blob: fd4c44f99e0eb2874c24027eed1e7ddae1e727b8 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Chris Lattner44827152003-12-28 09:47:19 +000021#include "llvm/IntrinsicLowering.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000022#include "llvm/Pass.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000025#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000026#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000027#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000028#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000029#include "llvm/Target/TargetMachine.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000030#include "llvm/Support/InstVisitor.h"
Chris Lattnercf93cdd2004-01-30 22:13:44 +000031#include "llvm/Support/CFG.h"
Chris Lattner44827152003-12-28 09:47:19 +000032using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000033
Chris Lattnercf93cdd2004-01-30 22:13:44 +000034//#define SMART_FP 1
35
Chris Lattner333b2fa2002-12-13 10:09:43 +000036/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000037/// instruction at as well as a basic block. This is the version for when you
38/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000039inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000040 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000041 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000042 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000043 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000044 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000045 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000046 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
47}
48
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000049/// BMI - A special BuildMI variant that takes an iterator to insert the
50/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000051inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000052 MachineBasicBlock::iterator &I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000053 int Opcode, unsigned NumOperands) {
Chris Lattner8bdd1292003-04-25 21:58:54 +000054 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000055 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000056 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000057 return MachineInstrBuilder(MI);
58}
59
Chris Lattner333b2fa2002-12-13 10:09:43 +000060
Chris Lattner72614082002-10-25 22:55:53 +000061namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000062 struct ISel : public FunctionPass, InstVisitor<ISel> {
63 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000064 MachineFunction *F; // The function we are compiling into
65 MachineBasicBlock *BB; // The current MBB we are compiling
66 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner72614082002-10-25 22:55:53 +000067
Chris Lattner72614082002-10-25 22:55:53 +000068 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
69
Chris Lattner333b2fa2002-12-13 10:09:43 +000070 // MBBMap - Mapping between LLVM BB -> Machine BB
71 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
72
Chris Lattnerf70e0c22003-12-28 21:23:38 +000073 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000074
75 /// runOnFunction - Top level implementation of instruction selection for
76 /// the entire function.
77 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000078 bool runOnFunction(Function &Fn) {
Chris Lattner44827152003-12-28 09:47:19 +000079 // First pass over the function, lower any unknown intrinsic functions
80 // with the IntrinsicLowering class.
81 LowerUnknownIntrinsicFunctionCalls(Fn);
82
Chris Lattner36b36032002-10-29 23:40:58 +000083 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000084
Chris Lattner065faeb2002-12-28 20:24:02 +000085 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
87 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
88
Chris Lattner14aa7fe2002-12-16 22:54:46 +000089 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000090
Chris Lattnerdbd73722003-05-06 21:32:22 +000091 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000092 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000093
Chris Lattner333b2fa2002-12-13 10:09:43 +000094 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000095 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000096
97 // Select the PHI nodes
98 SelectPHINodes();
99
Chris Lattner72614082002-10-25 22:55:53 +0000100 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000101 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000102 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +0000103 // We always build a machine code representation for the function
104 return true;
Chris Lattner72614082002-10-25 22:55:53 +0000105 }
106
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000107 virtual const char *getPassName() const {
108 return "X86 Simple Instruction Selection";
109 }
110
Chris Lattner72614082002-10-25 22:55:53 +0000111 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000112 /// block. This simply creates a new MachineBasicBlock to emit code into
113 /// and adds it to the current MachineFunction. Subsequent visit* for
114 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000115 ///
116 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000117 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000118 }
119
Chris Lattner44827152003-12-28 09:47:19 +0000120 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
121 /// function, lowering any calls to unknown intrinsic functions into the
122 /// equivalent LLVM code.
123 void LowerUnknownIntrinsicFunctionCalls(Function &F);
124
Chris Lattner065faeb2002-12-28 20:24:02 +0000125 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
126 /// from the stack into virtual registers.
127 ///
128 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000129
130 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
131 /// because we have to generate our sources into the source basic blocks,
132 /// not the current one.
133 ///
134 void SelectPHINodes();
135
Chris Lattner72614082002-10-25 22:55:53 +0000136 // Visitation methods for various instructions. These methods simply emit
137 // fixed X86 code for each instruction.
138 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000139
140 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000141 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000142 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000143
144 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000145 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000146 unsigned Reg;
147 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000148 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
149 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000150 };
151 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000152 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000153 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000154 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000155
156 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000157 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000158 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
159 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000160 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000161 unsigned DestReg, const Type *DestTy,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000162 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000163 void doMultiplyConst(MachineBasicBlock *MBB,
164 MachineBasicBlock::iterator &MBBI,
165 unsigned DestReg, const Type *DestTy,
166 unsigned Op0Reg, unsigned Op1Val);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000167 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000168
Chris Lattnerf01729e2002-11-02 20:54:46 +0000169 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
170 void visitRem(BinaryOperator &B) { visitDivRem(B); }
171 void visitDivRem(BinaryOperator &B);
172
Chris Lattnere2954c82002-11-02 20:04:26 +0000173 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000174 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
175 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
176 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000177
Chris Lattner6d40c192003-01-16 16:43:00 +0000178 // Comparison operators...
179 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000180 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
181 MachineBasicBlock *MBB,
182 MachineBasicBlock::iterator &MBBI);
183
Chris Lattner6fc3c522002-11-17 21:11:55 +0000184 // Memory Instructions
185 void visitLoadInst(LoadInst &I);
186 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000187 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000188 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000189 void visitMallocInst(MallocInst &I);
190 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000191
Chris Lattnere2954c82002-11-02 20:04:26 +0000192 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000193 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000194 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000195 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000196 void visitVANextInst(VANextInst &I);
197 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000198
199 void visitInstruction(Instruction &I) {
200 std::cerr << "Cannot instruction select: " << I;
201 abort();
202 }
203
Brian Gaeke95780cc2002-12-13 07:56:18 +0000204 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000205 ///
206 void promote32(unsigned targetReg, const ValueRecord &VR);
207
Chris Lattner3e130a22003-01-13 00:32:26 +0000208 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
209 /// constant expression GEP support.
210 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000211 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000212 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000213 User::op_iterator IdxEnd, unsigned TargetReg);
214
Chris Lattner548f61d2003-04-23 17:22:12 +0000215 /// emitCastOperation - Common code shared between visitCastInst and
216 /// constant expression cast support.
217 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
218 Value *Src, const Type *DestTy, unsigned TargetReg);
219
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000220 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
221 /// and constant expression support.
222 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
223 MachineBasicBlock::iterator &IP,
224 Value *Op0, Value *Op1,
225 unsigned OperatorClass, unsigned TargetReg);
226
Chris Lattnercadff442003-10-23 17:21:43 +0000227 void emitDivRemOperation(MachineBasicBlock *BB,
228 MachineBasicBlock::iterator &IP,
229 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
230 const Type *Ty, unsigned TargetReg);
231
Chris Lattner58c41fe2003-08-24 19:19:47 +0000232 /// emitSetCCOperation - Common code shared between visitSetCondInst and
233 /// constant expression support.
234 void emitSetCCOperation(MachineBasicBlock *BB,
235 MachineBasicBlock::iterator &IP,
236 Value *Op0, Value *Op1, unsigned Opcode,
237 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000238
239 /// emitShiftOperation - Common code shared between visitShiftInst and
240 /// constant expression support.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000241 void emitShiftOperation(MachineBasicBlock *MBB,
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000242 MachineBasicBlock::iterator &IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000243 Value *Op, Value *ShiftAmount, bool isLeftShift,
244 const Type *ResultTy, unsigned DestReg);
245
Chris Lattner58c41fe2003-08-24 19:19:47 +0000246
Chris Lattnerc5291f52002-10-27 21:16:59 +0000247 /// copyConstantToRegister - Output the instructions required to put the
248 /// specified constant into the specified register.
249 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000250 void copyConstantToRegister(MachineBasicBlock *MBB,
251 MachineBasicBlock::iterator &MBBI,
252 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000253
Chris Lattner3e130a22003-01-13 00:32:26 +0000254 /// makeAnotherReg - This method returns the next register number we haven't
255 /// yet used.
256 ///
257 /// Long values are handled somewhat specially. They are always allocated
258 /// as pairs of 32 bit integer values. The register number returned is the
259 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
260 /// of the long value.
261 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000262 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000263 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
264 "Current target doesn't have X86 reg info??");
265 const X86RegisterInfo *MRI =
266 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000267 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000268 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
269 // Create the lower part
270 F->getSSARegMap()->createVirtualRegister(RC);
271 // Create the upper part.
272 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000273 }
274
Chris Lattnerc0812d82002-12-13 06:56:29 +0000275 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000276 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000277 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000278 }
279
Chris Lattner72614082002-10-25 22:55:53 +0000280 /// getReg - This method turns an LLVM value into a register number. This
281 /// is guaranteed to produce the same register number for a particular value
282 /// every time it is queried.
283 ///
284 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000285 unsigned getReg(Value *V) {
286 // Just append to the end of the current bb.
287 MachineBasicBlock::iterator It = BB->end();
288 return getReg(V, BB, It);
289 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000290 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000291 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000292 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000293 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000294 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000295 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000296 }
Chris Lattner72614082002-10-25 22:55:53 +0000297
Chris Lattner6f8fd252002-10-27 21:23:43 +0000298 // If this operand is a constant, emit the code to copy the constant into
299 // the register here...
300 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000301 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000302 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000303 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000304 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
305 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000306 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000307 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000308 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000309
Chris Lattner72614082002-10-25 22:55:53 +0000310 return Reg;
311 }
Chris Lattner72614082002-10-25 22:55:53 +0000312 };
313}
314
Chris Lattner43189d12002-11-17 20:07:45 +0000315/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
316/// Representation.
317///
318enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000319 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000320};
321
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000322/// getClass - Turn a primitive type into a "class" number which is based on the
323/// size of the type, and whether or not it is floating point.
324///
Chris Lattner43189d12002-11-17 20:07:45 +0000325static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000326 switch (Ty->getPrimitiveID()) {
327 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000328 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000329 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000330 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000331 case Type::IntTyID:
332 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000333 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000334
Chris Lattner94af4142002-12-25 05:13:53 +0000335 case Type::FloatTyID:
336 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000337
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000338 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000339 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000340 default:
341 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000342 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000343 }
344}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000345
Chris Lattner6b993cc2002-12-15 08:02:15 +0000346// getClassB - Just like getClass, but treat boolean values as bytes.
347static inline TypeClass getClassB(const Type *Ty) {
348 if (Ty == Type::BoolTy) return cByte;
349 return getClass(Ty);
350}
351
Chris Lattner06925362002-11-17 21:56:38 +0000352
Chris Lattnerc5291f52002-10-27 21:16:59 +0000353/// copyConstantToRegister - Output the instructions required to put the
354/// specified constant into the specified register.
355///
Chris Lattner8a307e82002-12-16 19:32:50 +0000356void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
357 MachineBasicBlock::iterator &IP,
358 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000359 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000360 unsigned Class = 0;
361 switch (CE->getOpcode()) {
362 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000363 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000364 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000365 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000366 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000367 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000368 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000369
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000370 case Instruction::Xor: ++Class; // FALL THROUGH
371 case Instruction::Or: ++Class; // FALL THROUGH
372 case Instruction::And: ++Class; // FALL THROUGH
373 case Instruction::Sub: ++Class; // FALL THROUGH
374 case Instruction::Add:
375 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
376 Class, R);
377 return;
378
Chris Lattnercadff442003-10-23 17:21:43 +0000379 case Instruction::Mul: {
380 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
381 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
382 doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg);
383 return;
384 }
385 case Instruction::Div:
386 case Instruction::Rem: {
387 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
388 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
389 emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg,
390 CE->getOpcode() == Instruction::Div,
391 CE->getType(), R);
392 return;
393 }
394
Chris Lattner58c41fe2003-08-24 19:19:47 +0000395 case Instruction::SetNE:
396 case Instruction::SetEQ:
397 case Instruction::SetLT:
398 case Instruction::SetGT:
399 case Instruction::SetLE:
400 case Instruction::SetGE:
401 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
402 CE->getOpcode(), R);
403 return;
404
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000405 case Instruction::Shl:
406 case Instruction::Shr:
407 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000408 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
409 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000410
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000411 default:
412 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000413 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000414 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000415 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000416
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000417 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000418 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000419
420 if (Class == cLong) {
421 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000422 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Chris Lattner3e130a22003-01-13 00:32:26 +0000423 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
424 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
425 return;
426 }
427
Chris Lattner94af4142002-12-25 05:13:53 +0000428 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000429
430 static const unsigned IntegralOpcodeTab[] = {
431 X86::MOVir8, X86::MOVir16, X86::MOVir32
432 };
433
Chris Lattner6b993cc2002-12-15 08:02:15 +0000434 if (C->getType() == Type::BoolTy) {
435 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000436 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000437 ConstantInt *CI = cast<ConstantInt>(C);
438 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000439 }
Chris Lattner94af4142002-12-25 05:13:53 +0000440 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Chris Lattneraf703622004-02-02 18:56:30 +0000441 if (CFP->isExactlyValue(+0.0))
Chris Lattner94af4142002-12-25 05:13:53 +0000442 BMI(MBB, IP, X86::FLD0, 0, R);
Chris Lattneraf703622004-02-02 18:56:30 +0000443 else if (CFP->isExactlyValue(+1.0))
Chris Lattner94af4142002-12-25 05:13:53 +0000444 BMI(MBB, IP, X86::FLD1, 0, R);
445 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000446 // Otherwise we need to spill the constant to memory...
447 MachineConstantPool *CP = F->getConstantPool();
448 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000449 const Type *Ty = CFP->getType();
450
451 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
452 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
453 addConstantPoolReference(BMI(MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000454 }
455
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000456 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000457 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000458 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000459 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000460 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000461 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000462 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000463 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000464 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000465 }
466}
467
Chris Lattner065faeb2002-12-28 20:24:02 +0000468/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
469/// the stack into virtual registers.
470///
471void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
472 // Emit instructions to load the arguments... On entry to a function on the
473 // X86, the stack frame looks like this:
474 //
475 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000476 // [ESP + 4] -- first argument (leftmost lexically)
477 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000478 // ...
479 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000480 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000481 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000482
483 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
484 unsigned Reg = getReg(*I);
485
Chris Lattner065faeb2002-12-28 20:24:02 +0000486 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000487 switch (getClassB(I->getType())) {
488 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000489 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000490 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
491 break;
492 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000493 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000494 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
495 break;
496 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000497 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000498 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
499 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000500 case cLong:
501 FI = MFI->CreateFixedObject(8, ArgOffset);
502 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
503 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
504 ArgOffset += 4; // longs require 4 additional bytes
505 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000506 case cFP:
507 unsigned Opcode;
508 if (I->getType() == Type::FloatTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000509 Opcode = X86::FLDr32;
510 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000511 } else {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000512 Opcode = X86::FLDr64;
513 FI = MFI->CreateFixedObject(8, ArgOffset);
514 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000515 }
516 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
517 break;
518 default:
519 assert(0 && "Unhandled argument type!");
520 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000521 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000522 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000523
524 // If the function takes variable number of arguments, add a frame offset for
525 // the start of the first vararg value... this is used to expand
526 // llvm.va_start.
527 if (Fn.getFunctionType()->isVarArg())
528 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000529}
530
531
Chris Lattner333b2fa2002-12-13 10:09:43 +0000532/// SelectPHINodes - Insert machine code to generate phis. This is tricky
533/// because we have to generate our sources into the source basic blocks, not
534/// the current one.
535///
536void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000537 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000538 const Function &LF = *F->getFunction(); // The LLVM function...
539 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
540 const BasicBlock *BB = I;
541 MachineBasicBlock *MBB = MBBMap[I];
542
543 // Loop over all of the PHI nodes in the LLVM basic block...
544 unsigned NumPHIs = 0;
545 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattnera81fc682003-10-19 00:26:11 +0000546 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000547
Chris Lattner333b2fa2002-12-13 10:09:43 +0000548 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000549 unsigned PHIReg = getReg(*PN);
550 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
551 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
552
553 MachineInstr *LongPhiMI = 0;
554 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000555 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
556 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000557 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000558
Chris Lattnera6e73f12003-05-12 14:22:21 +0000559 // PHIValues - Map of blocks to incoming virtual registers. We use this
560 // so that we only initialize one incoming value for a particular block,
561 // even if the block has multiple entries in the PHI node.
562 //
563 std::map<MachineBasicBlock*, unsigned> PHIValues;
564
Chris Lattner333b2fa2002-12-13 10:09:43 +0000565 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
566 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000567 unsigned ValReg;
568 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
569 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000570
Chris Lattnera6e73f12003-05-12 14:22:21 +0000571 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
572 // We already inserted an initialization of the register for this
573 // predecessor. Recycle it.
574 ValReg = EntryIt->second;
575
576 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000577 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000578 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000579 Value *Val = PN->getIncomingValue(i);
580
581 // If this is a constant or GlobalValue, we may have to insert code
582 // into the basic block to compute it into a virtual register.
583 if (isa<Constant>(Val) || isa<GlobalValue>(Val)) {
584 // Because we don't want to clobber any values which might be in
585 // physical registers with the computation of this constant (which
586 // might be arbitrarily complex if it is a constant expression),
587 // just insert the computation at the top of the basic block.
588 MachineBasicBlock::iterator PI = PredMBB->begin();
589
590 // Skip over any PHI nodes though!
591 while (PI != PredMBB->end() && (*PI)->getOpcode() == X86::PHI)
592 ++PI;
593
594 ValReg = getReg(Val, PredMBB, PI);
595 } else {
596 ValReg = getReg(Val);
597 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000598
599 // Remember that we inserted a value for this PHI for this predecessor
600 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
601 }
602
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000603 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000604 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000605 if (LongPhiMI) {
606 LongPhiMI->addRegOperand(ValReg+1);
607 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
608 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000609 }
610 }
611 }
612}
613
Chris Lattner6d40c192003-01-16 16:43:00 +0000614// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
615// the conditional branch instruction which is the only user of the cc
616// instruction. This is the case if the conditional branch is the only user of
617// the setcc, and if the setcc is in the same basic block as the conditional
618// branch. We also don't handle long arguments below, so we reject them here as
619// well.
620//
621static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
622 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000623 if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) &&
Chris Lattner6d40c192003-01-16 16:43:00 +0000624 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
625 const Type *Ty = SCI->getOperand(0)->getType();
626 if (Ty != Type::LongTy && Ty != Type::ULongTy)
627 return SCI;
628 }
629 return 0;
630}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000631
Chris Lattner6d40c192003-01-16 16:43:00 +0000632// Return a fixed numbering for setcc instructions which does not depend on the
633// order of the opcodes.
634//
635static unsigned getSetCCNumber(unsigned Opcode) {
636 switch(Opcode) {
637 default: assert(0 && "Unknown setcc instruction!");
638 case Instruction::SetEQ: return 0;
639 case Instruction::SetNE: return 1;
640 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000641 case Instruction::SetGE: return 3;
642 case Instruction::SetGT: return 4;
643 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000644 }
645}
Chris Lattner06925362002-11-17 21:56:38 +0000646
Chris Lattner6d40c192003-01-16 16:43:00 +0000647// LLVM -> X86 signed X86 unsigned
648// ----- ---------- ------------
649// seteq -> sete sete
650// setne -> setne setne
651// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000652// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000653// setgt -> setg seta
654// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000655// ----
656// sets // Used by comparison with 0 optimization
657// setns
658static const unsigned SetCCOpcodeTab[2][8] = {
659 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
660 0, 0 },
661 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
662 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000663};
664
Chris Lattnerb2acc512003-10-19 21:09:10 +0000665// EmitComparison - This function emits a comparison of the two operands,
666// returning the extended setcc code to use.
667unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
668 MachineBasicBlock *MBB,
669 MachineBasicBlock::iterator &IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000670 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000671 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000672 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000673 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000674
675 // Special case handling of: cmp R, i
676 if (Class == cByte || Class == cShort || Class == cInt)
677 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000678 uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
679
Chris Lattner333864d2003-06-05 19:30:30 +0000680 // Mask off any upper bits of the constant, if there are any...
681 Op1v &= (1ULL << (8 << Class)) - 1;
682
Chris Lattnerb2acc512003-10-19 21:09:10 +0000683 // If this is a comparison against zero, emit more efficient code. We
684 // can't handle unsigned comparisons against zero unless they are == or
685 // !=. These should have been strength reduced already anyway.
686 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
687 static const unsigned TESTTab[] = {
688 X86::TESTrr8, X86::TESTrr16, X86::TESTrr32
689 };
690 BMI(MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
691
692 if (OpNum == 2) return 6; // Map jl -> js
693 if (OpNum == 3) return 7; // Map jg -> jns
694 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000695 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000696
697 static const unsigned CMPTab[] = {
698 X86::CMPri8, X86::CMPri16, X86::CMPri32
699 };
700
701 BMI(MBB, IP, CMPTab[Class], 2).addReg(Op0r).addZImm(Op1v);
702 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000703 }
704
Chris Lattner58c41fe2003-08-24 19:19:47 +0000705 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000706 switch (Class) {
707 default: assert(0 && "Unknown type class!");
708 // Emit: cmp <var1>, <var2> (do the comparison). We can
709 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
710 // 32-bit.
711 case cByte:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000712 BMI(MBB, IP, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000713 break;
714 case cShort:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000715 BMI(MBB, IP, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000716 break;
717 case cInt:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000718 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000719 break;
720 case cFP:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000721 BMI(MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
722 BMI(MBB, IP, X86::FNSTSWr8, 0);
723 BMI(MBB, IP, X86::SAHF, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000724 break;
725
726 case cLong:
727 if (OpNum < 2) { // seteq, setne
728 unsigned LoTmp = makeAnotherReg(Type::IntTy);
729 unsigned HiTmp = makeAnotherReg(Type::IntTy);
730 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000731 BMI(MBB, IP, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
732 BMI(MBB, IP, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
733 BMI(MBB, IP, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +0000734 break; // Allow the sete or setne to be generated from flags set by OR
735 } else {
736 // Emit a sequence of code which compares the high and low parts once
737 // each, then uses a conditional move to handle the overflow case. For
738 // example, a setlt for long would generate code like this:
739 //
740 // AL = lo(op1) < lo(op2) // Signedness depends on operands
741 // BL = hi(op1) < hi(op2) // Always unsigned comparison
742 // dest = hi(op1) == hi(op2) ? AL : BL;
743 //
744
Chris Lattner6d40c192003-01-16 16:43:00 +0000745 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000746 // classes! Until then, hardcode registers so that we can deal with their
747 // aliases (because we don't have conditional byte moves).
748 //
Chris Lattner58c41fe2003-08-24 19:19:47 +0000749 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
750 BMI(MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
751 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000752 BMI(MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000753 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
754 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
755 BMI(MBB, IP, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000756 // NOTE: visitSetCondInst knows that the value is dumped into the BL
757 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +0000758 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +0000759 }
760 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000761 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +0000762}
Chris Lattner3e130a22003-01-13 00:32:26 +0000763
Chris Lattner6d40c192003-01-16 16:43:00 +0000764
765/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
766/// register, then move it to wherever the result should be.
767///
768void ISel::visitSetCondInst(SetCondInst &I) {
769 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
770
Chris Lattner6d40c192003-01-16 16:43:00 +0000771 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000772 MachineBasicBlock::iterator MII = BB->end();
773 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
774 DestReg);
775}
Chris Lattner6d40c192003-01-16 16:43:00 +0000776
Chris Lattner58c41fe2003-08-24 19:19:47 +0000777/// emitSetCCOperation - Common code shared between visitSetCondInst and
778/// constant expression support.
779void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
780 MachineBasicBlock::iterator &IP,
781 Value *Op0, Value *Op1, unsigned Opcode,
782 unsigned TargetReg) {
783 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000784 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000785
Chris Lattnerb2acc512003-10-19 21:09:10 +0000786 const Type *CompTy = Op0->getType();
787 unsigned CompClass = getClassB(CompTy);
788 bool isSigned = CompTy->isSigned() && CompClass != cFP;
789
790 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000791 // Handle normal comparisons with a setcc instruction...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000792 BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +0000793 } else {
794 // Handle long comparisons by copying the value which is already in BL into
795 // the register we want...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000796 BMI(MBB, IP, X86::MOVrr8, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +0000797 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000798}
Chris Lattner51b49a92002-11-02 19:45:49 +0000799
Chris Lattner58c41fe2003-08-24 19:19:47 +0000800
801
802
Brian Gaekec2505982002-11-30 11:57:28 +0000803/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
804/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000805void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
806 bool isUnsigned = VR.Ty->isUnsigned();
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000807
808 // Make sure we have the register number for this value...
809 unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
810
Chris Lattner3e130a22003-01-13 00:32:26 +0000811 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000812 case cByte:
813 // Extend value into target register (8->32)
814 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000815 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000816 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000817 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000818 break;
819 case cShort:
820 // Extend value into target register (16->32)
821 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000822 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000823 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000824 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000825 break;
826 case cInt:
827 // Move value into target register (32->32)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000828 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000829 break;
830 default:
831 assert(0 && "Unpromotable operand class in promote32");
832 }
Brian Gaekec2505982002-11-30 11:57:28 +0000833}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000834
Chris Lattner72614082002-10-25 22:55:53 +0000835/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
836/// we have the following possibilities:
837///
838/// ret void: No return value, simply emit a 'ret' instruction
839/// ret sbyte, ubyte : Extend value into EAX and return
840/// ret short, ushort: Extend value into EAX and return
841/// ret int, uint : Move value into EAX and return
842/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000843/// ret long, ulong : Move value into EAX/EDX and return
844/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000845///
Chris Lattner3e130a22003-01-13 00:32:26 +0000846void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000847 if (I.getNumOperands() == 0) {
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000848#ifndef SMART_FP
Alkis Evlogimenos0ef76ca2003-12-21 16:47:43 +0000849 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000850#endif
Chris Lattner94af4142002-12-25 05:13:53 +0000851 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
852 return;
853 }
854
855 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000856 unsigned RetReg = getReg(RetVal);
857 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000858 case cByte: // integral return values: extend or move into EAX and return
859 case cShort:
860 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000861 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000862 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000863 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000864 break;
865 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000866 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000867 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000868 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000869 break;
870 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000871 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
872 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000873 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000874 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
875 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000876 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000877 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000878 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000879 }
Chris Lattner43189d12002-11-17 20:07:45 +0000880 // Emit a 'ret' instruction
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000881#ifndef SMART_FP
Alkis Evlogimenos0ef76ca2003-12-21 16:47:43 +0000882 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000883#endif
Chris Lattner94af4142002-12-25 05:13:53 +0000884 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000885}
886
Chris Lattner55f6fab2003-01-16 18:07:23 +0000887// getBlockAfter - Return the basic block which occurs lexically after the
888// specified one.
889static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
890 Function::iterator I = BB; ++I; // Get iterator to next block
891 return I != BB->getParent()->end() ? &*I : 0;
892}
893
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000894/// RequiresFPRegKill - The floating point stackifier pass cannot insert
895/// compensation code on critical edges. As such, it requires that we kill all
896/// FP registers on the exit from any blocks that either ARE critical edges, or
897/// branch to a block that has incoming critical edges.
898///
899/// Note that this kill instruction will eventually be eliminated when
900/// restrictions in the stackifier are relaxed.
901///
902static bool RequiresFPRegKill(const BasicBlock *BB) {
903#ifdef SMART_FP
904 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
905 const BasicBlock *Succ = *SI;
906 pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
907 ++PI; // Block have at least one predecessory
908 if (PI != PE) { // If it has exactly one, this isn't crit edge
909 // If this block has more than one predecessor, check all of the
910 // predecessors to see if they have multiple successors. If so, then the
911 // block we are analyzing needs an FPRegKill.
912 for (PI = pred_begin(Succ); PI != PE; ++PI) {
913 const BasicBlock *Pred = *PI;
914 succ_const_iterator SI2 = succ_begin(Pred);
915 ++SI2; // There must be at least one successor of this block.
916 if (SI2 != succ_end(Pred))
917 return true; // Yes, we must insert the kill on this edge.
918 }
919 }
920 }
921 // If we got this far, there is no need to insert the kill instruction.
922 return false;
923#else
924 return true;
925#endif
926}
927
Chris Lattner51b49a92002-11-02 19:45:49 +0000928/// visitBranchInst - Handle conditional and unconditional branches here. Note
929/// that since code layout is frozen at this point, that if we are trying to
930/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000931/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000932///
Chris Lattner94af4142002-12-25 05:13:53 +0000933void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000934 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
935
936 if (!BI.isConditional()) { // Unconditional branch?
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000937 if (RequiresFPRegKill(BI.getParent()))
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000938 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000939 if (BI.getSuccessor(0) != NextBB)
Chris Lattner55f6fab2003-01-16 18:07:23 +0000940 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +0000941 return;
942 }
943
944 // See if we can fold the setcc into the branch itself...
945 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
946 if (SCI == 0) {
947 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
948 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000949 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000950 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000951 if (RequiresFPRegKill(BI.getParent()))
952 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000953 if (BI.getSuccessor(1) == NextBB) {
954 if (BI.getSuccessor(0) != NextBB)
955 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
956 } else {
957 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
958
959 if (BI.getSuccessor(0) != NextBB)
960 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
961 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000962 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000963 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000964
965 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +0000966 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000967 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000968
969 const Type *CompTy = SCI->getOperand(0)->getType();
970 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +0000971
Chris Lattnerb2acc512003-10-19 21:09:10 +0000972
Chris Lattner6d40c192003-01-16 16:43:00 +0000973 // LLVM -> X86 signed X86 unsigned
974 // ----- ---------- ------------
975 // seteq -> je je
976 // setne -> jne jne
977 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000978 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000979 // setgt -> jg ja
980 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000981 // ----
982 // js // Used by comparison with 0 optimization
983 // jns
984
985 static const unsigned OpcodeTab[2][8] = {
986 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
987 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
988 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +0000989 };
990
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000991 if (RequiresFPRegKill(BI.getParent()))
992 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000993 if (BI.getSuccessor(0) != NextBB) {
994 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
995 if (BI.getSuccessor(1) != NextBB)
996 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
997 } else {
998 // Change to the inverse condition...
999 if (BI.getSuccessor(1) != NextBB) {
1000 OpNum ^= 1;
1001 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
1002 }
1003 }
Chris Lattner2df035b2002-11-02 19:27:56 +00001004}
1005
Chris Lattner3e130a22003-01-13 00:32:26 +00001006
1007/// doCall - This emits an abstract call instruction, setting up the arguments
1008/// and the return value as appropriate. For the actual function call itself,
1009/// it inserts the specified CallMI instruction into the stream.
1010///
1011void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001012 const std::vector<ValueRecord> &Args) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001013
Chris Lattner065faeb2002-12-28 20:24:02 +00001014 // Count how many bytes are to be pushed on the stack...
1015 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001016
Chris Lattner3e130a22003-01-13 00:32:26 +00001017 if (!Args.empty()) {
1018 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1019 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001020 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001021 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001022 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001023 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001024 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001025 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1026 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001027 default: assert(0 && "Unknown class!");
1028 }
1029
1030 // Adjust the stack pointer for the new arguments...
1031 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
1032
1033 // Arguments go on the stack in reverse order, as specified by the ABI.
1034 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +00001035 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001036 unsigned ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001037 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001038 case cByte:
1039 case cShort: {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001040 // Promote arg to 32 bits wide into a temporary register...
1041 unsigned R = makeAnotherReg(Type::UIntTy);
1042 promote32(R, Args[i]);
1043 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1044 X86::ESP, ArgOffset).addReg(R);
1045 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001046 }
1047 case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001048 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1049 X86::ESP, ArgOffset).addReg(ArgReg);
1050 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001051 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001052 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1053 X86::ESP, ArgOffset).addReg(ArgReg);
1054 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1055 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1056 ArgOffset += 4; // 8 byte entry, not 4.
1057 break;
1058
Chris Lattner065faeb2002-12-28 20:24:02 +00001059 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001060 if (Args[i].Ty == Type::FloatTy) {
1061 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
1062 X86::ESP, ArgOffset).addReg(ArgReg);
1063 } else {
1064 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
1065 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
1066 X86::ESP, ArgOffset).addReg(ArgReg);
1067 ArgOffset += 4; // 8 byte entry, not 4.
1068 }
1069 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001070
Chris Lattner3e130a22003-01-13 00:32:26 +00001071 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001072 }
1073 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001074 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001075 } else {
1076 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001077 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001078
Chris Lattner3e130a22003-01-13 00:32:26 +00001079 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001080
Chris Lattner065faeb2002-12-28 20:24:02 +00001081 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001082
1083 // If there is a return value, scavenge the result from the location the call
1084 // leaves it in...
1085 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001086 if (Ret.Ty != Type::VoidTy) {
1087 unsigned DestClass = getClassB(Ret.Ty);
1088 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001089 case cByte:
1090 case cShort:
1091 case cInt: {
1092 // Integral results are in %eax, or the appropriate portion
1093 // thereof.
1094 static const unsigned regRegMove[] = {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001095 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
Brian Gaeke20244b72002-12-12 15:33:40 +00001096 };
1097 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001098 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001099 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001100 }
Chris Lattner94af4142002-12-25 05:13:53 +00001101 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001102 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001103 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001104 case cLong: // Long values are left in EDX:EAX
1105 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
1106 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
1107 break;
1108 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001109 }
Chris Lattnera3243642002-12-04 23:45:28 +00001110 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001111}
Chris Lattner2df035b2002-11-02 19:27:56 +00001112
Chris Lattner3e130a22003-01-13 00:32:26 +00001113
1114/// visitCallInst - Push args on stack and do a procedure call instruction.
1115void ISel::visitCallInst(CallInst &CI) {
1116 MachineInstr *TheCall;
1117 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001118 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001119 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001120 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1121 return;
1122 }
1123
Chris Lattner3e130a22003-01-13 00:32:26 +00001124 // Emit a CALL instruction with PC-relative displacement.
1125 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1126 } else { // Emit an indirect call...
1127 unsigned Reg = getReg(CI.getCalledValue());
1128 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
1129 }
1130
1131 std::vector<ValueRecord> Args;
1132 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001133 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001134
1135 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1136 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001137}
Chris Lattner3e130a22003-01-13 00:32:26 +00001138
Chris Lattneraeb54b82003-08-28 21:23:43 +00001139
Chris Lattner44827152003-12-28 09:47:19 +00001140/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1141/// function, lowering any calls to unknown intrinsic functions into the
1142/// equivalent LLVM code.
1143void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1144 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1145 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1146 if (CallInst *CI = dyn_cast<CallInst>(I++))
1147 if (Function *F = CI->getCalledFunction())
1148 switch (F->getIntrinsicID()) {
Chris Lattneraed386e2003-12-28 09:53:23 +00001149 case Intrinsic::not_intrinsic:
Chris Lattner44827152003-12-28 09:47:19 +00001150 case Intrinsic::va_start:
1151 case Intrinsic::va_copy:
1152 case Intrinsic::va_end:
1153 // We directly implement these intrinsics
1154 break;
1155 default:
1156 // All other intrinsic calls we must lower.
1157 Instruction *Before = CI->getPrev();
Chris Lattnerf70e0c22003-12-28 21:23:38 +00001158 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
Chris Lattner44827152003-12-28 09:47:19 +00001159 if (Before) { // Move iterator to instruction after call
1160 I = Before; ++I;
1161 } else {
1162 I = BB->begin();
1163 }
1164 }
1165
1166}
1167
Brian Gaeked0fde302003-11-11 22:41:34 +00001168void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001169 unsigned TmpReg1, TmpReg2;
1170 switch (ID) {
Brian Gaeked0fde302003-11-11 22:41:34 +00001171 case Intrinsic::va_start:
Chris Lattnereca195e2003-05-08 19:44:13 +00001172 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001173 TmpReg1 = getReg(CI);
Chris Lattnereca195e2003-05-08 19:44:13 +00001174 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001175 return;
1176
Brian Gaeked0fde302003-11-11 22:41:34 +00001177 case Intrinsic::va_copy:
Chris Lattner73815062003-10-18 05:56:40 +00001178 TmpReg1 = getReg(CI);
1179 TmpReg2 = getReg(CI.getOperand(1));
1180 BuildMI(BB, X86::MOVrr32, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001181 return;
Brian Gaeked0fde302003-11-11 22:41:34 +00001182 case Intrinsic::va_end: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001183
Chris Lattner44827152003-12-28 09:47:19 +00001184 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001185 }
1186}
1187
1188
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001189/// visitSimpleBinary - Implement simple binary operators for integral types...
1190/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1191/// Xor.
1192void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1193 unsigned DestReg = getReg(B);
1194 MachineBasicBlock::iterator MI = BB->end();
1195 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
1196 OperatorClass, DestReg);
1197}
Chris Lattner3e130a22003-01-13 00:32:26 +00001198
Chris Lattnerb2acc512003-10-19 21:09:10 +00001199/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1200/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1201/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00001202///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001203/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1204/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00001205///
1206void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001207 MachineBasicBlock::iterator &IP,
1208 Value *Op0, Value *Op1,
Chris Lattnerb2acc512003-10-19 21:09:10 +00001209 unsigned OperatorClass, unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001210 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00001211
1212 // sub 0, X -> neg X
1213 if (OperatorClass == 1 && Class != cLong)
Chris Lattneraf703622004-02-02 18:56:30 +00001214 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001215 if (CI->isNullValue()) {
1216 unsigned op1Reg = getReg(Op1, MBB, IP);
1217 switch (Class) {
1218 default: assert(0 && "Unknown class for this function!");
1219 case cByte:
1220 BMI(MBB, IP, X86::NEGr8, 1, DestReg).addReg(op1Reg);
1221 return;
1222 case cShort:
1223 BMI(MBB, IP, X86::NEGr16, 1, DestReg).addReg(op1Reg);
1224 return;
1225 case cInt:
1226 BMI(MBB, IP, X86::NEGr32, 1, DestReg).addReg(op1Reg);
1227 return;
1228 }
1229 }
Chris Lattneraf703622004-02-02 18:56:30 +00001230 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001231
Chris Lattner35333e12003-06-05 18:28:55 +00001232 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1233 static const unsigned OpcodeTab[][4] = {
1234 // Arithmetic operators
1235 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1236 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1237
1238 // Bitwise operators
1239 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1240 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1241 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001242 };
Chris Lattner35333e12003-06-05 18:28:55 +00001243
1244 bool isLong = false;
1245 if (Class == cLong) {
1246 isLong = true;
1247 Class = cInt; // Bottom 32 bits are handled just like ints
1248 }
1249
1250 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1251 assert(Opcode && "Floating point arguments to logical inst?");
Chris Lattnerb2acc512003-10-19 21:09:10 +00001252 unsigned Op0r = getReg(Op0, MBB, IP);
1253 unsigned Op1r = getReg(Op1, MBB, IP);
1254 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Chris Lattner35333e12003-06-05 18:28:55 +00001255
1256 if (isLong) { // Handle the upper 32 bits of long values...
1257 static const unsigned TopTab[] = {
1258 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1259 };
Chris Lattnerb2acc512003-10-19 21:09:10 +00001260 BMI(MBB, IP, TopTab[OperatorClass], 2,
1261 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner35333e12003-06-05 18:28:55 +00001262 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001263 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001264 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001265
1266 // Special case: op Reg, <const>
1267 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1268 unsigned Op0r = getReg(Op0, MBB, IP);
1269
1270 // xor X, -1 -> not X
1271 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1272 static unsigned const NOTTab[] = { X86::NOTr8, X86::NOTr16, X86::NOTr32 };
1273 BMI(MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
1274 return;
1275 }
1276
1277 // add X, -1 -> dec X
1278 if (OperatorClass == 0 && Op1C->isAllOnesValue()) {
1279 static unsigned const DECTab[] = { X86::DECr8, X86::DECr16, X86::DECr32 };
1280 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1281 return;
1282 }
1283
1284 // add X, 1 -> inc X
1285 if (OperatorClass == 0 && Op1C->equalsInt(1)) {
1286 static unsigned const DECTab[] = { X86::INCr8, X86::INCr16, X86::INCr32 };
1287 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1288 return;
1289 }
1290
1291 static const unsigned OpcodeTab[][3] = {
1292 // Arithmetic operators
1293 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1294 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1295
1296 // Bitwise operators
1297 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1298 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1299 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1300 };
1301
1302 assert(Class < 3 && "General code handles 64-bit integer types!");
1303 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1304 uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
1305
1306 // Mask off any upper bits of the constant, if there are any...
1307 Op1v &= (1ULL << (8 << Class)) - 1;
1308 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addZImm(Op1v);
Chris Lattnere2954c82002-11-02 20:04:26 +00001309}
1310
Chris Lattner3e130a22003-01-13 00:32:26 +00001311/// doMultiply - Emit appropriate instructions to multiply together the
1312/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1313/// result should be given as DestTy.
1314///
Chris Lattner8a307e82002-12-16 19:32:50 +00001315void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001316 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001317 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001318 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001319 switch (Class) {
1320 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001321 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001322 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001323 case cInt:
1324 case cShort:
Chris Lattnerc01d1232003-10-20 03:42:58 +00001325 BMI(BB, MBBI, Class == cInt ? X86::IMULrr32 : X86::IMULrr16, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00001326 .addReg(op0Reg).addReg(op1Reg);
1327 return;
1328 case cByte:
1329 // Must use the MUL instruction, which forces use of AL...
1330 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1331 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1332 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1333 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001334 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001335 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001336 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001337}
1338
Chris Lattnerb2acc512003-10-19 21:09:10 +00001339// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1340// returns zero when the input is not exactly a power of two.
1341static unsigned ExactLog2(unsigned Val) {
1342 if (Val == 0) return 0;
1343 unsigned Count = 0;
1344 while (Val != 1) {
1345 if (Val & 1) return 0;
1346 Val >>= 1;
1347 ++Count;
1348 }
1349 return Count+1;
1350}
1351
1352void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1353 MachineBasicBlock::iterator &IP,
1354 unsigned DestReg, const Type *DestTy,
1355 unsigned op0Reg, unsigned ConstRHS) {
1356 unsigned Class = getClass(DestTy);
1357
1358 // If the element size is exactly a power of 2, use a shift to get it.
1359 if (unsigned Shift = ExactLog2(ConstRHS)) {
1360 switch (Class) {
1361 default: assert(0 && "Unknown class for this function!");
1362 case cByte:
1363 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1364 return;
1365 case cShort:
1366 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1367 return;
1368 case cInt:
1369 BMI(MBB, IP, X86::SHLir32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
1370 return;
1371 }
1372 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00001373
1374 if (Class == cShort) {
1375 BMI(MBB, IP, X86::IMULri16, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
1376 return;
1377 } else if (Class == cInt) {
1378 BMI(MBB, IP, X86::IMULri32, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
1379 return;
1380 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001381
1382 // Most general case, emit a normal multiply...
1383 static const unsigned MOVirTab[] = {
1384 X86::MOVir8, X86::MOVir16, X86::MOVir32
1385 };
1386
1387 unsigned TmpReg = makeAnotherReg(DestTy);
1388 BMI(MBB, IP, MOVirTab[Class], 1, TmpReg).addZImm(ConstRHS);
1389
1390 // Emit a MUL to multiply the register holding the index by
1391 // elementSize, putting the result in OffsetReg.
1392 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
1393}
1394
Chris Lattnerca9671d2002-11-02 20:28:58 +00001395/// visitMul - Multiplies are not simple binary operators because they must deal
1396/// with the EAX register explicitly.
1397///
1398void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001399 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00001400 unsigned DestReg = getReg(I);
1401
1402 // Simple scalar multiply?
1403 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001404 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
1405 unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant
1406 MachineBasicBlock::iterator MBBI = BB->end();
1407 doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val);
1408 } else {
1409 unsigned Op1Reg = getReg(I.getOperand(1));
1410 MachineBasicBlock::iterator MBBI = BB->end();
1411 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1412 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001413 } else {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001414 unsigned Op1Reg = getReg(I.getOperand(1));
1415
Chris Lattner3e130a22003-01-13 00:32:26 +00001416 // Long value. We have to do things the hard way...
1417 // Multiply the two low parts... capturing carry into EDX
1418 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1419 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1420
1421 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1422 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1423 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1424
1425 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001426 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
Chris Lattnerc01d1232003-10-20 03:42:58 +00001427 BMI(BB, MBBI, X86::IMULrr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001428
1429 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1430 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001431 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001432
1433 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001434 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattnerc01d1232003-10-20 03:42:58 +00001435 BMI(BB, MBBI, X86::IMULrr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001436
1437 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001438 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001439 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001440}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001441
Chris Lattner06925362002-11-17 21:56:38 +00001442
Chris Lattnerf01729e2002-11-02 20:54:46 +00001443/// visitDivRem - Handle division and remainder instructions... these
1444/// instruction both require the same instructions to be generated, they just
1445/// select the result from a different register. Note that both of these
1446/// instructions work differently for signed and unsigned operands.
1447///
1448void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00001449 unsigned Op0Reg = getReg(I.getOperand(0));
1450 unsigned Op1Reg = getReg(I.getOperand(1));
1451 unsigned ResultReg = getReg(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001452
Chris Lattnercadff442003-10-23 17:21:43 +00001453 MachineBasicBlock::iterator IP = BB->end();
1454 emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div,
1455 I.getType(), ResultReg);
1456}
1457
1458void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1459 MachineBasicBlock::iterator &IP,
1460 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
1461 const Type *Ty, unsigned ResultReg) {
1462 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00001463 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001464 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00001465 if (isDiv) {
Chris Lattner62b767b2003-11-18 17:47:05 +00001466 BMI(BB, IP, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001467 } else { // Floating point remainder...
Chris Lattner3e130a22003-01-13 00:32:26 +00001468 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001469 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00001470 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001471 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1472 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001473 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1474 }
Chris Lattner94af4142002-12-25 05:13:53 +00001475 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001476 case cLong: {
1477 static const char *FnName[] =
1478 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1479
Chris Lattnercadff442003-10-23 17:21:43 +00001480 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00001481 MachineInstr *TheCall =
1482 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1483
1484 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001485 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1486 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001487 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1488 return;
1489 }
1490 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001491 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00001492 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001493 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001494
1495 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1496 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7b52c032003-06-22 03:31:18 +00001497 static const unsigned SarOpcode[]={ X86::SARir8, X86::SARir16, X86::SARir32 };
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00001498 static const unsigned ClrOpcode[]={ X86::MOVir8, X86::MOVir16, X86::MOVir32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001499 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1500
1501 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001502 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1503 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001504 };
1505
Chris Lattnercadff442003-10-23 17:21:43 +00001506 bool isSigned = Ty->isSigned();
Chris Lattnerf01729e2002-11-02 20:54:46 +00001507 unsigned Reg = Regs[Class];
1508 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001509
1510 // Put the first operand into one of the A registers...
Chris Lattner62b767b2003-11-18 17:47:05 +00001511 BMI(BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001512
1513 if (isSigned) {
1514 // Emit a sign extension instruction...
Chris Lattnercadff442003-10-23 17:21:43 +00001515 unsigned ShiftResult = makeAnotherReg(Ty);
Chris Lattner62b767b2003-11-18 17:47:05 +00001516 BMI(BB, IP, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1517 BMI(BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001518 } else {
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00001519 // If unsigned, emit a zeroing instruction... (reg = 0)
1520 BMI(BB, IP, ClrOpcode[Class], 2, ExtReg).addZImm(0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001521 }
1522
Chris Lattner06925362002-11-17 21:56:38 +00001523 // Emit the appropriate divide or remainder instruction...
Chris Lattner62b767b2003-11-18 17:47:05 +00001524 BMI(BB, IP, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001525
Chris Lattnerf01729e2002-11-02 20:54:46 +00001526 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00001527 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00001528
Chris Lattnerf01729e2002-11-02 20:54:46 +00001529 // Put the result into the destination register...
Chris Lattner62b767b2003-11-18 17:47:05 +00001530 BMI(BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001531}
Chris Lattnere2954c82002-11-02 20:04:26 +00001532
Chris Lattner06925362002-11-17 21:56:38 +00001533
Brian Gaekea1719c92002-10-31 23:03:59 +00001534/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1535/// for constant immediate shift values, and for constant immediate
1536/// shift values equal to 1. Even the general case is sort of special,
1537/// because the shift amount has to be in CL, not just any old register.
1538///
Chris Lattner3e130a22003-01-13 00:32:26 +00001539void ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001540 MachineBasicBlock::iterator IP = BB->end ();
1541 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
1542 I.getOpcode () == Instruction::Shl, I.getType (),
1543 getReg (I));
1544}
1545
1546/// emitShiftOperation - Common code shared between visitShiftInst and
1547/// constant expression support.
1548void ISel::emitShiftOperation(MachineBasicBlock *MBB,
1549 MachineBasicBlock::iterator &IP,
1550 Value *Op, Value *ShiftAmount, bool isLeftShift,
1551 const Type *ResultTy, unsigned DestReg) {
1552 unsigned SrcReg = getReg (Op, MBB, IP);
1553 bool isSigned = ResultTy->isSigned ();
1554 unsigned Class = getClass (ResultTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001555
1556 static const unsigned ConstantOperand[][4] = {
1557 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1558 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1559 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1560 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1561 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001562
Chris Lattner3e130a22003-01-13 00:32:26 +00001563 static const unsigned NonConstantOperand[][4] = {
1564 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1565 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1566 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1567 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1568 };
Chris Lattner796df732002-11-02 00:44:25 +00001569
Chris Lattner3e130a22003-01-13 00:32:26 +00001570 // Longs, as usual, are handled specially...
1571 if (Class == cLong) {
1572 // If we have a constant shift, we can generate much more efficient code
1573 // than otherwise...
1574 //
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001575 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001576 unsigned Amount = CUI->getValue();
1577 if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001578 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1579 if (isLeftShift) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001580 BMI(MBB, IP, Opc[3], 3,
1581 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1582 BMI(MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001583 } else {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001584 BMI(MBB, IP, Opc[3], 3,
1585 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1586 BMI(MBB, IP, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001587 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001588 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001589 Amount -= 32;
1590 if (isLeftShift) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001591 BMI(MBB, IP, X86::SHLir32, 2,
1592 DestReg + 1).addReg(SrcReg).addZImm(Amount);
1593 BMI(MBB, IP, X86::MOVir32, 1,
1594 DestReg).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001595 } else {
1596 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001597 BMI(MBB, IP, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1598 BMI(MBB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001599 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001600 }
1601 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001602 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1603
1604 if (!isLeftShift && isSigned) {
1605 // If this is a SHR of a Long, then we need to do funny sign extension
1606 // stuff. TmpReg gets the value to use as the high-part if we are
1607 // shifting more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001608 BMI(MBB, IP, X86::SARir32, 2, TmpReg).addReg(SrcReg).addZImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00001609 } else {
1610 // Other shifts use a fixed zero value if the shift is more than 32
1611 // bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001612 BMI(MBB, IP, X86::MOVir32, 1, TmpReg).addZImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00001613 }
1614
1615 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001616 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
1617 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001618
1619 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1620 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1621 if (isLeftShift) {
1622 // TmpReg2 = shld inHi, inLo
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001623 BMI(MBB, IP, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001624 // TmpReg3 = shl inLo, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001625 BMI(MBB, IP, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001626
1627 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001628 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001629
1630 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001631 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001632 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1633 // DestLo = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001634 BMI(MBB, IP, X86::CMOVNErr32, 2,
1635 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001636 } else {
1637 // TmpReg2 = shrd inLo, inHi
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001638 BMI(MBB, IP, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00001639 // TmpReg3 = s[ah]r inHi, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001640 BMI(MBB, IP, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00001641 .addReg(SrcReg+1);
1642
1643 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001644 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001645
1646 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001647 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001648 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1649
1650 // DestHi = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001651 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001652 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1653 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001654 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001655 return;
1656 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001657
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001658 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001659 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1660 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001661
Chris Lattner3e130a22003-01-13 00:32:26 +00001662 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001663 BMI(MBB, IP, Opc[Class], 2,
1664 DestReg).addReg(SrcReg).addZImm(CUI->getValue());
Chris Lattner3e130a22003-01-13 00:32:26 +00001665 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001666 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
1667 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001668
Chris Lattner3e130a22003-01-13 00:32:26 +00001669 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001670 BMI(MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001671 }
1672}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001673
Chris Lattner3e130a22003-01-13 00:32:26 +00001674
Chris Lattner6fc3c522002-11-17 21:11:55 +00001675/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001676/// instruction. The load and store instructions are the only place where we
1677/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001678///
1679void ISel::visitLoadInst(LoadInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001680 unsigned SrcAddrReg = getReg(I.getOperand(0));
1681 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001682
Brian Gaekebfedb912003-07-17 21:30:06 +00001683 unsigned Class = getClassB(I.getType());
Chris Lattner6ac1d712003-10-20 04:48:06 +00001684
1685 if (Class == cLong) {
1686 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), SrcAddrReg);
1687 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
Chris Lattner94af4142002-12-25 05:13:53 +00001688 return;
1689 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001690
Chris Lattner6ac1d712003-10-20 04:48:06 +00001691 static const unsigned Opcodes[] = {
1692 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, X86::FLDr32
Chris Lattner3e130a22003-01-13 00:32:26 +00001693 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00001694 unsigned Opcode = Opcodes[Class];
1695 if (I.getType() == Type::DoubleTy) Opcode = X86::FLDr64;
1696 addDirectMem(BuildMI(BB, Opcode, 4, DestReg), SrcAddrReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001697}
1698
Chris Lattner6fc3c522002-11-17 21:11:55 +00001699/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1700/// instruction.
1701///
1702void ISel::visitStoreInst(StoreInst &I) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001703 unsigned ValReg = getReg(I.getOperand(0));
1704 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattner6c09db22003-10-20 04:11:23 +00001705
1706 const Type *ValTy = I.getOperand(0)->getType();
1707 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00001708
1709 if (Class == cLong) {
Chris Lattner6c09db22003-10-20 04:11:23 +00001710 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1711 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg,4).addReg(ValReg+1);
Chris Lattner94af4142002-12-25 05:13:53 +00001712 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001713 }
1714
Chris Lattner6ac1d712003-10-20 04:48:06 +00001715 static const unsigned Opcodes[] = {
1716 X86::MOVrm8, X86::MOVrm16, X86::MOVrm32, X86::FSTr32
1717 };
1718 unsigned Opcode = Opcodes[Class];
1719 if (ValTy == Type::DoubleTy) Opcode = X86::FSTr64;
1720 addDirectMem(BuildMI(BB, Opcode, 1+4), AddressReg).addReg(ValReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +00001721}
1722
1723
Brian Gaekec11232a2002-11-26 10:43:30 +00001724/// visitCastInst - Here we have various kinds of copying with or without
1725/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001726void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00001727 Value *Op = CI.getOperand(0);
1728 // If this is a cast from a 32-bit integer to a Long type, and the only uses
1729 // of the case are GEP instructions, then the cast does not need to be
1730 // generated explicitly, it will be folded into the GEP.
1731 if (CI.getType() == Type::LongTy &&
1732 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
1733 bool AllUsesAreGEPs = true;
1734 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
1735 if (!isa<GetElementPtrInst>(*I)) {
1736 AllUsesAreGEPs = false;
1737 break;
1738 }
1739
1740 // No need to codegen this cast if all users are getelementptr instrs...
1741 if (AllUsesAreGEPs) return;
1742 }
1743
Chris Lattner548f61d2003-04-23 17:22:12 +00001744 unsigned DestReg = getReg(CI);
1745 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00001746 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00001747}
1748
1749/// emitCastOperation - Common code shared between visitCastInst and
1750/// constant expression cast support.
1751void ISel::emitCastOperation(MachineBasicBlock *BB,
1752 MachineBasicBlock::iterator &IP,
1753 Value *Src, const Type *DestTy,
1754 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001755 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001756 const Type *SrcTy = Src->getType();
1757 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001758 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001759
Chris Lattner3e130a22003-01-13 00:32:26 +00001760 // Implement casts to bool by using compare on the operand followed by set if
1761 // not zero on the result.
1762 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00001763 switch (SrcClass) {
1764 case cByte:
1765 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
1766 break;
1767 case cShort:
1768 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
1769 break;
1770 case cInt:
1771 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
1772 break;
1773 case cLong: {
1774 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1775 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
1776 break;
1777 }
1778 case cFP:
1779 assert(0 && "FIXME: implement cast FP to bool");
1780 abort();
1781 }
1782
1783 // If the zero flag is not set, then the value is true, set the byte to
1784 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00001785 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001786 return;
1787 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001788
1789 static const unsigned RegRegMove[] = {
1790 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1791 };
1792
1793 // Implement casts between values of the same type class (as determined by
1794 // getClass) by using a register-to-register move.
1795 if (SrcClass == DestClass) {
1796 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001797 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001798 } else if (SrcClass == cFP) {
1799 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001800 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
1801 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001802 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001803 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1804 "Unknown cFP member!");
1805 // Truncate from double to float by storing to memory as short, then
1806 // reading it back.
1807 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00001808 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001809 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1810 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001811 }
1812 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001813 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1814 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001815 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00001816 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001817 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001818 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001819 return;
1820 }
1821
1822 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1823 // or zero extension, depending on whether the source type was signed.
1824 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1825 SrcClass < DestClass) {
1826 bool isLong = DestClass == cLong;
1827 if (isLong) DestClass = cInt;
1828
1829 static const unsigned Opc[][4] = {
1830 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1831 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1832 };
1833
1834 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001835 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1836 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001837
1838 if (isLong) { // Handle upper 32 bits as appropriate...
1839 if (isUnsigned) // Zero out top bits...
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001840 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001841 else // Sign extend bottom half...
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001842 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001843 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001844 return;
1845 }
1846
1847 // Special case long -> int ...
1848 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001849 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001850 return;
1851 }
1852
1853 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1854 // move out of AX or AL.
1855 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1856 && SrcClass > DestClass) {
1857 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00001858 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1859 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00001860 return;
1861 }
1862
1863 // Handle casts from integer to floating point now...
1864 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001865 // Promote the integer to a type supported by FLD. We do this because there
1866 // are no unsigned FLD instructions, so we must promote an unsigned value to
1867 // a larger signed value, then use FLD on the larger value.
1868 //
1869 const Type *PromoteType = 0;
1870 unsigned PromoteOpcode;
1871 switch (SrcTy->getPrimitiveID()) {
1872 case Type::BoolTyID:
1873 case Type::SByteTyID:
1874 // We don't have the facilities for directly loading byte sized data from
1875 // memory (even signed). Promote it to 16 bits.
1876 PromoteType = Type::ShortTy;
1877 PromoteOpcode = X86::MOVSXr16r8;
1878 break;
1879 case Type::UByteTyID:
1880 PromoteType = Type::ShortTy;
1881 PromoteOpcode = X86::MOVZXr16r8;
1882 break;
1883 case Type::UShortTyID:
1884 PromoteType = Type::IntTy;
1885 PromoteOpcode = X86::MOVZXr32r16;
1886 break;
1887 case Type::UIntTyID: {
1888 // Make a 64 bit temporary... and zero out the top of it...
1889 unsigned TmpReg = makeAnotherReg(Type::LongTy);
1890 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
1891 BMI(BB, IP, X86::MOVir32, 1, TmpReg+1).addZImm(0);
1892 SrcTy = Type::LongTy;
1893 SrcClass = cLong;
1894 SrcReg = TmpReg;
1895 break;
1896 }
1897 case Type::ULongTyID:
1898 assert("FIXME: not implemented: cast ulong X to fp type!");
1899 default: // No promotion needed...
1900 break;
1901 }
1902
1903 if (PromoteType) {
1904 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner548f61d2003-04-23 17:22:12 +00001905 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1906 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001907 SrcTy = PromoteType;
1908 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00001909 SrcReg = TmpReg;
1910 }
1911
1912 // Spill the integer to memory and reload it from there...
1913 int FrameIdx =
1914 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1915
1916 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001917 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1918 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001919 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001920 } else {
1921 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001922 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001923 }
1924
1925 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00001926 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001927 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001928 return;
1929 }
1930
1931 // Handle casts from floating point to integer now...
1932 if (SrcClass == cFP) {
1933 // Change the floating point control register to use "round towards zero"
1934 // mode when truncating to an integer value.
1935 //
1936 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00001937 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001938
1939 // Load the old value of the high byte of the control word...
1940 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001941 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001942
1943 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00001944 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00001945
1946 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001947 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001948
1949 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00001950 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001951 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00001952
1953 // We don't have the facilities for directly storing byte sized data to
1954 // memory. Promote it to 16 bits. We also must promote unsigned values to
1955 // larger classes because we only have signed FP stores.
1956 unsigned StoreClass = DestClass;
1957 const Type *StoreTy = DestTy;
1958 if (StoreClass == cByte || DestTy->isUnsigned())
1959 switch (StoreClass) {
1960 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1961 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1962 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00001963 // The following treatment of cLong may not be perfectly right,
1964 // but it survives chains of casts of the form
1965 // double->ulong->double.
1966 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001967 default: assert(0 && "Unknown store class!");
1968 }
1969
1970 // Spill the integer to memory and reload it from there...
1971 int FrameIdx =
1972 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
1973
1974 static const unsigned Op1[] =
1975 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001976 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001977
1978 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001979 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
1980 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00001981 } else {
1982 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001983 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001984 }
1985
1986 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001987 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001988 return;
1989 }
1990
Brian Gaeked474e9c2002-12-06 10:49:33 +00001991 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00001992 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001993 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00001994}
Brian Gaekea1719c92002-10-31 23:03:59 +00001995
Chris Lattner73815062003-10-18 05:56:40 +00001996/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00001997///
Chris Lattner73815062003-10-18 05:56:40 +00001998void ISel::visitVANextInst(VANextInst &I) {
1999 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00002000 unsigned DestReg = getReg(I);
2001
Chris Lattnereca195e2003-05-08 19:44:13 +00002002 unsigned Size;
Chris Lattner73815062003-10-18 05:56:40 +00002003 switch (I.getArgType()->getPrimitiveID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00002004 default:
2005 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00002006 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00002007 return;
2008 case Type::PointerTyID:
2009 case Type::UIntTyID:
2010 case Type::IntTyID:
2011 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00002012 break;
2013 case Type::ULongTyID:
2014 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00002015 case Type::DoubleTyID:
2016 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00002017 break;
2018 }
2019
2020 // Increment the VAList pointer...
Chris Lattner73815062003-10-18 05:56:40 +00002021 BuildMI(BB, X86::ADDri32, 2, DestReg).addReg(VAList).addZImm(Size);
2022}
Chris Lattnereca195e2003-05-08 19:44:13 +00002023
Chris Lattner73815062003-10-18 05:56:40 +00002024void ISel::visitVAArgInst(VAArgInst &I) {
2025 unsigned VAList = getReg(I.getOperand(0));
2026 unsigned DestReg = getReg(I);
2027
2028 switch (I.getType()->getPrimitiveID()) {
2029 default:
2030 std::cerr << I;
2031 assert(0 && "Error: bad type for va_next instruction!");
2032 return;
2033 case Type::PointerTyID:
2034 case Type::UIntTyID:
2035 case Type::IntTyID:
2036 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
2037 break;
2038 case Type::ULongTyID:
2039 case Type::LongTyID:
2040 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
2041 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
2042 break;
2043 case Type::DoubleTyID:
2044 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
2045 break;
2046 }
Chris Lattnereca195e2003-05-08 19:44:13 +00002047}
2048
2049
Chris Lattner3e130a22003-01-13 00:32:26 +00002050void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2051 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00002052 MachineBasicBlock::iterator MI = BB->end();
2053 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00002054 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00002055}
2056
Brian Gaeke71794c02002-12-13 11:22:48 +00002057void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00002058 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00002059 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00002060 User::op_iterator IdxEnd, unsigned TargetReg) {
2061 const TargetData &TD = TM.getTargetData();
2062 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00002063 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00002064
Brian Gaeke20244b72002-12-12 15:33:40 +00002065 // GEPs have zero or more indices; we must perform a struct access
2066 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00002067 for (GetElementPtrInst::op_iterator oi = IdxBegin,
2068 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002069 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00002070 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00002071 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002072 // It's a struct access. idx is the index into the structure,
2073 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00002074 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
2075 assert(CUI->getType() == Type::UByteTy
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002076 && "Funny-looking structure index in GEP");
Brian Gaeke20244b72002-12-12 15:33:40 +00002077 // Use the TargetData structure to pick out what the layout of
2078 // the structure is in memory. Since the structure index must
2079 // be constant, we can get its value and use it to find the
2080 // right byte offset from the StructLayout class's list of
2081 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00002082 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00002083 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
2084 if (FieldOff) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002085 NextReg = makeAnotherReg(Type::UIntTy);
2086 // Emit an ADD to add FieldOff to the basePtr.
2087 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
Chris Lattner3e130a22003-01-13 00:32:26 +00002088 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002089 // The next type is the member of the structure selected by the
2090 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00002091 Ty = StTy->getElementTypes()[idxValue];
2092 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00002093 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00002094
Brian Gaeke20244b72002-12-12 15:33:40 +00002095 // idx is the index into the array. Unlike with structure
2096 // indices, we may not know its actual value at code-generation
2097 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00002098 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
2099
Chris Lattnerf5854472003-06-21 16:01:24 +00002100 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
2101 // operand on X86. Handle this case directly now...
2102 if (CastInst *CI = dyn_cast<CastInst>(idx))
2103 if (CI->getOperand(0)->getType() == Type::IntTy ||
2104 CI->getOperand(0)->getType() == Type::UIntTy)
2105 idx = CI->getOperand(0);
2106
Chris Lattner3e130a22003-01-13 00:32:26 +00002107 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00002108 // must find the size of the pointed-to type (Not coincidentally, the next
2109 // type is the type of the elements in the array).
2110 Ty = SqTy->getElementType();
2111 unsigned elementSize = TD.getTypeSize(Ty);
2112
2113 // If idxReg is a constant, we don't need to perform the multiply!
2114 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002115 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00002116 unsigned Offset = elementSize*CSI->getValue();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002117 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002118 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00002119 }
2120 } else if (elementSize == 1) {
2121 // If the element size is 1, we don't have to multiply, just add
2122 unsigned idxReg = getReg(idx, MBB, IP);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002123 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002124 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002125 } else {
2126 unsigned idxReg = getReg(idx, MBB, IP);
2127 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002128
2129 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2130
Chris Lattner8a307e82002-12-16 19:32:50 +00002131 // Emit an ADD to add OffsetReg to the basePtr.
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002132 NextReg = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002133 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00002134 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002135 }
2136 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00002137 // one, so we don't need to worry about BaseReg itself, anymore.
2138 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00002139 }
2140 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00002141 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00002142 // put the answer. A 32-bit move should do it, because we are in
2143 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00002144 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00002145}
2146
2147
Chris Lattner065faeb2002-12-28 20:24:02 +00002148/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2149/// frame manager, otherwise do it the hard way.
2150///
2151void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002152 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002153 const Type *Ty = I.getAllocatedType();
2154 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2155
2156 // If this is a fixed size alloca in the entry block for the function,
2157 // statically stack allocate the space.
2158 //
2159 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2160 if (I.getParent() == I.getParent()->getParent()->begin()) {
2161 TySize *= CUI->getValue(); // Get total allocated size...
2162 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2163
2164 // Create a new stack object using the frame manager...
2165 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2166 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2167 return;
2168 }
2169 }
2170
2171 // Create a register to hold the temporary result of multiplying the type size
2172 // constant by the variable amount.
2173 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2174 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00002175
2176 // TotalSizeReg = mul <numelements>, <TypeSize>
2177 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002178 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002179
2180 // AddedSize = add <TotalSizeReg>, 15
2181 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2182 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2183
2184 // AlignedSize = and <AddedSize>, ~15
2185 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2186 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2187
Brian Gaekee48ec012002-12-13 06:46:31 +00002188 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002189 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002190
Brian Gaekee48ec012002-12-13 06:46:31 +00002191 // Put a pointer to the space into the result register, by copying
2192 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002193 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2194
Misha Brukman48196b32003-05-03 02:18:17 +00002195 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002196 // object.
2197 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002198}
Chris Lattner3e130a22003-01-13 00:32:26 +00002199
2200/// visitMallocInst - Malloc instructions are code generated into direct calls
2201/// to the library malloc.
2202///
2203void ISel::visitMallocInst(MallocInst &I) {
2204 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2205 unsigned Arg;
2206
2207 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2208 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2209 } else {
2210 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002211 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00002212 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002213 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00002214 }
2215
2216 std::vector<ValueRecord> Args;
2217 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2218 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002219 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002220 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2221}
2222
2223
2224/// visitFreeInst - Free instructions are code gen'd to call the free libc
2225/// function.
2226///
2227void ISel::visitFreeInst(FreeInst &I) {
2228 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002229 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00002230 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002231 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002232 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2233}
2234
Chris Lattnerd281de22003-07-26 23:49:58 +00002235/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002236/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002237/// generated code sucks but the implementation is nice and simple.
2238///
Chris Lattnerf70e0c22003-12-28 21:23:38 +00002239FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
2240 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00002241}