blob: 27852619a14fd3bc75edda03c8084d74def321ad [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
Misha Brukmane2eceb52004-07-23 16:08:20 +000014#include "PowerPCTargetMachine.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000015#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Function.h"
18#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000019#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000020#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000021#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/MRegisterInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000029#include "Support/Debug.h"
Misha Brukmane2eceb52004-07-23 16:08:20 +000030#include "Support/Statistic.h"
Misha Brukman98649d12004-06-24 21:54:47 +000031#include <vector>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000032using namespace llvm;
33
34namespace {
Misha Brukmanb097f212004-07-26 18:13:24 +000035 Statistic<> GEPFolds("ppc-codegen", "Number of GEPs folded");
Misha Brukmane2eceb52004-07-23 16:08:20 +000036
Misha Brukman422791f2004-06-21 17:41:12 +000037 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
38 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000039 ///
40 enum TypeClass {
Misha Brukman7e898c32004-07-20 00:41:46 +000041 cByte, cShort, cInt, cFP32, cFP64, cLong
Misha Brukman5dfe3a92004-06-21 16:55:25 +000042 };
43}
44
45/// getClass - Turn a primitive type into a "class" number which is based on the
46/// size of the type, and whether or not it is floating point.
47///
48static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000049 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000050 case Type::SByteTyID:
51 case Type::UByteTyID: return cByte; // Byte operands are class #0
52 case Type::ShortTyID:
53 case Type::UShortTyID: return cShort; // Short operands are class #1
54 case Type::IntTyID:
55 case Type::UIntTyID:
Misha Brukman2834a4d2004-07-07 20:07:22 +000056 case Type::PointerTyID: return cInt; // Ints and pointers are class #2
Misha Brukman5dfe3a92004-06-21 16:55:25 +000057
Misha Brukman7e898c32004-07-20 00:41:46 +000058 case Type::FloatTyID: return cFP32; // Single float is #3
59 case Type::DoubleTyID: return cFP64; // Double Point is #4
Misha Brukman5dfe3a92004-06-21 16:55:25 +000060
61 case Type::LongTyID:
Misha Brukman7e898c32004-07-20 00:41:46 +000062 case Type::ULongTyID: return cLong; // Longs are class #5
Misha Brukman5dfe3a92004-06-21 16:55:25 +000063 default:
64 assert(0 && "Invalid type to getClass!");
65 return cByte; // not reached
66 }
67}
68
69// getClassB - Just like getClass, but treat boolean values as ints.
70static inline TypeClass getClassB(const Type *Ty) {
Misha Brukman4c14f332004-07-23 01:11:19 +000071 if (Ty == Type::BoolTy) return cInt;
Misha Brukman5dfe3a92004-06-21 16:55:25 +000072 return getClass(Ty);
73}
74
75namespace {
76 struct ISel : public FunctionPass, InstVisitor<ISel> {
Misha Brukmane2eceb52004-07-23 16:08:20 +000077 PowerPCTargetMachine &TM;
Misha Brukman5dfe3a92004-06-21 16:55:25 +000078 MachineFunction *F; // The function we are compiling into
79 MachineBasicBlock *BB; // The current MBB we are compiling
80 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Misha Brukmanb097f212004-07-26 18:13:24 +000081
Misha Brukman313efcb2004-07-09 15:45:07 +000082 std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
Misha Brukman5dfe3a92004-06-21 16:55:25 +000083
Misha Brukman2834a4d2004-07-07 20:07:22 +000084 // External functions used in the Module
Misha Brukman7e898c32004-07-20 00:41:46 +000085 Function *fmodfFn, *fmodFn, *__moddi3Fn, *__divdi3Fn, *__umoddi3Fn,
86 *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__floatdisfFn, *__floatdidfFn,
87 *mallocFn, *freeFn;
Misha Brukman2834a4d2004-07-07 20:07:22 +000088
Misha Brukman5dfe3a92004-06-21 16:55:25 +000089 // MBBMap - Mapping between LLVM BB -> Machine BB
90 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
91
92 // AllocaMap - Mapping from fixed sized alloca instructions to the
93 // FrameIndex for the alloca.
94 std::map<AllocaInst*, unsigned> AllocaMap;
95
Misha Brukmanb097f212004-07-26 18:13:24 +000096 // A Reg to hold the base address used for global loads and stores, and a
97 // flag to set whether or not we need to emit it for this function.
98 unsigned GlobalBaseReg;
99 bool GlobalBaseInitialized;
100
Misha Brukmane2eceb52004-07-23 16:08:20 +0000101 ISel(TargetMachine &tm) : TM(reinterpret_cast<PowerPCTargetMachine&>(tm)),
102 F(0), BB(0) {}
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000103
Misha Brukman2834a4d2004-07-07 20:07:22 +0000104 bool doInitialization(Module &M) {
Misha Brukmanb0932592004-07-07 15:36:18 +0000105 // Add external functions that we may call
Misha Brukman2834a4d2004-07-07 20:07:22 +0000106 Type *d = Type::DoubleTy;
Misha Brukmanf3f63822004-07-08 19:41:16 +0000107 Type *f = Type::FloatTy;
Misha Brukman2834a4d2004-07-07 20:07:22 +0000108 Type *l = Type::LongTy;
109 Type *ul = Type::ULongTy;
Misha Brukman313efcb2004-07-09 15:45:07 +0000110 Type *voidPtr = PointerType::get(Type::SByteTy);
Misha Brukman7e898c32004-07-20 00:41:46 +0000111 // float fmodf(float, float);
112 fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000113 // double fmod(double, double);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000114 fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000115 // long __moddi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000116 __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000117 // long __divdi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000118 __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000119 // unsigned long __umoddi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000120 __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000121 // unsigned long __udivdi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000122 __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
Misha Brukman7e898c32004-07-20 00:41:46 +0000123 // long __fixsfdi(float)
124 __fixdfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
Misha Brukmanf3f63822004-07-08 19:41:16 +0000125 // long __fixdfdi(double)
126 __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
127 // float __floatdisf(long)
128 __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
129 // double __floatdidf(long)
130 __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
Misha Brukman313efcb2004-07-09 15:45:07 +0000131 // void* malloc(size_t)
132 mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
133 // void free(void*)
134 freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000135 return false;
136 }
Misha Brukmand18a31d2004-07-06 22:51:53 +0000137
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000138 /// runOnFunction - Top level implementation of instruction selection for
139 /// the entire function.
140 ///
141 bool runOnFunction(Function &Fn) {
142 // First pass over the function, lower any unknown intrinsic functions
143 // with the IntrinsicLowering class.
144 LowerUnknownIntrinsicFunctionCalls(Fn);
145
146 F = &MachineFunction::construct(&Fn, TM);
147
148 // Create all of the machine basic blocks for the function...
149 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
150 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
151
152 BB = &F->front();
153
Misha Brukmanb097f212004-07-26 18:13:24 +0000154 // Make sure we re-emit a set of the global base reg if necessary
155 GlobalBaseInitialized = false;
156
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000157 // Copy incoming arguments off of the stack...
158 LoadArgumentsToVirtualRegs(Fn);
159
160 // Instruction select everything except PHI nodes
161 visit(Fn);
162
163 // Select the PHI nodes
164 SelectPHINodes();
165
166 RegMap.clear();
167 MBBMap.clear();
168 AllocaMap.clear();
169 F = 0;
170 // We always build a machine code representation for the function
171 return true;
172 }
173
174 virtual const char *getPassName() const {
175 return "PowerPC Simple Instruction Selection";
176 }
177
178 /// visitBasicBlock - This method is called when we are visiting a new basic
179 /// block. This simply creates a new MachineBasicBlock to emit code into
180 /// and adds it to the current MachineFunction. Subsequent visit* for
181 /// instructions will be invoked for all instructions in the basic block.
182 ///
183 void visitBasicBlock(BasicBlock &LLVM_BB) {
184 BB = MBBMap[&LLVM_BB];
185 }
186
187 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
188 /// function, lowering any calls to unknown intrinsic functions into the
189 /// equivalent LLVM code.
190 ///
191 void LowerUnknownIntrinsicFunctionCalls(Function &F);
192
193 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
194 /// from the stack into virtual registers.
195 ///
196 void LoadArgumentsToVirtualRegs(Function &F);
197
198 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
199 /// because we have to generate our sources into the source basic blocks,
200 /// not the current one.
201 ///
202 void SelectPHINodes();
203
204 // Visitation methods for various instructions. These methods simply emit
205 // fixed PowerPC code for each instruction.
206
207 // Control flow operators
208 void visitReturnInst(ReturnInst &RI);
209 void visitBranchInst(BranchInst &BI);
210
211 struct ValueRecord {
212 Value *Val;
213 unsigned Reg;
214 const Type *Ty;
215 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
216 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
217 };
Misha Brukmanb097f212004-07-26 18:13:24 +0000218
219 // This struct is for recording the necessary operations to emit the GEP
220 struct CollapsedGepOp {
221 bool isMul;
222 Value *index;
223 ConstantSInt *size;
224 CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
225 isMul(mul), index(i), size(s) {}
226 };
227
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000228 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +0000229 const std::vector<ValueRecord> &Args, bool isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000230 void visitCallInst(CallInst &I);
231 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
232
233 // Arithmetic operators
234 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
235 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
236 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
237 void visitMul(BinaryOperator &B);
238
239 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
240 void visitRem(BinaryOperator &B) { visitDivRem(B); }
241 void visitDivRem(BinaryOperator &B);
242
243 // Bitwise operators
244 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
245 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
246 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
247
248 // Comparison operators...
249 void visitSetCondInst(SetCondInst &I);
250 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
251 MachineBasicBlock *MBB,
252 MachineBasicBlock::iterator MBBI);
253 void visitSelectInst(SelectInst &SI);
254
255
256 // Memory Instructions
257 void visitLoadInst(LoadInst &I);
258 void visitStoreInst(StoreInst &I);
259 void visitGetElementPtrInst(GetElementPtrInst &I);
260 void visitAllocaInst(AllocaInst &I);
261 void visitMallocInst(MallocInst &I);
262 void visitFreeInst(FreeInst &I);
263
264 // Other operators
265 void visitShiftInst(ShiftInst &I);
266 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
267 void visitCastInst(CastInst &I);
268 void visitVANextInst(VANextInst &I);
269 void visitVAArgInst(VAArgInst &I);
270
271 void visitInstruction(Instruction &I) {
272 std::cerr << "Cannot instruction select: " << I;
273 abort();
274 }
275
276 /// promote32 - Make a value 32-bits wide, and put it somewhere.
277 ///
278 void promote32(unsigned targetReg, const ValueRecord &VR);
279
280 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
281 /// constant expression GEP support.
282 ///
283 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
284 Value *Src, User::op_iterator IdxBegin,
Misha Brukmanb097f212004-07-26 18:13:24 +0000285 User::op_iterator IdxEnd, unsigned TargetReg,
286 bool CollapseRemainder, ConstantSInt **Remainder);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000287
288 /// emitCastOperation - Common code shared between visitCastInst and
289 /// constant expression cast support.
290 ///
291 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
292 Value *Src, const Type *DestTy, unsigned TargetReg);
293
294 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
295 /// and constant expression support.
296 ///
297 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
298 MachineBasicBlock::iterator IP,
299 Value *Op0, Value *Op1,
300 unsigned OperatorClass, unsigned TargetReg);
301
302 /// emitBinaryFPOperation - This method handles emission of floating point
303 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
304 void emitBinaryFPOperation(MachineBasicBlock *BB,
305 MachineBasicBlock::iterator IP,
306 Value *Op0, Value *Op1,
307 unsigned OperatorClass, unsigned TargetReg);
308
309 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
310 Value *Op0, Value *Op1, unsigned TargetReg);
311
Misha Brukman1013ef52004-07-21 20:09:08 +0000312 void doMultiply(MachineBasicBlock *MBB,
313 MachineBasicBlock::iterator IP,
314 unsigned DestReg, Value *Op0, Value *Op1);
315
316 /// doMultiplyConst - This method will multiply the value in Op0Reg by the
317 /// value of the ContantInt *CI
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000318 void doMultiplyConst(MachineBasicBlock *MBB,
Misha Brukman1013ef52004-07-21 20:09:08 +0000319 MachineBasicBlock::iterator IP,
320 unsigned DestReg, Value *Op0, ConstantInt *CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000321
322 void emitDivRemOperation(MachineBasicBlock *BB,
323 MachineBasicBlock::iterator IP,
324 Value *Op0, Value *Op1, bool isDiv,
325 unsigned TargetReg);
326
327 /// emitSetCCOperation - Common code shared between visitSetCondInst and
328 /// constant expression support.
329 ///
330 void emitSetCCOperation(MachineBasicBlock *BB,
331 MachineBasicBlock::iterator IP,
332 Value *Op0, Value *Op1, unsigned Opcode,
333 unsigned TargetReg);
334
335 /// emitShiftOperation - Common code shared between visitShiftInst and
336 /// constant expression support.
337 ///
338 void emitShiftOperation(MachineBasicBlock *MBB,
339 MachineBasicBlock::iterator IP,
340 Value *Op, Value *ShiftAmount, bool isLeftShift,
341 const Type *ResultTy, unsigned DestReg);
342
343 /// emitSelectOperation - Common code shared between visitSelectInst and the
344 /// constant expression support.
Misha Brukmanb097f212004-07-26 18:13:24 +0000345 ///
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000346 void emitSelectOperation(MachineBasicBlock *MBB,
347 MachineBasicBlock::iterator IP,
348 Value *Cond, Value *TrueVal, Value *FalseVal,
349 unsigned DestReg);
350
Misha Brukmanb097f212004-07-26 18:13:24 +0000351 /// copyGlobalBaseToRegister - Output the instructions required to put the
352 /// base address to use for accessing globals into a register.
353 ///
354 void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
355 MachineBasicBlock::iterator IP,
356 unsigned R);
357
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000358 /// copyConstantToRegister - Output the instructions required to put the
359 /// specified constant into the specified register.
360 ///
361 void copyConstantToRegister(MachineBasicBlock *MBB,
362 MachineBasicBlock::iterator MBBI,
363 Constant *C, unsigned Reg);
364
365 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
366 unsigned LHS, unsigned RHS);
367
368 /// makeAnotherReg - This method returns the next register number we haven't
369 /// yet used.
370 ///
371 /// Long values are handled somewhat specially. They are always allocated
372 /// as pairs of 32 bit integer values. The register number returned is the
Misha Brukman1013ef52004-07-21 20:09:08 +0000373 /// high 32 bits of the long value, and the regNum+1 is the low 32 bits.
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000374 ///
375 unsigned makeAnotherReg(const Type *Ty) {
376 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
377 "Current target doesn't have PPC reg info??");
378 const PowerPCRegisterInfo *MRI =
379 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
380 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
381 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
382 // Create the lower part
383 F->getSSARegMap()->createVirtualRegister(RC);
384 // Create the upper part.
385 return F->getSSARegMap()->createVirtualRegister(RC)-1;
386 }
387
388 // Add the mapping of regnumber => reg class to MachineFunction
389 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
390 return F->getSSARegMap()->createVirtualRegister(RC);
391 }
392
393 /// getReg - This method turns an LLVM value into a register number.
394 ///
395 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
396 unsigned getReg(Value *V) {
397 // Just append to the end of the current bb.
398 MachineBasicBlock::iterator It = BB->end();
399 return getReg(V, BB, It);
400 }
401 unsigned getReg(Value *V, MachineBasicBlock *MBB,
402 MachineBasicBlock::iterator IPt);
Misha Brukman1013ef52004-07-21 20:09:08 +0000403
404 /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
405 /// is okay to use as an immediate argument to a certain binary operation
406 bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000407
408 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
409 /// that is to be statically allocated with the initial stack frame
410 /// adjustment.
411 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
412 };
413}
414
415/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
416/// instruction in the entry block, return it. Otherwise, return a null
417/// pointer.
418static AllocaInst *dyn_castFixedAlloca(Value *V) {
419 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
420 BasicBlock *BB = AI->getParent();
421 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
422 return AI;
423 }
424 return 0;
425}
426
427/// getReg - This method turns an LLVM value into a register number.
428///
429unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
430 MachineBasicBlock::iterator IPt) {
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000431 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattnera51e4f62004-07-18 18:45:01 +0000432 unsigned Reg = makeAnotherReg(V->getType());
433 copyConstantToRegister(MBB, IPt, C, Reg);
434 return Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000435 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
436 unsigned Reg = makeAnotherReg(V->getType());
437 unsigned FI = getFixedSizedAllocaFI(AI);
438 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
439 return Reg;
440 }
441
442 unsigned &Reg = RegMap[V];
443 if (Reg == 0) {
444 Reg = makeAnotherReg(V->getType());
445 RegMap[V] = Reg;
446 }
447
448 return Reg;
449}
450
Misha Brukman1013ef52004-07-21 20:09:08 +0000451/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
452/// is okay to use as an immediate argument to a certain binary operator.
453///
454/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
Misha Brukman47225442004-07-23 22:35:49 +0000455bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000456 ConstantSInt *Op1Cs;
457 ConstantUInt *Op1Cu;
458
459 // ADDI, Compare, and non-indexed Load take SIMM
Misha Brukman17a90002004-07-21 20:22:06 +0000460 bool cond1 = (Operator == 0)
461 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
Misha Brukman1013ef52004-07-21 20:09:08 +0000462 && (Op1Cs->getValue() <= 32767)
Misha Brukman17a90002004-07-21 20:22:06 +0000463 && (Op1Cs->getValue() >= -32768);
Misha Brukman1013ef52004-07-21 20:09:08 +0000464
465 // SUBI takes -SIMM since it is a mnemonic for ADDI
Misha Brukman17a90002004-07-21 20:22:06 +0000466 bool cond2 = (Operator == 1)
467 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
Misha Brukman1013ef52004-07-21 20:09:08 +0000468 && (Op1Cs->getValue() <= 32768)
Misha Brukman17a90002004-07-21 20:22:06 +0000469 && (Op1Cs->getValue() >= -32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000470
471 // ANDIo, ORI, and XORI take unsigned values
Misha Brukman17a90002004-07-21 20:22:06 +0000472 bool cond3 = (Operator >= 2)
Misha Brukman2ed17ca2004-07-22 15:58:04 +0000473 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
474 && (Op1Cs->getValue() >= 0)
Misha Brukman17a90002004-07-21 20:22:06 +0000475 && (Op1Cs->getValue() <= 32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000476
477 // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
Misha Brukman17a90002004-07-21 20:22:06 +0000478 bool cond4 = (Operator < 2)
479 && (Op1Cu = dyn_cast<ConstantUInt>(CI))
480 && (Op1Cu->getValue() <= 32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000481
482 // ANDIo, ORI, and XORI take UIMMs, so they can be larger
Misha Brukman17a90002004-07-21 20:22:06 +0000483 bool cond5 = (Operator >= 2)
484 && (Op1Cu = dyn_cast<ConstantUInt>(CI))
485 && (Op1Cu->getValue() <= 65535);
Misha Brukman1013ef52004-07-21 20:09:08 +0000486
487 if (cond1 || cond2 || cond3 || cond4 || cond5)
488 return true;
489
490 return false;
491}
492
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000493/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
494/// that is to be statically allocated with the initial stack frame
495/// adjustment.
496unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
497 // Already computed this?
498 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
499 if (I != AllocaMap.end() && I->first == AI) return I->second;
500
501 const Type *Ty = AI->getAllocatedType();
502 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
503 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
504 TySize *= CUI->getValue(); // Get total allocated size...
505 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
506
507 // Create a new stack object using the frame manager...
508 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
509 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
510 return FrameIdx;
511}
512
513
Misha Brukmanb097f212004-07-26 18:13:24 +0000514/// copyGlobalBaseToRegister - Output the instructions required to put the
515/// base address to use for accessing globals into a register.
516///
517void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
518 MachineBasicBlock::iterator IP,
519 unsigned R) {
520 if (!GlobalBaseInitialized) {
521 // Insert the set of GlobalBaseReg into the first MBB of the function
522 MachineBasicBlock &FirstMBB = F->front();
523 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
524 GlobalBaseReg = makeAnotherReg(Type::IntTy);
Misha Brukman435c7852004-07-27 17:13:58 +0000525 BuildMI(FirstMBB, MBBI, PPC32::IMPLICIT_DEF, 0, PPC32::LR);
Misha Brukmanb097f212004-07-26 18:13:24 +0000526 BuildMI(FirstMBB, MBBI, PPC32::MovePCtoLR, 0, GlobalBaseReg);
527 GlobalBaseInitialized = true;
528 }
529 // Emit our copy of GlobalBaseReg to the destination register in the
530 // current MBB
531 BuildMI(*MBB, IP, PPC32::OR, 2, R).addReg(GlobalBaseReg)
532 .addReg(GlobalBaseReg);
533}
534
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000535/// copyConstantToRegister - Output the instructions required to put the
536/// specified constant into the specified register.
537///
538void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
539 MachineBasicBlock::iterator IP,
540 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000541 if (C->getType()->isIntegral()) {
542 unsigned Class = getClassB(C->getType());
543
544 if (Class == cLong) {
545 // Copy the value into the register pair.
546 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman7e898c32004-07-20 00:41:46 +0000547
548 if (Val < (1ULL << 16)) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000549 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
550 BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addSImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000551 } else if (Val < (1ULL << 32)) {
552 unsigned Temp = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +0000553 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
554 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm((Val >> 16) & 0xFFFF);
555 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(Temp).addImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000556 } else if (Val < (1ULL << 48)) {
557 unsigned Temp = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +0000558 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm((Val >> 32) & 0xFFFF);
559 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm((Val >> 16) & 0xFFFF);
560 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(Temp).addImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000561 } else {
562 unsigned TempLo = makeAnotherReg(Type::IntTy);
563 unsigned TempHi = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +0000564 BuildMI(*MBB, IP, PPC32::LIS, 1, TempHi).addSImm((Val >> 48) & 0xFFFF);
565 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TempHi)
Misha Brukman7e898c32004-07-20 00:41:46 +0000566 .addImm((Val >> 32) & 0xFFFF);
Misha Brukman1013ef52004-07-21 20:09:08 +0000567 BuildMI(*MBB, IP, PPC32::LIS, 1, TempLo).addSImm((Val >> 16) & 0xFFFF);
568 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(TempLo)
569 .addImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000570 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000571 return;
572 }
573
574 assert(Class <= cInt && "Type not handled yet!");
575
576 if (C->getType() == Type::BoolTy) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000577 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000578 } else if (Class == cByte || Class == cShort) {
579 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukman1013ef52004-07-21 20:09:08 +0000580 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000581 } else {
582 ConstantInt *CI = cast<ConstantInt>(C);
583 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
584 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000585 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000586 } else {
587 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +0000588 BuildMI(*MBB, IP, PPC32::LIS, 1, TmpReg)
Misha Brukman1013ef52004-07-21 20:09:08 +0000589 .addSImm(CI->getRawValue() >> 16);
Misha Brukman911afde2004-06-25 14:50:41 +0000590 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
591 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000592 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000593 }
594 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000595 // We need to spill the constant to memory...
596 MachineConstantPool *CP = F->getConstantPool();
597 unsigned CPI = CP->getConstantPoolIndex(CFP);
598 const Type *Ty = CFP->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000599
Misha Brukmand18a31d2004-07-06 22:51:53 +0000600 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukmanfc879c32004-07-08 18:02:38 +0000601
Misha Brukmanb097f212004-07-26 18:13:24 +0000602 // Load addr of constant to reg; constant is located at base + distance
603 unsigned GlobalBase = makeAnotherReg(Type::IntTy);
Misha Brukmanfc879c32004-07-08 18:02:38 +0000604 unsigned Reg1 = makeAnotherReg(Type::IntTy);
605 unsigned Reg2 = makeAnotherReg(Type::IntTy);
Misha Brukmanb097f212004-07-26 18:13:24 +0000606 // Move value at base + distance into return reg
607 copyGlobalBaseToRegister(MBB, IP, GlobalBase);
608 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, Reg1).addReg(GlobalBase)
Misha Brukmanfc879c32004-07-08 18:02:38 +0000609 .addConstantPoolIndex(CPI);
Misha Brukmanec6319a2004-07-20 15:51:37 +0000610 BuildMI(*MBB, IP, PPC32::LOADLoDirect, 2, Reg2).addReg(Reg1)
Misha Brukmanfc879c32004-07-08 18:02:38 +0000611 .addConstantPoolIndex(CPI);
612
Misha Brukmand18a31d2004-07-06 22:51:53 +0000613 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukman1013ef52004-07-21 20:09:08 +0000614 BuildMI(*MBB, IP, LoadOpcode, 2, R).addSImm(0).addReg(Reg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000615 } else if (isa<ConstantPointerNull>(C)) {
616 // Copy zero (null pointer) to the register.
Misha Brukman1013ef52004-07-21 20:09:08 +0000617 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
Chris Lattner67910e12004-07-18 07:29:35 +0000618 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
Misha Brukmanb097f212004-07-26 18:13:24 +0000619 // GV is located at base + distance
620 unsigned GlobalBase = makeAnotherReg(Type::IntTy);
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000621 unsigned TmpReg = makeAnotherReg(GV->getType());
Misha Brukmanbf417a62004-07-20 20:43:05 +0000622 unsigned Opcode = (GV->hasWeakLinkage() || GV->isExternal()) ?
623 PPC32::LOADLoIndirect : PPC32::LOADLoDirect;
Misha Brukmanb097f212004-07-26 18:13:24 +0000624
625 // Move value at base + distance into return reg
626 copyGlobalBaseToRegister(MBB, IP, GlobalBase);
627 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, TmpReg).addReg(GlobalBase)
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000628 .addGlobalAddress(GV);
Misha Brukmanec6319a2004-07-20 15:51:37 +0000629 BuildMI(*MBB, IP, Opcode, 2, R).addReg(TmpReg).addGlobalAddress(GV);
Misha Brukmane2eceb52004-07-23 16:08:20 +0000630
631 // Add the GV to the list of things whose addresses have been taken.
632 TM.AddressTaken.insert(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000633 } else {
Chris Lattner76e2df22004-07-15 02:14:30 +0000634 std::cerr << "Offending constant: " << *C << "\n";
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000635 assert(0 && "Type not handled yet!");
636 }
637}
638
639/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
640/// the stack into virtual registers.
641///
642/// FIXME: When we can calculate which args are coming in via registers
643/// source them from there instead.
644void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000645 unsigned ArgOffset = 20; // FIXME why is this not 24?
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000646 unsigned GPR_remaining = 8;
647 unsigned FPR_remaining = 13;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000648 unsigned GPR_idx = 0, FPR_idx = 0;
649 static const unsigned GPR[] = {
650 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
651 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
652 };
653 static const unsigned FPR[] = {
Misha Brukman32caa8d2004-07-14 17:57:04 +0000654 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7,
Misha Brukman2834a4d2004-07-07 20:07:22 +0000655 PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13
Misha Brukmand18a31d2004-07-06 22:51:53 +0000656 };
Misha Brukman422791f2004-06-21 17:41:12 +0000657
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000658 MachineFrameInfo *MFI = F->getFrameInfo();
Misha Brukmand18a31d2004-07-06 22:51:53 +0000659
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000660 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
661 bool ArgLive = !I->use_empty();
662 unsigned Reg = ArgLive ? getReg(*I) : 0;
663 int FI; // Frame object index
664
665 switch (getClassB(I->getType())) {
666 case cByte:
667 if (ArgLive) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000668 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000669 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000670 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000671 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
672 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000673 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000674 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000675 }
676 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000677 break;
678 case cShort:
679 if (ArgLive) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000680 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000681 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000682 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000683 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
684 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000685 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000686 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000687 }
688 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000689 break;
690 case cInt:
691 if (ArgLive) {
692 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000693 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000694 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000695 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
696 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000697 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000698 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000699 }
700 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000701 break;
702 case cLong:
703 if (ArgLive) {
704 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000705 if (GPR_remaining > 1) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000706 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
707 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
Misha Brukman313efcb2004-07-09 15:45:07 +0000708 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
709 .addReg(GPR[GPR_idx]);
710 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
711 .addReg(GPR[GPR_idx+1]);
Misha Brukman422791f2004-06-21 17:41:12 +0000712 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +0000713 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
714 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
Misha Brukman422791f2004-06-21 17:41:12 +0000715 }
716 }
Misha Brukman1013ef52004-07-21 20:09:08 +0000717 // longs require 4 additional bytes and use 2 GPRs
718 ArgOffset += 4;
Misha Brukman422791f2004-06-21 17:41:12 +0000719 if (GPR_remaining > 1) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000720 GPR_remaining--;
Misha Brukman422791f2004-06-21 17:41:12 +0000721 GPR_idx++;
722 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000723 break;
Misha Brukman7e898c32004-07-20 00:41:46 +0000724 case cFP32:
725 if (ArgLive) {
726 FI = MFI->CreateFixedObject(4, ArgOffset);
727
Misha Brukman422791f2004-06-21 17:41:12 +0000728 if (FPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000729 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000730 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
731 FPR_remaining--;
732 FPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000733 } else {
Misha Brukman7e898c32004-07-20 00:41:46 +0000734 addFrameReference(BuildMI(BB, PPC32::LFS, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000735 }
736 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000737 break;
738 case cFP64:
739 if (ArgLive) {
740 FI = MFI->CreateFixedObject(8, ArgOffset);
741
742 if (FPR_remaining > 0) {
743 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
744 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
745 FPR_remaining--;
746 FPR_idx++;
747 } else {
748 addFrameReference(BuildMI(BB, PPC32::LFD, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000749 }
750 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000751
752 // doubles require 4 additional bytes and use 2 GPRs of param space
753 ArgOffset += 4;
754 if (GPR_remaining > 0) {
755 GPR_remaining--;
756 GPR_idx++;
757 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000758 break;
759 default:
760 assert(0 && "Unhandled argument type!");
761 }
762 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000763 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000764 GPR_remaining--; // uses up 2 GPRs
765 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000766 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000767 }
768
769 // If the function takes variable number of arguments, add a frame offset for
770 // the start of the first vararg value... this is used to expand
771 // llvm.va_start.
772 if (Fn.getFunctionType()->isVarArg())
Misha Brukmanb097f212004-07-26 18:13:24 +0000773 VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000774}
775
776
777/// SelectPHINodes - Insert machine code to generate phis. This is tricky
778/// because we have to generate our sources into the source basic blocks, not
779/// the current one.
780///
781void ISel::SelectPHINodes() {
782 const TargetInstrInfo &TII = *TM.getInstrInfo();
783 const Function &LF = *F->getFunction(); // The LLVM function...
784 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
785 const BasicBlock *BB = I;
786 MachineBasicBlock &MBB = *MBBMap[I];
787
788 // Loop over all of the PHI nodes in the LLVM basic block...
789 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
790 for (BasicBlock::const_iterator I = BB->begin();
791 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
792
793 // Create a new machine instr PHI node, and insert it.
794 unsigned PHIReg = getReg(*PN);
795 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
796 PPC32::PHI, PN->getNumOperands(), PHIReg);
797
798 MachineInstr *LongPhiMI = 0;
799 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
800 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
801 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
802
803 // PHIValues - Map of blocks to incoming virtual registers. We use this
804 // so that we only initialize one incoming value for a particular block,
805 // even if the block has multiple entries in the PHI node.
806 //
807 std::map<MachineBasicBlock*, unsigned> PHIValues;
808
809 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Misha Brukman313efcb2004-07-09 15:45:07 +0000810 MachineBasicBlock *PredMBB = 0;
811 for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
812 PE = MBB.pred_end (); PI != PE; ++PI)
813 if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
814 PredMBB = *PI;
815 break;
816 }
817 assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
818
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000819 unsigned ValReg;
820 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
821 PHIValues.lower_bound(PredMBB);
822
823 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
824 // We already inserted an initialization of the register for this
825 // predecessor. Recycle it.
826 ValReg = EntryIt->second;
Misha Brukman47225442004-07-23 22:35:49 +0000827 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000828 // Get the incoming value into a virtual register.
829 //
830 Value *Val = PN->getIncomingValue(i);
831
832 // If this is a constant or GlobalValue, we may have to insert code
833 // into the basic block to compute it into a virtual register.
834 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
835 isa<GlobalValue>(Val)) {
836 // Simple constants get emitted at the end of the basic block,
837 // before any terminator instructions. We "know" that the code to
838 // move a constant into a register will never clobber any flags.
839 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
840 } else {
841 // Because we don't want to clobber any values which might be in
842 // physical registers with the computation of this constant (which
843 // might be arbitrarily complex if it is a constant expression),
844 // just insert the computation at the top of the basic block.
845 MachineBasicBlock::iterator PI = PredMBB->begin();
Misha Brukman47225442004-07-23 22:35:49 +0000846
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000847 // Skip over any PHI nodes though!
848 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
849 ++PI;
Misha Brukman47225442004-07-23 22:35:49 +0000850
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000851 ValReg = getReg(Val, PredMBB, PI);
852 }
853
854 // Remember that we inserted a value for this PHI for this predecessor
855 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
856 }
857
858 PhiMI->addRegOperand(ValReg);
859 PhiMI->addMachineBasicBlockOperand(PredMBB);
860 if (LongPhiMI) {
861 LongPhiMI->addRegOperand(ValReg+1);
862 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
863 }
864 }
865
866 // Now that we emitted all of the incoming values for the PHI node, make
867 // sure to reposition the InsertPoint after the PHI that we just added.
868 // This is needed because we might have inserted a constant into this
869 // block, right after the PHI's which is before the old insert point!
870 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
871 ++PHIInsertPoint;
872 }
873 }
874}
875
876
877// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
878// it into the conditional branch or select instruction which is the only user
879// of the cc instruction. This is the case if the conditional branch is the
880// only user of the setcc, and if the setcc is in the same basic block as the
Misha Brukman1013ef52004-07-21 20:09:08 +0000881// conditional branch.
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000882//
883static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
884 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
885 if (SCI->hasOneUse()) {
886 Instruction *User = cast<Instruction>(SCI->use_back());
887 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
Misha Brukmanbebde752004-07-16 21:06:24 +0000888 SCI->getParent() == User->getParent())
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000889 return SCI;
890 }
891 return 0;
892}
893
Misha Brukmanb097f212004-07-26 18:13:24 +0000894
895// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
896// the load or store instruction that is the only user of the GEP.
897//
898static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
899 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
900 if (GEPI->hasOneUse()) {
901 Instruction *User = cast<Instruction>(GEPI->use_back());
902 if (isa<StoreInst>(User) &&
903 GEPI->getParent() == User->getParent() &&
904 User->getOperand(0) != GEPI &&
905 User->getOperand(1) == GEPI) {
906 ++GEPFolds;
907 return GEPI;
908 }
909 if (isa<LoadInst>(User) &&
910 GEPI->getParent() == User->getParent() &&
911 User->getOperand(0) == GEPI) {
912 ++GEPFolds;
913 return GEPI;
914 }
915 }
916 return 0;
917}
918
919
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000920// Return a fixed numbering for setcc instructions which does not depend on the
921// order of the opcodes.
922//
923static unsigned getSetCCNumber(unsigned Opcode) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000924 switch (Opcode) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000925 default: assert(0 && "Unknown setcc instruction!");
926 case Instruction::SetEQ: return 0;
927 case Instruction::SetNE: return 1;
928 case Instruction::SetLT: return 2;
929 case Instruction::SetGE: return 3;
930 case Instruction::SetGT: return 4;
931 case Instruction::SetLE: return 5;
932 }
933}
934
Misha Brukmane9c65512004-07-06 15:32:44 +0000935static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
936 switch (Opcode) {
937 default: assert(0 && "Unknown setcc instruction!");
938 case Instruction::SetEQ: return PPC32::BEQ;
939 case Instruction::SetNE: return PPC32::BNE;
940 case Instruction::SetLT: return PPC32::BLT;
941 case Instruction::SetGE: return PPC32::BGE;
942 case Instruction::SetGT: return PPC32::BGT;
943 case Instruction::SetLE: return PPC32::BLE;
944 }
945}
946
947static unsigned invertPPCBranchOpcode(unsigned Opcode) {
948 switch (Opcode) {
949 default: assert(0 && "Unknown PPC32 branch opcode!");
950 case PPC32::BEQ: return PPC32::BNE;
951 case PPC32::BNE: return PPC32::BEQ;
952 case PPC32::BLT: return PPC32::BGE;
953 case PPC32::BGE: return PPC32::BLT;
954 case PPC32::BGT: return PPC32::BLE;
955 case PPC32::BLE: return PPC32::BGT;
956 }
957}
958
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000959/// emitUCOM - emits an unordered FP compare.
960void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
961 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000962 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000963}
964
Misha Brukmanbebde752004-07-16 21:06:24 +0000965/// EmitComparison - emits a comparison of the two operands, returning the
966/// extended setcc code to use. The result is in CR0.
967///
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000968unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
969 MachineBasicBlock *MBB,
970 MachineBasicBlock::iterator IP) {
971 // The arguments are already supposed to be of the same type.
972 const Type *CompTy = Op0->getType();
973 unsigned Class = getClassB(CompTy);
974 unsigned Op0r = getReg(Op0, MBB, IP);
Misha Brukman47225442004-07-23 22:35:49 +0000975
Misha Brukmanb097f212004-07-26 18:13:24 +0000976 // Before we do a comparison, we have to make sure that we're truncating our
977 // registers appropriately.
978 if (Class == cByte) {
979 unsigned TmpReg = makeAnotherReg(CompTy);
980 if (CompTy->isSigned())
981 BuildMI(*MBB, IP, PPC32::EXTSB, 1, TmpReg).addReg(Op0r);
982 else
983 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
984 .addImm(24).addImm(31);
985 Op0r = TmpReg;
986 } else if (Class == cShort) {
987 unsigned TmpReg = makeAnotherReg(CompTy);
988 if (CompTy->isSigned())
989 BuildMI(*MBB, IP, PPC32::EXTSH, 1, TmpReg).addReg(Op0r);
990 else
991 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
992 .addImm(16).addImm(31);
993 Op0r = TmpReg;
994 }
995
Misha Brukman1013ef52004-07-21 20:09:08 +0000996 // Use crand for lt, gt and crandc for le, ge
997 unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC32::CRAND : PPC32::CRANDC;
998 // ? cr1[lt] : cr1[gt]
999 unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 4 : 5;
1000 // ? cr0[lt] : cr0[gt]
1001 unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1;
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001002 unsigned Opcode = CompTy->isSigned() ? PPC32::CMPW : PPC32::CMPLW;
1003 unsigned OpcodeImm = CompTy->isSigned() ? PPC32::CMPWI : PPC32::CMPLWI;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001004
1005 // Special case handling of: cmp R, i
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001006 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001007 if (Class == cByte || Class == cShort || Class == cInt) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001008 unsigned Op1v = CI->getRawValue() & 0xFFFF;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001009
Misha Brukman1013ef52004-07-21 20:09:08 +00001010 // Treat compare like ADDI for the purposes of immediate suitability
1011 if (canUseAsImmediateForOpcode(CI, 0)) {
1012 BuildMI(*MBB, IP, OpcodeImm, 2, PPC32::CR0).addReg(Op0r).addSImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +00001013 } else {
1014 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00001015 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +00001016 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001017 return OpNum;
1018 } else {
1019 assert(Class == cLong && "Unknown integer class!");
1020 unsigned LowCst = CI->getRawValue();
1021 unsigned HiCst = CI->getRawValue() >> 32;
1022 if (OpNum < 2) { // seteq, setne
Misha Brukman1013ef52004-07-21 20:09:08 +00001023 unsigned LoLow = makeAnotherReg(Type::IntTy);
1024 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1025 unsigned HiLow = makeAnotherReg(Type::IntTy);
1026 unsigned HiTmp = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001027 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Misha Brukman47225442004-07-23 22:35:49 +00001028
Misha Brukman1013ef52004-07-21 20:09:08 +00001029 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r+1)
1030 .addImm(LowCst & 0xFFFF);
1031 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
1032 .addImm(LowCst >> 16);
1033 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r)
1034 .addImm(HiCst & 0xFFFF);
1035 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
1036 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001037 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001038 return OpNum;
1039 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001040 unsigned ConstReg = makeAnotherReg(CompTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00001041 copyConstantToRegister(MBB, IP, CI, ConstReg);
Misha Brukman47225442004-07-23 22:35:49 +00001042
Misha Brukman1013ef52004-07-21 20:09:08 +00001043 // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001044 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r)
Misha Brukmanbebde752004-07-16 21:06:24 +00001045 .addReg(ConstReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001046 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR1).addReg(Op0r+1)
Misha Brukman1013ef52004-07-21 20:09:08 +00001047 .addReg(ConstReg+1);
1048 BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
1049 BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
1050 .addImm(2);
Misha Brukman422791f2004-06-21 17:41:12 +00001051 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001052 }
1053 }
1054 }
1055
1056 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00001057
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001058 switch (Class) {
1059 default: assert(0 && "Unknown type class!");
1060 case cByte:
1061 case cShort:
1062 case cInt:
Misha Brukman1013ef52004-07-21 20:09:08 +00001063 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001064 break;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001065
Misha Brukman7e898c32004-07-20 00:41:46 +00001066 case cFP32:
1067 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001068 emitUCOM(MBB, IP, Op0r, Op1r);
1069 break;
1070
1071 case cLong:
1072 if (OpNum < 2) { // seteq, setne
1073 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1074 unsigned HiTmp = makeAnotherReg(Type::IntTy);
1075 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001076 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r);
1077 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001078 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001079 break; // Allow the sete or setne to be generated from flags set by OR
1080 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001081 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1082 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001083
1084 // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001085 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
1086 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001087 BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
1088 BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
1089 .addImm(2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001090 return OpNum;
1091 }
1092 }
1093 return OpNum;
1094}
1095
Misha Brukmand18a31d2004-07-06 22:51:53 +00001096/// visitSetCondInst - emit code to calculate the condition via
1097/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001098///
1099void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001100 if (canFoldSetCCIntoBranchOrSelect(&I))
Misha Brukmane9c65512004-07-06 15:32:44 +00001101 return;
Misha Brukmanbebde752004-07-16 21:06:24 +00001102
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001103 unsigned DestReg = getReg(I);
Misha Brukman2834a4d2004-07-07 20:07:22 +00001104 unsigned OpNum = I.getOpcode();
Misha Brukman425ff242004-07-01 21:34:10 +00001105 const Type *Ty = I.getOperand (0)->getType();
Misha Brukman47225442004-07-23 22:35:49 +00001106
Misha Brukmand18a31d2004-07-06 22:51:53 +00001107 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
Misha Brukman47225442004-07-23 22:35:49 +00001108
Misha Brukmand18a31d2004-07-06 22:51:53 +00001109 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
Misha Brukman425ff242004-07-01 21:34:10 +00001110 MachineBasicBlock *thisMBB = BB;
1111 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001112 ilist<MachineBasicBlock>::iterator It = BB;
1113 ++It;
1114
Misha Brukman425ff242004-07-01 21:34:10 +00001115 // thisMBB:
1116 // ...
1117 // cmpTY cr0, r1, r2
1118 // bCC copy1MBB
1119 // b copy0MBB
1120
1121 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1122 // if we could insert other, non-terminator instructions after the
1123 // bCC. But MBB->getFirstTerminator() can't understand this.
1124 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001125 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001126 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1127 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001128 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001129 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
Misha Brukman1013ef52004-07-21 20:09:08 +00001130 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1131 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001132 // Update machine-CFG edges
1133 BB->addSuccessor(copy1MBB);
1134 BB->addSuccessor(copy0MBB);
1135
Misha Brukman425ff242004-07-01 21:34:10 +00001136 // copy1MBB:
1137 // %TrueValue = li 1
Misha Brukmane9c65512004-07-06 15:32:44 +00001138 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +00001139 BB = copy1MBB;
Misha Brukmane2eceb52004-07-23 16:08:20 +00001140 unsigned TrueValue = makeAnotherReg(I.getType());
Misha Brukman1013ef52004-07-21 20:09:08 +00001141 BuildMI(BB, PPC32::LI, 1, TrueValue).addSImm(1);
Misha Brukman425ff242004-07-01 21:34:10 +00001142 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1143 // Update machine-CFG edges
1144 BB->addSuccessor(sinkMBB);
1145
Misha Brukman1013ef52004-07-21 20:09:08 +00001146 // copy0MBB:
1147 // %FalseValue = li 0
1148 // fallthrough
1149 BB = copy0MBB;
1150 unsigned FalseValue = makeAnotherReg(I.getType());
1151 BuildMI(BB, PPC32::LI, 1, FalseValue).addSImm(0);
1152 // Update machine-CFG edges
1153 BB->addSuccessor(sinkMBB);
1154
Misha Brukman425ff242004-07-01 21:34:10 +00001155 // sinkMBB:
1156 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1157 // ...
1158 BB = sinkMBB;
1159 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1160 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001161}
1162
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001163void ISel::visitSelectInst(SelectInst &SI) {
1164 unsigned DestReg = getReg(SI);
1165 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001166 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1167 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001168}
1169
1170/// emitSelect - Common code shared between visitSelectInst and the constant
1171/// expression support.
1172/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
1173/// no select instruction. FSEL only works for comparisons against zero.
1174void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1175 MachineBasicBlock::iterator IP,
1176 Value *Cond, Value *TrueVal, Value *FalseVal,
1177 unsigned DestReg) {
1178 unsigned SelectClass = getClassB(TrueVal->getType());
Misha Brukman7e898c32004-07-20 00:41:46 +00001179 unsigned Opcode;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001180
Misha Brukmanbebde752004-07-16 21:06:24 +00001181 // See if we can fold the setcc into the select instruction, or if we have
1182 // to get the register of the Cond value
Misha Brukmanbebde752004-07-16 21:06:24 +00001183 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1184 // We successfully folded the setcc into the select instruction.
Misha Brukmanbebde752004-07-16 21:06:24 +00001185 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukman47225442004-07-23 22:35:49 +00001186 OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
Misha Brukmanbebde752004-07-16 21:06:24 +00001187 Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
1188 } else {
1189 unsigned CondReg = getReg(Cond, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00001190 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(CondReg).addSImm(0);
Misha Brukmanbebde752004-07-16 21:06:24 +00001191 Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001192 }
Misha Brukmanbebde752004-07-16 21:06:24 +00001193
1194 // thisMBB:
1195 // ...
1196 // cmpTY cr0, r1, r2
1197 // bCC copy1MBB
1198 // b copy0MBB
1199
1200 MachineBasicBlock *thisMBB = BB;
1201 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001202 ilist<MachineBasicBlock>::iterator It = BB;
1203 ++It;
Misha Brukmanbebde752004-07-16 21:06:24 +00001204
1205 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1206 // if we could insert other, non-terminator instructions after the
1207 // bCC. But MBB->getFirstTerminator() can't understand this.
1208 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001209 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001210 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1211 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001212 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001213 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
Misha Brukman1013ef52004-07-21 20:09:08 +00001214 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1215 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001216 // Update machine-CFG edges
1217 BB->addSuccessor(copy1MBB);
1218 BB->addSuccessor(copy0MBB);
1219
Misha Brukmanbebde752004-07-16 21:06:24 +00001220 // copy1MBB:
1221 // %TrueValue = ...
1222 // b sinkMBB
1223 BB = copy1MBB;
1224 unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
1225 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1226 // Update machine-CFG edges
1227 BB->addSuccessor(sinkMBB);
1228
Misha Brukman1013ef52004-07-21 20:09:08 +00001229 // copy0MBB:
1230 // %FalseValue = ...
1231 // fallthrough
1232 BB = copy0MBB;
1233 unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
1234 // Update machine-CFG edges
1235 BB->addSuccessor(sinkMBB);
1236
Misha Brukmanbebde752004-07-16 21:06:24 +00001237 // sinkMBB:
1238 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1239 // ...
1240 BB = sinkMBB;
1241 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1242 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukmana31f1f72004-07-21 20:30:18 +00001243 // For a register pair representing a long value, define the second reg
1244 if (getClass(TrueVal->getType()) == cLong)
1245 BuildMI(BB, PPC32::LI, 1, DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001246 return;
1247}
1248
1249
1250
1251/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1252/// operand, in the specified target register.
1253///
1254void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1255 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1256
1257 Value *Val = VR.Val;
1258 const Type *Ty = VR.Ty;
1259 if (Val) {
1260 if (Constant *C = dyn_cast<Constant>(Val)) {
1261 Val = ConstantExpr::getCast(C, Type::IntTy);
1262 Ty = Type::IntTy;
1263 }
1264
Misha Brukman2fec9902004-06-21 20:22:03 +00001265 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001266 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1267 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1268
1269 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001270 BuildMI(BB, PPC32::LI, 1, targetReg).addSImm(TheVal);
Misha Brukman422791f2004-06-21 17:41:12 +00001271 } else {
1272 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001273 BuildMI(BB, PPC32::LIS, 1, TmpReg).addSImm(TheVal >> 16);
Misha Brukman2fec9902004-06-21 20:22:03 +00001274 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1275 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001276 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001277 return;
1278 }
1279 }
1280
1281 // Make sure we have the register number for this value...
1282 unsigned Reg = Val ? getReg(Val) : VR.Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001283 switch (getClassB(Ty)) {
1284 case cByte:
1285 // Extend value into target register (8->32)
1286 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001287 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1288 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001289 else
1290 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1291 break;
1292 case cShort:
1293 // Extend value into target register (16->32)
1294 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001295 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1296 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001297 else
1298 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1299 break;
1300 case cInt:
1301 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001302 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001303 break;
1304 default:
1305 assert(0 && "Unpromotable operand class in promote32");
1306 }
1307}
1308
Misha Brukman2fec9902004-06-21 20:22:03 +00001309/// visitReturnInst - implemented with BLR
1310///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001311void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001312 // Only do the processing if this is a non-void return
1313 if (I.getNumOperands() > 0) {
1314 Value *RetVal = I.getOperand(0);
1315 switch (getClassB(RetVal->getType())) {
1316 case cByte: // integral return values: extend or move into r3 and return
1317 case cShort:
1318 case cInt:
1319 promote32(PPC32::R3, ValueRecord(RetVal));
1320 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001321 case cFP32:
1322 case cFP64: { // Floats & Doubles: Return in f1
Misha Brukmand47bbf72004-06-25 19:04:27 +00001323 unsigned RetReg = getReg(RetVal);
1324 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1325 break;
1326 }
1327 case cLong: {
1328 unsigned RetReg = getReg(RetVal);
1329 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1330 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1331 break;
1332 }
1333 default:
1334 visitInstruction(I);
1335 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001336 }
1337 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1338}
1339
1340// getBlockAfter - Return the basic block which occurs lexically after the
1341// specified one.
1342static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1343 Function::iterator I = BB; ++I; // Get iterator to next block
1344 return I != BB->getParent()->end() ? &*I : 0;
1345}
1346
1347/// visitBranchInst - Handle conditional and unconditional branches here. Note
1348/// that since code layout is frozen at this point, that if we are trying to
1349/// jump to a block that is the immediate successor of the current block, we can
1350/// just make a fall-through (but we don't currently).
1351///
1352void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001353 // Update machine-CFG edges
Misha Brukmane2eceb52004-07-23 16:08:20 +00001354 BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001355 if (BI.isConditional())
Misha Brukmane2eceb52004-07-23 16:08:20 +00001356 BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001357
1358 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
Misha Brukmane9c65512004-07-06 15:32:44 +00001359
Misha Brukman2fec9902004-06-21 20:22:03 +00001360 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmane9c65512004-07-06 15:32:44 +00001361 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001362 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1363 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001364 }
1365
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001366 // See if we can fold the setcc into the branch itself...
1367 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1368 if (SCI == 0) {
1369 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1370 // computed some other way...
1371 unsigned condReg = getReg(BI.getCondition());
Misha Brukmane9c65512004-07-06 15:32:44 +00001372 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(condReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00001373 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001374 if (BI.getSuccessor(1) == NextBB) {
1375 if (BI.getSuccessor(0) != NextBB)
Misha Brukmane9c65512004-07-06 15:32:44 +00001376 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001377 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001378 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001379 BuildMI(BB, PPC32::BEQ, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001380 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001381
1382 if (BI.getSuccessor(0) != NextBB)
1383 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1384 }
1385 return;
1386 }
1387
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001388 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukmane9c65512004-07-06 15:32:44 +00001389 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001390 MachineBasicBlock::iterator MII = BB->end();
1391 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001392
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001393 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001394 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001395 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001396 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001397 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001398 } else {
1399 // Change to the inverse condition...
1400 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001401 Opcode = invertPPCBranchOpcode(Opcode);
1402 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukman2fec9902004-06-21 20:22:03 +00001403 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001404 }
1405 }
1406}
1407
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001408/// doCall - This emits an abstract call instruction, setting up the arguments
1409/// and the return value as appropriate. For the actual function call itself,
1410/// it inserts the specified CallMI instruction into the stream.
1411///
1412/// FIXME: See Documentation at the following URL for "correct" behavior
1413/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1414void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +00001415 const std::vector<ValueRecord> &Args, bool isVarArg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001416 // Count how many bytes are to be pushed on the stack...
1417 unsigned NumBytes = 0;
1418
1419 if (!Args.empty()) {
1420 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1421 switch (getClassB(Args[i].Ty)) {
1422 case cByte: case cShort: case cInt:
1423 NumBytes += 4; break;
1424 case cLong:
1425 NumBytes += 8; break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001426 case cFP32:
1427 NumBytes += 4; break;
1428 case cFP64:
1429 NumBytes += 8; break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001430 break;
1431 default: assert(0 && "Unknown class!");
1432 }
1433
1434 // Adjust the stack pointer for the new arguments...
Misha Brukman1013ef52004-07-21 20:09:08 +00001435 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addSImm(NumBytes);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001436
1437 // Arguments go on the stack in reverse order, as specified by the ABI.
Misha Brukman7e898c32004-07-20 00:41:46 +00001438 // Offset to the paramater area on the stack is 24.
1439 unsigned ArgOffset = 24;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001440 int GPR_remaining = 8, FPR_remaining = 13;
Misha Brukmanfc879c32004-07-08 18:02:38 +00001441 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001442 static const unsigned GPR[] = {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001443 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1444 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1445 };
Misha Brukmand18a31d2004-07-06 22:51:53 +00001446 static const unsigned FPR[] = {
Misha Brukman2834a4d2004-07-07 20:07:22 +00001447 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6,
1448 PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12,
1449 PPC32::F13
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001450 };
Misha Brukman422791f2004-06-21 17:41:12 +00001451
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001452 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1453 unsigned ArgReg;
1454 switch (getClassB(Args[i].Ty)) {
1455 case cByte:
1456 case cShort:
1457 // Promote arg to 32 bits wide into a temporary register...
1458 ArgReg = makeAnotherReg(Type::UIntTy);
1459 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001460
1461 // Reg or stack?
1462 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001463 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001464 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001465 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukmanb097f212004-07-26 18:13:24 +00001466 }
1467 if (GPR_remaining <= 0 || isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001468 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001469 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001470 }
1471 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001472 case cInt:
1473 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1474
Misha Brukman422791f2004-06-21 17:41:12 +00001475 // Reg or stack?
1476 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001477 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001478 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001479 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukmanb097f212004-07-26 18:13:24 +00001480 }
1481 if (GPR_remaining <= 0 || isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001482 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001483 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001484 }
1485 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001486 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001487 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001488
Misha Brukmanec6319a2004-07-20 15:51:37 +00001489 // Reg or stack? Note that PPC calling conventions state that long args
1490 // are passed rN = hi, rN+1 = lo, opposite of LLVM.
Misha Brukman422791f2004-06-21 17:41:12 +00001491 if (GPR_remaining > 1) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001492 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanec6319a2004-07-20 15:51:37 +00001493 .addReg(ArgReg);
Misha Brukman1013ef52004-07-21 20:09:08 +00001494 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
1495 .addReg(ArgReg+1);
Misha Brukman7e898c32004-07-20 00:41:46 +00001496 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1497 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
Misha Brukmanb097f212004-07-26 18:13:24 +00001498 }
1499 if (GPR_remaining <= 1 || isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001500 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001501 .addReg(PPC32::R1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001502 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001503 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001504 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001505
1506 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001507 GPR_remaining -= 1; // uses up 2 GPRs
1508 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001509 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001510 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001511 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman7e898c32004-07-20 00:41:46 +00001512 // Reg or stack?
1513 if (FPR_remaining > 0) {
1514 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1515 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1516 FPR_remaining--;
1517 FPR_idx++;
1518
1519 // If this is a vararg function, and there are GPRs left, also
1520 // pass the float in an int. Otherwise, put it on the stack.
1521 if (isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001522 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001523 .addReg(PPC32::R1);
1524 if (GPR_remaining > 0) {
1525 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx])
Misha Brukman1013ef52004-07-21 20:09:08 +00001526 .addSImm(ArgOffset).addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001527 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1528 }
Misha Brukman1916bf92004-06-24 21:56:15 +00001529 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001530 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001531 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001532 .addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001533 }
1534 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001535 case cFP64:
1536 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1537 // Reg or stack?
1538 if (FPR_remaining > 0) {
1539 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1540 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1541 FPR_remaining--;
1542 FPR_idx++;
1543 // For vararg functions, must pass doubles via int regs as well
1544 if (isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001545 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001546 .addReg(PPC32::R1);
1547
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001548 // Doubles can be split across reg + stack for varargs
1549 if (GPR_remaining > 0) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001550 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001551 .addReg(PPC32::R1);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001552 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1553 }
1554 if (GPR_remaining > 1) {
Misha Brukman7e898c32004-07-20 00:41:46 +00001555 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx+1])
Misha Brukman1013ef52004-07-21 20:09:08 +00001556 .addSImm(ArgOffset+4).addReg(PPC32::R1);
Misha Brukman7e898c32004-07-20 00:41:46 +00001557 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
1558 }
1559 }
1560 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001561 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001562 .addReg(PPC32::R1);
1563 }
1564 // Doubles use 8 bytes, and 2 GPRs worth of param space
1565 ArgOffset += 4;
1566 GPR_remaining--;
1567 GPR_idx++;
1568 break;
1569
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001570 default: assert(0 && "Unknown class!");
1571 }
1572 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001573 GPR_remaining--;
1574 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001575 }
1576 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001577 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001578 }
1579
Misha Brukman435c7852004-07-27 17:13:58 +00001580 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, PPC32::LR);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001581 BB->push_back(CallMI);
Misha Brukman1013ef52004-07-21 20:09:08 +00001582 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addSImm(NumBytes);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001583
1584 // If there is a return value, scavenge the result from the location the call
1585 // leaves it in...
1586 //
1587 if (Ret.Ty != Type::VoidTy) {
1588 unsigned DestClass = getClassB(Ret.Ty);
1589 switch (DestClass) {
1590 case cByte:
1591 case cShort:
1592 case cInt:
1593 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001594 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001595 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001596 case cFP32: // Floating-point return values live in f1
1597 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001598 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1599 break;
Misha Brukmanec6319a2004-07-20 15:51:37 +00001600 case cLong: // Long values are in r3 hi:r4 lo
Misha Brukman1013ef52004-07-21 20:09:08 +00001601 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1602 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001603 break;
1604 default: assert(0 && "Unknown class!");
1605 }
1606 }
1607}
1608
1609
1610/// visitCallInst - Push args on stack and do a procedure call instruction.
1611void ISel::visitCallInst(CallInst &CI) {
1612 MachineInstr *TheCall;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001613 Function *F = CI.getCalledFunction();
1614 if (F) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001615 // Is it an intrinsic function call?
1616 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1617 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1618 return;
1619 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001620 // Emit a CALL instruction with PC-relative displacement.
1621 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
Misha Brukmane2eceb52004-07-23 16:08:20 +00001622 // Add it to the set of functions called to be used by the Printer
1623 TM.CalledFunctions.insert(F);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001624 } else { // Emit an indirect call through the CTR
1625 unsigned Reg = getReg(CI.getCalledValue());
Misha Brukman7e898c32004-07-20 00:41:46 +00001626 BuildMI(BB, PPC32::MTCTR, 1).addReg(Reg);
1627 TheCall = BuildMI(PPC32::CALLindirect, 2).addZImm(20).addZImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001628 }
1629
1630 std::vector<ValueRecord> Args;
1631 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1632 Args.push_back(ValueRecord(CI.getOperand(i)));
1633
1634 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001635 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1636 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001637}
1638
1639
1640/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1641///
1642static Value *dyncastIsNan(Value *V) {
1643 if (CallInst *CI = dyn_cast<CallInst>(V))
1644 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001645 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001646 return CI->getOperand(1);
1647 return 0;
1648}
1649
1650/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1651/// or's whos operands are all calls to the isnan predicate.
1652static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1653 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1654
1655 // Check all uses, which will be or's of isnans if this predicate is true.
1656 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1657 Instruction *I = cast<Instruction>(*UI);
1658 if (I->getOpcode() != Instruction::Or) return false;
1659 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1660 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1661 }
1662
1663 return true;
1664}
1665
1666/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1667/// function, lowering any calls to unknown intrinsic functions into the
1668/// equivalent LLVM code.
1669///
1670void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1671 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1672 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1673 if (CallInst *CI = dyn_cast<CallInst>(I++))
1674 if (Function *F = CI->getCalledFunction())
1675 switch (F->getIntrinsicID()) {
1676 case Intrinsic::not_intrinsic:
1677 case Intrinsic::vastart:
1678 case Intrinsic::vacopy:
1679 case Intrinsic::vaend:
1680 case Intrinsic::returnaddress:
1681 case Intrinsic::frameaddress:
Misha Brukmanb097f212004-07-26 18:13:24 +00001682 // FIXME: should lower these ourselves
Misha Brukmana2916ce2004-06-21 17:58:36 +00001683 // case Intrinsic::isunordered:
Misha Brukmanb097f212004-07-26 18:13:24 +00001684 // case Intrinsic::memcpy: -> doCall(). system memcpy almost
1685 // guaranteed to be faster than anything we generate ourselves
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001686 // We directly implement these intrinsics
1687 break;
1688 case Intrinsic::readio: {
1689 // On PPC, memory operations are in-order. Lower this intrinsic
1690 // into a volatile load.
1691 Instruction *Before = CI->getPrev();
1692 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1693 CI->replaceAllUsesWith(LI);
1694 BB->getInstList().erase(CI);
1695 break;
1696 }
1697 case Intrinsic::writeio: {
1698 // On PPC, memory operations are in-order. Lower this intrinsic
1699 // into a volatile store.
1700 Instruction *Before = CI->getPrev();
Misha Brukman8d442c22004-07-14 15:29:51 +00001701 StoreInst *SI = new StoreInst(CI->getOperand(1),
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001702 CI->getOperand(2), true, CI);
Misha Brukman8d442c22004-07-14 15:29:51 +00001703 CI->replaceAllUsesWith(SI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001704 BB->getInstList().erase(CI);
1705 break;
1706 }
1707 default:
1708 // All other intrinsic calls we must lower.
1709 Instruction *Before = CI->getPrev();
1710 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1711 if (Before) { // Move iterator to instruction after call
1712 I = Before; ++I;
1713 } else {
1714 I = BB->begin();
1715 }
1716 }
1717}
1718
1719void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1720 unsigned TmpReg1, TmpReg2, TmpReg3;
1721 switch (ID) {
1722 case Intrinsic::vastart:
1723 // Get the address of the first vararg value...
1724 TmpReg1 = getReg(CI);
Misha Brukmanec6319a2004-07-20 15:51:37 +00001725 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex,
1726 0, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001727 return;
1728
1729 case Intrinsic::vacopy:
1730 TmpReg1 = getReg(CI);
1731 TmpReg2 = getReg(CI.getOperand(1));
1732 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1733 return;
1734 case Intrinsic::vaend: return;
1735
1736 case Intrinsic::returnaddress:
Misha Brukmanec6319a2004-07-20 15:51:37 +00001737 TmpReg1 = getReg(CI);
1738 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1739 MachineFrameInfo *MFI = F->getFrameInfo();
1740 unsigned NumBytes = MFI->getStackSize();
1741
Misha Brukman1013ef52004-07-21 20:09:08 +00001742 BuildMI(BB, PPC32::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
Misha Brukmanec6319a2004-07-20 15:51:37 +00001743 .addReg(PPC32::R1);
1744 } else {
1745 // Values other than zero are not implemented yet.
Misha Brukman1013ef52004-07-21 20:09:08 +00001746 BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
Misha Brukmanec6319a2004-07-20 15:51:37 +00001747 }
1748 return;
1749
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001750 case Intrinsic::frameaddress:
1751 TmpReg1 = getReg(CI);
1752 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00001753 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(PPC32::R1).addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001754 } else {
1755 // Values other than zero are not implemented yet.
Misha Brukman1013ef52004-07-21 20:09:08 +00001756 BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001757 }
1758 return;
Misha Brukmanb097f212004-07-26 18:13:24 +00001759
Misha Brukmana2916ce2004-06-21 17:58:36 +00001760#if 0
1761 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001762 case Intrinsic::isnan:
1763 // If this is only used by 'isunordered' style comparisons, don't emit it.
1764 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1765 TmpReg1 = getReg(CI.getOperand(1));
1766 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001767 TmpReg2 = makeAnotherReg(Type::IntTy);
1768 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001769 TmpReg3 = getReg(CI);
1770 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1771 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001772#endif
1773
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001774 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1775 }
1776}
1777
1778/// visitSimpleBinary - Implement simple binary operators for integral types...
1779/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1780/// Xor.
1781///
1782void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1783 unsigned DestReg = getReg(B);
1784 MachineBasicBlock::iterator MI = BB->end();
1785 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1786 unsigned Class = getClassB(B.getType());
1787
1788 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1789}
1790
1791/// emitBinaryFPOperation - This method handles emission of floating point
1792/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1793void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1794 MachineBasicBlock::iterator IP,
1795 Value *Op0, Value *Op1,
1796 unsigned OperatorClass, unsigned DestReg) {
1797
1798 // Special case: op Reg, <const fp>
1799 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001800 // Create a constant pool entry for this constant.
1801 MachineConstantPool *CP = F->getConstantPool();
1802 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1803 const Type *Ty = Op1->getType();
Misha Brukmand9aa7832004-07-12 23:49:47 +00001804 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001805
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001806 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001807 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1808 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001809 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001810
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001811 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001812 unsigned Op1Reg = getReg(Op1C, BB, IP);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001813 unsigned Op0r = getReg(Op0, BB, IP);
Misha Brukmana596f8c2004-07-13 15:35:45 +00001814 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001815 return;
1816 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001817
1818 // Special case: R1 = op <const fp>, R2
Misha Brukmana596f8c2004-07-13 15:35:45 +00001819 if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
1820 if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001821 // -0.0 - X === -X
1822 unsigned op1Reg = getReg(Op1, BB, IP);
1823 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1824 return;
1825 } else {
1826 // R1 = op CST, R2 --> R1 = opr R2, CST
1827
1828 // Create a constant pool entry for this constant.
1829 MachineConstantPool *CP = F->getConstantPool();
Misha Brukmana596f8c2004-07-13 15:35:45 +00001830 unsigned CPI = CP->getConstantPoolIndex(Op0C);
1831 const Type *Ty = Op0C->getType();
1832 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001833
1834 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001835 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1836 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001837 };
1838
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001839 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001840 unsigned Op0Reg = getReg(Op0C, BB, IP);
1841 unsigned Op1Reg = getReg(Op1, BB, IP);
1842 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001843 return;
1844 }
1845
1846 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001847 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001848 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1849 };
1850
1851 unsigned Opcode = OpcodeTab[OperatorClass];
1852 unsigned Op0r = getReg(Op0, BB, IP);
1853 unsigned Op1r = getReg(Op1, BB, IP);
1854 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1855}
1856
1857/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1858/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1859/// Or, 4 for Xor.
1860///
1861/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1862/// and constant expression support.
1863///
1864void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1865 MachineBasicBlock::iterator IP,
1866 Value *Op0, Value *Op1,
1867 unsigned OperatorClass, unsigned DestReg) {
1868 unsigned Class = getClassB(Op0->getType());
1869
Misha Brukman422791f2004-06-21 17:41:12 +00001870 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001871 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001872 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1873 };
Misha Brukman1013ef52004-07-21 20:09:08 +00001874 static const unsigned ImmOpcodeTab[] = {
1875 PPC32::ADDI, PPC32::SUBI, PPC32::ANDIo, PPC32::ORI, PPC32::XORI
1876 };
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001877 static const unsigned RImmOpcodeTab[] = {
1878 PPC32::ADDI, PPC32::SUBFIC, PPC32::ANDIo, PPC32::ORI, PPC32::XORI
1879 };
Misha Brukman1013ef52004-07-21 20:09:08 +00001880
Misha Brukman422791f2004-06-21 17:41:12 +00001881 // Otherwise, code generate the full operation with a constant.
1882 static const unsigned BottomTab[] = {
1883 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1884 };
1885 static const unsigned TopTab[] = {
1886 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1887 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001888
Misha Brukman7e898c32004-07-20 00:41:46 +00001889 if (Class == cFP32 || Class == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001890 assert(OperatorClass < 2 && "No logical ops for FP!");
1891 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1892 return;
1893 }
1894
1895 if (Op0->getType() == Type::BoolTy) {
1896 if (OperatorClass == 3)
1897 // If this is an or of two isnan's, emit an FP comparison directly instead
1898 // of or'ing two isnan's together.
1899 if (Value *LHS = dyncastIsNan(Op0))
1900 if (Value *RHS = dyncastIsNan(Op1)) {
1901 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001902 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001903 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001904 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001905 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1906 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001907 return;
1908 }
1909 }
1910
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001911 // Special case: op <const int>, Reg
Misha Brukman1013ef52004-07-21 20:09:08 +00001912 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001913 // sub 0, X -> subfic
1914 if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001915 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001916 int imm = CI->getRawValue() & 0xFFFF;
Misha Brukman1013ef52004-07-21 20:09:08 +00001917
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001918 if (Class == cLong) {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001919 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, DestReg+1).addReg(Op1r+1)
1920 .addSImm(imm);
Misha Brukman1013ef52004-07-21 20:09:08 +00001921 BuildMI(*MBB, IP, PPC32::SUBFZE, 1, DestReg).addReg(Op1r);
1922 } else {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001923 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001924 }
1925 return;
1926 }
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001927
1928 // If it is easy to do, swap the operands and emit an immediate op
1929 if (Class != cLong && OperatorClass != 1 &&
1930 canUseAsImmediateForOpcode(CI, OperatorClass)) {
1931 unsigned Op1r = getReg(Op1, MBB, IP);
1932 int imm = CI->getRawValue() & 0xFFFF;
1933
1934 if (OperatorClass < 2)
1935 BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
1936 .addSImm(imm);
1937 else
1938 BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
1939 .addZImm(imm);
1940 return;
1941 }
Misha Brukman1013ef52004-07-21 20:09:08 +00001942 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001943
1944 // Special case: op Reg, <const int>
1945 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1946 unsigned Op0r = getReg(Op0, MBB, IP);
1947
1948 // xor X, -1 -> not X
1949 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1950 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
Misha Brukman1013ef52004-07-21 20:09:08 +00001951 if (Class == cLong) // Invert the low part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001952 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1953 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001954 return;
1955 }
Misha Brukman1013ef52004-07-21 20:09:08 +00001956
Misha Brukman1013ef52004-07-21 20:09:08 +00001957 if (Class != cLong) {
1958 if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
1959 int immediate = Op1C->getRawValue() & 0xFFFF;
1960
1961 if (OperatorClass < 2)
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001962 BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
Misha Brukman1013ef52004-07-21 20:09:08 +00001963 .addSImm(immediate);
1964 else
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001965 BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
Misha Brukman1013ef52004-07-21 20:09:08 +00001966 .addZImm(immediate);
1967 } else {
1968 unsigned Op1r = getReg(Op1, MBB, IP);
1969 BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
1970 .addReg(Op1r);
1971 }
1972 return;
1973 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001974
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001975 unsigned Op1r = getReg(Op1, MBB, IP);
1976
Misha Brukman1013ef52004-07-21 20:09:08 +00001977 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001978 .addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001979 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
1980 .addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001981 return;
1982 }
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001983
1984 // We couldn't generate an immediate variant of the op, load both halves into
1985 // registers and emit the appropriate opcode.
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001986 unsigned Op0r = getReg(Op0, MBB, IP);
1987 unsigned Op1r = getReg(Op1, MBB, IP);
1988
1989 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001990 unsigned Opcode = OpcodeTab[OperatorClass];
1991 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001992 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001993 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001994 .addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001995 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
1996 .addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001997 }
1998 return;
1999}
2000
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002001// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
2002// returns zero when the input is not exactly a power of two.
2003static unsigned ExactLog2(unsigned Val) {
2004 if (Val == 0 || (Val & (Val-1))) return 0;
2005 unsigned Count = 0;
2006 while (Val != 1) {
2007 Val >>= 1;
2008 ++Count;
2009 }
Misha Brukman1013ef52004-07-21 20:09:08 +00002010 return Count;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002011}
2012
Misha Brukman1013ef52004-07-21 20:09:08 +00002013/// doMultiply - Emit appropriate instructions to multiply together the
2014/// Values Op0 and Op1, and put the result in DestReg.
Misha Brukman2fec9902004-06-21 20:22:03 +00002015///
Misha Brukman1013ef52004-07-21 20:09:08 +00002016void ISel::doMultiply(MachineBasicBlock *MBB,
2017 MachineBasicBlock::iterator IP,
2018 unsigned DestReg, Value *Op0, Value *Op1) {
2019 unsigned Class0 = getClass(Op0->getType());
2020 unsigned Class1 = getClass(Op1->getType());
2021
2022 unsigned Op0r = getReg(Op0, MBB, IP);
2023 unsigned Op1r = getReg(Op1, MBB, IP);
2024
2025 // 64 x 64 -> 64
2026 if (Class0 == cLong && Class1 == cLong) {
2027 unsigned Tmp1 = makeAnotherReg(Type::IntTy);
2028 unsigned Tmp2 = makeAnotherReg(Type::IntTy);
2029 unsigned Tmp3 = makeAnotherReg(Type::IntTy);
2030 unsigned Tmp4 = makeAnotherReg(Type::IntTy);
2031 BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
2032 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
2033 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
2034 BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
2035 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
2036 BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
2037 return;
2038 }
2039
2040 // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
2041 if (Class0 == cLong && Class1 <= cInt) {
2042 unsigned Tmp0 = makeAnotherReg(Type::IntTy);
2043 unsigned Tmp1 = makeAnotherReg(Type::IntTy);
2044 unsigned Tmp2 = makeAnotherReg(Type::IntTy);
2045 unsigned Tmp3 = makeAnotherReg(Type::IntTy);
2046 unsigned Tmp4 = makeAnotherReg(Type::IntTy);
2047 if (Op1->getType()->isSigned())
2048 BuildMI(*MBB, IP, PPC32::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
2049 else
2050 BuildMI(*MBB, IP, PPC32::LI, 2, Tmp0).addSImm(0);
2051 BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
2052 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
2053 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
2054 BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
2055 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
2056 BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
2057 return;
2058 }
2059
2060 // 32 x 32 -> 32
2061 if (Class0 <= cInt && Class1 <= cInt) {
2062 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
2063 return;
2064 }
2065
2066 assert(0 && "doMultiply cannot operate on unknown type!");
2067}
2068
2069/// doMultiplyConst - This method will multiply the value in Op0 by the
2070/// value of the ContantInt *CI
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002071void ISel::doMultiplyConst(MachineBasicBlock *MBB,
2072 MachineBasicBlock::iterator IP,
Misha Brukman1013ef52004-07-21 20:09:08 +00002073 unsigned DestReg, Value *Op0, ConstantInt *CI) {
2074 unsigned Class = getClass(Op0->getType());
2075
2076 // Mul op0, 0 ==> 0
2077 if (CI->isNullValue()) {
2078 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
2079 if (Class == cLong)
2080 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002081 return;
Misha Brukman1013ef52004-07-21 20:09:08 +00002082 }
2083
2084 // Mul op0, 1 ==> op0
2085 if (CI->equalsInt(1)) {
2086 unsigned Op0r = getReg(Op0, MBB, IP);
2087 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
2088 if (Class == cLong)
2089 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002090 return;
2091 }
2092
2093 // If the element size is exactly a power of 2, use a shift to get it.
Misha Brukman1013ef52004-07-21 20:09:08 +00002094 if (unsigned Shift = ExactLog2(CI->getRawValue())) {
2095 ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
2096 emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
2097 return;
2098 }
2099
2100 // If 32 bits or less and immediate is in right range, emit mul by immediate
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002101 if (Class == cByte || Class == cShort || Class == cInt) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002102 if (canUseAsImmediateForOpcode(CI, 0)) {
2103 unsigned Op0r = getReg(Op0, MBB, IP);
2104 unsigned imm = CI->getRawValue() & 0xFFFF;
2105 BuildMI(*MBB, IP, PPC32::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002106 return;
2107 }
2108 }
2109
Misha Brukman1013ef52004-07-21 20:09:08 +00002110 doMultiply(MBB, IP, DestReg, Op0, CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002111}
2112
2113void ISel::visitMul(BinaryOperator &I) {
2114 unsigned ResultReg = getReg(I);
2115
2116 Value *Op0 = I.getOperand(0);
2117 Value *Op1 = I.getOperand(1);
2118
2119 MachineBasicBlock::iterator IP = BB->end();
2120 emitMultiply(BB, IP, Op0, Op1, ResultReg);
2121}
2122
2123void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
2124 Value *Op0, Value *Op1, unsigned DestReg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002125 TypeClass Class = getClass(Op0->getType());
2126
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002127 switch (Class) {
2128 case cByte:
2129 case cShort:
2130 case cInt:
Misha Brukman1013ef52004-07-21 20:09:08 +00002131 case cLong:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002132 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002133 doMultiplyConst(MBB, IP, DestReg, Op0, CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002134 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00002135 doMultiply(MBB, IP, DestReg, Op0, Op1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002136 }
2137 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002138 case cFP32:
2139 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002140 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2141 return;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002142 break;
2143 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002144}
2145
2146
2147/// visitDivRem - Handle division and remainder instructions... these
2148/// instruction both require the same instructions to be generated, they just
2149/// select the result from a different register. Note that both of these
2150/// instructions work differently for signed and unsigned operands.
2151///
2152void ISel::visitDivRem(BinaryOperator &I) {
2153 unsigned ResultReg = getReg(I);
2154 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2155
2156 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00002157 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
2158 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002159}
2160
2161void ISel::emitDivRemOperation(MachineBasicBlock *BB,
2162 MachineBasicBlock::iterator IP,
2163 Value *Op0, Value *Op1, bool isDiv,
2164 unsigned ResultReg) {
2165 const Type *Ty = Op0->getType();
2166 unsigned Class = getClass(Ty);
2167 switch (Class) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002168 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002169 if (isDiv) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002170 // Floating point divide...
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002171 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2172 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002173 } else {
2174 // Floating point remainder via fmodf(float x, float y);
2175 unsigned Op0Reg = getReg(Op0, BB, IP);
2176 unsigned Op1Reg = getReg(Op1, BB, IP);
2177 MachineInstr *TheCall =
2178 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
2179 std::vector<ValueRecord> Args;
2180 Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
2181 Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
2182 doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002183 TM.CalledFunctions.insert(fmodfFn);
Misha Brukman7e898c32004-07-20 00:41:46 +00002184 }
2185 return;
2186 case cFP64:
2187 if (isDiv) {
2188 // Floating point divide...
2189 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2190 return;
2191 } else {
2192 // Floating point remainder via fmod(double x, double y);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002193 unsigned Op0Reg = getReg(Op0, BB, IP);
2194 unsigned Op1Reg = getReg(Op1, BB, IP);
2195 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002196 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002197 std::vector<ValueRecord> Args;
2198 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2199 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002200 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002201 TM.CalledFunctions.insert(fmodFn);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002202 }
2203 return;
2204 case cLong: {
Misha Brukman7e898c32004-07-20 00:41:46 +00002205 static Function* const Funcs[] =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002206 { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002207 unsigned Op0Reg = getReg(Op0, BB, IP);
2208 unsigned Op1Reg = getReg(Op1, BB, IP);
2209 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2210 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002211 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002212
2213 std::vector<ValueRecord> Args;
2214 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2215 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002216 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002217 TM.CalledFunctions.insert(Funcs[NameIdx]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002218 return;
2219 }
2220 case cByte: case cShort: case cInt:
2221 break; // Small integrals, handled below...
2222 default: assert(0 && "Unknown class!");
2223 }
2224
2225 // Special case signed division by power of 2.
2226 if (isDiv)
2227 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2228 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2229 int V = CI->getValue();
2230
2231 if (V == 1) { // X /s 1 => X
2232 unsigned Op0Reg = getReg(Op0, BB, IP);
2233 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
2234 return;
2235 }
2236
2237 if (V == -1) { // X /s -1 => -X
2238 unsigned Op0Reg = getReg(Op0, BB, IP);
2239 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
2240 return;
2241 }
2242
Misha Brukmanec6319a2004-07-20 15:51:37 +00002243 unsigned log2V = ExactLog2(V);
2244 if (log2V != 0 && Ty->isSigned()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002245 unsigned Op0Reg = getReg(Op0, BB, IP);
2246 unsigned TmpReg = makeAnotherReg(Op0->getType());
Misha Brukmanec6319a2004-07-20 15:51:37 +00002247
Misha Brukman1013ef52004-07-21 20:09:08 +00002248 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
Misha Brukmanec6319a2004-07-20 15:51:37 +00002249 BuildMI(*BB, IP, PPC32::ADDZE, 1, ResultReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002250 return;
2251 }
2252 }
2253
2254 unsigned Op0Reg = getReg(Op0, BB, IP);
2255 unsigned Op1Reg = getReg(Op1, BB, IP);
Misha Brukmanec6319a2004-07-20 15:51:37 +00002256 unsigned Opcode = Ty->isSigned() ? PPC32::DIVW : PPC32::DIVWU;
2257
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002258 if (isDiv) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00002259 BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002260 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002261 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2262 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2263
Misha Brukmanec6319a2004-07-20 15:51:37 +00002264 BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002265 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2266 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002267 }
2268}
2269
2270
2271/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2272/// for constant immediate shift values, and for constant immediate
2273/// shift values equal to 1. Even the general case is sort of special,
2274/// because the shift amount has to be in CL, not just any old register.
2275///
2276void ISel::visitShiftInst(ShiftInst &I) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00002277 MachineBasicBlock::iterator IP = BB->end();
2278 emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
2279 I.getOpcode() == Instruction::Shl, I.getType(),
2280 getReg(I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002281}
2282
2283/// emitShiftOperation - Common code shared between visitShiftInst and
2284/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002285///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002286void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2287 MachineBasicBlock::iterator IP,
2288 Value *Op, Value *ShiftAmount, bool isLeftShift,
2289 const Type *ResultTy, unsigned DestReg) {
2290 unsigned SrcReg = getReg (Op, MBB, IP);
2291 bool isSigned = ResultTy->isSigned ();
2292 unsigned Class = getClass (ResultTy);
2293
2294 // Longs, as usual, are handled specially...
2295 if (Class == cLong) {
2296 // If we have a constant shift, we can generate much more efficient code
2297 // than otherwise...
2298 //
2299 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2300 unsigned Amount = CUI->getValue();
2301 if (Amount < 32) {
2302 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002303 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002304 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2305 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman1013ef52004-07-21 20:09:08 +00002306 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2307 .addImm(Amount).addImm(32-Amount).addImm(31);
2308 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2309 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002310 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002311 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002312 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2313 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman1013ef52004-07-21 20:09:08 +00002314 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2315 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2316 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2317 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002318 }
2319 } else { // Shifting more than 32 bits
2320 Amount -= 32;
2321 if (isLeftShift) {
2322 if (Amount != 0) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002323 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002324 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002325 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002326 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2327 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002328 }
Misha Brukman1013ef52004-07-21 20:09:08 +00002329 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
2330 } else {
2331 if (Amount != 0) {
2332 if (isSigned)
2333 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(SrcReg)
2334 .addImm(Amount);
2335 else
2336 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2337 .addImm(32-Amount).addImm(Amount).addImm(31);
2338 } else {
2339 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2340 .addReg(SrcReg);
2341 }
2342 BuildMI(*MBB, IP,PPC32::LI, 1, DestReg).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002343 }
2344 }
2345 } else {
2346 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2347 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002348 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2349 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2350 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2351 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2352 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2353
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002354 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002355 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002356 .addSImm(32);
2357 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002358 .addReg(ShiftAmountReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002359 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg3).addReg(SrcReg+1)
2360 .addReg(TmpReg1);
2361 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
Misha Brukman2fec9902004-06-21 20:22:03 +00002362 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002363 .addSImm(-32);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002364 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg6).addReg(SrcReg+1)
2365 .addReg(TmpReg5);
Misha Brukman1013ef52004-07-21 20:09:08 +00002366 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
Misha Brukman2fec9902004-06-21 20:22:03 +00002367 .addReg(TmpReg6);
Misha Brukman1013ef52004-07-21 20:09:08 +00002368 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg+1).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002369 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002370 } else {
2371 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002372 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002373 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukmanb097f212004-07-26 18:13:24 +00002374 std::cerr << "ERROR: Unimplemented: signed right shift of long\n";
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002375 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002376 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002377 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002378 .addSImm(32);
2379 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002380 .addReg(ShiftAmountReg);
Misha Brukman1013ef52004-07-21 20:09:08 +00002381 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002382 .addReg(TmpReg1);
2383 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2384 .addReg(TmpReg3);
2385 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002386 .addSImm(-32);
2387 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002388 .addReg(TmpReg5);
Misha Brukman1013ef52004-07-21 20:09:08 +00002389 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
Misha Brukman2fec9902004-06-21 20:22:03 +00002390 .addReg(TmpReg6);
Misha Brukman1013ef52004-07-21 20:09:08 +00002391 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002392 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002393 }
2394 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002395 }
2396 return;
2397 }
2398
2399 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2400 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2401 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2402 unsigned Amount = CUI->getValue();
2403
Misha Brukman422791f2004-06-21 17:41:12 +00002404 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002405 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2406 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002407 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002408 if (isSigned) {
2409 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2410 } else {
2411 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2412 .addImm(32-Amount).addImm(Amount).addImm(31);
2413 }
Misha Brukman422791f2004-06-21 17:41:12 +00002414 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002415 } else { // The shift amount is non-constant.
2416 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2417
Misha Brukman422791f2004-06-21 17:41:12 +00002418 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002419 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2420 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002421 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002422 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2423 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002424 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002425 }
2426}
2427
2428
Misha Brukmanb097f212004-07-26 18:13:24 +00002429/// visitLoadInst - Implement LLVM load instructions. Pretty straightforward
2430/// mapping of LLVM classes to PPC load instructions, with the exception of
2431/// signed byte loads, which need a sign extension following them.
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002432///
2433void ISel::visitLoadInst(LoadInst &I) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002434 // Immediate opcodes, for reg+imm addressing
2435 static const unsigned ImmOpcodes[] = {
2436 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ,
2437 PPC32::LFS, PPC32::LFD, PPC32::LWZ
2438 };
2439 // Indexed opcodes, for reg+reg addressing
2440 static const unsigned IdxOpcodes[] = {
2441 PPC32::LBZX, PPC32::LHZX, PPC32::LWZX,
2442 PPC32::LFSX, PPC32::LFDX, PPC32::LWZX
Misha Brukman2fec9902004-06-21 20:22:03 +00002443 };
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002444
Misha Brukmanb097f212004-07-26 18:13:24 +00002445 unsigned Class = getClassB(I.getType());
2446 unsigned ImmOpcode = ImmOpcodes[Class];
2447 unsigned IdxOpcode = IdxOpcodes[Class];
2448 unsigned DestReg = getReg(I);
2449 Value *SourceAddr = I.getOperand(0);
2450
2451 if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC32::LHA;
2452 if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC32::LHAX;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002453
Misha Brukmanb097f212004-07-26 18:13:24 +00002454 if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
Misha Brukman422791f2004-06-21 17:41:12 +00002455 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002456 if (Class == cLong) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002457 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
2458 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg+1), FI, 4);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002459 } else if (Class == cByte && I.getType()->isSigned()) {
2460 unsigned TmpReg = makeAnotherReg(I.getType());
Misha Brukmanb097f212004-07-26 18:13:24 +00002461 addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002462 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002463 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00002464 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002465 }
Misha Brukmanb097f212004-07-26 18:13:24 +00002466 return;
2467 }
2468
2469 // If this load is the only use of the GEP instruction that is its address,
2470 // then we can fold the GEP directly into the load instruction.
2471 // emitGEPOperation with a second to last arg of 'true' will place the
2472 // base register for the GEP into baseReg, and the constant offset from that
2473 // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
2474 // otherwise, we copy the offset into another reg, and use reg+reg addressing.
2475 if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
2476 unsigned baseReg = getReg(GEPI);
2477 ConstantSInt *offset;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002478
Misha Brukmanb097f212004-07-26 18:13:24 +00002479 emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
2480 GEPI->op_end(), baseReg, true, &offset);
2481
2482 if (Class != cLong && canUseAsImmediateForOpcode(offset, 0)) {
2483 if (Class == cByte && I.getType()->isSigned()) {
2484 unsigned TmpReg = makeAnotherReg(I.getType());
2485 BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
2486 .addReg(baseReg);
2487 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
2488 } else {
2489 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue())
2490 .addReg(baseReg);
2491 }
2492 return;
2493 }
2494
2495 unsigned indexReg = getReg(offset);
2496
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002497 if (Class == cLong) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002498 unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
2499 BuildMI(BB, PPC32::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
2500 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
2501 BuildMI(BB, IdxOpcode, 2, DestReg+1).addReg(indexPlus4).addReg(baseReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002502 } else if (Class == cByte && I.getType()->isSigned()) {
2503 unsigned TmpReg = makeAnotherReg(I.getType());
Misha Brukmanb097f212004-07-26 18:13:24 +00002504 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002505 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002506 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00002507 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002508 }
Misha Brukmanb097f212004-07-26 18:13:24 +00002509 return;
2510 }
2511
2512 // The fallback case, where the load was from a source that could not be
2513 // folded into the load instruction.
2514 unsigned SrcAddrReg = getReg(SourceAddr);
2515
2516 if (Class == cLong) {
2517 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
2518 BuildMI(BB, ImmOpcode, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg);
2519 } else if (Class == cByte && I.getType()->isSigned()) {
2520 unsigned TmpReg = makeAnotherReg(I.getType());
2521 BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
2522 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
2523 } else {
2524 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002525 }
2526}
2527
2528/// visitStoreInst - Implement LLVM store instructions
2529///
2530void ISel::visitStoreInst(StoreInst &I) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002531 // Immediate opcodes, for reg+imm addressing
2532 static const unsigned ImmOpcodes[] = {
2533 PPC32::STB, PPC32::STH, PPC32::STW,
2534 PPC32::STFS, PPC32::STFD, PPC32::STW
2535 };
2536 // Indexed opcodes, for reg+reg addressing
2537 static const unsigned IdxOpcodes[] = {
2538 PPC32::STBX, PPC32::STHX, PPC32::STWX,
2539 PPC32::STFSX, PPC32::STDX, PPC32::STWX
2540 };
2541
2542 Value *SourceAddr = I.getOperand(1);
2543 const Type *ValTy = I.getOperand(0)->getType();
2544 unsigned Class = getClassB(ValTy);
2545 unsigned ImmOpcode = ImmOpcodes[Class];
2546 unsigned IdxOpcode = IdxOpcodes[Class];
2547 unsigned ValReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002548
Misha Brukmanb097f212004-07-26 18:13:24 +00002549 // If this store is the only use of the GEP instruction that is its address,
2550 // then we can fold the GEP directly into the store instruction.
2551 // emitGEPOperation with a second to last arg of 'true' will place the
2552 // base register for the GEP into baseReg, and the constant offset from that
2553 // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
2554 // otherwise, we copy the offset into another reg, and use reg+reg addressing.
2555 if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
2556 unsigned baseReg = getReg(GEPI);
2557 ConstantSInt *offset;
2558
2559 emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
2560 GEPI->op_end(), baseReg, true, &offset);
2561
2562 if (Class != cLong && canUseAsImmediateForOpcode(offset, 0)) {
2563 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
2564 .addReg(baseReg);
2565 return;
2566 }
2567
2568 unsigned indexReg = getReg(offset);
2569
2570 if (Class == cLong) {
2571 unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
2572 BuildMI(BB, PPC32::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
2573 BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
2574 BuildMI(BB, IdxOpcode, 3).addReg(ValReg+1).addReg(indexPlus4)
2575 .addReg(baseReg);
2576 return;
2577 }
2578 BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002579 return;
2580 }
Misha Brukmanb097f212004-07-26 18:13:24 +00002581
2582 // If the store address wasn't the only use of a GEP, we fall back to the
2583 // standard path: store the ValReg at the value in AddressReg.
2584 unsigned AddressReg = getReg(I.getOperand(1));
2585 if (Class == cLong) {
2586 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
2587 BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg);
2588 return;
2589 }
2590 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002591}
2592
2593
2594/// visitCastInst - Here we have various kinds of copying with or without sign
2595/// extension going on.
2596///
2597void ISel::visitCastInst(CastInst &CI) {
2598 Value *Op = CI.getOperand(0);
2599
2600 unsigned SrcClass = getClassB(Op->getType());
2601 unsigned DestClass = getClassB(CI.getType());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002602
2603 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2604 // of the case are GEP instructions, then the cast does not need to be
2605 // generated explicitly, it will be folded into the GEP.
2606 if (DestClass == cLong && SrcClass == cInt) {
2607 bool AllUsesAreGEPs = true;
2608 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2609 if (!isa<GetElementPtrInst>(*I)) {
2610 AllUsesAreGEPs = false;
2611 break;
2612 }
2613
2614 // No need to codegen this cast if all users are getelementptr instrs...
2615 if (AllUsesAreGEPs) return;
2616 }
2617
2618 unsigned DestReg = getReg(CI);
2619 MachineBasicBlock::iterator MI = BB->end();
2620 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2621}
2622
2623/// emitCastOperation - Common code shared between visitCastInst and constant
2624/// expression cast support.
2625///
Misha Brukman7e898c32004-07-20 00:41:46 +00002626void ISel::emitCastOperation(MachineBasicBlock *MBB,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002627 MachineBasicBlock::iterator IP,
2628 Value *Src, const Type *DestTy,
2629 unsigned DestReg) {
2630 const Type *SrcTy = Src->getType();
2631 unsigned SrcClass = getClassB(SrcTy);
2632 unsigned DestClass = getClassB(DestTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002633 unsigned SrcReg = getReg(Src, MBB, IP);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002634
2635 // Implement casts to bool by using compare on the operand followed by set if
2636 // not zero on the result.
2637 if (DestTy == Type::BoolTy) {
2638 switch (SrcClass) {
2639 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002640 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002641 case cInt: {
2642 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00002643 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
Misha Brukman7e898c32004-07-20 00:41:46 +00002644 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002645 break;
2646 }
2647 case cLong: {
2648 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2649 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002650 BuildMI(*MBB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00002651 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1);
Misha Brukmanbf417a62004-07-20 20:43:05 +00002652 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg)
2653 .addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002654 break;
2655 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002656 case cFP32:
2657 case cFP64:
2658 // FSEL perhaps?
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002659 std::cerr << "ERROR: Cast fp-to-bool not implemented!\n";
Misha Brukmand18a31d2004-07-06 22:51:53 +00002660 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002661 }
2662 return;
2663 }
2664
Misha Brukman7e898c32004-07-20 00:41:46 +00002665 // Handle cast of Float -> Double
2666 if (SrcClass == cFP32 && DestClass == cFP64) {
2667 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2668 return;
2669 }
2670
2671 // Handle cast of Double -> Float
2672 if (SrcClass == cFP64 && DestClass == cFP32) {
2673 BuildMI(*MBB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
2674 return;
2675 }
2676
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002677 // Handle casts from integer to floating point now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002678 if (DestClass == cFP32 || DestClass == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002679
Misha Brukman422791f2004-06-21 17:41:12 +00002680 // Emit a library call for long to float conversion
2681 if (SrcClass == cLong) {
2682 std::vector<ValueRecord> Args;
2683 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002684 Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002685 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002686 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002687 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002688 TM.CalledFunctions.insert(floatFn);
Misha Brukman422791f2004-06-21 17:41:12 +00002689 return;
2690 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002691
Misha Brukman7e898c32004-07-20 00:41:46 +00002692 // Make sure we're dealing with a full 32 bits
2693 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2694 promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
2695
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002696 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002697
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002698 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002699 // Also spill room for a special conversion constant
2700 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002701 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2702 int ValueFrameIdx =
2703 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2704
Misha Brukman422791f2004-06-21 17:41:12 +00002705 unsigned constantHi = makeAnotherReg(Type::IntTy);
2706 unsigned constantLo = makeAnotherReg(Type::IntTy);
2707 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2708 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2709
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002710 if (!SrcTy->isSigned()) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002711 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
2712 BuildMI(*BB, IP, PPC32::LI, 1, constantLo).addSImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002713 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2714 ConstantFrameIndex);
2715 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2716 ConstantFrameIndex, 4);
2717 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2718 ValueFrameIdx);
2719 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2720 ValueFrameIdx, 4);
2721 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2722 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002723 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2724 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2725 } else {
2726 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00002727 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
2728 BuildMI(*BB, IP, PPC32::LIS, 1, constantLo).addSImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002729 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2730 ConstantFrameIndex);
2731 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2732 ConstantFrameIndex, 4);
2733 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2734 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002735 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002736 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2737 ValueFrameIdx, 4);
2738 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2739 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002740 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukmanb097f212004-07-26 18:13:24 +00002741 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002742 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002743 return;
2744 }
2745
2746 // Handle casts from floating point to integer now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002747 if (SrcClass == cFP32 || SrcClass == cFP64) {
Misha Brukman422791f2004-06-21 17:41:12 +00002748 // emit library call
2749 if (DestClass == cLong) {
2750 std::vector<ValueRecord> Args;
2751 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002752 Function *floatFn = (DestClass == cFP32) ? __fixsfdiFn : __fixdfdiFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002753 MachineInstr *TheCall =
Misha Brukman7e898c32004-07-20 00:41:46 +00002754 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002755 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002756 TM.CalledFunctions.insert(floatFn);
Misha Brukman422791f2004-06-21 17:41:12 +00002757 return;
2758 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002759
2760 int ValueFrameIdx =
Misha Brukman7e898c32004-07-20 00:41:46 +00002761 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002762
Misha Brukman7e898c32004-07-20 00:41:46 +00002763 if (DestTy->isSigned()) {
Misha Brukman4c14f332004-07-23 01:11:19 +00002764 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2765
2766 // Convert to integer in the FP reg and store it to a stack slot
2767 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
2768 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2769 .addReg(TempReg), ValueFrameIdx);
Misha Brukmanb097f212004-07-26 18:13:24 +00002770
2771 // There is no load signed byte opcode, so we must emit a sign extend for
2772 // that particular size. Make sure to source the new integer from the
2773 // correct offset.
Misha Brukman4c14f332004-07-23 01:11:19 +00002774 if (DestClass == cByte) {
2775 unsigned TempReg2 = makeAnotherReg(DestTy);
Misha Brukmanb097f212004-07-26 18:13:24 +00002776 addFrameReference(BuildMI(*BB, IP, PPC32::LBZ, 2, TempReg2),
2777 ValueFrameIdx, 7);
Misha Brukman4c14f332004-07-23 01:11:19 +00002778 BuildMI(*MBB, IP, PPC32::EXTSB, DestReg).addReg(TempReg2);
2779 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00002780 int offset = (DestClass == cShort) ? 6 : 4;
2781 unsigned LoadOp = (DestClass == cShort) ? PPC32::LHA : PPC32::LWZ;
Misha Brukman4c14f332004-07-23 01:11:19 +00002782 addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg),
Misha Brukmanb097f212004-07-26 18:13:24 +00002783 ValueFrameIdx, offset);
Misha Brukman4c14f332004-07-23 01:11:19 +00002784 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002785 } else {
Misha Brukmanb160d1f2004-07-23 20:32:59 +00002786 unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
2787 double maxInt = (1LL << 32) - 1;
2788 unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
2789 double border = 1LL << 31;
2790 unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
2791 unsigned UseZero = makeAnotherReg(Type::DoubleTy);
2792 unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
2793 unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
2794 unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
2795 unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
2796 unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
2797 unsigned IntTmp = makeAnotherReg(Type::IntTy);
2798 unsigned XorReg = makeAnotherReg(Type::IntTy);
2799 int FrameIdx =
2800 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
2801 // Update machine-CFG edges
2802 MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
2803 MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
2804 MachineBasicBlock *OldMBB = BB;
2805 ilist<MachineBasicBlock>::iterator It = BB; ++It;
2806 F->getBasicBlockList().insert(It, XorMBB);
2807 F->getBasicBlockList().insert(It, PhiMBB);
2808 BB->addSuccessor(XorMBB);
2809 BB->addSuccessor(PhiMBB);
2810
2811 // Convert from floating point to unsigned 32-bit value
2812 // Use 0 if incoming value is < 0.0
2813 BuildMI(*BB, IP, PPC32::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
2814 .addReg(Zero);
2815 // Use 2**32 - 1 if incoming value is >= 2**32
2816 BuildMI(*BB, IP, PPC32::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
2817 BuildMI(*BB, IP, PPC32::FSEL, 3, UseChoice).addReg(UseMaxInt)
2818 .addReg(UseZero).addReg(MaxInt);
2819 // Subtract 2**31
2820 BuildMI(*BB, IP, PPC32::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
2821 // Use difference if >= 2**31
2822 BuildMI(*BB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(UseChoice)
2823 .addReg(Border);
2824 BuildMI(*BB, IP, PPC32::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
2825 .addReg(UseChoice);
2826 // Convert to integer
2827 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
2828 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3).addReg(ConvReg),
2829 FrameIdx);
Misha Brukmanb097f212004-07-26 18:13:24 +00002830 if (DestClass == cByte) {
2831 addFrameReference(BuildMI(*BB, IP, PPC32::LBZ, 2, DestReg),
2832 FrameIdx, 7);
2833 } else if (DestClass == cShort) {
2834 addFrameReference(BuildMI(*BB, IP, PPC32::LHZ, 2, DestReg),
2835 FrameIdx, 6);
2836 } if (DestClass == cInt) {
2837 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, IntTmp),
2838 FrameIdx, 4);
2839 BuildMI(*BB, IP, PPC32::BLT, 2).addReg(PPC32::CR0).addMBB(PhiMBB);
2840 BuildMI(*BB, IP, PPC32::B, 1).addMBB(XorMBB);
Misha Brukmanb160d1f2004-07-23 20:32:59 +00002841
Misha Brukmanb097f212004-07-26 18:13:24 +00002842 // XorMBB:
2843 // add 2**31 if input was >= 2**31
2844 BB = XorMBB;
2845 BuildMI(BB, PPC32::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
2846 XorMBB->addSuccessor(PhiMBB);
Misha Brukmanb160d1f2004-07-23 20:32:59 +00002847
Misha Brukmanb097f212004-07-26 18:13:24 +00002848 // PhiMBB:
2849 // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
2850 BB = PhiMBB;
2851 BuildMI(BB, PPC32::PHI, 2, DestReg).addReg(IntTmp).addMBB(OldMBB)
2852 .addReg(XorReg).addMBB(XorMBB);
2853 }
2854 }
2855 return;
2856 }
2857
2858 // Check our invariants
2859 assert((SrcClass <= cInt || SrcClass == cLong) &&
2860 "Unhandled source class for cast operation!");
2861 assert((DestClass <= cInt || DestClass == cLong) &&
2862 "Unhandled destination class for cast operation!");
2863
2864 bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2865 bool destUnsigned = DestTy->isUnsigned();
2866
2867 // Unsigned -> Unsigned, clear if larger,
2868 if (sourceUnsigned && destUnsigned) {
2869 // handle long dest class now to keep switch clean
2870 if (DestClass == cLong) {
2871 if (SrcClass == cLong) {
2872 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2873 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2874 .addReg(SrcReg+1);
2875 } else {
2876 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
2877 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2878 .addReg(SrcReg);
2879 }
2880 return;
2881 }
2882
2883 // handle u{ byte, short, int } x u{ byte, short, int }
2884 unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
2885 switch (SrcClass) {
2886 case cByte:
2887 case cShort:
2888 if (SrcClass == DestClass)
2889 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2890 else
2891 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2892 .addImm(0).addImm(clearBits).addImm(31);
2893 break;
2894 case cLong:
2895 ++SrcReg;
2896 // Fall through
2897 case cInt:
2898 if (DestClass == cInt)
2899 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2900 else
2901 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2902 .addImm(0).addImm(clearBits).addImm(31);
2903 break;
2904 }
2905 return;
2906 }
2907
2908 // Signed -> Signed
2909 if (!sourceUnsigned && !destUnsigned) {
2910 // handle long dest class now to keep switch clean
2911 if (DestClass == cLong) {
2912 if (SrcClass == cLong) {
2913 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2914 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2915 .addReg(SrcReg+1);
2916 } else {
2917 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
2918 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2919 .addReg(SrcReg);
2920 }
2921 return;
2922 }
2923
2924 // handle { byte, short, int } x { byte, short, int }
2925 switch (SrcClass) {
2926 case cByte:
2927 if (DestClass == cByte)
2928 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2929 else
2930 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2931 break;
2932 case cShort:
2933 if (DestClass == cByte)
2934 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2935 else if (DestClass == cShort)
2936 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2937 else
2938 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2939 break;
2940 case cLong:
2941 ++SrcReg;
2942 // Fall through
2943 case cInt:
2944 if (DestClass == cByte)
2945 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2946 else if (DestClass == cShort)
2947 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2948 else
2949 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2950 break;
2951 }
2952 return;
2953 }
2954
2955 // Unsigned -> Signed
2956 if (sourceUnsigned && !destUnsigned) {
2957 // handle long dest class now to keep switch clean
2958 if (DestClass == cLong) {
2959 if (SrcClass == cLong) {
2960 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2961 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1).
2962 addReg(SrcReg+1);
2963 } else {
2964 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
2965 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2966 .addReg(SrcReg);
2967 }
2968 return;
2969 }
2970
2971 // handle u{ byte, short, int } -> { byte, short, int }
2972 switch (SrcClass) {
2973 case cByte:
2974 if (DestClass == cByte)
2975 // uByte 255 -> signed byte == -1
2976 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2977 else
2978 // uByte 255 -> signed short/int == 255
2979 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
2980 .addImm(24).addImm(31);
2981 break;
2982 case cShort:
2983 if (DestClass == cByte)
2984 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2985 else if (DestClass == cShort)
2986 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2987 else
2988 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
2989 .addImm(16).addImm(31);
2990 break;
2991 case cLong:
2992 ++SrcReg;
2993 // Fall through
2994 case cInt:
2995 if (DestClass == cByte)
2996 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2997 else if (DestClass == cShort)
2998 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2999 else
3000 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3001 break;
3002 }
3003 return;
3004 }
3005
3006 // Signed -> Unsigned
3007 if (!sourceUnsigned && destUnsigned) {
3008 // handle long dest class now to keep switch clean
3009 if (DestClass == cLong) {
3010 if (SrcClass == cLong) {
3011 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3012 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
3013 .addReg(SrcReg+1);
3014 } else {
3015 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
3016 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
3017 .addReg(SrcReg);
3018 }
3019 return;
3020 }
3021
3022 // handle { byte, short, int } -> u{ byte, short, int }
3023 unsigned clearBits = (DestClass == cByte) ? 24 : 16;
3024 switch (SrcClass) {
3025 case cByte:
3026 case cShort:
3027 if (DestClass == cByte || DestClass == cShort)
3028 // sbyte -1 -> ubyte 0x000000FF
3029 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
3030 .addImm(0).addImm(clearBits).addImm(31);
3031 else
3032 // sbyte -1 -> ubyte 0xFFFFFFFF
3033 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3034 break;
3035 case cLong:
3036 ++SrcReg;
3037 // Fall through
3038 case cInt:
3039 if (DestClass == cInt)
3040 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3041 else
3042 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
3043 .addImm(0).addImm(clearBits).addImm(31);
3044 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00003045 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003046 return;
3047 }
3048
3049 // Anything we haven't handled already, we can't (yet) handle at all.
Misha Brukmanb097f212004-07-26 18:13:24 +00003050 std::cerr << "Unhandled cast from " << SrcTy->getDescription()
3051 << "to " << DestTy->getDescription() << '\n';
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003052 abort();
3053}
3054
3055/// visitVANextInst - Implement the va_next instruction...
3056///
3057void ISel::visitVANextInst(VANextInst &I) {
3058 unsigned VAList = getReg(I.getOperand(0));
3059 unsigned DestReg = getReg(I);
3060
3061 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00003062 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003063 default:
3064 std::cerr << I;
3065 assert(0 && "Error: bad type for va_next instruction!");
3066 return;
3067 case Type::PointerTyID:
3068 case Type::UIntTyID:
3069 case Type::IntTyID:
3070 Size = 4;
3071 break;
3072 case Type::ULongTyID:
3073 case Type::LongTyID:
3074 case Type::DoubleTyID:
3075 Size = 8;
3076 break;
3077 }
3078
3079 // Increment the VAList pointer...
Misha Brukman1013ef52004-07-21 20:09:08 +00003080 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003081}
3082
3083void ISel::visitVAArgInst(VAArgInst &I) {
3084 unsigned VAList = getReg(I.getOperand(0));
3085 unsigned DestReg = getReg(I);
3086
Misha Brukman358829f2004-06-21 17:25:55 +00003087 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003088 default:
3089 std::cerr << I;
3090 assert(0 && "Error: bad type for va_next instruction!");
3091 return;
3092 case Type::PointerTyID:
3093 case Type::UIntTyID:
3094 case Type::IntTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00003095 BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003096 break;
3097 case Type::ULongTyID:
3098 case Type::LongTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00003099 BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
3100 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003101 break;
Misha Brukmanb097f212004-07-26 18:13:24 +00003102 case Type::FloatTyID:
3103 BuildMI(BB, PPC32::LFS, 2, DestReg).addSImm(0).addReg(VAList);
3104 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003105 case Type::DoubleTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00003106 BuildMI(BB, PPC32::LFD, 2, DestReg).addSImm(0).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003107 break;
3108 }
3109}
3110
3111/// visitGetElementPtrInst - instruction-select GEP instructions
3112///
3113void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
Misha Brukmanb097f212004-07-26 18:13:24 +00003114 if (canFoldGEPIntoLoadOrStore(&I))
3115 return;
3116
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003117 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00003118 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
Misha Brukmanb097f212004-07-26 18:13:24 +00003119 outputReg, false, 0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003120}
3121
Misha Brukman1013ef52004-07-21 20:09:08 +00003122/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
3123/// constant expression GEP support.
3124///
Misha Brukman17a90002004-07-21 20:22:06 +00003125void ISel::emitGEPOperation(MachineBasicBlock *MBB,
3126 MachineBasicBlock::iterator IP,
3127 Value *Src, User::op_iterator IdxBegin,
Misha Brukmanb097f212004-07-26 18:13:24 +00003128 User::op_iterator IdxEnd, unsigned TargetReg,
3129 bool GEPIsFolded, ConstantSInt **RemainderPtr) {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003130 const TargetData &TD = TM.getTargetData();
3131 const Type *Ty = Src->getType();
3132 unsigned basePtrReg = getReg(Src, MBB, IP);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003133 int64_t constValue = 0;
Misha Brukmane2eceb52004-07-23 16:08:20 +00003134
3135 // Record the operations to emit the GEP in a vector so that we can emit them
3136 // after having analyzed the entire instruction.
Misha Brukmanb097f212004-07-26 18:13:24 +00003137 std::vector<CollapsedGepOp> ops;
Misha Brukmane2eceb52004-07-23 16:08:20 +00003138
Misha Brukman1013ef52004-07-21 20:09:08 +00003139 // GEPs have zero or more indices; we must perform a struct access
3140 // or array access for each one.
3141 for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
3142 ++oi) {
3143 Value *idx = *oi;
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003144 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00003145 // It's a struct access. idx is the index into the structure,
3146 // which names the field. Use the TargetData structure to
3147 // pick out what the layout of the structure is in memory.
3148 // Use the (constant) structure index's value to find the
3149 // right byte offset from the StructLayout class's list of
3150 // structure member offsets.
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003151 unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
Misha Brukman1013ef52004-07-21 20:09:08 +00003152 unsigned memberOffset =
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003153 TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
Misha Brukmane2eceb52004-07-23 16:08:20 +00003154
3155 // StructType member offsets are always constant values. Add it to the
3156 // running total.
3157 constValue += memberOffset;
3158
3159 // The next type is the member of the structure selected by the
3160 // index.
3161 Ty = StTy->getElementType (fieldIndex);
3162 } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
Misha Brukman313efcb2004-07-09 15:45:07 +00003163 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
3164 // operand. Handle this case directly now...
3165 if (CastInst *CI = dyn_cast<CastInst>(idx))
3166 if (CI->getOperand(0)->getType() == Type::IntTy ||
3167 CI->getOperand(0)->getType() == Type::UIntTy)
3168 idx = CI->getOperand(0);
Misha Brukman1013ef52004-07-21 20:09:08 +00003169
Misha Brukmane2eceb52004-07-23 16:08:20 +00003170 // It's an array or pointer access: [ArraySize x ElementType].
3171 // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
3172 // must find the size of the pointed-to type (Not coincidentally, the next
3173 // type is the type of the elements in the array).
Misha Brukman1013ef52004-07-21 20:09:08 +00003174 Ty = SqTy->getElementType();
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003175 unsigned elementSize = TD.getTypeSize(Ty);
Misha Brukman1013ef52004-07-21 20:09:08 +00003176
Misha Brukmane2eceb52004-07-23 16:08:20 +00003177 if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003178 if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
3179 constValue += CS->getValue() * elementSize;
3180 else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
3181 constValue += CU->getValue() * elementSize;
3182 else
3183 assert(0 && "Invalid ConstantInt GEP index type!");
3184 } else {
3185 // Push current gep state to this point as an add
Misha Brukmanb097f212004-07-26 18:13:24 +00003186 ops.push_back(CollapsedGepOp(false, 0,
3187 ConstantSInt::get(Type::IntTy,constValue)));
Misha Brukmane2eceb52004-07-23 16:08:20 +00003188
3189 // Push multiply gep op and reset constant value
Misha Brukmanb097f212004-07-26 18:13:24 +00003190 ops.push_back(CollapsedGepOp(true, idx,
3191 ConstantSInt::get(Type::IntTy, elementSize)));
Misha Brukmane2eceb52004-07-23 16:08:20 +00003192
3193 constValue = 0;
Misha Brukman313efcb2004-07-09 15:45:07 +00003194 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003195 }
Misha Brukmane2eceb52004-07-23 16:08:20 +00003196 }
Misha Brukmane2eceb52004-07-23 16:08:20 +00003197 // Emit instructions for all the collapsed ops
Misha Brukmanb097f212004-07-26 18:13:24 +00003198 for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
Misha Brukmane2eceb52004-07-23 16:08:20 +00003199 cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
Misha Brukmanb097f212004-07-26 18:13:24 +00003200 CollapsedGepOp& cgo = *cgo_i;
Misha Brukmane2eceb52004-07-23 16:08:20 +00003201 unsigned nextBasePtrReg = makeAnotherReg (Type::IntTy);
3202
Misha Brukmanb097f212004-07-26 18:13:24 +00003203 if (cgo.isMul) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003204 // We know the elementSize is a constant, so we can emit a constant mul
3205 // and then add it to the current base reg
3206 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanb097f212004-07-26 18:13:24 +00003207 doMultiplyConst(MBB, IP, TmpReg, cgo.index, cgo.size);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003208 BuildMI(*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
3209 .addReg(TmpReg);
3210 } else {
3211 // Try and generate an immediate addition if possible
Misha Brukmanb097f212004-07-26 18:13:24 +00003212 if (cgo.size->isNullValue()) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003213 BuildMI(*MBB, IP, PPC32::OR, 2, nextBasePtrReg).addReg(basePtrReg)
3214 .addReg(basePtrReg);
Misha Brukmanb097f212004-07-26 18:13:24 +00003215 } else if (canUseAsImmediateForOpcode(cgo.size, 0)) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003216 BuildMI(*MBB, IP, PPC32::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
Misha Brukmanb097f212004-07-26 18:13:24 +00003217 .addSImm(cgo.size->getValue());
Misha Brukmane2eceb52004-07-23 16:08:20 +00003218 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00003219 unsigned Op1r = getReg(cgo.size, MBB, IP);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003220 BuildMI(*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
3221 .addReg(Op1r);
3222 }
3223 }
3224
Misha Brukman1013ef52004-07-21 20:09:08 +00003225 basePtrReg = nextBasePtrReg;
Misha Brukman2fec9902004-06-21 20:22:03 +00003226 }
Misha Brukmane2eceb52004-07-23 16:08:20 +00003227 // Add the current base register plus any accumulated constant value
3228 ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
3229
Misha Brukmanb097f212004-07-26 18:13:24 +00003230 // If we are emitting this during a fold, copy the current base register to
3231 // the target, and save the current constant offset so the folding load or
3232 // store can try and use it as an immediate.
3233 if (GEPIsFolded) {
3234 BuildMI (BB, PPC32::OR, 2, TargetReg).addReg(basePtrReg).addReg(basePtrReg);
3235 *RemainderPtr = remainder;
3236 return;
3237 }
3238
Misha Brukman1013ef52004-07-21 20:09:08 +00003239 // After we have processed all the indices, the result is left in
3240 // basePtrReg. Move it to the register where we were expected to
3241 // put the answer.
Misha Brukmane2eceb52004-07-23 16:08:20 +00003242 if (remainder->isNullValue()) {
3243 BuildMI (BB, PPC32::OR, 2, TargetReg).addReg(basePtrReg).addReg(basePtrReg);
3244 } else if (canUseAsImmediateForOpcode(remainder, 0)) {
3245 BuildMI(*MBB, IP, PPC32::ADDI, 2, TargetReg).addReg(basePtrReg)
3246 .addSImm(remainder->getValue());
3247 } else {
3248 unsigned Op1r = getReg(remainder, MBB, IP);
3249 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r);
3250 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003251}
3252
3253/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
3254/// frame manager, otherwise do it the hard way.
3255///
3256void ISel::visitAllocaInst(AllocaInst &I) {
3257 // If this is a fixed size alloca in the entry block for the function, we
3258 // statically stack allocate the space, so we don't need to do anything here.
3259 //
3260 if (dyn_castFixedAlloca(&I)) return;
3261
3262 // Find the data size of the alloca inst's getAllocatedType.
3263 const Type *Ty = I.getAllocatedType();
3264 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
3265
3266 // Create a register to hold the temporary result of multiplying the type size
3267 // constant by the variable amount.
3268 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003269
3270 // TotalSizeReg = mul <numelements>, <TypeSize>
3271 MachineBasicBlock::iterator MBBI = BB->end();
Misha Brukman1013ef52004-07-21 20:09:08 +00003272 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
3273 doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003274
3275 // AddedSize = add <TotalSizeReg>, 15
3276 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00003277 BuildMI(BB, PPC32::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003278
3279 // AlignedSize = and <AddedSize>, ~15
3280 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukmana31f1f72004-07-21 20:30:18 +00003281 BuildMI(BB, PPC32::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
Misha Brukman2fec9902004-06-21 20:22:03 +00003282 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003283
3284 // Subtract size from stack pointer, thereby allocating some space.
3285 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
3286
3287 // Put a pointer to the space into the result register, by copying
3288 // the stack pointer.
3289 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
3290
3291 // Inform the Frame Information that we have just allocated a variable-sized
3292 // object.
3293 F->getFrameInfo()->CreateVariableSizedObject();
3294}
3295
3296/// visitMallocInst - Malloc instructions are code generated into direct calls
3297/// to the library malloc.
3298///
3299void ISel::visitMallocInst(MallocInst &I) {
3300 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
3301 unsigned Arg;
3302
3303 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
3304 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
3305 } else {
3306 Arg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003307 MachineBasicBlock::iterator MBBI = BB->end();
Misha Brukman1013ef52004-07-21 20:09:08 +00003308 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
3309 doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003310 }
3311
3312 std::vector<ValueRecord> Args;
3313 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00003314 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00003315 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00003316 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003317 TM.CalledFunctions.insert(mallocFn);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003318}
3319
3320
3321/// visitFreeInst - Free instructions are code gen'd to call the free libc
3322/// function.
3323///
3324void ISel::visitFreeInst(FreeInst &I) {
3325 std::vector<ValueRecord> Args;
3326 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00003327 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00003328 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(freeFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00003329 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003330 TM.CalledFunctions.insert(freeFn);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003331}
3332
3333/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
3334/// into a machine code representation is a very simple peep-hole fashion. The
3335/// generated code sucks but the implementation is nice and simple.
3336///
3337FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
3338 return new ISel(TM);
3339}