 promote32(PPC32::R3, ValueRecord(RetVal));
1216 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001217 case cFP32:
1218 case cFP64: { // Floats & Doubles: Return in f1
Misha Brukmand47bbf72004-06-25 19:04:27 +00001219 unsigned RetReg = getReg(RetVal);
1220 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1221 break;
1222 }
1223 case cLong: {
1224 unsigned RetReg = getReg(RetVal);
1225 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1226 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1227 break;
1228 }
1229 default:
1230 visitInstruction(I);
1231 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001232 }
1233 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1234}
1235
1236// getBlockAfter - Return the basic block which occurs lexically after the
1237// specified one.
1238static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1239 Function::iterator I = BB; ++I; // Get iterator to next block
1240 return I != BB->getParent()->end() ? &*I : 0;
1241}
1242
1243/// visitBranchInst - Handle conditional and unconditional branches here. Note
1244/// that since code layout is frozen at this point, that if we are trying to
1245/// jump to a block that is the immediate successor of the current block, we can
1246/// just make a fall-through (but we don't currently).
1247///
1248void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001249 // Update machine-CFG edges
1250 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1251 if (BI.isConditional())
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001252 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001253
1254 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
Misha Brukmane9c65512004-07-06 15:32:44 +00001255
Misha Brukman2fec9902004-06-21 20:22:03 +00001256 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmane9c65512004-07-06 15:32:44 +00001257 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001258 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1259 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001260 }
1261
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001262 // See if we can fold the setcc into the branch itself...
1263 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1264 if (SCI == 0) {
1265 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1266 // computed some other way...
1267 unsigned condReg = getReg(BI.getCondition());
Misha Brukmane9c65512004-07-06 15:32:44 +00001268 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(condReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00001269 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001270 if (BI.getSuccessor(1) == NextBB) {
1271 if (BI.getSuccessor(0) != NextBB)
Misha Brukmane9c65512004-07-06 15:32:44 +00001272 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001273 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001274 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001275 BuildMI(BB, PPC32::BEQ, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001276 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001277
1278 if (BI.getSuccessor(0) != NextBB)
1279 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1280 }
1281 return;
1282 }
1283
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001284 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukmane9c65512004-07-06 15:32:44 +00001285 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001286 MachineBasicBlock::iterator MII = BB->end();
1287 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001288
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001289 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001290 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001291 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001292 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001293 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001294 } else {
1295 // Change to the inverse condition...
1296 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001297 Opcode = invertPPCBranchOpcode(Opcode);
1298 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukman2fec9902004-06-21 20:22:03 +00001299 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001300 }
1301 }
1302}
1303
Misha Brukmanfc879c32004-07-08 18:02:38 +00001304static Constant* minUConstantForValue(uint64_t val) {
1305 if (val <= 1)
1306 return ConstantBool::get(val);
1307 else if (ConstantUInt::isValueValidForType(Type::UShortTy, val))
1308 return ConstantUInt::get(Type::UShortTy, val);
1309 else if (ConstantUInt::isValueValidForType(Type::UIntTy, val))
1310 return ConstantUInt::get(Type::UIntTy, val);
1311 else if (ConstantUInt::isValueValidForType(Type::ULongTy, val))
1312 return ConstantUInt::get(Type::ULongTy, val);
1313
1314 std::cerr << "Value: " << val << " not accepted for any integral type!\n";
1315 abort();
1316}
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001317
1318/// doCall - This emits an abstract call instruction, setting up the arguments
1319/// and the return value as appropriate. For the actual function call itself,
1320/// it inserts the specified CallMI instruction into the stream.
1321///
1322/// FIXME: See Documentation at the following URL for "correct" behavior
1323/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1324void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +00001325 const std::vector<ValueRecord> &Args, bool isVarArg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001326 // Count how many bytes are to be pushed on the stack...
1327 unsigned NumBytes = 0;
1328
1329 if (!Args.empty()) {
1330 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1331 switch (getClassB(Args[i].Ty)) {
1332 case cByte: case cShort: case cInt:
1333 NumBytes += 4; break;
1334 case cLong:
1335 NumBytes += 8; break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001336 case cFP32:
1337 NumBytes += 4; break;
1338 case cFP64:
1339 NumBytes += 8; break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001340 break;
1341 default: assert(0 && "Unknown class!");
1342 }
1343
1344 // Adjust the stack pointer for the new arguments...
1345 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1346
1347 // Arguments go on the stack in reverse order, as specified by the ABI.
Misha Brukman7e898c32004-07-20 00:41:46 +00001348 // Offset to the paramater area on the stack is 24.
1349 unsigned ArgOffset = 24;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001350 int GPR_remaining = 8, FPR_remaining = 13;
Misha Brukmanfc879c32004-07-08 18:02:38 +00001351 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001352 static const unsigned GPR[] = {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001353 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1354 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1355 };
Misha Brukmand18a31d2004-07-06 22:51:53 +00001356 static const unsigned FPR[] = {
Misha Brukman2834a4d2004-07-07 20:07:22 +00001357 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6,
1358 PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12,
1359 PPC32::F13
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001360 };
Misha Brukman422791f2004-06-21 17:41:12 +00001361
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001362 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1363 unsigned ArgReg;
1364 switch (getClassB(Args[i].Ty)) {
1365 case cByte:
1366 case cShort:
1367 // Promote arg to 32 bits wide into a temporary register...
1368 ArgReg = makeAnotherReg(Type::UIntTy);
1369 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001370
1371 // Reg or stack?
1372 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001373 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001374 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001375 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukman422791f2004-06-21 17:41:12 +00001376 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001377 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1378 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001379 }
1380 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001381 case cInt:
1382 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1383
Misha Brukman422791f2004-06-21 17:41:12 +00001384 // Reg or stack?
1385 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001386 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001387 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001388 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukman422791f2004-06-21 17:41:12 +00001389 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001390 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1391 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001392 }
1393 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001394 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001395 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001396
Misha Brukmanec6319a2004-07-20 15:51:37 +00001397 // Reg or stack? Note that PPC calling conventions state that long args
1398 // are passed rN = hi, rN+1 = lo, opposite of LLVM.
Misha Brukman422791f2004-06-21 17:41:12 +00001399 if (GPR_remaining > 1) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00001400 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg+1)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001401 .addReg(ArgReg+1);
Misha Brukmanec6319a2004-07-20 15:51:37 +00001402 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg)
1403 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001404 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1405 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
Misha Brukman422791f2004-06-21 17:41:12 +00001406 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001407 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1408 .addReg(PPC32::R1);
1409 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
1410 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001411 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001412
1413 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001414 GPR_remaining -= 1; // uses up 2 GPRs
1415 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001416 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001417 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001418 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman7e898c32004-07-20 00:41:46 +00001419 // Reg or stack?
1420 if (FPR_remaining > 0) {
1421 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1422 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1423 FPR_remaining--;
1424 FPR_idx++;
1425
1426 // If this is a vararg function, and there are GPRs left, also
1427 // pass the float in an int. Otherwise, put it on the stack.
1428 if (isVarArg) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001429 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001430 .addReg(PPC32::R1);
1431 if (GPR_remaining > 0) {
1432 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx])
1433 .addImm(ArgOffset).addReg(ArgReg);
1434 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1435 }
Misha Brukman1916bf92004-06-24 21:56:15 +00001436 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001437 } else {
Misha Brukman7e898c32004-07-20 00:41:46 +00001438 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
1439 .addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001440 }
1441 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001442 case cFP64:
1443 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1444 // Reg or stack?
1445 if (FPR_remaining > 0) {
1446 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1447 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1448 FPR_remaining--;
1449 FPR_idx++;
1450 // For vararg functions, must pass doubles via int regs as well
1451 if (isVarArg) {
1452 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1453 .addReg(PPC32::R1);
1454
1455 if (GPR_remaining > 1) {
1456 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addImm(ArgOffset)
1457 .addReg(PPC32::R1);
1458 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx+1])
1459 .addImm(ArgOffset+4).addReg(PPC32::R1);
1460 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1461 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
1462 }
1463 }
1464 } else {
1465 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1466 .addReg(PPC32::R1);
1467 }
1468 // Doubles use 8 bytes, and 2 GPRs worth of param space
1469 ArgOffset += 4;
1470 GPR_remaining--;
1471 GPR_idx++;
1472 break;
1473
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001474 default: assert(0 && "Unknown class!");
1475 }
1476 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001477 GPR_remaining--;
1478 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001479 }
1480 } else {
1481 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1482 }
1483
1484 BB->push_back(CallMI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001485 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1486
1487 // If there is a return value, scavenge the result from the location the call
1488 // leaves it in...
1489 //
1490 if (Ret.Ty != Type::VoidTy) {
1491 unsigned DestClass = getClassB(Ret.Ty);
1492 switch (DestClass) {
1493 case cByte:
1494 case cShort:
1495 case cInt:
1496 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001497 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001498 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001499 case cFP32: // Floating-point return values live in f1
1500 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001501 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1502 break;
Misha Brukmanec6319a2004-07-20 15:51:37 +00001503 case cLong: // Long values are in r3 hi:r4 lo
1504 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R3).addReg(PPC32::R3);
1505 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001506 break;
1507 default: assert(0 && "Unknown class!");
1508 }
1509 }
1510}
1511
1512
1513/// visitCallInst - Push args on stack and do a procedure call instruction.
1514void ISel::visitCallInst(CallInst &CI) {
1515 MachineInstr *TheCall;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001516 Function *F = CI.getCalledFunction();
1517 if (F) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001518 // Is it an intrinsic function call?
1519 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1520 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1521 return;
1522 }
1523
1524 // Emit a CALL instruction with PC-relative displacement.
1525 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1526 } else { // Emit an indirect call through the CTR
1527 unsigned Reg = getReg(CI.getCalledValue());
Misha Brukman7e898c32004-07-20 00:41:46 +00001528 BuildMI(BB, PPC32::MTCTR, 1).addReg(Reg);
1529 TheCall = BuildMI(PPC32::CALLindirect, 2).addZImm(20).addZImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001530 }
1531
1532 std::vector<ValueRecord> Args;
1533 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1534 Args.push_back(ValueRecord(CI.getOperand(i)));
1535
1536 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001537 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1538 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001539}
1540
1541
1542/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1543///
1544static Value *dyncastIsNan(Value *V) {
1545 if (CallInst *CI = dyn_cast<CallInst>(V))
1546 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001547 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001548 return CI->getOperand(1);
1549 return 0;
1550}
1551
1552/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1553/// or's whos operands are all calls to the isnan predicate.
1554static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1555 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1556
1557 // Check all uses, which will be or's of isnans if this predicate is true.
1558 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1559 Instruction *I = cast<Instruction>(*UI);
1560 if (I->getOpcode() != Instruction::Or) return false;
1561 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1562 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1563 }
1564
1565 return true;
1566}
1567
1568/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1569/// function, lowering any calls to unknown intrinsic functions into the
1570/// equivalent LLVM code.
1571///
1572void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1573 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1574 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1575 if (CallInst *CI = dyn_cast<CallInst>(I++))
1576 if (Function *F = CI->getCalledFunction())
1577 switch (F->getIntrinsicID()) {
1578 case Intrinsic::not_intrinsic:
1579 case Intrinsic::vastart:
1580 case Intrinsic::vacopy:
1581 case Intrinsic::vaend:
1582 case Intrinsic::returnaddress:
1583 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001584 // FIXME: should lower this ourselves
1585 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001586 // We directly implement these intrinsics
1587 break;
1588 case Intrinsic::readio: {
1589 // On PPC, memory operations are in-order. Lower this intrinsic
1590 // into a volatile load.
1591 Instruction *Before = CI->getPrev();
1592 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1593 CI->replaceAllUsesWith(LI);
1594 BB->getInstList().erase(CI);
1595 break;
1596 }
1597 case Intrinsic::writeio: {
1598 // On PPC, memory operations are in-order. Lower this intrinsic
1599 // into a volatile store.
1600 Instruction *Before = CI->getPrev();
Misha Brukman8d442c22004-07-14 15:29:51 +00001601 StoreInst *SI = new StoreInst(CI->getOperand(1),
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001602 CI->getOperand(2), true, CI);
Misha Brukman8d442c22004-07-14 15:29:51 +00001603 CI->replaceAllUsesWith(SI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001604 BB->getInstList().erase(CI);
1605 break;
1606 }
1607 default:
1608 // All other intrinsic calls we must lower.
1609 Instruction *Before = CI->getPrev();
1610 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1611 if (Before) { // Move iterator to instruction after call
1612 I = Before; ++I;
1613 } else {
1614 I = BB->begin();
1615 }
1616 }
1617}
1618
1619void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1620 unsigned TmpReg1, TmpReg2, TmpReg3;
1621 switch (ID) {
1622 case Intrinsic::vastart:
1623 // Get the address of the first vararg value...
1624 TmpReg1 = getReg(CI);
Misha Brukmanec6319a2004-07-20 15:51:37 +00001625 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex,
1626 0, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001627 return;
1628
1629 case Intrinsic::vacopy:
1630 TmpReg1 = getReg(CI);
1631 TmpReg2 = getReg(CI.getOperand(1));
1632 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1633 return;
1634 case Intrinsic::vaend: return;
1635
1636 case Intrinsic::returnaddress:
Misha Brukmanec6319a2004-07-20 15:51:37 +00001637 TmpReg1 = getReg(CI);
1638 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1639 MachineFrameInfo *MFI = F->getFrameInfo();
1640 unsigned NumBytes = MFI->getStackSize();
1641
1642 BuildMI(BB, PPC32::LWZ, 2, TmpReg1).addImm(NumBytes+8)
1643 .addReg(PPC32::R1);
1644 } else {
1645 // Values other than zero are not implemented yet.
1646 BuildMI(BB, PPC32::LI, 1, TmpReg1).addImm(0);
1647 }
1648 return;
1649
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001650 case Intrinsic::frameaddress:
1651 TmpReg1 = getReg(CI);
1652 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00001653 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(PPC32::R1).addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001654 } else {
1655 // Values other than zero are not implemented yet.
Misha Brukmanbebde752004-07-16 21:06:24 +00001656 BuildMI(BB, PPC32::LI, 1, TmpReg1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001657 }
1658 return;
1659
Misha Brukmana2916ce2004-06-21 17:58:36 +00001660#if 0
1661 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001662 case Intrinsic::isnan:
1663 // If this is only used by 'isunordered' style comparisons, don't emit it.
1664 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1665 TmpReg1 = getReg(CI.getOperand(1));
1666 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001667 TmpReg2 = makeAnotherReg(Type::IntTy);
1668 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001669 TmpReg3 = getReg(CI);
1670 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1671 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001672#endif
1673
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001674 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1675 }
1676}
1677
1678/// visitSimpleBinary - Implement simple binary operators for integral types...
1679/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1680/// Xor.
1681///
1682void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1683 unsigned DestReg = getReg(B);
1684 MachineBasicBlock::iterator MI = BB->end();
1685 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1686 unsigned Class = getClassB(B.getType());
1687
1688 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1689}
1690
1691/// emitBinaryFPOperation - This method handles emission of floating point
1692/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1693void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1694 MachineBasicBlock::iterator IP,
1695 Value *Op0, Value *Op1,
1696 unsigned OperatorClass, unsigned DestReg) {
1697
1698 // Special case: op Reg, <const fp>
1699 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001700 // Create a constant pool entry for this constant.
1701 MachineConstantPool *CP = F->getConstantPool();
1702 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1703 const Type *Ty = Op1->getType();
Misha Brukmand9aa7832004-07-12 23:49:47 +00001704 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001705
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001706 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001707 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1708 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001709 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001710
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001711 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001712 unsigned Op1Reg = getReg(Op1C, BB, IP);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001713 unsigned Op0r = getReg(Op0, BB, IP);
Misha Brukmana596f8c2004-07-13 15:35:45 +00001714 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001715 return;
1716 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001717
1718 // Special case: R1 = op <const fp>, R2
Misha Brukmana596f8c2004-07-13 15:35:45 +00001719 if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
1720 if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001721 // -0.0 - X === -X
1722 unsigned op1Reg = getReg(Op1, BB, IP);
1723 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1724 return;
1725 } else {
1726 // R1 = op CST, R2 --> R1 = opr R2, CST
1727
1728 // Create a constant pool entry for this constant.
1729 MachineConstantPool *CP = F->getConstantPool();
Misha Brukmana596f8c2004-07-13 15:35:45 +00001730 unsigned CPI = CP->getConstantPoolIndex(Op0C);
1731 const Type *Ty = Op0C->getType();
1732 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001733
1734 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001735 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1736 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001737 };
1738
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001739 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001740 unsigned Op0Reg = getReg(Op0C, BB, IP);
1741 unsigned Op1Reg = getReg(Op1, BB, IP);
1742 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001743 return;
1744 }
1745
1746 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001747 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001748 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1749 };
1750
1751 unsigned Opcode = OpcodeTab[OperatorClass];
1752 unsigned Op0r = getReg(Op0, BB, IP);
1753 unsigned Op1r = getReg(Op1, BB, IP);
1754 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1755}
1756
1757/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1758/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1759/// Or, 4 for Xor.
1760///
1761/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1762/// and constant expression support.
1763///
1764void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1765 MachineBasicBlock::iterator IP,
1766 Value *Op0, Value *Op1,
1767 unsigned OperatorClass, unsigned DestReg) {
1768 unsigned Class = getClassB(Op0->getType());
1769
Misha Brukman422791f2004-06-21 17:41:12 +00001770 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001771 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001772 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1773 };
1774 // Otherwise, code generate the full operation with a constant.
1775 static const unsigned BottomTab[] = {
1776 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1777 };
1778 static const unsigned TopTab[] = {
1779 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1780 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001781
Misha Brukman7e898c32004-07-20 00:41:46 +00001782 if (Class == cFP32 || Class == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001783 assert(OperatorClass < 2 && "No logical ops for FP!");
1784 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1785 return;
1786 }
1787
1788 if (Op0->getType() == Type::BoolTy) {
1789 if (OperatorClass == 3)
1790 // If this is an or of two isnan's, emit an FP comparison directly instead
1791 // of or'ing two isnan's together.
1792 if (Value *LHS = dyncastIsNan(Op0))
1793 if (Value *RHS = dyncastIsNan(Op1)) {
1794 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001795 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001796 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001797 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001798 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1799 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001800 return;
1801 }
1802 }
1803
1804 // sub 0, X -> neg X
1805 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1806 if (OperatorClass == 1 && CI->isNullValue()) {
1807 unsigned op1Reg = getReg(Op1, MBB, IP);
1808 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1809
1810 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001811 unsigned zeroes = makeAnotherReg(Type::IntTy);
1812 unsigned overflow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001813 unsigned T = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00001814 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001815 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
1816 .addImm(5).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00001817 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1818 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001819 }
1820 return;
1821 }
1822
1823 // Special case: op Reg, <const int>
1824 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1825 unsigned Op0r = getReg(Op0, MBB, IP);
1826
1827 // xor X, -1 -> not X
1828 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1829 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1830 if (Class == cLong) // Invert the top part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001831 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1832 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001833 return;
1834 }
1835
1836 unsigned Opcode = OpcodeTab[OperatorClass];
1837 unsigned Op1r = getReg(Op1, MBB, IP);
1838
1839 if (Class != cLong) {
1840 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1841 return;
1842 }
1843
1844 // If the constant is zero in the low 32-bits, just copy the low part
1845 // across and apply the normal 32-bit operation to the high parts. There
1846 // will be no carry or borrow into the top.
1847 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1848 if (OperatorClass != 2) // All but and...
1849 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1850 else
Misha Brukmanbebde752004-07-16 21:06:24 +00001851 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman422791f2004-06-21 17:41:12 +00001852 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001853 return;
1854 }
1855
1856 // If this is a long value and the high or low bits have a special
1857 // property, emit some special cases.
1858 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1859
1860 // If this is a logical operation and the top 32-bits are zero, just
1861 // operate on the lower 32.
1862 if (Op1h == 0 && OperatorClass > 1) {
1863 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1864 if (OperatorClass != 2) // All but and
Misha Brukman2fec9902004-06-21 20:22:03 +00001865 BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001866 else
Misha Brukmanbebde752004-07-16 21:06:24 +00001867 BuildMI(*MBB, IP, PPC32::LI, 1,DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001868 return;
1869 }
1870
1871 // TODO: We could handle lots of other special cases here, such as AND'ing
1872 // with 0xFFFFFFFF00000000 -> noop, etc.
1873
Misha Brukman2fec9902004-06-21 20:22:03 +00001874 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
Misha Brukman7e898c32004-07-20 00:41:46 +00001875 .addReg(Op1r);
Misha Brukman2fec9902004-06-21 20:22:03 +00001876 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001877 .addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001878 return;
1879 }
1880
1881 unsigned Op0r = getReg(Op0, MBB, IP);
1882 unsigned Op1r = getReg(Op1, MBB, IP);
1883
1884 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001885 unsigned Opcode = OpcodeTab[OperatorClass];
1886 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001887 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001888 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
Misha Brukman7e898c32004-07-20 00:41:46 +00001889 .addReg(Op1r);
Misha Brukman2fec9902004-06-21 20:22:03 +00001890 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001891 .addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001892 }
1893 return;
1894}
1895
1896/// doMultiply - Emit appropriate instructions to multiply together the
1897/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1898/// result should be given as DestTy.
1899///
1900void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1901 unsigned DestReg, const Type *DestTy,
1902 unsigned op0Reg, unsigned op1Reg) {
1903 unsigned Class = getClass(DestTy);
1904 switch (Class) {
1905 case cLong:
Misha Brukman2fec9902004-06-21 20:22:03 +00001906 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
1907 .addReg(op1Reg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001908 case cInt:
1909 case cShort:
1910 case cByte:
1911 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1912 return;
1913 default:
Misha Brukman422791f2004-06-21 17:41:12 +00001914 assert(0 && "doMultiply cannot operate on unknown type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001915 }
1916}
1917
1918// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1919// returns zero when the input is not exactly a power of two.
1920static unsigned ExactLog2(unsigned Val) {
1921 if (Val == 0 || (Val & (Val-1))) return 0;
1922 unsigned Count = 0;
1923 while (Val != 1) {
1924 Val >>= 1;
1925 ++Count;
1926 }
1927 return Count+1;
1928}
1929
1930
1931/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1932/// 16, or 32-bit integer multiply by a constant.
Misha Brukman2fec9902004-06-21 20:22:03 +00001933///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001934void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1935 MachineBasicBlock::iterator IP,
1936 unsigned DestReg, const Type *DestTy,
1937 unsigned op0Reg, unsigned ConstRHS) {
1938 unsigned Class = getClass(DestTy);
1939 // Handle special cases here.
1940 switch (ConstRHS) {
1941 case 0:
Misha Brukmanbebde752004-07-16 21:06:24 +00001942 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001943 return;
1944 case 1:
1945 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1946 return;
1947 case 2:
1948 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1949 return;
1950 }
1951
1952 // If the element size is exactly a power of 2, use a shift to get it.
1953 if (unsigned Shift = ExactLog2(ConstRHS)) {
1954 switch (Class) {
1955 default: assert(0 && "Unknown class for this function!");
1956 case cByte:
1957 case cShort:
1958 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +00001959 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
Misha Brukman8d442c22004-07-14 15:29:51 +00001960 .addImm(Shift-1).addImm(0).addImm(31-Shift+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001961 return;
1962 }
1963 }
1964
1965 // Most general case, emit a normal multiply...
Misha Brukman7e898c32004-07-20 00:41:46 +00001966 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1967 Constant *C = ConstantUInt::get(Type::UIntTy, ConstRHS);
1968
1969 copyConstantToRegister(MBB, IP, C, TmpReg);
1970 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001971}
1972
1973void ISel::visitMul(BinaryOperator &I) {
1974 unsigned ResultReg = getReg(I);
1975
1976 Value *Op0 = I.getOperand(0);
1977 Value *Op1 = I.getOperand(1);
1978
1979 MachineBasicBlock::iterator IP = BB->end();
1980 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1981}
1982
1983void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1984 Value *Op0, Value *Op1, unsigned DestReg) {
1985 MachineBasicBlock &BB = *MBB;
1986 TypeClass Class = getClass(Op0->getType());
1987
1988 // Simple scalar multiply?
1989 unsigned Op0Reg = getReg(Op0, &BB, IP);
1990 switch (Class) {
1991 case cByte:
1992 case cShort:
1993 case cInt:
1994 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1995 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1996 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
1997 } else {
1998 unsigned Op1Reg = getReg(Op1, &BB, IP);
1999 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
2000 }
2001 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002002 case cFP32:
2003 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002004 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2005 return;
2006 case cLong:
2007 break;
2008 }
2009
2010 // Long value. We have to do things the hard way...
2011 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2012 unsigned CLow = CI->getRawValue();
2013 unsigned CHi = CI->getRawValue() >> 32;
2014
2015 if (CLow == 0) {
2016 // If the low part of the constant is all zeros, things are simple.
Misha Brukmanbebde752004-07-16 21:06:24 +00002017 BuildMI(BB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002018 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
2019 return;
2020 }
2021
2022 // Multiply the two low parts
2023 unsigned OverflowReg = 0;
2024 if (CLow == 1) {
2025 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
2026 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002027 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002028 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
2029 OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00002030 BuildMI(BB, IP, PPC32::LIS, 1, TmpRegL).addImm(CLow >> 16);
Misha Brukman422791f2004-06-21 17:41:12 +00002031 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
2032 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
Misha Brukman2fec9902004-06-21 20:22:03 +00002033 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
2034 .addReg(Op1RegL);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002035 }
2036
2037 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
2038 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
2039
2040 unsigned AHBLplusOverflowReg;
2041 if (OverflowReg) {
2042 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002043 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002044 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2045 } else {
2046 AHBLplusOverflowReg = AHBLReg;
2047 }
2048
2049 if (CHi == 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002050 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
2051 .addReg(AHBLplusOverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002052 } else {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002053 unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002054 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
2055
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002056 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002057 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2058 }
2059 return;
2060 }
2061
2062 // General 64x64 multiply
2063
2064 unsigned Op1Reg = getReg(Op1, &BB, IP);
2065
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002066 // Multiply the two low parts...
2067 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002068
2069 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002070 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002071
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002072 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002073 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
2074
2075 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002076 BuildMI(BB, IP, PPC32::ADD, 2, AHBLplusOverflowReg).addReg(AHBLReg)
2077 .addReg(OverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002078
2079 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2080 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
2081
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002082 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002083 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2084}
2085
2086
2087/// visitDivRem - Handle division and remainder instructions... these
2088/// instruction both require the same instructions to be generated, they just
2089/// select the result from a different register. Note that both of these
2090/// instructions work differently for signed and unsigned operands.
2091///
2092void ISel::visitDivRem(BinaryOperator &I) {
2093 unsigned ResultReg = getReg(I);
2094 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2095
2096 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00002097 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
2098 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002099}
2100
2101void ISel::emitDivRemOperation(MachineBasicBlock *BB,
2102 MachineBasicBlock::iterator IP,
2103 Value *Op0, Value *Op1, bool isDiv,
2104 unsigned ResultReg) {
2105 const Type *Ty = Op0->getType();
2106 unsigned Class = getClass(Ty);
2107 switch (Class) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002108 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002109 if (isDiv) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002110 // Floating point divide...
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002111 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2112 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002113 } else {
2114 // Floating point remainder via fmodf(float x, float y);
2115 unsigned Op0Reg = getReg(Op0, BB, IP);
2116 unsigned Op1Reg = getReg(Op1, BB, IP);
2117 MachineInstr *TheCall =
2118 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
2119 std::vector<ValueRecord> Args;
2120 Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
2121 Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
2122 doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
2123 }
2124 return;
2125 case cFP64:
2126 if (isDiv) {
2127 // Floating point divide...
2128 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2129 return;
2130 } else {
2131 // Floating point remainder via fmod(double x, double y);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002132 unsigned Op0Reg = getReg(Op0, BB, IP);
2133 unsigned Op1Reg = getReg(Op1, BB, IP);
2134 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002135 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002136 std::vector<ValueRecord> Args;
2137 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2138 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002139 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002140 }
2141 return;
2142 case cLong: {
Misha Brukman7e898c32004-07-20 00:41:46 +00002143 static Function* const Funcs[] =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002144 { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002145 unsigned Op0Reg = getReg(Op0, BB, IP);
2146 unsigned Op1Reg = getReg(Op1, BB, IP);
2147 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2148 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002149 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002150
2151 std::vector<ValueRecord> Args;
2152 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2153 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002154 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002155 return;
2156 }
2157 case cByte: case cShort: case cInt:
2158 break; // Small integrals, handled below...
2159 default: assert(0 && "Unknown class!");
2160 }
2161
2162 // Special case signed division by power of 2.
2163 if (isDiv)
2164 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2165 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2166 int V = CI->getValue();
2167
2168 if (V == 1) { // X /s 1 => X
2169 unsigned Op0Reg = getReg(Op0, BB, IP);
2170 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
2171 return;
2172 }
2173
2174 if (V == -1) { // X /s -1 => -X
2175 unsigned Op0Reg = getReg(Op0, BB, IP);
2176 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
2177 return;
2178 }
2179
Misha Brukmanec6319a2004-07-20 15:51:37 +00002180 unsigned log2V = ExactLog2(V);
2181 if (log2V != 0 && Ty->isSigned()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002182 unsigned Op0Reg = getReg(Op0, BB, IP);
2183 unsigned TmpReg = makeAnotherReg(Op0->getType());
Misha Brukmanec6319a2004-07-20 15:51:37 +00002184
2185 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg).addReg(Op0Reg)
2186 .addImm(log2V-1);
2187 BuildMI(*BB, IP, PPC32::ADDZE, 1, ResultReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002188 return;
2189 }
2190 }
2191
2192 unsigned Op0Reg = getReg(Op0, BB, IP);
2193 unsigned Op1Reg = getReg(Op1, BB, IP);
Misha Brukmanec6319a2004-07-20 15:51:37 +00002194 unsigned Opcode = Ty->isSigned() ? PPC32::DIVW : PPC32::DIVWU;
2195
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002196 if (isDiv) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00002197 BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002198 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002199 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2200 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2201
Misha Brukmanec6319a2004-07-20 15:51:37 +00002202 BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002203 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2204 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002205 }
2206}
2207
2208
2209/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2210/// for constant immediate shift values, and for constant immediate
2211/// shift values equal to 1. Even the general case is sort of special,
2212/// because the shift amount has to be in CL, not just any old register.
2213///
2214void ISel::visitShiftInst(ShiftInst &I) {
2215 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002216 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2217 I.getOpcode () == Instruction::Shl, I.getType (),
2218 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002219}
2220
2221/// emitShiftOperation - Common code shared between visitShiftInst and
2222/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002223///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002224void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2225 MachineBasicBlock::iterator IP,
2226 Value *Op, Value *ShiftAmount, bool isLeftShift,
2227 const Type *ResultTy, unsigned DestReg) {
2228 unsigned SrcReg = getReg (Op, MBB, IP);
2229 bool isSigned = ResultTy->isSigned ();
2230 unsigned Class = getClass (ResultTy);
2231
2232 // Longs, as usual, are handled specially...
2233 if (Class == cLong) {
2234 // If we have a constant shift, we can generate much more efficient code
2235 // than otherwise...
2236 //
2237 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2238 unsigned Amount = CUI->getValue();
2239 if (Amount < 32) {
2240 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002241 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002242 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2243 .addImm(Amount).addImm(0).addImm(31-Amount);
2244 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2245 .addImm(Amount).addImm(32-Amount).addImm(31);
2246 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2247 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002248 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002249 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002250 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2251 .addImm(32-Amount).addImm(Amount).addImm(31);
2252 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2253 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2254 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2255 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002256 }
2257 } else { // Shifting more than 32 bits
2258 Amount -= 32;
2259 if (isLeftShift) {
2260 if (Amount != 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002261 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2262 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002263 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002264 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2265 .addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002266 }
Misha Brukmanbebde752004-07-16 21:06:24 +00002267 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002268 } else {
2269 if (Amount != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +00002270 if (isSigned)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002271 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
2272 .addImm(Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002273 else
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002274 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
2275 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002276 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002277 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2278 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002279 }
Misha Brukmanbebde752004-07-16 21:06:24 +00002280 BuildMI(*MBB, IP,PPC32::LI,1,DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002281 }
2282 }
2283 } else {
2284 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2285 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002286 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2287 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2288 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2289 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2290 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2291
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002292 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002293 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2294 .addImm(32);
2295 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
2296 .addReg(ShiftAmountReg);
2297 BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2298 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2299 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2300 .addImm(-32);
2301 BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2302 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
2303 .addReg(TmpReg6);
2304 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2305 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002306 } else {
2307 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002308 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002309 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002310 std::cerr << "Unimplemented: signed right shift\n";
2311 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002312 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002313 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2314 .addImm(32);
2315 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
2316 .addReg(ShiftAmountReg);
2317 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
2318 .addReg(TmpReg1);
2319 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2320 .addReg(TmpReg3);
2321 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2322 .addImm(-32);
2323 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
2324 .addReg(TmpReg5);
2325 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
2326 .addReg(TmpReg6);
2327 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
2328 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002329 }
2330 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002331 }
2332 return;
2333 }
2334
2335 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2336 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2337 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2338 unsigned Amount = CUI->getValue();
2339
Misha Brukman422791f2004-06-21 17:41:12 +00002340 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002341 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2342 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002343 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002344 if (isSigned) {
2345 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2346 } else {
2347 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2348 .addImm(32-Amount).addImm(Amount).addImm(31);
2349 }
Misha Brukman422791f2004-06-21 17:41:12 +00002350 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002351 } else { // The shift amount is non-constant.
2352 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2353
Misha Brukman422791f2004-06-21 17:41:12 +00002354 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002355 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2356 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002357 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002358 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2359 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002360 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002361 }
2362}
2363
2364
2365/// visitLoadInst - Implement LLVM load instructions
2366///
2367void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002368 static const unsigned Opcodes[] = {
2369 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2370 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002371 unsigned Class = getClassB(I.getType());
2372 unsigned Opcode = Opcodes[Class];
2373 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2374
2375 unsigned DestReg = getReg(I);
2376
2377 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002378 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002379 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002380 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2381 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002382 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002383 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002384 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002385 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002386 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002387
2388 if (Class == cLong) {
2389 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2390 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2391 } else {
2392 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2393 }
2394 }
2395}
2396
2397/// visitStoreInst - Implement LLVM store instructions
2398///
2399void ISel::visitStoreInst(StoreInst &I) {
2400 unsigned ValReg = getReg(I.getOperand(0));
2401 unsigned AddressReg = getReg(I.getOperand(1));
2402
2403 const Type *ValTy = I.getOperand(0)->getType();
2404 unsigned Class = getClassB(ValTy);
2405
2406 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002407 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002408 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002409 return;
2410 }
2411
2412 static const unsigned Opcodes[] = {
2413 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2414 };
2415 unsigned Opcode = Opcodes[Class];
2416 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2417 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2418}
2419
2420
2421/// visitCastInst - Here we have various kinds of copying with or without sign
2422/// extension going on.
2423///
2424void ISel::visitCastInst(CastInst &CI) {
2425 Value *Op = CI.getOperand(0);
2426
2427 unsigned SrcClass = getClassB(Op->getType());
2428 unsigned DestClass = getClassB(CI.getType());
2429 // Noop casts are not emitted: getReg will return the source operand as the
2430 // register to use for any uses of the noop cast.
2431 if (DestClass == SrcClass)
2432 return;
2433
2434 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2435 // of the case are GEP instructions, then the cast does not need to be
2436 // generated explicitly, it will be folded into the GEP.
2437 if (DestClass == cLong && SrcClass == cInt) {
2438 bool AllUsesAreGEPs = true;
2439 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2440 if (!isa<GetElementPtrInst>(*I)) {
2441 AllUsesAreGEPs = false;
2442 break;
2443 }
2444
2445 // No need to codegen this cast if all users are getelementptr instrs...
2446 if (AllUsesAreGEPs) return;
2447 }
2448
2449 unsigned DestReg = getReg(CI);
2450 MachineBasicBlock::iterator MI = BB->end();
2451 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2452}
2453
2454/// emitCastOperation - Common code shared between visitCastInst and constant
2455/// expression cast support.
2456///
Misha Brukman7e898c32004-07-20 00:41:46 +00002457void ISel::emitCastOperation(MachineBasicBlock *MBB,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002458 MachineBasicBlock::iterator IP,
2459 Value *Src, const Type *DestTy,
2460 unsigned DestReg) {
2461 const Type *SrcTy = Src->getType();
2462 unsigned SrcClass = getClassB(SrcTy);
2463 unsigned DestClass = getClassB(DestTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002464 unsigned SrcReg = getReg(Src, MBB, IP);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002465
2466 // Implement casts to bool by using compare on the operand followed by set if
2467 // not zero on the result.
2468 if (DestTy == Type::BoolTy) {
2469 switch (SrcClass) {
2470 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002471 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002472 case cInt: {
2473 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002474 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2475 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002476 break;
2477 }
2478 case cLong: {
2479 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2480 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002481 BuildMI(*MBB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
2482 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
Misha Brukmanbf417a62004-07-20 20:43:05 +00002483 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg)
2484 .addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002485 break;
2486 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002487 case cFP32:
2488 case cFP64:
2489 // FSEL perhaps?
Misha Brukmand18a31d2004-07-06 22:51:53 +00002490 std::cerr << "Cast fp-to-bool not implemented!";
2491 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002492 }
2493 return;
2494 }
2495
2496 // Implement casts between values of the same type class (as determined by
2497 // getClass) by using a register-to-register move.
2498 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002499 if (SrcClass <= cInt) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002500 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2501 } else if (SrcClass == cFP32 || SrcClass == cFP64) {
2502 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002503 } else if (SrcClass == cLong) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002504 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2505 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002506 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002507 } else {
2508 assert(0 && "Cannot handle this type of cast instruction!");
2509 abort();
2510 }
2511 return;
2512 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002513
2514 // Handle cast of Float -> Double
2515 if (SrcClass == cFP32 && DestClass == cFP64) {
2516 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2517 return;
2518 }
2519
2520 // Handle cast of Double -> Float
2521 if (SrcClass == cFP64 && DestClass == cFP32) {
2522 BuildMI(*MBB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
2523 return;
2524 }
2525
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002526 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2527 // or zero extension, depending on whether the source type was signed.
2528 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2529 SrcClass < DestClass) {
2530 bool isLong = DestClass == cLong;
2531 if (isLong) DestClass = cInt;
2532
2533 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2534 if (SrcClass < cInt) {
2535 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002536 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002537 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2538 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002539 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002540 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2541 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002542 }
2543 } else {
2544 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2545 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002546
2547 if (isLong) { // Handle upper 32 bits as appropriate...
2548 if (isUnsigned) // Zero out top bits...
Misha Brukmanbebde752004-07-16 21:06:24 +00002549 BuildMI(*BB, IP, PPC32::LI, 1, DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002550 else // Sign extend bottom half...
2551 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2552 }
2553 return;
2554 }
2555
2556 // Special case long -> int ...
2557 if (SrcClass == cLong && DestClass == cInt) {
2558 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2559 return;
2560 }
2561
2562 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2563 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2564 && SrcClass > DestClass) {
2565 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman422791f2004-06-21 17:41:12 +00002566 if (isUnsigned) {
2567 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002568 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2569 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002570 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002571 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
2572 DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002573 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002574 return;
2575 }
2576
2577 // Handle casts from integer to floating point now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002578 if (DestClass == cFP32 || DestClass == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002579
Misha Brukman422791f2004-06-21 17:41:12 +00002580 // Emit a library call for long to float conversion
2581 if (SrcClass == cLong) {
2582 std::vector<ValueRecord> Args;
2583 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002584 Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002585 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002586 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002587 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002588 return;
2589 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002590
Misha Brukman7e898c32004-07-20 00:41:46 +00002591 // Make sure we're dealing with a full 32 bits
2592 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2593 promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
2594
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002595 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002596
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002597 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002598 // Also spill room for a special conversion constant
2599 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002600 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2601 int ValueFrameIdx =
2602 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2603
Misha Brukman422791f2004-06-21 17:41:12 +00002604 unsigned constantHi = makeAnotherReg(Type::IntTy);
2605 unsigned constantLo = makeAnotherReg(Type::IntTy);
2606 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2607 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2608
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002609 if (!SrcTy->isSigned()) {
Misha Brukmanbebde752004-07-16 21:06:24 +00002610 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addImm(0x4330);
2611 BuildMI(*BB, IP, PPC32::LI, 1, constantLo).addImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002612 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2613 ConstantFrameIndex);
2614 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2615 ConstantFrameIndex, 4);
2616 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2617 ValueFrameIdx);
2618 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2619 ValueFrameIdx, 4);
2620 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2621 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002622 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2623 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2624 } else {
2625 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00002626 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addImm(0x4330);
2627 BuildMI(*BB, IP, PPC32::LIS, 1, constantLo).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002628 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2629 ConstantFrameIndex);
2630 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2631 ConstantFrameIndex, 4);
2632 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2633 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002634 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002635 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2636 ValueFrameIdx, 4);
2637 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2638 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002639 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002640 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002641 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002642 return;
2643 }
2644
2645 // Handle casts from floating point to integer now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002646 if (SrcClass == cFP32 || SrcClass == cFP64) {
Misha Brukman422791f2004-06-21 17:41:12 +00002647 // emit library call
2648 if (DestClass == cLong) {
2649 std::vector<ValueRecord> Args;
2650 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002651 Function *floatFn = (DestClass == cFP32) ? __fixsfdiFn : __fixdfdiFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002652 MachineInstr *TheCall =
Misha Brukman7e898c32004-07-20 00:41:46 +00002653 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002654 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002655 return;
2656 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002657
2658 int ValueFrameIdx =
Misha Brukman7e898c32004-07-20 00:41:46 +00002659 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002660
Misha Brukman7e898c32004-07-20 00:41:46 +00002661 if (DestTy->isSigned()) {
2662 unsigned LoadOp = (DestClass == cShort) ? PPC32::LHA : PPC32::LWZ;
Misha Brukman422791f2004-06-21 17:41:12 +00002663 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002664
2665 // Convert to integer in the FP reg and store it to a stack slot
Misha Brukman422791f2004-06-21 17:41:12 +00002666 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002667 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2668 .addReg(TempReg), ValueFrameIdx);
Misha Brukman7e898c32004-07-20 00:41:46 +00002669
2670 // There is no load signed byte opcode, so we must emit a sign extend
2671 if (DestClass == cByte) {
2672 unsigned TempReg2 = makeAnotherReg(DestTy);
2673 addFrameReference(BuildMI(*BB, IP, LoadOp, 2, TempReg2),
Misha Brukmanec6319a2004-07-20 15:51:37 +00002674 ValueFrameIdx, 4);
Misha Brukman7e898c32004-07-20 00:41:46 +00002675 BuildMI(*MBB, IP, PPC32::EXTSB, DestReg).addReg(TempReg2);
2676 } else {
2677 addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg),
Misha Brukmanec6319a2004-07-20 15:51:37 +00002678 ValueFrameIdx, 4);
Misha Brukman7e898c32004-07-20 00:41:46 +00002679 }
2680 } else {
2681 std::cerr << "Cast fp-to-unsigned not implemented!";
2682 abort();
2683 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002684 return;
2685 }
2686
2687 // Anything we haven't handled already, we can't (yet) handle at all.
2688 assert(0 && "Unhandled cast instruction!");
2689 abort();
2690}
2691
2692/// visitVANextInst - Implement the va_next instruction...
2693///
2694void ISel::visitVANextInst(VANextInst &I) {
2695 unsigned VAList = getReg(I.getOperand(0));
2696 unsigned DestReg = getReg(I);
2697
2698 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002699 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002700 default:
2701 std::cerr << I;
2702 assert(0 && "Error: bad type for va_next instruction!");
2703 return;
2704 case Type::PointerTyID:
2705 case Type::UIntTyID:
2706 case Type::IntTyID:
2707 Size = 4;
2708 break;
2709 case Type::ULongTyID:
2710 case Type::LongTyID:
2711 case Type::DoubleTyID:
2712 Size = 8;
2713 break;
2714 }
2715
2716 // Increment the VAList pointer...
2717 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2718}
2719
2720void ISel::visitVAArgInst(VAArgInst &I) {
2721 unsigned VAList = getReg(I.getOperand(0));
2722 unsigned DestReg = getReg(I);
2723
Misha Brukman358829f2004-06-21 17:25:55 +00002724 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002725 default:
2726 std::cerr << I;
2727 assert(0 && "Error: bad type for va_next instruction!");
2728 return;
2729 case Type::PointerTyID:
2730 case Type::UIntTyID:
2731 case Type::IntTyID:
2732 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2733 break;
2734 case Type::ULongTyID:
2735 case Type::LongTyID:
2736 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2737 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2738 break;
2739 case Type::DoubleTyID:
2740 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2741 break;
2742 }
2743}
2744
2745/// visitGetElementPtrInst - instruction-select GEP instructions
2746///
2747void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2748 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002749 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2750 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002751}
2752
2753void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2754 MachineBasicBlock::iterator IP,
2755 Value *Src, User::op_iterator IdxBegin,
2756 User::op_iterator IdxEnd, unsigned TargetReg) {
2757 const TargetData &TD = TM.getTargetData();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002758
2759 std::vector<Value*> GEPOps;
2760 GEPOps.resize(IdxEnd-IdxBegin+1);
2761 GEPOps[0] = Src;
2762 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2763
2764 std::vector<const Type*> GEPTypes;
2765 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2766 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2767
2768 // Keep emitting instructions until we consume the entire GEP instruction.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002769 while (!GEPOps.empty()) {
2770 if (GEPTypes.empty()) {
2771 // Load the base pointer into a register.
2772 unsigned Reg = getReg(Src, MBB, IP);
2773 BuildMI(*MBB, IP, PPC32::OR, 2, TargetReg).addReg(Reg).addReg(Reg);
2774 break; // we are now done
2775 }
Misha Brukman313efcb2004-07-09 15:45:07 +00002776 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
2777 // It's a struct access. CUI is the index into the structure,
2778 // which names the field. This index must have unsigned type.
2779 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002780
Misha Brukman313efcb2004-07-09 15:45:07 +00002781 // Use the TargetData structure to pick out what the layout of the
2782 // structure is in memory. Since the structure index must be constant, we
2783 // can get its value and use it to find the right byte offset from the
2784 // StructLayout class's list of structure member offsets.
2785 unsigned Disp = TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
2786 GEPOps.pop_back(); // Consume a GEP operand
2787 GEPTypes.pop_back();
Misha Brukman2fec9902004-06-21 20:22:03 +00002788 unsigned Reg = makeAnotherReg(Type::UIntTy);
Misha Brukman313efcb2004-07-09 15:45:07 +00002789 unsigned DispReg = makeAnotherReg(Type::UIntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00002790 BuildMI(*MBB, IP, PPC32::LI, 1, DispReg).addImm(Disp);
Misha Brukman313efcb2004-07-09 15:45:07 +00002791 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(DispReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002792 --IP; // Insert the next instruction before this one.
2793 TargetReg = Reg; // Codegen the rest of the GEP into this
2794 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +00002795 // It's an array or pointer access: [ArraySize x ElementType].
2796 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2797 Value *idx = GEPOps.back();
2798 GEPOps.pop_back(); // Consume a GEP operand
2799 GEPTypes.pop_back();
2800
2801 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
2802 // operand. Handle this case directly now...
2803 if (CastInst *CI = dyn_cast<CastInst>(idx))
2804 if (CI->getOperand(0)->getType() == Type::IntTy ||
2805 CI->getOperand(0)->getType() == Type::UIntTy)
2806 idx = CI->getOperand(0);
2807
2808 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2809 // must find the size of the pointed-to type (Not coincidentally, the next
2810 // type is the type of the elements in the array).
2811 const Type *ElTy = SqTy->getElementType();
2812 unsigned elementSize = TD.getTypeSize(ElTy);
2813
2814 if (idx == Constant::getNullValue(idx->getType())) {
2815 // GEP with idx 0 is a no-op
2816 } else if (elementSize == 1) {
2817 // If the element size is 1, we don't have to multiply, just add
2818 unsigned idxReg = getReg(idx, MBB, IP);
2819 unsigned Reg = makeAnotherReg(Type::UIntTy);
2820 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2821 --IP; // Insert the next instruction before this one.
2822 TargetReg = Reg; // Codegen the rest of the GEP into this
2823 } else {
2824 unsigned idxReg = getReg(idx, MBB, IP);
2825 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
2826
2827 // Make sure we can back the iterator up to point to the first
2828 // instruction emitted.
2829 MachineBasicBlock::iterator BeforeIt = IP;
2830 if (IP == MBB->begin())
2831 BeforeIt = MBB->end();
2832 else
2833 --BeforeIt;
2834 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2835
2836 // Emit an ADD to add OffsetReg to the basePtr.
2837 unsigned Reg = makeAnotherReg(Type::UIntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002838 BuildMI(*MBB, IP, PPC32::ADD,2,TargetReg).addReg(Reg).addReg(OffsetReg);
2839
Misha Brukman313efcb2004-07-09 15:45:07 +00002840 // Step to the first instruction of the multiply.
2841 if (BeforeIt == MBB->end())
2842 IP = MBB->begin();
2843 else
2844 IP = ++BeforeIt;
2845
2846 TargetReg = Reg; // Codegen the rest of the GEP into this
2847 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002848 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002849 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002850}
2851
2852/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2853/// frame manager, otherwise do it the hard way.
2854///
2855void ISel::visitAllocaInst(AllocaInst &I) {
2856 // If this is a fixed size alloca in the entry block for the function, we
2857 // statically stack allocate the space, so we don't need to do anything here.
2858 //
2859 if (dyn_castFixedAlloca(&I)) return;
2860
2861 // Find the data size of the alloca inst's getAllocatedType.
2862 const Type *Ty = I.getAllocatedType();
2863 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2864
2865 // Create a register to hold the temporary result of multiplying the type size
2866 // constant by the variable amount.
2867 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2868 unsigned SrcReg1 = getReg(I.getArraySize());
2869
2870 // TotalSizeReg = mul <numelements>, <TypeSize>
2871 MachineBasicBlock::iterator MBBI = BB->end();
2872 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2873
2874 // AddedSize = add <TotalSizeReg>, 15
2875 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2876 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2877
2878 // AlignedSize = and <AddedSize>, ~15
2879 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002880 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2881 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002882
2883 // Subtract size from stack pointer, thereby allocating some space.
2884 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2885
2886 // Put a pointer to the space into the result register, by copying
2887 // the stack pointer.
2888 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2889
2890 // Inform the Frame Information that we have just allocated a variable-sized
2891 // object.
2892 F->getFrameInfo()->CreateVariableSizedObject();
2893}
2894
2895/// visitMallocInst - Malloc instructions are code generated into direct calls
2896/// to the library malloc.
2897///
2898void ISel::visitMallocInst(MallocInst &I) {
2899 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2900 unsigned Arg;
2901
2902 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2903 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2904 } else {
2905 Arg = makeAnotherReg(Type::UIntTy);
2906 unsigned Op0Reg = getReg(I.getOperand(0));
2907 MachineBasicBlock::iterator MBBI = BB->end();
2908 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2909 }
2910
2911 std::vector<ValueRecord> Args;
2912 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002913 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002914 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002915 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002916}
2917
2918
2919/// visitFreeInst - Free instructions are code gen'd to call the free libc
2920/// function.
2921///
2922void ISel::visitFreeInst(FreeInst &I) {
2923 std::vector<ValueRecord> Args;
2924 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002925 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002926 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(freeFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002927 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002928}
2929
2930/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2931/// into a machine code representation is a very simple peep-hole fashion. The
2932/// generated code sucks but the implementation is nice and simple.
2933///
2934FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2935 return new ISel(TM);
2936}