blob: 94ef37b97a7e79ef39daef4c30182d96225c32b3 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Anton Korobeynikovc6c98af2007-04-29 18:02:48 +000027 <li><a href="#aliasstructure">Aliases</a>
Reid Spencerca86e162006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000029 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000030 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000031 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000032 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000033 </ol>
34 </li>
Chris Lattner00950542001-06-06 20:29:01 +000035 <li><a href="#typesystem">Type System</a>
36 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000038 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000039 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000040 <li><a href="#t_floating">Floating Point Types</a></li>
41 <li><a href="#t_void">Void Type</a></li>
42 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000043 </ol>
44 </li>
Chris Lattner00950542001-06-06 20:29:01 +000045 <li><a href="#t_derived">Derived Types</a>
46 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000047 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000048 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000049 <li><a href="#t_function">Function Type</a></li>
50 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000051 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000052 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000053 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000054 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000055 </ol>
56 </li>
57 </ol>
58 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000059 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000060 <ol>
61 <li><a href="#simpleconstants">Simple Constants</a>
62 <li><a href="#aggregateconstants">Aggregate Constants</a>
63 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
64 <li><a href="#undefvalues">Undefined Values</a>
65 <li><a href="#constantexprs">Constant Expressions</a>
66 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000067 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000068 <li><a href="#othervalues">Other Values</a>
69 <ol>
70 <li><a href="#inlineasm">Inline Assembler Expressions</a>
71 </ol>
72 </li>
Chris Lattner00950542001-06-06 20:29:01 +000073 <li><a href="#instref">Instruction Reference</a>
74 <ol>
75 <li><a href="#terminators">Terminator Instructions</a>
76 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000077 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
78 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000079 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
80 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000082 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000083 </ol>
84 </li>
Chris Lattner00950542001-06-06 20:29:01 +000085 <li><a href="#binaryops">Binary Operations</a>
86 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000087 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
88 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
89 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000090 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
91 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
92 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000093 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
94 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
95 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000096 </ol>
97 </li>
Chris Lattner00950542001-06-06 20:29:01 +000098 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
99 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000100 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
101 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
102 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000103 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000104 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000105 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000106 </ol>
107 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000108 <li><a href="#vectorops">Vector Operations</a>
109 <ol>
110 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
111 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
112 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000113 </ol>
114 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000115 <li><a href="#aggregateops">Aggregate Operations</a>
116 <ol>
117 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
118 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
119 </ol>
120 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000121 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000122 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000123 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
124 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
125 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000126 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
127 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
128 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000129 </ol>
130 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000131 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000132 <ol>
133 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
134 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000138 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
140 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
141 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000142 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
143 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000144 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000145 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000146 <li><a href="#otherops">Other Operations</a>
147 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000148 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
149 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000150 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
151 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000152 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000153 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000154 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000155 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Devang Patelc3fc6df2008-03-10 20:49:15 +0000156 <li><a href="#i_getresult">'<tt>getresult</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000157 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000158 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000159 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000160 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000161 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000162 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000163 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
164 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000165 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
167 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000168 </ol>
169 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000170 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
171 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000172 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
174 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000175 </ol>
176 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000177 <li><a href="#int_codegen">Code Generator Intrinsics</a>
178 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000179 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
181 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
182 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
183 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
184 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
185 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000186 </ol>
187 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000188 <li><a href="#int_libc">Standard C Library Intrinsics</a>
189 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000190 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000195 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000198 </ol>
199 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000200 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000201 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000202 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000203 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
205 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000206 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000208 </ol>
209 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000210 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000211 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000212 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000213 <ol>
214 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000215 </ol>
216 </li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000217 <li><a href="#int_atomics">Atomic intrinsics</a>
218 <ol>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000219 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
Mon P Wang28873102008-06-25 08:15:39 +0000220 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000221 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Mon P Wang28873102008-06-25 08:15:39 +0000222 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
223 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
224 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
225 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
226 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
227 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
228 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
229 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
230 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
231 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000232 </ol>
233 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000234 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000235 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000236 <li><a href="#int_var_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000237 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000238 <li><a href="#int_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000239 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000240 <li><a href="#int_trap">
241 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000242 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000243 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000244 </ol>
245 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000246</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000247
248<div class="doc_author">
249 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
250 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000251</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000252
Chris Lattner00950542001-06-06 20:29:01 +0000253<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000254<div class="doc_section"> <a name="abstract">Abstract </a></div>
255<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000256
Misha Brukman9d0919f2003-11-08 01:05:38 +0000257<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000258<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000259LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000260type safety, low-level operations, flexibility, and the capability of
261representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000262representation used throughout all phases of the LLVM compilation
263strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000264</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000265
Chris Lattner00950542001-06-06 20:29:01 +0000266<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000267<div class="doc_section"> <a name="introduction">Introduction</a> </div>
268<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000269
Misha Brukman9d0919f2003-11-08 01:05:38 +0000270<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
Chris Lattner261efe92003-11-25 01:02:51 +0000272<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000273different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000274representation (suitable for fast loading by a Just-In-Time compiler),
275and as a human readable assembly language representation. This allows
276LLVM to provide a powerful intermediate representation for efficient
277compiler transformations and analysis, while providing a natural means
278to debug and visualize the transformations. The three different forms
279of LLVM are all equivalent. This document describes the human readable
280representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000281
John Criswellc1f786c2005-05-13 22:25:59 +0000282<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000283while being expressive, typed, and extensible at the same time. It
284aims to be a "universal IR" of sorts, by being at a low enough level
285that high-level ideas may be cleanly mapped to it (similar to how
286microprocessors are "universal IR's", allowing many source languages to
287be mapped to them). By providing type information, LLVM can be used as
288the target of optimizations: for example, through pointer analysis, it
289can be proven that a C automatic variable is never accessed outside of
290the current function... allowing it to be promoted to a simple SSA
291value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000292
Misha Brukman9d0919f2003-11-08 01:05:38 +0000293</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000294
Chris Lattner00950542001-06-06 20:29:01 +0000295<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000296<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000297
Misha Brukman9d0919f2003-11-08 01:05:38 +0000298<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000299
Chris Lattner261efe92003-11-25 01:02:51 +0000300<p>It is important to note that this document describes 'well formed'
301LLVM assembly language. There is a difference between what the parser
302accepts and what is considered 'well formed'. For example, the
303following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000304
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000305<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000306<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000307%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000308</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000309</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000310
Chris Lattner261efe92003-11-25 01:02:51 +0000311<p>...because the definition of <tt>%x</tt> does not dominate all of
312its uses. The LLVM infrastructure provides a verification pass that may
313be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000314automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000315the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000316by the verifier pass indicate bugs in transformation passes or input to
317the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000318</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000319
Chris Lattnercc689392007-10-03 17:34:29 +0000320<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000321
Chris Lattner00950542001-06-06 20:29:01 +0000322<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000323<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000324<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000325
Misha Brukman9d0919f2003-11-08 01:05:38 +0000326<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000327
Reid Spencer2c452282007-08-07 14:34:28 +0000328 <p>LLVM identifiers come in two basic types: global and local. Global
329 identifiers (functions, global variables) begin with the @ character. Local
330 identifiers (register names, types) begin with the % character. Additionally,
331 there are three different formats for identifiers, for different purposes:
Chris Lattnerd7923912004-05-23 21:06:01 +0000332
Chris Lattner00950542001-06-06 20:29:01 +0000333<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000334 <li>Named values are represented as a string of characters with their prefix.
335 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
336 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000337 Identifiers which require other characters in their names can be surrounded
Reid Spencer2c452282007-08-07 14:34:28 +0000338 with quotes. In this way, anything except a <tt>&quot;</tt> character can
339 be used in a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000340
Reid Spencer2c452282007-08-07 14:34:28 +0000341 <li>Unnamed values are represented as an unsigned numeric value with their
342 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000343
Reid Spencercc16dc32004-12-09 18:02:53 +0000344 <li>Constants, which are described in a <a href="#constants">section about
345 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000346</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000347
Reid Spencer2c452282007-08-07 14:34:28 +0000348<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000349don't need to worry about name clashes with reserved words, and the set of
350reserved words may be expanded in the future without penalty. Additionally,
351unnamed identifiers allow a compiler to quickly come up with a temporary
352variable without having to avoid symbol table conflicts.</p>
353
Chris Lattner261efe92003-11-25 01:02:51 +0000354<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000355languages. There are keywords for different opcodes
356('<tt><a href="#i_add">add</a></tt>',
357 '<tt><a href="#i_bitcast">bitcast</a></tt>',
358 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000359href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000360and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000361none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000362
363<p>Here is an example of LLVM code to multiply the integer variable
364'<tt>%X</tt>' by 8:</p>
365
Misha Brukman9d0919f2003-11-08 01:05:38 +0000366<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000367
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000368<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000369<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000370%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000371</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000372</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000373
Misha Brukman9d0919f2003-11-08 01:05:38 +0000374<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000375
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000376<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000377<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000378%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000379</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000380</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000381
Misha Brukman9d0919f2003-11-08 01:05:38 +0000382<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000383
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000384<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000385<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000386<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
387<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
388%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000389</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000390</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000391
Chris Lattner261efe92003-11-25 01:02:51 +0000392<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
393important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000394
Chris Lattner00950542001-06-06 20:29:01 +0000395<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000396
397 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
398 line.</li>
399
400 <li>Unnamed temporaries are created when the result of a computation is not
401 assigned to a named value.</li>
402
Misha Brukman9d0919f2003-11-08 01:05:38 +0000403 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000404
Misha Brukman9d0919f2003-11-08 01:05:38 +0000405</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000406
John Criswelle4c57cc2005-05-12 16:52:32 +0000407<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000408demonstrating instructions, we will follow an instruction with a comment that
409defines the type and name of value produced. Comments are shown in italic
410text.</p>
411
Misha Brukman9d0919f2003-11-08 01:05:38 +0000412</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000413
414<!-- *********************************************************************** -->
415<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
416<!-- *********************************************************************** -->
417
418<!-- ======================================================================= -->
419<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
420</div>
421
422<div class="doc_text">
423
424<p>LLVM programs are composed of "Module"s, each of which is a
425translation unit of the input programs. Each module consists of
426functions, global variables, and symbol table entries. Modules may be
427combined together with the LLVM linker, which merges function (and
428global variable) definitions, resolves forward declarations, and merges
429symbol table entries. Here is an example of the "hello world" module:</p>
430
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000431<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000432<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000433<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
434 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000435
436<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000437<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000438
439<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000440define i32 @main() { <i>; i32()* </i>
Reid Spencerca86e162006-12-31 07:07:53 +0000441 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000442 %cast210 = <a
Chris Lattner6c0955b2007-06-12 17:01:15 +0000443 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000444
445 <i>; Call puts function to write out the string to stdout...</i>
446 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000447 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000448 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000449 href="#i_ret">ret</a> i32 0<br>}<br>
450</pre>
451</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000452
453<p>This example is made up of a <a href="#globalvars">global variable</a>
454named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
455function, and a <a href="#functionstructure">function definition</a>
456for "<tt>main</tt>".</p>
457
Chris Lattnere5d947b2004-12-09 16:36:40 +0000458<p>In general, a module is made up of a list of global values,
459where both functions and global variables are global values. Global values are
460represented by a pointer to a memory location (in this case, a pointer to an
461array of char, and a pointer to a function), and have one of the following <a
462href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000463
Chris Lattnere5d947b2004-12-09 16:36:40 +0000464</div>
465
466<!-- ======================================================================= -->
467<div class="doc_subsection">
468 <a name="linkage">Linkage Types</a>
469</div>
470
471<div class="doc_text">
472
473<p>
474All Global Variables and Functions have one of the following types of linkage:
475</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000476
477<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000478
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000479 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000480
481 <dd>Global values with internal linkage are only directly accessible by
482 objects in the current module. In particular, linking code into a module with
483 an internal global value may cause the internal to be renamed as necessary to
484 avoid collisions. Because the symbol is internal to the module, all
485 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000486 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000487 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000488
Chris Lattnerfa730212004-12-09 16:11:40 +0000489 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000490
Chris Lattner4887bd82007-01-14 06:51:48 +0000491 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
492 the same name when linkage occurs. This is typically used to implement
493 inline functions, templates, or other code which must be generated in each
494 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
495 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000496 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000497
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000498 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
499
500 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
501 linkage, except that unreferenced <tt>common</tt> globals may not be
502 discarded. This is used for globals that may be emitted in multiple
503 translation units, but that are not guaranteed to be emitted into every
504 translation unit that uses them. One example of this is tentative
505 definitions in C, such as "<tt>int X;</tt>" at global scope.
506 </dd>
507
Chris Lattnerfa730212004-12-09 16:11:40 +0000508 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000509
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000510 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
511 that some targets may choose to emit different assembly sequences for them
512 for target-dependent reasons. This is used for globals that are declared
513 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000514 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000515
Chris Lattnerfa730212004-12-09 16:11:40 +0000516 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000517
518 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
519 pointer to array type. When two global variables with appending linkage are
520 linked together, the two global arrays are appended together. This is the
521 LLVM, typesafe, equivalent of having the system linker append together
522 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000523 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000524
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000525 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000526 <dd>The semantics of this linkage follow the ELF object file model: the
527 symbol is weak until linked, if not linked, the symbol becomes null instead
528 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000529 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000530
Chris Lattnerfa730212004-12-09 16:11:40 +0000531 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000532
533 <dd>If none of the above identifiers are used, the global is externally
534 visible, meaning that it participates in linkage and can be used to resolve
535 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000536 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000537</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000538
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000539 <p>
540 The next two types of linkage are targeted for Microsoft Windows platform
541 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000542 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000543 </p>
544
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000545 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000546 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
547
548 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
549 or variable via a global pointer to a pointer that is set up by the DLL
550 exporting the symbol. On Microsoft Windows targets, the pointer name is
551 formed by combining <code>_imp__</code> and the function or variable name.
552 </dd>
553
554 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
555
556 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
557 pointer to a pointer in a DLL, so that it can be referenced with the
558 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
559 name is formed by combining <code>_imp__</code> and the function or variable
560 name.
561 </dd>
562
Chris Lattnerfa730212004-12-09 16:11:40 +0000563</dl>
564
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000565<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000566variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
567variable and was linked with this one, one of the two would be renamed,
568preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
569external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000570outside of the current module.</p>
571<p>It is illegal for a function <i>declaration</i>
572to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000573or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000574<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
575linkages.
Chris Lattnerfa730212004-12-09 16:11:40 +0000576</div>
577
578<!-- ======================================================================= -->
579<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000580 <a name="callingconv">Calling Conventions</a>
581</div>
582
583<div class="doc_text">
584
585<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
586and <a href="#i_invoke">invokes</a> can all have an optional calling convention
587specified for the call. The calling convention of any pair of dynamic
588caller/callee must match, or the behavior of the program is undefined. The
589following calling conventions are supported by LLVM, and more may be added in
590the future:</p>
591
592<dl>
593 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
594
595 <dd>This calling convention (the default if no other calling convention is
596 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000597 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000598 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000599 </dd>
600
601 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
602
603 <dd>This calling convention attempts to make calls as fast as possible
604 (e.g. by passing things in registers). This calling convention allows the
605 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000606 without having to conform to an externally specified ABI (Application Binary
607 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000608 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
609 supported. This calling convention does not support varargs and requires the
610 prototype of all callees to exactly match the prototype of the function
611 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000612 </dd>
613
614 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
615
616 <dd>This calling convention attempts to make code in the caller as efficient
617 as possible under the assumption that the call is not commonly executed. As
618 such, these calls often preserve all registers so that the call does not break
619 any live ranges in the caller side. This calling convention does not support
620 varargs and requires the prototype of all callees to exactly match the
621 prototype of the function definition.
622 </dd>
623
Chris Lattnercfe6b372005-05-07 01:46:40 +0000624 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000625
626 <dd>Any calling convention may be specified by number, allowing
627 target-specific calling conventions to be used. Target specific calling
628 conventions start at 64.
629 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000630</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000631
632<p>More calling conventions can be added/defined on an as-needed basis, to
633support pascal conventions or any other well-known target-independent
634convention.</p>
635
636</div>
637
638<!-- ======================================================================= -->
639<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000640 <a name="visibility">Visibility Styles</a>
641</div>
642
643<div class="doc_text">
644
645<p>
646All Global Variables and Functions have one of the following visibility styles:
647</p>
648
649<dl>
650 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
651
Chris Lattnerd3eda892008-08-05 18:29:16 +0000652 <dd>On targets that use the ELF object file format, default visibility means
653 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000654 modules and, in shared libraries, means that the declared entity may be
655 overridden. On Darwin, default visibility means that the declaration is
656 visible to other modules. Default visibility corresponds to "external
657 linkage" in the language.
658 </dd>
659
660 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
661
662 <dd>Two declarations of an object with hidden visibility refer to the same
663 object if they are in the same shared object. Usually, hidden visibility
664 indicates that the symbol will not be placed into the dynamic symbol table,
665 so no other module (executable or shared library) can reference it
666 directly.
667 </dd>
668
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000669 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
670
671 <dd>On ELF, protected visibility indicates that the symbol will be placed in
672 the dynamic symbol table, but that references within the defining module will
673 bind to the local symbol. That is, the symbol cannot be overridden by another
674 module.
675 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000676</dl>
677
678</div>
679
680<!-- ======================================================================= -->
681<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000682 <a name="globalvars">Global Variables</a>
683</div>
684
685<div class="doc_text">
686
Chris Lattner3689a342005-02-12 19:30:21 +0000687<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000688instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000689an explicit section to be placed in, and may have an optional explicit alignment
690specified. A variable may be defined as "thread_local", which means that it
691will not be shared by threads (each thread will have a separated copy of the
692variable). A variable may be defined as a global "constant," which indicates
693that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000694optimization, allowing the global data to be placed in the read-only section of
695an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000696cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000697
698<p>
699LLVM explicitly allows <em>declarations</em> of global variables to be marked
700constant, even if the final definition of the global is not. This capability
701can be used to enable slightly better optimization of the program, but requires
702the language definition to guarantee that optimizations based on the
703'constantness' are valid for the translation units that do not include the
704definition.
705</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000706
707<p>As SSA values, global variables define pointer values that are in
708scope (i.e. they dominate) all basic blocks in the program. Global
709variables always define a pointer to their "content" type because they
710describe a region of memory, and all memory objects in LLVM are
711accessed through pointers.</p>
712
Christopher Lamb284d9922007-12-11 09:31:00 +0000713<p>A global variable may be declared to reside in a target-specifc numbered
714address space. For targets that support them, address spaces may affect how
715optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000716the variable. The default address space is zero. The address space qualifier
717must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000718
Chris Lattner88f6c462005-11-12 00:45:07 +0000719<p>LLVM allows an explicit section to be specified for globals. If the target
720supports it, it will emit globals to the section specified.</p>
721
Chris Lattner2cbdc452005-11-06 08:02:57 +0000722<p>An explicit alignment may be specified for a global. If not present, or if
723the alignment is set to zero, the alignment of the global is set by the target
724to whatever it feels convenient. If an explicit alignment is specified, the
725global is forced to have at least that much alignment. All alignments must be
726a power of 2.</p>
727
Christopher Lamb284d9922007-12-11 09:31:00 +0000728<p>For example, the following defines a global in a numbered address space with
729an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000730
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000731<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000732<pre>
Christopher Lamb284d9922007-12-11 09:31:00 +0000733@G = constant float 1.0 addrspace(5), section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000734</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000735</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000736
Chris Lattnerfa730212004-12-09 16:11:40 +0000737</div>
738
739
740<!-- ======================================================================= -->
741<div class="doc_subsection">
742 <a name="functionstructure">Functions</a>
743</div>
744
745<div class="doc_text">
746
Reid Spencerca86e162006-12-31 07:07:53 +0000747<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
748an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000749<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000750<a href="#callingconv">calling convention</a>, a return type, an optional
751<a href="#paramattrs">parameter attribute</a> for the return type, a function
752name, a (possibly empty) argument list (each with optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000753<a href="#paramattrs">parameter attributes</a>), an optional section, an
Devang Patelf8b94812008-09-04 23:05:13 +0000754optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000755an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000756
757LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
758optional <a href="#linkage">linkage type</a>, an optional
759<a href="#visibility">visibility style</a>, an optional
760<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000761<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000762name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000763<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000764
Chris Lattnerd3eda892008-08-05 18:29:16 +0000765<p>A function definition contains a list of basic blocks, forming the CFG
766(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000767the function. Each basic block may optionally start with a label (giving the
768basic block a symbol table entry), contains a list of instructions, and ends
769with a <a href="#terminators">terminator</a> instruction (such as a branch or
770function return).</p>
771
Chris Lattner4a3c9012007-06-08 16:52:14 +0000772<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000773executed on entrance to the function, and it is not allowed to have predecessor
774basic blocks (i.e. there can not be any branches to the entry block of a
775function). Because the block can have no predecessors, it also cannot have any
776<a href="#i_phi">PHI nodes</a>.</p>
777
Chris Lattner88f6c462005-11-12 00:45:07 +0000778<p>LLVM allows an explicit section to be specified for functions. If the target
779supports it, it will emit functions to the section specified.</p>
780
Chris Lattner2cbdc452005-11-06 08:02:57 +0000781<p>An explicit alignment may be specified for a function. If not present, or if
782the alignment is set to zero, the alignment of the function is set by the target
783to whatever it feels convenient. If an explicit alignment is specified, the
784function is forced to have at least that much alignment. All alignments must be
785a power of 2.</p>
786
Chris Lattnerfa730212004-12-09 16:11:40 +0000787</div>
788
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000789
790<!-- ======================================================================= -->
791<div class="doc_subsection">
792 <a name="aliasstructure">Aliases</a>
793</div>
794<div class="doc_text">
795 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000796 function, global variable, another alias or bitcast of global value). Aliases
797 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000798 optional <a href="#visibility">visibility style</a>.</p>
799
800 <h5>Syntax:</h5>
801
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000802<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000803<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000804@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000805</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000806</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000807
808</div>
809
810
811
Chris Lattner4e9aba72006-01-23 23:23:47 +0000812<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000813<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
814<div class="doc_text">
815 <p>The return type and each parameter of a function type may have a set of
816 <i>parameter attributes</i> associated with them. Parameter attributes are
817 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000818 a function. Parameter attributes are considered to be part of the function,
819 not of the function type, so functions with different parameter attributes
820 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000821
Reid Spencer950e9f82007-01-15 18:27:39 +0000822 <p>Parameter attributes are simple keywords that follow the type specified. If
823 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000824 example:</p>
825
826<div class="doc_code">
827<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000828declare i32 @printf(i8* noalias , ...)
829declare i32 @atoi(i8 zeroext*)
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000830</pre>
831</div>
832
Duncan Sandsdc024672007-11-27 13:23:08 +0000833 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
834 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000835
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000836 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000837 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000838 <dt><tt>zeroext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000839 <dd>This indicates that the parameter should be zero extended just before
840 a call to this function.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000841
Reid Spencer9445e9a2007-07-19 23:13:04 +0000842 <dt><tt>signext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000843 <dd>This indicates that the parameter should be sign extended just before
844 a call to this function.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000845
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000846 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000847 <dd>This indicates that this parameter or return value should be treated
848 in a special target-dependent fashion during while emitting code for a
849 function call or return (usually, by putting it in a register as opposed
850 to memory; in some places it is used to distinguish between two different
851 kinds of registers). Use of this attribute is target-specific</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000852
853 <dt><tt>byval</tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000854 <dd>This indicates that the pointer parameter should really be passed by
855 value to the function. The attribute implies that a hidden copy of the
856 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000857 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000858 pointer arguments. It is generally used to pass structs and arrays by
859 value, but is also valid on scalars (even though this is silly).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000860
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000861 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000862 <dd>This indicates that the pointer parameter specifies the address of a
863 structure that is the return value of the function in the source program.
Duncan Sandsb7f0c082008-03-17 12:17:41 +0000864 Loads and stores to the structure are assumed not to trap.
Duncan Sandse26dec62008-02-18 04:19:38 +0000865 May only be applied to the first parameter.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000866
Zhou Shengfebca342007-06-05 05:28:26 +0000867 <dt><tt>noalias</tt></dt>
Owen Anderson117bbd32008-02-18 04:09:01 +0000868 <dd>This indicates that the parameter does not alias any global or any other
869 parameter. The caller is responsible for ensuring that this is the case,
870 usually by placing the value in a stack allocation.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000871
Duncan Sands50f19f52007-07-27 19:57:41 +0000872 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000873 <dd>This indicates that the pointer parameter can be excised using the
Duncan Sands50f19f52007-07-27 19:57:41 +0000874 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000875 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000876
Reid Spencerca86e162006-12-31 07:07:53 +0000877</div>
878
879<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000880<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000881 <a name="gc">Garbage Collector Names</a>
882</div>
883
884<div class="doc_text">
885<p>Each function may specify a garbage collector name, which is simply a
886string.</p>
887
888<div class="doc_code"><pre
889>define void @f() gc "name" { ...</pre></div>
890
891<p>The compiler declares the supported values of <i>name</i>. Specifying a
892collector which will cause the compiler to alter its output in order to support
893the named garbage collection algorithm.</p>
894</div>
895
896<!-- ======================================================================= -->
897<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000898 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +0000899</div>
900
901<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000902
903<p>Function attributes are set to communicate additional information about
904 a function. Function attributes are considered to be part of the function,
905 not of the function type, so functions with different parameter attributes
906 can have the same function type.</p>
907
908 <p>Function attributes are simple keywords that follow the type specified. If
909 multiple attributes are needed, they are space separated. For
910 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +0000911
912<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000913<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000914define void @f() noinline { ... }
915define void @f() alwaysinline { ... }
916define void @f() alwaysinline optsize { ... }
917define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000918</pre>
Devang Patelf8b94812008-09-04 23:05:13 +0000919</div>
920
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000921<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000922<dt><tt>alwaysinline</tt></dt>
923<dd>This attribute requests inliner to inline this function irrespective of
924inlining size threshold for this function.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000925
Devang Patel2c9c3e72008-09-26 23:51:19 +0000926<dt><tt>noinline</tt></dt>
927<dd>This attributes requests inliner to never inline this function in any
928situation. This attribute may not be used together with <tt>alwaysinline</tt>
929 attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000930
Devang Patel2c9c3e72008-09-26 23:51:19 +0000931<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +0000932<dd>This attribute suggests that optimization passes and code generator passes
Devang Patel2c9c3e72008-09-26 23:51:19 +0000933make choices that help reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000934
Devang Patel2c9c3e72008-09-26 23:51:19 +0000935<dt><tt>noreturn</tt></dt>
936<dd>This function attribute indicates that the function never returns. This
Devang Patel12602052008-09-29 18:16:09 +0000937 tells LLVM that every call to this function should be treated as if
Devang Patel2c9c3e72008-09-26 23:51:19 +0000938 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
939
940<dt><tt>nounwind</tt></dt>
941<dd>This function attribute indicates that no exceptions unwind out of the
942 function. Usually this is because the function makes no use of exceptions,
943 but it may also be that the function catches any exceptions thrown when
944 executing it.</dd>
945
946<dt><tt>readonly</tt></dt>
947<dd>This function attribute indicates that the function has no side-effects
948 except for producing a return value or throwing an exception. The value
949 returned must only depend on the function arguments and/or global variables.
950 It may use values obtained by dereferencing pointers.</dd>
951<dt><tt>readnone</tt></dt>
952<dd>A <tt>readnone</tt> function has the same restrictions as a <tt>readonly</tt>
953 function, but in addition it is not allowed to dereference any pointer arguments
954 or global variables.
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000955</dl>
956
Devang Patelf8b94812008-09-04 23:05:13 +0000957</div>
958
959<!-- ======================================================================= -->
960<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000961 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000962</div>
963
964<div class="doc_text">
965<p>
966Modules may contain "module-level inline asm" blocks, which corresponds to the
967GCC "file scope inline asm" blocks. These blocks are internally concatenated by
968LLVM and treated as a single unit, but may be separated in the .ll file if
969desired. The syntax is very simple:
970</p>
971
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000972<div class="doc_code">
973<pre>
974module asm "inline asm code goes here"
975module asm "more can go here"
976</pre>
977</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000978
979<p>The strings can contain any character by escaping non-printable characters.
980 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
981 for the number.
982</p>
983
984<p>
985 The inline asm code is simply printed to the machine code .s file when
986 assembly code is generated.
987</p>
988</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000989
Reid Spencerde151942007-02-19 23:54:10 +0000990<!-- ======================================================================= -->
991<div class="doc_subsection">
992 <a name="datalayout">Data Layout</a>
993</div>
994
995<div class="doc_text">
996<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +0000997data is to be laid out in memory. The syntax for the data layout is simply:</p>
998<pre> target datalayout = "<i>layout specification</i>"</pre>
999<p>The <i>layout specification</i> consists of a list of specifications
1000separated by the minus sign character ('-'). Each specification starts with a
1001letter and may include other information after the letter to define some
1002aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001003<dl>
1004 <dt><tt>E</tt></dt>
1005 <dd>Specifies that the target lays out data in big-endian form. That is, the
1006 bits with the most significance have the lowest address location.</dd>
1007 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001008 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001009 the bits with the least significance have the lowest address location.</dd>
1010 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1011 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1012 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1013 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1014 too.</dd>
1015 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1016 <dd>This specifies the alignment for an integer type of a given bit
1017 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1018 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1019 <dd>This specifies the alignment for a vector type of a given bit
1020 <i>size</i>.</dd>
1021 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1022 <dd>This specifies the alignment for a floating point type of a given bit
1023 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1024 (double).</dd>
1025 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1026 <dd>This specifies the alignment for an aggregate type of a given bit
1027 <i>size</i>.</dd>
1028</dl>
1029<p>When constructing the data layout for a given target, LLVM starts with a
1030default set of specifications which are then (possibly) overriden by the
1031specifications in the <tt>datalayout</tt> keyword. The default specifications
1032are given in this list:</p>
1033<ul>
1034 <li><tt>E</tt> - big endian</li>
1035 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1036 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1037 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1038 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1039 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001040 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001041 alignment of 64-bits</li>
1042 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1043 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1044 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1045 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1046 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1047</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001048<p>When LLVM is determining the alignment for a given type, it uses the
Reid Spencerde151942007-02-19 23:54:10 +00001049following rules:
1050<ol>
1051 <li>If the type sought is an exact match for one of the specifications, that
1052 specification is used.</li>
1053 <li>If no match is found, and the type sought is an integer type, then the
1054 smallest integer type that is larger than the bitwidth of the sought type is
1055 used. If none of the specifications are larger than the bitwidth then the the
1056 largest integer type is used. For example, given the default specifications
1057 above, the i7 type will use the alignment of i8 (next largest) while both
1058 i65 and i256 will use the alignment of i64 (largest specified).</li>
1059 <li>If no match is found, and the type sought is a vector type, then the
1060 largest vector type that is smaller than the sought vector type will be used
1061 as a fall back. This happens because <128 x double> can be implemented in
1062 terms of 64 <2 x double>, for example.</li>
1063</ol>
1064</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001065
Chris Lattner00950542001-06-06 20:29:01 +00001066<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001067<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1068<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001069
Misha Brukman9d0919f2003-11-08 01:05:38 +00001070<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001071
Misha Brukman9d0919f2003-11-08 01:05:38 +00001072<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001073intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001074optimizations to be performed on the intermediate representation directly,
1075without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001076extra analyses on the side before the transformation. A strong type
1077system makes it easier to read the generated code and enables novel
1078analyses and transformations that are not feasible to perform on normal
1079three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001080
1081</div>
1082
Chris Lattner00950542001-06-06 20:29:01 +00001083<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001084<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001085Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001086<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001087<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001088classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001089
1090<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001091 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001092 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001093 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001094 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001095 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001096 </tr>
1097 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001098 <td><a href="#t_floating">floating point</a></td>
1099 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001100 </tr>
1101 <tr>
1102 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001103 <td><a href="#t_integer">integer</a>,
1104 <a href="#t_floating">floating point</a>,
1105 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001106 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001107 <a href="#t_struct">structure</a>,
1108 <a href="#t_array">array</a>,
Dan Gohmanade5faa2008-05-23 22:50:26 +00001109 <a href="#t_label">label</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001110 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001111 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001112 <tr>
1113 <td><a href="#t_primitive">primitive</a></td>
1114 <td><a href="#t_label">label</a>,
1115 <a href="#t_void">void</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001116 <a href="#t_floating">floating point</a>.</td>
1117 </tr>
1118 <tr>
1119 <td><a href="#t_derived">derived</a></td>
1120 <td><a href="#t_integer">integer</a>,
1121 <a href="#t_array">array</a>,
1122 <a href="#t_function">function</a>,
1123 <a href="#t_pointer">pointer</a>,
1124 <a href="#t_struct">structure</a>,
1125 <a href="#t_pstruct">packed structure</a>,
1126 <a href="#t_vector">vector</a>,
1127 <a href="#t_opaque">opaque</a>.
1128 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001129 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001130</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001131
Chris Lattner261efe92003-11-25 01:02:51 +00001132<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1133most important. Values of these types are the only ones which can be
1134produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001135instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001136</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001137
Chris Lattner00950542001-06-06 20:29:01 +00001138<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001139<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001140
Chris Lattner4f69f462008-01-04 04:32:38 +00001141<div class="doc_text">
1142<p>The primitive types are the fundamental building blocks of the LLVM
1143system.</p>
1144
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001145</div>
1146
Chris Lattner4f69f462008-01-04 04:32:38 +00001147<!-- _______________________________________________________________________ -->
1148<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1149
1150<div class="doc_text">
1151 <table>
1152 <tbody>
1153 <tr><th>Type</th><th>Description</th></tr>
1154 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1155 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1156 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1157 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1158 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1159 </tbody>
1160 </table>
1161</div>
1162
1163<!-- _______________________________________________________________________ -->
1164<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1165
1166<div class="doc_text">
1167<h5>Overview:</h5>
1168<p>The void type does not represent any value and has no size.</p>
1169
1170<h5>Syntax:</h5>
1171
1172<pre>
1173 void
1174</pre>
1175</div>
1176
1177<!-- _______________________________________________________________________ -->
1178<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1179
1180<div class="doc_text">
1181<h5>Overview:</h5>
1182<p>The label type represents code labels.</p>
1183
1184<h5>Syntax:</h5>
1185
1186<pre>
1187 label
1188</pre>
1189</div>
1190
1191
1192<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001193<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001194
Misha Brukman9d0919f2003-11-08 01:05:38 +00001195<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001196
Chris Lattner261efe92003-11-25 01:02:51 +00001197<p>The real power in LLVM comes from the derived types in the system.
1198This is what allows a programmer to represent arrays, functions,
1199pointers, and other useful types. Note that these derived types may be
1200recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001201
Misha Brukman9d0919f2003-11-08 01:05:38 +00001202</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001203
Chris Lattner00950542001-06-06 20:29:01 +00001204<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001205<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1206
1207<div class="doc_text">
1208
1209<h5>Overview:</h5>
1210<p>The integer type is a very simple derived type that simply specifies an
1211arbitrary bit width for the integer type desired. Any bit width from 1 bit to
12122^23-1 (about 8 million) can be specified.</p>
1213
1214<h5>Syntax:</h5>
1215
1216<pre>
1217 iN
1218</pre>
1219
1220<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1221value.</p>
1222
1223<h5>Examples:</h5>
1224<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001225 <tbody>
1226 <tr>
1227 <td><tt>i1</tt></td>
1228 <td>a single-bit integer.</td>
1229 </tr><tr>
1230 <td><tt>i32</tt></td>
1231 <td>a 32-bit integer.</td>
1232 </tr><tr>
1233 <td><tt>i1942652</tt></td>
1234 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001235 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001236 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001237</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001238</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001239
1240<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001241<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001242
Misha Brukman9d0919f2003-11-08 01:05:38 +00001243<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001244
Chris Lattner00950542001-06-06 20:29:01 +00001245<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001246
Misha Brukman9d0919f2003-11-08 01:05:38 +00001247<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001248sequentially in memory. The array type requires a size (number of
1249elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001250
Chris Lattner7faa8832002-04-14 06:13:44 +00001251<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001252
1253<pre>
1254 [&lt;# elements&gt; x &lt;elementtype&gt;]
1255</pre>
1256
John Criswelle4c57cc2005-05-12 16:52:32 +00001257<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001258be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001259
Chris Lattner7faa8832002-04-14 06:13:44 +00001260<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001261<table class="layout">
1262 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001263 <td class="left"><tt>[40 x i32]</tt></td>
1264 <td class="left">Array of 40 32-bit integer values.</td>
1265 </tr>
1266 <tr class="layout">
1267 <td class="left"><tt>[41 x i32]</tt></td>
1268 <td class="left">Array of 41 32-bit integer values.</td>
1269 </tr>
1270 <tr class="layout">
1271 <td class="left"><tt>[4 x i8]</tt></td>
1272 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001273 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001274</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001275<p>Here are some examples of multidimensional arrays:</p>
1276<table class="layout">
1277 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001278 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1279 <td class="left">3x4 array of 32-bit integer values.</td>
1280 </tr>
1281 <tr class="layout">
1282 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1283 <td class="left">12x10 array of single precision floating point values.</td>
1284 </tr>
1285 <tr class="layout">
1286 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1287 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001288 </tr>
1289</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001290
John Criswell0ec250c2005-10-24 16:17:18 +00001291<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1292length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001293LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1294As a special case, however, zero length arrays are recognized to be variable
1295length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001296type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001297
Misha Brukman9d0919f2003-11-08 01:05:38 +00001298</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001299
Chris Lattner00950542001-06-06 20:29:01 +00001300<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001301<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001302<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001303
Chris Lattner00950542001-06-06 20:29:01 +00001304<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001305
Chris Lattner261efe92003-11-25 01:02:51 +00001306<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001307consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001308return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001309If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001310class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001311
Chris Lattner00950542001-06-06 20:29:01 +00001312<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001313
1314<pre>
1315 &lt;returntype list&gt; (&lt;parameter list&gt;)
1316</pre>
1317
John Criswell0ec250c2005-10-24 16:17:18 +00001318<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001319specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001320which indicates that the function takes a variable number of arguments.
1321Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001322 href="#int_varargs">variable argument handling intrinsic</a> functions.
1323'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1324<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001325
Chris Lattner00950542001-06-06 20:29:01 +00001326<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001327<table class="layout">
1328 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001329 <td class="left"><tt>i32 (i32)</tt></td>
1330 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001331 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001332 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001333 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001334 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001335 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1336 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001337 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001338 <tt>float</tt>.
1339 </td>
1340 </tr><tr class="layout">
1341 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1342 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001343 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001344 which returns an integer. This is the signature for <tt>printf</tt> in
1345 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001346 </td>
Devang Patela582f402008-03-24 05:35:41 +00001347 </tr><tr class="layout">
1348 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel3a5bff82008-03-24 18:10:52 +00001349 <td class="left">A function taking an <tt>i32></tt>, returning two
1350 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001351 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001352 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001353</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001354
Misha Brukman9d0919f2003-11-08 01:05:38 +00001355</div>
Chris Lattner00950542001-06-06 20:29:01 +00001356<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001357<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001358<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001359<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001360<p>The structure type is used to represent a collection of data members
1361together in memory. The packing of the field types is defined to match
1362the ABI of the underlying processor. The elements of a structure may
1363be any type that has a size.</p>
1364<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1365and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1366field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1367instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001368<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001369<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001370<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001371<table class="layout">
1372 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001373 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1374 <td class="left">A triple of three <tt>i32</tt> values</td>
1375 </tr><tr class="layout">
1376 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1377 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1378 second element is a <a href="#t_pointer">pointer</a> to a
1379 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1380 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001381 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001382</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001383</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001384
Chris Lattner00950542001-06-06 20:29:01 +00001385<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001386<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1387</div>
1388<div class="doc_text">
1389<h5>Overview:</h5>
1390<p>The packed structure type is used to represent a collection of data members
1391together in memory. There is no padding between fields. Further, the alignment
1392of a packed structure is 1 byte. The elements of a packed structure may
1393be any type that has a size.</p>
1394<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1395and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1396field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1397instruction.</p>
1398<h5>Syntax:</h5>
1399<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1400<h5>Examples:</h5>
1401<table class="layout">
1402 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001403 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1404 <td class="left">A triple of three <tt>i32</tt> values</td>
1405 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001406 <td class="left">
1407<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001408 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1409 second element is a <a href="#t_pointer">pointer</a> to a
1410 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1411 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001412 </tr>
1413</table>
1414</div>
1415
1416<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001417<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001418<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001419<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001420<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001421reference to another object, which must live in memory. Pointer types may have
1422an optional address space attribute defining the target-specific numbered
1423address space where the pointed-to object resides. The default address space is
1424zero.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001425<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001426<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001427<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001428<table class="layout">
1429 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001430 <td class="left"><tt>[4x i32]*</tt></td>
1431 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1432 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1433 </tr>
1434 <tr class="layout">
1435 <td class="left"><tt>i32 (i32 *) *</tt></td>
1436 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001437 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001438 <tt>i32</tt>.</td>
1439 </tr>
1440 <tr class="layout">
1441 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1442 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1443 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001444 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001445</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001446</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001447
Chris Lattnera58561b2004-08-12 19:12:28 +00001448<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001449<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001450<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001451
Chris Lattnera58561b2004-08-12 19:12:28 +00001452<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001453
Reid Spencer485bad12007-02-15 03:07:05 +00001454<p>A vector type is a simple derived type that represents a vector
1455of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001456are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001457A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001458elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001459of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001460considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001461
Chris Lattnera58561b2004-08-12 19:12:28 +00001462<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001463
1464<pre>
1465 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1466</pre>
1467
John Criswellc1f786c2005-05-13 22:25:59 +00001468<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001469be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001470
Chris Lattnera58561b2004-08-12 19:12:28 +00001471<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001472
Reid Spencerd3f876c2004-11-01 08:19:36 +00001473<table class="layout">
1474 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001475 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1476 <td class="left">Vector of 4 32-bit integer values.</td>
1477 </tr>
1478 <tr class="layout">
1479 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1480 <td class="left">Vector of 8 32-bit floating-point values.</td>
1481 </tr>
1482 <tr class="layout">
1483 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1484 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001485 </tr>
1486</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001487</div>
1488
Chris Lattner69c11bb2005-04-25 17:34:15 +00001489<!-- _______________________________________________________________________ -->
1490<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1491<div class="doc_text">
1492
1493<h5>Overview:</h5>
1494
1495<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001496corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001497In LLVM, opaque types can eventually be resolved to any type (not just a
1498structure type).</p>
1499
1500<h5>Syntax:</h5>
1501
1502<pre>
1503 opaque
1504</pre>
1505
1506<h5>Examples:</h5>
1507
1508<table class="layout">
1509 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001510 <td class="left"><tt>opaque</tt></td>
1511 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001512 </tr>
1513</table>
1514</div>
1515
1516
Chris Lattnerc3f59762004-12-09 17:30:23 +00001517<!-- *********************************************************************** -->
1518<div class="doc_section"> <a name="constants">Constants</a> </div>
1519<!-- *********************************************************************** -->
1520
1521<div class="doc_text">
1522
1523<p>LLVM has several different basic types of constants. This section describes
1524them all and their syntax.</p>
1525
1526</div>
1527
1528<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001529<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001530
1531<div class="doc_text">
1532
1533<dl>
1534 <dt><b>Boolean constants</b></dt>
1535
1536 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001537 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001538 </dd>
1539
1540 <dt><b>Integer constants</b></dt>
1541
Reid Spencercc16dc32004-12-09 18:02:53 +00001542 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001543 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001544 integer types.
1545 </dd>
1546
1547 <dt><b>Floating point constants</b></dt>
1548
1549 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1550 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001551 notation (see below). The assembler requires the exact decimal value of
1552 a floating-point constant. For example, the assembler accepts 1.25 but
1553 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1554 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001555
1556 <dt><b>Null pointer constants</b></dt>
1557
John Criswell9e2485c2004-12-10 15:51:16 +00001558 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001559 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1560
1561</dl>
1562
John Criswell9e2485c2004-12-10 15:51:16 +00001563<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001564of floating point constants. For example, the form '<tt>double
15650x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
15664.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001567(and the only time that they are generated by the disassembler) is when a
1568floating point constant must be emitted but it cannot be represented as a
1569decimal floating point number. For example, NaN's, infinities, and other
1570special values are represented in their IEEE hexadecimal format so that
1571assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001572
1573</div>
1574
1575<!-- ======================================================================= -->
1576<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1577</div>
1578
1579<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001580<p>Aggregate constants arise from aggregation of simple constants
1581and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001582
1583<dl>
1584 <dt><b>Structure constants</b></dt>
1585
1586 <dd>Structure constants are represented with notation similar to structure
1587 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001588 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1589 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001590 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001591 types of elements must match those specified by the type.
1592 </dd>
1593
1594 <dt><b>Array constants</b></dt>
1595
1596 <dd>Array constants are represented with notation similar to array type
1597 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001598 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001599 constants must have <a href="#t_array">array type</a>, and the number and
1600 types of elements must match those specified by the type.
1601 </dd>
1602
Reid Spencer485bad12007-02-15 03:07:05 +00001603 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001604
Reid Spencer485bad12007-02-15 03:07:05 +00001605 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001606 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001607 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001608 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001609 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001610 match those specified by the type.
1611 </dd>
1612
1613 <dt><b>Zero initialization</b></dt>
1614
1615 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1616 value to zero of <em>any</em> type, including scalar and aggregate types.
1617 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001618 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001619 initializers.
1620 </dd>
1621</dl>
1622
1623</div>
1624
1625<!-- ======================================================================= -->
1626<div class="doc_subsection">
1627 <a name="globalconstants">Global Variable and Function Addresses</a>
1628</div>
1629
1630<div class="doc_text">
1631
1632<p>The addresses of <a href="#globalvars">global variables</a> and <a
1633href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001634constants. These constants are explicitly referenced when the <a
1635href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001636href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1637file:</p>
1638
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001639<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001640<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001641@X = global i32 17
1642@Y = global i32 42
1643@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001644</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001645</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001646
1647</div>
1648
1649<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001650<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001651<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001652 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001653 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001654 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001655
Reid Spencer2dc45b82004-12-09 18:13:12 +00001656 <p>Undefined values indicate to the compiler that the program is well defined
1657 no matter what value is used, giving the compiler more freedom to optimize.
1658 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001659</div>
1660
1661<!-- ======================================================================= -->
1662<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1663</div>
1664
1665<div class="doc_text">
1666
1667<p>Constant expressions are used to allow expressions involving other constants
1668to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001669href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001670that does not have side effects (e.g. load and call are not supported). The
1671following is the syntax for constant expressions:</p>
1672
1673<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001674 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1675 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001676 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001677
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001678 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1679 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001680 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001681
1682 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1683 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001684 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001685
1686 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1687 <dd>Truncate a floating point constant to another floating point type. The
1688 size of CST must be larger than the size of TYPE. Both types must be
1689 floating point.</dd>
1690
1691 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1692 <dd>Floating point extend a constant to another type. The size of CST must be
1693 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1694
Reid Spencer1539a1c2007-07-31 14:40:14 +00001695 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001696 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001697 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1698 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1699 of the same number of elements. If the value won't fit in the integer type,
1700 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001701
Reid Spencerd4448792006-11-09 23:03:26 +00001702 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001703 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001704 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1705 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1706 of the same number of elements. If the value won't fit in the integer type,
1707 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001708
Reid Spencerd4448792006-11-09 23:03:26 +00001709 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001710 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001711 constant. TYPE must be a scalar or vector floating point type. CST must be of
1712 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1713 of the same number of elements. If the value won't fit in the floating point
1714 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001715
Reid Spencerd4448792006-11-09 23:03:26 +00001716 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001717 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001718 constant. TYPE must be a scalar or vector floating point type. CST must be of
1719 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1720 of the same number of elements. If the value won't fit in the floating point
1721 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001722
Reid Spencer5c0ef472006-11-11 23:08:07 +00001723 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1724 <dd>Convert a pointer typed constant to the corresponding integer constant
1725 TYPE must be an integer type. CST must be of pointer type. The CST value is
1726 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1727
1728 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1729 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1730 pointer type. CST must be of integer type. The CST value is zero extended,
1731 truncated, or unchanged to make it fit in a pointer size. This one is
1732 <i>really</i> dangerous!</dd>
1733
1734 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001735 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1736 identical (same number of bits). The conversion is done as if the CST value
1737 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001738 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001739 vector types to any other type, as long as they have the same bit width. For
Dan Gohman500233a2008-09-08 16:45:59 +00001740 pointers it is only valid to cast to another pointer type. It is not valid
1741 to bitcast to or from an aggregate type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001742 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001743
1744 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1745
1746 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1747 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1748 instruction, the index list may have zero or more indexes, which are required
1749 to make sense for the type of "CSTPTR".</dd>
1750
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001751 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1752
1753 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001754 constants.</dd>
1755
1756 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1757 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1758
1759 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1760 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001761
Nate Begemanac80ade2008-05-12 19:01:56 +00001762 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1763 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1764
1765 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1766 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1767
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001768 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1769
1770 <dd>Perform the <a href="#i_extractelement">extractelement
1771 operation</a> on constants.
1772
Robert Bocchino05ccd702006-01-15 20:48:27 +00001773 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1774
1775 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001776 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001777
Chris Lattnerc1989542006-04-08 00:13:41 +00001778
1779 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1780
1781 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001782 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001783
Chris Lattnerc3f59762004-12-09 17:30:23 +00001784 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1785
Reid Spencer2dc45b82004-12-09 18:13:12 +00001786 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1787 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001788 binary</a> operations. The constraints on operands are the same as those for
1789 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001790 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001791</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001792</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001793
Chris Lattner00950542001-06-06 20:29:01 +00001794<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001795<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1796<!-- *********************************************************************** -->
1797
1798<!-- ======================================================================= -->
1799<div class="doc_subsection">
1800<a name="inlineasm">Inline Assembler Expressions</a>
1801</div>
1802
1803<div class="doc_text">
1804
1805<p>
1806LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1807Module-Level Inline Assembly</a>) through the use of a special value. This
1808value represents the inline assembler as a string (containing the instructions
1809to emit), a list of operand constraints (stored as a string), and a flag that
1810indicates whether or not the inline asm expression has side effects. An example
1811inline assembler expression is:
1812</p>
1813
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001814<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001815<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001816i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001817</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001818</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001819
1820<p>
1821Inline assembler expressions may <b>only</b> be used as the callee operand of
1822a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1823</p>
1824
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001825<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001826<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001827%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001828</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001829</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001830
1831<p>
1832Inline asms with side effects not visible in the constraint list must be marked
1833as having side effects. This is done through the use of the
1834'<tt>sideeffect</tt>' keyword, like so:
1835</p>
1836
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001837<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001838<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001839call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001840</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001841</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001842
1843<p>TODO: The format of the asm and constraints string still need to be
1844documented here. Constraints on what can be done (e.g. duplication, moving, etc
1845need to be documented).
1846</p>
1847
1848</div>
1849
1850<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001851<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1852<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001853
Misha Brukman9d0919f2003-11-08 01:05:38 +00001854<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001855
Chris Lattner261efe92003-11-25 01:02:51 +00001856<p>The LLVM instruction set consists of several different
1857classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001858instructions</a>, <a href="#binaryops">binary instructions</a>,
1859<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001860 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1861instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001862
Misha Brukman9d0919f2003-11-08 01:05:38 +00001863</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001864
Chris Lattner00950542001-06-06 20:29:01 +00001865<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001866<div class="doc_subsection"> <a name="terminators">Terminator
1867Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001868
Misha Brukman9d0919f2003-11-08 01:05:38 +00001869<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001870
Chris Lattner261efe92003-11-25 01:02:51 +00001871<p>As mentioned <a href="#functionstructure">previously</a>, every
1872basic block in a program ends with a "Terminator" instruction, which
1873indicates which block should be executed after the current block is
1874finished. These terminator instructions typically yield a '<tt>void</tt>'
1875value: they produce control flow, not values (the one exception being
1876the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001877<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001878 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1879instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001880the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1881 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1882 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001883
Misha Brukman9d0919f2003-11-08 01:05:38 +00001884</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001885
Chris Lattner00950542001-06-06 20:29:01 +00001886<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001887<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1888Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001889<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001890<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001891<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001892 ret void <i>; Return from void function</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001893 ret &lt;type&gt; &lt;value&gt;, &lt;type&gt; &lt;value&gt; <i>; Return two values from a non-void function </i>
Chris Lattner00950542001-06-06 20:29:01 +00001894</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001895
Chris Lattner00950542001-06-06 20:29:01 +00001896<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001897
Chris Lattner261efe92003-11-25 01:02:51 +00001898<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
John Criswellc1f786c2005-05-13 22:25:59 +00001899value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001900<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001901returns value(s) and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00001902control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001903
Chris Lattner00950542001-06-06 20:29:01 +00001904<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001905
1906<p>The '<tt>ret</tt>' instruction may return zero, one or multiple values.
1907The type of each return value must be a '<a href="#t_firstclass">first
1908class</a>' type. Note that a function is not <a href="#wellformed">well
1909formed</a> if there exists a '<tt>ret</tt>' instruction inside of the
1910function that returns values that do not match the return type of the
1911function.</p>
1912
Chris Lattner00950542001-06-06 20:29:01 +00001913<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001914
Chris Lattner261efe92003-11-25 01:02:51 +00001915<p>When the '<tt>ret</tt>' instruction is executed, control flow
1916returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001917 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001918the instruction after the call. If the caller was an "<a
1919 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001920at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001921returns a value, that value shall set the call or invoke instruction's
Devang Patelc3fc6df2008-03-10 20:49:15 +00001922return value. If the instruction returns multiple values then these
Devang Patel0dbb4a12008-03-11 05:51:59 +00001923values can only be accessed through a '<a href="#i_getresult"><tt>getresult</tt>
1924</a>' instruction.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001925
Chris Lattner00950542001-06-06 20:29:01 +00001926<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001927
1928<pre>
1929 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001930 ret void <i>; Return from a void function</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001931 ret i32 4, i8 2 <i>; Return two values 4 and 2 </i>
Chris Lattner00950542001-06-06 20:29:01 +00001932</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001933</div>
Chris Lattner00950542001-06-06 20:29:01 +00001934<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001935<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001936<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001937<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001938<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001939</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001940<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001941<p>The '<tt>br</tt>' instruction is used to cause control flow to
1942transfer to a different basic block in the current function. There are
1943two forms of this instruction, corresponding to a conditional branch
1944and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001945<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001946<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00001947single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00001948unconditional form of the '<tt>br</tt>' instruction takes a single
1949'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001950<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001951<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001952argument is evaluated. If the value is <tt>true</tt>, control flows
1953to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1954control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001955<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001956<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00001957 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001958</div>
Chris Lattner00950542001-06-06 20:29:01 +00001959<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001960<div class="doc_subsubsection">
1961 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1962</div>
1963
Misha Brukman9d0919f2003-11-08 01:05:38 +00001964<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001965<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001966
1967<pre>
1968 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1969</pre>
1970
Chris Lattner00950542001-06-06 20:29:01 +00001971<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001972
1973<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1974several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001975instruction, allowing a branch to occur to one of many possible
1976destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001977
1978
Chris Lattner00950542001-06-06 20:29:01 +00001979<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001980
1981<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1982comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1983an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1984table is not allowed to contain duplicate constant entries.</p>
1985
Chris Lattner00950542001-06-06 20:29:01 +00001986<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001987
Chris Lattner261efe92003-11-25 01:02:51 +00001988<p>The <tt>switch</tt> instruction specifies a table of values and
1989destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00001990table is searched for the given value. If the value is found, control flow is
1991transfered to the corresponding destination; otherwise, control flow is
1992transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001993
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001994<h5>Implementation:</h5>
1995
1996<p>Depending on properties of the target machine and the particular
1997<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00001998ways. For example, it could be generated as a series of chained conditional
1999branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002000
2001<h5>Example:</h5>
2002
2003<pre>
2004 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002005 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00002006 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002007
2008 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002009 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002010
2011 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002012 switch i32 %val, label %otherwise [ i32 0, label %onzero
2013 i32 1, label %onone
2014 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002015</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002016</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002017
Chris Lattner00950542001-06-06 20:29:01 +00002018<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002019<div class="doc_subsubsection">
2020 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2021</div>
2022
Misha Brukman9d0919f2003-11-08 01:05:38 +00002023<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002024
Chris Lattner00950542001-06-06 20:29:01 +00002025<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002026
2027<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002028 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00002029 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002030</pre>
2031
Chris Lattner6536cfe2002-05-06 22:08:29 +00002032<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002033
2034<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2035function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002036'<tt>normal</tt>' label or the
2037'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002038"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2039"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002040href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Devang Patelc3fc6df2008-03-10 20:49:15 +00002041continued at the dynamically nearest "exception" label. If the callee function
Devang Patel0dbb4a12008-03-11 05:51:59 +00002042returns multiple values then individual return values are only accessible through
2043a '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002044
Chris Lattner00950542001-06-06 20:29:01 +00002045<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002046
Misha Brukman9d0919f2003-11-08 01:05:38 +00002047<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002048
Chris Lattner00950542001-06-06 20:29:01 +00002049<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002050 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002051 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002052 convention</a> the call should use. If none is specified, the call defaults
2053 to using C calling conventions.
2054 </li>
2055 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2056 function value being invoked. In most cases, this is a direct function
2057 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2058 an arbitrary pointer to function value.
2059 </li>
2060
2061 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2062 function to be invoked. </li>
2063
2064 <li>'<tt>function args</tt>': argument list whose types match the function
2065 signature argument types. If the function signature indicates the function
2066 accepts a variable number of arguments, the extra arguments can be
2067 specified. </li>
2068
2069 <li>'<tt>normal label</tt>': the label reached when the called function
2070 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2071
2072 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2073 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2074
Chris Lattner00950542001-06-06 20:29:01 +00002075</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002076
Chris Lattner00950542001-06-06 20:29:01 +00002077<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002078
Misha Brukman9d0919f2003-11-08 01:05:38 +00002079<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002080href="#i_call">call</a></tt>' instruction in most regards. The primary
2081difference is that it establishes an association with a label, which is used by
2082the runtime library to unwind the stack.</p>
2083
2084<p>This instruction is used in languages with destructors to ensure that proper
2085cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2086exception. Additionally, this is important for implementation of
2087'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2088
Chris Lattner00950542001-06-06 20:29:01 +00002089<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002090<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002091 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002092 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002093 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002094 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002095</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002096</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002097
2098
Chris Lattner27f71f22003-09-03 00:41:47 +00002099<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002100
Chris Lattner261efe92003-11-25 01:02:51 +00002101<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2102Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002103
Misha Brukman9d0919f2003-11-08 01:05:38 +00002104<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002105
Chris Lattner27f71f22003-09-03 00:41:47 +00002106<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002107<pre>
2108 unwind
2109</pre>
2110
Chris Lattner27f71f22003-09-03 00:41:47 +00002111<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002112
2113<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2114at the first callee in the dynamic call stack which used an <a
2115href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2116primarily used to implement exception handling.</p>
2117
Chris Lattner27f71f22003-09-03 00:41:47 +00002118<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002119
Chris Lattner72ed2002008-04-19 21:01:16 +00002120<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002121immediately halt. The dynamic call stack is then searched for the first <a
2122href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2123execution continues at the "exceptional" destination block specified by the
2124<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2125dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002126</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002127
2128<!-- _______________________________________________________________________ -->
2129
2130<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2131Instruction</a> </div>
2132
2133<div class="doc_text">
2134
2135<h5>Syntax:</h5>
2136<pre>
2137 unreachable
2138</pre>
2139
2140<h5>Overview:</h5>
2141
2142<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2143instruction is used to inform the optimizer that a particular portion of the
2144code is not reachable. This can be used to indicate that the code after a
2145no-return function cannot be reached, and other facts.</p>
2146
2147<h5>Semantics:</h5>
2148
2149<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2150</div>
2151
2152
2153
Chris Lattner00950542001-06-06 20:29:01 +00002154<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002155<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002156<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002157<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002158program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002159produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002160multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002161The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002162<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002163</div>
Chris Lattner00950542001-06-06 20:29:01 +00002164<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002165<div class="doc_subsubsection">
2166 <a name="i_add">'<tt>add</tt>' Instruction</a>
2167</div>
2168
Misha Brukman9d0919f2003-11-08 01:05:38 +00002169<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002170
Chris Lattner00950542001-06-06 20:29:01 +00002171<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002172
2173<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002174 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002175</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002176
Chris Lattner00950542001-06-06 20:29:01 +00002177<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002178
Misha Brukman9d0919f2003-11-08 01:05:38 +00002179<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002180
Chris Lattner00950542001-06-06 20:29:01 +00002181<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002182
2183<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2184 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2185 <a href="#t_vector">vector</a> values. Both arguments must have identical
2186 types.</p>
2187
Chris Lattner00950542001-06-06 20:29:01 +00002188<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002189
Misha Brukman9d0919f2003-11-08 01:05:38 +00002190<p>The value produced is the integer or floating point sum of the two
2191operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002192
Chris Lattner5ec89832008-01-28 00:36:27 +00002193<p>If an integer sum has unsigned overflow, the result returned is the
2194mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2195the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002196
Chris Lattner5ec89832008-01-28 00:36:27 +00002197<p>Because LLVM integers use a two's complement representation, this
2198instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002199
Chris Lattner00950542001-06-06 20:29:01 +00002200<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002201
2202<pre>
2203 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002204</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002205</div>
Chris Lattner00950542001-06-06 20:29:01 +00002206<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002207<div class="doc_subsubsection">
2208 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2209</div>
2210
Misha Brukman9d0919f2003-11-08 01:05:38 +00002211<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002212
Chris Lattner00950542001-06-06 20:29:01 +00002213<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002214
2215<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002216 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002217</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002218
Chris Lattner00950542001-06-06 20:29:01 +00002219<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002220
Misha Brukman9d0919f2003-11-08 01:05:38 +00002221<p>The '<tt>sub</tt>' instruction returns the difference of its two
2222operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002223
2224<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2225'<tt>neg</tt>' instruction present in most other intermediate
2226representations.</p>
2227
Chris Lattner00950542001-06-06 20:29:01 +00002228<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002229
2230<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2231 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2232 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2233 types.</p>
2234
Chris Lattner00950542001-06-06 20:29:01 +00002235<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002236
Chris Lattner261efe92003-11-25 01:02:51 +00002237<p>The value produced is the integer or floating point difference of
2238the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002239
Chris Lattner5ec89832008-01-28 00:36:27 +00002240<p>If an integer difference has unsigned overflow, the result returned is the
2241mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2242the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002243
Chris Lattner5ec89832008-01-28 00:36:27 +00002244<p>Because LLVM integers use a two's complement representation, this
2245instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002246
Chris Lattner00950542001-06-06 20:29:01 +00002247<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002248<pre>
2249 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002250 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002251</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002252</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002253
Chris Lattner00950542001-06-06 20:29:01 +00002254<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002255<div class="doc_subsubsection">
2256 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2257</div>
2258
Misha Brukman9d0919f2003-11-08 01:05:38 +00002259<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002260
Chris Lattner00950542001-06-06 20:29:01 +00002261<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002262<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002263</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002264<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002265<p>The '<tt>mul</tt>' instruction returns the product of its two
2266operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002267
Chris Lattner00950542001-06-06 20:29:01 +00002268<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002269
2270<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2271href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2272or <a href="#t_vector">vector</a> values. Both arguments must have identical
2273types.</p>
2274
Chris Lattner00950542001-06-06 20:29:01 +00002275<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002276
Chris Lattner261efe92003-11-25 01:02:51 +00002277<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002278two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002279
Chris Lattner5ec89832008-01-28 00:36:27 +00002280<p>If the result of an integer multiplication has unsigned overflow,
2281the result returned is the mathematical result modulo
22822<sup>n</sup>, where n is the bit width of the result.</p>
2283<p>Because LLVM integers use a two's complement representation, and the
2284result is the same width as the operands, this instruction returns the
2285correct result for both signed and unsigned integers. If a full product
2286(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2287should be sign-extended or zero-extended as appropriate to the
2288width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002289<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002290<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002291</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002292</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002293
Chris Lattner00950542001-06-06 20:29:01 +00002294<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002295<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2296</a></div>
2297<div class="doc_text">
2298<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002299<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002300</pre>
2301<h5>Overview:</h5>
2302<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2303operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002304
Reid Spencer1628cec2006-10-26 06:15:43 +00002305<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002306
Reid Spencer1628cec2006-10-26 06:15:43 +00002307<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002308<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2309values. Both arguments must have identical types.</p>
2310
Reid Spencer1628cec2006-10-26 06:15:43 +00002311<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002312
Chris Lattner5ec89832008-01-28 00:36:27 +00002313<p>The value produced is the unsigned integer quotient of the two operands.</p>
2314<p>Note that unsigned integer division and signed integer division are distinct
2315operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2316<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002317<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002318<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002319</pre>
2320</div>
2321<!-- _______________________________________________________________________ -->
2322<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2323</a> </div>
2324<div class="doc_text">
2325<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002326<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002327 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002328</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002329
Reid Spencer1628cec2006-10-26 06:15:43 +00002330<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002331
Reid Spencer1628cec2006-10-26 06:15:43 +00002332<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2333operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002334
Reid Spencer1628cec2006-10-26 06:15:43 +00002335<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002336
2337<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2338<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2339values. Both arguments must have identical types.</p>
2340
Reid Spencer1628cec2006-10-26 06:15:43 +00002341<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002342<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002343<p>Note that signed integer division and unsigned integer division are distinct
2344operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2345<p>Division by zero leads to undefined behavior. Overflow also leads to
2346undefined behavior; this is a rare case, but can occur, for example,
2347by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002348<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002349<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002350</pre>
2351</div>
2352<!-- _______________________________________________________________________ -->
2353<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002354Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002355<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002356<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002357<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002358 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002359</pre>
2360<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002361
Reid Spencer1628cec2006-10-26 06:15:43 +00002362<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002363operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002364
Chris Lattner261efe92003-11-25 01:02:51 +00002365<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002366
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002367<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002368<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2369of floating point values. Both arguments must have identical types.</p>
2370
Chris Lattner261efe92003-11-25 01:02:51 +00002371<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002372
Reid Spencer1628cec2006-10-26 06:15:43 +00002373<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002374
Chris Lattner261efe92003-11-25 01:02:51 +00002375<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002376
2377<pre>
2378 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002379</pre>
2380</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002381
Chris Lattner261efe92003-11-25 01:02:51 +00002382<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002383<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2384</div>
2385<div class="doc_text">
2386<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002387<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002388</pre>
2389<h5>Overview:</h5>
2390<p>The '<tt>urem</tt>' instruction returns the remainder from the
2391unsigned division of its two arguments.</p>
2392<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002393<p>The two arguments to the '<tt>urem</tt>' instruction must be
2394<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2395values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002396<h5>Semantics:</h5>
2397<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002398This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002399<p>Note that unsigned integer remainder and signed integer remainder are
2400distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2401<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002402<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002403<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002404</pre>
2405
2406</div>
2407<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002408<div class="doc_subsubsection">
2409 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2410</div>
2411
Chris Lattner261efe92003-11-25 01:02:51 +00002412<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002413
Chris Lattner261efe92003-11-25 01:02:51 +00002414<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002415
2416<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002417 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002418</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002419
Chris Lattner261efe92003-11-25 01:02:51 +00002420<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002421
Reid Spencer0a783f72006-11-02 01:53:59 +00002422<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002423signed division of its two operands. This instruction can also take
2424<a href="#t_vector">vector</a> versions of the values in which case
2425the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002426
Chris Lattner261efe92003-11-25 01:02:51 +00002427<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002428
Reid Spencer0a783f72006-11-02 01:53:59 +00002429<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002430<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2431values. Both arguments must have identical types.</p>
2432
Chris Lattner261efe92003-11-25 01:02:51 +00002433<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002434
Reid Spencer0a783f72006-11-02 01:53:59 +00002435<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002436has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2437operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002438a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002439 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002440Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002441please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002442Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002443<p>Note that signed integer remainder and unsigned integer remainder are
2444distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2445<p>Taking the remainder of a division by zero leads to undefined behavior.
2446Overflow also leads to undefined behavior; this is a rare case, but can occur,
2447for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2448(The remainder doesn't actually overflow, but this rule lets srem be
2449implemented using instructions that return both the result of the division
2450and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002451<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002452<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002453</pre>
2454
2455</div>
2456<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002457<div class="doc_subsubsection">
2458 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2459
Reid Spencer0a783f72006-11-02 01:53:59 +00002460<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002461
Reid Spencer0a783f72006-11-02 01:53:59 +00002462<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002463<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002464</pre>
2465<h5>Overview:</h5>
2466<p>The '<tt>frem</tt>' instruction returns the remainder from the
2467division of its two operands.</p>
2468<h5>Arguments:</h5>
2469<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002470<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2471of floating point values. Both arguments must have identical types.</p>
2472
Reid Spencer0a783f72006-11-02 01:53:59 +00002473<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002474
Chris Lattnera73afe02008-04-01 18:45:27 +00002475<p>This instruction returns the <i>remainder</i> of a division.
2476The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002477
Reid Spencer0a783f72006-11-02 01:53:59 +00002478<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002479
2480<pre>
2481 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002482</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002483</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002484
Reid Spencer8e11bf82007-02-02 13:57:07 +00002485<!-- ======================================================================= -->
2486<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2487Operations</a> </div>
2488<div class="doc_text">
2489<p>Bitwise binary operators are used to do various forms of
2490bit-twiddling in a program. They are generally very efficient
2491instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002492instructions. They require two operands of the same type, execute an operation on them,
2493and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002494</div>
2495
Reid Spencer569f2fa2007-01-31 21:39:12 +00002496<!-- _______________________________________________________________________ -->
2497<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2498Instruction</a> </div>
2499<div class="doc_text">
2500<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002501<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002502</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002503
Reid Spencer569f2fa2007-01-31 21:39:12 +00002504<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002505
Reid Spencer569f2fa2007-01-31 21:39:12 +00002506<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2507the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002508
Reid Spencer569f2fa2007-01-31 21:39:12 +00002509<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002510
Reid Spencer569f2fa2007-01-31 21:39:12 +00002511<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002512 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002513type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002514
Reid Spencer569f2fa2007-01-31 21:39:12 +00002515<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002516
Gabor Greiffb224a22008-08-07 21:46:00 +00002517<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2518where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
2519equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002520
Reid Spencer569f2fa2007-01-31 21:39:12 +00002521<h5>Example:</h5><pre>
2522 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2523 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2524 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002525 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002526</pre>
2527</div>
2528<!-- _______________________________________________________________________ -->
2529<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2530Instruction</a> </div>
2531<div class="doc_text">
2532<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002533<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002534</pre>
2535
2536<h5>Overview:</h5>
2537<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002538operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002539
2540<h5>Arguments:</h5>
2541<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002542<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002543type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002544
2545<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002546
Reid Spencer569f2fa2007-01-31 21:39:12 +00002547<p>This instruction always performs a logical shift right operation. The most
2548significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002549shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
2550the number of bits in <tt>op1</tt>, the result is undefined.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002551
2552<h5>Example:</h5>
2553<pre>
2554 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2555 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2556 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2557 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002558 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002559</pre>
2560</div>
2561
Reid Spencer8e11bf82007-02-02 13:57:07 +00002562<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002563<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2564Instruction</a> </div>
2565<div class="doc_text">
2566
2567<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002568<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002569</pre>
2570
2571<h5>Overview:</h5>
2572<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002573operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002574
2575<h5>Arguments:</h5>
2576<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002577<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002578type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002579
2580<h5>Semantics:</h5>
2581<p>This instruction always performs an arithmetic shift right operation,
2582The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00002583of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
2584larger than the number of bits in <tt>op1</tt>, the result is undefined.
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002585</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002586
2587<h5>Example:</h5>
2588<pre>
2589 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2590 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2591 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2592 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002593 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002594</pre>
2595</div>
2596
Chris Lattner00950542001-06-06 20:29:01 +00002597<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002598<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2599Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002600
Misha Brukman9d0919f2003-11-08 01:05:38 +00002601<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002602
Chris Lattner00950542001-06-06 20:29:01 +00002603<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002604
2605<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002606 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002607</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002608
Chris Lattner00950542001-06-06 20:29:01 +00002609<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002610
Chris Lattner261efe92003-11-25 01:02:51 +00002611<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2612its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002613
Chris Lattner00950542001-06-06 20:29:01 +00002614<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002615
2616<p>The two arguments to the '<tt>and</tt>' instruction must be
2617<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2618values. Both arguments must have identical types.</p>
2619
Chris Lattner00950542001-06-06 20:29:01 +00002620<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002621<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002622<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002623<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002624<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002625 <tbody>
2626 <tr>
2627 <td>In0</td>
2628 <td>In1</td>
2629 <td>Out</td>
2630 </tr>
2631 <tr>
2632 <td>0</td>
2633 <td>0</td>
2634 <td>0</td>
2635 </tr>
2636 <tr>
2637 <td>0</td>
2638 <td>1</td>
2639 <td>0</td>
2640 </tr>
2641 <tr>
2642 <td>1</td>
2643 <td>0</td>
2644 <td>0</td>
2645 </tr>
2646 <tr>
2647 <td>1</td>
2648 <td>1</td>
2649 <td>1</td>
2650 </tr>
2651 </tbody>
2652</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002653</div>
Chris Lattner00950542001-06-06 20:29:01 +00002654<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002655<pre>
2656 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002657 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2658 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002659</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002660</div>
Chris Lattner00950542001-06-06 20:29:01 +00002661<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002662<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002663<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002664<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002665<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002666</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002667<h5>Overview:</h5>
2668<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2669or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002670<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002671
2672<p>The two arguments to the '<tt>or</tt>' instruction must be
2673<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2674values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002675<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002676<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002677<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002678<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002679<table border="1" cellspacing="0" cellpadding="4">
2680 <tbody>
2681 <tr>
2682 <td>In0</td>
2683 <td>In1</td>
2684 <td>Out</td>
2685 </tr>
2686 <tr>
2687 <td>0</td>
2688 <td>0</td>
2689 <td>0</td>
2690 </tr>
2691 <tr>
2692 <td>0</td>
2693 <td>1</td>
2694 <td>1</td>
2695 </tr>
2696 <tr>
2697 <td>1</td>
2698 <td>0</td>
2699 <td>1</td>
2700 </tr>
2701 <tr>
2702 <td>1</td>
2703 <td>1</td>
2704 <td>1</td>
2705 </tr>
2706 </tbody>
2707</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002708</div>
Chris Lattner00950542001-06-06 20:29:01 +00002709<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002710<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2711 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2712 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002713</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002714</div>
Chris Lattner00950542001-06-06 20:29:01 +00002715<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002716<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2717Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002718<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002719<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002720<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002721</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002722<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002723<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2724or of its two operands. The <tt>xor</tt> is used to implement the
2725"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002726<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002727<p>The two arguments to the '<tt>xor</tt>' instruction must be
2728<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2729values. Both arguments must have identical types.</p>
2730
Chris Lattner00950542001-06-06 20:29:01 +00002731<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002732
Misha Brukman9d0919f2003-11-08 01:05:38 +00002733<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002734<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002735<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002736<table border="1" cellspacing="0" cellpadding="4">
2737 <tbody>
2738 <tr>
2739 <td>In0</td>
2740 <td>In1</td>
2741 <td>Out</td>
2742 </tr>
2743 <tr>
2744 <td>0</td>
2745 <td>0</td>
2746 <td>0</td>
2747 </tr>
2748 <tr>
2749 <td>0</td>
2750 <td>1</td>
2751 <td>1</td>
2752 </tr>
2753 <tr>
2754 <td>1</td>
2755 <td>0</td>
2756 <td>1</td>
2757 </tr>
2758 <tr>
2759 <td>1</td>
2760 <td>1</td>
2761 <td>0</td>
2762 </tr>
2763 </tbody>
2764</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002765</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002766<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002767<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002768<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2769 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2770 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2771 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002772</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002773</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002774
Chris Lattner00950542001-06-06 20:29:01 +00002775<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002776<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002777 <a name="vectorops">Vector Operations</a>
2778</div>
2779
2780<div class="doc_text">
2781
2782<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002783target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002784vector-specific operations needed to process vectors effectively. While LLVM
2785does directly support these vector operations, many sophisticated algorithms
2786will want to use target-specific intrinsics to take full advantage of a specific
2787target.</p>
2788
2789</div>
2790
2791<!-- _______________________________________________________________________ -->
2792<div class="doc_subsubsection">
2793 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2794</div>
2795
2796<div class="doc_text">
2797
2798<h5>Syntax:</h5>
2799
2800<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002801 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002802</pre>
2803
2804<h5>Overview:</h5>
2805
2806<p>
2807The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002808element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002809</p>
2810
2811
2812<h5>Arguments:</h5>
2813
2814<p>
2815The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002816value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002817an index indicating the position from which to extract the element.
2818The index may be a variable.</p>
2819
2820<h5>Semantics:</h5>
2821
2822<p>
2823The result is a scalar of the same type as the element type of
2824<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2825<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2826results are undefined.
2827</p>
2828
2829<h5>Example:</h5>
2830
2831<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002832 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002833</pre>
2834</div>
2835
2836
2837<!-- _______________________________________________________________________ -->
2838<div class="doc_subsubsection">
2839 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2840</div>
2841
2842<div class="doc_text">
2843
2844<h5>Syntax:</h5>
2845
2846<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00002847 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002848</pre>
2849
2850<h5>Overview:</h5>
2851
2852<p>
2853The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002854element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002855</p>
2856
2857
2858<h5>Arguments:</h5>
2859
2860<p>
2861The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002862value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002863scalar value whose type must equal the element type of the first
2864operand. The third operand is an index indicating the position at
2865which to insert the value. The index may be a variable.</p>
2866
2867<h5>Semantics:</h5>
2868
2869<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002870The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002871element values are those of <tt>val</tt> except at position
2872<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2873exceeds the length of <tt>val</tt>, the results are undefined.
2874</p>
2875
2876<h5>Example:</h5>
2877
2878<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002879 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002880</pre>
2881</div>
2882
2883<!-- _______________________________________________________________________ -->
2884<div class="doc_subsubsection">
2885 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2886</div>
2887
2888<div class="doc_text">
2889
2890<h5>Syntax:</h5>
2891
2892<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002893 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002894</pre>
2895
2896<h5>Overview:</h5>
2897
2898<p>
2899The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2900from two input vectors, returning a vector of the same type.
2901</p>
2902
2903<h5>Arguments:</h5>
2904
2905<p>
2906The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2907with types that match each other and types that match the result of the
2908instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerca86e162006-12-31 07:07:53 +00002909of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattner3df241e2006-04-08 23:07:04 +00002910</p>
2911
2912<p>
2913The shuffle mask operand is required to be a constant vector with either
2914constant integer or undef values.
2915</p>
2916
2917<h5>Semantics:</h5>
2918
2919<p>
2920The elements of the two input vectors are numbered from left to right across
2921both of the vectors. The shuffle mask operand specifies, for each element of
2922the result vector, which element of the two input registers the result element
2923gets. The element selector may be undef (meaning "don't care") and the second
2924operand may be undef if performing a shuffle from only one vector.
2925</p>
2926
2927<h5>Example:</h5>
2928
2929<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002930 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002931 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002932 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2933 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattner3df241e2006-04-08 23:07:04 +00002934</pre>
2935</div>
2936
Tanya Lattner09474292006-04-14 19:24:33 +00002937
Chris Lattner3df241e2006-04-08 23:07:04 +00002938<!-- ======================================================================= -->
2939<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00002940 <a name="aggregateops">Aggregate Operations</a>
2941</div>
2942
2943<div class="doc_text">
2944
2945<p>LLVM supports several instructions for working with aggregate values.
2946</p>
2947
2948</div>
2949
2950<!-- _______________________________________________________________________ -->
2951<div class="doc_subsubsection">
2952 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
2953</div>
2954
2955<div class="doc_text">
2956
2957<h5>Syntax:</h5>
2958
2959<pre>
2960 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
2961</pre>
2962
2963<h5>Overview:</h5>
2964
2965<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002966The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
2967or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002968</p>
2969
2970
2971<h5>Arguments:</h5>
2972
2973<p>
2974The first operand of an '<tt>extractvalue</tt>' instruction is a
2975value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002976type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00002977in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00002978'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2979</p>
2980
2981<h5>Semantics:</h5>
2982
2983<p>
2984The result is the value at the position in the aggregate specified by
2985the index operands.
2986</p>
2987
2988<h5>Example:</h5>
2989
2990<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00002991 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00002992</pre>
2993</div>
2994
2995
2996<!-- _______________________________________________________________________ -->
2997<div class="doc_subsubsection">
2998 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
2999</div>
3000
3001<div class="doc_text">
3002
3003<h5>Syntax:</h5>
3004
3005<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003006 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003007</pre>
3008
3009<h5>Overview:</h5>
3010
3011<p>
3012The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003013into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003014</p>
3015
3016
3017<h5>Arguments:</h5>
3018
3019<p>
3020The first operand of an '<tt>insertvalue</tt>' instruction is a
3021value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3022The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003023The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003024indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003025indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003026'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3027The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003028by the indices.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003029
3030<h5>Semantics:</h5>
3031
3032<p>
3033The result is an aggregate of the same type as <tt>val</tt>. Its
3034value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003035specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003036</p>
3037
3038<h5>Example:</h5>
3039
3040<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003041 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003042</pre>
3043</div>
3044
3045
3046<!-- ======================================================================= -->
3047<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003048 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003049</div>
3050
Misha Brukman9d0919f2003-11-08 01:05:38 +00003051<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003052
Chris Lattner261efe92003-11-25 01:02:51 +00003053<p>A key design point of an SSA-based representation is how it
3054represents memory. In LLVM, no memory locations are in SSA form, which
3055makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003056allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003057
Misha Brukman9d0919f2003-11-08 01:05:38 +00003058</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003059
Chris Lattner00950542001-06-06 20:29:01 +00003060<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003061<div class="doc_subsubsection">
3062 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3063</div>
3064
Misha Brukman9d0919f2003-11-08 01:05:38 +00003065<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003066
Chris Lattner00950542001-06-06 20:29:01 +00003067<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003068
3069<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003070 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003071</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003072
Chris Lattner00950542001-06-06 20:29:01 +00003073<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003074
Chris Lattner261efe92003-11-25 01:02:51 +00003075<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003076heap and returns a pointer to it. The object is always allocated in the generic
3077address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003078
Chris Lattner00950542001-06-06 20:29:01 +00003079<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003080
3081<p>The '<tt>malloc</tt>' instruction allocates
3082<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003083bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003084appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003085number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003086If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003087be aligned to at least that boundary. If not specified, or if zero, the target can
3088choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003089
Misha Brukman9d0919f2003-11-08 01:05:38 +00003090<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003091
Chris Lattner00950542001-06-06 20:29:01 +00003092<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003093
Chris Lattner261efe92003-11-25 01:02:51 +00003094<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattner72ed2002008-04-19 21:01:16 +00003095a pointer is returned. The result of a zero byte allocattion is undefined. The
3096result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003097
Chris Lattner2cbdc452005-11-06 08:02:57 +00003098<h5>Example:</h5>
3099
3100<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003101 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003102
Bill Wendlingaac388b2007-05-29 09:42:13 +00003103 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3104 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3105 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3106 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3107 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003108</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003109</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003110
Chris Lattner00950542001-06-06 20:29:01 +00003111<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003112<div class="doc_subsubsection">
3113 <a name="i_free">'<tt>free</tt>' Instruction</a>
3114</div>
3115
Misha Brukman9d0919f2003-11-08 01:05:38 +00003116<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003117
Chris Lattner00950542001-06-06 20:29:01 +00003118<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003119
3120<pre>
3121 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003122</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003123
Chris Lattner00950542001-06-06 20:29:01 +00003124<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003125
Chris Lattner261efe92003-11-25 01:02:51 +00003126<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003127memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003128
Chris Lattner00950542001-06-06 20:29:01 +00003129<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003130
Chris Lattner261efe92003-11-25 01:02:51 +00003131<p>'<tt>value</tt>' shall be a pointer value that points to a value
3132that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3133instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003134
Chris Lattner00950542001-06-06 20:29:01 +00003135<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003136
John Criswell9e2485c2004-12-10 15:51:16 +00003137<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003138after this instruction executes. If the pointer is null, the operation
3139is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003140
Chris Lattner00950542001-06-06 20:29:01 +00003141<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003142
3143<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003144 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3145 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003146</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003147</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003148
Chris Lattner00950542001-06-06 20:29:01 +00003149<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003150<div class="doc_subsubsection">
3151 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3152</div>
3153
Misha Brukman9d0919f2003-11-08 01:05:38 +00003154<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003155
Chris Lattner00950542001-06-06 20:29:01 +00003156<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003157
3158<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003159 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003160</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003161
Chris Lattner00950542001-06-06 20:29:01 +00003162<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003163
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003164<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3165currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003166returns to its caller. The object is always allocated in the generic address
3167space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003168
Chris Lattner00950542001-06-06 20:29:01 +00003169<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003170
John Criswell9e2485c2004-12-10 15:51:16 +00003171<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003172bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003173appropriate type to the program. If "NumElements" is specified, it is the
3174number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003175If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003176to be aligned to at least that boundary. If not specified, or if zero, the target
3177can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003178
Misha Brukman9d0919f2003-11-08 01:05:38 +00003179<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003180
Chris Lattner00950542001-06-06 20:29:01 +00003181<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003182
Chris Lattner72ed2002008-04-19 21:01:16 +00003183<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3184there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003185memory is automatically released when the function returns. The '<tt>alloca</tt>'
3186instruction is commonly used to represent automatic variables that must
3187have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003188 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003189instructions), the memory is reclaimed. Allocating zero bytes
3190is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003191
Chris Lattner00950542001-06-06 20:29:01 +00003192<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003193
3194<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003195 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003196 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3197 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003198 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003199</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003200</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003201
Chris Lattner00950542001-06-06 20:29:01 +00003202<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003203<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3204Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003205<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003206<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003207<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003208<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003209<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003210<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003211<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003212address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003213 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003214marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003215the number or order of execution of this <tt>load</tt> with other
3216volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3217instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003218<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003219The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003220(that is, the alignment of the memory address). A value of 0 or an
3221omitted "align" argument means that the operation has the preferential
3222alignment for the target. It is the responsibility of the code emitter
3223to ensure that the alignment information is correct. Overestimating
3224the alignment results in an undefined behavior. Underestimating the
3225alignment may produce less efficient code. An alignment of 1 is always
3226safe.
3227</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003228<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003229<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003230<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003231<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003232 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003233 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3234 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003235</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003236</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003237<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003238<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3239Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003240<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003241<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003242<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3243 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003244</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003245<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003246<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003247<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003248<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003249to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003250operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3251of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003252operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003253optimizer is not allowed to modify the number or order of execution of
3254this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3255 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003256<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003257The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003258(that is, the alignment of the memory address). A value of 0 or an
3259omitted "align" argument means that the operation has the preferential
3260alignment for the target. It is the responsibility of the code emitter
3261to ensure that the alignment information is correct. Overestimating
3262the alignment results in an undefined behavior. Underestimating the
3263alignment may produce less efficient code. An alignment of 1 is always
3264safe.
3265</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003266<h5>Semantics:</h5>
3267<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3268at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003269<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003270<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003271 store i32 3, i32* %ptr <i>; yields {void}</i>
3272 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003273</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003274</div>
3275
Chris Lattner2b7d3202002-05-06 03:03:22 +00003276<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003277<div class="doc_subsubsection">
3278 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3279</div>
3280
Misha Brukman9d0919f2003-11-08 01:05:38 +00003281<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003282<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003283<pre>
3284 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
3285</pre>
3286
Chris Lattner7faa8832002-04-14 06:13:44 +00003287<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003288
3289<p>
3290The '<tt>getelementptr</tt>' instruction is used to get the address of a
3291subelement of an aggregate data structure.</p>
3292
Chris Lattner7faa8832002-04-14 06:13:44 +00003293<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003294
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003295<p>This instruction takes a list of integer operands that indicate what
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003296elements of the aggregate object to index to. The actual types of the arguments
3297provided depend on the type of the first pointer argument. The
3298'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00003299levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerca86e162006-12-31 07:07:53 +00003300structure, only <tt>i32</tt> integer constants are allowed. When indexing
Chris Lattner05d67092008-04-24 05:59:56 +00003301into an array or pointer, only integers of 32 or 64 bits are allowed; 32-bit
3302values will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003303
Chris Lattner261efe92003-11-25 01:02:51 +00003304<p>For example, let's consider a C code fragment and how it gets
3305compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003306
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003307<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003308<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003309struct RT {
3310 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003311 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003312 char C;
3313};
3314struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003315 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003316 double Y;
3317 struct RT Z;
3318};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003319
Chris Lattnercabc8462007-05-29 15:43:56 +00003320int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003321 return &amp;s[1].Z.B[5][13];
3322}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003323</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003324</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003325
Misha Brukman9d0919f2003-11-08 01:05:38 +00003326<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003327
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003328<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003329<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003330%RT = type { i8 , [10 x [20 x i32]], i8 }
3331%ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003332
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003333define i32* %foo(%ST* %s) {
3334entry:
3335 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3336 ret i32* %reg
3337}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003338</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003339</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003340
Chris Lattner7faa8832002-04-14 06:13:44 +00003341<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003342
3343<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00003344on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003345and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencer42ddd842006-12-03 16:53:48 +00003346<a href="#t_integer">integer</a> type but the value will always be sign extended
Chris Lattner4316dec2008-04-02 00:38:26 +00003347to 64-bits. <a href="#t_struct">Structure</a> and <a href="#t_pstruct">packed
3348structure</a> types require <tt>i32</tt> <b>constants</b>.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003349
Misha Brukman9d0919f2003-11-08 01:05:38 +00003350<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003351type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003352}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003353the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3354i8 }</tt>' type, another structure. The third index indexes into the second
3355element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003356array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003357'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3358to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003359
Chris Lattner261efe92003-11-25 01:02:51 +00003360<p>Note that it is perfectly legal to index partially through a
3361structure, returning a pointer to an inner element. Because of this,
3362the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003363
3364<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003365 define i32* %foo(%ST* %s) {
3366 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003367 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3368 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003369 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3370 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3371 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003372 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003373</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003374
3375<p>Note that it is undefined to access an array out of bounds: array and
3376pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003377The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003378defined to be accessible as variable length arrays, which requires access
3379beyond the zero'th element.</p>
3380
Chris Lattner884a9702006-08-15 00:45:58 +00003381<p>The getelementptr instruction is often confusing. For some more insight
3382into how it works, see <a href="GetElementPtr.html">the getelementptr
3383FAQ</a>.</p>
3384
Chris Lattner7faa8832002-04-14 06:13:44 +00003385<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003386
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003387<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003388 <i>; yields [12 x i8]*:aptr</i>
3389 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003390</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003391</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003392
Chris Lattner00950542001-06-06 20:29:01 +00003393<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003394<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003395</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003396<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003397<p>The instructions in this category are the conversion instructions (casting)
3398which all take a single operand and a type. They perform various bit conversions
3399on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003400</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003401
Chris Lattner6536cfe2002-05-06 22:08:29 +00003402<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003403<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003404 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3405</div>
3406<div class="doc_text">
3407
3408<h5>Syntax:</h5>
3409<pre>
3410 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3411</pre>
3412
3413<h5>Overview:</h5>
3414<p>
3415The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3416</p>
3417
3418<h5>Arguments:</h5>
3419<p>
3420The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3421be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003422and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003423type. The bit size of <tt>value</tt> must be larger than the bit size of
3424<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003425
3426<h5>Semantics:</h5>
3427<p>
3428The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003429and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3430larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3431It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003432
3433<h5>Example:</h5>
3434<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003435 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003436 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3437 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003438</pre>
3439</div>
3440
3441<!-- _______________________________________________________________________ -->
3442<div class="doc_subsubsection">
3443 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3444</div>
3445<div class="doc_text">
3446
3447<h5>Syntax:</h5>
3448<pre>
3449 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3450</pre>
3451
3452<h5>Overview:</h5>
3453<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3454<tt>ty2</tt>.</p>
3455
3456
3457<h5>Arguments:</h5>
3458<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003459<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3460also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003461<tt>value</tt> must be smaller than the bit size of the destination type,
3462<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003463
3464<h5>Semantics:</h5>
3465<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003466bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003467
Reid Spencerb5929522007-01-12 15:46:11 +00003468<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003469
3470<h5>Example:</h5>
3471<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003472 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003473 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003474</pre>
3475</div>
3476
3477<!-- _______________________________________________________________________ -->
3478<div class="doc_subsubsection">
3479 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3480</div>
3481<div class="doc_text">
3482
3483<h5>Syntax:</h5>
3484<pre>
3485 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3486</pre>
3487
3488<h5>Overview:</h5>
3489<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3490
3491<h5>Arguments:</h5>
3492<p>
3493The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003494<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3495also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003496<tt>value</tt> must be smaller than the bit size of the destination type,
3497<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003498
3499<h5>Semantics:</h5>
3500<p>
3501The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3502bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003503the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003504
Reid Spencerc78f3372007-01-12 03:35:51 +00003505<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003506
3507<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003508<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003509 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003510 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003511</pre>
3512</div>
3513
3514<!-- _______________________________________________________________________ -->
3515<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003516 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3517</div>
3518
3519<div class="doc_text">
3520
3521<h5>Syntax:</h5>
3522
3523<pre>
3524 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3525</pre>
3526
3527<h5>Overview:</h5>
3528<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3529<tt>ty2</tt>.</p>
3530
3531
3532<h5>Arguments:</h5>
3533<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3534 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3535cast it to. The size of <tt>value</tt> must be larger than the size of
3536<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3537<i>no-op cast</i>.</p>
3538
3539<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003540<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3541<a href="#t_floating">floating point</a> type to a smaller
3542<a href="#t_floating">floating point</a> type. If the value cannot fit within
3543the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003544
3545<h5>Example:</h5>
3546<pre>
3547 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3548 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3549</pre>
3550</div>
3551
3552<!-- _______________________________________________________________________ -->
3553<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003554 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3555</div>
3556<div class="doc_text">
3557
3558<h5>Syntax:</h5>
3559<pre>
3560 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3561</pre>
3562
3563<h5>Overview:</h5>
3564<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3565floating point value.</p>
3566
3567<h5>Arguments:</h5>
3568<p>The '<tt>fpext</tt>' instruction takes a
3569<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003570and a <a href="#t_floating">floating point</a> type to cast it to. The source
3571type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003572
3573<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003574<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003575<a href="#t_floating">floating point</a> type to a larger
3576<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003577used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003578<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003579
3580<h5>Example:</h5>
3581<pre>
3582 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3583 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3584</pre>
3585</div>
3586
3587<!-- _______________________________________________________________________ -->
3588<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003589 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003590</div>
3591<div class="doc_text">
3592
3593<h5>Syntax:</h5>
3594<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003595 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003596</pre>
3597
3598<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003599<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003600unsigned integer equivalent of type <tt>ty2</tt>.
3601</p>
3602
3603<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003604<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003605scalar or vector <a href="#t_floating">floating point</a> value, and a type
3606to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3607type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3608vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003609
3610<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003611<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003612<a href="#t_floating">floating point</a> operand into the nearest (rounding
3613towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3614the results are undefined.</p>
3615
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003616<h5>Example:</h5>
3617<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003618 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003619 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003620 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003621</pre>
3622</div>
3623
3624<!-- _______________________________________________________________________ -->
3625<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003626 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003627</div>
3628<div class="doc_text">
3629
3630<h5>Syntax:</h5>
3631<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003632 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003633</pre>
3634
3635<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003636<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003637<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003638</p>
3639
Chris Lattner6536cfe2002-05-06 22:08:29 +00003640<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003641<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003642scalar or vector <a href="#t_floating">floating point</a> value, and a type
3643to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3644type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3645vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003646
Chris Lattner6536cfe2002-05-06 22:08:29 +00003647<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003648<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003649<a href="#t_floating">floating point</a> operand into the nearest (rounding
3650towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3651the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003652
Chris Lattner33ba0d92001-07-09 00:26:23 +00003653<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003654<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003655 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003656 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003657 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003658</pre>
3659</div>
3660
3661<!-- _______________________________________________________________________ -->
3662<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003663 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003664</div>
3665<div class="doc_text">
3666
3667<h5>Syntax:</h5>
3668<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003669 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003670</pre>
3671
3672<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003673<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003674integer and converts that value to the <tt>ty2</tt> type.</p>
3675
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003676<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003677<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3678scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3679to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3680type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3681floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003682
3683<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003684<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003685integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003686the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003687
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003688<h5>Example:</h5>
3689<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003690 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003691 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003692</pre>
3693</div>
3694
3695<!-- _______________________________________________________________________ -->
3696<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003697 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003698</div>
3699<div class="doc_text">
3700
3701<h5>Syntax:</h5>
3702<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003703 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003704</pre>
3705
3706<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003707<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003708integer and converts that value to the <tt>ty2</tt> type.</p>
3709
3710<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003711<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3712scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3713to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3714type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3715floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003716
3717<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003718<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003719integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003720the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003721
3722<h5>Example:</h5>
3723<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003724 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003725 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003726</pre>
3727</div>
3728
3729<!-- _______________________________________________________________________ -->
3730<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003731 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3732</div>
3733<div class="doc_text">
3734
3735<h5>Syntax:</h5>
3736<pre>
3737 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3738</pre>
3739
3740<h5>Overview:</h5>
3741<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3742the integer type <tt>ty2</tt>.</p>
3743
3744<h5>Arguments:</h5>
3745<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003746must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Reid Spencer72679252006-11-11 21:00:47 +00003747<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3748
3749<h5>Semantics:</h5>
3750<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3751<tt>ty2</tt> by interpreting the pointer value as an integer and either
3752truncating or zero extending that value to the size of the integer type. If
3753<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3754<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003755are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3756change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003757
3758<h5>Example:</h5>
3759<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003760 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3761 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003762</pre>
3763</div>
3764
3765<!-- _______________________________________________________________________ -->
3766<div class="doc_subsubsection">
3767 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3768</div>
3769<div class="doc_text">
3770
3771<h5>Syntax:</h5>
3772<pre>
3773 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3774</pre>
3775
3776<h5>Overview:</h5>
3777<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3778a pointer type, <tt>ty2</tt>.</p>
3779
3780<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003781<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003782value to cast, and a type to cast it to, which must be a
Anton Korobeynikov7f705592007-01-12 19:20:47 +00003783<a href="#t_pointer">pointer</a> type.
Reid Spencer72679252006-11-11 21:00:47 +00003784
3785<h5>Semantics:</h5>
3786<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3787<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3788the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3789size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3790the size of a pointer then a zero extension is done. If they are the same size,
3791nothing is done (<i>no-op cast</i>).</p>
3792
3793<h5>Example:</h5>
3794<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003795 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3796 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3797 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003798</pre>
3799</div>
3800
3801<!-- _______________________________________________________________________ -->
3802<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003803 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003804</div>
3805<div class="doc_text">
3806
3807<h5>Syntax:</h5>
3808<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003809 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003810</pre>
3811
3812<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003813
Reid Spencer5c0ef472006-11-11 23:08:07 +00003814<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003815<tt>ty2</tt> without changing any bits.</p>
3816
3817<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003818
Reid Spencer5c0ef472006-11-11 23:08:07 +00003819<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00003820a non-aggregate first class value, and a type to cast it to, which must also be
3821a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
3822<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003823and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00003824type is a pointer, the destination type must also be a pointer. This
3825instruction supports bitwise conversion of vectors to integers and to vectors
3826of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003827
3828<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003829<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003830<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3831this conversion. The conversion is done as if the <tt>value</tt> had been
3832stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3833converted to other pointer types with this instruction. To convert pointers to
3834other types, use the <a href="#i_inttoptr">inttoptr</a> or
3835<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003836
3837<h5>Example:</h5>
3838<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003839 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003840 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3841 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003842</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003843</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003844
Reid Spencer2fd21e62006-11-08 01:18:52 +00003845<!-- ======================================================================= -->
3846<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3847<div class="doc_text">
3848<p>The instructions in this category are the "miscellaneous"
3849instructions, which defy better classification.</p>
3850</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003851
3852<!-- _______________________________________________________________________ -->
3853<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3854</div>
3855<div class="doc_text">
3856<h5>Syntax:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003857<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003858</pre>
3859<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003860<p>The '<tt>icmp</tt>' instruction returns a boolean value or
3861a vector of boolean values based on comparison
3862of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003863<h5>Arguments:</h5>
3864<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003865the condition code indicating the kind of comparison to perform. It is not
3866a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003867<ol>
3868 <li><tt>eq</tt>: equal</li>
3869 <li><tt>ne</tt>: not equal </li>
3870 <li><tt>ugt</tt>: unsigned greater than</li>
3871 <li><tt>uge</tt>: unsigned greater or equal</li>
3872 <li><tt>ult</tt>: unsigned less than</li>
3873 <li><tt>ule</tt>: unsigned less or equal</li>
3874 <li><tt>sgt</tt>: signed greater than</li>
3875 <li><tt>sge</tt>: signed greater or equal</li>
3876 <li><tt>slt</tt>: signed less than</li>
3877 <li><tt>sle</tt>: signed less or equal</li>
3878</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003879<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00003880<a href="#t_pointer">pointer</a>
3881or integer <a href="#t_vector">vector</a> typed.
3882They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003883<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003884<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00003885the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00003886yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003887<ol>
3888 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3889 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3890 </li>
3891 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3892 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3893 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003894 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003895 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003896 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003897 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003898 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003899 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003900 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003901 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003902 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003903 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003904 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003905 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003906 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003907 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003908 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003909</ol>
3910<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00003911values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003912<p>If the operands are integer vectors, then they are compared
3913element by element. The result is an <tt>i1</tt> vector with
3914the same number of elements as the values being compared.
3915Otherwise, the result is an <tt>i1</tt>.
3916</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003917
3918<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003919<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3920 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3921 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3922 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3923 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3924 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003925</pre>
3926</div>
3927
3928<!-- _______________________________________________________________________ -->
3929<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3930</div>
3931<div class="doc_text">
3932<h5>Syntax:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003933<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003934</pre>
3935<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003936<p>The '<tt>fcmp</tt>' instruction returns a boolean value
3937or vector of boolean values based on comparison
3938of its operands.
3939<p>
3940If the operands are floating point scalars, then the result
3941type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
3942</p>
3943<p>If the operands are floating point vectors, then the result type
3944is a vector of boolean with the same number of elements as the
3945operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003946<h5>Arguments:</h5>
3947<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003948the condition code indicating the kind of comparison to perform. It is not
3949a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003950<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00003951 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003952 <li><tt>oeq</tt>: ordered and equal</li>
3953 <li><tt>ogt</tt>: ordered and greater than </li>
3954 <li><tt>oge</tt>: ordered and greater than or equal</li>
3955 <li><tt>olt</tt>: ordered and less than </li>
3956 <li><tt>ole</tt>: ordered and less than or equal</li>
3957 <li><tt>one</tt>: ordered and not equal</li>
3958 <li><tt>ord</tt>: ordered (no nans)</li>
3959 <li><tt>ueq</tt>: unordered or equal</li>
3960 <li><tt>ugt</tt>: unordered or greater than </li>
3961 <li><tt>uge</tt>: unordered or greater than or equal</li>
3962 <li><tt>ult</tt>: unordered or less than </li>
3963 <li><tt>ule</tt>: unordered or less than or equal</li>
3964 <li><tt>une</tt>: unordered or not equal</li>
3965 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003966 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003967</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003968<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00003969<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003970<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
3971either a <a href="#t_floating">floating point</a> type
3972or a <a href="#t_vector">vector</a> of floating point type.
3973They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003974<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003975<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003976according to the condition code given as <tt>cond</tt>.
3977If the operands are vectors, then the vectors are compared
3978element by element.
3979Each comparison performed
3980always yields an <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003981<ol>
3982 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003983 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003984 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003985 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003986 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003987 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003988 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003989 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003990 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003991 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003992 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003993 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003994 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003995 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3996 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00003997 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003998 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00003999 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004000 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004001 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004002 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004003 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004004 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004005 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004006 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004007 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004008 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004009 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4010</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004011
4012<h5>Example:</h5>
4013<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004014 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4015 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4016 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004017</pre>
4018</div>
4019
Reid Spencer2fd21e62006-11-08 01:18:52 +00004020<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004021<div class="doc_subsubsection">
4022 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4023</div>
4024<div class="doc_text">
4025<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004026<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004027</pre>
4028<h5>Overview:</h5>
4029<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4030element-wise comparison of its two integer vector operands.</p>
4031<h5>Arguments:</h5>
4032<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4033the condition code indicating the kind of comparison to perform. It is not
4034a value, just a keyword. The possible condition code are:
4035<ol>
4036 <li><tt>eq</tt>: equal</li>
4037 <li><tt>ne</tt>: not equal </li>
4038 <li><tt>ugt</tt>: unsigned greater than</li>
4039 <li><tt>uge</tt>: unsigned greater or equal</li>
4040 <li><tt>ult</tt>: unsigned less than</li>
4041 <li><tt>ule</tt>: unsigned less or equal</li>
4042 <li><tt>sgt</tt>: signed greater than</li>
4043 <li><tt>sge</tt>: signed greater or equal</li>
4044 <li><tt>slt</tt>: signed less than</li>
4045 <li><tt>sle</tt>: signed less or equal</li>
4046</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004047<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004048<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4049<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004050<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004051according to the condition code given as <tt>cond</tt>. The comparison yields a
4052<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4053identical type as the values being compared. The most significant bit in each
4054element is 1 if the element-wise comparison evaluates to true, and is 0
4055otherwise. All other bits of the result are undefined. The condition codes
4056are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
4057instruction</a>.
4058
4059<h5>Example:</h5>
4060<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004061 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4062 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004063</pre>
4064</div>
4065
4066<!-- _______________________________________________________________________ -->
4067<div class="doc_subsubsection">
4068 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4069</div>
4070<div class="doc_text">
4071<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004072<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004073<h5>Overview:</h5>
4074<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4075element-wise comparison of its two floating point vector operands. The output
4076elements have the same width as the input elements.</p>
4077<h5>Arguments:</h5>
4078<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4079the condition code indicating the kind of comparison to perform. It is not
4080a value, just a keyword. The possible condition code are:
4081<ol>
4082 <li><tt>false</tt>: no comparison, always returns false</li>
4083 <li><tt>oeq</tt>: ordered and equal</li>
4084 <li><tt>ogt</tt>: ordered and greater than </li>
4085 <li><tt>oge</tt>: ordered and greater than or equal</li>
4086 <li><tt>olt</tt>: ordered and less than </li>
4087 <li><tt>ole</tt>: ordered and less than or equal</li>
4088 <li><tt>one</tt>: ordered and not equal</li>
4089 <li><tt>ord</tt>: ordered (no nans)</li>
4090 <li><tt>ueq</tt>: unordered or equal</li>
4091 <li><tt>ugt</tt>: unordered or greater than </li>
4092 <li><tt>uge</tt>: unordered or greater than or equal</li>
4093 <li><tt>ult</tt>: unordered or less than </li>
4094 <li><tt>ule</tt>: unordered or less than or equal</li>
4095 <li><tt>une</tt>: unordered or not equal</li>
4096 <li><tt>uno</tt>: unordered (either nans)</li>
4097 <li><tt>true</tt>: no comparison, always returns true</li>
4098</ol>
4099<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4100<a href="#t_floating">floating point</a> typed. They must also be identical
4101types.</p>
4102<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004103<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004104according to the condition code given as <tt>cond</tt>. The comparison yields a
4105<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4106an identical number of elements as the values being compared, and each element
4107having identical with to the width of the floating point elements. The most
4108significant bit in each element is 1 if the element-wise comparison evaluates to
4109true, and is 0 otherwise. All other bits of the result are undefined. The
4110condition codes are evaluated identically to the
4111<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.
4112
4113<h5>Example:</h5>
4114<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004115 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4116 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt; <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004117</pre>
4118</div>
4119
4120<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004121<div class="doc_subsubsection">
4122 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4123</div>
4124
Reid Spencer2fd21e62006-11-08 01:18:52 +00004125<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004126
Reid Spencer2fd21e62006-11-08 01:18:52 +00004127<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004128
Reid Spencer2fd21e62006-11-08 01:18:52 +00004129<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4130<h5>Overview:</h5>
4131<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4132the SSA graph representing the function.</p>
4133<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004134
Jeff Cohenb627eab2007-04-29 01:07:00 +00004135<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004136field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4137as arguments, with one pair for each predecessor basic block of the
4138current block. Only values of <a href="#t_firstclass">first class</a>
4139type may be used as the value arguments to the PHI node. Only labels
4140may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004141
Reid Spencer2fd21e62006-11-08 01:18:52 +00004142<p>There must be no non-phi instructions between the start of a basic
4143block and the PHI instructions: i.e. PHI instructions must be first in
4144a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004145
Reid Spencer2fd21e62006-11-08 01:18:52 +00004146<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004147
Jeff Cohenb627eab2007-04-29 01:07:00 +00004148<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4149specified by the pair corresponding to the predecessor basic block that executed
4150just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004151
Reid Spencer2fd21e62006-11-08 01:18:52 +00004152<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004153<pre>
4154Loop: ; Infinite loop that counts from 0 on up...
4155 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4156 %nextindvar = add i32 %indvar, 1
4157 br label %Loop
4158</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004159</div>
4160
Chris Lattnercc37aae2004-03-12 05:50:16 +00004161<!-- _______________________________________________________________________ -->
4162<div class="doc_subsubsection">
4163 <a name="i_select">'<tt>select</tt>' Instruction</a>
4164</div>
4165
4166<div class="doc_text">
4167
4168<h5>Syntax:</h5>
4169
4170<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004171 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4172
4173 <i>selty</i> is either i1 or {&lt;N x i1&gt}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004174</pre>
4175
4176<h5>Overview:</h5>
4177
4178<p>
4179The '<tt>select</tt>' instruction is used to choose one value based on a
4180condition, without branching.
4181</p>
4182
4183
4184<h5>Arguments:</h5>
4185
4186<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004187The '<tt>select</tt>' instruction requires an 'i1' value or
4188a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004189condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004190type. If the val1/val2 are vectors and
4191the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004192individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004193</p>
4194
4195<h5>Semantics:</h5>
4196
4197<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004198If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004199value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004200</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004201<p>
4202If the condition is a vector of i1, then the value arguments must
4203be vectors of the same size, and the selection is done element
4204by element.
4205</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004206
4207<h5>Example:</h5>
4208
4209<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004210 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004211</pre>
4212</div>
4213
Robert Bocchino05ccd702006-01-15 20:48:27 +00004214
4215<!-- _______________________________________________________________________ -->
4216<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004217 <a name="i_call">'<tt>call</tt>' Instruction</a>
4218</div>
4219
Misha Brukman9d0919f2003-11-08 01:05:38 +00004220<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004221
Chris Lattner00950542001-06-06 20:29:01 +00004222<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004223<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004224 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00004225</pre>
4226
Chris Lattner00950542001-06-06 20:29:01 +00004227<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004228
Misha Brukman9d0919f2003-11-08 01:05:38 +00004229<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004230
Chris Lattner00950542001-06-06 20:29:01 +00004231<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004232
Misha Brukman9d0919f2003-11-08 01:05:38 +00004233<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004234
Chris Lattner6536cfe2002-05-06 22:08:29 +00004235<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004236 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004237 <p>The optional "tail" marker indicates whether the callee function accesses
4238 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004239 function call is eligible for tail call optimization. Note that calls may
4240 be marked "tail" even if they do not occur before a <a
4241 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00004242 </li>
4243 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004244 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004245 convention</a> the call should use. If none is specified, the call defaults
4246 to using C calling conventions.
4247 </li>
4248 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004249 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4250 the type of the return value. Functions that return no value are marked
4251 <tt><a href="#t_void">void</a></tt>.</p>
4252 </li>
4253 <li>
4254 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4255 value being invoked. The argument types must match the types implied by
4256 this signature. This type can be omitted if the function is not varargs
4257 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004258 </li>
4259 <li>
4260 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4261 be invoked. In most cases, this is a direct function invocation, but
4262 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004263 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004264 </li>
4265 <li>
4266 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004267 function signature argument types. All arguments must be of
4268 <a href="#t_firstclass">first class</a> type. If the function signature
4269 indicates the function accepts a variable number of arguments, the extra
4270 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004271 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004272</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004273
Chris Lattner00950542001-06-06 20:29:01 +00004274<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004275
Chris Lattner261efe92003-11-25 01:02:51 +00004276<p>The '<tt>call</tt>' instruction is used to cause control flow to
4277transfer to a specified function, with its incoming arguments bound to
4278the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4279instruction in the called function, control flow continues with the
4280instruction after the function call, and the return value of the
Chris Lattner772fccf2008-03-21 17:24:17 +00004281function is bound to the result argument. If the callee returns multiple
4282values then the return values of the function are only accessible through
4283the '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004284
Chris Lattner00950542001-06-06 20:29:01 +00004285<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004286
4287<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004288 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004289 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4290 %X = tail call i32 @foo() <i>; yields i32</i>
4291 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4292 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004293
4294 %struct.A = type { i32, i8 }
Chris Lattner772fccf2008-03-21 17:24:17 +00004295 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
4296 %gr = getresult %struct.A %r, 0 <i>; yields i32</i>
4297 %gr1 = getresult %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004298</pre>
4299
Misha Brukman9d0919f2003-11-08 01:05:38 +00004300</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004301
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004302<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004303<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004304 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004305</div>
4306
Misha Brukman9d0919f2003-11-08 01:05:38 +00004307<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004308
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004309<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004310
4311<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004312 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004313</pre>
4314
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004315<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004316
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004317<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004318the "variable argument" area of a function call. It is used to implement the
4319<tt>va_arg</tt> macro in C.</p>
4320
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004321<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004322
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004323<p>This instruction takes a <tt>va_list*</tt> value and the type of
4324the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004325increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004326actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004327
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004328<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004329
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004330<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4331type from the specified <tt>va_list</tt> and causes the
4332<tt>va_list</tt> to point to the next argument. For more information,
4333see the variable argument handling <a href="#int_varargs">Intrinsic
4334Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004335
4336<p>It is legal for this instruction to be called in a function which does not
4337take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004338function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004339
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004340<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004341href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004342argument.</p>
4343
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004344<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004345
4346<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4347
Misha Brukman9d0919f2003-11-08 01:05:38 +00004348</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004349
Devang Patelc3fc6df2008-03-10 20:49:15 +00004350<!-- _______________________________________________________________________ -->
4351<div class="doc_subsubsection">
4352 <a name="i_getresult">'<tt>getresult</tt>' Instruction</a>
4353</div>
4354
4355<div class="doc_text">
4356
4357<h5>Syntax:</h5>
4358<pre>
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004359 &lt;resultval&gt; = getresult &lt;type&gt; &lt;retval&gt;, &lt;index&gt;
Devang Patelc3fc6df2008-03-10 20:49:15 +00004360</pre>
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004361
Devang Patelc3fc6df2008-03-10 20:49:15 +00004362<h5>Overview:</h5>
4363
4364<p> The '<tt>getresult</tt>' instruction is used to extract individual values
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004365from a '<tt><a href="#i_call">call</a></tt>'
4366or '<tt><a href="#i_invoke">invoke</a></tt>' instruction that returns multiple
4367results.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004368
4369<h5>Arguments:</h5>
4370
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004371<p>The '<tt>getresult</tt>' instruction takes a call or invoke value as its
Chris Lattner1c406d72008-04-23 04:06:52 +00004372first argument, or an undef value. The value must have <a
4373href="#t_struct">structure type</a>. The second argument is a constant
4374unsigned index value which must be in range for the number of values returned
4375by the call.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004376
4377<h5>Semantics:</h5>
4378
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004379<p>The '<tt>getresult</tt>' instruction extracts the element identified by
4380'<tt>index</tt>' from the aggregate value.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004381
4382<h5>Example:</h5>
4383
4384<pre>
4385 %struct.A = type { i32, i8 }
4386
4387 %r = call %struct.A @foo()
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004388 %gr = getresult %struct.A %r, 0 <i>; yields i32:%gr</i>
4389 %gr1 = getresult %struct.A %r, 1 <i>; yields i8:%gr1</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004390 add i32 %gr, 42
4391 add i8 %gr1, 41
4392</pre>
4393
4394</div>
4395
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004396<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004397<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4398<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004399
Misha Brukman9d0919f2003-11-08 01:05:38 +00004400<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004401
4402<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004403well known names and semantics and are required to follow certain restrictions.
4404Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004405language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004406adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004407
John Criswellfc6b8952005-05-16 16:17:45 +00004408<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004409prefix is reserved in LLVM for intrinsic names; thus, function names may not
4410begin with this prefix. Intrinsic functions must always be external functions:
4411you cannot define the body of intrinsic functions. Intrinsic functions may
4412only be used in call or invoke instructions: it is illegal to take the address
4413of an intrinsic function. Additionally, because intrinsic functions are part
4414of the LLVM language, it is required if any are added that they be documented
4415here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004416
Chandler Carruth69940402007-08-04 01:51:18 +00004417<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4418a family of functions that perform the same operation but on different data
4419types. Because LLVM can represent over 8 million different integer types,
4420overloading is used commonly to allow an intrinsic function to operate on any
4421integer type. One or more of the argument types or the result type can be
4422overloaded to accept any integer type. Argument types may also be defined as
4423exactly matching a previous argument's type or the result type. This allows an
4424intrinsic function which accepts multiple arguments, but needs all of them to
4425be of the same type, to only be overloaded with respect to a single argument or
4426the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004427
Chandler Carruth69940402007-08-04 01:51:18 +00004428<p>Overloaded intrinsics will have the names of its overloaded argument types
4429encoded into its function name, each preceded by a period. Only those types
4430which are overloaded result in a name suffix. Arguments whose type is matched
4431against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4432take an integer of any width and returns an integer of exactly the same integer
4433width. This leads to a family of functions such as
4434<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4435Only one type, the return type, is overloaded, and only one type suffix is
4436required. Because the argument's type is matched against the return type, it
4437does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004438
4439<p>To learn how to add an intrinsic function, please see the
4440<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004441</p>
4442
Misha Brukman9d0919f2003-11-08 01:05:38 +00004443</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004444
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004445<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004446<div class="doc_subsection">
4447 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4448</div>
4449
Misha Brukman9d0919f2003-11-08 01:05:38 +00004450<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004451
Misha Brukman9d0919f2003-11-08 01:05:38 +00004452<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004453 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004454intrinsic functions. These functions are related to the similarly
4455named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004456
Chris Lattner261efe92003-11-25 01:02:51 +00004457<p>All of these functions operate on arguments that use a
4458target-specific value type "<tt>va_list</tt>". The LLVM assembly
4459language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004460transformations should be prepared to handle these functions regardless of
4461the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004462
Chris Lattner374ab302006-05-15 17:26:46 +00004463<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004464instruction and the variable argument handling intrinsic functions are
4465used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004466
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004467<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004468<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004469define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004470 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004471 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004472 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004473 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004474
4475 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004476 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004477
4478 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004479 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004480 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004481 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004482 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004483
4484 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004485 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004486 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004487}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004488
4489declare void @llvm.va_start(i8*)
4490declare void @llvm.va_copy(i8*, i8*)
4491declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004492</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004493</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004494
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004495</div>
4496
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004497<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004498<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004499 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004500</div>
4501
4502
Misha Brukman9d0919f2003-11-08 01:05:38 +00004503<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004504<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004505<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004506<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004507<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
4508<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4509href="#i_va_arg">va_arg</a></tt>.</p>
4510
4511<h5>Arguments:</h5>
4512
4513<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4514
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004515<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004516
4517<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4518macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004519<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004520<tt>va_arg</tt> will produce the first variable argument passed to the function.
4521Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004522last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004523
Misha Brukman9d0919f2003-11-08 01:05:38 +00004524</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004525
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004526<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004527<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004528 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004529</div>
4530
Misha Brukman9d0919f2003-11-08 01:05:38 +00004531<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004532<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004533<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004534<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004535
Jeff Cohenb627eab2007-04-29 01:07:00 +00004536<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004537which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004538or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004539
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004540<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004541
Jeff Cohenb627eab2007-04-29 01:07:00 +00004542<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004543
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004544<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004545
Misha Brukman9d0919f2003-11-08 01:05:38 +00004546<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004547macro available in C. In a target-dependent way, it destroys the
4548<tt>va_list</tt> element to which the argument points. Calls to <a
4549href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4550<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4551<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004552
Misha Brukman9d0919f2003-11-08 01:05:38 +00004553</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004554
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004555<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004556<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004557 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004558</div>
4559
Misha Brukman9d0919f2003-11-08 01:05:38 +00004560<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004561
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004562<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004563
4564<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004565 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004566</pre>
4567
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004568<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004569
Jeff Cohenb627eab2007-04-29 01:07:00 +00004570<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4571from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004572
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004573<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004574
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004575<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004576The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004577
Chris Lattnerd7923912004-05-23 21:06:01 +00004578
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004579<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004580
Jeff Cohenb627eab2007-04-29 01:07:00 +00004581<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4582macro available in C. In a target-dependent way, it copies the source
4583<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4584intrinsic is necessary because the <tt><a href="#int_va_start">
4585llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4586example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004587
Misha Brukman9d0919f2003-11-08 01:05:38 +00004588</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004589
Chris Lattner33aec9e2004-02-12 17:01:32 +00004590<!-- ======================================================================= -->
4591<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004592 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4593</div>
4594
4595<div class="doc_text">
4596
4597<p>
4598LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004599Collection</a> (GC) requires the implementation and generation of these
4600intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004601These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004602stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004603href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004604Front-ends for type-safe garbage collected languages should generate these
4605intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4606href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4607</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004608
4609<p>The garbage collection intrinsics only operate on objects in the generic
4610 address space (address space zero).</p>
4611
Chris Lattnerd7923912004-05-23 21:06:01 +00004612</div>
4613
4614<!-- _______________________________________________________________________ -->
4615<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004616 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004617</div>
4618
4619<div class="doc_text">
4620
4621<h5>Syntax:</h5>
4622
4623<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004624 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004625</pre>
4626
4627<h5>Overview:</h5>
4628
John Criswell9e2485c2004-12-10 15:51:16 +00004629<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004630the code generator, and allows some metadata to be associated with it.</p>
4631
4632<h5>Arguments:</h5>
4633
4634<p>The first argument specifies the address of a stack object that contains the
4635root pointer. The second pointer (which must be either a constant or a global
4636value address) contains the meta-data to be associated with the root.</p>
4637
4638<h5>Semantics:</h5>
4639
Chris Lattner05d67092008-04-24 05:59:56 +00004640<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004641location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004642the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4643intrinsic may only be used in a function which <a href="#gc">specifies a GC
4644algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004645
4646</div>
4647
4648
4649<!-- _______________________________________________________________________ -->
4650<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004651 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004652</div>
4653
4654<div class="doc_text">
4655
4656<h5>Syntax:</h5>
4657
4658<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004659 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004660</pre>
4661
4662<h5>Overview:</h5>
4663
4664<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4665locations, allowing garbage collector implementations that require read
4666barriers.</p>
4667
4668<h5>Arguments:</h5>
4669
Chris Lattner80626e92006-03-14 20:02:51 +00004670<p>The second argument is the address to read from, which should be an address
4671allocated from the garbage collector. The first object is a pointer to the
4672start of the referenced object, if needed by the language runtime (otherwise
4673null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004674
4675<h5>Semantics:</h5>
4676
4677<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4678instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004679garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4680may only be used in a function which <a href="#gc">specifies a GC
4681algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004682
4683</div>
4684
4685
4686<!-- _______________________________________________________________________ -->
4687<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004688 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004689</div>
4690
4691<div class="doc_text">
4692
4693<h5>Syntax:</h5>
4694
4695<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004696 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004697</pre>
4698
4699<h5>Overview:</h5>
4700
4701<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4702locations, allowing garbage collector implementations that require write
4703barriers (such as generational or reference counting collectors).</p>
4704
4705<h5>Arguments:</h5>
4706
Chris Lattner80626e92006-03-14 20:02:51 +00004707<p>The first argument is the reference to store, the second is the start of the
4708object to store it to, and the third is the address of the field of Obj to
4709store to. If the runtime does not require a pointer to the object, Obj may be
4710null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004711
4712<h5>Semantics:</h5>
4713
4714<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4715instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004716garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4717may only be used in a function which <a href="#gc">specifies a GC
4718algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004719
4720</div>
4721
4722
4723
4724<!-- ======================================================================= -->
4725<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004726 <a name="int_codegen">Code Generator Intrinsics</a>
4727</div>
4728
4729<div class="doc_text">
4730<p>
4731These intrinsics are provided by LLVM to expose special features that may only
4732be implemented with code generator support.
4733</p>
4734
4735</div>
4736
4737<!-- _______________________________________________________________________ -->
4738<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004739 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004740</div>
4741
4742<div class="doc_text">
4743
4744<h5>Syntax:</h5>
4745<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004746 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004747</pre>
4748
4749<h5>Overview:</h5>
4750
4751<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004752The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4753target-specific value indicating the return address of the current function
4754or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004755</p>
4756
4757<h5>Arguments:</h5>
4758
4759<p>
4760The argument to this intrinsic indicates which function to return the address
4761for. Zero indicates the calling function, one indicates its caller, etc. The
4762argument is <b>required</b> to be a constant integer value.
4763</p>
4764
4765<h5>Semantics:</h5>
4766
4767<p>
4768The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4769the return address of the specified call frame, or zero if it cannot be
4770identified. The value returned by this intrinsic is likely to be incorrect or 0
4771for arguments other than zero, so it should only be used for debugging purposes.
4772</p>
4773
4774<p>
4775Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004776aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004777source-language caller.
4778</p>
4779</div>
4780
4781
4782<!-- _______________________________________________________________________ -->
4783<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004784 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004785</div>
4786
4787<div class="doc_text">
4788
4789<h5>Syntax:</h5>
4790<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004791 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004792</pre>
4793
4794<h5>Overview:</h5>
4795
4796<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004797The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4798target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004799</p>
4800
4801<h5>Arguments:</h5>
4802
4803<p>
4804The argument to this intrinsic indicates which function to return the frame
4805pointer for. Zero indicates the calling function, one indicates its caller,
4806etc. The argument is <b>required</b> to be a constant integer value.
4807</p>
4808
4809<h5>Semantics:</h5>
4810
4811<p>
4812The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4813the frame address of the specified call frame, or zero if it cannot be
4814identified. The value returned by this intrinsic is likely to be incorrect or 0
4815for arguments other than zero, so it should only be used for debugging purposes.
4816</p>
4817
4818<p>
4819Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004820aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004821source-language caller.
4822</p>
4823</div>
4824
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004825<!-- _______________________________________________________________________ -->
4826<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004827 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004828</div>
4829
4830<div class="doc_text">
4831
4832<h5>Syntax:</h5>
4833<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004834 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004835</pre>
4836
4837<h5>Overview:</h5>
4838
4839<p>
4840The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004841the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004842<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4843features like scoped automatic variable sized arrays in C99.
4844</p>
4845
4846<h5>Semantics:</h5>
4847
4848<p>
4849This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004850href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004851<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4852<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4853state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4854practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4855that were allocated after the <tt>llvm.stacksave</tt> was executed.
4856</p>
4857
4858</div>
4859
4860<!-- _______________________________________________________________________ -->
4861<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004862 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004863</div>
4864
4865<div class="doc_text">
4866
4867<h5>Syntax:</h5>
4868<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004869 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004870</pre>
4871
4872<h5>Overview:</h5>
4873
4874<p>
4875The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4876the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004877href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004878useful for implementing language features like scoped automatic variable sized
4879arrays in C99.
4880</p>
4881
4882<h5>Semantics:</h5>
4883
4884<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004885See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004886</p>
4887
4888</div>
4889
4890
4891<!-- _______________________________________________________________________ -->
4892<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004893 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004894</div>
4895
4896<div class="doc_text">
4897
4898<h5>Syntax:</h5>
4899<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004900 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004901</pre>
4902
4903<h5>Overview:</h5>
4904
4905
4906<p>
4907The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004908a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4909no
4910effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004911characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004912</p>
4913
4914<h5>Arguments:</h5>
4915
4916<p>
4917<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4918determining if the fetch should be for a read (0) or write (1), and
4919<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004920locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004921<tt>locality</tt> arguments must be constant integers.
4922</p>
4923
4924<h5>Semantics:</h5>
4925
4926<p>
4927This intrinsic does not modify the behavior of the program. In particular,
4928prefetches cannot trap and do not produce a value. On targets that support this
4929intrinsic, the prefetch can provide hints to the processor cache for better
4930performance.
4931</p>
4932
4933</div>
4934
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004935<!-- _______________________________________________________________________ -->
4936<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004937 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004938</div>
4939
4940<div class="doc_text">
4941
4942<h5>Syntax:</h5>
4943<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004944 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004945</pre>
4946
4947<h5>Overview:</h5>
4948
4949
4950<p>
John Criswellfc6b8952005-05-16 16:17:45 +00004951The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00004952(PC) in a region of
4953code to simulators and other tools. The method is target specific, but it is
4954expected that the marker will use exported symbols to transmit the PC of the
4955marker.
4956The marker makes no guarantees that it will remain with any specific instruction
4957after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00004958optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00004959correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004960</p>
4961
4962<h5>Arguments:</h5>
4963
4964<p>
4965<tt>id</tt> is a numerical id identifying the marker.
4966</p>
4967
4968<h5>Semantics:</h5>
4969
4970<p>
4971This intrinsic does not modify the behavior of the program. Backends that do not
4972support this intrinisic may ignore it.
4973</p>
4974
4975</div>
4976
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004977<!-- _______________________________________________________________________ -->
4978<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004979 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004980</div>
4981
4982<div class="doc_text">
4983
4984<h5>Syntax:</h5>
4985<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004986 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004987</pre>
4988
4989<h5>Overview:</h5>
4990
4991
4992<p>
4993The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4994counter register (or similar low latency, high accuracy clocks) on those targets
4995that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4996As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4997should only be used for small timings.
4998</p>
4999
5000<h5>Semantics:</h5>
5001
5002<p>
5003When directly supported, reading the cycle counter should not modify any memory.
5004Implementations are allowed to either return a application specific value or a
5005system wide value. On backends without support, this is lowered to a constant 0.
5006</p>
5007
5008</div>
5009
Chris Lattner10610642004-02-14 04:08:35 +00005010<!-- ======================================================================= -->
5011<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005012 <a name="int_libc">Standard C Library Intrinsics</a>
5013</div>
5014
5015<div class="doc_text">
5016<p>
Chris Lattner10610642004-02-14 04:08:35 +00005017LLVM provides intrinsics for a few important standard C library functions.
5018These intrinsics allow source-language front-ends to pass information about the
5019alignment of the pointer arguments to the code generator, providing opportunity
5020for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005021</p>
5022
5023</div>
5024
5025<!-- _______________________________________________________________________ -->
5026<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005027 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005028</div>
5029
5030<div class="doc_text">
5031
5032<h5>Syntax:</h5>
5033<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005034 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005035 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005036 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005037 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005038</pre>
5039
5040<h5>Overview:</h5>
5041
5042<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005043The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005044location to the destination location.
5045</p>
5046
5047<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005048Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5049intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005050</p>
5051
5052<h5>Arguments:</h5>
5053
5054<p>
5055The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005056the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005057specifying the number of bytes to copy, and the fourth argument is the alignment
5058of the source and destination locations.
5059</p>
5060
Chris Lattner3301ced2004-02-12 21:18:15 +00005061<p>
5062If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005063the caller guarantees that both the source and destination pointers are aligned
5064to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005065</p>
5066
Chris Lattner33aec9e2004-02-12 17:01:32 +00005067<h5>Semantics:</h5>
5068
5069<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005070The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005071location to the destination location, which are not allowed to overlap. It
5072copies "len" bytes of memory over. If the argument is known to be aligned to
5073some boundary, this can be specified as the fourth argument, otherwise it should
5074be set to 0 or 1.
5075</p>
5076</div>
5077
5078
Chris Lattner0eb51b42004-02-12 18:10:10 +00005079<!-- _______________________________________________________________________ -->
5080<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005081 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005082</div>
5083
5084<div class="doc_text">
5085
5086<h5>Syntax:</h5>
5087<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005088 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005089 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005090 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005091 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005092</pre>
5093
5094<h5>Overview:</h5>
5095
5096<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005097The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5098location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005099'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005100</p>
5101
5102<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005103Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5104intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005105</p>
5106
5107<h5>Arguments:</h5>
5108
5109<p>
5110The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005111the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005112specifying the number of bytes to copy, and the fourth argument is the alignment
5113of the source and destination locations.
5114</p>
5115
Chris Lattner3301ced2004-02-12 21:18:15 +00005116<p>
5117If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005118the caller guarantees that the source and destination pointers are aligned to
5119that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005120</p>
5121
Chris Lattner0eb51b42004-02-12 18:10:10 +00005122<h5>Semantics:</h5>
5123
5124<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005125The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005126location to the destination location, which may overlap. It
5127copies "len" bytes of memory over. If the argument is known to be aligned to
5128some boundary, this can be specified as the fourth argument, otherwise it should
5129be set to 0 or 1.
5130</p>
5131</div>
5132
Chris Lattner8ff75902004-01-06 05:31:32 +00005133
Chris Lattner10610642004-02-14 04:08:35 +00005134<!-- _______________________________________________________________________ -->
5135<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005136 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005137</div>
5138
5139<div class="doc_text">
5140
5141<h5>Syntax:</h5>
5142<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005143 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005144 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005145 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005146 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005147</pre>
5148
5149<h5>Overview:</h5>
5150
5151<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005152The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005153byte value.
5154</p>
5155
5156<p>
5157Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5158does not return a value, and takes an extra alignment argument.
5159</p>
5160
5161<h5>Arguments:</h5>
5162
5163<p>
5164The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005165byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005166argument specifying the number of bytes to fill, and the fourth argument is the
5167known alignment of destination location.
5168</p>
5169
5170<p>
5171If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005172the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005173</p>
5174
5175<h5>Semantics:</h5>
5176
5177<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005178The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5179the
Chris Lattner10610642004-02-14 04:08:35 +00005180destination location. If the argument is known to be aligned to some boundary,
5181this can be specified as the fourth argument, otherwise it should be set to 0 or
51821.
5183</p>
5184</div>
5185
5186
Chris Lattner32006282004-06-11 02:28:03 +00005187<!-- _______________________________________________________________________ -->
5188<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005189 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005190</div>
5191
5192<div class="doc_text">
5193
5194<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005195<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005196floating point or vector of floating point type. Not all targets support all
5197types however.
Chris Lattnera4d74142005-07-21 01:29:16 +00005198<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005199 declare float @llvm.sqrt.f32(float %Val)
5200 declare double @llvm.sqrt.f64(double %Val)
5201 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5202 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5203 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005204</pre>
5205
5206<h5>Overview:</h5>
5207
5208<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005209The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005210returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005211<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005212negative numbers other than -0.0 (which allows for better optimization, because
5213there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5214defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005215</p>
5216
5217<h5>Arguments:</h5>
5218
5219<p>
5220The argument and return value are floating point numbers of the same type.
5221</p>
5222
5223<h5>Semantics:</h5>
5224
5225<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005226This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005227floating point number.
5228</p>
5229</div>
5230
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005231<!-- _______________________________________________________________________ -->
5232<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005233 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005234</div>
5235
5236<div class="doc_text">
5237
5238<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005239<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005240floating point or vector of floating point type. Not all targets support all
5241types however.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005242<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005243 declare float @llvm.powi.f32(float %Val, i32 %power)
5244 declare double @llvm.powi.f64(double %Val, i32 %power)
5245 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5246 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5247 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005248</pre>
5249
5250<h5>Overview:</h5>
5251
5252<p>
5253The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5254specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005255multiplications is not defined. When a vector of floating point type is
5256used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005257</p>
5258
5259<h5>Arguments:</h5>
5260
5261<p>
5262The second argument is an integer power, and the first is a value to raise to
5263that power.
5264</p>
5265
5266<h5>Semantics:</h5>
5267
5268<p>
5269This function returns the first value raised to the second power with an
5270unspecified sequence of rounding operations.</p>
5271</div>
5272
Dan Gohman91c284c2007-10-15 20:30:11 +00005273<!-- _______________________________________________________________________ -->
5274<div class="doc_subsubsection">
5275 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5276</div>
5277
5278<div class="doc_text">
5279
5280<h5>Syntax:</h5>
5281<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5282floating point or vector of floating point type. Not all targets support all
5283types however.
5284<pre>
5285 declare float @llvm.sin.f32(float %Val)
5286 declare double @llvm.sin.f64(double %Val)
5287 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5288 declare fp128 @llvm.sin.f128(fp128 %Val)
5289 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5290</pre>
5291
5292<h5>Overview:</h5>
5293
5294<p>
5295The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5296</p>
5297
5298<h5>Arguments:</h5>
5299
5300<p>
5301The argument and return value are floating point numbers of the same type.
5302</p>
5303
5304<h5>Semantics:</h5>
5305
5306<p>
5307This function returns the sine of the specified operand, returning the
5308same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005309conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005310</div>
5311
5312<!-- _______________________________________________________________________ -->
5313<div class="doc_subsubsection">
5314 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5315</div>
5316
5317<div class="doc_text">
5318
5319<h5>Syntax:</h5>
5320<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5321floating point or vector of floating point type. Not all targets support all
5322types however.
5323<pre>
5324 declare float @llvm.cos.f32(float %Val)
5325 declare double @llvm.cos.f64(double %Val)
5326 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5327 declare fp128 @llvm.cos.f128(fp128 %Val)
5328 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5329</pre>
5330
5331<h5>Overview:</h5>
5332
5333<p>
5334The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5335</p>
5336
5337<h5>Arguments:</h5>
5338
5339<p>
5340The argument and return value are floating point numbers of the same type.
5341</p>
5342
5343<h5>Semantics:</h5>
5344
5345<p>
5346This function returns the cosine of the specified operand, returning the
5347same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005348conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005349</div>
5350
5351<!-- _______________________________________________________________________ -->
5352<div class="doc_subsubsection">
5353 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5354</div>
5355
5356<div class="doc_text">
5357
5358<h5>Syntax:</h5>
5359<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5360floating point or vector of floating point type. Not all targets support all
5361types however.
5362<pre>
5363 declare float @llvm.pow.f32(float %Val, float %Power)
5364 declare double @llvm.pow.f64(double %Val, double %Power)
5365 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5366 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5367 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5368</pre>
5369
5370<h5>Overview:</h5>
5371
5372<p>
5373The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5374specified (positive or negative) power.
5375</p>
5376
5377<h5>Arguments:</h5>
5378
5379<p>
5380The second argument is a floating point power, and the first is a value to
5381raise to that power.
5382</p>
5383
5384<h5>Semantics:</h5>
5385
5386<p>
5387This function returns the first value raised to the second power,
5388returning the
5389same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005390conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005391</div>
5392
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005393
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005394<!-- ======================================================================= -->
5395<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005396 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005397</div>
5398
5399<div class="doc_text">
5400<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005401LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005402These allow efficient code generation for some algorithms.
5403</p>
5404
5405</div>
5406
5407<!-- _______________________________________________________________________ -->
5408<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005409 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005410</div>
5411
5412<div class="doc_text">
5413
5414<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005415<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carruth69940402007-08-04 01:51:18 +00005416type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Nate Begeman7e36c472006-01-13 23:26:38 +00005417<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005418 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5419 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5420 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005421</pre>
5422
5423<h5>Overview:</h5>
5424
5425<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005426The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005427values with an even number of bytes (positive multiple of 16 bits). These are
5428useful for performing operations on data that is not in the target's native
5429byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005430</p>
5431
5432<h5>Semantics:</h5>
5433
5434<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005435The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005436and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5437intrinsic returns an i32 value that has the four bytes of the input i32
5438swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005439i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5440<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005441additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005442</p>
5443
5444</div>
5445
5446<!-- _______________________________________________________________________ -->
5447<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005448 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005449</div>
5450
5451<div class="doc_text">
5452
5453<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005454<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5455width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005456<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005457 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5458 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005459 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005460 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5461 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005462</pre>
5463
5464<h5>Overview:</h5>
5465
5466<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005467The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5468value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005469</p>
5470
5471<h5>Arguments:</h5>
5472
5473<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005474The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005475integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005476</p>
5477
5478<h5>Semantics:</h5>
5479
5480<p>
5481The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5482</p>
5483</div>
5484
5485<!-- _______________________________________________________________________ -->
5486<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005487 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005488</div>
5489
5490<div class="doc_text">
5491
5492<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005493<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5494integer bit width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005495<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005496 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5497 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005498 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005499 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5500 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005501</pre>
5502
5503<h5>Overview:</h5>
5504
5505<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005506The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5507leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005508</p>
5509
5510<h5>Arguments:</h5>
5511
5512<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005513The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005514integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005515</p>
5516
5517<h5>Semantics:</h5>
5518
5519<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005520The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5521in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005522of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005523</p>
5524</div>
Chris Lattner32006282004-06-11 02:28:03 +00005525
5526
Chris Lattnereff29ab2005-05-15 19:39:26 +00005527
5528<!-- _______________________________________________________________________ -->
5529<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005530 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005531</div>
5532
5533<div class="doc_text">
5534
5535<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005536<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5537integer bit width. Not all targets support all bit widths however.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005538<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005539 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5540 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005541 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005542 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5543 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005544</pre>
5545
5546<h5>Overview:</h5>
5547
5548<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005549The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5550trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005551</p>
5552
5553<h5>Arguments:</h5>
5554
5555<p>
5556The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005557integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005558</p>
5559
5560<h5>Semantics:</h5>
5561
5562<p>
5563The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5564in a variable. If the src == 0 then the result is the size in bits of the type
5565of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5566</p>
5567</div>
5568
Reid Spencer497d93e2007-04-01 08:27:01 +00005569<!-- _______________________________________________________________________ -->
5570<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005571 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005572</div>
5573
5574<div class="doc_text">
5575
5576<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005577<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005578on any integer bit width.
5579<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005580 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5581 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005582</pre>
5583
5584<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005585<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005586range of bits from an integer value and returns them in the same bit width as
5587the original value.</p>
5588
5589<h5>Arguments:</h5>
5590<p>The first argument, <tt>%val</tt> and the result may be integer types of
5591any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005592arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005593
5594<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005595<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005596of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5597<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5598operates in forward mode.</p>
5599<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5600right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005601only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5602<ol>
5603 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5604 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5605 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5606 to determine the number of bits to retain.</li>
5607 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5608 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5609</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005610<p>In reverse mode, a similar computation is made except that the bits are
5611returned in the reverse order. So, for example, if <tt>X</tt> has the value
5612<tt>i16 0x0ACF (101011001111)</tt> and we apply
5613<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5614<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005615</div>
5616
Reid Spencerf86037f2007-04-11 23:23:49 +00005617<div class="doc_subsubsection">
5618 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5619</div>
5620
5621<div class="doc_text">
5622
5623<h5>Syntax:</h5>
5624<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5625on any integer bit width.
5626<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005627 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5628 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005629</pre>
5630
5631<h5>Overview:</h5>
5632<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5633of bits in an integer value with another integer value. It returns the integer
5634with the replaced bits.</p>
5635
5636<h5>Arguments:</h5>
5637<p>The first argument, <tt>%val</tt> and the result may be integer types of
5638any bit width but they must have the same bit width. <tt>%val</tt> is the value
5639whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5640integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5641type since they specify only a bit index.</p>
5642
5643<h5>Semantics:</h5>
5644<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5645of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5646<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5647operates in forward mode.</p>
5648<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5649truncating it down to the size of the replacement area or zero extending it
5650up to that size.</p>
5651<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5652are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5653in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5654to the <tt>%hi</tt>th bit.
Reid Spencerc6749c42007-05-14 16:50:20 +00005655<p>In reverse mode, a similar computation is made except that the bits are
5656reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5657<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
Reid Spencerf86037f2007-04-11 23:23:49 +00005658<h5>Examples:</h5>
5659<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005660 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005661 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5662 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5663 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005664 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005665</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00005666</div>
5667
Chris Lattner8ff75902004-01-06 05:31:32 +00005668<!-- ======================================================================= -->
5669<div class="doc_subsection">
5670 <a name="int_debugger">Debugger Intrinsics</a>
5671</div>
5672
5673<div class="doc_text">
5674<p>
5675The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5676are described in the <a
5677href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5678Debugging</a> document.
5679</p>
5680</div>
5681
5682
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005683<!-- ======================================================================= -->
5684<div class="doc_subsection">
5685 <a name="int_eh">Exception Handling Intrinsics</a>
5686</div>
5687
5688<div class="doc_text">
5689<p> The LLVM exception handling intrinsics (which all start with
5690<tt>llvm.eh.</tt> prefix), are described in the <a
5691href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5692Handling</a> document. </p>
5693</div>
5694
Tanya Lattner6d806e92007-06-15 20:50:54 +00005695<!-- ======================================================================= -->
5696<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005697 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005698</div>
5699
5700<div class="doc_text">
5701<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005702 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005703 the <tt>nest</tt> attribute, from a function. The result is a callable
5704 function pointer lacking the nest parameter - the caller does not need
5705 to provide a value for it. Instead, the value to use is stored in
5706 advance in a "trampoline", a block of memory usually allocated
5707 on the stack, which also contains code to splice the nest value into the
5708 argument list. This is used to implement the GCC nested function address
5709 extension.
5710</p>
5711<p>
5712 For example, if the function is
5713 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00005714 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005715<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005716 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5717 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5718 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5719 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005720</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00005721 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5722 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005723</div>
5724
5725<!-- _______________________________________________________________________ -->
5726<div class="doc_subsubsection">
5727 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5728</div>
5729<div class="doc_text">
5730<h5>Syntax:</h5>
5731<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005732declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005733</pre>
5734<h5>Overview:</h5>
5735<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005736 This fills the memory pointed to by <tt>tramp</tt> with code
5737 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005738</p>
5739<h5>Arguments:</h5>
5740<p>
5741 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5742 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5743 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005744 intrinsic. Note that the size and the alignment are target-specific - LLVM
5745 currently provides no portable way of determining them, so a front-end that
5746 generates this intrinsic needs to have some target-specific knowledge.
5747 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005748</p>
5749<h5>Semantics:</h5>
5750<p>
5751 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005752 dependent code, turning it into a function. A pointer to this function is
5753 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005754 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005755 before being called. The new function's signature is the same as that of
5756 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5757 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5758 of pointer type. Calling the new function is equivalent to calling
5759 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5760 missing <tt>nest</tt> argument. If, after calling
5761 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5762 modified, then the effect of any later call to the returned function pointer is
5763 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005764</p>
5765</div>
5766
5767<!-- ======================================================================= -->
5768<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005769 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5770</div>
5771
5772<div class="doc_text">
5773<p>
5774 These intrinsic functions expand the "universal IR" of LLVM to represent
5775 hardware constructs for atomic operations and memory synchronization. This
5776 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00005777 is aimed at a low enough level to allow any programming models or APIs
5778 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005779 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5780 hardware behavior. Just as hardware provides a "universal IR" for source
5781 languages, it also provides a starting point for developing a "universal"
5782 atomic operation and synchronization IR.
5783</p>
5784<p>
5785 These do <em>not</em> form an API such as high-level threading libraries,
5786 software transaction memory systems, atomic primitives, and intrinsic
5787 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5788 application libraries. The hardware interface provided by LLVM should allow
5789 a clean implementation of all of these APIs and parallel programming models.
5790 No one model or paradigm should be selected above others unless the hardware
5791 itself ubiquitously does so.
5792
5793</p>
5794</div>
5795
5796<!-- _______________________________________________________________________ -->
5797<div class="doc_subsubsection">
5798 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5799</div>
5800<div class="doc_text">
5801<h5>Syntax:</h5>
5802<pre>
5803declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5804i1 &lt;device&gt; )
5805
5806</pre>
5807<h5>Overview:</h5>
5808<p>
5809 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5810 specific pairs of memory access types.
5811</p>
5812<h5>Arguments:</h5>
5813<p>
5814 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5815 The first four arguments enables a specific barrier as listed below. The fith
5816 argument specifies that the barrier applies to io or device or uncached memory.
5817
5818</p>
5819 <ul>
5820 <li><tt>ll</tt>: load-load barrier</li>
5821 <li><tt>ls</tt>: load-store barrier</li>
5822 <li><tt>sl</tt>: store-load barrier</li>
5823 <li><tt>ss</tt>: store-store barrier</li>
5824 <li><tt>device</tt>: barrier applies to device and uncached memory also.
5825 </ul>
5826<h5>Semantics:</h5>
5827<p>
5828 This intrinsic causes the system to enforce some ordering constraints upon
5829 the loads and stores of the program. This barrier does not indicate
5830 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5831 which they occur. For any of the specified pairs of load and store operations
5832 (f.ex. load-load, or store-load), all of the first operations preceding the
5833 barrier will complete before any of the second operations succeeding the
5834 barrier begin. Specifically the semantics for each pairing is as follows:
5835</p>
5836 <ul>
5837 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5838 after the barrier begins.</li>
5839
5840 <li><tt>ls</tt>: All loads before the barrier must complete before any
5841 store after the barrier begins.</li>
5842 <li><tt>ss</tt>: All stores before the barrier must complete before any
5843 store after the barrier begins.</li>
5844 <li><tt>sl</tt>: All stores before the barrier must complete before any
5845 load after the barrier begins.</li>
5846 </ul>
5847<p>
5848 These semantics are applied with a logical "and" behavior when more than one
5849 is enabled in a single memory barrier intrinsic.
5850</p>
5851<p>
5852 Backends may implement stronger barriers than those requested when they do not
5853 support as fine grained a barrier as requested. Some architectures do not
5854 need all types of barriers and on such architectures, these become noops.
5855</p>
5856<h5>Example:</h5>
5857<pre>
5858%ptr = malloc i32
5859 store i32 4, %ptr
5860
5861%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5862 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5863 <i>; guarantee the above finishes</i>
5864 store i32 8, %ptr <i>; before this begins</i>
5865</pre>
5866</div>
5867
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005868<!-- _______________________________________________________________________ -->
5869<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00005870 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005871</div>
5872<div class="doc_text">
5873<h5>Syntax:</h5>
5874<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00005875 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5876 any integer bit width and for different address spaces. Not all targets
5877 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005878
5879<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005880declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5881declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5882declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5883declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005884
5885</pre>
5886<h5>Overview:</h5>
5887<p>
5888 This loads a value in memory and compares it to a given value. If they are
5889 equal, it stores a new value into the memory.
5890</p>
5891<h5>Arguments:</h5>
5892<p>
Mon P Wang28873102008-06-25 08:15:39 +00005893 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005894 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5895 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5896 this integer type. While any bit width integer may be used, targets may only
5897 lower representations they support in hardware.
5898
5899</p>
5900<h5>Semantics:</h5>
5901<p>
5902 This entire intrinsic must be executed atomically. It first loads the value
5903 in memory pointed to by <tt>ptr</tt> and compares it with the value
5904 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5905 loaded value is yielded in all cases. This provides the equivalent of an
5906 atomic compare-and-swap operation within the SSA framework.
5907</p>
5908<h5>Examples:</h5>
5909
5910<pre>
5911%ptr = malloc i32
5912 store i32 4, %ptr
5913
5914%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00005915%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005916 <i>; yields {i32}:result1 = 4</i>
5917%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5918%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5919
5920%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00005921%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005922 <i>; yields {i32}:result2 = 8</i>
5923%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5924
5925%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5926</pre>
5927</div>
5928
5929<!-- _______________________________________________________________________ -->
5930<div class="doc_subsubsection">
5931 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5932</div>
5933<div class="doc_text">
5934<h5>Syntax:</h5>
5935
5936<p>
5937 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5938 integer bit width. Not all targets support all bit widths however.</p>
5939<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005940declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5941declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5942declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5943declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005944
5945</pre>
5946<h5>Overview:</h5>
5947<p>
5948 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5949 the value from memory. It then stores the value in <tt>val</tt> in the memory
5950 at <tt>ptr</tt>.
5951</p>
5952<h5>Arguments:</h5>
5953
5954<p>
Mon P Wang28873102008-06-25 08:15:39 +00005955 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005956 <tt>val</tt> argument and the result must be integers of the same bit width.
5957 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5958 integer type. The targets may only lower integer representations they
5959 support.
5960</p>
5961<h5>Semantics:</h5>
5962<p>
5963 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5964 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5965 equivalent of an atomic swap operation within the SSA framework.
5966
5967</p>
5968<h5>Examples:</h5>
5969<pre>
5970%ptr = malloc i32
5971 store i32 4, %ptr
5972
5973%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00005974%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005975 <i>; yields {i32}:result1 = 4</i>
5976%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5977%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5978
5979%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00005980%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005981 <i>; yields {i32}:result2 = 8</i>
5982
5983%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
5984%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
5985</pre>
5986</div>
5987
5988<!-- _______________________________________________________________________ -->
5989<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00005990 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005991
5992</div>
5993<div class="doc_text">
5994<h5>Syntax:</h5>
5995<p>
Mon P Wang28873102008-06-25 08:15:39 +00005996 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005997 integer bit width. Not all targets support all bit widths however.</p>
5998<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005999declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6000declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6001declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6002declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006003
6004</pre>
6005<h5>Overview:</h5>
6006<p>
6007 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6008 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6009</p>
6010<h5>Arguments:</h5>
6011<p>
6012
6013 The intrinsic takes two arguments, the first a pointer to an integer value
6014 and the second an integer value. The result is also an integer value. These
6015 integer types can have any bit width, but they must all have the same bit
6016 width. The targets may only lower integer representations they support.
6017</p>
6018<h5>Semantics:</h5>
6019<p>
6020 This intrinsic does a series of operations atomically. It first loads the
6021 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6022 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6023</p>
6024
6025<h5>Examples:</h5>
6026<pre>
6027%ptr = malloc i32
6028 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006029%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006030 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006031%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006032 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006033%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006034 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006035%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006036</pre>
6037</div>
6038
Mon P Wang28873102008-06-25 08:15:39 +00006039<!-- _______________________________________________________________________ -->
6040<div class="doc_subsubsection">
6041 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6042
6043</div>
6044<div class="doc_text">
6045<h5>Syntax:</h5>
6046<p>
6047 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006048 any integer bit width and for different address spaces. Not all targets
6049 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006050<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006051declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6052declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6053declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6054declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006055
6056</pre>
6057<h5>Overview:</h5>
6058<p>
6059 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6060 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6061</p>
6062<h5>Arguments:</h5>
6063<p>
6064
6065 The intrinsic takes two arguments, the first a pointer to an integer value
6066 and the second an integer value. The result is also an integer value. These
6067 integer types can have any bit width, but they must all have the same bit
6068 width. The targets may only lower integer representations they support.
6069</p>
6070<h5>Semantics:</h5>
6071<p>
6072 This intrinsic does a series of operations atomically. It first loads the
6073 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6074 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6075</p>
6076
6077<h5>Examples:</h5>
6078<pre>
6079%ptr = malloc i32
6080 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006081%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006082 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006083%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006084 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006085%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006086 <i>; yields {i32}:result3 = 2</i>
6087%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6088</pre>
6089</div>
6090
6091<!-- _______________________________________________________________________ -->
6092<div class="doc_subsubsection">
6093 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6094 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6095 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6096 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6097
6098</div>
6099<div class="doc_text">
6100<h5>Syntax:</h5>
6101<p>
6102 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6103 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006104 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6105 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006106<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006107declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6108declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6109declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6110declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006111
6112</pre>
6113
6114<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006115declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6116declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6117declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6118declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006119
6120</pre>
6121
6122<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006123declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6124declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6125declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6126declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006127
6128</pre>
6129
6130<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006131declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6132declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6133declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6134declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006135
6136</pre>
6137<h5>Overview:</h5>
6138<p>
6139 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6140 the value stored in memory at <tt>ptr</tt>. It yields the original value
6141 at <tt>ptr</tt>.
6142</p>
6143<h5>Arguments:</h5>
6144<p>
6145
6146 These intrinsics take two arguments, the first a pointer to an integer value
6147 and the second an integer value. The result is also an integer value. These
6148 integer types can have any bit width, but they must all have the same bit
6149 width. The targets may only lower integer representations they support.
6150</p>
6151<h5>Semantics:</h5>
6152<p>
6153 These intrinsics does a series of operations atomically. They first load the
6154 value stored at <tt>ptr</tt>. They then do the bitwise operation
6155 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6156 value stored at <tt>ptr</tt>.
6157</p>
6158
6159<h5>Examples:</h5>
6160<pre>
6161%ptr = malloc i32
6162 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006163%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006164 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006165%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006166 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006167%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006168 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006169%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006170 <i>; yields {i32}:result3 = FF</i>
6171%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6172</pre>
6173</div>
6174
6175
6176<!-- _______________________________________________________________________ -->
6177<div class="doc_subsubsection">
6178 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6179 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6180 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6181 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6182
6183</div>
6184<div class="doc_text">
6185<h5>Syntax:</h5>
6186<p>
6187 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6188 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006189 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6190 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006191 support all bit widths however.</p>
6192<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006193declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6194declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6195declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6196declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006197
6198</pre>
6199
6200<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006201declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6202declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6203declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6204declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006205
6206</pre>
6207
6208<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006209declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6210declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6211declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6212declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006213
6214</pre>
6215
6216<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006217declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6218declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6219declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6220declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006221
6222</pre>
6223<h5>Overview:</h5>
6224<p>
6225 These intrinsics takes the signed or unsigned minimum or maximum of
6226 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6227 original value at <tt>ptr</tt>.
6228</p>
6229<h5>Arguments:</h5>
6230<p>
6231
6232 These intrinsics take two arguments, the first a pointer to an integer value
6233 and the second an integer value. The result is also an integer value. These
6234 integer types can have any bit width, but they must all have the same bit
6235 width. The targets may only lower integer representations they support.
6236</p>
6237<h5>Semantics:</h5>
6238<p>
6239 These intrinsics does a series of operations atomically. They first load the
6240 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6241 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6242 the original value stored at <tt>ptr</tt>.
6243</p>
6244
6245<h5>Examples:</h5>
6246<pre>
6247%ptr = malloc i32
6248 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006249%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006250 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006251%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006252 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006253%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006254 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006255%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006256 <i>; yields {i32}:result3 = 8</i>
6257%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6258</pre>
6259</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006260
6261<!-- ======================================================================= -->
6262<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006263 <a name="int_general">General Intrinsics</a>
6264</div>
6265
6266<div class="doc_text">
6267<p> This class of intrinsics is designed to be generic and has
6268no specific purpose. </p>
6269</div>
6270
6271<!-- _______________________________________________________________________ -->
6272<div class="doc_subsubsection">
6273 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6274</div>
6275
6276<div class="doc_text">
6277
6278<h5>Syntax:</h5>
6279<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006280 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006281</pre>
6282
6283<h5>Overview:</h5>
6284
6285<p>
6286The '<tt>llvm.var.annotation</tt>' intrinsic
6287</p>
6288
6289<h5>Arguments:</h5>
6290
6291<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006292The first argument is a pointer to a value, the second is a pointer to a
6293global string, the third is a pointer to a global string which is the source
6294file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006295</p>
6296
6297<h5>Semantics:</h5>
6298
6299<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006300This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006301This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006302annotations. These have no other defined use, they are ignored by code
6303generation and optimization.
6304</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006305</div>
6306
Tanya Lattnerb6367882007-09-21 22:59:12 +00006307<!-- _______________________________________________________________________ -->
6308<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006309 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006310</div>
6311
6312<div class="doc_text">
6313
6314<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006315<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6316any integer bit width.
6317</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006318<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006319 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6320 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6321 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6322 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6323 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006324</pre>
6325
6326<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006327
6328<p>
6329The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006330</p>
6331
6332<h5>Arguments:</h5>
6333
6334<p>
6335The first argument is an integer value (result of some expression),
6336the second is a pointer to a global string, the third is a pointer to a global
6337string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006338It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006339</p>
6340
6341<h5>Semantics:</h5>
6342
6343<p>
6344This intrinsic allows annotations to be put on arbitrary expressions
6345with arbitrary strings. This can be useful for special purpose optimizations
6346that want to look for these annotations. These have no other defined use, they
6347are ignored by code generation and optimization.
6348</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006349
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006350<!-- _______________________________________________________________________ -->
6351<div class="doc_subsubsection">
6352 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6353</div>
6354
6355<div class="doc_text">
6356
6357<h5>Syntax:</h5>
6358<pre>
6359 declare void @llvm.trap()
6360</pre>
6361
6362<h5>Overview:</h5>
6363
6364<p>
6365The '<tt>llvm.trap</tt>' intrinsic
6366</p>
6367
6368<h5>Arguments:</h5>
6369
6370<p>
6371None
6372</p>
6373
6374<h5>Semantics:</h5>
6375
6376<p>
6377This intrinsics is lowered to the target dependent trap instruction. If the
6378target does not have a trap instruction, this intrinsic will be lowered to the
6379call of the abort() function.
6380</p>
6381</div>
6382
Chris Lattner00950542001-06-06 20:29:01 +00006383<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00006384<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006385<address>
6386 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6387 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6388 <a href="http://validator.w3.org/check/referer"><img
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006389 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006390
6391 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00006392 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006393 Last modified: $Date$
6394</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006395
Misha Brukman9d0919f2003-11-08 01:05:38 +00006396</body>
6397</html>