blob: eadfa1fbb2921323c23c2b8e1a5dbc1027e6088c [file] [log] [blame]
Chris Lattner310968c2005-01-07 07:44:53 +00001//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
Misha Brukmanf976c852005-04-21 22:55:34 +00002//
Chris Lattner310968c2005-01-07 07:44:53 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanf976c852005-04-21 22:55:34 +00007//
Chris Lattner310968c2005-01-07 07:44:53 +00008//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
Rafael Espindolaf1ba1ca2007-11-05 23:12:20 +000015#include "llvm/Target/TargetSubtarget.h"
Owen Anderson07000c62006-05-12 06:33:49 +000016#include "llvm/Target/TargetData.h"
Chris Lattner310968c2005-01-07 07:44:53 +000017#include "llvm/Target/TargetMachine.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000018#include "llvm/Target/MRegisterInfo.h"
Chris Lattnerdc879292006-03-31 00:28:56 +000019#include "llvm/DerivedTypes.h"
Chris Lattner310968c2005-01-07 07:44:53 +000020#include "llvm/CodeGen/SelectionDAG.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000021#include "llvm/ADT/StringExtras.h"
Owen Anderson718cb662007-09-07 04:06:50 +000022#include "llvm/ADT/STLExtras.h"
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +000023#include "llvm/Support/MathExtras.h"
Dan Gohmanc3b0b5c2007-09-25 15:10:49 +000024#include "llvm/Target/TargetAsmInfo.h"
Rafael Espindolaf1ba1ca2007-11-05 23:12:20 +000025#include "llvm/CallingConv.h"
Chris Lattner310968c2005-01-07 07:44:53 +000026using namespace llvm;
27
Evan Cheng56966222007-01-12 02:11:51 +000028/// InitLibcallNames - Set default libcall names.
29///
Evan Cheng79cca502007-01-12 22:51:10 +000030static void InitLibcallNames(const char **Names) {
Evan Cheng56966222007-01-12 02:11:51 +000031 Names[RTLIB::SHL_I32] = "__ashlsi3";
32 Names[RTLIB::SHL_I64] = "__ashldi3";
33 Names[RTLIB::SRL_I32] = "__lshrsi3";
34 Names[RTLIB::SRL_I64] = "__lshrdi3";
35 Names[RTLIB::SRA_I32] = "__ashrsi3";
36 Names[RTLIB::SRA_I64] = "__ashrdi3";
37 Names[RTLIB::MUL_I32] = "__mulsi3";
38 Names[RTLIB::MUL_I64] = "__muldi3";
39 Names[RTLIB::SDIV_I32] = "__divsi3";
40 Names[RTLIB::SDIV_I64] = "__divdi3";
41 Names[RTLIB::UDIV_I32] = "__udivsi3";
42 Names[RTLIB::UDIV_I64] = "__udivdi3";
43 Names[RTLIB::SREM_I32] = "__modsi3";
44 Names[RTLIB::SREM_I64] = "__moddi3";
45 Names[RTLIB::UREM_I32] = "__umodsi3";
46 Names[RTLIB::UREM_I64] = "__umoddi3";
47 Names[RTLIB::NEG_I32] = "__negsi2";
48 Names[RTLIB::NEG_I64] = "__negdi2";
49 Names[RTLIB::ADD_F32] = "__addsf3";
50 Names[RTLIB::ADD_F64] = "__adddf3";
Dale Johannesen161e8972007-10-05 20:04:43 +000051 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
Evan Cheng56966222007-01-12 02:11:51 +000052 Names[RTLIB::SUB_F32] = "__subsf3";
53 Names[RTLIB::SUB_F64] = "__subdf3";
Dale Johannesen161e8972007-10-05 20:04:43 +000054 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
Evan Cheng56966222007-01-12 02:11:51 +000055 Names[RTLIB::MUL_F32] = "__mulsf3";
56 Names[RTLIB::MUL_F64] = "__muldf3";
Dale Johannesen161e8972007-10-05 20:04:43 +000057 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
Evan Cheng56966222007-01-12 02:11:51 +000058 Names[RTLIB::DIV_F32] = "__divsf3";
59 Names[RTLIB::DIV_F64] = "__divdf3";
Dale Johannesen161e8972007-10-05 20:04:43 +000060 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
Evan Cheng56966222007-01-12 02:11:51 +000061 Names[RTLIB::REM_F32] = "fmodf";
62 Names[RTLIB::REM_F64] = "fmod";
Dale Johannesen161e8972007-10-05 20:04:43 +000063 Names[RTLIB::REM_PPCF128] = "fmodl";
Evan Cheng56966222007-01-12 02:11:51 +000064 Names[RTLIB::NEG_F32] = "__negsf2";
65 Names[RTLIB::NEG_F64] = "__negdf2";
66 Names[RTLIB::POWI_F32] = "__powisf2";
67 Names[RTLIB::POWI_F64] = "__powidf2";
Dale Johannesen161e8972007-10-05 20:04:43 +000068 Names[RTLIB::POWI_F80] = "__powixf2";
69 Names[RTLIB::POWI_PPCF128] = "__powitf2";
Evan Cheng56966222007-01-12 02:11:51 +000070 Names[RTLIB::SQRT_F32] = "sqrtf";
71 Names[RTLIB::SQRT_F64] = "sqrt";
Dale Johannesen161e8972007-10-05 20:04:43 +000072 Names[RTLIB::SQRT_F80] = "sqrtl";
73 Names[RTLIB::SQRT_PPCF128] = "sqrtl";
Evan Cheng56966222007-01-12 02:11:51 +000074 Names[RTLIB::SIN_F32] = "sinf";
75 Names[RTLIB::SIN_F64] = "sin";
76 Names[RTLIB::COS_F32] = "cosf";
77 Names[RTLIB::COS_F64] = "cos";
Dan Gohmane54be102007-10-11 23:09:10 +000078 Names[RTLIB::POW_F32] = "powf";
79 Names[RTLIB::POW_F64] = "pow";
80 Names[RTLIB::POW_F80] = "powl";
81 Names[RTLIB::POW_PPCF128] = "powl";
Evan Cheng56966222007-01-12 02:11:51 +000082 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
83 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
84 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
85 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
86 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
87 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
Dale Johannesen161e8972007-10-05 20:04:43 +000088 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
89 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
Evan Cheng56966222007-01-12 02:11:51 +000090 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
91 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
92 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
93 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
Dale Johannesen161e8972007-10-05 20:04:43 +000094 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
95 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
96 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
Evan Cheng56966222007-01-12 02:11:51 +000097 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
98 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
99 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
100 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
Dale Johannesen161e8972007-10-05 20:04:43 +0000101 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
102 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
Evan Cheng56966222007-01-12 02:11:51 +0000103 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
104 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
105 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
106 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
107 Names[RTLIB::OEQ_F32] = "__eqsf2";
108 Names[RTLIB::OEQ_F64] = "__eqdf2";
109 Names[RTLIB::UNE_F32] = "__nesf2";
110 Names[RTLIB::UNE_F64] = "__nedf2";
111 Names[RTLIB::OGE_F32] = "__gesf2";
112 Names[RTLIB::OGE_F64] = "__gedf2";
113 Names[RTLIB::OLT_F32] = "__ltsf2";
114 Names[RTLIB::OLT_F64] = "__ltdf2";
115 Names[RTLIB::OLE_F32] = "__lesf2";
116 Names[RTLIB::OLE_F64] = "__ledf2";
117 Names[RTLIB::OGT_F32] = "__gtsf2";
118 Names[RTLIB::OGT_F64] = "__gtdf2";
119 Names[RTLIB::UO_F32] = "__unordsf2";
120 Names[RTLIB::UO_F64] = "__unorddf2";
Evan Chengd385fd62007-01-31 09:29:11 +0000121 Names[RTLIB::O_F32] = "__unordsf2";
122 Names[RTLIB::O_F64] = "__unorddf2";
123}
124
125/// InitCmpLibcallCCs - Set default comparison libcall CC.
126///
127static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
128 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
129 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
130 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
131 CCs[RTLIB::UNE_F32] = ISD::SETNE;
132 CCs[RTLIB::UNE_F64] = ISD::SETNE;
133 CCs[RTLIB::OGE_F32] = ISD::SETGE;
134 CCs[RTLIB::OGE_F64] = ISD::SETGE;
135 CCs[RTLIB::OLT_F32] = ISD::SETLT;
136 CCs[RTLIB::OLT_F64] = ISD::SETLT;
137 CCs[RTLIB::OLE_F32] = ISD::SETLE;
138 CCs[RTLIB::OLE_F64] = ISD::SETLE;
139 CCs[RTLIB::OGT_F32] = ISD::SETGT;
140 CCs[RTLIB::OGT_F64] = ISD::SETGT;
141 CCs[RTLIB::UO_F32] = ISD::SETNE;
142 CCs[RTLIB::UO_F64] = ISD::SETNE;
143 CCs[RTLIB::O_F32] = ISD::SETEQ;
144 CCs[RTLIB::O_F64] = ISD::SETEQ;
Evan Cheng56966222007-01-12 02:11:51 +0000145}
146
Chris Lattner310968c2005-01-07 07:44:53 +0000147TargetLowering::TargetLowering(TargetMachine &tm)
Chris Lattner3e6e8cc2006-01-29 08:41:12 +0000148 : TM(tm), TD(TM.getTargetData()) {
Evan Cheng33143dc2006-03-03 06:58:59 +0000149 assert(ISD::BUILTIN_OP_END <= 156 &&
Chris Lattner310968c2005-01-07 07:44:53 +0000150 "Fixed size array in TargetLowering is not large enough!");
Chris Lattnercba82f92005-01-16 07:28:11 +0000151 // All operations default to being supported.
152 memset(OpActions, 0, sizeof(OpActions));
Evan Chengc5484282006-10-04 00:56:09 +0000153 memset(LoadXActions, 0, sizeof(LoadXActions));
Evan Cheng8b2794a2006-10-13 21:14:26 +0000154 memset(&StoreXActions, 0, sizeof(StoreXActions));
Dan Gohman93f81e22007-07-09 20:49:44 +0000155 memset(&IndexedModeActions, 0, sizeof(IndexedModeActions));
Dale Johannesen5411a392007-08-09 01:04:01 +0000156 memset(&ConvertActions, 0, sizeof(ConvertActions));
Dan Gohman93f81e22007-07-09 20:49:44 +0000157
158 // Set all indexed load / store to expand.
Evan Cheng5ff839f2006-11-09 18:56:43 +0000159 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
160 for (unsigned IM = (unsigned)ISD::PRE_INC;
161 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
162 setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
163 setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
164 }
165 }
Chris Lattner310968c2005-01-07 07:44:53 +0000166
Owen Andersona69571c2006-05-03 01:29:57 +0000167 IsLittleEndian = TD->isLittleEndian();
Chris Lattnercf9668f2006-10-06 22:52:08 +0000168 UsesGlobalOffsetTable = false;
Owen Andersona69571c2006-05-03 01:29:57 +0000169 ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
Chris Lattnerd6e49672005-01-19 03:36:14 +0000170 ShiftAmtHandling = Undefined;
Chris Lattner310968c2005-01-07 07:44:53 +0000171 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
Owen Anderson718cb662007-09-07 04:06:50 +0000172 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
Evan Chenga03a5dc2006-02-14 08:38:30 +0000173 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
Reid Spencer0f9beca2005-08-27 19:09:02 +0000174 allowUnalignedMemoryAccesses = false;
Anton Korobeynikovd27a2582006-12-10 23:12:42 +0000175 UseUnderscoreSetJmp = false;
176 UseUnderscoreLongJmp = false;
Chris Lattner66180392007-02-25 01:28:05 +0000177 SelectIsExpensive = false;
Nate Begeman405e3ec2005-10-21 00:02:42 +0000178 IntDivIsCheap = false;
179 Pow2DivIsCheap = false;
Chris Lattneree4a7652006-01-25 18:57:15 +0000180 StackPointerRegisterToSaveRestore = 0;
Jim Laskey9bb3c932007-02-22 18:04:49 +0000181 ExceptionPointerRegister = 0;
182 ExceptionSelectorRegister = 0;
Chris Lattnerdfe89342007-09-21 17:06:39 +0000183 SetCCResultContents = UndefinedSetCCResult;
Evan Cheng0577a222006-01-25 18:52:42 +0000184 SchedPreferenceInfo = SchedulingForLatency;
Chris Lattner7acf5f32006-09-05 17:39:15 +0000185 JumpBufSize = 0;
Duraid Madina0c9e0ff2006-09-04 07:44:11 +0000186 JumpBufAlignment = 0;
Evan Chengd60483e2007-05-16 23:45:53 +0000187 IfCvtBlockSizeLimit = 2;
Evan Cheng56966222007-01-12 02:11:51 +0000188
189 InitLibcallNames(LibcallRoutineNames);
Evan Chengd385fd62007-01-31 09:29:11 +0000190 InitCmpLibcallCCs(CmpLibcallCCs);
Dan Gohmanc3b0b5c2007-09-25 15:10:49 +0000191
192 // Tell Legalize whether the assembler supports DEBUG_LOC.
193 if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
194 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
Chris Lattner310968c2005-01-07 07:44:53 +0000195}
196
Chris Lattnercba82f92005-01-16 07:28:11 +0000197TargetLowering::~TargetLowering() {}
198
Rafael Espindolaf1ba1ca2007-11-05 23:12:20 +0000199
200SDOperand TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
201 assert(getSubtarget() && "Subtarget not defined");
202 SDOperand ChainOp = Op.getOperand(0);
203 SDOperand DestOp = Op.getOperand(1);
204 SDOperand SourceOp = Op.getOperand(2);
205 SDOperand CountOp = Op.getOperand(3);
206 SDOperand AlignOp = Op.getOperand(4);
207 SDOperand AlwaysInlineOp = Op.getOperand(5);
208
209 bool AlwaysInline = (bool)cast<ConstantSDNode>(AlwaysInlineOp)->getValue();
210 unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
211 if (Align == 0) Align = 1;
212
213 // If size is unknown, call memcpy.
214 ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
215 if (!I) {
216 assert(!AlwaysInline && "Cannot inline copy of unknown size");
217 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
218 }
219
220 // If not DWORD aligned or if size is more than threshold, then call memcpy.
221 // The libc version is likely to be faster for the following cases. It can
222 // use the address value and run time information about the CPU.
223 // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
224 unsigned Size = I->getValue();
225 if (AlwaysInline ||
226 (Size <= getSubtarget()->getMaxInlineSizeThreshold() &&
227 (Align & 3) == 0))
228 return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
229 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
230}
231
232
233SDOperand TargetLowering::LowerMEMCPYCall(SDOperand Chain,
234 SDOperand Dest,
235 SDOperand Source,
236 SDOperand Count,
237 SelectionDAG &DAG) {
238 MVT::ValueType IntPtr = getPointerTy();
239 TargetLowering::ArgListTy Args;
240 TargetLowering::ArgListEntry Entry;
241 Entry.Ty = getTargetData()->getIntPtrType();
242 Entry.Node = Dest; Args.push_back(Entry);
243 Entry.Node = Source; Args.push_back(Entry);
244 Entry.Node = Count; Args.push_back(Entry);
245 std::pair<SDOperand,SDOperand> CallResult =
246 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
247 DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
248 return CallResult.second;
249}
250
251
Chris Lattner310968c2005-01-07 07:44:53 +0000252/// computeRegisterProperties - Once all of the register classes are added,
253/// this allows us to compute derived properties we expose.
254void TargetLowering::computeRegisterProperties() {
Nate Begeman6a648612005-11-29 05:45:29 +0000255 assert(MVT::LAST_VALUETYPE <= 32 &&
Chris Lattnerbb97d812005-01-16 01:10:58 +0000256 "Too many value types for ValueTypeActions to hold!");
257
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000258 // Everything defaults to needing one register.
259 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
Dan Gohmanb9f10192007-06-21 14:42:22 +0000260 NumRegistersForVT[i] = 1;
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000261 RegisterTypeForVT[i] = TransformToType[i] = i;
262 }
263 // ...except isVoid, which doesn't need any registers.
264 NumRegistersForVT[MVT::isVoid] = 0;
Misha Brukmanf976c852005-04-21 22:55:34 +0000265
Chris Lattner310968c2005-01-07 07:44:53 +0000266 // Find the largest integer register class.
267 unsigned LargestIntReg = MVT::i128;
268 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
269 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
270
271 // Every integer value type larger than this largest register takes twice as
272 // many registers to represent as the previous ValueType.
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000273 for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
274 MVT::isInteger(ExpandedReg); ++ExpandedReg) {
Dan Gohmanb9f10192007-06-21 14:42:22 +0000275 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000276 RegisterTypeForVT[ExpandedReg] = LargestIntReg;
277 TransformToType[ExpandedReg] = ExpandedReg - 1;
278 ValueTypeActions.setTypeAction(ExpandedReg, Expand);
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000279 }
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000280
281 // Inspect all of the ValueType's smaller than the largest integer
282 // register to see which ones need promotion.
283 MVT::ValueType LegalIntReg = LargestIntReg;
284 for (MVT::ValueType IntReg = LargestIntReg - 1;
285 IntReg >= MVT::i1; --IntReg) {
286 if (isTypeLegal(IntReg)) {
287 LegalIntReg = IntReg;
288 } else {
289 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
290 ValueTypeActions.setTypeAction(IntReg, Promote);
291 }
292 }
293
Dale Johannesen161e8972007-10-05 20:04:43 +0000294 // ppcf128 type is really two f64's.
295 if (!isTypeLegal(MVT::ppcf128)) {
296 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
297 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
298 TransformToType[MVT::ppcf128] = MVT::f64;
299 ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
300 }
301
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000302 // Decide how to handle f64. If the target does not have native f64 support,
303 // expand it to i64 and we will be generating soft float library calls.
304 if (!isTypeLegal(MVT::f64)) {
305 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
306 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
307 TransformToType[MVT::f64] = MVT::i64;
308 ValueTypeActions.setTypeAction(MVT::f64, Expand);
309 }
310
311 // Decide how to handle f32. If the target does not have native support for
312 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
313 if (!isTypeLegal(MVT::f32)) {
314 if (isTypeLegal(MVT::f64)) {
315 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
316 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
317 TransformToType[MVT::f32] = MVT::f64;
318 ValueTypeActions.setTypeAction(MVT::f32, Promote);
319 } else {
320 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
321 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
322 TransformToType[MVT::f32] = MVT::i32;
323 ValueTypeActions.setTypeAction(MVT::f32, Expand);
324 }
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000325 }
Nate Begeman4ef3b812005-11-22 01:29:36 +0000326
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000327 // Loop over all of the vector value types to see which need transformations.
328 for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
Evan Cheng677274b2006-03-23 23:24:51 +0000329 i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000330 if (!isTypeLegal(i)) {
331 MVT::ValueType IntermediateVT, RegisterVT;
332 unsigned NumIntermediates;
333 NumRegistersForVT[i] =
334 getVectorTypeBreakdown(i,
335 IntermediateVT, NumIntermediates,
336 RegisterVT);
337 RegisterTypeForVT[i] = RegisterVT;
338 TransformToType[i] = MVT::Other; // this isn't actually used
339 ValueTypeActions.setTypeAction(i, Expand);
Dan Gohman7f321562007-06-25 16:23:39 +0000340 }
Chris Lattner3a5935842006-03-16 19:50:01 +0000341 }
Chris Lattnerbb97d812005-01-16 01:10:58 +0000342}
Chris Lattnercba82f92005-01-16 07:28:11 +0000343
Evan Cheng72261582005-12-20 06:22:03 +0000344const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
345 return NULL;
346}
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000347
Dan Gohman7f321562007-06-25 16:23:39 +0000348/// getVectorTypeBreakdown - Vector types are broken down into some number of
349/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
Chris Lattnerdc879292006-03-31 00:28:56 +0000350/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
Dan Gohman7f321562007-06-25 16:23:39 +0000351/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
Chris Lattnerdc879292006-03-31 00:28:56 +0000352///
Dan Gohman7f321562007-06-25 16:23:39 +0000353/// This method returns the number of registers needed, and the VT for each
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000354/// register. It also returns the VT and quantity of the intermediate values
355/// before they are promoted/expanded.
Chris Lattnerdc879292006-03-31 00:28:56 +0000356///
Dan Gohman7f321562007-06-25 16:23:39 +0000357unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000358 MVT::ValueType &IntermediateVT,
359 unsigned &NumIntermediates,
360 MVT::ValueType &RegisterVT) const {
Chris Lattnerdc879292006-03-31 00:28:56 +0000361 // Figure out the right, legal destination reg to copy into.
Dan Gohman7f321562007-06-25 16:23:39 +0000362 unsigned NumElts = MVT::getVectorNumElements(VT);
363 MVT::ValueType EltTy = MVT::getVectorElementType(VT);
Chris Lattnerdc879292006-03-31 00:28:56 +0000364
365 unsigned NumVectorRegs = 1;
366
367 // Divide the input until we get to a supported size. This will always
368 // end with a scalar if the target doesn't support vectors.
Dan Gohman7f321562007-06-25 16:23:39 +0000369 while (NumElts > 1 &&
370 !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000371 NumElts >>= 1;
372 NumVectorRegs <<= 1;
373 }
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000374
375 NumIntermediates = NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000376
Dan Gohman7f321562007-06-25 16:23:39 +0000377 MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
378 if (!isTypeLegal(NewVT))
379 NewVT = EltTy;
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000380 IntermediateVT = NewVT;
Chris Lattnerdc879292006-03-31 00:28:56 +0000381
Dan Gohman7f321562007-06-25 16:23:39 +0000382 MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000383 RegisterVT = DestVT;
Dan Gohman7f321562007-06-25 16:23:39 +0000384 if (DestVT < NewVT) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000385 // Value is expanded, e.g. i64 -> i16.
Dan Gohman7f321562007-06-25 16:23:39 +0000386 return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
Chris Lattnerdc879292006-03-31 00:28:56 +0000387 } else {
388 // Otherwise, promotion or legal types use the same number of registers as
389 // the vector decimated to the appropriate level.
Chris Lattner79227e22006-03-31 00:46:36 +0000390 return NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000391 }
392
Evan Chenge9b3da12006-05-17 18:10:06 +0000393 return 1;
Chris Lattnerdc879292006-03-31 00:28:56 +0000394}
395
Evan Chengcc415862007-11-09 01:32:10 +0000396SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
397 SelectionDAG &DAG) const {
398 if (usesGlobalOffsetTable())
399 return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
400 return Table;
401}
402
Chris Lattnereb8146b2006-02-04 02:13:02 +0000403//===----------------------------------------------------------------------===//
404// Optimization Methods
405//===----------------------------------------------------------------------===//
406
Nate Begeman368e18d2006-02-16 21:11:51 +0000407/// ShrinkDemandedConstant - Check to see if the specified operand of the
408/// specified instruction is a constant integer. If so, check to see if there
409/// are any bits set in the constant that are not demanded. If so, shrink the
410/// constant and return true.
411bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
412 uint64_t Demanded) {
Chris Lattnerec665152006-02-26 23:36:02 +0000413 // FIXME: ISD::SELECT, ISD::SELECT_CC
Nate Begeman368e18d2006-02-16 21:11:51 +0000414 switch(Op.getOpcode()) {
415 default: break;
Nate Begemande996292006-02-03 22:24:05 +0000416 case ISD::AND:
Nate Begeman368e18d2006-02-16 21:11:51 +0000417 case ISD::OR:
418 case ISD::XOR:
419 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
420 if ((~Demanded & C->getValue()) != 0) {
421 MVT::ValueType VT = Op.getValueType();
422 SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
423 DAG.getConstant(Demanded & C->getValue(),
424 VT));
425 return CombineTo(Op, New);
Nate Begemande996292006-02-03 22:24:05 +0000426 }
Nate Begemande996292006-02-03 22:24:05 +0000427 break;
428 }
429 return false;
430}
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000431
Nate Begeman368e18d2006-02-16 21:11:51 +0000432/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
433/// DemandedMask bits of the result of Op are ever used downstream. If we can
434/// use this information to simplify Op, create a new simplified DAG node and
435/// return true, returning the original and new nodes in Old and New. Otherwise,
436/// analyze the expression and return a mask of KnownOne and KnownZero bits for
437/// the expression (used to simplify the caller). The KnownZero/One bits may
438/// only be accurate for those bits in the DemandedMask.
439bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
440 uint64_t &KnownZero,
441 uint64_t &KnownOne,
442 TargetLoweringOpt &TLO,
443 unsigned Depth) const {
444 KnownZero = KnownOne = 0; // Don't know anything.
Chris Lattner3fc5b012007-05-17 18:19:23 +0000445
446 // The masks are not wide enough to represent this type! Should use APInt.
447 if (Op.getValueType() == MVT::i128)
448 return false;
449
Nate Begeman368e18d2006-02-16 21:11:51 +0000450 // Other users may use these bits.
451 if (!Op.Val->hasOneUse()) {
452 if (Depth != 0) {
453 // If not at the root, Just compute the KnownZero/KnownOne bits to
454 // simplify things downstream.
Dan Gohmanea859be2007-06-22 14:59:07 +0000455 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
Nate Begeman368e18d2006-02-16 21:11:51 +0000456 return false;
457 }
458 // If this is the root being simplified, allow it to have multiple uses,
459 // just set the DemandedMask to all bits.
460 DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
461 } else if (DemandedMask == 0) {
462 // Not demanding any bits from Op.
463 if (Op.getOpcode() != ISD::UNDEF)
464 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
465 return false;
466 } else if (Depth == 6) { // Limit search depth.
467 return false;
468 }
469
470 uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000471 switch (Op.getOpcode()) {
472 case ISD::Constant:
Nate Begeman368e18d2006-02-16 21:11:51 +0000473 // We know all of the bits for a constant!
474 KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
475 KnownZero = ~KnownOne & DemandedMask;
Chris Lattnerec665152006-02-26 23:36:02 +0000476 return false; // Don't fall through, will infinitely loop.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000477 case ISD::AND:
Chris Lattner81cd3552006-02-27 00:36:27 +0000478 // If the RHS is a constant, check to see if the LHS would be zero without
479 // using the bits from the RHS. Below, we use knowledge about the RHS to
480 // simplify the LHS, here we're using information from the LHS to simplify
481 // the RHS.
482 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
483 uint64_t LHSZero, LHSOne;
Dan Gohmanea859be2007-06-22 14:59:07 +0000484 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
485 LHSZero, LHSOne, Depth+1);
Chris Lattner81cd3552006-02-27 00:36:27 +0000486 // If the LHS already has zeros where RHSC does, this and is dead.
487 if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
488 return TLO.CombineTo(Op, Op.getOperand(0));
489 // If any of the set bits in the RHS are known zero on the LHS, shrink
490 // the constant.
491 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
492 return true;
493 }
494
Nate Begeman368e18d2006-02-16 21:11:51 +0000495 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
496 KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000497 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000498 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Nate Begeman368e18d2006-02-16 21:11:51 +0000499 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
500 KnownZero2, KnownOne2, TLO, Depth+1))
501 return true;
502 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
503
504 // If all of the demanded bits are known one on one side, return the other.
505 // These bits cannot contribute to the result of the 'and'.
506 if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
507 return TLO.CombineTo(Op, Op.getOperand(0));
508 if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
509 return TLO.CombineTo(Op, Op.getOperand(1));
510 // If all of the demanded bits in the inputs are known zeros, return zero.
511 if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
512 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
513 // If the RHS is a constant, see if we can simplify it.
514 if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
515 return true;
Chris Lattner5f0c6582006-02-27 00:22:28 +0000516
Nate Begeman368e18d2006-02-16 21:11:51 +0000517 // Output known-1 bits are only known if set in both the LHS & RHS.
518 KnownOne &= KnownOne2;
519 // Output known-0 are known to be clear if zero in either the LHS | RHS.
520 KnownZero |= KnownZero2;
521 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000522 case ISD::OR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000523 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
524 KnownOne, TLO, Depth+1))
525 return true;
526 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
527 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
528 KnownZero2, KnownOne2, TLO, Depth+1))
529 return true;
530 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
531
532 // If all of the demanded bits are known zero on one side, return the other.
533 // These bits cannot contribute to the result of the 'or'.
Jeff Cohen5755b172006-02-17 02:12:18 +0000534 if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
Nate Begeman368e18d2006-02-16 21:11:51 +0000535 return TLO.CombineTo(Op, Op.getOperand(0));
Jeff Cohen5755b172006-02-17 02:12:18 +0000536 if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
Nate Begeman368e18d2006-02-16 21:11:51 +0000537 return TLO.CombineTo(Op, Op.getOperand(1));
538 // If all of the potentially set bits on one side are known to be set on
539 // the other side, just use the 'other' side.
540 if ((DemandedMask & (~KnownZero) & KnownOne2) ==
541 (DemandedMask & (~KnownZero)))
542 return TLO.CombineTo(Op, Op.getOperand(0));
543 if ((DemandedMask & (~KnownZero2) & KnownOne) ==
544 (DemandedMask & (~KnownZero2)))
545 return TLO.CombineTo(Op, Op.getOperand(1));
546 // If the RHS is a constant, see if we can simplify it.
547 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
548 return true;
549
550 // Output known-0 bits are only known if clear in both the LHS & RHS.
551 KnownZero &= KnownZero2;
552 // Output known-1 are known to be set if set in either the LHS | RHS.
553 KnownOne |= KnownOne2;
554 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000555 case ISD::XOR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000556 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
557 KnownOne, TLO, Depth+1))
558 return true;
559 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
560 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
561 KnownOne2, TLO, Depth+1))
562 return true;
563 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
564
565 // If all of the demanded bits are known zero on one side, return the other.
566 // These bits cannot contribute to the result of the 'xor'.
567 if ((DemandedMask & KnownZero) == DemandedMask)
568 return TLO.CombineTo(Op, Op.getOperand(0));
569 if ((DemandedMask & KnownZero2) == DemandedMask)
570 return TLO.CombineTo(Op, Op.getOperand(1));
Chris Lattner3687c1a2006-11-27 21:50:02 +0000571
572 // If all of the unknown bits are known to be zero on one side or the other
573 // (but not both) turn this into an *inclusive* or.
574 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
575 if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
576 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
577 Op.getOperand(0),
578 Op.getOperand(1)));
Nate Begeman368e18d2006-02-16 21:11:51 +0000579
580 // Output known-0 bits are known if clear or set in both the LHS & RHS.
581 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
582 // Output known-1 are known to be set if set in only one of the LHS, RHS.
583 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
584
Nate Begeman368e18d2006-02-16 21:11:51 +0000585 // If all of the demanded bits on one side are known, and all of the set
586 // bits on that side are also known to be set on the other side, turn this
587 // into an AND, as we know the bits will be cleared.
588 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
589 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
590 if ((KnownOne & KnownOne2) == KnownOne) {
591 MVT::ValueType VT = Op.getValueType();
592 SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
593 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
594 ANDC));
595 }
596 }
597
598 // If the RHS is a constant, see if we can simplify it.
599 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
600 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
601 return true;
602
603 KnownZero = KnownZeroOut;
604 KnownOne = KnownOneOut;
605 break;
606 case ISD::SETCC:
607 // If we know the result of a setcc has the top bits zero, use this info.
608 if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
609 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
610 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000611 case ISD::SELECT:
Nate Begeman368e18d2006-02-16 21:11:51 +0000612 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
613 KnownOne, TLO, Depth+1))
614 return true;
615 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
616 KnownOne2, TLO, Depth+1))
617 return true;
618 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
619 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
620
621 // If the operands are constants, see if we can simplify them.
622 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
623 return true;
624
625 // Only known if known in both the LHS and RHS.
626 KnownOne &= KnownOne2;
627 KnownZero &= KnownZero2;
628 break;
Chris Lattnerec665152006-02-26 23:36:02 +0000629 case ISD::SELECT_CC:
630 if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
631 KnownOne, TLO, Depth+1))
632 return true;
633 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
634 KnownOne2, TLO, Depth+1))
635 return true;
636 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
637 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
638
639 // If the operands are constants, see if we can simplify them.
640 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
641 return true;
642
643 // Only known if known in both the LHS and RHS.
644 KnownOne &= KnownOne2;
645 KnownZero &= KnownZero2;
646 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000647 case ISD::SHL:
Nate Begeman368e18d2006-02-16 21:11:51 +0000648 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Chris Lattner895c4ab2007-04-17 21:14:16 +0000649 unsigned ShAmt = SA->getValue();
650 SDOperand InOp = Op.getOperand(0);
651
652 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
653 // single shift. We can do this if the bottom bits (which are shifted
654 // out) are never demanded.
655 if (InOp.getOpcode() == ISD::SRL &&
656 isa<ConstantSDNode>(InOp.getOperand(1))) {
657 if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
658 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
659 unsigned Opc = ISD::SHL;
660 int Diff = ShAmt-C1;
661 if (Diff < 0) {
662 Diff = -Diff;
663 Opc = ISD::SRL;
664 }
665
666 SDOperand NewSA =
Chris Lattner4e7e6cd2007-05-30 16:30:06 +0000667 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000668 MVT::ValueType VT = Op.getValueType();
Chris Lattner0a16a1f2007-04-18 03:01:40 +0000669 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
Chris Lattner895c4ab2007-04-17 21:14:16 +0000670 InOp.getOperand(0), NewSA));
671 }
672 }
673
674 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
Nate Begeman368e18d2006-02-16 21:11:51 +0000675 KnownZero, KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000676 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000677 KnownZero <<= SA->getValue();
678 KnownOne <<= SA->getValue();
679 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000680 }
681 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000682 case ISD::SRL:
683 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
684 MVT::ValueType VT = Op.getValueType();
685 unsigned ShAmt = SA->getValue();
Chris Lattner895c4ab2007-04-17 21:14:16 +0000686 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
687 unsigned VTSize = MVT::getSizeInBits(VT);
688 SDOperand InOp = Op.getOperand(0);
689
690 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
691 // single shift. We can do this if the top bits (which are shifted out)
692 // are never demanded.
693 if (InOp.getOpcode() == ISD::SHL &&
694 isa<ConstantSDNode>(InOp.getOperand(1))) {
695 if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
696 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
697 unsigned Opc = ISD::SRL;
698 int Diff = ShAmt-C1;
699 if (Diff < 0) {
700 Diff = -Diff;
701 Opc = ISD::SHL;
702 }
703
704 SDOperand NewSA =
Chris Lattner8c7d2d52007-04-17 22:53:02 +0000705 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000706 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
707 InOp.getOperand(0), NewSA));
708 }
709 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000710
711 // Compute the new bits that are at the top now.
Chris Lattner895c4ab2007-04-17 21:14:16 +0000712 if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000713 KnownZero, KnownOne, TLO, Depth+1))
714 return true;
715 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
716 KnownZero &= TypeMask;
717 KnownOne &= TypeMask;
718 KnownZero >>= ShAmt;
719 KnownOne >>= ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000720
721 uint64_t HighBits = (1ULL << ShAmt)-1;
Chris Lattner895c4ab2007-04-17 21:14:16 +0000722 HighBits <<= VTSize - ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000723 KnownZero |= HighBits; // High bits known zero.
Nate Begeman368e18d2006-02-16 21:11:51 +0000724 }
725 break;
726 case ISD::SRA:
727 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
728 MVT::ValueType VT = Op.getValueType();
729 unsigned ShAmt = SA->getValue();
730
731 // Compute the new bits that are at the top now.
Nate Begeman368e18d2006-02-16 21:11:51 +0000732 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
733
Chris Lattner1b737132006-05-08 17:22:53 +0000734 uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
735
736 // If any of the demanded bits are produced by the sign extension, we also
737 // demand the input sign bit.
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000738 uint64_t HighBits = (1ULL << ShAmt)-1;
739 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
Chris Lattner1b737132006-05-08 17:22:53 +0000740 if (HighBits & DemandedMask)
741 InDemandedMask |= MVT::getIntVTSignBit(VT);
742
743 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000744 KnownZero, KnownOne, TLO, Depth+1))
745 return true;
746 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
747 KnownZero &= TypeMask;
748 KnownOne &= TypeMask;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000749 KnownZero >>= ShAmt;
750 KnownOne >>= ShAmt;
Nate Begeman368e18d2006-02-16 21:11:51 +0000751
752 // Handle the sign bits.
753 uint64_t SignBit = MVT::getIntVTSignBit(VT);
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000754 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
Nate Begeman368e18d2006-02-16 21:11:51 +0000755
756 // If the input sign bit is known to be zero, or if none of the top bits
757 // are demanded, turn this into an unsigned shift right.
758 if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
759 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
760 Op.getOperand(1)));
761 } else if (KnownOne & SignBit) { // New bits are known one.
762 KnownOne |= HighBits;
763 }
764 }
765 break;
766 case ISD::SIGN_EXTEND_INREG: {
Nate Begeman368e18d2006-02-16 21:11:51 +0000767 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
768
Chris Lattnerec665152006-02-26 23:36:02 +0000769 // Sign extension. Compute the demanded bits in the result that are not
Nate Begeman368e18d2006-02-16 21:11:51 +0000770 // present in the input.
Chris Lattnerec665152006-02-26 23:36:02 +0000771 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
Nate Begeman368e18d2006-02-16 21:11:51 +0000772
Chris Lattnerec665152006-02-26 23:36:02 +0000773 // If none of the extended bits are demanded, eliminate the sextinreg.
774 if (NewBits == 0)
775 return TLO.CombineTo(Op, Op.getOperand(0));
776
Nate Begeman368e18d2006-02-16 21:11:51 +0000777 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
778 int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
779
Chris Lattnerec665152006-02-26 23:36:02 +0000780 // Since the sign extended bits are demanded, we know that the sign
Nate Begeman368e18d2006-02-16 21:11:51 +0000781 // bit is demanded.
Chris Lattnerec665152006-02-26 23:36:02 +0000782 InputDemandedBits |= InSignBit;
Nate Begeman368e18d2006-02-16 21:11:51 +0000783
784 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
785 KnownZero, KnownOne, TLO, Depth+1))
786 return true;
787 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
788
789 // If the sign bit of the input is known set or clear, then we know the
790 // top bits of the result.
791
Chris Lattnerec665152006-02-26 23:36:02 +0000792 // If the input sign bit is known zero, convert this into a zero extension.
793 if (KnownZero & InSignBit)
794 return TLO.CombineTo(Op,
795 TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
796
797 if (KnownOne & InSignBit) { // Input sign bit known set
Nate Begeman368e18d2006-02-16 21:11:51 +0000798 KnownOne |= NewBits;
799 KnownZero &= ~NewBits;
Chris Lattnerec665152006-02-26 23:36:02 +0000800 } else { // Input sign bit unknown
Nate Begeman368e18d2006-02-16 21:11:51 +0000801 KnownZero &= ~NewBits;
802 KnownOne &= ~NewBits;
803 }
804 break;
805 }
Chris Lattnerec665152006-02-26 23:36:02 +0000806 case ISD::CTTZ:
807 case ISD::CTLZ:
808 case ISD::CTPOP: {
809 MVT::ValueType VT = Op.getValueType();
810 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
811 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
812 KnownOne = 0;
813 break;
814 }
Evan Cheng466685d2006-10-09 20:57:25 +0000815 case ISD::LOAD: {
Evan Chengc5484282006-10-04 00:56:09 +0000816 if (ISD::isZEXTLoad(Op.Val)) {
Evan Cheng466685d2006-10-09 20:57:25 +0000817 LoadSDNode *LD = cast<LoadSDNode>(Op);
Evan Cheng2e49f092006-10-11 07:10:22 +0000818 MVT::ValueType VT = LD->getLoadedVT();
Evan Chengc5484282006-10-04 00:56:09 +0000819 KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
820 }
Chris Lattnerec665152006-02-26 23:36:02 +0000821 break;
822 }
823 case ISD::ZERO_EXTEND: {
824 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
825
826 // If none of the top bits are demanded, convert this into an any_extend.
827 uint64_t NewBits = (~InMask) & DemandedMask;
828 if (NewBits == 0)
829 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
830 Op.getValueType(),
831 Op.getOperand(0)));
832
833 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
834 KnownZero, KnownOne, TLO, Depth+1))
835 return true;
836 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
837 KnownZero |= NewBits;
838 break;
839 }
840 case ISD::SIGN_EXTEND: {
841 MVT::ValueType InVT = Op.getOperand(0).getValueType();
842 uint64_t InMask = MVT::getIntVTBitMask(InVT);
843 uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
844 uint64_t NewBits = (~InMask) & DemandedMask;
845
846 // If none of the top bits are demanded, convert this into an any_extend.
847 if (NewBits == 0)
Chris Lattnerfea997a2007-02-01 04:55:59 +0000848 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
Chris Lattnerec665152006-02-26 23:36:02 +0000849 Op.getOperand(0)));
850
851 // Since some of the sign extended bits are demanded, we know that the sign
852 // bit is demanded.
853 uint64_t InDemandedBits = DemandedMask & InMask;
854 InDemandedBits |= InSignBit;
855
856 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
857 KnownOne, TLO, Depth+1))
858 return true;
859
860 // If the sign bit is known zero, convert this to a zero extend.
861 if (KnownZero & InSignBit)
862 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
863 Op.getValueType(),
864 Op.getOperand(0)));
865
866 // If the sign bit is known one, the top bits match.
867 if (KnownOne & InSignBit) {
868 KnownOne |= NewBits;
869 KnownZero &= ~NewBits;
870 } else { // Otherwise, top bits aren't known.
871 KnownOne &= ~NewBits;
872 KnownZero &= ~NewBits;
873 }
874 break;
875 }
876 case ISD::ANY_EXTEND: {
877 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
878 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
879 KnownZero, KnownOne, TLO, Depth+1))
880 return true;
881 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
882 break;
883 }
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000884 case ISD::TRUNCATE: {
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000885 // Simplify the input, using demanded bit information, and compute the known
886 // zero/one bits live out.
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000887 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
888 KnownZero, KnownOne, TLO, Depth+1))
889 return true;
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000890
891 // If the input is only used by this truncate, see if we can shrink it based
892 // on the known demanded bits.
893 if (Op.getOperand(0).Val->hasOneUse()) {
894 SDOperand In = Op.getOperand(0);
895 switch (In.getOpcode()) {
896 default: break;
897 case ISD::SRL:
898 // Shrink SRL by a constant if none of the high bits shifted in are
899 // demanded.
900 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
901 uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
902 HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
903 HighBits >>= ShAmt->getValue();
904
905 if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
906 (DemandedMask & HighBits) == 0) {
907 // None of the shifted in bits are needed. Add a truncate of the
908 // shift input, then shift it.
909 SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
910 Op.getValueType(),
911 In.getOperand(0));
912 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
913 NewTrunc, In.getOperand(1)));
914 }
915 }
916 break;
917 }
918 }
919
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000920 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
921 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
922 KnownZero &= OutMask;
923 KnownOne &= OutMask;
924 break;
925 }
Chris Lattnerec665152006-02-26 23:36:02 +0000926 case ISD::AssertZext: {
927 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
928 uint64_t InMask = MVT::getIntVTBitMask(VT);
929 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
930 KnownZero, KnownOne, TLO, Depth+1))
931 return true;
932 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
933 KnownZero |= ~InMask & DemandedMask;
934 break;
935 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000936 case ISD::ADD:
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000937 case ISD::SUB:
Chris Lattner1482b5f2006-04-02 06:15:09 +0000938 case ISD::INTRINSIC_WO_CHAIN:
939 case ISD::INTRINSIC_W_CHAIN:
940 case ISD::INTRINSIC_VOID:
941 // Just use ComputeMaskedBits to compute output bits.
Dan Gohmanea859be2007-06-22 14:59:07 +0000942 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000943 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000944 }
Chris Lattnerec665152006-02-26 23:36:02 +0000945
946 // If we know the value of all of the demanded bits, return this as a
947 // constant.
948 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
949 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
950
Nate Begeman368e18d2006-02-16 21:11:51 +0000951 return false;
952}
953
Nate Begeman368e18d2006-02-16 21:11:51 +0000954/// computeMaskedBitsForTargetNode - Determine which of the bits specified
955/// in Mask are known to be either zero or one and return them in the
956/// KnownZero/KnownOne bitsets.
957void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
958 uint64_t Mask,
959 uint64_t &KnownZero,
960 uint64_t &KnownOne,
Dan Gohmanea859be2007-06-22 14:59:07 +0000961 const SelectionDAG &DAG,
Nate Begeman368e18d2006-02-16 21:11:51 +0000962 unsigned Depth) const {
Chris Lattner1b5232a2006-04-02 06:19:46 +0000963 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
964 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
965 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
966 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000967 "Should use MaskedValueIsZero if you don't know whether Op"
968 " is a target node!");
Nate Begeman368e18d2006-02-16 21:11:51 +0000969 KnownZero = 0;
970 KnownOne = 0;
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000971}
Chris Lattner4ccb0702006-01-26 20:37:03 +0000972
Chris Lattner5c3e21d2006-05-06 09:27:13 +0000973/// ComputeNumSignBitsForTargetNode - This method can be implemented by
974/// targets that want to expose additional information about sign bits to the
975/// DAG Combiner.
976unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
977 unsigned Depth) const {
978 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
979 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
980 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
981 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
982 "Should use ComputeNumSignBits if you don't know whether Op"
983 " is a target node!");
984 return 1;
985}
986
987
Evan Chengfa1eb272007-02-08 22:13:59 +0000988/// SimplifySetCC - Try to simplify a setcc built with the specified operands
989/// and cc. If it is unable to simplify it, return a null SDOperand.
990SDOperand
991TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
992 ISD::CondCode Cond, bool foldBooleans,
993 DAGCombinerInfo &DCI) const {
994 SelectionDAG &DAG = DCI.DAG;
995
996 // These setcc operations always fold.
997 switch (Cond) {
998 default: break;
999 case ISD::SETFALSE:
1000 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1001 case ISD::SETTRUE:
1002 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
1003 }
1004
1005 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1006 uint64_t C1 = N1C->getValue();
1007 if (isa<ConstantSDNode>(N0.Val)) {
1008 return DAG.FoldSetCC(VT, N0, N1, Cond);
1009 } else {
1010 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1011 // equality comparison, then we're just comparing whether X itself is
1012 // zero.
1013 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1014 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1015 N0.getOperand(1).getOpcode() == ISD::Constant) {
1016 unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1017 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1018 ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
1019 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1020 // (srl (ctlz x), 5) == 0 -> X != 0
1021 // (srl (ctlz x), 5) != 1 -> X != 0
1022 Cond = ISD::SETNE;
1023 } else {
1024 // (srl (ctlz x), 5) != 0 -> X == 0
1025 // (srl (ctlz x), 5) == 1 -> X == 0
1026 Cond = ISD::SETEQ;
1027 }
1028 SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1029 return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1030 Zero, Cond);
1031 }
1032 }
1033
1034 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1035 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1036 unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
1037
1038 // If the comparison constant has bits in the upper part, the
1039 // zero-extended value could never match.
1040 if (C1 & (~0ULL << InSize)) {
1041 unsigned VSize = MVT::getSizeInBits(N0.getValueType());
1042 switch (Cond) {
1043 case ISD::SETUGT:
1044 case ISD::SETUGE:
1045 case ISD::SETEQ: return DAG.getConstant(0, VT);
1046 case ISD::SETULT:
1047 case ISD::SETULE:
1048 case ISD::SETNE: return DAG.getConstant(1, VT);
1049 case ISD::SETGT:
1050 case ISD::SETGE:
1051 // True if the sign bit of C1 is set.
Chris Lattner01ca65b2007-02-24 02:09:29 +00001052 return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +00001053 case ISD::SETLT:
1054 case ISD::SETLE:
1055 // True if the sign bit of C1 isn't set.
Chris Lattner01ca65b2007-02-24 02:09:29 +00001056 return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +00001057 default:
1058 break;
1059 }
1060 }
1061
1062 // Otherwise, we can perform the comparison with the low bits.
1063 switch (Cond) {
1064 case ISD::SETEQ:
1065 case ISD::SETNE:
1066 case ISD::SETUGT:
1067 case ISD::SETUGE:
1068 case ISD::SETULT:
1069 case ISD::SETULE:
1070 return DAG.getSetCC(VT, N0.getOperand(0),
1071 DAG.getConstant(C1, N0.getOperand(0).getValueType()),
1072 Cond);
1073 default:
1074 break; // todo, be more careful with signed comparisons
1075 }
1076 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1077 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1078 MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1079 unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1080 MVT::ValueType ExtDstTy = N0.getValueType();
1081 unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1082
1083 // If the extended part has any inconsistent bits, it cannot ever
1084 // compare equal. In other words, they have to be all ones or all
1085 // zeros.
1086 uint64_t ExtBits =
1087 (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
1088 if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1089 return DAG.getConstant(Cond == ISD::SETNE, VT);
1090
1091 SDOperand ZextOp;
1092 MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1093 if (Op0Ty == ExtSrcTy) {
1094 ZextOp = N0.getOperand(0);
1095 } else {
1096 int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1097 ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1098 DAG.getConstant(Imm, Op0Ty));
1099 }
1100 if (!DCI.isCalledByLegalizer())
1101 DCI.AddToWorklist(ZextOp.Val);
1102 // Otherwise, make this a use of a zext.
1103 return DAG.getSetCC(VT, ZextOp,
1104 DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1105 ExtDstTy),
1106 Cond);
1107 } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1108 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1109
1110 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1111 if (N0.getOpcode() == ISD::SETCC) {
1112 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1113 if (TrueWhenTrue)
1114 return N0;
1115
1116 // Invert the condition.
1117 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1118 CC = ISD::getSetCCInverse(CC,
1119 MVT::isInteger(N0.getOperand(0).getValueType()));
1120 return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1121 }
1122
1123 if ((N0.getOpcode() == ISD::XOR ||
1124 (N0.getOpcode() == ISD::AND &&
1125 N0.getOperand(0).getOpcode() == ISD::XOR &&
1126 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1127 isa<ConstantSDNode>(N0.getOperand(1)) &&
1128 cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1129 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1130 // can only do this if the top bits are known zero.
Dan Gohmanea859be2007-06-22 14:59:07 +00001131 if (DAG.MaskedValueIsZero(N0,
1132 MVT::getIntVTBitMask(N0.getValueType())-1)){
Evan Chengfa1eb272007-02-08 22:13:59 +00001133 // Okay, get the un-inverted input value.
1134 SDOperand Val;
1135 if (N0.getOpcode() == ISD::XOR)
1136 Val = N0.getOperand(0);
1137 else {
1138 assert(N0.getOpcode() == ISD::AND &&
1139 N0.getOperand(0).getOpcode() == ISD::XOR);
1140 // ((X^1)&1)^1 -> X & 1
1141 Val = DAG.getNode(ISD::AND, N0.getValueType(),
1142 N0.getOperand(0).getOperand(0),
1143 N0.getOperand(1));
1144 }
1145 return DAG.getSetCC(VT, Val, N1,
1146 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1147 }
1148 }
1149 }
1150
1151 uint64_t MinVal, MaxVal;
1152 unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1153 if (ISD::isSignedIntSetCC(Cond)) {
1154 MinVal = 1ULL << (OperandBitSize-1);
1155 if (OperandBitSize != 1) // Avoid X >> 64, which is undefined.
1156 MaxVal = ~0ULL >> (65-OperandBitSize);
1157 else
1158 MaxVal = 0;
1159 } else {
1160 MinVal = 0;
1161 MaxVal = ~0ULL >> (64-OperandBitSize);
1162 }
1163
1164 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1165 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1166 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
1167 --C1; // X >= C0 --> X > (C0-1)
1168 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1169 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1170 }
1171
1172 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1173 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
1174 ++C1; // X <= C0 --> X < (C0+1)
1175 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1176 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1177 }
1178
1179 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1180 return DAG.getConstant(0, VT); // X < MIN --> false
1181 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1182 return DAG.getConstant(1, VT); // X >= MIN --> true
1183 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1184 return DAG.getConstant(0, VT); // X > MAX --> false
1185 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1186 return DAG.getConstant(1, VT); // X <= MAX --> true
1187
1188 // Canonicalize setgt X, Min --> setne X, Min
1189 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1190 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1191 // Canonicalize setlt X, Max --> setne X, Max
1192 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1193 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1194
1195 // If we have setult X, 1, turn it into seteq X, 0
1196 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1197 return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1198 ISD::SETEQ);
1199 // If we have setugt X, Max-1, turn it into seteq X, Max
1200 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1201 return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1202 ISD::SETEQ);
1203
1204 // If we have "setcc X, C0", check to see if we can shrink the immediate
1205 // by changing cc.
1206
1207 // SETUGT X, SINTMAX -> SETLT X, 0
1208 if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1209 C1 == (~0ULL >> (65-OperandBitSize)))
1210 return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1211 ISD::SETLT);
1212
1213 // FIXME: Implement the rest of these.
1214
1215 // Fold bit comparisons when we can.
1216 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1217 VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1218 if (ConstantSDNode *AndRHS =
1219 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1220 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
1221 // Perform the xform if the AND RHS is a single bit.
1222 if (isPowerOf2_64(AndRHS->getValue())) {
1223 return DAG.getNode(ISD::SRL, VT, N0,
1224 DAG.getConstant(Log2_64(AndRHS->getValue()),
1225 getShiftAmountTy()));
1226 }
1227 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1228 // (X & 8) == 8 --> (X & 8) >> 3
1229 // Perform the xform if C1 is a single bit.
1230 if (isPowerOf2_64(C1)) {
1231 return DAG.getNode(ISD::SRL, VT, N0,
1232 DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1233 }
1234 }
1235 }
1236 }
1237 } else if (isa<ConstantSDNode>(N0.Val)) {
1238 // Ensure that the constant occurs on the RHS.
1239 return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1240 }
1241
1242 if (isa<ConstantFPSDNode>(N0.Val)) {
1243 // Constant fold or commute setcc.
1244 SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1245 if (O.Val) return O;
1246 }
1247
1248 if (N0 == N1) {
1249 // We can always fold X == X for integer setcc's.
1250 if (MVT::isInteger(N0.getValueType()))
1251 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1252 unsigned UOF = ISD::getUnorderedFlavor(Cond);
1253 if (UOF == 2) // FP operators that are undefined on NaNs.
1254 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1255 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1256 return DAG.getConstant(UOF, VT);
1257 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1258 // if it is not already.
1259 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1260 if (NewCond != Cond)
1261 return DAG.getSetCC(VT, N0, N1, NewCond);
1262 }
1263
1264 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1265 MVT::isInteger(N0.getValueType())) {
1266 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1267 N0.getOpcode() == ISD::XOR) {
1268 // Simplify (X+Y) == (X+Z) --> Y == Z
1269 if (N0.getOpcode() == N1.getOpcode()) {
1270 if (N0.getOperand(0) == N1.getOperand(0))
1271 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1272 if (N0.getOperand(1) == N1.getOperand(1))
1273 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1274 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1275 // If X op Y == Y op X, try other combinations.
1276 if (N0.getOperand(0) == N1.getOperand(1))
1277 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1278 if (N0.getOperand(1) == N1.getOperand(0))
1279 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1280 }
1281 }
1282
1283 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1284 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1285 // Turn (X+C1) == C2 --> X == C2-C1
1286 if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1287 return DAG.getSetCC(VT, N0.getOperand(0),
1288 DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1289 N0.getValueType()), Cond);
1290 }
1291
1292 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1293 if (N0.getOpcode() == ISD::XOR)
1294 // If we know that all of the inverted bits are zero, don't bother
1295 // performing the inversion.
Dan Gohmanea859be2007-06-22 14:59:07 +00001296 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
Evan Chengfa1eb272007-02-08 22:13:59 +00001297 return DAG.getSetCC(VT, N0.getOperand(0),
1298 DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1299 N0.getValueType()), Cond);
1300 }
1301
1302 // Turn (C1-X) == C2 --> X == C1-C2
1303 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1304 if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1305 return DAG.getSetCC(VT, N0.getOperand(1),
1306 DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1307 N0.getValueType()), Cond);
1308 }
1309 }
1310 }
1311
1312 // Simplify (X+Z) == X --> Z == 0
1313 if (N0.getOperand(0) == N1)
1314 return DAG.getSetCC(VT, N0.getOperand(1),
1315 DAG.getConstant(0, N0.getValueType()), Cond);
1316 if (N0.getOperand(1) == N1) {
1317 if (DAG.isCommutativeBinOp(N0.getOpcode()))
1318 return DAG.getSetCC(VT, N0.getOperand(0),
1319 DAG.getConstant(0, N0.getValueType()), Cond);
Chris Lattner2ad913b2007-05-19 00:43:44 +00001320 else if (N0.Val->hasOneUse()) {
Evan Chengfa1eb272007-02-08 22:13:59 +00001321 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1322 // (Z-X) == X --> Z == X<<1
1323 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1324 N1,
1325 DAG.getConstant(1, getShiftAmountTy()));
1326 if (!DCI.isCalledByLegalizer())
1327 DCI.AddToWorklist(SH.Val);
1328 return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1329 }
1330 }
1331 }
1332
1333 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1334 N1.getOpcode() == ISD::XOR) {
1335 // Simplify X == (X+Z) --> Z == 0
1336 if (N1.getOperand(0) == N0) {
1337 return DAG.getSetCC(VT, N1.getOperand(1),
1338 DAG.getConstant(0, N1.getValueType()), Cond);
1339 } else if (N1.getOperand(1) == N0) {
1340 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1341 return DAG.getSetCC(VT, N1.getOperand(0),
1342 DAG.getConstant(0, N1.getValueType()), Cond);
Chris Lattner7667c0b2007-05-19 00:46:51 +00001343 } else if (N1.Val->hasOneUse()) {
Evan Chengfa1eb272007-02-08 22:13:59 +00001344 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1345 // X == (Z-X) --> X<<1 == Z
1346 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1347 DAG.getConstant(1, getShiftAmountTy()));
1348 if (!DCI.isCalledByLegalizer())
1349 DCI.AddToWorklist(SH.Val);
1350 return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1351 }
1352 }
1353 }
1354 }
1355
1356 // Fold away ALL boolean setcc's.
1357 SDOperand Temp;
1358 if (N0.getValueType() == MVT::i1 && foldBooleans) {
1359 switch (Cond) {
1360 default: assert(0 && "Unknown integer setcc!");
1361 case ISD::SETEQ: // X == Y -> (X^Y)^1
1362 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1363 N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1364 if (!DCI.isCalledByLegalizer())
1365 DCI.AddToWorklist(Temp.Val);
1366 break;
1367 case ISD::SETNE: // X != Y --> (X^Y)
1368 N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1369 break;
1370 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> X^1 & Y
1371 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> X^1 & Y
1372 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1373 N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1374 if (!DCI.isCalledByLegalizer())
1375 DCI.AddToWorklist(Temp.Val);
1376 break;
1377 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> Y^1 & X
1378 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X
1379 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1380 N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1381 if (!DCI.isCalledByLegalizer())
1382 DCI.AddToWorklist(Temp.Val);
1383 break;
1384 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y
1385 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y
1386 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1387 N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1388 if (!DCI.isCalledByLegalizer())
1389 DCI.AddToWorklist(Temp.Val);
1390 break;
1391 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X
1392 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X
1393 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1394 N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1395 break;
1396 }
1397 if (VT != MVT::i1) {
1398 if (!DCI.isCalledByLegalizer())
1399 DCI.AddToWorklist(N0.Val);
1400 // FIXME: If running after legalize, we probably can't do this.
1401 N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1402 }
1403 return N0;
1404 }
1405
1406 // Could not fold it.
1407 return SDOperand();
1408}
1409
Chris Lattner00ffed02006-03-01 04:52:55 +00001410SDOperand TargetLowering::
1411PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1412 // Default implementation: no optimization.
1413 return SDOperand();
1414}
1415
Chris Lattnereb8146b2006-02-04 02:13:02 +00001416//===----------------------------------------------------------------------===//
1417// Inline Assembler Implementation Methods
1418//===----------------------------------------------------------------------===//
1419
1420TargetLowering::ConstraintType
Chris Lattner4234f572007-03-25 02:14:49 +00001421TargetLowering::getConstraintType(const std::string &Constraint) const {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001422 // FIXME: lots more standard ones to handle.
Chris Lattner4234f572007-03-25 02:14:49 +00001423 if (Constraint.size() == 1) {
1424 switch (Constraint[0]) {
1425 default: break;
1426 case 'r': return C_RegisterClass;
1427 case 'm': // memory
1428 case 'o': // offsetable
1429 case 'V': // not offsetable
1430 return C_Memory;
1431 case 'i': // Simple Integer or Relocatable Constant
1432 case 'n': // Simple Integer
1433 case 's': // Relocatable Constant
Chris Lattnerc13dd1c2007-03-25 04:35:41 +00001434 case 'X': // Allow ANY value.
Chris Lattner4234f572007-03-25 02:14:49 +00001435 case 'I': // Target registers.
1436 case 'J':
1437 case 'K':
1438 case 'L':
1439 case 'M':
1440 case 'N':
1441 case 'O':
1442 case 'P':
1443 return C_Other;
1444 }
Chris Lattnereb8146b2006-02-04 02:13:02 +00001445 }
Chris Lattner065421f2007-03-25 02:18:14 +00001446
1447 if (Constraint.size() > 1 && Constraint[0] == '{' &&
1448 Constraint[Constraint.size()-1] == '}')
1449 return C_Register;
Chris Lattner4234f572007-03-25 02:14:49 +00001450 return C_Unknown;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001451}
1452
Chris Lattner48884cd2007-08-25 00:47:38 +00001453/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1454/// vector. If it is invalid, don't add anything to Ops.
1455void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1456 char ConstraintLetter,
1457 std::vector<SDOperand> &Ops,
1458 SelectionDAG &DAG) {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001459 switch (ConstraintLetter) {
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001460 default: break;
Dale Johanneseneb57ea72007-11-05 21:20:28 +00001461 case 'X': // Allows any operand; labels (basic block) use this.
1462 if (Op.getOpcode() == ISD::BasicBlock) {
1463 Ops.push_back(Op);
1464 return;
1465 }
1466 // fall through
Chris Lattnereb8146b2006-02-04 02:13:02 +00001467 case 'i': // Simple Integer or Relocatable Constant
1468 case 'n': // Simple Integer
Dale Johanneseneb57ea72007-11-05 21:20:28 +00001469 case 's': { // Relocatable Constant
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001470 // These operands are interested in values of the form (GV+C), where C may
1471 // be folded in as an offset of GV, or it may be explicitly added. Also, it
1472 // is possible and fine if either GV or C are missing.
1473 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1474 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1475
1476 // If we have "(add GV, C)", pull out GV/C
1477 if (Op.getOpcode() == ISD::ADD) {
1478 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1479 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1480 if (C == 0 || GA == 0) {
1481 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1482 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1483 }
1484 if (C == 0 || GA == 0)
1485 C = 0, GA = 0;
1486 }
1487
1488 // If we find a valid operand, map to the TargetXXX version so that the
1489 // value itself doesn't get selected.
1490 if (GA) { // Either &GV or &GV+C
1491 if (ConstraintLetter != 'n') {
1492 int64_t Offs = GA->getOffset();
1493 if (C) Offs += C->getValue();
Chris Lattner48884cd2007-08-25 00:47:38 +00001494 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1495 Op.getValueType(), Offs));
1496 return;
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001497 }
1498 }
1499 if (C) { // just C, no GV.
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001500 // Simple constants are not allowed for 's'.
Chris Lattner48884cd2007-08-25 00:47:38 +00001501 if (ConstraintLetter != 's') {
1502 Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1503 return;
1504 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001505 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001506 break;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001507 }
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001508 }
Chris Lattnereb8146b2006-02-04 02:13:02 +00001509}
1510
Chris Lattner4ccb0702006-01-26 20:37:03 +00001511std::vector<unsigned> TargetLowering::
Chris Lattner1efa40f2006-02-22 00:56:39 +00001512getRegClassForInlineAsmConstraint(const std::string &Constraint,
1513 MVT::ValueType VT) const {
1514 return std::vector<unsigned>();
1515}
1516
1517
1518std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
Chris Lattner4217ca8dc2006-02-21 23:11:00 +00001519getRegForInlineAsmConstraint(const std::string &Constraint,
1520 MVT::ValueType VT) const {
Chris Lattner1efa40f2006-02-22 00:56:39 +00001521 if (Constraint[0] != '{')
1522 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattnera55079a2006-02-01 01:29:47 +00001523 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1524
1525 // Remove the braces from around the name.
1526 std::string RegName(Constraint.begin()+1, Constraint.end()-1);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001527
1528 // Figure out which register class contains this reg.
Chris Lattner4ccb0702006-01-26 20:37:03 +00001529 const MRegisterInfo *RI = TM.getRegisterInfo();
Chris Lattner1efa40f2006-02-22 00:56:39 +00001530 for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1531 E = RI->regclass_end(); RCI != E; ++RCI) {
1532 const TargetRegisterClass *RC = *RCI;
Chris Lattnerb3befd42006-02-22 23:00:51 +00001533
1534 // If none of the the value types for this register class are valid, we
1535 // can't use it. For example, 64-bit reg classes on 32-bit targets.
1536 bool isLegal = false;
1537 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1538 I != E; ++I) {
1539 if (isTypeLegal(*I)) {
1540 isLegal = true;
1541 break;
1542 }
1543 }
1544
1545 if (!isLegal) continue;
1546
Chris Lattner1efa40f2006-02-22 00:56:39 +00001547 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1548 I != E; ++I) {
Chris Lattnerb3befd42006-02-22 23:00:51 +00001549 if (StringsEqualNoCase(RegName, RI->get(*I).Name))
Chris Lattner1efa40f2006-02-22 00:56:39 +00001550 return std::make_pair(*I, RC);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001551 }
Chris Lattner4ccb0702006-01-26 20:37:03 +00001552 }
Chris Lattnera55079a2006-02-01 01:29:47 +00001553
Chris Lattner1efa40f2006-02-22 00:56:39 +00001554 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattner4ccb0702006-01-26 20:37:03 +00001555}
Evan Cheng30b37b52006-03-13 23:18:16 +00001556
1557//===----------------------------------------------------------------------===//
1558// Loop Strength Reduction hooks
1559//===----------------------------------------------------------------------===//
1560
Chris Lattner1436bb62007-03-30 23:14:50 +00001561/// isLegalAddressingMode - Return true if the addressing mode represented
1562/// by AM is legal for this target, for a load/store of the specified type.
1563bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1564 const Type *Ty) const {
1565 // The default implementation of this implements a conservative RISCy, r+r and
1566 // r+i addr mode.
1567
1568 // Allows a sign-extended 16-bit immediate field.
1569 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1570 return false;
1571
1572 // No global is ever allowed as a base.
1573 if (AM.BaseGV)
1574 return false;
1575
1576 // Only support r+r,
1577 switch (AM.Scale) {
1578 case 0: // "r+i" or just "i", depending on HasBaseReg.
1579 break;
1580 case 1:
1581 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
1582 return false;
1583 // Otherwise we have r+r or r+i.
1584 break;
1585 case 2:
1586 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
1587 return false;
1588 // Allow 2*r as r+r.
1589 break;
1590 }
1591
1592 return true;
1593}
1594
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001595// Magic for divide replacement
1596
1597struct ms {
1598 int64_t m; // magic number
1599 int64_t s; // shift amount
1600};
1601
1602struct mu {
1603 uint64_t m; // magic number
1604 int64_t a; // add indicator
1605 int64_t s; // shift amount
1606};
1607
1608/// magic - calculate the magic numbers required to codegen an integer sdiv as
1609/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1610/// or -1.
1611static ms magic32(int32_t d) {
1612 int32_t p;
1613 uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1614 const uint32_t two31 = 0x80000000U;
1615 struct ms mag;
1616
1617 ad = abs(d);
1618 t = two31 + ((uint32_t)d >> 31);
1619 anc = t - 1 - t%ad; // absolute value of nc
1620 p = 31; // initialize p
1621 q1 = two31/anc; // initialize q1 = 2p/abs(nc)
1622 r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1623 q2 = two31/ad; // initialize q2 = 2p/abs(d)
1624 r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
1625 do {
1626 p = p + 1;
1627 q1 = 2*q1; // update q1 = 2p/abs(nc)
1628 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1629 if (r1 >= anc) { // must be unsigned comparison
1630 q1 = q1 + 1;
1631 r1 = r1 - anc;
1632 }
1633 q2 = 2*q2; // update q2 = 2p/abs(d)
1634 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1635 if (r2 >= ad) { // must be unsigned comparison
1636 q2 = q2 + 1;
1637 r2 = r2 - ad;
1638 }
1639 delta = ad - r2;
1640 } while (q1 < delta || (q1 == delta && r1 == 0));
1641
1642 mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1643 if (d < 0) mag.m = -mag.m; // resulting magic number
1644 mag.s = p - 32; // resulting shift
1645 return mag;
1646}
1647
1648/// magicu - calculate the magic numbers required to codegen an integer udiv as
1649/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1650static mu magicu32(uint32_t d) {
1651 int32_t p;
1652 uint32_t nc, delta, q1, r1, q2, r2;
1653 struct mu magu;
1654 magu.a = 0; // initialize "add" indicator
1655 nc = - 1 - (-d)%d;
1656 p = 31; // initialize p
1657 q1 = 0x80000000/nc; // initialize q1 = 2p/nc
1658 r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
1659 q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
1660 r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
1661 do {
1662 p = p + 1;
1663 if (r1 >= nc - r1 ) {
1664 q1 = 2*q1 + 1; // update q1
1665 r1 = 2*r1 - nc; // update r1
1666 }
1667 else {
1668 q1 = 2*q1; // update q1
1669 r1 = 2*r1; // update r1
1670 }
1671 if (r2 + 1 >= d - r2) {
1672 if (q2 >= 0x7FFFFFFF) magu.a = 1;
1673 q2 = 2*q2 + 1; // update q2
1674 r2 = 2*r2 + 1 - d; // update r2
1675 }
1676 else {
1677 if (q2 >= 0x80000000) magu.a = 1;
1678 q2 = 2*q2; // update q2
1679 r2 = 2*r2 + 1; // update r2
1680 }
1681 delta = d - 1 - r2;
1682 } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1683 magu.m = q2 + 1; // resulting magic number
1684 magu.s = p - 32; // resulting shift
1685 return magu;
1686}
1687
1688/// magic - calculate the magic numbers required to codegen an integer sdiv as
1689/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1690/// or -1.
1691static ms magic64(int64_t d) {
1692 int64_t p;
1693 uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1694 const uint64_t two63 = 9223372036854775808ULL; // 2^63
1695 struct ms mag;
1696
1697 ad = d >= 0 ? d : -d;
1698 t = two63 + ((uint64_t)d >> 63);
1699 anc = t - 1 - t%ad; // absolute value of nc
1700 p = 63; // initialize p
1701 q1 = two63/anc; // initialize q1 = 2p/abs(nc)
1702 r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1703 q2 = two63/ad; // initialize q2 = 2p/abs(d)
1704 r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d))
1705 do {
1706 p = p + 1;
1707 q1 = 2*q1; // update q1 = 2p/abs(nc)
1708 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1709 if (r1 >= anc) { // must be unsigned comparison
1710 q1 = q1 + 1;
1711 r1 = r1 - anc;
1712 }
1713 q2 = 2*q2; // update q2 = 2p/abs(d)
1714 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1715 if (r2 >= ad) { // must be unsigned comparison
1716 q2 = q2 + 1;
1717 r2 = r2 - ad;
1718 }
1719 delta = ad - r2;
1720 } while (q1 < delta || (q1 == delta && r1 == 0));
1721
1722 mag.m = q2 + 1;
1723 if (d < 0) mag.m = -mag.m; // resulting magic number
1724 mag.s = p - 64; // resulting shift
1725 return mag;
1726}
1727
1728/// magicu - calculate the magic numbers required to codegen an integer udiv as
1729/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1730static mu magicu64(uint64_t d)
1731{
1732 int64_t p;
1733 uint64_t nc, delta, q1, r1, q2, r2;
1734 struct mu magu;
1735 magu.a = 0; // initialize "add" indicator
1736 nc = - 1 - (-d)%d;
1737 p = 63; // initialize p
1738 q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc
1739 r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc)
1740 q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d
1741 r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d)
1742 do {
1743 p = p + 1;
1744 if (r1 >= nc - r1 ) {
1745 q1 = 2*q1 + 1; // update q1
1746 r1 = 2*r1 - nc; // update r1
1747 }
1748 else {
1749 q1 = 2*q1; // update q1
1750 r1 = 2*r1; // update r1
1751 }
1752 if (r2 + 1 >= d - r2) {
1753 if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1754 q2 = 2*q2 + 1; // update q2
1755 r2 = 2*r2 + 1 - d; // update r2
1756 }
1757 else {
1758 if (q2 >= 0x8000000000000000ull) magu.a = 1;
1759 q2 = 2*q2; // update q2
1760 r2 = 2*r2 + 1; // update r2
1761 }
1762 delta = d - 1 - r2;
Andrew Lenharth3e348492006-05-16 17:45:23 +00001763 } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001764 magu.m = q2 + 1; // resulting magic number
1765 magu.s = p - 64; // resulting shift
1766 return magu;
1767}
1768
1769/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1770/// return a DAG expression to select that will generate the same value by
1771/// multiplying by a magic number. See:
1772/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1773SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00001774 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001775 MVT::ValueType VT = N->getValueType(0);
1776
1777 // Check to see if we can do this.
1778 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1779 return SDOperand(); // BuildSDIV only operates on i32 or i64
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001780
1781 int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1782 ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1783
1784 // Multiply the numerator (operand 0) by the magic value
Dan Gohman525178c2007-10-08 18:33:35 +00001785 SDOperand Q;
1786 if (isOperationLegal(ISD::MULHS, VT))
1787 Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1788 DAG.getConstant(magics.m, VT));
1789 else if (isOperationLegal(ISD::SMUL_LOHI, VT))
1790 Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
1791 N->getOperand(0),
1792 DAG.getConstant(magics.m, VT)).Val, 1);
1793 else
1794 return SDOperand(); // No mulhs or equvialent
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001795 // If d > 0 and m < 0, add the numerator
1796 if (d > 0 && magics.m < 0) {
1797 Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1798 if (Created)
1799 Created->push_back(Q.Val);
1800 }
1801 // If d < 0 and m > 0, subtract the numerator.
1802 if (d < 0 && magics.m > 0) {
1803 Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1804 if (Created)
1805 Created->push_back(Q.Val);
1806 }
1807 // Shift right algebraic if shift value is nonzero
1808 if (magics.s > 0) {
1809 Q = DAG.getNode(ISD::SRA, VT, Q,
1810 DAG.getConstant(magics.s, getShiftAmountTy()));
1811 if (Created)
1812 Created->push_back(Q.Val);
1813 }
1814 // Extract the sign bit and add it to the quotient
1815 SDOperand T =
1816 DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1817 getShiftAmountTy()));
1818 if (Created)
1819 Created->push_back(T.Val);
1820 return DAG.getNode(ISD::ADD, VT, Q, T);
1821}
1822
1823/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1824/// return a DAG expression to select that will generate the same value by
1825/// multiplying by a magic number. See:
1826/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1827SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00001828 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001829 MVT::ValueType VT = N->getValueType(0);
1830
1831 // Check to see if we can do this.
1832 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1833 return SDOperand(); // BuildUDIV only operates on i32 or i64
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001834
1835 uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1836 mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1837
1838 // Multiply the numerator (operand 0) by the magic value
Dan Gohman525178c2007-10-08 18:33:35 +00001839 SDOperand Q;
1840 if (isOperationLegal(ISD::MULHU, VT))
1841 Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1842 DAG.getConstant(magics.m, VT));
1843 else if (isOperationLegal(ISD::UMUL_LOHI, VT))
1844 Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
1845 N->getOperand(0),
1846 DAG.getConstant(magics.m, VT)).Val, 1);
1847 else
1848 return SDOperand(); // No mulhu or equvialent
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001849 if (Created)
1850 Created->push_back(Q.Val);
1851
1852 if (magics.a == 0) {
1853 return DAG.getNode(ISD::SRL, VT, Q,
1854 DAG.getConstant(magics.s, getShiftAmountTy()));
1855 } else {
1856 SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1857 if (Created)
1858 Created->push_back(NPQ.Val);
1859 NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1860 DAG.getConstant(1, getShiftAmountTy()));
1861 if (Created)
1862 Created->push_back(NPQ.Val);
1863 NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1864 if (Created)
1865 Created->push_back(NPQ.Val);
1866 return DAG.getNode(ISD::SRL, VT, NPQ,
1867 DAG.getConstant(magics.s-1, getShiftAmountTy()));
1868 }
1869}