blob: ae7cf3ed40c6b803e4aaeed725fa8042d7fea1e9 [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
Misha Brukmane2eceb52004-07-23 16:08:20 +000014#include "PowerPCTargetMachine.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000015#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Function.h"
18#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000019#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000020#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000021#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/MRegisterInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000029#include "Support/Debug.h"
Misha Brukmane2eceb52004-07-23 16:08:20 +000030#include "Support/Statistic.h"
Misha Brukman98649d12004-06-24 21:54:47 +000031#include <vector>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000032using namespace llvm;
33
34namespace {
Misha Brukmanb097f212004-07-26 18:13:24 +000035 Statistic<> GEPFolds("ppc-codegen", "Number of GEPs folded");
Misha Brukmane2eceb52004-07-23 16:08:20 +000036
Misha Brukman422791f2004-06-21 17:41:12 +000037 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
38 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000039 ///
40 enum TypeClass {
Misha Brukman7e898c32004-07-20 00:41:46 +000041 cByte, cShort, cInt, cFP32, cFP64, cLong
Misha Brukman5dfe3a92004-06-21 16:55:25 +000042 };
43}
44
45/// getClass - Turn a primitive type into a "class" number which is based on the
46/// size of the type, and whether or not it is floating point.
47///
48static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000049 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000050 case Type::SByteTyID:
51 case Type::UByteTyID: return cByte; // Byte operands are class #0
52 case Type::ShortTyID:
53 case Type::UShortTyID: return cShort; // Short operands are class #1
54 case Type::IntTyID:
55 case Type::UIntTyID:
Misha Brukman2834a4d2004-07-07 20:07:22 +000056 case Type::PointerTyID: return cInt; // Ints and pointers are class #2
Misha Brukman5dfe3a92004-06-21 16:55:25 +000057
Misha Brukman7e898c32004-07-20 00:41:46 +000058 case Type::FloatTyID: return cFP32; // Single float is #3
59 case Type::DoubleTyID: return cFP64; // Double Point is #4
Misha Brukman5dfe3a92004-06-21 16:55:25 +000060
61 case Type::LongTyID:
Misha Brukman7e898c32004-07-20 00:41:46 +000062 case Type::ULongTyID: return cLong; // Longs are class #5
Misha Brukman5dfe3a92004-06-21 16:55:25 +000063 default:
64 assert(0 && "Invalid type to getClass!");
65 return cByte; // not reached
66 }
67}
68
69// getClassB - Just like getClass, but treat boolean values as ints.
70static inline TypeClass getClassB(const Type *Ty) {
Misha Brukman4c14f332004-07-23 01:11:19 +000071 if (Ty == Type::BoolTy) return cInt;
Misha Brukman5dfe3a92004-06-21 16:55:25 +000072 return getClass(Ty);
73}
74
75namespace {
76 struct ISel : public FunctionPass, InstVisitor<ISel> {
Misha Brukmane2eceb52004-07-23 16:08:20 +000077 PowerPCTargetMachine &TM;
Misha Brukman5dfe3a92004-06-21 16:55:25 +000078 MachineFunction *F; // The function we are compiling into
79 MachineBasicBlock *BB; // The current MBB we are compiling
80 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Misha Brukmanb097f212004-07-26 18:13:24 +000081
Misha Brukman313efcb2004-07-09 15:45:07 +000082 std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
Misha Brukman5dfe3a92004-06-21 16:55:25 +000083
Misha Brukman2834a4d2004-07-07 20:07:22 +000084 // External functions used in the Module
Misha Brukman7e898c32004-07-20 00:41:46 +000085 Function *fmodfFn, *fmodFn, *__moddi3Fn, *__divdi3Fn, *__umoddi3Fn,
86 *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__floatdisfFn, *__floatdidfFn,
87 *mallocFn, *freeFn;
Misha Brukman2834a4d2004-07-07 20:07:22 +000088
Misha Brukman5dfe3a92004-06-21 16:55:25 +000089 // MBBMap - Mapping between LLVM BB -> Machine BB
90 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
91
92 // AllocaMap - Mapping from fixed sized alloca instructions to the
93 // FrameIndex for the alloca.
94 std::map<AllocaInst*, unsigned> AllocaMap;
95
Misha Brukmanb097f212004-07-26 18:13:24 +000096 // A Reg to hold the base address used for global loads and stores, and a
97 // flag to set whether or not we need to emit it for this function.
98 unsigned GlobalBaseReg;
99 bool GlobalBaseInitialized;
100
Misha Brukmane2eceb52004-07-23 16:08:20 +0000101 ISel(TargetMachine &tm) : TM(reinterpret_cast<PowerPCTargetMachine&>(tm)),
102 F(0), BB(0) {}
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000103
Misha Brukman2834a4d2004-07-07 20:07:22 +0000104 bool doInitialization(Module &M) {
Misha Brukmanb0932592004-07-07 15:36:18 +0000105 // Add external functions that we may call
Misha Brukman2834a4d2004-07-07 20:07:22 +0000106 Type *d = Type::DoubleTy;
Misha Brukmanf3f63822004-07-08 19:41:16 +0000107 Type *f = Type::FloatTy;
Misha Brukman2834a4d2004-07-07 20:07:22 +0000108 Type *l = Type::LongTy;
109 Type *ul = Type::ULongTy;
Misha Brukman313efcb2004-07-09 15:45:07 +0000110 Type *voidPtr = PointerType::get(Type::SByteTy);
Misha Brukman7e898c32004-07-20 00:41:46 +0000111 // float fmodf(float, float);
112 fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000113 // double fmod(double, double);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000114 fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000115 // long __moddi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000116 __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000117 // long __divdi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000118 __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000119 // unsigned long __umoddi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000120 __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000121 // unsigned long __udivdi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000122 __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
Misha Brukman7e898c32004-07-20 00:41:46 +0000123 // long __fixsfdi(float)
124 __fixdfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
Misha Brukmanf3f63822004-07-08 19:41:16 +0000125 // long __fixdfdi(double)
126 __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
127 // float __floatdisf(long)
128 __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
129 // double __floatdidf(long)
130 __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
Misha Brukman313efcb2004-07-09 15:45:07 +0000131 // void* malloc(size_t)
132 mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
133 // void free(void*)
134 freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000135 return false;
136 }
Misha Brukmand18a31d2004-07-06 22:51:53 +0000137
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000138 /// runOnFunction - Top level implementation of instruction selection for
139 /// the entire function.
140 ///
141 bool runOnFunction(Function &Fn) {
142 // First pass over the function, lower any unknown intrinsic functions
143 // with the IntrinsicLowering class.
144 LowerUnknownIntrinsicFunctionCalls(Fn);
145
146 F = &MachineFunction::construct(&Fn, TM);
147
148 // Create all of the machine basic blocks for the function...
149 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
150 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
151
152 BB = &F->front();
153
Misha Brukmanb097f212004-07-26 18:13:24 +0000154 // Make sure we re-emit a set of the global base reg if necessary
155 GlobalBaseInitialized = false;
156
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000157 // Copy incoming arguments off of the stack...
158 LoadArgumentsToVirtualRegs(Fn);
159
160 // Instruction select everything except PHI nodes
161 visit(Fn);
162
163 // Select the PHI nodes
164 SelectPHINodes();
165
166 RegMap.clear();
167 MBBMap.clear();
168 AllocaMap.clear();
169 F = 0;
170 // We always build a machine code representation for the function
171 return true;
172 }
173
174 virtual const char *getPassName() const {
175 return "PowerPC Simple Instruction Selection";
176 }
177
178 /// visitBasicBlock - This method is called when we are visiting a new basic
179 /// block. This simply creates a new MachineBasicBlock to emit code into
180 /// and adds it to the current MachineFunction. Subsequent visit* for
181 /// instructions will be invoked for all instructions in the basic block.
182 ///
183 void visitBasicBlock(BasicBlock &LLVM_BB) {
184 BB = MBBMap[&LLVM_BB];
185 }
186
187 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
188 /// function, lowering any calls to unknown intrinsic functions into the
189 /// equivalent LLVM code.
190 ///
191 void LowerUnknownIntrinsicFunctionCalls(Function &F);
192
193 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
194 /// from the stack into virtual registers.
195 ///
196 void LoadArgumentsToVirtualRegs(Function &F);
197
198 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
199 /// because we have to generate our sources into the source basic blocks,
200 /// not the current one.
201 ///
202 void SelectPHINodes();
203
204 // Visitation methods for various instructions. These methods simply emit
205 // fixed PowerPC code for each instruction.
206
207 // Control flow operators
208 void visitReturnInst(ReturnInst &RI);
209 void visitBranchInst(BranchInst &BI);
210
211 struct ValueRecord {
212 Value *Val;
213 unsigned Reg;
214 const Type *Ty;
215 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
216 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
217 };
Misha Brukmanb097f212004-07-26 18:13:24 +0000218
219 // This struct is for recording the necessary operations to emit the GEP
220 struct CollapsedGepOp {
221 bool isMul;
222 Value *index;
223 ConstantSInt *size;
224 CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
225 isMul(mul), index(i), size(s) {}
226 };
227
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000228 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +0000229 const std::vector<ValueRecord> &Args, bool isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000230 void visitCallInst(CallInst &I);
231 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
232
233 // Arithmetic operators
234 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
235 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
236 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
237 void visitMul(BinaryOperator &B);
238
239 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
240 void visitRem(BinaryOperator &B) { visitDivRem(B); }
241 void visitDivRem(BinaryOperator &B);
242
243 // Bitwise operators
244 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
245 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
246 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
247
248 // Comparison operators...
249 void visitSetCondInst(SetCondInst &I);
250 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
251 MachineBasicBlock *MBB,
252 MachineBasicBlock::iterator MBBI);
253 void visitSelectInst(SelectInst &SI);
254
255
256 // Memory Instructions
257 void visitLoadInst(LoadInst &I);
258 void visitStoreInst(StoreInst &I);
259 void visitGetElementPtrInst(GetElementPtrInst &I);
260 void visitAllocaInst(AllocaInst &I);
261 void visitMallocInst(MallocInst &I);
262 void visitFreeInst(FreeInst &I);
263
264 // Other operators
265 void visitShiftInst(ShiftInst &I);
266 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
267 void visitCastInst(CastInst &I);
268 void visitVANextInst(VANextInst &I);
269 void visitVAArgInst(VAArgInst &I);
270
271 void visitInstruction(Instruction &I) {
272 std::cerr << "Cannot instruction select: " << I;
273 abort();
274 }
275
276 /// promote32 - Make a value 32-bits wide, and put it somewhere.
277 ///
278 void promote32(unsigned targetReg, const ValueRecord &VR);
279
280 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
281 /// constant expression GEP support.
282 ///
283 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
284 Value *Src, User::op_iterator IdxBegin,
Misha Brukmanb097f212004-07-26 18:13:24 +0000285 User::op_iterator IdxEnd, unsigned TargetReg,
286 bool CollapseRemainder, ConstantSInt **Remainder);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000287
288 /// emitCastOperation - Common code shared between visitCastInst and
289 /// constant expression cast support.
290 ///
291 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
292 Value *Src, const Type *DestTy, unsigned TargetReg);
293
294 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
295 /// and constant expression support.
296 ///
297 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
298 MachineBasicBlock::iterator IP,
299 Value *Op0, Value *Op1,
300 unsigned OperatorClass, unsigned TargetReg);
301
302 /// emitBinaryFPOperation - This method handles emission of floating point
303 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
304 void emitBinaryFPOperation(MachineBasicBlock *BB,
305 MachineBasicBlock::iterator IP,
306 Value *Op0, Value *Op1,
307 unsigned OperatorClass, unsigned TargetReg);
308
309 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
310 Value *Op0, Value *Op1, unsigned TargetReg);
311
Misha Brukman1013ef52004-07-21 20:09:08 +0000312 void doMultiply(MachineBasicBlock *MBB,
313 MachineBasicBlock::iterator IP,
314 unsigned DestReg, Value *Op0, Value *Op1);
315
316 /// doMultiplyConst - This method will multiply the value in Op0Reg by the
317 /// value of the ContantInt *CI
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000318 void doMultiplyConst(MachineBasicBlock *MBB,
Misha Brukman1013ef52004-07-21 20:09:08 +0000319 MachineBasicBlock::iterator IP,
320 unsigned DestReg, Value *Op0, ConstantInt *CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000321
322 void emitDivRemOperation(MachineBasicBlock *BB,
323 MachineBasicBlock::iterator IP,
324 Value *Op0, Value *Op1, bool isDiv,
325 unsigned TargetReg);
326
327 /// emitSetCCOperation - Common code shared between visitSetCondInst and
328 /// constant expression support.
329 ///
330 void emitSetCCOperation(MachineBasicBlock *BB,
331 MachineBasicBlock::iterator IP,
332 Value *Op0, Value *Op1, unsigned Opcode,
333 unsigned TargetReg);
334
335 /// emitShiftOperation - Common code shared between visitShiftInst and
336 /// constant expression support.
337 ///
338 void emitShiftOperation(MachineBasicBlock *MBB,
339 MachineBasicBlock::iterator IP,
340 Value *Op, Value *ShiftAmount, bool isLeftShift,
341 const Type *ResultTy, unsigned DestReg);
342
343 /// emitSelectOperation - Common code shared between visitSelectInst and the
344 /// constant expression support.
Misha Brukmanb097f212004-07-26 18:13:24 +0000345 ///
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000346 void emitSelectOperation(MachineBasicBlock *MBB,
347 MachineBasicBlock::iterator IP,
348 Value *Cond, Value *TrueVal, Value *FalseVal,
349 unsigned DestReg);
350
Misha Brukmanb097f212004-07-26 18:13:24 +0000351 /// copyGlobalBaseToRegister - Output the instructions required to put the
352 /// base address to use for accessing globals into a register.
353 ///
354 void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
355 MachineBasicBlock::iterator IP,
356 unsigned R);
357
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000358 /// copyConstantToRegister - Output the instructions required to put the
359 /// specified constant into the specified register.
360 ///
361 void copyConstantToRegister(MachineBasicBlock *MBB,
362 MachineBasicBlock::iterator MBBI,
363 Constant *C, unsigned Reg);
364
365 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
366 unsigned LHS, unsigned RHS);
367
368 /// makeAnotherReg - This method returns the next register number we haven't
369 /// yet used.
370 ///
371 /// Long values are handled somewhat specially. They are always allocated
372 /// as pairs of 32 bit integer values. The register number returned is the
Misha Brukman1013ef52004-07-21 20:09:08 +0000373 /// high 32 bits of the long value, and the regNum+1 is the low 32 bits.
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000374 ///
375 unsigned makeAnotherReg(const Type *Ty) {
376 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
377 "Current target doesn't have PPC reg info??");
378 const PowerPCRegisterInfo *MRI =
379 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
380 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
381 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
382 // Create the lower part
383 F->getSSARegMap()->createVirtualRegister(RC);
384 // Create the upper part.
385 return F->getSSARegMap()->createVirtualRegister(RC)-1;
386 }
387
388 // Add the mapping of regnumber => reg class to MachineFunction
389 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
390 return F->getSSARegMap()->createVirtualRegister(RC);
391 }
392
393 /// getReg - This method turns an LLVM value into a register number.
394 ///
395 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
396 unsigned getReg(Value *V) {
397 // Just append to the end of the current bb.
398 MachineBasicBlock::iterator It = BB->end();
399 return getReg(V, BB, It);
400 }
401 unsigned getReg(Value *V, MachineBasicBlock *MBB,
402 MachineBasicBlock::iterator IPt);
Misha Brukman1013ef52004-07-21 20:09:08 +0000403
404 /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
405 /// is okay to use as an immediate argument to a certain binary operation
406 bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000407
408 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
409 /// that is to be statically allocated with the initial stack frame
410 /// adjustment.
411 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
412 };
413}
414
415/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
416/// instruction in the entry block, return it. Otherwise, return a null
417/// pointer.
418static AllocaInst *dyn_castFixedAlloca(Value *V) {
419 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
420 BasicBlock *BB = AI->getParent();
421 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
422 return AI;
423 }
424 return 0;
425}
426
427/// getReg - This method turns an LLVM value into a register number.
428///
429unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
430 MachineBasicBlock::iterator IPt) {
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000431 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattnera51e4f62004-07-18 18:45:01 +0000432 unsigned Reg = makeAnotherReg(V->getType());
433 copyConstantToRegister(MBB, IPt, C, Reg);
434 return Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000435 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
436 unsigned Reg = makeAnotherReg(V->getType());
437 unsigned FI = getFixedSizedAllocaFI(AI);
438 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
439 return Reg;
440 }
441
442 unsigned &Reg = RegMap[V];
443 if (Reg == 0) {
444 Reg = makeAnotherReg(V->getType());
445 RegMap[V] = Reg;
446 }
447
448 return Reg;
449}
450
Misha Brukman1013ef52004-07-21 20:09:08 +0000451/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
452/// is okay to use as an immediate argument to a certain binary operator.
453///
454/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
Misha Brukman47225442004-07-23 22:35:49 +0000455bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000456 ConstantSInt *Op1Cs;
457 ConstantUInt *Op1Cu;
458
459 // ADDI, Compare, and non-indexed Load take SIMM
Misha Brukman17a90002004-07-21 20:22:06 +0000460 bool cond1 = (Operator == 0)
461 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
Misha Brukman1013ef52004-07-21 20:09:08 +0000462 && (Op1Cs->getValue() <= 32767)
Misha Brukman17a90002004-07-21 20:22:06 +0000463 && (Op1Cs->getValue() >= -32768);
Misha Brukman1013ef52004-07-21 20:09:08 +0000464
465 // SUBI takes -SIMM since it is a mnemonic for ADDI
Misha Brukman17a90002004-07-21 20:22:06 +0000466 bool cond2 = (Operator == 1)
467 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
Misha Brukman1013ef52004-07-21 20:09:08 +0000468 && (Op1Cs->getValue() <= 32768)
Misha Brukman17a90002004-07-21 20:22:06 +0000469 && (Op1Cs->getValue() >= -32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000470
471 // ANDIo, ORI, and XORI take unsigned values
Misha Brukman17a90002004-07-21 20:22:06 +0000472 bool cond3 = (Operator >= 2)
Misha Brukman2ed17ca2004-07-22 15:58:04 +0000473 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
474 && (Op1Cs->getValue() >= 0)
Misha Brukman17a90002004-07-21 20:22:06 +0000475 && (Op1Cs->getValue() <= 32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000476
477 // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
Misha Brukman17a90002004-07-21 20:22:06 +0000478 bool cond4 = (Operator < 2)
479 && (Op1Cu = dyn_cast<ConstantUInt>(CI))
480 && (Op1Cu->getValue() <= 32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000481
482 // ANDIo, ORI, and XORI take UIMMs, so they can be larger
Misha Brukman17a90002004-07-21 20:22:06 +0000483 bool cond5 = (Operator >= 2)
484 && (Op1Cu = dyn_cast<ConstantUInt>(CI))
485 && (Op1Cu->getValue() <= 65535);
Misha Brukman1013ef52004-07-21 20:09:08 +0000486
487 if (cond1 || cond2 || cond3 || cond4 || cond5)
488 return true;
489
490 return false;
491}
492
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000493/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
494/// that is to be statically allocated with the initial stack frame
495/// adjustment.
496unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
497 // Already computed this?
498 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
499 if (I != AllocaMap.end() && I->first == AI) return I->second;
500
501 const Type *Ty = AI->getAllocatedType();
502 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
503 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
504 TySize *= CUI->getValue(); // Get total allocated size...
505 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
506
507 // Create a new stack object using the frame manager...
508 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
509 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
510 return FrameIdx;
511}
512
513
Misha Brukmanb097f212004-07-26 18:13:24 +0000514/// copyGlobalBaseToRegister - Output the instructions required to put the
515/// base address to use for accessing globals into a register.
516///
517void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
518 MachineBasicBlock::iterator IP,
519 unsigned R) {
520 if (!GlobalBaseInitialized) {
521 // Insert the set of GlobalBaseReg into the first MBB of the function
522 MachineBasicBlock &FirstMBB = F->front();
523 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
524 GlobalBaseReg = makeAnotherReg(Type::IntTy);
525 BuildMI(FirstMBB, MBBI, PPC32::MovePCtoLR, 0, GlobalBaseReg);
526 GlobalBaseInitialized = true;
527 }
528 // Emit our copy of GlobalBaseReg to the destination register in the
529 // current MBB
530 BuildMI(*MBB, IP, PPC32::OR, 2, R).addReg(GlobalBaseReg)
531 .addReg(GlobalBaseReg);
532}
533
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000534/// copyConstantToRegister - Output the instructions required to put the
535/// specified constant into the specified register.
536///
537void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
538 MachineBasicBlock::iterator IP,
539 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000540 if (C->getType()->isIntegral()) {
541 unsigned Class = getClassB(C->getType());
542
543 if (Class == cLong) {
544 // Copy the value into the register pair.
545 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman7e898c32004-07-20 00:41:46 +0000546
547 if (Val < (1ULL << 16)) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000548 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
549 BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addSImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000550 } else if (Val < (1ULL << 32)) {
551 unsigned Temp = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +0000552 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
553 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm((Val >> 16) & 0xFFFF);
554 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(Temp).addImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000555 } else if (Val < (1ULL << 48)) {
556 unsigned Temp = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +0000557 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm((Val >> 32) & 0xFFFF);
558 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm((Val >> 16) & 0xFFFF);
559 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(Temp).addImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000560 } else {
561 unsigned TempLo = makeAnotherReg(Type::IntTy);
562 unsigned TempHi = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +0000563 BuildMI(*MBB, IP, PPC32::LIS, 1, TempHi).addSImm((Val >> 48) & 0xFFFF);
564 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TempHi)
Misha Brukman7e898c32004-07-20 00:41:46 +0000565 .addImm((Val >> 32) & 0xFFFF);
Misha Brukman1013ef52004-07-21 20:09:08 +0000566 BuildMI(*MBB, IP, PPC32::LIS, 1, TempLo).addSImm((Val >> 16) & 0xFFFF);
567 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(TempLo)
568 .addImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000569 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000570 return;
571 }
572
573 assert(Class <= cInt && "Type not handled yet!");
574
575 if (C->getType() == Type::BoolTy) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000576 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000577 } else if (Class == cByte || Class == cShort) {
578 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukman1013ef52004-07-21 20:09:08 +0000579 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000580 } else {
581 ConstantInt *CI = cast<ConstantInt>(C);
582 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
583 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000584 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000585 } else {
586 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +0000587 BuildMI(*MBB, IP, PPC32::LIS, 1, TmpReg)
Misha Brukman1013ef52004-07-21 20:09:08 +0000588 .addSImm(CI->getRawValue() >> 16);
Misha Brukman911afde2004-06-25 14:50:41 +0000589 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
590 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000591 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000592 }
593 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000594 // We need to spill the constant to memory...
595 MachineConstantPool *CP = F->getConstantPool();
596 unsigned CPI = CP->getConstantPoolIndex(CFP);
597 const Type *Ty = CFP->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000598
Misha Brukmand18a31d2004-07-06 22:51:53 +0000599 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukmanfc879c32004-07-08 18:02:38 +0000600
Misha Brukmanb097f212004-07-26 18:13:24 +0000601 // Load addr of constant to reg; constant is located at base + distance
602 unsigned GlobalBase = makeAnotherReg(Type::IntTy);
Misha Brukmanfc879c32004-07-08 18:02:38 +0000603 unsigned Reg1 = makeAnotherReg(Type::IntTy);
604 unsigned Reg2 = makeAnotherReg(Type::IntTy);
Misha Brukmanb097f212004-07-26 18:13:24 +0000605 // Move value at base + distance into return reg
606 copyGlobalBaseToRegister(MBB, IP, GlobalBase);
607 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, Reg1).addReg(GlobalBase)
Misha Brukmanfc879c32004-07-08 18:02:38 +0000608 .addConstantPoolIndex(CPI);
Misha Brukmanec6319a2004-07-20 15:51:37 +0000609 BuildMI(*MBB, IP, PPC32::LOADLoDirect, 2, Reg2).addReg(Reg1)
Misha Brukmanfc879c32004-07-08 18:02:38 +0000610 .addConstantPoolIndex(CPI);
611
Misha Brukmand18a31d2004-07-06 22:51:53 +0000612 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukman1013ef52004-07-21 20:09:08 +0000613 BuildMI(*MBB, IP, LoadOpcode, 2, R).addSImm(0).addReg(Reg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000614 } else if (isa<ConstantPointerNull>(C)) {
615 // Copy zero (null pointer) to the register.
Misha Brukman1013ef52004-07-21 20:09:08 +0000616 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
Chris Lattner67910e12004-07-18 07:29:35 +0000617 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
Misha Brukmanb097f212004-07-26 18:13:24 +0000618 // GV is located at base + distance
619 unsigned GlobalBase = makeAnotherReg(Type::IntTy);
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000620 unsigned TmpReg = makeAnotherReg(GV->getType());
Misha Brukmanbf417a62004-07-20 20:43:05 +0000621 unsigned Opcode = (GV->hasWeakLinkage() || GV->isExternal()) ?
622 PPC32::LOADLoIndirect : PPC32::LOADLoDirect;
Misha Brukmanb097f212004-07-26 18:13:24 +0000623
624 // Move value at base + distance into return reg
625 copyGlobalBaseToRegister(MBB, IP, GlobalBase);
626 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, TmpReg).addReg(GlobalBase)
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000627 .addGlobalAddress(GV);
Misha Brukmanec6319a2004-07-20 15:51:37 +0000628 BuildMI(*MBB, IP, Opcode, 2, R).addReg(TmpReg).addGlobalAddress(GV);
Misha Brukmane2eceb52004-07-23 16:08:20 +0000629
630 // Add the GV to the list of things whose addresses have been taken.
631 TM.AddressTaken.insert(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000632 } else {
Chris Lattner76e2df22004-07-15 02:14:30 +0000633 std::cerr << "Offending constant: " << *C << "\n";
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000634 assert(0 && "Type not handled yet!");
635 }
636}
637
638/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
639/// the stack into virtual registers.
640///
641/// FIXME: When we can calculate which args are coming in via registers
642/// source them from there instead.
643void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000644 unsigned ArgOffset = 20; // FIXME why is this not 24?
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000645 unsigned GPR_remaining = 8;
646 unsigned FPR_remaining = 13;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000647 unsigned GPR_idx = 0, FPR_idx = 0;
648 static const unsigned GPR[] = {
649 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
650 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
651 };
652 static const unsigned FPR[] = {
Misha Brukman32caa8d2004-07-14 17:57:04 +0000653 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7,
Misha Brukman2834a4d2004-07-07 20:07:22 +0000654 PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13
Misha Brukmand18a31d2004-07-06 22:51:53 +0000655 };
Misha Brukman422791f2004-06-21 17:41:12 +0000656
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000657 MachineFrameInfo *MFI = F->getFrameInfo();
Misha Brukmand18a31d2004-07-06 22:51:53 +0000658
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000659 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
660 bool ArgLive = !I->use_empty();
661 unsigned Reg = ArgLive ? getReg(*I) : 0;
662 int FI; // Frame object index
663
664 switch (getClassB(I->getType())) {
665 case cByte:
666 if (ArgLive) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000667 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000668 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000669 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000670 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
671 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000672 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000673 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000674 }
675 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000676 break;
677 case cShort:
678 if (ArgLive) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000679 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000680 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000681 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000682 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
683 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000684 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000685 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000686 }
687 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000688 break;
689 case cInt:
690 if (ArgLive) {
691 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000692 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000693 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000694 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
695 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000696 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000697 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000698 }
699 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000700 break;
701 case cLong:
702 if (ArgLive) {
703 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000704 if (GPR_remaining > 1) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000705 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
706 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
Misha Brukman313efcb2004-07-09 15:45:07 +0000707 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
708 .addReg(GPR[GPR_idx]);
709 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
710 .addReg(GPR[GPR_idx+1]);
Misha Brukman422791f2004-06-21 17:41:12 +0000711 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +0000712 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
713 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
Misha Brukman422791f2004-06-21 17:41:12 +0000714 }
715 }
Misha Brukman1013ef52004-07-21 20:09:08 +0000716 // longs require 4 additional bytes and use 2 GPRs
717 ArgOffset += 4;
Misha Brukman422791f2004-06-21 17:41:12 +0000718 if (GPR_remaining > 1) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000719 GPR_remaining--;
Misha Brukman422791f2004-06-21 17:41:12 +0000720 GPR_idx++;
721 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000722 break;
Misha Brukman7e898c32004-07-20 00:41:46 +0000723 case cFP32:
724 if (ArgLive) {
725 FI = MFI->CreateFixedObject(4, ArgOffset);
726
Misha Brukman422791f2004-06-21 17:41:12 +0000727 if (FPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000728 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000729 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
730 FPR_remaining--;
731 FPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000732 } else {
Misha Brukman7e898c32004-07-20 00:41:46 +0000733 addFrameReference(BuildMI(BB, PPC32::LFS, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000734 }
735 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000736 break;
737 case cFP64:
738 if (ArgLive) {
739 FI = MFI->CreateFixedObject(8, ArgOffset);
740
741 if (FPR_remaining > 0) {
742 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
743 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
744 FPR_remaining--;
745 FPR_idx++;
746 } else {
747 addFrameReference(BuildMI(BB, PPC32::LFD, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000748 }
749 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000750
751 // doubles require 4 additional bytes and use 2 GPRs of param space
752 ArgOffset += 4;
753 if (GPR_remaining > 0) {
754 GPR_remaining--;
755 GPR_idx++;
756 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000757 break;
758 default:
759 assert(0 && "Unhandled argument type!");
760 }
761 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000762 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000763 GPR_remaining--; // uses up 2 GPRs
764 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000765 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000766 }
767
768 // If the function takes variable number of arguments, add a frame offset for
769 // the start of the first vararg value... this is used to expand
770 // llvm.va_start.
771 if (Fn.getFunctionType()->isVarArg())
Misha Brukmanb097f212004-07-26 18:13:24 +0000772 VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000773}
774
775
776/// SelectPHINodes - Insert machine code to generate phis. This is tricky
777/// because we have to generate our sources into the source basic blocks, not
778/// the current one.
779///
780void ISel::SelectPHINodes() {
781 const TargetInstrInfo &TII = *TM.getInstrInfo();
782 const Function &LF = *F->getFunction(); // The LLVM function...
783 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
784 const BasicBlock *BB = I;
785 MachineBasicBlock &MBB = *MBBMap[I];
786
787 // Loop over all of the PHI nodes in the LLVM basic block...
788 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
789 for (BasicBlock::const_iterator I = BB->begin();
790 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
791
792 // Create a new machine instr PHI node, and insert it.
793 unsigned PHIReg = getReg(*PN);
794 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
795 PPC32::PHI, PN->getNumOperands(), PHIReg);
796
797 MachineInstr *LongPhiMI = 0;
798 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
799 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
800 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
801
802 // PHIValues - Map of blocks to incoming virtual registers. We use this
803 // so that we only initialize one incoming value for a particular block,
804 // even if the block has multiple entries in the PHI node.
805 //
806 std::map<MachineBasicBlock*, unsigned> PHIValues;
807
808 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Misha Brukman313efcb2004-07-09 15:45:07 +0000809 MachineBasicBlock *PredMBB = 0;
810 for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
811 PE = MBB.pred_end (); PI != PE; ++PI)
812 if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
813 PredMBB = *PI;
814 break;
815 }
816 assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
817
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000818 unsigned ValReg;
819 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
820 PHIValues.lower_bound(PredMBB);
821
822 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
823 // We already inserted an initialization of the register for this
824 // predecessor. Recycle it.
825 ValReg = EntryIt->second;
Misha Brukman47225442004-07-23 22:35:49 +0000826 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000827 // Get the incoming value into a virtual register.
828 //
829 Value *Val = PN->getIncomingValue(i);
830
831 // If this is a constant or GlobalValue, we may have to insert code
832 // into the basic block to compute it into a virtual register.
833 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
834 isa<GlobalValue>(Val)) {
835 // Simple constants get emitted at the end of the basic block,
836 // before any terminator instructions. We "know" that the code to
837 // move a constant into a register will never clobber any flags.
838 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
839 } else {
840 // Because we don't want to clobber any values which might be in
841 // physical registers with the computation of this constant (which
842 // might be arbitrarily complex if it is a constant expression),
843 // just insert the computation at the top of the basic block.
844 MachineBasicBlock::iterator PI = PredMBB->begin();
Misha Brukman47225442004-07-23 22:35:49 +0000845
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000846 // Skip over any PHI nodes though!
847 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
848 ++PI;
Misha Brukman47225442004-07-23 22:35:49 +0000849
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000850 ValReg = getReg(Val, PredMBB, PI);
851 }
852
853 // Remember that we inserted a value for this PHI for this predecessor
854 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
855 }
856
857 PhiMI->addRegOperand(ValReg);
858 PhiMI->addMachineBasicBlockOperand(PredMBB);
859 if (LongPhiMI) {
860 LongPhiMI->addRegOperand(ValReg+1);
861 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
862 }
863 }
864
865 // Now that we emitted all of the incoming values for the PHI node, make
866 // sure to reposition the InsertPoint after the PHI that we just added.
867 // This is needed because we might have inserted a constant into this
868 // block, right after the PHI's which is before the old insert point!
869 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
870 ++PHIInsertPoint;
871 }
872 }
873}
874
875
876// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
877// it into the conditional branch or select instruction which is the only user
878// of the cc instruction. This is the case if the conditional branch is the
879// only user of the setcc, and if the setcc is in the same basic block as the
Misha Brukman1013ef52004-07-21 20:09:08 +0000880// conditional branch.
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000881//
882static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
883 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
884 if (SCI->hasOneUse()) {
885 Instruction *User = cast<Instruction>(SCI->use_back());
886 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
Misha Brukmanbebde752004-07-16 21:06:24 +0000887 SCI->getParent() == User->getParent())
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000888 return SCI;
889 }
890 return 0;
891}
892
Misha Brukmanb097f212004-07-26 18:13:24 +0000893
894// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
895// the load or store instruction that is the only user of the GEP.
896//
897static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
898 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
899 if (GEPI->hasOneUse()) {
900 Instruction *User = cast<Instruction>(GEPI->use_back());
901 if (isa<StoreInst>(User) &&
902 GEPI->getParent() == User->getParent() &&
903 User->getOperand(0) != GEPI &&
904 User->getOperand(1) == GEPI) {
905 ++GEPFolds;
906 return GEPI;
907 }
908 if (isa<LoadInst>(User) &&
909 GEPI->getParent() == User->getParent() &&
910 User->getOperand(0) == GEPI) {
911 ++GEPFolds;
912 return GEPI;
913 }
914 }
915 return 0;
916}
917
918
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000919// Return a fixed numbering for setcc instructions which does not depend on the
920// order of the opcodes.
921//
922static unsigned getSetCCNumber(unsigned Opcode) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000923 switch (Opcode) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000924 default: assert(0 && "Unknown setcc instruction!");
925 case Instruction::SetEQ: return 0;
926 case Instruction::SetNE: return 1;
927 case Instruction::SetLT: return 2;
928 case Instruction::SetGE: return 3;
929 case Instruction::SetGT: return 4;
930 case Instruction::SetLE: return 5;
931 }
932}
933
Misha Brukmane9c65512004-07-06 15:32:44 +0000934static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
935 switch (Opcode) {
936 default: assert(0 && "Unknown setcc instruction!");
937 case Instruction::SetEQ: return PPC32::BEQ;
938 case Instruction::SetNE: return PPC32::BNE;
939 case Instruction::SetLT: return PPC32::BLT;
940 case Instruction::SetGE: return PPC32::BGE;
941 case Instruction::SetGT: return PPC32::BGT;
942 case Instruction::SetLE: return PPC32::BLE;
943 }
944}
945
946static unsigned invertPPCBranchOpcode(unsigned Opcode) {
947 switch (Opcode) {
948 default: assert(0 && "Unknown PPC32 branch opcode!");
949 case PPC32::BEQ: return PPC32::BNE;
950 case PPC32::BNE: return PPC32::BEQ;
951 case PPC32::BLT: return PPC32::BGE;
952 case PPC32::BGE: return PPC32::BLT;
953 case PPC32::BGT: return PPC32::BLE;
954 case PPC32::BLE: return PPC32::BGT;
955 }
956}
957
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000958/// emitUCOM - emits an unordered FP compare.
959void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
960 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000961 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000962}
963
Misha Brukmanbebde752004-07-16 21:06:24 +0000964/// EmitComparison - emits a comparison of the two operands, returning the
965/// extended setcc code to use. The result is in CR0.
966///
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000967unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
968 MachineBasicBlock *MBB,
969 MachineBasicBlock::iterator IP) {
970 // The arguments are already supposed to be of the same type.
971 const Type *CompTy = Op0->getType();
972 unsigned Class = getClassB(CompTy);
973 unsigned Op0r = getReg(Op0, MBB, IP);
Misha Brukman47225442004-07-23 22:35:49 +0000974
Misha Brukmanb097f212004-07-26 18:13:24 +0000975 // Before we do a comparison, we have to make sure that we're truncating our
976 // registers appropriately.
977 if (Class == cByte) {
978 unsigned TmpReg = makeAnotherReg(CompTy);
979 if (CompTy->isSigned())
980 BuildMI(*MBB, IP, PPC32::EXTSB, 1, TmpReg).addReg(Op0r);
981 else
982 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
983 .addImm(24).addImm(31);
984 Op0r = TmpReg;
985 } else if (Class == cShort) {
986 unsigned TmpReg = makeAnotherReg(CompTy);
987 if (CompTy->isSigned())
988 BuildMI(*MBB, IP, PPC32::EXTSH, 1, TmpReg).addReg(Op0r);
989 else
990 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
991 .addImm(16).addImm(31);
992 Op0r = TmpReg;
993 }
994
Misha Brukman1013ef52004-07-21 20:09:08 +0000995 // Use crand for lt, gt and crandc for le, ge
996 unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC32::CRAND : PPC32::CRANDC;
997 // ? cr1[lt] : cr1[gt]
998 unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 4 : 5;
999 // ? cr0[lt] : cr0[gt]
1000 unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1;
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001001 unsigned Opcode = CompTy->isSigned() ? PPC32::CMPW : PPC32::CMPLW;
1002 unsigned OpcodeImm = CompTy->isSigned() ? PPC32::CMPWI : PPC32::CMPLWI;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001003
1004 // Special case handling of: cmp R, i
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001005 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001006 if (Class == cByte || Class == cShort || Class == cInt) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001007 unsigned Op1v = CI->getRawValue() & 0xFFFF;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001008
Misha Brukman1013ef52004-07-21 20:09:08 +00001009 // Treat compare like ADDI for the purposes of immediate suitability
1010 if (canUseAsImmediateForOpcode(CI, 0)) {
1011 BuildMI(*MBB, IP, OpcodeImm, 2, PPC32::CR0).addReg(Op0r).addSImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +00001012 } else {
1013 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00001014 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +00001015 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001016 return OpNum;
1017 } else {
1018 assert(Class == cLong && "Unknown integer class!");
1019 unsigned LowCst = CI->getRawValue();
1020 unsigned HiCst = CI->getRawValue() >> 32;
1021 if (OpNum < 2) { // seteq, setne
Misha Brukman1013ef52004-07-21 20:09:08 +00001022 unsigned LoLow = makeAnotherReg(Type::IntTy);
1023 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1024 unsigned HiLow = makeAnotherReg(Type::IntTy);
1025 unsigned HiTmp = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001026 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Misha Brukman47225442004-07-23 22:35:49 +00001027
Misha Brukman1013ef52004-07-21 20:09:08 +00001028 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r+1)
1029 .addImm(LowCst & 0xFFFF);
1030 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
1031 .addImm(LowCst >> 16);
1032 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r)
1033 .addImm(HiCst & 0xFFFF);
1034 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
1035 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001036 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001037 return OpNum;
1038 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001039 unsigned ConstReg = makeAnotherReg(CompTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00001040 copyConstantToRegister(MBB, IP, CI, ConstReg);
Misha Brukman47225442004-07-23 22:35:49 +00001041
Misha Brukman1013ef52004-07-21 20:09:08 +00001042 // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001043 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r)
Misha Brukmanbebde752004-07-16 21:06:24 +00001044 .addReg(ConstReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001045 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR1).addReg(Op0r+1)
Misha Brukman1013ef52004-07-21 20:09:08 +00001046 .addReg(ConstReg+1);
1047 BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
1048 BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
1049 .addImm(2);
Misha Brukman422791f2004-06-21 17:41:12 +00001050 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001051 }
1052 }
1053 }
1054
1055 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00001056
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001057 switch (Class) {
1058 default: assert(0 && "Unknown type class!");
1059 case cByte:
1060 case cShort:
1061 case cInt:
Misha Brukman1013ef52004-07-21 20:09:08 +00001062 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001063 break;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001064
Misha Brukman7e898c32004-07-20 00:41:46 +00001065 case cFP32:
1066 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001067 emitUCOM(MBB, IP, Op0r, Op1r);
1068 break;
1069
1070 case cLong:
1071 if (OpNum < 2) { // seteq, setne
1072 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1073 unsigned HiTmp = makeAnotherReg(Type::IntTy);
1074 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001075 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r);
1076 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001077 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001078 break; // Allow the sete or setne to be generated from flags set by OR
1079 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001080 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1081 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001082
1083 // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001084 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
1085 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001086 BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
1087 BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
1088 .addImm(2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001089 return OpNum;
1090 }
1091 }
1092 return OpNum;
1093}
1094
Misha Brukmand18a31d2004-07-06 22:51:53 +00001095/// visitSetCondInst - emit code to calculate the condition via
1096/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001097///
1098void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001099 if (canFoldSetCCIntoBranchOrSelect(&I))
Misha Brukmane9c65512004-07-06 15:32:44 +00001100 return;
Misha Brukmanbebde752004-07-16 21:06:24 +00001101
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001102 unsigned DestReg = getReg(I);
Misha Brukman2834a4d2004-07-07 20:07:22 +00001103 unsigned OpNum = I.getOpcode();
Misha Brukman425ff242004-07-01 21:34:10 +00001104 const Type *Ty = I.getOperand (0)->getType();
Misha Brukman47225442004-07-23 22:35:49 +00001105
Misha Brukmand18a31d2004-07-06 22:51:53 +00001106 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
Misha Brukman47225442004-07-23 22:35:49 +00001107
Misha Brukmand18a31d2004-07-06 22:51:53 +00001108 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
Misha Brukman425ff242004-07-01 21:34:10 +00001109 MachineBasicBlock *thisMBB = BB;
1110 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001111 ilist<MachineBasicBlock>::iterator It = BB;
1112 ++It;
1113
Misha Brukman425ff242004-07-01 21:34:10 +00001114 // thisMBB:
1115 // ...
1116 // cmpTY cr0, r1, r2
1117 // bCC copy1MBB
1118 // b copy0MBB
1119
1120 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1121 // if we could insert other, non-terminator instructions after the
1122 // bCC. But MBB->getFirstTerminator() can't understand this.
1123 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001124 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001125 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1126 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001127 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001128 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
Misha Brukman1013ef52004-07-21 20:09:08 +00001129 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1130 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001131 // Update machine-CFG edges
1132 BB->addSuccessor(copy1MBB);
1133 BB->addSuccessor(copy0MBB);
1134
Misha Brukman425ff242004-07-01 21:34:10 +00001135 // copy1MBB:
1136 // %TrueValue = li 1
Misha Brukmane9c65512004-07-06 15:32:44 +00001137 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +00001138 BB = copy1MBB;
Misha Brukmane2eceb52004-07-23 16:08:20 +00001139 unsigned TrueValue = makeAnotherReg(I.getType());
Misha Brukman1013ef52004-07-21 20:09:08 +00001140 BuildMI(BB, PPC32::LI, 1, TrueValue).addSImm(1);
Misha Brukman425ff242004-07-01 21:34:10 +00001141 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1142 // Update machine-CFG edges
1143 BB->addSuccessor(sinkMBB);
1144
Misha Brukman1013ef52004-07-21 20:09:08 +00001145 // copy0MBB:
1146 // %FalseValue = li 0
1147 // fallthrough
1148 BB = copy0MBB;
1149 unsigned FalseValue = makeAnotherReg(I.getType());
1150 BuildMI(BB, PPC32::LI, 1, FalseValue).addSImm(0);
1151 // Update machine-CFG edges
1152 BB->addSuccessor(sinkMBB);
1153
Misha Brukman425ff242004-07-01 21:34:10 +00001154 // sinkMBB:
1155 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1156 // ...
1157 BB = sinkMBB;
1158 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1159 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001160}
1161
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001162void ISel::visitSelectInst(SelectInst &SI) {
1163 unsigned DestReg = getReg(SI);
1164 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001165 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1166 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001167}
1168
1169/// emitSelect - Common code shared between visitSelectInst and the constant
1170/// expression support.
1171/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
1172/// no select instruction. FSEL only works for comparisons against zero.
1173void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1174 MachineBasicBlock::iterator IP,
1175 Value *Cond, Value *TrueVal, Value *FalseVal,
1176 unsigned DestReg) {
1177 unsigned SelectClass = getClassB(TrueVal->getType());
Misha Brukman7e898c32004-07-20 00:41:46 +00001178 unsigned Opcode;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001179
Misha Brukmanbebde752004-07-16 21:06:24 +00001180 // See if we can fold the setcc into the select instruction, or if we have
1181 // to get the register of the Cond value
Misha Brukmanbebde752004-07-16 21:06:24 +00001182 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1183 // We successfully folded the setcc into the select instruction.
Misha Brukmanbebde752004-07-16 21:06:24 +00001184 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukman47225442004-07-23 22:35:49 +00001185 OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
Misha Brukmanbebde752004-07-16 21:06:24 +00001186 Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
1187 } else {
1188 unsigned CondReg = getReg(Cond, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00001189 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(CondReg).addSImm(0);
Misha Brukmanbebde752004-07-16 21:06:24 +00001190 Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001191 }
Misha Brukmanbebde752004-07-16 21:06:24 +00001192
1193 // thisMBB:
1194 // ...
1195 // cmpTY cr0, r1, r2
1196 // bCC copy1MBB
1197 // b copy0MBB
1198
1199 MachineBasicBlock *thisMBB = BB;
1200 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001201 ilist<MachineBasicBlock>::iterator It = BB;
1202 ++It;
Misha Brukmanbebde752004-07-16 21:06:24 +00001203
1204 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1205 // if we could insert other, non-terminator instructions after the
1206 // bCC. But MBB->getFirstTerminator() can't understand this.
1207 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001208 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001209 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1210 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001211 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001212 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
Misha Brukman1013ef52004-07-21 20:09:08 +00001213 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1214 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001215 // Update machine-CFG edges
1216 BB->addSuccessor(copy1MBB);
1217 BB->addSuccessor(copy0MBB);
1218
Misha Brukmanbebde752004-07-16 21:06:24 +00001219 // copy1MBB:
1220 // %TrueValue = ...
1221 // b sinkMBB
1222 BB = copy1MBB;
1223 unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
1224 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1225 // Update machine-CFG edges
1226 BB->addSuccessor(sinkMBB);
1227
Misha Brukman1013ef52004-07-21 20:09:08 +00001228 // copy0MBB:
1229 // %FalseValue = ...
1230 // fallthrough
1231 BB = copy0MBB;
1232 unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
1233 // Update machine-CFG edges
1234 BB->addSuccessor(sinkMBB);
1235
Misha Brukmanbebde752004-07-16 21:06:24 +00001236 // sinkMBB:
1237 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1238 // ...
1239 BB = sinkMBB;
1240 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1241 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukmana31f1f72004-07-21 20:30:18 +00001242 // For a register pair representing a long value, define the second reg
1243 if (getClass(TrueVal->getType()) == cLong)
1244 BuildMI(BB, PPC32::LI, 1, DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001245 return;
1246}
1247
1248
1249
1250/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1251/// operand, in the specified target register.
1252///
1253void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1254 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1255
1256 Value *Val = VR.Val;
1257 const Type *Ty = VR.Ty;
1258 if (Val) {
1259 if (Constant *C = dyn_cast<Constant>(Val)) {
1260 Val = ConstantExpr::getCast(C, Type::IntTy);
1261 Ty = Type::IntTy;
1262 }
1263
Misha Brukman2fec9902004-06-21 20:22:03 +00001264 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001265 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1266 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1267
1268 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001269 BuildMI(BB, PPC32::LI, 1, targetReg).addSImm(TheVal);
Misha Brukman422791f2004-06-21 17:41:12 +00001270 } else {
1271 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001272 BuildMI(BB, PPC32::LIS, 1, TmpReg).addSImm(TheVal >> 16);
Misha Brukman2fec9902004-06-21 20:22:03 +00001273 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1274 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001275 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001276 return;
1277 }
1278 }
1279
1280 // Make sure we have the register number for this value...
1281 unsigned Reg = Val ? getReg(Val) : VR.Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001282 switch (getClassB(Ty)) {
1283 case cByte:
1284 // Extend value into target register (8->32)
1285 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001286 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1287 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001288 else
1289 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1290 break;
1291 case cShort:
1292 // Extend value into target register (16->32)
1293 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001294 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1295 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001296 else
1297 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1298 break;
1299 case cInt:
1300 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001301 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001302 break;
1303 default:
1304 assert(0 && "Unpromotable operand class in promote32");
1305 }
1306}
1307
Misha Brukman2fec9902004-06-21 20:22:03 +00001308/// visitReturnInst - implemented with BLR
1309///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001310void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001311 // Only do the processing if this is a non-void return
1312 if (I.getNumOperands() > 0) {
1313 Value *RetVal = I.getOperand(0);
1314 switch (getClassB(RetVal->getType())) {
1315 case cByte: // integral return values: extend or move into r3 and return
1316 case cShort:
1317 case cInt:
1318 promote32(PPC32::R3, ValueRecord(RetVal));
1319 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001320 case cFP32:
1321 case cFP64: { // Floats & Doubles: Return in f1
Misha Brukmand47bbf72004-06-25 19:04:27 +00001322 unsigned RetReg = getReg(RetVal);
1323 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1324 break;
1325 }
1326 case cLong: {
1327 unsigned RetReg = getReg(RetVal);
1328 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1329 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1330 break;
1331 }
1332 default:
1333 visitInstruction(I);
1334 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001335 }
1336 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1337}
1338
1339// getBlockAfter - Return the basic block which occurs lexically after the
1340// specified one.
1341static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1342 Function::iterator I = BB; ++I; // Get iterator to next block
1343 return I != BB->getParent()->end() ? &*I : 0;
1344}
1345
1346/// visitBranchInst - Handle conditional and unconditional branches here. Note
1347/// that since code layout is frozen at this point, that if we are trying to
1348/// jump to a block that is the immediate successor of the current block, we can
1349/// just make a fall-through (but we don't currently).
1350///
1351void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001352 // Update machine-CFG edges
Misha Brukmane2eceb52004-07-23 16:08:20 +00001353 BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001354 if (BI.isConditional())
Misha Brukmane2eceb52004-07-23 16:08:20 +00001355 BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001356
1357 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
Misha Brukmane9c65512004-07-06 15:32:44 +00001358
Misha Brukman2fec9902004-06-21 20:22:03 +00001359 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmane9c65512004-07-06 15:32:44 +00001360 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001361 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1362 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001363 }
1364
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001365 // See if we can fold the setcc into the branch itself...
1366 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1367 if (SCI == 0) {
1368 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1369 // computed some other way...
1370 unsigned condReg = getReg(BI.getCondition());
Misha Brukmane9c65512004-07-06 15:32:44 +00001371 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(condReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00001372 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001373 if (BI.getSuccessor(1) == NextBB) {
1374 if (BI.getSuccessor(0) != NextBB)
Misha Brukmane9c65512004-07-06 15:32:44 +00001375 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001376 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001377 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001378 BuildMI(BB, PPC32::BEQ, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001379 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001380
1381 if (BI.getSuccessor(0) != NextBB)
1382 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1383 }
1384 return;
1385 }
1386
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001387 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukmane9c65512004-07-06 15:32:44 +00001388 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001389 MachineBasicBlock::iterator MII = BB->end();
1390 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001391
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001392 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001393 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001394 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001395 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001396 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001397 } else {
1398 // Change to the inverse condition...
1399 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001400 Opcode = invertPPCBranchOpcode(Opcode);
1401 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukman2fec9902004-06-21 20:22:03 +00001402 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001403 }
1404 }
1405}
1406
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001407/// doCall - This emits an abstract call instruction, setting up the arguments
1408/// and the return value as appropriate. For the actual function call itself,
1409/// it inserts the specified CallMI instruction into the stream.
1410///
1411/// FIXME: See Documentation at the following URL for "correct" behavior
1412/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1413void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +00001414 const std::vector<ValueRecord> &Args, bool isVarArg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001415 // Count how many bytes are to be pushed on the stack...
1416 unsigned NumBytes = 0;
1417
1418 if (!Args.empty()) {
1419 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1420 switch (getClassB(Args[i].Ty)) {
1421 case cByte: case cShort: case cInt:
1422 NumBytes += 4; break;
1423 case cLong:
1424 NumBytes += 8; break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001425 case cFP32:
1426 NumBytes += 4; break;
1427 case cFP64:
1428 NumBytes += 8; break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001429 break;
1430 default: assert(0 && "Unknown class!");
1431 }
1432
1433 // Adjust the stack pointer for the new arguments...
Misha Brukman1013ef52004-07-21 20:09:08 +00001434 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addSImm(NumBytes);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001435
1436 // Arguments go on the stack in reverse order, as specified by the ABI.
Misha Brukman7e898c32004-07-20 00:41:46 +00001437 // Offset to the paramater area on the stack is 24.
1438 unsigned ArgOffset = 24;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001439 int GPR_remaining = 8, FPR_remaining = 13;
Misha Brukmanfc879c32004-07-08 18:02:38 +00001440 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001441 static const unsigned GPR[] = {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001442 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1443 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1444 };
Misha Brukmand18a31d2004-07-06 22:51:53 +00001445 static const unsigned FPR[] = {
Misha Brukman2834a4d2004-07-07 20:07:22 +00001446 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6,
1447 PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12,
1448 PPC32::F13
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001449 };
Misha Brukman422791f2004-06-21 17:41:12 +00001450
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001451 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1452 unsigned ArgReg;
1453 switch (getClassB(Args[i].Ty)) {
1454 case cByte:
1455 case cShort:
1456 // Promote arg to 32 bits wide into a temporary register...
1457 ArgReg = makeAnotherReg(Type::UIntTy);
1458 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001459
1460 // Reg or stack?
1461 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001462 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001463 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001464 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukmanb097f212004-07-26 18:13:24 +00001465 }
1466 if (GPR_remaining <= 0 || isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001467 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001468 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001469 }
1470 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001471 case cInt:
1472 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1473
Misha Brukman422791f2004-06-21 17:41:12 +00001474 // Reg or stack?
1475 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001476 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001477 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001478 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukmanb097f212004-07-26 18:13:24 +00001479 }
1480 if (GPR_remaining <= 0 || isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001481 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001482 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001483 }
1484 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001485 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001486 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001487
Misha Brukmanec6319a2004-07-20 15:51:37 +00001488 // Reg or stack? Note that PPC calling conventions state that long args
1489 // are passed rN = hi, rN+1 = lo, opposite of LLVM.
Misha Brukman422791f2004-06-21 17:41:12 +00001490 if (GPR_remaining > 1) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001491 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanec6319a2004-07-20 15:51:37 +00001492 .addReg(ArgReg);
Misha Brukman1013ef52004-07-21 20:09:08 +00001493 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
1494 .addReg(ArgReg+1);
Misha Brukman7e898c32004-07-20 00:41:46 +00001495 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1496 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
Misha Brukmanb097f212004-07-26 18:13:24 +00001497 }
1498 if (GPR_remaining <= 1 || isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001499 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001500 .addReg(PPC32::R1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001501 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001502 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001503 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001504
1505 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001506 GPR_remaining -= 1; // uses up 2 GPRs
1507 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001508 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001509 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001510 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman7e898c32004-07-20 00:41:46 +00001511 // Reg or stack?
1512 if (FPR_remaining > 0) {
1513 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1514 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1515 FPR_remaining--;
1516 FPR_idx++;
1517
1518 // If this is a vararg function, and there are GPRs left, also
1519 // pass the float in an int. Otherwise, put it on the stack.
1520 if (isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001521 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001522 .addReg(PPC32::R1);
1523 if (GPR_remaining > 0) {
1524 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx])
Misha Brukman1013ef52004-07-21 20:09:08 +00001525 .addSImm(ArgOffset).addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001526 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1527 }
Misha Brukman1916bf92004-06-24 21:56:15 +00001528 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001529 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001530 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001531 .addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001532 }
1533 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001534 case cFP64:
1535 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1536 // Reg or stack?
1537 if (FPR_remaining > 0) {
1538 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1539 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1540 FPR_remaining--;
1541 FPR_idx++;
1542 // For vararg functions, must pass doubles via int regs as well
1543 if (isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001544 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001545 .addReg(PPC32::R1);
1546
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001547 // Doubles can be split across reg + stack for varargs
1548 if (GPR_remaining > 0) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001549 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001550 .addReg(PPC32::R1);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001551 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1552 }
1553 if (GPR_remaining > 1) {
Misha Brukman7e898c32004-07-20 00:41:46 +00001554 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx+1])
Misha Brukman1013ef52004-07-21 20:09:08 +00001555 .addSImm(ArgOffset+4).addReg(PPC32::R1);
Misha Brukman7e898c32004-07-20 00:41:46 +00001556 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
1557 }
1558 }
1559 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001560 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001561 .addReg(PPC32::R1);
1562 }
1563 // Doubles use 8 bytes, and 2 GPRs worth of param space
1564 ArgOffset += 4;
1565 GPR_remaining--;
1566 GPR_idx++;
1567 break;
1568
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001569 default: assert(0 && "Unknown class!");
1570 }
1571 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001572 GPR_remaining--;
1573 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001574 }
1575 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001576 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001577 }
1578
1579 BB->push_back(CallMI);
Misha Brukman1013ef52004-07-21 20:09:08 +00001580 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addSImm(NumBytes);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001581
1582 // If there is a return value, scavenge the result from the location the call
1583 // leaves it in...
1584 //
1585 if (Ret.Ty != Type::VoidTy) {
1586 unsigned DestClass = getClassB(Ret.Ty);
1587 switch (DestClass) {
1588 case cByte:
1589 case cShort:
1590 case cInt:
1591 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001592 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001593 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001594 case cFP32: // Floating-point return values live in f1
1595 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001596 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1597 break;
Misha Brukmanec6319a2004-07-20 15:51:37 +00001598 case cLong: // Long values are in r3 hi:r4 lo
Misha Brukman1013ef52004-07-21 20:09:08 +00001599 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1600 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001601 break;
1602 default: assert(0 && "Unknown class!");
1603 }
1604 }
1605}
1606
1607
1608/// visitCallInst - Push args on stack and do a procedure call instruction.
1609void ISel::visitCallInst(CallInst &CI) {
1610 MachineInstr *TheCall;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001611 Function *F = CI.getCalledFunction();
1612 if (F) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001613 // Is it an intrinsic function call?
1614 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1615 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1616 return;
1617 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001618 // Emit a CALL instruction with PC-relative displacement.
1619 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
Misha Brukmane2eceb52004-07-23 16:08:20 +00001620 // Add it to the set of functions called to be used by the Printer
1621 TM.CalledFunctions.insert(F);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001622 } else { // Emit an indirect call through the CTR
1623 unsigned Reg = getReg(CI.getCalledValue());
Misha Brukman7e898c32004-07-20 00:41:46 +00001624 BuildMI(BB, PPC32::MTCTR, 1).addReg(Reg);
1625 TheCall = BuildMI(PPC32::CALLindirect, 2).addZImm(20).addZImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001626 }
1627
1628 std::vector<ValueRecord> Args;
1629 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1630 Args.push_back(ValueRecord(CI.getOperand(i)));
1631
1632 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001633 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1634 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001635}
1636
1637
1638/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1639///
1640static Value *dyncastIsNan(Value *V) {
1641 if (CallInst *CI = dyn_cast<CallInst>(V))
1642 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001643 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001644 return CI->getOperand(1);
1645 return 0;
1646}
1647
1648/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1649/// or's whos operands are all calls to the isnan predicate.
1650static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1651 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1652
1653 // Check all uses, which will be or's of isnans if this predicate is true.
1654 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1655 Instruction *I = cast<Instruction>(*UI);
1656 if (I->getOpcode() != Instruction::Or) return false;
1657 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1658 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1659 }
1660
1661 return true;
1662}
1663
1664/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1665/// function, lowering any calls to unknown intrinsic functions into the
1666/// equivalent LLVM code.
1667///
1668void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1669 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1670 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1671 if (CallInst *CI = dyn_cast<CallInst>(I++))
1672 if (Function *F = CI->getCalledFunction())
1673 switch (F->getIntrinsicID()) {
1674 case Intrinsic::not_intrinsic:
1675 case Intrinsic::vastart:
1676 case Intrinsic::vacopy:
1677 case Intrinsic::vaend:
1678 case Intrinsic::returnaddress:
1679 case Intrinsic::frameaddress:
Misha Brukmanb097f212004-07-26 18:13:24 +00001680 // FIXME: should lower these ourselves
Misha Brukmana2916ce2004-06-21 17:58:36 +00001681 // case Intrinsic::isunordered:
Misha Brukmanb097f212004-07-26 18:13:24 +00001682 // case Intrinsic::memcpy: -> doCall(). system memcpy almost
1683 // guaranteed to be faster than anything we generate ourselves
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001684 // We directly implement these intrinsics
1685 break;
1686 case Intrinsic::readio: {
1687 // On PPC, memory operations are in-order. Lower this intrinsic
1688 // into a volatile load.
1689 Instruction *Before = CI->getPrev();
1690 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1691 CI->replaceAllUsesWith(LI);
1692 BB->getInstList().erase(CI);
1693 break;
1694 }
1695 case Intrinsic::writeio: {
1696 // On PPC, memory operations are in-order. Lower this intrinsic
1697 // into a volatile store.
1698 Instruction *Before = CI->getPrev();
Misha Brukman8d442c22004-07-14 15:29:51 +00001699 StoreInst *SI = new StoreInst(CI->getOperand(1),
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001700 CI->getOperand(2), true, CI);
Misha Brukman8d442c22004-07-14 15:29:51 +00001701 CI->replaceAllUsesWith(SI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001702 BB->getInstList().erase(CI);
1703 break;
1704 }
1705 default:
1706 // All other intrinsic calls we must lower.
1707 Instruction *Before = CI->getPrev();
1708 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1709 if (Before) { // Move iterator to instruction after call
1710 I = Before; ++I;
1711 } else {
1712 I = BB->begin();
1713 }
1714 }
1715}
1716
1717void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1718 unsigned TmpReg1, TmpReg2, TmpReg3;
1719 switch (ID) {
1720 case Intrinsic::vastart:
1721 // Get the address of the first vararg value...
1722 TmpReg1 = getReg(CI);
Misha Brukmanec6319a2004-07-20 15:51:37 +00001723 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex,
1724 0, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001725 return;
1726
1727 case Intrinsic::vacopy:
1728 TmpReg1 = getReg(CI);
1729 TmpReg2 = getReg(CI.getOperand(1));
1730 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1731 return;
1732 case Intrinsic::vaend: return;
1733
1734 case Intrinsic::returnaddress:
Misha Brukmanec6319a2004-07-20 15:51:37 +00001735 TmpReg1 = getReg(CI);
1736 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1737 MachineFrameInfo *MFI = F->getFrameInfo();
1738 unsigned NumBytes = MFI->getStackSize();
1739
Misha Brukman1013ef52004-07-21 20:09:08 +00001740 BuildMI(BB, PPC32::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
Misha Brukmanec6319a2004-07-20 15:51:37 +00001741 .addReg(PPC32::R1);
1742 } else {
1743 // Values other than zero are not implemented yet.
Misha Brukman1013ef52004-07-21 20:09:08 +00001744 BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
Misha Brukmanec6319a2004-07-20 15:51:37 +00001745 }
1746 return;
1747
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001748 case Intrinsic::frameaddress:
1749 TmpReg1 = getReg(CI);
1750 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00001751 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(PPC32::R1).addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001752 } else {
1753 // Values other than zero are not implemented yet.
Misha Brukman1013ef52004-07-21 20:09:08 +00001754 BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001755 }
1756 return;
Misha Brukmanb097f212004-07-26 18:13:24 +00001757
Misha Brukmana2916ce2004-06-21 17:58:36 +00001758#if 0
1759 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001760 case Intrinsic::isnan:
1761 // If this is only used by 'isunordered' style comparisons, don't emit it.
1762 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1763 TmpReg1 = getReg(CI.getOperand(1));
1764 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001765 TmpReg2 = makeAnotherReg(Type::IntTy);
1766 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001767 TmpReg3 = getReg(CI);
1768 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1769 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001770#endif
1771
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001772 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1773 }
1774}
1775
1776/// visitSimpleBinary - Implement simple binary operators for integral types...
1777/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1778/// Xor.
1779///
1780void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1781 unsigned DestReg = getReg(B);
1782 MachineBasicBlock::iterator MI = BB->end();
1783 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1784 unsigned Class = getClassB(B.getType());
1785
1786 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1787}
1788
1789/// emitBinaryFPOperation - This method handles emission of floating point
1790/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1791void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1792 MachineBasicBlock::iterator IP,
1793 Value *Op0, Value *Op1,
1794 unsigned OperatorClass, unsigned DestReg) {
1795
1796 // Special case: op Reg, <const fp>
1797 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001798 // Create a constant pool entry for this constant.
1799 MachineConstantPool *CP = F->getConstantPool();
1800 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1801 const Type *Ty = Op1->getType();
Misha Brukmand9aa7832004-07-12 23:49:47 +00001802 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001803
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001804 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001805 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1806 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001807 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001808
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001809 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001810 unsigned Op1Reg = getReg(Op1C, BB, IP);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001811 unsigned Op0r = getReg(Op0, BB, IP);
Misha Brukmana596f8c2004-07-13 15:35:45 +00001812 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001813 return;
1814 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001815
1816 // Special case: R1 = op <const fp>, R2
Misha Brukmana596f8c2004-07-13 15:35:45 +00001817 if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
1818 if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001819 // -0.0 - X === -X
1820 unsigned op1Reg = getReg(Op1, BB, IP);
1821 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1822 return;
1823 } else {
1824 // R1 = op CST, R2 --> R1 = opr R2, CST
1825
1826 // Create a constant pool entry for this constant.
1827 MachineConstantPool *CP = F->getConstantPool();
Misha Brukmana596f8c2004-07-13 15:35:45 +00001828 unsigned CPI = CP->getConstantPoolIndex(Op0C);
1829 const Type *Ty = Op0C->getType();
1830 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001831
1832 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001833 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1834 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001835 };
1836
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001837 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001838 unsigned Op0Reg = getReg(Op0C, BB, IP);
1839 unsigned Op1Reg = getReg(Op1, BB, IP);
1840 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001841 return;
1842 }
1843
1844 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001845 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001846 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1847 };
1848
1849 unsigned Opcode = OpcodeTab[OperatorClass];
1850 unsigned Op0r = getReg(Op0, BB, IP);
1851 unsigned Op1r = getReg(Op1, BB, IP);
1852 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1853}
1854
1855/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1856/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1857/// Or, 4 for Xor.
1858///
1859/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1860/// and constant expression support.
1861///
1862void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1863 MachineBasicBlock::iterator IP,
1864 Value *Op0, Value *Op1,
1865 unsigned OperatorClass, unsigned DestReg) {
1866 unsigned Class = getClassB(Op0->getType());
1867
Misha Brukman422791f2004-06-21 17:41:12 +00001868 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001869 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001870 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1871 };
Misha Brukman1013ef52004-07-21 20:09:08 +00001872 static const unsigned ImmOpcodeTab[] = {
1873 PPC32::ADDI, PPC32::SUBI, PPC32::ANDIo, PPC32::ORI, PPC32::XORI
1874 };
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001875 static const unsigned RImmOpcodeTab[] = {
1876 PPC32::ADDI, PPC32::SUBFIC, PPC32::ANDIo, PPC32::ORI, PPC32::XORI
1877 };
Misha Brukman1013ef52004-07-21 20:09:08 +00001878
Misha Brukman422791f2004-06-21 17:41:12 +00001879 // Otherwise, code generate the full operation with a constant.
1880 static const unsigned BottomTab[] = {
1881 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1882 };
1883 static const unsigned TopTab[] = {
1884 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1885 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001886
Misha Brukman7e898c32004-07-20 00:41:46 +00001887 if (Class == cFP32 || Class == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001888 assert(OperatorClass < 2 && "No logical ops for FP!");
1889 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1890 return;
1891 }
1892
1893 if (Op0->getType() == Type::BoolTy) {
1894 if (OperatorClass == 3)
1895 // If this is an or of two isnan's, emit an FP comparison directly instead
1896 // of or'ing two isnan's together.
1897 if (Value *LHS = dyncastIsNan(Op0))
1898 if (Value *RHS = dyncastIsNan(Op1)) {
1899 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001900 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001901 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001902 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001903 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1904 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001905 return;
1906 }
1907 }
1908
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001909 // Special case: op <const int>, Reg
Misha Brukman1013ef52004-07-21 20:09:08 +00001910 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001911 // sub 0, X -> subfic
1912 if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001913 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001914 int imm = CI->getRawValue() & 0xFFFF;
Misha Brukman1013ef52004-07-21 20:09:08 +00001915
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001916 if (Class == cLong) {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001917 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, DestReg+1).addReg(Op1r+1)
1918 .addSImm(imm);
Misha Brukman1013ef52004-07-21 20:09:08 +00001919 BuildMI(*MBB, IP, PPC32::SUBFZE, 1, DestReg).addReg(Op1r);
1920 } else {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001921 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001922 }
1923 return;
1924 }
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001925
1926 // If it is easy to do, swap the operands and emit an immediate op
1927 if (Class != cLong && OperatorClass != 1 &&
1928 canUseAsImmediateForOpcode(CI, OperatorClass)) {
1929 unsigned Op1r = getReg(Op1, MBB, IP);
1930 int imm = CI->getRawValue() & 0xFFFF;
1931
1932 if (OperatorClass < 2)
1933 BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
1934 .addSImm(imm);
1935 else
1936 BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
1937 .addZImm(imm);
1938 return;
1939 }
Misha Brukman1013ef52004-07-21 20:09:08 +00001940 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001941
1942 // Special case: op Reg, <const int>
1943 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1944 unsigned Op0r = getReg(Op0, MBB, IP);
1945
1946 // xor X, -1 -> not X
1947 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1948 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
Misha Brukman1013ef52004-07-21 20:09:08 +00001949 if (Class == cLong) // Invert the low part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001950 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1951 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001952 return;
1953 }
Misha Brukman1013ef52004-07-21 20:09:08 +00001954
Misha Brukman1013ef52004-07-21 20:09:08 +00001955 if (Class != cLong) {
1956 if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
1957 int immediate = Op1C->getRawValue() & 0xFFFF;
1958
1959 if (OperatorClass < 2)
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001960 BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
Misha Brukman1013ef52004-07-21 20:09:08 +00001961 .addSImm(immediate);
1962 else
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001963 BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
Misha Brukman1013ef52004-07-21 20:09:08 +00001964 .addZImm(immediate);
1965 } else {
1966 unsigned Op1r = getReg(Op1, MBB, IP);
1967 BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
1968 .addReg(Op1r);
1969 }
1970 return;
1971 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001972
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001973 unsigned Op1r = getReg(Op1, MBB, IP);
1974
Misha Brukman1013ef52004-07-21 20:09:08 +00001975 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001976 .addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001977 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
1978 .addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001979 return;
1980 }
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001981
1982 // We couldn't generate an immediate variant of the op, load both halves into
1983 // registers and emit the appropriate opcode.
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001984 unsigned Op0r = getReg(Op0, MBB, IP);
1985 unsigned Op1r = getReg(Op1, MBB, IP);
1986
1987 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001988 unsigned Opcode = OpcodeTab[OperatorClass];
1989 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001990 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001991 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001992 .addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001993 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
1994 .addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001995 }
1996 return;
1997}
1998
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001999// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
2000// returns zero when the input is not exactly a power of two.
2001static unsigned ExactLog2(unsigned Val) {
2002 if (Val == 0 || (Val & (Val-1))) return 0;
2003 unsigned Count = 0;
2004 while (Val != 1) {
2005 Val >>= 1;
2006 ++Count;
2007 }
Misha Brukman1013ef52004-07-21 20:09:08 +00002008 return Count;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002009}
2010
Misha Brukman1013ef52004-07-21 20:09:08 +00002011/// doMultiply - Emit appropriate instructions to multiply together the
2012/// Values Op0 and Op1, and put the result in DestReg.
Misha Brukman2fec9902004-06-21 20:22:03 +00002013///
Misha Brukman1013ef52004-07-21 20:09:08 +00002014void ISel::doMultiply(MachineBasicBlock *MBB,
2015 MachineBasicBlock::iterator IP,
2016 unsigned DestReg, Value *Op0, Value *Op1) {
2017 unsigned Class0 = getClass(Op0->getType());
2018 unsigned Class1 = getClass(Op1->getType());
2019
2020 unsigned Op0r = getReg(Op0, MBB, IP);
2021 unsigned Op1r = getReg(Op1, MBB, IP);
2022
2023 // 64 x 64 -> 64
2024 if (Class0 == cLong && Class1 == cLong) {
2025 unsigned Tmp1 = makeAnotherReg(Type::IntTy);
2026 unsigned Tmp2 = makeAnotherReg(Type::IntTy);
2027 unsigned Tmp3 = makeAnotherReg(Type::IntTy);
2028 unsigned Tmp4 = makeAnotherReg(Type::IntTy);
2029 BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
2030 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
2031 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
2032 BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
2033 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
2034 BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
2035 return;
2036 }
2037
2038 // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
2039 if (Class0 == cLong && Class1 <= cInt) {
2040 unsigned Tmp0 = makeAnotherReg(Type::IntTy);
2041 unsigned Tmp1 = makeAnotherReg(Type::IntTy);
2042 unsigned Tmp2 = makeAnotherReg(Type::IntTy);
2043 unsigned Tmp3 = makeAnotherReg(Type::IntTy);
2044 unsigned Tmp4 = makeAnotherReg(Type::IntTy);
2045 if (Op1->getType()->isSigned())
2046 BuildMI(*MBB, IP, PPC32::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
2047 else
2048 BuildMI(*MBB, IP, PPC32::LI, 2, Tmp0).addSImm(0);
2049 BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
2050 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
2051 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
2052 BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
2053 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
2054 BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
2055 return;
2056 }
2057
2058 // 32 x 32 -> 32
2059 if (Class0 <= cInt && Class1 <= cInt) {
2060 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
2061 return;
2062 }
2063
2064 assert(0 && "doMultiply cannot operate on unknown type!");
2065}
2066
2067/// doMultiplyConst - This method will multiply the value in Op0 by the
2068/// value of the ContantInt *CI
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002069void ISel::doMultiplyConst(MachineBasicBlock *MBB,
2070 MachineBasicBlock::iterator IP,
Misha Brukman1013ef52004-07-21 20:09:08 +00002071 unsigned DestReg, Value *Op0, ConstantInt *CI) {
2072 unsigned Class = getClass(Op0->getType());
2073
2074 // Mul op0, 0 ==> 0
2075 if (CI->isNullValue()) {
2076 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
2077 if (Class == cLong)
2078 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002079 return;
Misha Brukman1013ef52004-07-21 20:09:08 +00002080 }
2081
2082 // Mul op0, 1 ==> op0
2083 if (CI->equalsInt(1)) {
2084 unsigned Op0r = getReg(Op0, MBB, IP);
2085 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
2086 if (Class == cLong)
2087 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002088 return;
2089 }
2090
2091 // If the element size is exactly a power of 2, use a shift to get it.
Misha Brukman1013ef52004-07-21 20:09:08 +00002092 if (unsigned Shift = ExactLog2(CI->getRawValue())) {
2093 ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
2094 emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
2095 return;
2096 }
2097
2098 // If 32 bits or less and immediate is in right range, emit mul by immediate
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002099 if (Class == cByte || Class == cShort || Class == cInt) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002100 if (canUseAsImmediateForOpcode(CI, 0)) {
2101 unsigned Op0r = getReg(Op0, MBB, IP);
2102 unsigned imm = CI->getRawValue() & 0xFFFF;
2103 BuildMI(*MBB, IP, PPC32::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002104 return;
2105 }
2106 }
2107
Misha Brukman1013ef52004-07-21 20:09:08 +00002108 doMultiply(MBB, IP, DestReg, Op0, CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002109}
2110
2111void ISel::visitMul(BinaryOperator &I) {
2112 unsigned ResultReg = getReg(I);
2113
2114 Value *Op0 = I.getOperand(0);
2115 Value *Op1 = I.getOperand(1);
2116
2117 MachineBasicBlock::iterator IP = BB->end();
2118 emitMultiply(BB, IP, Op0, Op1, ResultReg);
2119}
2120
2121void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
2122 Value *Op0, Value *Op1, unsigned DestReg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002123 TypeClass Class = getClass(Op0->getType());
2124
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002125 switch (Class) {
2126 case cByte:
2127 case cShort:
2128 case cInt:
Misha Brukman1013ef52004-07-21 20:09:08 +00002129 case cLong:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002130 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002131 doMultiplyConst(MBB, IP, DestReg, Op0, CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002132 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00002133 doMultiply(MBB, IP, DestReg, Op0, Op1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002134 }
2135 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002136 case cFP32:
2137 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002138 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2139 return;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002140 break;
2141 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002142}
2143
2144
2145/// visitDivRem - Handle division and remainder instructions... these
2146/// instruction both require the same instructions to be generated, they just
2147/// select the result from a different register. Note that both of these
2148/// instructions work differently for signed and unsigned operands.
2149///
2150void ISel::visitDivRem(BinaryOperator &I) {
2151 unsigned ResultReg = getReg(I);
2152 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2153
2154 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00002155 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
2156 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002157}
2158
2159void ISel::emitDivRemOperation(MachineBasicBlock *BB,
2160 MachineBasicBlock::iterator IP,
2161 Value *Op0, Value *Op1, bool isDiv,
2162 unsigned ResultReg) {
2163 const Type *Ty = Op0->getType();
2164 unsigned Class = getClass(Ty);
2165 switch (Class) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002166 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002167 if (isDiv) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002168 // Floating point divide...
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002169 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2170 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002171 } else {
2172 // Floating point remainder via fmodf(float x, float y);
2173 unsigned Op0Reg = getReg(Op0, BB, IP);
2174 unsigned Op1Reg = getReg(Op1, BB, IP);
2175 MachineInstr *TheCall =
2176 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
2177 std::vector<ValueRecord> Args;
2178 Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
2179 Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
2180 doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002181 TM.CalledFunctions.insert(fmodfFn);
Misha Brukman7e898c32004-07-20 00:41:46 +00002182 }
2183 return;
2184 case cFP64:
2185 if (isDiv) {
2186 // Floating point divide...
2187 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2188 return;
2189 } else {
2190 // Floating point remainder via fmod(double x, double y);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002191 unsigned Op0Reg = getReg(Op0, BB, IP);
2192 unsigned Op1Reg = getReg(Op1, BB, IP);
2193 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002194 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002195 std::vector<ValueRecord> Args;
2196 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2197 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002198 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002199 TM.CalledFunctions.insert(fmodFn);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002200 }
2201 return;
2202 case cLong: {
Misha Brukman7e898c32004-07-20 00:41:46 +00002203 static Function* const Funcs[] =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002204 { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002205 unsigned Op0Reg = getReg(Op0, BB, IP);
2206 unsigned Op1Reg = getReg(Op1, BB, IP);
2207 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2208 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002209 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002210
2211 std::vector<ValueRecord> Args;
2212 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2213 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002214 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002215 TM.CalledFunctions.insert(Funcs[NameIdx]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002216 return;
2217 }
2218 case cByte: case cShort: case cInt:
2219 break; // Small integrals, handled below...
2220 default: assert(0 && "Unknown class!");
2221 }
2222
2223 // Special case signed division by power of 2.
2224 if (isDiv)
2225 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2226 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2227 int V = CI->getValue();
2228
2229 if (V == 1) { // X /s 1 => X
2230 unsigned Op0Reg = getReg(Op0, BB, IP);
2231 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
2232 return;
2233 }
2234
2235 if (V == -1) { // X /s -1 => -X
2236 unsigned Op0Reg = getReg(Op0, BB, IP);
2237 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
2238 return;
2239 }
2240
Misha Brukmanec6319a2004-07-20 15:51:37 +00002241 unsigned log2V = ExactLog2(V);
2242 if (log2V != 0 && Ty->isSigned()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002243 unsigned Op0Reg = getReg(Op0, BB, IP);
2244 unsigned TmpReg = makeAnotherReg(Op0->getType());
Misha Brukmanec6319a2004-07-20 15:51:37 +00002245
Misha Brukman1013ef52004-07-21 20:09:08 +00002246 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
Misha Brukmanec6319a2004-07-20 15:51:37 +00002247 BuildMI(*BB, IP, PPC32::ADDZE, 1, ResultReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002248 return;
2249 }
2250 }
2251
2252 unsigned Op0Reg = getReg(Op0, BB, IP);
2253 unsigned Op1Reg = getReg(Op1, BB, IP);
Misha Brukmanec6319a2004-07-20 15:51:37 +00002254 unsigned Opcode = Ty->isSigned() ? PPC32::DIVW : PPC32::DIVWU;
2255
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002256 if (isDiv) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00002257 BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002258 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002259 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2260 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2261
Misha Brukmanec6319a2004-07-20 15:51:37 +00002262 BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002263 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2264 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002265 }
2266}
2267
2268
2269/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2270/// for constant immediate shift values, and for constant immediate
2271/// shift values equal to 1. Even the general case is sort of special,
2272/// because the shift amount has to be in CL, not just any old register.
2273///
2274void ISel::visitShiftInst(ShiftInst &I) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00002275 MachineBasicBlock::iterator IP = BB->end();
2276 emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
2277 I.getOpcode() == Instruction::Shl, I.getType(),
2278 getReg(I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002279}
2280
2281/// emitShiftOperation - Common code shared between visitShiftInst and
2282/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002283///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002284void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2285 MachineBasicBlock::iterator IP,
2286 Value *Op, Value *ShiftAmount, bool isLeftShift,
2287 const Type *ResultTy, unsigned DestReg) {
2288 unsigned SrcReg = getReg (Op, MBB, IP);
2289 bool isSigned = ResultTy->isSigned ();
2290 unsigned Class = getClass (ResultTy);
2291
2292 // Longs, as usual, are handled specially...
2293 if (Class == cLong) {
2294 // If we have a constant shift, we can generate much more efficient code
2295 // than otherwise...
2296 //
2297 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2298 unsigned Amount = CUI->getValue();
2299 if (Amount < 32) {
2300 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002301 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002302 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2303 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman1013ef52004-07-21 20:09:08 +00002304 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2305 .addImm(Amount).addImm(32-Amount).addImm(31);
2306 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2307 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002308 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002309 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002310 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2311 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman1013ef52004-07-21 20:09:08 +00002312 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2313 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2314 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2315 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002316 }
2317 } else { // Shifting more than 32 bits
2318 Amount -= 32;
2319 if (isLeftShift) {
2320 if (Amount != 0) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002321 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002322 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002323 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002324 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2325 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002326 }
Misha Brukman1013ef52004-07-21 20:09:08 +00002327 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
2328 } else {
2329 if (Amount != 0) {
2330 if (isSigned)
2331 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(SrcReg)
2332 .addImm(Amount);
2333 else
2334 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2335 .addImm(32-Amount).addImm(Amount).addImm(31);
2336 } else {
2337 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2338 .addReg(SrcReg);
2339 }
2340 BuildMI(*MBB, IP,PPC32::LI, 1, DestReg).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002341 }
2342 }
2343 } else {
2344 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2345 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002346 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2347 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2348 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2349 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2350 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2351
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002352 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002353 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002354 .addSImm(32);
2355 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002356 .addReg(ShiftAmountReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002357 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg3).addReg(SrcReg+1)
2358 .addReg(TmpReg1);
2359 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
Misha Brukman2fec9902004-06-21 20:22:03 +00002360 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002361 .addSImm(-32);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002362 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg6).addReg(SrcReg+1)
2363 .addReg(TmpReg5);
Misha Brukman1013ef52004-07-21 20:09:08 +00002364 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
Misha Brukman2fec9902004-06-21 20:22:03 +00002365 .addReg(TmpReg6);
Misha Brukman1013ef52004-07-21 20:09:08 +00002366 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg+1).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002367 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002368 } else {
2369 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002370 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002371 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukmanb097f212004-07-26 18:13:24 +00002372 std::cerr << "ERROR: Unimplemented: signed right shift of long\n";
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002373 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002374 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002375 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002376 .addSImm(32);
2377 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002378 .addReg(ShiftAmountReg);
Misha Brukman1013ef52004-07-21 20:09:08 +00002379 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002380 .addReg(TmpReg1);
2381 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2382 .addReg(TmpReg3);
2383 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002384 .addSImm(-32);
2385 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002386 .addReg(TmpReg5);
Misha Brukman1013ef52004-07-21 20:09:08 +00002387 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
Misha Brukman2fec9902004-06-21 20:22:03 +00002388 .addReg(TmpReg6);
Misha Brukman1013ef52004-07-21 20:09:08 +00002389 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002390 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002391 }
2392 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002393 }
2394 return;
2395 }
2396
2397 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2398 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2399 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2400 unsigned Amount = CUI->getValue();
2401
Misha Brukman422791f2004-06-21 17:41:12 +00002402 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002403 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2404 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002405 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002406 if (isSigned) {
2407 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2408 } else {
2409 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2410 .addImm(32-Amount).addImm(Amount).addImm(31);
2411 }
Misha Brukman422791f2004-06-21 17:41:12 +00002412 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002413 } else { // The shift amount is non-constant.
2414 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2415
Misha Brukman422791f2004-06-21 17:41:12 +00002416 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002417 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2418 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002419 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002420 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2421 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002422 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002423 }
2424}
2425
2426
Misha Brukmanb097f212004-07-26 18:13:24 +00002427/// visitLoadInst - Implement LLVM load instructions. Pretty straightforward
2428/// mapping of LLVM classes to PPC load instructions, with the exception of
2429/// signed byte loads, which need a sign extension following them.
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002430///
2431void ISel::visitLoadInst(LoadInst &I) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002432 // Immediate opcodes, for reg+imm addressing
2433 static const unsigned ImmOpcodes[] = {
2434 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ,
2435 PPC32::LFS, PPC32::LFD, PPC32::LWZ
2436 };
2437 // Indexed opcodes, for reg+reg addressing
2438 static const unsigned IdxOpcodes[] = {
2439 PPC32::LBZX, PPC32::LHZX, PPC32::LWZX,
2440 PPC32::LFSX, PPC32::LFDX, PPC32::LWZX
Misha Brukman2fec9902004-06-21 20:22:03 +00002441 };
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002442
Misha Brukmanb097f212004-07-26 18:13:24 +00002443 unsigned Class = getClassB(I.getType());
2444 unsigned ImmOpcode = ImmOpcodes[Class];
2445 unsigned IdxOpcode = IdxOpcodes[Class];
2446 unsigned DestReg = getReg(I);
2447 Value *SourceAddr = I.getOperand(0);
2448
2449 if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC32::LHA;
2450 if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC32::LHAX;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002451
Misha Brukmanb097f212004-07-26 18:13:24 +00002452 if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
Misha Brukman422791f2004-06-21 17:41:12 +00002453 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002454 if (Class == cLong) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002455 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
2456 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg+1), FI, 4);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002457 } else if (Class == cByte && I.getType()->isSigned()) {
2458 unsigned TmpReg = makeAnotherReg(I.getType());
Misha Brukmanb097f212004-07-26 18:13:24 +00002459 addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002460 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002461 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00002462 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002463 }
Misha Brukmanb097f212004-07-26 18:13:24 +00002464 return;
2465 }
2466
2467 // If this load is the only use of the GEP instruction that is its address,
2468 // then we can fold the GEP directly into the load instruction.
2469 // emitGEPOperation with a second to last arg of 'true' will place the
2470 // base register for the GEP into baseReg, and the constant offset from that
2471 // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
2472 // otherwise, we copy the offset into another reg, and use reg+reg addressing.
2473 if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
2474 unsigned baseReg = getReg(GEPI);
2475 ConstantSInt *offset;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002476
Misha Brukmanb097f212004-07-26 18:13:24 +00002477 emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
2478 GEPI->op_end(), baseReg, true, &offset);
2479
2480 if (Class != cLong && canUseAsImmediateForOpcode(offset, 0)) {
2481 if (Class == cByte && I.getType()->isSigned()) {
2482 unsigned TmpReg = makeAnotherReg(I.getType());
2483 BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
2484 .addReg(baseReg);
2485 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
2486 } else {
2487 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue())
2488 .addReg(baseReg);
2489 }
2490 return;
2491 }
2492
2493 unsigned indexReg = getReg(offset);
2494
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002495 if (Class == cLong) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002496 unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
2497 BuildMI(BB, PPC32::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
2498 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
2499 BuildMI(BB, IdxOpcode, 2, DestReg+1).addReg(indexPlus4).addReg(baseReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002500 } else if (Class == cByte && I.getType()->isSigned()) {
2501 unsigned TmpReg = makeAnotherReg(I.getType());
Misha Brukmanb097f212004-07-26 18:13:24 +00002502 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002503 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002504 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00002505 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002506 }
Misha Brukmanb097f212004-07-26 18:13:24 +00002507 return;
2508 }
2509
2510 // The fallback case, where the load was from a source that could not be
2511 // folded into the load instruction.
2512 unsigned SrcAddrReg = getReg(SourceAddr);
2513
2514 if (Class == cLong) {
2515 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
2516 BuildMI(BB, ImmOpcode, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg);
2517 } else if (Class == cByte && I.getType()->isSigned()) {
2518 unsigned TmpReg = makeAnotherReg(I.getType());
2519 BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
2520 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
2521 } else {
2522 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002523 }
2524}
2525
2526/// visitStoreInst - Implement LLVM store instructions
2527///
2528void ISel::visitStoreInst(StoreInst &I) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002529 // Immediate opcodes, for reg+imm addressing
2530 static const unsigned ImmOpcodes[] = {
2531 PPC32::STB, PPC32::STH, PPC32::STW,
2532 PPC32::STFS, PPC32::STFD, PPC32::STW
2533 };
2534 // Indexed opcodes, for reg+reg addressing
2535 static const unsigned IdxOpcodes[] = {
2536 PPC32::STBX, PPC32::STHX, PPC32::STWX,
2537 PPC32::STFSX, PPC32::STDX, PPC32::STWX
2538 };
2539
2540 Value *SourceAddr = I.getOperand(1);
2541 const Type *ValTy = I.getOperand(0)->getType();
2542 unsigned Class = getClassB(ValTy);
2543 unsigned ImmOpcode = ImmOpcodes[Class];
2544 unsigned IdxOpcode = IdxOpcodes[Class];
2545 unsigned ValReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002546
Misha Brukmanb097f212004-07-26 18:13:24 +00002547 // If this store is the only use of the GEP instruction that is its address,
2548 // then we can fold the GEP directly into the store instruction.
2549 // emitGEPOperation with a second to last arg of 'true' will place the
2550 // base register for the GEP into baseReg, and the constant offset from that
2551 // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
2552 // otherwise, we copy the offset into another reg, and use reg+reg addressing.
2553 if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
2554 unsigned baseReg = getReg(GEPI);
2555 ConstantSInt *offset;
2556
2557 emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
2558 GEPI->op_end(), baseReg, true, &offset);
2559
2560 if (Class != cLong && canUseAsImmediateForOpcode(offset, 0)) {
2561 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
2562 .addReg(baseReg);
2563 return;
2564 }
2565
2566 unsigned indexReg = getReg(offset);
2567
2568 if (Class == cLong) {
2569 unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
2570 BuildMI(BB, PPC32::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
2571 BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
2572 BuildMI(BB, IdxOpcode, 3).addReg(ValReg+1).addReg(indexPlus4)
2573 .addReg(baseReg);
2574 return;
2575 }
2576 BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002577 return;
2578 }
Misha Brukmanb097f212004-07-26 18:13:24 +00002579
2580 // If the store address wasn't the only use of a GEP, we fall back to the
2581 // standard path: store the ValReg at the value in AddressReg.
2582 unsigned AddressReg = getReg(I.getOperand(1));
2583 if (Class == cLong) {
2584 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
2585 BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg);
2586 return;
2587 }
2588 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002589}
2590
2591
2592/// visitCastInst - Here we have various kinds of copying with or without sign
2593/// extension going on.
2594///
2595void ISel::visitCastInst(CastInst &CI) {
2596 Value *Op = CI.getOperand(0);
2597
2598 unsigned SrcClass = getClassB(Op->getType());
2599 unsigned DestClass = getClassB(CI.getType());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002600
2601 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2602 // of the case are GEP instructions, then the cast does not need to be
2603 // generated explicitly, it will be folded into the GEP.
2604 if (DestClass == cLong && SrcClass == cInt) {
2605 bool AllUsesAreGEPs = true;
2606 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2607 if (!isa<GetElementPtrInst>(*I)) {
2608 AllUsesAreGEPs = false;
2609 break;
2610 }
2611
2612 // No need to codegen this cast if all users are getelementptr instrs...
2613 if (AllUsesAreGEPs) return;
2614 }
2615
2616 unsigned DestReg = getReg(CI);
2617 MachineBasicBlock::iterator MI = BB->end();
2618 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2619}
2620
2621/// emitCastOperation - Common code shared between visitCastInst and constant
2622/// expression cast support.
2623///
Misha Brukman7e898c32004-07-20 00:41:46 +00002624void ISel::emitCastOperation(MachineBasicBlock *MBB,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002625 MachineBasicBlock::iterator IP,
2626 Value *Src, const Type *DestTy,
2627 unsigned DestReg) {
2628 const Type *SrcTy = Src->getType();
2629 unsigned SrcClass = getClassB(SrcTy);
2630 unsigned DestClass = getClassB(DestTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002631 unsigned SrcReg = getReg(Src, MBB, IP);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002632
2633 // Implement casts to bool by using compare on the operand followed by set if
2634 // not zero on the result.
2635 if (DestTy == Type::BoolTy) {
2636 switch (SrcClass) {
2637 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002638 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002639 case cInt: {
2640 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00002641 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
Misha Brukman7e898c32004-07-20 00:41:46 +00002642 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002643 break;
2644 }
2645 case cLong: {
2646 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2647 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002648 BuildMI(*MBB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00002649 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1);
Misha Brukmanbf417a62004-07-20 20:43:05 +00002650 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg)
2651 .addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002652 break;
2653 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002654 case cFP32:
2655 case cFP64:
2656 // FSEL perhaps?
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002657 std::cerr << "ERROR: Cast fp-to-bool not implemented!\n";
Misha Brukmand18a31d2004-07-06 22:51:53 +00002658 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002659 }
2660 return;
2661 }
2662
Misha Brukman7e898c32004-07-20 00:41:46 +00002663 // Handle cast of Float -> Double
2664 if (SrcClass == cFP32 && DestClass == cFP64) {
2665 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2666 return;
2667 }
2668
2669 // Handle cast of Double -> Float
2670 if (SrcClass == cFP64 && DestClass == cFP32) {
2671 BuildMI(*MBB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
2672 return;
2673 }
2674
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002675 // Handle casts from integer to floating point now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002676 if (DestClass == cFP32 || DestClass == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002677
Misha Brukman422791f2004-06-21 17:41:12 +00002678 // Emit a library call for long to float conversion
2679 if (SrcClass == cLong) {
2680 std::vector<ValueRecord> Args;
2681 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002682 Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002683 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002684 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002685 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002686 TM.CalledFunctions.insert(floatFn);
Misha Brukman422791f2004-06-21 17:41:12 +00002687 return;
2688 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002689
Misha Brukman7e898c32004-07-20 00:41:46 +00002690 // Make sure we're dealing with a full 32 bits
2691 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2692 promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
2693
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002694 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002695
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002696 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002697 // Also spill room for a special conversion constant
2698 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002699 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2700 int ValueFrameIdx =
2701 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2702
Misha Brukman422791f2004-06-21 17:41:12 +00002703 unsigned constantHi = makeAnotherReg(Type::IntTy);
2704 unsigned constantLo = makeAnotherReg(Type::IntTy);
2705 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2706 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2707
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002708 if (!SrcTy->isSigned()) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002709 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
2710 BuildMI(*BB, IP, PPC32::LI, 1, constantLo).addSImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002711 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2712 ConstantFrameIndex);
2713 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2714 ConstantFrameIndex, 4);
2715 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2716 ValueFrameIdx);
2717 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2718 ValueFrameIdx, 4);
2719 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2720 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002721 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2722 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2723 } else {
2724 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00002725 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
2726 BuildMI(*BB, IP, PPC32::LIS, 1, constantLo).addSImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002727 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2728 ConstantFrameIndex);
2729 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2730 ConstantFrameIndex, 4);
2731 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2732 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002733 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002734 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2735 ValueFrameIdx, 4);
2736 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2737 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002738 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukmanb097f212004-07-26 18:13:24 +00002739 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002740 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002741 return;
2742 }
2743
2744 // Handle casts from floating point to integer now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002745 if (SrcClass == cFP32 || SrcClass == cFP64) {
Misha Brukman422791f2004-06-21 17:41:12 +00002746 // emit library call
2747 if (DestClass == cLong) {
2748 std::vector<ValueRecord> Args;
2749 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002750 Function *floatFn = (DestClass == cFP32) ? __fixsfdiFn : __fixdfdiFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002751 MachineInstr *TheCall =
Misha Brukman7e898c32004-07-20 00:41:46 +00002752 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002753 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002754 TM.CalledFunctions.insert(floatFn);
Misha Brukman422791f2004-06-21 17:41:12 +00002755 return;
2756 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002757
2758 int ValueFrameIdx =
Misha Brukman7e898c32004-07-20 00:41:46 +00002759 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002760
Misha Brukman7e898c32004-07-20 00:41:46 +00002761 if (DestTy->isSigned()) {
Misha Brukman4c14f332004-07-23 01:11:19 +00002762 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2763
2764 // Convert to integer in the FP reg and store it to a stack slot
2765 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
2766 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2767 .addReg(TempReg), ValueFrameIdx);
Misha Brukmanb097f212004-07-26 18:13:24 +00002768
2769 // There is no load signed byte opcode, so we must emit a sign extend for
2770 // that particular size. Make sure to source the new integer from the
2771 // correct offset.
Misha Brukman4c14f332004-07-23 01:11:19 +00002772 if (DestClass == cByte) {
2773 unsigned TempReg2 = makeAnotherReg(DestTy);
Misha Brukmanb097f212004-07-26 18:13:24 +00002774 addFrameReference(BuildMI(*BB, IP, PPC32::LBZ, 2, TempReg2),
2775 ValueFrameIdx, 7);
Misha Brukman4c14f332004-07-23 01:11:19 +00002776 BuildMI(*MBB, IP, PPC32::EXTSB, DestReg).addReg(TempReg2);
2777 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00002778 int offset = (DestClass == cShort) ? 6 : 4;
2779 unsigned LoadOp = (DestClass == cShort) ? PPC32::LHA : PPC32::LWZ;
Misha Brukman4c14f332004-07-23 01:11:19 +00002780 addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg),
Misha Brukmanb097f212004-07-26 18:13:24 +00002781 ValueFrameIdx, offset);
Misha Brukman4c14f332004-07-23 01:11:19 +00002782 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002783 } else {
Misha Brukmanb160d1f2004-07-23 20:32:59 +00002784 unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
2785 double maxInt = (1LL << 32) - 1;
2786 unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
2787 double border = 1LL << 31;
2788 unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
2789 unsigned UseZero = makeAnotherReg(Type::DoubleTy);
2790 unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
2791 unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
2792 unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
2793 unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
2794 unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
2795 unsigned IntTmp = makeAnotherReg(Type::IntTy);
2796 unsigned XorReg = makeAnotherReg(Type::IntTy);
2797 int FrameIdx =
2798 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
2799 // Update machine-CFG edges
2800 MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
2801 MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
2802 MachineBasicBlock *OldMBB = BB;
2803 ilist<MachineBasicBlock>::iterator It = BB; ++It;
2804 F->getBasicBlockList().insert(It, XorMBB);
2805 F->getBasicBlockList().insert(It, PhiMBB);
2806 BB->addSuccessor(XorMBB);
2807 BB->addSuccessor(PhiMBB);
2808
2809 // Convert from floating point to unsigned 32-bit value
2810 // Use 0 if incoming value is < 0.0
2811 BuildMI(*BB, IP, PPC32::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
2812 .addReg(Zero);
2813 // Use 2**32 - 1 if incoming value is >= 2**32
2814 BuildMI(*BB, IP, PPC32::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
2815 BuildMI(*BB, IP, PPC32::FSEL, 3, UseChoice).addReg(UseMaxInt)
2816 .addReg(UseZero).addReg(MaxInt);
2817 // Subtract 2**31
2818 BuildMI(*BB, IP, PPC32::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
2819 // Use difference if >= 2**31
2820 BuildMI(*BB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(UseChoice)
2821 .addReg(Border);
2822 BuildMI(*BB, IP, PPC32::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
2823 .addReg(UseChoice);
2824 // Convert to integer
2825 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
2826 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3).addReg(ConvReg),
2827 FrameIdx);
Misha Brukmanb097f212004-07-26 18:13:24 +00002828 if (DestClass == cByte) {
2829 addFrameReference(BuildMI(*BB, IP, PPC32::LBZ, 2, DestReg),
2830 FrameIdx, 7);
2831 } else if (DestClass == cShort) {
2832 addFrameReference(BuildMI(*BB, IP, PPC32::LHZ, 2, DestReg),
2833 FrameIdx, 6);
2834 } if (DestClass == cInt) {
2835 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, IntTmp),
2836 FrameIdx, 4);
2837 BuildMI(*BB, IP, PPC32::BLT, 2).addReg(PPC32::CR0).addMBB(PhiMBB);
2838 BuildMI(*BB, IP, PPC32::B, 1).addMBB(XorMBB);
Misha Brukmanb160d1f2004-07-23 20:32:59 +00002839
Misha Brukmanb097f212004-07-26 18:13:24 +00002840 // XorMBB:
2841 // add 2**31 if input was >= 2**31
2842 BB = XorMBB;
2843 BuildMI(BB, PPC32::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
2844 XorMBB->addSuccessor(PhiMBB);
Misha Brukmanb160d1f2004-07-23 20:32:59 +00002845
Misha Brukmanb097f212004-07-26 18:13:24 +00002846 // PhiMBB:
2847 // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
2848 BB = PhiMBB;
2849 BuildMI(BB, PPC32::PHI, 2, DestReg).addReg(IntTmp).addMBB(OldMBB)
2850 .addReg(XorReg).addMBB(XorMBB);
2851 }
2852 }
2853 return;
2854 }
2855
2856 // Check our invariants
2857 assert((SrcClass <= cInt || SrcClass == cLong) &&
2858 "Unhandled source class for cast operation!");
2859 assert((DestClass <= cInt || DestClass == cLong) &&
2860 "Unhandled destination class for cast operation!");
2861
2862 bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2863 bool destUnsigned = DestTy->isUnsigned();
2864
2865 // Unsigned -> Unsigned, clear if larger,
2866 if (sourceUnsigned && destUnsigned) {
2867 // handle long dest class now to keep switch clean
2868 if (DestClass == cLong) {
2869 if (SrcClass == cLong) {
2870 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2871 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2872 .addReg(SrcReg+1);
2873 } else {
2874 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
2875 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2876 .addReg(SrcReg);
2877 }
2878 return;
2879 }
2880
2881 // handle u{ byte, short, int } x u{ byte, short, int }
2882 unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
2883 switch (SrcClass) {
2884 case cByte:
2885 case cShort:
2886 if (SrcClass == DestClass)
2887 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2888 else
2889 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2890 .addImm(0).addImm(clearBits).addImm(31);
2891 break;
2892 case cLong:
2893 ++SrcReg;
2894 // Fall through
2895 case cInt:
2896 if (DestClass == cInt)
2897 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2898 else
2899 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2900 .addImm(0).addImm(clearBits).addImm(31);
2901 break;
2902 }
2903 return;
2904 }
2905
2906 // Signed -> Signed
2907 if (!sourceUnsigned && !destUnsigned) {
2908 // handle long dest class now to keep switch clean
2909 if (DestClass == cLong) {
2910 if (SrcClass == cLong) {
2911 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2912 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2913 .addReg(SrcReg+1);
2914 } else {
2915 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
2916 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2917 .addReg(SrcReg);
2918 }
2919 return;
2920 }
2921
2922 // handle { byte, short, int } x { byte, short, int }
2923 switch (SrcClass) {
2924 case cByte:
2925 if (DestClass == cByte)
2926 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2927 else
2928 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2929 break;
2930 case cShort:
2931 if (DestClass == cByte)
2932 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2933 else if (DestClass == cShort)
2934 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2935 else
2936 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2937 break;
2938 case cLong:
2939 ++SrcReg;
2940 // Fall through
2941 case cInt:
2942 if (DestClass == cByte)
2943 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2944 else if (DestClass == cShort)
2945 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2946 else
2947 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2948 break;
2949 }
2950 return;
2951 }
2952
2953 // Unsigned -> Signed
2954 if (sourceUnsigned && !destUnsigned) {
2955 // handle long dest class now to keep switch clean
2956 if (DestClass == cLong) {
2957 if (SrcClass == cLong) {
2958 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2959 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1).
2960 addReg(SrcReg+1);
2961 } else {
2962 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
2963 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2964 .addReg(SrcReg);
2965 }
2966 return;
2967 }
2968
2969 // handle u{ byte, short, int } -> { byte, short, int }
2970 switch (SrcClass) {
2971 case cByte:
2972 if (DestClass == cByte)
2973 // uByte 255 -> signed byte == -1
2974 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2975 else
2976 // uByte 255 -> signed short/int == 255
2977 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
2978 .addImm(24).addImm(31);
2979 break;
2980 case cShort:
2981 if (DestClass == cByte)
2982 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2983 else if (DestClass == cShort)
2984 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2985 else
2986 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
2987 .addImm(16).addImm(31);
2988 break;
2989 case cLong:
2990 ++SrcReg;
2991 // Fall through
2992 case cInt:
2993 if (DestClass == cByte)
2994 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2995 else if (DestClass == cShort)
2996 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2997 else
2998 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2999 break;
3000 }
3001 return;
3002 }
3003
3004 // Signed -> Unsigned
3005 if (!sourceUnsigned && destUnsigned) {
3006 // handle long dest class now to keep switch clean
3007 if (DestClass == cLong) {
3008 if (SrcClass == cLong) {
3009 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3010 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
3011 .addReg(SrcReg+1);
3012 } else {
3013 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
3014 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
3015 .addReg(SrcReg);
3016 }
3017 return;
3018 }
3019
3020 // handle { byte, short, int } -> u{ byte, short, int }
3021 unsigned clearBits = (DestClass == cByte) ? 24 : 16;
3022 switch (SrcClass) {
3023 case cByte:
3024 case cShort:
3025 if (DestClass == cByte || DestClass == cShort)
3026 // sbyte -1 -> ubyte 0x000000FF
3027 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
3028 .addImm(0).addImm(clearBits).addImm(31);
3029 else
3030 // sbyte -1 -> ubyte 0xFFFFFFFF
3031 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3032 break;
3033 case cLong:
3034 ++SrcReg;
3035 // Fall through
3036 case cInt:
3037 if (DestClass == cInt)
3038 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3039 else
3040 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
3041 .addImm(0).addImm(clearBits).addImm(31);
3042 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00003043 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003044 return;
3045 }
3046
3047 // Anything we haven't handled already, we can't (yet) handle at all.
Misha Brukmanb097f212004-07-26 18:13:24 +00003048 std::cerr << "Unhandled cast from " << SrcTy->getDescription()
3049 << "to " << DestTy->getDescription() << '\n';
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003050 abort();
3051}
3052
3053/// visitVANextInst - Implement the va_next instruction...
3054///
3055void ISel::visitVANextInst(VANextInst &I) {
3056 unsigned VAList = getReg(I.getOperand(0));
3057 unsigned DestReg = getReg(I);
3058
3059 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00003060 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003061 default:
3062 std::cerr << I;
3063 assert(0 && "Error: bad type for va_next instruction!");
3064 return;
3065 case Type::PointerTyID:
3066 case Type::UIntTyID:
3067 case Type::IntTyID:
3068 Size = 4;
3069 break;
3070 case Type::ULongTyID:
3071 case Type::LongTyID:
3072 case Type::DoubleTyID:
3073 Size = 8;
3074 break;
3075 }
3076
3077 // Increment the VAList pointer...
Misha Brukman1013ef52004-07-21 20:09:08 +00003078 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003079}
3080
3081void ISel::visitVAArgInst(VAArgInst &I) {
3082 unsigned VAList = getReg(I.getOperand(0));
3083 unsigned DestReg = getReg(I);
3084
Misha Brukman358829f2004-06-21 17:25:55 +00003085 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003086 default:
3087 std::cerr << I;
3088 assert(0 && "Error: bad type for va_next instruction!");
3089 return;
3090 case Type::PointerTyID:
3091 case Type::UIntTyID:
3092 case Type::IntTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00003093 BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003094 break;
3095 case Type::ULongTyID:
3096 case Type::LongTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00003097 BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
3098 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003099 break;
Misha Brukmanb097f212004-07-26 18:13:24 +00003100 case Type::FloatTyID:
3101 BuildMI(BB, PPC32::LFS, 2, DestReg).addSImm(0).addReg(VAList);
3102 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003103 case Type::DoubleTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00003104 BuildMI(BB, PPC32::LFD, 2, DestReg).addSImm(0).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003105 break;
3106 }
3107}
3108
3109/// visitGetElementPtrInst - instruction-select GEP instructions
3110///
3111void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
Misha Brukmanb097f212004-07-26 18:13:24 +00003112 if (canFoldGEPIntoLoadOrStore(&I))
3113 return;
3114
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003115 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00003116 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
Misha Brukmanb097f212004-07-26 18:13:24 +00003117 outputReg, false, 0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003118}
3119
Misha Brukman1013ef52004-07-21 20:09:08 +00003120/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
3121/// constant expression GEP support.
3122///
Misha Brukman17a90002004-07-21 20:22:06 +00003123void ISel::emitGEPOperation(MachineBasicBlock *MBB,
3124 MachineBasicBlock::iterator IP,
3125 Value *Src, User::op_iterator IdxBegin,
Misha Brukmanb097f212004-07-26 18:13:24 +00003126 User::op_iterator IdxEnd, unsigned TargetReg,
3127 bool GEPIsFolded, ConstantSInt **RemainderPtr) {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003128 const TargetData &TD = TM.getTargetData();
3129 const Type *Ty = Src->getType();
3130 unsigned basePtrReg = getReg(Src, MBB, IP);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003131 int64_t constValue = 0;
Misha Brukmane2eceb52004-07-23 16:08:20 +00003132
3133 // Record the operations to emit the GEP in a vector so that we can emit them
3134 // after having analyzed the entire instruction.
Misha Brukmanb097f212004-07-26 18:13:24 +00003135 std::vector<CollapsedGepOp> ops;
Misha Brukmane2eceb52004-07-23 16:08:20 +00003136
Misha Brukman1013ef52004-07-21 20:09:08 +00003137 // GEPs have zero or more indices; we must perform a struct access
3138 // or array access for each one.
3139 for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
3140 ++oi) {
3141 Value *idx = *oi;
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003142 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00003143 // It's a struct access. idx is the index into the structure,
3144 // which names the field. Use the TargetData structure to
3145 // pick out what the layout of the structure is in memory.
3146 // Use the (constant) structure index's value to find the
3147 // right byte offset from the StructLayout class's list of
3148 // structure member offsets.
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003149 unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
Misha Brukman1013ef52004-07-21 20:09:08 +00003150 unsigned memberOffset =
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003151 TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
Misha Brukmane2eceb52004-07-23 16:08:20 +00003152
3153 // StructType member offsets are always constant values. Add it to the
3154 // running total.
3155 constValue += memberOffset;
3156
3157 // The next type is the member of the structure selected by the
3158 // index.
3159 Ty = StTy->getElementType (fieldIndex);
3160 } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
Misha Brukman313efcb2004-07-09 15:45:07 +00003161 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
3162 // operand. Handle this case directly now...
3163 if (CastInst *CI = dyn_cast<CastInst>(idx))
3164 if (CI->getOperand(0)->getType() == Type::IntTy ||
3165 CI->getOperand(0)->getType() == Type::UIntTy)
3166 idx = CI->getOperand(0);
Misha Brukman1013ef52004-07-21 20:09:08 +00003167
Misha Brukmane2eceb52004-07-23 16:08:20 +00003168 // It's an array or pointer access: [ArraySize x ElementType].
3169 // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
3170 // must find the size of the pointed-to type (Not coincidentally, the next
3171 // type is the type of the elements in the array).
Misha Brukman1013ef52004-07-21 20:09:08 +00003172 Ty = SqTy->getElementType();
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003173 unsigned elementSize = TD.getTypeSize(Ty);
Misha Brukman1013ef52004-07-21 20:09:08 +00003174
Misha Brukmane2eceb52004-07-23 16:08:20 +00003175 if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003176 if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
3177 constValue += CS->getValue() * elementSize;
3178 else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
3179 constValue += CU->getValue() * elementSize;
3180 else
3181 assert(0 && "Invalid ConstantInt GEP index type!");
3182 } else {
3183 // Push current gep state to this point as an add
Misha Brukmanb097f212004-07-26 18:13:24 +00003184 ops.push_back(CollapsedGepOp(false, 0,
3185 ConstantSInt::get(Type::IntTy,constValue)));
Misha Brukmane2eceb52004-07-23 16:08:20 +00003186
3187 // Push multiply gep op and reset constant value
Misha Brukmanb097f212004-07-26 18:13:24 +00003188 ops.push_back(CollapsedGepOp(true, idx,
3189 ConstantSInt::get(Type::IntTy, elementSize)));
Misha Brukmane2eceb52004-07-23 16:08:20 +00003190
3191 constValue = 0;
Misha Brukman313efcb2004-07-09 15:45:07 +00003192 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003193 }
Misha Brukmane2eceb52004-07-23 16:08:20 +00003194 }
Misha Brukmane2eceb52004-07-23 16:08:20 +00003195 // Emit instructions for all the collapsed ops
Misha Brukmanb097f212004-07-26 18:13:24 +00003196 for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
Misha Brukmane2eceb52004-07-23 16:08:20 +00003197 cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
Misha Brukmanb097f212004-07-26 18:13:24 +00003198 CollapsedGepOp& cgo = *cgo_i;
Misha Brukmane2eceb52004-07-23 16:08:20 +00003199 unsigned nextBasePtrReg = makeAnotherReg (Type::IntTy);
3200
Misha Brukmanb097f212004-07-26 18:13:24 +00003201 if (cgo.isMul) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003202 // We know the elementSize is a constant, so we can emit a constant mul
3203 // and then add it to the current base reg
3204 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanb097f212004-07-26 18:13:24 +00003205 doMultiplyConst(MBB, IP, TmpReg, cgo.index, cgo.size);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003206 BuildMI(*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
3207 .addReg(TmpReg);
3208 } else {
3209 // Try and generate an immediate addition if possible
Misha Brukmanb097f212004-07-26 18:13:24 +00003210 if (cgo.size->isNullValue()) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003211 BuildMI(*MBB, IP, PPC32::OR, 2, nextBasePtrReg).addReg(basePtrReg)
3212 .addReg(basePtrReg);
Misha Brukmanb097f212004-07-26 18:13:24 +00003213 } else if (canUseAsImmediateForOpcode(cgo.size, 0)) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003214 BuildMI(*MBB, IP, PPC32::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
Misha Brukmanb097f212004-07-26 18:13:24 +00003215 .addSImm(cgo.size->getValue());
Misha Brukmane2eceb52004-07-23 16:08:20 +00003216 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00003217 unsigned Op1r = getReg(cgo.size, MBB, IP);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003218 BuildMI(*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
3219 .addReg(Op1r);
3220 }
3221 }
3222
Misha Brukman1013ef52004-07-21 20:09:08 +00003223 basePtrReg = nextBasePtrReg;
Misha Brukman2fec9902004-06-21 20:22:03 +00003224 }
Misha Brukmane2eceb52004-07-23 16:08:20 +00003225 // Add the current base register plus any accumulated constant value
3226 ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
3227
Misha Brukmanb097f212004-07-26 18:13:24 +00003228 // If we are emitting this during a fold, copy the current base register to
3229 // the target, and save the current constant offset so the folding load or
3230 // store can try and use it as an immediate.
3231 if (GEPIsFolded) {
3232 BuildMI (BB, PPC32::OR, 2, TargetReg).addReg(basePtrReg).addReg(basePtrReg);
3233 *RemainderPtr = remainder;
3234 return;
3235 }
3236
Misha Brukman1013ef52004-07-21 20:09:08 +00003237 // After we have processed all the indices, the result is left in
3238 // basePtrReg. Move it to the register where we were expected to
3239 // put the answer.
Misha Brukmane2eceb52004-07-23 16:08:20 +00003240 if (remainder->isNullValue()) {
3241 BuildMI (BB, PPC32::OR, 2, TargetReg).addReg(basePtrReg).addReg(basePtrReg);
3242 } else if (canUseAsImmediateForOpcode(remainder, 0)) {
3243 BuildMI(*MBB, IP, PPC32::ADDI, 2, TargetReg).addReg(basePtrReg)
3244 .addSImm(remainder->getValue());
3245 } else {
3246 unsigned Op1r = getReg(remainder, MBB, IP);
3247 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r);
3248 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003249}
3250
3251/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
3252/// frame manager, otherwise do it the hard way.
3253///
3254void ISel::visitAllocaInst(AllocaInst &I) {
3255 // If this is a fixed size alloca in the entry block for the function, we
3256 // statically stack allocate the space, so we don't need to do anything here.
3257 //
3258 if (dyn_castFixedAlloca(&I)) return;
3259
3260 // Find the data size of the alloca inst's getAllocatedType.
3261 const Type *Ty = I.getAllocatedType();
3262 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
3263
3264 // Create a register to hold the temporary result of multiplying the type size
3265 // constant by the variable amount.
3266 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003267
3268 // TotalSizeReg = mul <numelements>, <TypeSize>
3269 MachineBasicBlock::iterator MBBI = BB->end();
Misha Brukman1013ef52004-07-21 20:09:08 +00003270 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
3271 doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003272
3273 // AddedSize = add <TotalSizeReg>, 15
3274 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00003275 BuildMI(BB, PPC32::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003276
3277 // AlignedSize = and <AddedSize>, ~15
3278 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukmana31f1f72004-07-21 20:30:18 +00003279 BuildMI(BB, PPC32::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
Misha Brukman2fec9902004-06-21 20:22:03 +00003280 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003281
3282 // Subtract size from stack pointer, thereby allocating some space.
3283 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
3284
3285 // Put a pointer to the space into the result register, by copying
3286 // the stack pointer.
3287 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
3288
3289 // Inform the Frame Information that we have just allocated a variable-sized
3290 // object.
3291 F->getFrameInfo()->CreateVariableSizedObject();
3292}
3293
3294/// visitMallocInst - Malloc instructions are code generated into direct calls
3295/// to the library malloc.
3296///
3297void ISel::visitMallocInst(MallocInst &I) {
3298 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
3299 unsigned Arg;
3300
3301 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
3302 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
3303 } else {
3304 Arg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003305 MachineBasicBlock::iterator MBBI = BB->end();
Misha Brukman1013ef52004-07-21 20:09:08 +00003306 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
3307 doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003308 }
3309
3310 std::vector<ValueRecord> Args;
3311 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00003312 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00003313 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00003314 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003315 TM.CalledFunctions.insert(mallocFn);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003316}
3317
3318
3319/// visitFreeInst - Free instructions are code gen'd to call the free libc
3320/// function.
3321///
3322void ISel::visitFreeInst(FreeInst &I) {
3323 std::vector<ValueRecord> Args;
3324 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00003325 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00003326 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(freeFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00003327 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003328 TM.CalledFunctions.insert(freeFn);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003329}
3330
3331/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
3332/// into a machine code representation is a very simple peep-hole fashion. The
3333/// generated code sucks but the implementation is nice and simple.
3334///
3335FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
3336 return new ISel(TM);
3337}