blob: 3d99a0e79b1223931ce298b3c0346c25917572dc [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000443.. _namedtypes:
444
Nico Rieck7157bb72014-01-14 15:22:47 +0000445DLL Storage Classes
446-------------------
447
448All Global Variables, Functions and Aliases can have one of the following
449DLL storage class:
450
451``dllimport``
452 "``dllimport``" causes the compiler to reference a function or variable via
453 a global pointer to a pointer that is set up by the DLL exporting the
454 symbol. On Microsoft Windows targets, the pointer name is formed by
455 combining ``__imp_`` and the function or variable name.
456``dllexport``
457 "``dllexport``" causes the compiler to provide a global pointer to a pointer
458 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
459 Microsoft Windows targets, the pointer name is formed by combining
460 ``__imp_`` and the function or variable name. Since this storage class
461 exists for defining a dll interface, the compiler, assembler and linker know
462 it is externally referenced and must refrain from deleting the symbol.
463
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000464Structure Types
465---------------
Sean Silvab084af42012-12-07 10:36:55 +0000466
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000467LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
468types <t_struct>`. Literal types are uniqued structurally, but identified types
469are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
470to forward declare a type which is not yet available.
471
472An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000473
474.. code-block:: llvm
475
476 %mytype = type { %mytype*, i32 }
477
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000478Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
479literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000480
481.. _globalvars:
482
483Global Variables
484----------------
485
486Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000487instead of run-time.
488
489Global variables definitions must be initialized, may have an explicit section
490to be placed in, and may have an optional explicit alignment specified.
491
492Global variables in other translation units can also be declared, in which
493case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000494
495A variable may be defined as ``thread_local``, which means that it will
496not be shared by threads (each thread will have a separated copy of the
497variable). Not all targets support thread-local variables. Optionally, a
498TLS model may be specified:
499
500``localdynamic``
501 For variables that are only used within the current shared library.
502``initialexec``
503 For variables in modules that will not be loaded dynamically.
504``localexec``
505 For variables defined in the executable and only used within it.
506
507The models correspond to the ELF TLS models; see `ELF Handling For
508Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
509more information on under which circumstances the different models may
510be used. The target may choose a different TLS model if the specified
511model is not supported, or if a better choice of model can be made.
512
Michael Gottesman006039c2013-01-31 05:48:48 +0000513A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000514the contents of the variable will **never** be modified (enabling better
515optimization, allowing the global data to be placed in the read-only
516section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000517initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000518variable.
519
520LLVM explicitly allows *declarations* of global variables to be marked
521constant, even if the final definition of the global is not. This
522capability can be used to enable slightly better optimization of the
523program, but requires the language definition to guarantee that
524optimizations based on the 'constantness' are valid for the translation
525units that do not include the definition.
526
527As SSA values, global variables define pointer values that are in scope
528(i.e. they dominate) all basic blocks in the program. Global variables
529always define a pointer to their "content" type because they describe a
530region of memory, and all memory objects in LLVM are accessed through
531pointers.
532
533Global variables can be marked with ``unnamed_addr`` which indicates
534that the address is not significant, only the content. Constants marked
535like this can be merged with other constants if they have the same
536initializer. Note that a constant with significant address *can* be
537merged with a ``unnamed_addr`` constant, the result being a constant
538whose address is significant.
539
540A global variable may be declared to reside in a target-specific
541numbered address space. For targets that support them, address spaces
542may affect how optimizations are performed and/or what target
543instructions are used to access the variable. The default address space
544is zero. The address space qualifier must precede any other attributes.
545
546LLVM allows an explicit section to be specified for globals. If the
547target supports it, it will emit globals to the section specified.
548
Michael Gottesmane743a302013-02-04 03:22:00 +0000549By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000550variables defined within the module are not modified from their
551initial values before the start of the global initializer. This is
552true even for variables potentially accessible from outside the
553module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000554``@llvm.used`` or dllexported variables. This assumption may be suppressed
555by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000556
Sean Silvab084af42012-12-07 10:36:55 +0000557An explicit alignment may be specified for a global, which must be a
558power of 2. If not present, or if the alignment is set to zero, the
559alignment of the global is set by the target to whatever it feels
560convenient. If an explicit alignment is specified, the global is forced
561to have exactly that alignment. Targets and optimizers are not allowed
562to over-align the global if the global has an assigned section. In this
563case, the extra alignment could be observable: for example, code could
564assume that the globals are densely packed in their section and try to
565iterate over them as an array, alignment padding would break this
566iteration.
567
Nico Rieck7157bb72014-01-14 15:22:47 +0000568Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
569
570Syntax::
571
572 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
573 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
574 <global | constant> <Type>
575 [, section "name"] [, align <Alignment>]
576
Sean Silvab084af42012-12-07 10:36:55 +0000577For example, the following defines a global in a numbered address space
578with an initializer, section, and alignment:
579
580.. code-block:: llvm
581
582 @G = addrspace(5) constant float 1.0, section "foo", align 4
583
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000584The following example just declares a global variable
585
586.. code-block:: llvm
587
588 @G = external global i32
589
Sean Silvab084af42012-12-07 10:36:55 +0000590The following example defines a thread-local global with the
591``initialexec`` TLS model:
592
593.. code-block:: llvm
594
595 @G = thread_local(initialexec) global i32 0, align 4
596
597.. _functionstructure:
598
599Functions
600---------
601
602LLVM function definitions consist of the "``define``" keyword, an
603optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000604style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
605an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000606an optional ``unnamed_addr`` attribute, a return type, an optional
607:ref:`parameter attribute <paramattrs>` for the return type, a function
608name, a (possibly empty) argument list (each with optional :ref:`parameter
609attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
610an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000611collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
612curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000613
614LLVM function declarations consist of the "``declare``" keyword, an
615optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000616style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
617an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000618an optional ``unnamed_addr`` attribute, a return type, an optional
619:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000620name, a possibly empty list of arguments, an optional alignment, an optional
621:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000622
Bill Wendling6822ecb2013-10-27 05:09:12 +0000623A function definition contains a list of basic blocks, forming the CFG (Control
624Flow Graph) for the function. Each basic block may optionally start with a label
625(giving the basic block a symbol table entry), contains a list of instructions,
626and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
627function return). If an explicit label is not provided, a block is assigned an
628implicit numbered label, using the next value from the same counter as used for
629unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
630entry block does not have an explicit label, it will be assigned label "%0",
631then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000632
633The first basic block in a function is special in two ways: it is
634immediately executed on entrance to the function, and it is not allowed
635to have predecessor basic blocks (i.e. there can not be any branches to
636the entry block of a function). Because the block can have no
637predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
638
639LLVM allows an explicit section to be specified for functions. If the
640target supports it, it will emit functions to the section specified.
641
642An explicit alignment may be specified for a function. If not present,
643or if the alignment is set to zero, the alignment of the function is set
644by the target to whatever it feels convenient. If an explicit alignment
645is specified, the function is forced to have at least that much
646alignment. All alignments must be a power of 2.
647
648If the ``unnamed_addr`` attribute is given, the address is know to not
649be significant and two identical functions can be merged.
650
651Syntax::
652
Nico Rieck7157bb72014-01-14 15:22:47 +0000653 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000654 [cconv] [ret attrs]
655 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola84c76ae2014-03-07 04:28:28 +0000656 [unnamed_addr] [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000657 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000658
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000659.. _langref_aliases:
660
Sean Silvab084af42012-12-07 10:36:55 +0000661Aliases
662-------
663
664Aliases act as "second name" for the aliasee value (which can be either
665function, global variable, another alias or bitcast of global value).
Nico Rieck7157bb72014-01-14 15:22:47 +0000666Aliases may have an optional :ref:`linkage type <linkage>`, an optional
667:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
668<dllstorageclass>`.
Sean Silvab084af42012-12-07 10:36:55 +0000669
670Syntax::
671
Nico Rieck7157bb72014-01-14 15:22:47 +0000672 @<Name> = [Visibility] [DLLStorageClass] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000673
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000674The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000675``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000676might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000677alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000678
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000679Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
680the aliasee.
681
682The aliasee must be a definition.
683
Rafael Espindola24a669d2014-03-27 15:26:56 +0000684Aliases are not allowed to point to aliases with linkages that can be
685overridden. Since they are only a second name, the possibility of the
686intermediate alias being overridden cannot be represented in an object file.
687
Sean Silvab084af42012-12-07 10:36:55 +0000688.. _namedmetadatastructure:
689
690Named Metadata
691--------------
692
693Named metadata is a collection of metadata. :ref:`Metadata
694nodes <metadata>` (but not metadata strings) are the only valid
695operands for a named metadata.
696
697Syntax::
698
699 ; Some unnamed metadata nodes, which are referenced by the named metadata.
700 !0 = metadata !{metadata !"zero"}
701 !1 = metadata !{metadata !"one"}
702 !2 = metadata !{metadata !"two"}
703 ; A named metadata.
704 !name = !{!0, !1, !2}
705
706.. _paramattrs:
707
708Parameter Attributes
709--------------------
710
711The return type and each parameter of a function type may have a set of
712*parameter attributes* associated with them. Parameter attributes are
713used to communicate additional information about the result or
714parameters of a function. Parameter attributes are considered to be part
715of the function, not of the function type, so functions with different
716parameter attributes can have the same function type.
717
718Parameter attributes are simple keywords that follow the type specified.
719If multiple parameter attributes are needed, they are space separated.
720For example:
721
722.. code-block:: llvm
723
724 declare i32 @printf(i8* noalias nocapture, ...)
725 declare i32 @atoi(i8 zeroext)
726 declare signext i8 @returns_signed_char()
727
728Note that any attributes for the function result (``nounwind``,
729``readonly``) come immediately after the argument list.
730
731Currently, only the following parameter attributes are defined:
732
733``zeroext``
734 This indicates to the code generator that the parameter or return
735 value should be zero-extended to the extent required by the target's
736 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
737 the caller (for a parameter) or the callee (for a return value).
738``signext``
739 This indicates to the code generator that the parameter or return
740 value should be sign-extended to the extent required by the target's
741 ABI (which is usually 32-bits) by the caller (for a parameter) or
742 the callee (for a return value).
743``inreg``
744 This indicates that this parameter or return value should be treated
745 in a special target-dependent fashion during while emitting code for
746 a function call or return (usually, by putting it in a register as
747 opposed to memory, though some targets use it to distinguish between
748 two different kinds of registers). Use of this attribute is
749 target-specific.
750``byval``
751 This indicates that the pointer parameter should really be passed by
752 value to the function. The attribute implies that a hidden copy of
753 the pointee is made between the caller and the callee, so the callee
754 is unable to modify the value in the caller. This attribute is only
755 valid on LLVM pointer arguments. It is generally used to pass
756 structs and arrays by value, but is also valid on pointers to
757 scalars. The copy is considered to belong to the caller not the
758 callee (for example, ``readonly`` functions should not write to
759 ``byval`` parameters). This is not a valid attribute for return
760 values.
761
762 The byval attribute also supports specifying an alignment with the
763 align attribute. It indicates the alignment of the stack slot to
764 form and the known alignment of the pointer specified to the call
765 site. If the alignment is not specified, then the code generator
766 makes a target-specific assumption.
767
Reid Klecknera534a382013-12-19 02:14:12 +0000768.. _attr_inalloca:
769
770``inalloca``
771
Reid Kleckner60d3a832014-01-16 22:59:24 +0000772 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000773 address of outgoing stack arguments. An ``inalloca`` argument must
774 be a pointer to stack memory produced by an ``alloca`` instruction.
775 The alloca, or argument allocation, must also be tagged with the
776 inalloca keyword. Only the past argument may have the ``inalloca``
777 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000778
Reid Kleckner436c42e2014-01-17 23:58:17 +0000779 An argument allocation may be used by a call at most once because
780 the call may deallocate it. The ``inalloca`` attribute cannot be
781 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000782 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
783 ``inalloca`` attribute also disables LLVM's implicit lowering of
784 large aggregate return values, which means that frontend authors
785 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000786
Reid Kleckner60d3a832014-01-16 22:59:24 +0000787 When the call site is reached, the argument allocation must have
788 been the most recent stack allocation that is still live, or the
789 results are undefined. It is possible to allocate additional stack
790 space after an argument allocation and before its call site, but it
791 must be cleared off with :ref:`llvm.stackrestore
792 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000793
794 See :doc:`InAlloca` for more information on how to use this
795 attribute.
796
Sean Silvab084af42012-12-07 10:36:55 +0000797``sret``
798 This indicates that the pointer parameter specifies the address of a
799 structure that is the return value of the function in the source
800 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000801 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000802 not to trap and to be properly aligned. This may only be applied to
803 the first parameter. This is not a valid attribute for return
804 values.
Sean Silva1703e702014-04-08 21:06:22 +0000805
806.. _noalias:
807
Sean Silvab084af42012-12-07 10:36:55 +0000808``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000809 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000810 the argument or return value do not alias pointer values which are
811 not *based* on it, ignoring certain "irrelevant" dependencies. For a
812 call to the parent function, dependencies between memory references
813 from before or after the call and from those during the call are
814 "irrelevant" to the ``noalias`` keyword for the arguments and return
815 value used in that call. The caller shares the responsibility with
816 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000817 details, please see the discussion of the NoAlias response in :ref:`alias
818 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000819
820 Note that this definition of ``noalias`` is intentionally similar
821 to the definition of ``restrict`` in C99 for function arguments,
822 though it is slightly weaker.
823
824 For function return values, C99's ``restrict`` is not meaningful,
825 while LLVM's ``noalias`` is.
826``nocapture``
827 This indicates that the callee does not make any copies of the
828 pointer that outlive the callee itself. This is not a valid
829 attribute for return values.
830
831.. _nest:
832
833``nest``
834 This indicates that the pointer parameter can be excised using the
835 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000836 attribute for return values and can only be applied to one parameter.
837
838``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000839 This indicates that the function always returns the argument as its return
840 value. This is an optimization hint to the code generator when generating
841 the caller, allowing tail call optimization and omission of register saves
842 and restores in some cases; it is not checked or enforced when generating
843 the callee. The parameter and the function return type must be valid
844 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
845 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000846
847.. _gc:
848
849Garbage Collector Names
850-----------------------
851
852Each function may specify a garbage collector name, which is simply a
853string:
854
855.. code-block:: llvm
856
857 define void @f() gc "name" { ... }
858
859The compiler declares the supported values of *name*. Specifying a
860collector which will cause the compiler to alter its output in order to
861support the named garbage collection algorithm.
862
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000863.. _prefixdata:
864
865Prefix Data
866-----------
867
868Prefix data is data associated with a function which the code generator
869will emit immediately before the function body. The purpose of this feature
870is to allow frontends to associate language-specific runtime metadata with
871specific functions and make it available through the function pointer while
872still allowing the function pointer to be called. To access the data for a
873given function, a program may bitcast the function pointer to a pointer to
874the constant's type. This implies that the IR symbol points to the start
875of the prefix data.
876
877To maintain the semantics of ordinary function calls, the prefix data must
878have a particular format. Specifically, it must begin with a sequence of
879bytes which decode to a sequence of machine instructions, valid for the
880module's target, which transfer control to the point immediately succeeding
881the prefix data, without performing any other visible action. This allows
882the inliner and other passes to reason about the semantics of the function
883definition without needing to reason about the prefix data. Obviously this
884makes the format of the prefix data highly target dependent.
885
Peter Collingbourne213358a2013-09-23 20:14:21 +0000886Prefix data is laid out as if it were an initializer for a global variable
887of the prefix data's type. No padding is automatically placed between the
888prefix data and the function body. If padding is required, it must be part
889of the prefix data.
890
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000891A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
892which encodes the ``nop`` instruction:
893
894.. code-block:: llvm
895
896 define void @f() prefix i8 144 { ... }
897
898Generally prefix data can be formed by encoding a relative branch instruction
899which skips the metadata, as in this example of valid prefix data for the
900x86_64 architecture, where the first two bytes encode ``jmp .+10``:
901
902.. code-block:: llvm
903
904 %0 = type <{ i8, i8, i8* }>
905
906 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
907
908A function may have prefix data but no body. This has similar semantics
909to the ``available_externally`` linkage in that the data may be used by the
910optimizers but will not be emitted in the object file.
911
Bill Wendling63b88192013-02-06 06:52:58 +0000912.. _attrgrp:
913
914Attribute Groups
915----------------
916
917Attribute groups are groups of attributes that are referenced by objects within
918the IR. They are important for keeping ``.ll`` files readable, because a lot of
919functions will use the same set of attributes. In the degenerative case of a
920``.ll`` file that corresponds to a single ``.c`` file, the single attribute
921group will capture the important command line flags used to build that file.
922
923An attribute group is a module-level object. To use an attribute group, an
924object references the attribute group's ID (e.g. ``#37``). An object may refer
925to more than one attribute group. In that situation, the attributes from the
926different groups are merged.
927
928Here is an example of attribute groups for a function that should always be
929inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
930
931.. code-block:: llvm
932
933 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000934 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000935
936 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000937 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000938
939 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
940 define void @f() #0 #1 { ... }
941
Sean Silvab084af42012-12-07 10:36:55 +0000942.. _fnattrs:
943
944Function Attributes
945-------------------
946
947Function attributes are set to communicate additional information about
948a function. Function attributes are considered to be part of the
949function, not of the function type, so functions with different function
950attributes can have the same function type.
951
952Function attributes are simple keywords that follow the type specified.
953If multiple attributes are needed, they are space separated. For
954example:
955
956.. code-block:: llvm
957
958 define void @f() noinline { ... }
959 define void @f() alwaysinline { ... }
960 define void @f() alwaysinline optsize { ... }
961 define void @f() optsize { ... }
962
Sean Silvab084af42012-12-07 10:36:55 +0000963``alignstack(<n>)``
964 This attribute indicates that, when emitting the prologue and
965 epilogue, the backend should forcibly align the stack pointer.
966 Specify the desired alignment, which must be a power of two, in
967 parentheses.
968``alwaysinline``
969 This attribute indicates that the inliner should attempt to inline
970 this function into callers whenever possible, ignoring any active
971 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000972``builtin``
973 This indicates that the callee function at a call site should be
974 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000975 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000976 direct calls to functions which are declared with the ``nobuiltin``
977 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000978``cold``
979 This attribute indicates that this function is rarely called. When
980 computing edge weights, basic blocks post-dominated by a cold
981 function call are also considered to be cold; and, thus, given low
982 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000983``inlinehint``
984 This attribute indicates that the source code contained a hint that
985 inlining this function is desirable (such as the "inline" keyword in
986 C/C++). It is just a hint; it imposes no requirements on the
987 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000988``minsize``
989 This attribute suggests that optimization passes and code generator
990 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000991 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000992 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +0000993``naked``
994 This attribute disables prologue / epilogue emission for the
995 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +0000996``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +0000997 This indicates that the callee function at a call site is not recognized as
998 a built-in function. LLVM will retain the original call and not replace it
999 with equivalent code based on the semantics of the built-in function, unless
1000 the call site uses the ``builtin`` attribute. This is valid at call sites
1001 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001002``noduplicate``
1003 This attribute indicates that calls to the function cannot be
1004 duplicated. A call to a ``noduplicate`` function may be moved
1005 within its parent function, but may not be duplicated within
1006 its parent function.
1007
1008 A function containing a ``noduplicate`` call may still
1009 be an inlining candidate, provided that the call is not
1010 duplicated by inlining. That implies that the function has
1011 internal linkage and only has one call site, so the original
1012 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001013``noimplicitfloat``
1014 This attributes disables implicit floating point instructions.
1015``noinline``
1016 This attribute indicates that the inliner should never inline this
1017 function in any situation. This attribute may not be used together
1018 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001019``nonlazybind``
1020 This attribute suppresses lazy symbol binding for the function. This
1021 may make calls to the function faster, at the cost of extra program
1022 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001023``noredzone``
1024 This attribute indicates that the code generator should not use a
1025 red zone, even if the target-specific ABI normally permits it.
1026``noreturn``
1027 This function attribute indicates that the function never returns
1028 normally. This produces undefined behavior at runtime if the
1029 function ever does dynamically return.
1030``nounwind``
1031 This function attribute indicates that the function never returns
1032 with an unwind or exceptional control flow. If the function does
1033 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001034``optnone``
1035 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001036 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001037 exception of interprocedural optimization passes.
1038 This attribute cannot be used together with the ``alwaysinline``
1039 attribute; this attribute is also incompatible
1040 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001041
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001042 This attribute requires the ``noinline`` attribute to be specified on
1043 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001044 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001045 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001046``optsize``
1047 This attribute suggests that optimization passes and code generator
1048 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001049 and otherwise do optimizations specifically to reduce code size as
1050 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001051``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001052 On a function, this attribute indicates that the function computes its
1053 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001054 without dereferencing any pointer arguments or otherwise accessing
1055 any mutable state (e.g. memory, control registers, etc) visible to
1056 caller functions. It does not write through any pointer arguments
1057 (including ``byval`` arguments) and never changes any state visible
1058 to callers. This means that it cannot unwind exceptions by calling
1059 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001060
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001061 On an argument, this attribute indicates that the function does not
1062 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001063 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001064``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001065 On a function, this attribute indicates that the function does not write
1066 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001067 modify any state (e.g. memory, control registers, etc) visible to
1068 caller functions. It may dereference pointer arguments and read
1069 state that may be set in the caller. A readonly function always
1070 returns the same value (or unwinds an exception identically) when
1071 called with the same set of arguments and global state. It cannot
1072 unwind an exception by calling the ``C++`` exception throwing
1073 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001074
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001075 On an argument, this attribute indicates that the function does not write
1076 through this pointer argument, even though it may write to the memory that
1077 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001078``returns_twice``
1079 This attribute indicates that this function can return twice. The C
1080 ``setjmp`` is an example of such a function. The compiler disables
1081 some optimizations (like tail calls) in the caller of these
1082 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001083``sanitize_address``
1084 This attribute indicates that AddressSanitizer checks
1085 (dynamic address safety analysis) are enabled for this function.
1086``sanitize_memory``
1087 This attribute indicates that MemorySanitizer checks (dynamic detection
1088 of accesses to uninitialized memory) are enabled for this function.
1089``sanitize_thread``
1090 This attribute indicates that ThreadSanitizer checks
1091 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001092``ssp``
1093 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001094 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001095 placed on the stack before the local variables that's checked upon
1096 return from the function to see if it has been overwritten. A
1097 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001098 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001099
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001100 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1101 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1102 - Calls to alloca() with variable sizes or constant sizes greater than
1103 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001104
Josh Magee24c7f062014-02-01 01:36:16 +00001105 Variables that are identified as requiring a protector will be arranged
1106 on the stack such that they are adjacent to the stack protector guard.
1107
Sean Silvab084af42012-12-07 10:36:55 +00001108 If a function that has an ``ssp`` attribute is inlined into a
1109 function that doesn't have an ``ssp`` attribute, then the resulting
1110 function will have an ``ssp`` attribute.
1111``sspreq``
1112 This attribute indicates that the function should *always* emit a
1113 stack smashing protector. This overrides the ``ssp`` function
1114 attribute.
1115
Josh Magee24c7f062014-02-01 01:36:16 +00001116 Variables that are identified as requiring a protector will be arranged
1117 on the stack such that they are adjacent to the stack protector guard.
1118 The specific layout rules are:
1119
1120 #. Large arrays and structures containing large arrays
1121 (``>= ssp-buffer-size``) are closest to the stack protector.
1122 #. Small arrays and structures containing small arrays
1123 (``< ssp-buffer-size``) are 2nd closest to the protector.
1124 #. Variables that have had their address taken are 3rd closest to the
1125 protector.
1126
Sean Silvab084af42012-12-07 10:36:55 +00001127 If a function that has an ``sspreq`` attribute is inlined into a
1128 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001129 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1130 an ``sspreq`` attribute.
1131``sspstrong``
1132 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001133 protector. This attribute causes a strong heuristic to be used when
1134 determining if a function needs stack protectors. The strong heuristic
1135 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001136
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001137 - Arrays of any size and type
1138 - Aggregates containing an array of any size and type.
1139 - Calls to alloca().
1140 - Local variables that have had their address taken.
1141
Josh Magee24c7f062014-02-01 01:36:16 +00001142 Variables that are identified as requiring a protector will be arranged
1143 on the stack such that they are adjacent to the stack protector guard.
1144 The specific layout rules are:
1145
1146 #. Large arrays and structures containing large arrays
1147 (``>= ssp-buffer-size``) are closest to the stack protector.
1148 #. Small arrays and structures containing small arrays
1149 (``< ssp-buffer-size``) are 2nd closest to the protector.
1150 #. Variables that have had their address taken are 3rd closest to the
1151 protector.
1152
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001153 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001154
1155 If a function that has an ``sspstrong`` attribute is inlined into a
1156 function that doesn't have an ``sspstrong`` attribute, then the
1157 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001158``uwtable``
1159 This attribute indicates that the ABI being targeted requires that
1160 an unwind table entry be produce for this function even if we can
1161 show that no exceptions passes by it. This is normally the case for
1162 the ELF x86-64 abi, but it can be disabled for some compilation
1163 units.
Sean Silvab084af42012-12-07 10:36:55 +00001164
1165.. _moduleasm:
1166
1167Module-Level Inline Assembly
1168----------------------------
1169
1170Modules may contain "module-level inline asm" blocks, which corresponds
1171to the GCC "file scope inline asm" blocks. These blocks are internally
1172concatenated by LLVM and treated as a single unit, but may be separated
1173in the ``.ll`` file if desired. The syntax is very simple:
1174
1175.. code-block:: llvm
1176
1177 module asm "inline asm code goes here"
1178 module asm "more can go here"
1179
1180The strings can contain any character by escaping non-printable
1181characters. The escape sequence used is simply "\\xx" where "xx" is the
1182two digit hex code for the number.
1183
1184The inline asm code is simply printed to the machine code .s file when
1185assembly code is generated.
1186
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001187.. _langref_datalayout:
1188
Sean Silvab084af42012-12-07 10:36:55 +00001189Data Layout
1190-----------
1191
1192A module may specify a target specific data layout string that specifies
1193how data is to be laid out in memory. The syntax for the data layout is
1194simply:
1195
1196.. code-block:: llvm
1197
1198 target datalayout = "layout specification"
1199
1200The *layout specification* consists of a list of specifications
1201separated by the minus sign character ('-'). Each specification starts
1202with a letter and may include other information after the letter to
1203define some aspect of the data layout. The specifications accepted are
1204as follows:
1205
1206``E``
1207 Specifies that the target lays out data in big-endian form. That is,
1208 the bits with the most significance have the lowest address
1209 location.
1210``e``
1211 Specifies that the target lays out data in little-endian form. That
1212 is, the bits with the least significance have the lowest address
1213 location.
1214``S<size>``
1215 Specifies the natural alignment of the stack in bits. Alignment
1216 promotion of stack variables is limited to the natural stack
1217 alignment to avoid dynamic stack realignment. The stack alignment
1218 must be a multiple of 8-bits. If omitted, the natural stack
1219 alignment defaults to "unspecified", which does not prevent any
1220 alignment promotions.
1221``p[n]:<size>:<abi>:<pref>``
1222 This specifies the *size* of a pointer and its ``<abi>`` and
1223 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001224 bits. The address space, ``n`` is optional, and if not specified,
1225 denotes the default address space 0. The value of ``n`` must be
1226 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001227``i<size>:<abi>:<pref>``
1228 This specifies the alignment for an integer type of a given bit
1229 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1230``v<size>:<abi>:<pref>``
1231 This specifies the alignment for a vector type of a given bit
1232 ``<size>``.
1233``f<size>:<abi>:<pref>``
1234 This specifies the alignment for a floating point type of a given bit
1235 ``<size>``. Only values of ``<size>`` that are supported by the target
1236 will work. 32 (float) and 64 (double) are supported on all targets; 80
1237 or 128 (different flavors of long double) are also supported on some
1238 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001239``a:<abi>:<pref>``
1240 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001241``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001242 If present, specifies that llvm names are mangled in the output. The
1243 options are
1244
1245 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1246 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1247 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1248 symbols get a ``_`` prefix.
1249 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1250 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001251``n<size1>:<size2>:<size3>...``
1252 This specifies a set of native integer widths for the target CPU in
1253 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1254 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1255 this set are considered to support most general arithmetic operations
1256 efficiently.
1257
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001258On every specification that takes a ``<abi>:<pref>``, specifying the
1259``<pref>`` alignment is optional. If omitted, the preceding ``:``
1260should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1261
Sean Silvab084af42012-12-07 10:36:55 +00001262When constructing the data layout for a given target, LLVM starts with a
1263default set of specifications which are then (possibly) overridden by
1264the specifications in the ``datalayout`` keyword. The default
1265specifications are given in this list:
1266
1267- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001268- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1269- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1270 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001271- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001272- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1273- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1274- ``i16:16:16`` - i16 is 16-bit aligned
1275- ``i32:32:32`` - i32 is 32-bit aligned
1276- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1277 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001278- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001279- ``f32:32:32`` - float is 32-bit aligned
1280- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001281- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001282- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1283- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001284- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001285
1286When LLVM is determining the alignment for a given type, it uses the
1287following rules:
1288
1289#. If the type sought is an exact match for one of the specifications,
1290 that specification is used.
1291#. If no match is found, and the type sought is an integer type, then
1292 the smallest integer type that is larger than the bitwidth of the
1293 sought type is used. If none of the specifications are larger than
1294 the bitwidth then the largest integer type is used. For example,
1295 given the default specifications above, the i7 type will use the
1296 alignment of i8 (next largest) while both i65 and i256 will use the
1297 alignment of i64 (largest specified).
1298#. If no match is found, and the type sought is a vector type, then the
1299 largest vector type that is smaller than the sought vector type will
1300 be used as a fall back. This happens because <128 x double> can be
1301 implemented in terms of 64 <2 x double>, for example.
1302
1303The function of the data layout string may not be what you expect.
1304Notably, this is not a specification from the frontend of what alignment
1305the code generator should use.
1306
1307Instead, if specified, the target data layout is required to match what
1308the ultimate *code generator* expects. This string is used by the
1309mid-level optimizers to improve code, and this only works if it matches
1310what the ultimate code generator uses. If you would like to generate IR
1311that does not embed this target-specific detail into the IR, then you
1312don't have to specify the string. This will disable some optimizations
1313that require precise layout information, but this also prevents those
1314optimizations from introducing target specificity into the IR.
1315
Bill Wendling5cc90842013-10-18 23:41:25 +00001316.. _langref_triple:
1317
1318Target Triple
1319-------------
1320
1321A module may specify a target triple string that describes the target
1322host. The syntax for the target triple is simply:
1323
1324.. code-block:: llvm
1325
1326 target triple = "x86_64-apple-macosx10.7.0"
1327
1328The *target triple* string consists of a series of identifiers delimited
1329by the minus sign character ('-'). The canonical forms are:
1330
1331::
1332
1333 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1334 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1335
1336This information is passed along to the backend so that it generates
1337code for the proper architecture. It's possible to override this on the
1338command line with the ``-mtriple`` command line option.
1339
Sean Silvab084af42012-12-07 10:36:55 +00001340.. _pointeraliasing:
1341
1342Pointer Aliasing Rules
1343----------------------
1344
1345Any memory access must be done through a pointer value associated with
1346an address range of the memory access, otherwise the behavior is
1347undefined. Pointer values are associated with address ranges according
1348to the following rules:
1349
1350- A pointer value is associated with the addresses associated with any
1351 value it is *based* on.
1352- An address of a global variable is associated with the address range
1353 of the variable's storage.
1354- The result value of an allocation instruction is associated with the
1355 address range of the allocated storage.
1356- A null pointer in the default address-space is associated with no
1357 address.
1358- An integer constant other than zero or a pointer value returned from
1359 a function not defined within LLVM may be associated with address
1360 ranges allocated through mechanisms other than those provided by
1361 LLVM. Such ranges shall not overlap with any ranges of addresses
1362 allocated by mechanisms provided by LLVM.
1363
1364A pointer value is *based* on another pointer value according to the
1365following rules:
1366
1367- A pointer value formed from a ``getelementptr`` operation is *based*
1368 on the first operand of the ``getelementptr``.
1369- The result value of a ``bitcast`` is *based* on the operand of the
1370 ``bitcast``.
1371- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1372 values that contribute (directly or indirectly) to the computation of
1373 the pointer's value.
1374- The "*based* on" relationship is transitive.
1375
1376Note that this definition of *"based"* is intentionally similar to the
1377definition of *"based"* in C99, though it is slightly weaker.
1378
1379LLVM IR does not associate types with memory. The result type of a
1380``load`` merely indicates the size and alignment of the memory from
1381which to load, as well as the interpretation of the value. The first
1382operand type of a ``store`` similarly only indicates the size and
1383alignment of the store.
1384
1385Consequently, type-based alias analysis, aka TBAA, aka
1386``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1387:ref:`Metadata <metadata>` may be used to encode additional information
1388which specialized optimization passes may use to implement type-based
1389alias analysis.
1390
1391.. _volatile:
1392
1393Volatile Memory Accesses
1394------------------------
1395
1396Certain memory accesses, such as :ref:`load <i_load>`'s,
1397:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1398marked ``volatile``. The optimizers must not change the number of
1399volatile operations or change their order of execution relative to other
1400volatile operations. The optimizers *may* change the order of volatile
1401operations relative to non-volatile operations. This is not Java's
1402"volatile" and has no cross-thread synchronization behavior.
1403
Andrew Trick89fc5a62013-01-30 21:19:35 +00001404IR-level volatile loads and stores cannot safely be optimized into
1405llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1406flagged volatile. Likewise, the backend should never split or merge
1407target-legal volatile load/store instructions.
1408
Andrew Trick7e6f9282013-01-31 00:49:39 +00001409.. admonition:: Rationale
1410
1411 Platforms may rely on volatile loads and stores of natively supported
1412 data width to be executed as single instruction. For example, in C
1413 this holds for an l-value of volatile primitive type with native
1414 hardware support, but not necessarily for aggregate types. The
1415 frontend upholds these expectations, which are intentionally
1416 unspecified in the IR. The rules above ensure that IR transformation
1417 do not violate the frontend's contract with the language.
1418
Sean Silvab084af42012-12-07 10:36:55 +00001419.. _memmodel:
1420
1421Memory Model for Concurrent Operations
1422--------------------------------------
1423
1424The LLVM IR does not define any way to start parallel threads of
1425execution or to register signal handlers. Nonetheless, there are
1426platform-specific ways to create them, and we define LLVM IR's behavior
1427in their presence. This model is inspired by the C++0x memory model.
1428
1429For a more informal introduction to this model, see the :doc:`Atomics`.
1430
1431We define a *happens-before* partial order as the least partial order
1432that
1433
1434- Is a superset of single-thread program order, and
1435- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1436 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1437 techniques, like pthread locks, thread creation, thread joining,
1438 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1439 Constraints <ordering>`).
1440
1441Note that program order does not introduce *happens-before* edges
1442between a thread and signals executing inside that thread.
1443
1444Every (defined) read operation (load instructions, memcpy, atomic
1445loads/read-modify-writes, etc.) R reads a series of bytes written by
1446(defined) write operations (store instructions, atomic
1447stores/read-modify-writes, memcpy, etc.). For the purposes of this
1448section, initialized globals are considered to have a write of the
1449initializer which is atomic and happens before any other read or write
1450of the memory in question. For each byte of a read R, R\ :sub:`byte`
1451may see any write to the same byte, except:
1452
1453- If write\ :sub:`1` happens before write\ :sub:`2`, and
1454 write\ :sub:`2` happens before R\ :sub:`byte`, then
1455 R\ :sub:`byte` does not see write\ :sub:`1`.
1456- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1457 R\ :sub:`byte` does not see write\ :sub:`3`.
1458
1459Given that definition, R\ :sub:`byte` is defined as follows:
1460
1461- If R is volatile, the result is target-dependent. (Volatile is
1462 supposed to give guarantees which can support ``sig_atomic_t`` in
1463 C/C++, and may be used for accesses to addresses which do not behave
1464 like normal memory. It does not generally provide cross-thread
1465 synchronization.)
1466- Otherwise, if there is no write to the same byte that happens before
1467 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1468- Otherwise, if R\ :sub:`byte` may see exactly one write,
1469 R\ :sub:`byte` returns the value written by that write.
1470- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1471 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1472 Memory Ordering Constraints <ordering>` section for additional
1473 constraints on how the choice is made.
1474- Otherwise R\ :sub:`byte` returns ``undef``.
1475
1476R returns the value composed of the series of bytes it read. This
1477implies that some bytes within the value may be ``undef`` **without**
1478the entire value being ``undef``. Note that this only defines the
1479semantics of the operation; it doesn't mean that targets will emit more
1480than one instruction to read the series of bytes.
1481
1482Note that in cases where none of the atomic intrinsics are used, this
1483model places only one restriction on IR transformations on top of what
1484is required for single-threaded execution: introducing a store to a byte
1485which might not otherwise be stored is not allowed in general.
1486(Specifically, in the case where another thread might write to and read
1487from an address, introducing a store can change a load that may see
1488exactly one write into a load that may see multiple writes.)
1489
1490.. _ordering:
1491
1492Atomic Memory Ordering Constraints
1493----------------------------------
1494
1495Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1496:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1497:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001498ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001499the same address they *synchronize with*. These semantics are borrowed
1500from Java and C++0x, but are somewhat more colloquial. If these
1501descriptions aren't precise enough, check those specs (see spec
1502references in the :doc:`atomics guide <Atomics>`).
1503:ref:`fence <i_fence>` instructions treat these orderings somewhat
1504differently since they don't take an address. See that instruction's
1505documentation for details.
1506
1507For a simpler introduction to the ordering constraints, see the
1508:doc:`Atomics`.
1509
1510``unordered``
1511 The set of values that can be read is governed by the happens-before
1512 partial order. A value cannot be read unless some operation wrote
1513 it. This is intended to provide a guarantee strong enough to model
1514 Java's non-volatile shared variables. This ordering cannot be
1515 specified for read-modify-write operations; it is not strong enough
1516 to make them atomic in any interesting way.
1517``monotonic``
1518 In addition to the guarantees of ``unordered``, there is a single
1519 total order for modifications by ``monotonic`` operations on each
1520 address. All modification orders must be compatible with the
1521 happens-before order. There is no guarantee that the modification
1522 orders can be combined to a global total order for the whole program
1523 (and this often will not be possible). The read in an atomic
1524 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1525 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1526 order immediately before the value it writes. If one atomic read
1527 happens before another atomic read of the same address, the later
1528 read must see the same value or a later value in the address's
1529 modification order. This disallows reordering of ``monotonic`` (or
1530 stronger) operations on the same address. If an address is written
1531 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1532 read that address repeatedly, the other threads must eventually see
1533 the write. This corresponds to the C++0x/C1x
1534 ``memory_order_relaxed``.
1535``acquire``
1536 In addition to the guarantees of ``monotonic``, a
1537 *synchronizes-with* edge may be formed with a ``release`` operation.
1538 This is intended to model C++'s ``memory_order_acquire``.
1539``release``
1540 In addition to the guarantees of ``monotonic``, if this operation
1541 writes a value which is subsequently read by an ``acquire``
1542 operation, it *synchronizes-with* that operation. (This isn't a
1543 complete description; see the C++0x definition of a release
1544 sequence.) This corresponds to the C++0x/C1x
1545 ``memory_order_release``.
1546``acq_rel`` (acquire+release)
1547 Acts as both an ``acquire`` and ``release`` operation on its
1548 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1549``seq_cst`` (sequentially consistent)
1550 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1551 operation which only reads, ``release`` for an operation which only
1552 writes), there is a global total order on all
1553 sequentially-consistent operations on all addresses, which is
1554 consistent with the *happens-before* partial order and with the
1555 modification orders of all the affected addresses. Each
1556 sequentially-consistent read sees the last preceding write to the
1557 same address in this global order. This corresponds to the C++0x/C1x
1558 ``memory_order_seq_cst`` and Java volatile.
1559
1560.. _singlethread:
1561
1562If an atomic operation is marked ``singlethread``, it only *synchronizes
1563with* or participates in modification and seq\_cst total orderings with
1564other operations running in the same thread (for example, in signal
1565handlers).
1566
1567.. _fastmath:
1568
1569Fast-Math Flags
1570---------------
1571
1572LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1573:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1574:ref:`frem <i_frem>`) have the following flags that can set to enable
1575otherwise unsafe floating point operations
1576
1577``nnan``
1578 No NaNs - Allow optimizations to assume the arguments and result are not
1579 NaN. Such optimizations are required to retain defined behavior over
1580 NaNs, but the value of the result is undefined.
1581
1582``ninf``
1583 No Infs - Allow optimizations to assume the arguments and result are not
1584 +/-Inf. Such optimizations are required to retain defined behavior over
1585 +/-Inf, but the value of the result is undefined.
1586
1587``nsz``
1588 No Signed Zeros - Allow optimizations to treat the sign of a zero
1589 argument or result as insignificant.
1590
1591``arcp``
1592 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1593 argument rather than perform division.
1594
1595``fast``
1596 Fast - Allow algebraically equivalent transformations that may
1597 dramatically change results in floating point (e.g. reassociate). This
1598 flag implies all the others.
1599
1600.. _typesystem:
1601
1602Type System
1603===========
1604
1605The LLVM type system is one of the most important features of the
1606intermediate representation. Being typed enables a number of
1607optimizations to be performed on the intermediate representation
1608directly, without having to do extra analyses on the side before the
1609transformation. A strong type system makes it easier to read the
1610generated code and enables novel analyses and transformations that are
1611not feasible to perform on normal three address code representations.
1612
Rafael Espindola08013342013-12-07 19:34:20 +00001613.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001614
Rafael Espindola08013342013-12-07 19:34:20 +00001615Void Type
1616---------
Sean Silvab084af42012-12-07 10:36:55 +00001617
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001618:Overview:
1619
Rafael Espindola08013342013-12-07 19:34:20 +00001620
1621The void type does not represent any value and has no size.
1622
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001623:Syntax:
1624
Rafael Espindola08013342013-12-07 19:34:20 +00001625
1626::
1627
1628 void
Sean Silvab084af42012-12-07 10:36:55 +00001629
1630
Rafael Espindola08013342013-12-07 19:34:20 +00001631.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001632
Rafael Espindola08013342013-12-07 19:34:20 +00001633Function Type
1634-------------
Sean Silvab084af42012-12-07 10:36:55 +00001635
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001636:Overview:
1637
Sean Silvab084af42012-12-07 10:36:55 +00001638
Rafael Espindola08013342013-12-07 19:34:20 +00001639The function type can be thought of as a function signature. It consists of a
1640return type and a list of formal parameter types. The return type of a function
1641type is a void type or first class type --- except for :ref:`label <t_label>`
1642and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001643
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001644:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001645
Rafael Espindola08013342013-12-07 19:34:20 +00001646::
Sean Silvab084af42012-12-07 10:36:55 +00001647
Rafael Espindola08013342013-12-07 19:34:20 +00001648 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001649
Rafael Espindola08013342013-12-07 19:34:20 +00001650...where '``<parameter list>``' is a comma-separated list of type
1651specifiers. Optionally, the parameter list may include a type ``...``, which
1652indicates that the function takes a variable number of arguments. Variable
1653argument functions can access their arguments with the :ref:`variable argument
1654handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1655except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001656
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001657:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001658
Rafael Espindola08013342013-12-07 19:34:20 +00001659+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1660| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1661+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1662| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1663+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1664| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1665+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1666| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1667+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1668
1669.. _t_firstclass:
1670
1671First Class Types
1672-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001673
1674The :ref:`first class <t_firstclass>` types are perhaps the most important.
1675Values of these types are the only ones which can be produced by
1676instructions.
1677
Rafael Espindola08013342013-12-07 19:34:20 +00001678.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001679
Rafael Espindola08013342013-12-07 19:34:20 +00001680Single Value Types
1681^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001682
Rafael Espindola08013342013-12-07 19:34:20 +00001683These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001684
1685.. _t_integer:
1686
1687Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001688""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001689
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001690:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001691
1692The integer type is a very simple type that simply specifies an
1693arbitrary bit width for the integer type desired. Any bit width from 1
1694bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1695
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001696:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001697
1698::
1699
1700 iN
1701
1702The number of bits the integer will occupy is specified by the ``N``
1703value.
1704
1705Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001706*********
Sean Silvab084af42012-12-07 10:36:55 +00001707
1708+----------------+------------------------------------------------+
1709| ``i1`` | a single-bit integer. |
1710+----------------+------------------------------------------------+
1711| ``i32`` | a 32-bit integer. |
1712+----------------+------------------------------------------------+
1713| ``i1942652`` | a really big integer of over 1 million bits. |
1714+----------------+------------------------------------------------+
1715
1716.. _t_floating:
1717
1718Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001719""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001720
1721.. list-table::
1722 :header-rows: 1
1723
1724 * - Type
1725 - Description
1726
1727 * - ``half``
1728 - 16-bit floating point value
1729
1730 * - ``float``
1731 - 32-bit floating point value
1732
1733 * - ``double``
1734 - 64-bit floating point value
1735
1736 * - ``fp128``
1737 - 128-bit floating point value (112-bit mantissa)
1738
1739 * - ``x86_fp80``
1740 - 80-bit floating point value (X87)
1741
1742 * - ``ppc_fp128``
1743 - 128-bit floating point value (two 64-bits)
1744
Reid Kleckner9a16d082014-03-05 02:41:37 +00001745X86_mmx Type
1746""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001747
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001748:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001749
Reid Kleckner9a16d082014-03-05 02:41:37 +00001750The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001751machine. The operations allowed on it are quite limited: parameters and
1752return values, load and store, and bitcast. User-specified MMX
1753instructions are represented as intrinsic or asm calls with arguments
1754and/or results of this type. There are no arrays, vectors or constants
1755of this type.
1756
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001757:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001758
1759::
1760
Reid Kleckner9a16d082014-03-05 02:41:37 +00001761 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001762
Sean Silvab084af42012-12-07 10:36:55 +00001763
Rafael Espindola08013342013-12-07 19:34:20 +00001764.. _t_pointer:
1765
1766Pointer Type
1767""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001768
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001769:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001770
Rafael Espindola08013342013-12-07 19:34:20 +00001771The pointer type is used to specify memory locations. Pointers are
1772commonly used to reference objects in memory.
1773
1774Pointer types may have an optional address space attribute defining the
1775numbered address space where the pointed-to object resides. The default
1776address space is number zero. The semantics of non-zero address spaces
1777are target-specific.
1778
1779Note that LLVM does not permit pointers to void (``void*``) nor does it
1780permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001781
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001782:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001783
1784::
1785
Rafael Espindola08013342013-12-07 19:34:20 +00001786 <type> *
1787
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001788:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001789
1790+-------------------------+--------------------------------------------------------------------------------------------------------------+
1791| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1792+-------------------------+--------------------------------------------------------------------------------------------------------------+
1793| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1794+-------------------------+--------------------------------------------------------------------------------------------------------------+
1795| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1796+-------------------------+--------------------------------------------------------------------------------------------------------------+
1797
1798.. _t_vector:
1799
1800Vector Type
1801"""""""""""
1802
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001803:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001804
1805A vector type is a simple derived type that represents a vector of
1806elements. Vector types are used when multiple primitive data are
1807operated in parallel using a single instruction (SIMD). A vector type
1808requires a size (number of elements) and an underlying primitive data
1809type. Vector types are considered :ref:`first class <t_firstclass>`.
1810
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001811:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001812
1813::
1814
1815 < <# elements> x <elementtype> >
1816
1817The number of elements is a constant integer value larger than 0;
1818elementtype may be any integer or floating point type, or a pointer to
1819these types. Vectors of size zero are not allowed.
1820
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001821:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001822
1823+-------------------+--------------------------------------------------+
1824| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1825+-------------------+--------------------------------------------------+
1826| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1827+-------------------+--------------------------------------------------+
1828| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1829+-------------------+--------------------------------------------------+
1830| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1831+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001832
1833.. _t_label:
1834
1835Label Type
1836^^^^^^^^^^
1837
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001838:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001839
1840The label type represents code labels.
1841
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001842:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001843
1844::
1845
1846 label
1847
1848.. _t_metadata:
1849
1850Metadata Type
1851^^^^^^^^^^^^^
1852
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001853:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001854
1855The metadata type represents embedded metadata. No derived types may be
1856created from metadata except for :ref:`function <t_function>` arguments.
1857
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001858:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001859
1860::
1861
1862 metadata
1863
Sean Silvab084af42012-12-07 10:36:55 +00001864.. _t_aggregate:
1865
1866Aggregate Types
1867^^^^^^^^^^^^^^^
1868
1869Aggregate Types are a subset of derived types that can contain multiple
1870member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1871aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1872aggregate types.
1873
1874.. _t_array:
1875
1876Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001877""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001878
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001879:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001880
1881The array type is a very simple derived type that arranges elements
1882sequentially in memory. The array type requires a size (number of
1883elements) and an underlying data type.
1884
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001885:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001886
1887::
1888
1889 [<# elements> x <elementtype>]
1890
1891The number of elements is a constant integer value; ``elementtype`` may
1892be any type with a size.
1893
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001894:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001895
1896+------------------+--------------------------------------+
1897| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1898+------------------+--------------------------------------+
1899| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1900+------------------+--------------------------------------+
1901| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1902+------------------+--------------------------------------+
1903
1904Here are some examples of multidimensional arrays:
1905
1906+-----------------------------+----------------------------------------------------------+
1907| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1908+-----------------------------+----------------------------------------------------------+
1909| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1910+-----------------------------+----------------------------------------------------------+
1911| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1912+-----------------------------+----------------------------------------------------------+
1913
1914There is no restriction on indexing beyond the end of the array implied
1915by a static type (though there are restrictions on indexing beyond the
1916bounds of an allocated object in some cases). This means that
1917single-dimension 'variable sized array' addressing can be implemented in
1918LLVM with a zero length array type. An implementation of 'pascal style
1919arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1920example.
1921
Sean Silvab084af42012-12-07 10:36:55 +00001922.. _t_struct:
1923
1924Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001925""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001926
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001927:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001928
1929The structure type is used to represent a collection of data members
1930together in memory. The elements of a structure may be any type that has
1931a size.
1932
1933Structures in memory are accessed using '``load``' and '``store``' by
1934getting a pointer to a field with the '``getelementptr``' instruction.
1935Structures in registers are accessed using the '``extractvalue``' and
1936'``insertvalue``' instructions.
1937
1938Structures may optionally be "packed" structures, which indicate that
1939the alignment of the struct is one byte, and that there is no padding
1940between the elements. In non-packed structs, padding between field types
1941is inserted as defined by the DataLayout string in the module, which is
1942required to match what the underlying code generator expects.
1943
1944Structures can either be "literal" or "identified". A literal structure
1945is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1946identified types are always defined at the top level with a name.
1947Literal types are uniqued by their contents and can never be recursive
1948or opaque since there is no way to write one. Identified types can be
1949recursive, can be opaqued, and are never uniqued.
1950
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001951:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001952
1953::
1954
1955 %T1 = type { <type list> } ; Identified normal struct type
1956 %T2 = type <{ <type list> }> ; Identified packed struct type
1957
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001958:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001959
1960+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1961| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1962+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001963| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001964+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1965| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1966+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1967
1968.. _t_opaque:
1969
1970Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001971""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001972
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001973:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001974
1975Opaque structure types are used to represent named structure types that
1976do not have a body specified. This corresponds (for example) to the C
1977notion of a forward declared structure.
1978
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001979:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001980
1981::
1982
1983 %X = type opaque
1984 %52 = type opaque
1985
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001986:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001987
1988+--------------+-------------------+
1989| ``opaque`` | An opaque type. |
1990+--------------+-------------------+
1991
Sean Silva1703e702014-04-08 21:06:22 +00001992.. _constants:
1993
Sean Silvab084af42012-12-07 10:36:55 +00001994Constants
1995=========
1996
1997LLVM has several different basic types of constants. This section
1998describes them all and their syntax.
1999
2000Simple Constants
2001----------------
2002
2003**Boolean constants**
2004 The two strings '``true``' and '``false``' are both valid constants
2005 of the ``i1`` type.
2006**Integer constants**
2007 Standard integers (such as '4') are constants of the
2008 :ref:`integer <t_integer>` type. Negative numbers may be used with
2009 integer types.
2010**Floating point constants**
2011 Floating point constants use standard decimal notation (e.g.
2012 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2013 hexadecimal notation (see below). The assembler requires the exact
2014 decimal value of a floating-point constant. For example, the
2015 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2016 decimal in binary. Floating point constants must have a :ref:`floating
2017 point <t_floating>` type.
2018**Null pointer constants**
2019 The identifier '``null``' is recognized as a null pointer constant
2020 and must be of :ref:`pointer type <t_pointer>`.
2021
2022The one non-intuitive notation for constants is the hexadecimal form of
2023floating point constants. For example, the form
2024'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2025than) '``double 4.5e+15``'. The only time hexadecimal floating point
2026constants are required (and the only time that they are generated by the
2027disassembler) is when a floating point constant must be emitted but it
2028cannot be represented as a decimal floating point number in a reasonable
2029number of digits. For example, NaN's, infinities, and other special
2030values are represented in their IEEE hexadecimal format so that assembly
2031and disassembly do not cause any bits to change in the constants.
2032
2033When using the hexadecimal form, constants of types half, float, and
2034double are represented using the 16-digit form shown above (which
2035matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002036must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002037precision, respectively. Hexadecimal format is always used for long
2038double, and there are three forms of long double. The 80-bit format used
2039by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2040128-bit format used by PowerPC (two adjacent doubles) is represented by
2041``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002042represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2043will only work if they match the long double format on your target.
2044The IEEE 16-bit format (half precision) is represented by ``0xH``
2045followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2046(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002047
Reid Kleckner9a16d082014-03-05 02:41:37 +00002048There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002049
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002050.. _complexconstants:
2051
Sean Silvab084af42012-12-07 10:36:55 +00002052Complex Constants
2053-----------------
2054
2055Complex constants are a (potentially recursive) combination of simple
2056constants and smaller complex constants.
2057
2058**Structure constants**
2059 Structure constants are represented with notation similar to
2060 structure type definitions (a comma separated list of elements,
2061 surrounded by braces (``{}``)). For example:
2062 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2063 "``@G = external global i32``". Structure constants must have
2064 :ref:`structure type <t_struct>`, and the number and types of elements
2065 must match those specified by the type.
2066**Array constants**
2067 Array constants are represented with notation similar to array type
2068 definitions (a comma separated list of elements, surrounded by
2069 square brackets (``[]``)). For example:
2070 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2071 :ref:`array type <t_array>`, and the number and types of elements must
2072 match those specified by the type.
2073**Vector constants**
2074 Vector constants are represented with notation similar to vector
2075 type definitions (a comma separated list of elements, surrounded by
2076 less-than/greater-than's (``<>``)). For example:
2077 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2078 must have :ref:`vector type <t_vector>`, and the number and types of
2079 elements must match those specified by the type.
2080**Zero initialization**
2081 The string '``zeroinitializer``' can be used to zero initialize a
2082 value to zero of *any* type, including scalar and
2083 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2084 having to print large zero initializers (e.g. for large arrays) and
2085 is always exactly equivalent to using explicit zero initializers.
2086**Metadata node**
2087 A metadata node is a structure-like constant with :ref:`metadata
2088 type <t_metadata>`. For example:
2089 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2090 constants that are meant to be interpreted as part of the
2091 instruction stream, metadata is a place to attach additional
2092 information such as debug info.
2093
2094Global Variable and Function Addresses
2095--------------------------------------
2096
2097The addresses of :ref:`global variables <globalvars>` and
2098:ref:`functions <functionstructure>` are always implicitly valid
2099(link-time) constants. These constants are explicitly referenced when
2100the :ref:`identifier for the global <identifiers>` is used and always have
2101:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2102file:
2103
2104.. code-block:: llvm
2105
2106 @X = global i32 17
2107 @Y = global i32 42
2108 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2109
2110.. _undefvalues:
2111
2112Undefined Values
2113----------------
2114
2115The string '``undef``' can be used anywhere a constant is expected, and
2116indicates that the user of the value may receive an unspecified
2117bit-pattern. Undefined values may be of any type (other than '``label``'
2118or '``void``') and be used anywhere a constant is permitted.
2119
2120Undefined values are useful because they indicate to the compiler that
2121the program is well defined no matter what value is used. This gives the
2122compiler more freedom to optimize. Here are some examples of
2123(potentially surprising) transformations that are valid (in pseudo IR):
2124
2125.. code-block:: llvm
2126
2127 %A = add %X, undef
2128 %B = sub %X, undef
2129 %C = xor %X, undef
2130 Safe:
2131 %A = undef
2132 %B = undef
2133 %C = undef
2134
2135This is safe because all of the output bits are affected by the undef
2136bits. Any output bit can have a zero or one depending on the input bits.
2137
2138.. code-block:: llvm
2139
2140 %A = or %X, undef
2141 %B = and %X, undef
2142 Safe:
2143 %A = -1
2144 %B = 0
2145 Unsafe:
2146 %A = undef
2147 %B = undef
2148
2149These logical operations have bits that are not always affected by the
2150input. For example, if ``%X`` has a zero bit, then the output of the
2151'``and``' operation will always be a zero for that bit, no matter what
2152the corresponding bit from the '``undef``' is. As such, it is unsafe to
2153optimize or assume that the result of the '``and``' is '``undef``'.
2154However, it is safe to assume that all bits of the '``undef``' could be
21550, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2156all the bits of the '``undef``' operand to the '``or``' could be set,
2157allowing the '``or``' to be folded to -1.
2158
2159.. code-block:: llvm
2160
2161 %A = select undef, %X, %Y
2162 %B = select undef, 42, %Y
2163 %C = select %X, %Y, undef
2164 Safe:
2165 %A = %X (or %Y)
2166 %B = 42 (or %Y)
2167 %C = %Y
2168 Unsafe:
2169 %A = undef
2170 %B = undef
2171 %C = undef
2172
2173This set of examples shows that undefined '``select``' (and conditional
2174branch) conditions can go *either way*, but they have to come from one
2175of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2176both known to have a clear low bit, then ``%A`` would have to have a
2177cleared low bit. However, in the ``%C`` example, the optimizer is
2178allowed to assume that the '``undef``' operand could be the same as
2179``%Y``, allowing the whole '``select``' to be eliminated.
2180
2181.. code-block:: llvm
2182
2183 %A = xor undef, undef
2184
2185 %B = undef
2186 %C = xor %B, %B
2187
2188 %D = undef
2189 %E = icmp lt %D, 4
2190 %F = icmp gte %D, 4
2191
2192 Safe:
2193 %A = undef
2194 %B = undef
2195 %C = undef
2196 %D = undef
2197 %E = undef
2198 %F = undef
2199
2200This example points out that two '``undef``' operands are not
2201necessarily the same. This can be surprising to people (and also matches
2202C semantics) where they assume that "``X^X``" is always zero, even if
2203``X`` is undefined. This isn't true for a number of reasons, but the
2204short answer is that an '``undef``' "variable" can arbitrarily change
2205its value over its "live range". This is true because the variable
2206doesn't actually *have a live range*. Instead, the value is logically
2207read from arbitrary registers that happen to be around when needed, so
2208the value is not necessarily consistent over time. In fact, ``%A`` and
2209``%C`` need to have the same semantics or the core LLVM "replace all
2210uses with" concept would not hold.
2211
2212.. code-block:: llvm
2213
2214 %A = fdiv undef, %X
2215 %B = fdiv %X, undef
2216 Safe:
2217 %A = undef
2218 b: unreachable
2219
2220These examples show the crucial difference between an *undefined value*
2221and *undefined behavior*. An undefined value (like '``undef``') is
2222allowed to have an arbitrary bit-pattern. This means that the ``%A``
2223operation can be constant folded to '``undef``', because the '``undef``'
2224could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2225However, in the second example, we can make a more aggressive
2226assumption: because the ``undef`` is allowed to be an arbitrary value,
2227we are allowed to assume that it could be zero. Since a divide by zero
2228has *undefined behavior*, we are allowed to assume that the operation
2229does not execute at all. This allows us to delete the divide and all
2230code after it. Because the undefined operation "can't happen", the
2231optimizer can assume that it occurs in dead code.
2232
2233.. code-block:: llvm
2234
2235 a: store undef -> %X
2236 b: store %X -> undef
2237 Safe:
2238 a: <deleted>
2239 b: unreachable
2240
2241These examples reiterate the ``fdiv`` example: a store *of* an undefined
2242value can be assumed to not have any effect; we can assume that the
2243value is overwritten with bits that happen to match what was already
2244there. However, a store *to* an undefined location could clobber
2245arbitrary memory, therefore, it has undefined behavior.
2246
2247.. _poisonvalues:
2248
2249Poison Values
2250-------------
2251
2252Poison values are similar to :ref:`undef values <undefvalues>`, however
2253they also represent the fact that an instruction or constant expression
2254which cannot evoke side effects has nevertheless detected a condition
2255which results in undefined behavior.
2256
2257There is currently no way of representing a poison value in the IR; they
2258only exist when produced by operations such as :ref:`add <i_add>` with
2259the ``nsw`` flag.
2260
2261Poison value behavior is defined in terms of value *dependence*:
2262
2263- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2264- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2265 their dynamic predecessor basic block.
2266- Function arguments depend on the corresponding actual argument values
2267 in the dynamic callers of their functions.
2268- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2269 instructions that dynamically transfer control back to them.
2270- :ref:`Invoke <i_invoke>` instructions depend on the
2271 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2272 call instructions that dynamically transfer control back to them.
2273- Non-volatile loads and stores depend on the most recent stores to all
2274 of the referenced memory addresses, following the order in the IR
2275 (including loads and stores implied by intrinsics such as
2276 :ref:`@llvm.memcpy <int_memcpy>`.)
2277- An instruction with externally visible side effects depends on the
2278 most recent preceding instruction with externally visible side
2279 effects, following the order in the IR. (This includes :ref:`volatile
2280 operations <volatile>`.)
2281- An instruction *control-depends* on a :ref:`terminator
2282 instruction <terminators>` if the terminator instruction has
2283 multiple successors and the instruction is always executed when
2284 control transfers to one of the successors, and may not be executed
2285 when control is transferred to another.
2286- Additionally, an instruction also *control-depends* on a terminator
2287 instruction if the set of instructions it otherwise depends on would
2288 be different if the terminator had transferred control to a different
2289 successor.
2290- Dependence is transitive.
2291
2292Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2293with the additional affect that any instruction which has a *dependence*
2294on a poison value has undefined behavior.
2295
2296Here are some examples:
2297
2298.. code-block:: llvm
2299
2300 entry:
2301 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2302 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2303 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2304 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2305
2306 store i32 %poison, i32* @g ; Poison value stored to memory.
2307 %poison2 = load i32* @g ; Poison value loaded back from memory.
2308
2309 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2310
2311 %narrowaddr = bitcast i32* @g to i16*
2312 %wideaddr = bitcast i32* @g to i64*
2313 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2314 %poison4 = load i64* %wideaddr ; Returns a poison value.
2315
2316 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2317 br i1 %cmp, label %true, label %end ; Branch to either destination.
2318
2319 true:
2320 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2321 ; it has undefined behavior.
2322 br label %end
2323
2324 end:
2325 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2326 ; Both edges into this PHI are
2327 ; control-dependent on %cmp, so this
2328 ; always results in a poison value.
2329
2330 store volatile i32 0, i32* @g ; This would depend on the store in %true
2331 ; if %cmp is true, or the store in %entry
2332 ; otherwise, so this is undefined behavior.
2333
2334 br i1 %cmp, label %second_true, label %second_end
2335 ; The same branch again, but this time the
2336 ; true block doesn't have side effects.
2337
2338 second_true:
2339 ; No side effects!
2340 ret void
2341
2342 second_end:
2343 store volatile i32 0, i32* @g ; This time, the instruction always depends
2344 ; on the store in %end. Also, it is
2345 ; control-equivalent to %end, so this is
2346 ; well-defined (ignoring earlier undefined
2347 ; behavior in this example).
2348
2349.. _blockaddress:
2350
2351Addresses of Basic Blocks
2352-------------------------
2353
2354``blockaddress(@function, %block)``
2355
2356The '``blockaddress``' constant computes the address of the specified
2357basic block in the specified function, and always has an ``i8*`` type.
2358Taking the address of the entry block is illegal.
2359
2360This value only has defined behavior when used as an operand to the
2361':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2362against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002363undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002364no label is equal to the null pointer. This may be passed around as an
2365opaque pointer sized value as long as the bits are not inspected. This
2366allows ``ptrtoint`` and arithmetic to be performed on these values so
2367long as the original value is reconstituted before the ``indirectbr``
2368instruction.
2369
2370Finally, some targets may provide defined semantics when using the value
2371as the operand to an inline assembly, but that is target specific.
2372
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002373.. _constantexprs:
2374
Sean Silvab084af42012-12-07 10:36:55 +00002375Constant Expressions
2376--------------------
2377
2378Constant expressions are used to allow expressions involving other
2379constants to be used as constants. Constant expressions may be of any
2380:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2381that does not have side effects (e.g. load and call are not supported).
2382The following is the syntax for constant expressions:
2383
2384``trunc (CST to TYPE)``
2385 Truncate a constant to another type. The bit size of CST must be
2386 larger than the bit size of TYPE. Both types must be integers.
2387``zext (CST to TYPE)``
2388 Zero extend a constant to another type. The bit size of CST must be
2389 smaller than the bit size of TYPE. Both types must be integers.
2390``sext (CST to TYPE)``
2391 Sign extend a constant to another type. The bit size of CST must be
2392 smaller than the bit size of TYPE. Both types must be integers.
2393``fptrunc (CST to TYPE)``
2394 Truncate a floating point constant to another floating point type.
2395 The size of CST must be larger than the size of TYPE. Both types
2396 must be floating point.
2397``fpext (CST to TYPE)``
2398 Floating point extend a constant to another type. The size of CST
2399 must be smaller or equal to the size of TYPE. Both types must be
2400 floating point.
2401``fptoui (CST to TYPE)``
2402 Convert a floating point constant to the corresponding unsigned
2403 integer constant. TYPE must be a scalar or vector integer type. CST
2404 must be of scalar or vector floating point type. Both CST and TYPE
2405 must be scalars, or vectors of the same number of elements. If the
2406 value won't fit in the integer type, the results are undefined.
2407``fptosi (CST to TYPE)``
2408 Convert a floating point constant to the corresponding signed
2409 integer constant. TYPE must be a scalar or vector integer type. CST
2410 must be of scalar or vector floating point type. Both CST and TYPE
2411 must be scalars, or vectors of the same number of elements. If the
2412 value won't fit in the integer type, the results are undefined.
2413``uitofp (CST to TYPE)``
2414 Convert an unsigned integer constant to the corresponding floating
2415 point constant. TYPE must be a scalar or vector floating point type.
2416 CST must be of scalar or vector integer type. Both CST and TYPE must
2417 be scalars, or vectors of the same number of elements. If the value
2418 won't fit in the floating point type, the results are undefined.
2419``sitofp (CST to TYPE)``
2420 Convert a signed integer constant to the corresponding floating
2421 point constant. TYPE must be a scalar or vector floating point type.
2422 CST must be of scalar or vector integer type. Both CST and TYPE must
2423 be scalars, or vectors of the same number of elements. If the value
2424 won't fit in the floating point type, the results are undefined.
2425``ptrtoint (CST to TYPE)``
2426 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002427 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002428 pointer type. The ``CST`` value is zero extended, truncated, or
2429 unchanged to make it fit in ``TYPE``.
2430``inttoptr (CST to TYPE)``
2431 Convert an integer constant to a pointer constant. TYPE must be a
2432 pointer type. CST must be of integer type. The CST value is zero
2433 extended, truncated, or unchanged to make it fit in a pointer size.
2434 This one is *really* dangerous!
2435``bitcast (CST to TYPE)``
2436 Convert a constant, CST, to another TYPE. The constraints of the
2437 operands are the same as those for the :ref:`bitcast
2438 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002439``addrspacecast (CST to TYPE)``
2440 Convert a constant pointer or constant vector of pointer, CST, to another
2441 TYPE in a different address space. The constraints of the operands are the
2442 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002443``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2444 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2445 constants. As with the :ref:`getelementptr <i_getelementptr>`
2446 instruction, the index list may have zero or more indexes, which are
2447 required to make sense for the type of "CSTPTR".
2448``select (COND, VAL1, VAL2)``
2449 Perform the :ref:`select operation <i_select>` on constants.
2450``icmp COND (VAL1, VAL2)``
2451 Performs the :ref:`icmp operation <i_icmp>` on constants.
2452``fcmp COND (VAL1, VAL2)``
2453 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2454``extractelement (VAL, IDX)``
2455 Perform the :ref:`extractelement operation <i_extractelement>` on
2456 constants.
2457``insertelement (VAL, ELT, IDX)``
2458 Perform the :ref:`insertelement operation <i_insertelement>` on
2459 constants.
2460``shufflevector (VEC1, VEC2, IDXMASK)``
2461 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2462 constants.
2463``extractvalue (VAL, IDX0, IDX1, ...)``
2464 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2465 constants. The index list is interpreted in a similar manner as
2466 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2467 least one index value must be specified.
2468``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2469 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2470 The index list is interpreted in a similar manner as indices in a
2471 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2472 value must be specified.
2473``OPCODE (LHS, RHS)``
2474 Perform the specified operation of the LHS and RHS constants. OPCODE
2475 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2476 binary <bitwiseops>` operations. The constraints on operands are
2477 the same as those for the corresponding instruction (e.g. no bitwise
2478 operations on floating point values are allowed).
2479
2480Other Values
2481============
2482
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002483.. _inlineasmexprs:
2484
Sean Silvab084af42012-12-07 10:36:55 +00002485Inline Assembler Expressions
2486----------------------------
2487
2488LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2489Inline Assembly <moduleasm>`) through the use of a special value. This
2490value represents the inline assembler as a string (containing the
2491instructions to emit), a list of operand constraints (stored as a
2492string), a flag that indicates whether or not the inline asm expression
2493has side effects, and a flag indicating whether the function containing
2494the asm needs to align its stack conservatively. An example inline
2495assembler expression is:
2496
2497.. code-block:: llvm
2498
2499 i32 (i32) asm "bswap $0", "=r,r"
2500
2501Inline assembler expressions may **only** be used as the callee operand
2502of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2503Thus, typically we have:
2504
2505.. code-block:: llvm
2506
2507 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2508
2509Inline asms with side effects not visible in the constraint list must be
2510marked as having side effects. This is done through the use of the
2511'``sideeffect``' keyword, like so:
2512
2513.. code-block:: llvm
2514
2515 call void asm sideeffect "eieio", ""()
2516
2517In some cases inline asms will contain code that will not work unless
2518the stack is aligned in some way, such as calls or SSE instructions on
2519x86, yet will not contain code that does that alignment within the asm.
2520The compiler should make conservative assumptions about what the asm
2521might contain and should generate its usual stack alignment code in the
2522prologue if the '``alignstack``' keyword is present:
2523
2524.. code-block:: llvm
2525
2526 call void asm alignstack "eieio", ""()
2527
2528Inline asms also support using non-standard assembly dialects. The
2529assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2530the inline asm is using the Intel dialect. Currently, ATT and Intel are
2531the only supported dialects. An example is:
2532
2533.. code-block:: llvm
2534
2535 call void asm inteldialect "eieio", ""()
2536
2537If multiple keywords appear the '``sideeffect``' keyword must come
2538first, the '``alignstack``' keyword second and the '``inteldialect``'
2539keyword last.
2540
2541Inline Asm Metadata
2542^^^^^^^^^^^^^^^^^^^
2543
2544The call instructions that wrap inline asm nodes may have a
2545"``!srcloc``" MDNode attached to it that contains a list of constant
2546integers. If present, the code generator will use the integer as the
2547location cookie value when report errors through the ``LLVMContext``
2548error reporting mechanisms. This allows a front-end to correlate backend
2549errors that occur with inline asm back to the source code that produced
2550it. For example:
2551
2552.. code-block:: llvm
2553
2554 call void asm sideeffect "something bad", ""(), !srcloc !42
2555 ...
2556 !42 = !{ i32 1234567 }
2557
2558It is up to the front-end to make sense of the magic numbers it places
2559in the IR. If the MDNode contains multiple constants, the code generator
2560will use the one that corresponds to the line of the asm that the error
2561occurs on.
2562
2563.. _metadata:
2564
2565Metadata Nodes and Metadata Strings
2566-----------------------------------
2567
2568LLVM IR allows metadata to be attached to instructions in the program
2569that can convey extra information about the code to the optimizers and
2570code generator. One example application of metadata is source-level
2571debug information. There are two metadata primitives: strings and nodes.
2572All metadata has the ``metadata`` type and is identified in syntax by a
2573preceding exclamation point ('``!``').
2574
2575A metadata string is a string surrounded by double quotes. It can
2576contain any character by escaping non-printable characters with
2577"``\xx``" where "``xx``" is the two digit hex code. For example:
2578"``!"test\00"``".
2579
2580Metadata nodes are represented with notation similar to structure
2581constants (a comma separated list of elements, surrounded by braces and
2582preceded by an exclamation point). Metadata nodes can have any values as
2583their operand. For example:
2584
2585.. code-block:: llvm
2586
2587 !{ metadata !"test\00", i32 10}
2588
2589A :ref:`named metadata <namedmetadatastructure>` is a collection of
2590metadata nodes, which can be looked up in the module symbol table. For
2591example:
2592
2593.. code-block:: llvm
2594
2595 !foo = metadata !{!4, !3}
2596
2597Metadata can be used as function arguments. Here ``llvm.dbg.value``
2598function is using two metadata arguments:
2599
2600.. code-block:: llvm
2601
2602 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2603
2604Metadata can be attached with an instruction. Here metadata ``!21`` is
2605attached to the ``add`` instruction using the ``!dbg`` identifier:
2606
2607.. code-block:: llvm
2608
2609 %indvar.next = add i64 %indvar, 1, !dbg !21
2610
2611More information about specific metadata nodes recognized by the
2612optimizers and code generator is found below.
2613
2614'``tbaa``' Metadata
2615^^^^^^^^^^^^^^^^^^^
2616
2617In LLVM IR, memory does not have types, so LLVM's own type system is not
2618suitable for doing TBAA. Instead, metadata is added to the IR to
2619describe a type system of a higher level language. This can be used to
2620implement typical C/C++ TBAA, but it can also be used to implement
2621custom alias analysis behavior for other languages.
2622
2623The current metadata format is very simple. TBAA metadata nodes have up
2624to three fields, e.g.:
2625
2626.. code-block:: llvm
2627
2628 !0 = metadata !{ metadata !"an example type tree" }
2629 !1 = metadata !{ metadata !"int", metadata !0 }
2630 !2 = metadata !{ metadata !"float", metadata !0 }
2631 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2632
2633The first field is an identity field. It can be any value, usually a
2634metadata string, which uniquely identifies the type. The most important
2635name in the tree is the name of the root node. Two trees with different
2636root node names are entirely disjoint, even if they have leaves with
2637common names.
2638
2639The second field identifies the type's parent node in the tree, or is
2640null or omitted for a root node. A type is considered to alias all of
2641its descendants and all of its ancestors in the tree. Also, a type is
2642considered to alias all types in other trees, so that bitcode produced
2643from multiple front-ends is handled conservatively.
2644
2645If the third field is present, it's an integer which if equal to 1
2646indicates that the type is "constant" (meaning
2647``pointsToConstantMemory`` should return true; see `other useful
2648AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2649
2650'``tbaa.struct``' Metadata
2651^^^^^^^^^^^^^^^^^^^^^^^^^^
2652
2653The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2654aggregate assignment operations in C and similar languages, however it
2655is defined to copy a contiguous region of memory, which is more than
2656strictly necessary for aggregate types which contain holes due to
2657padding. Also, it doesn't contain any TBAA information about the fields
2658of the aggregate.
2659
2660``!tbaa.struct`` metadata can describe which memory subregions in a
2661memcpy are padding and what the TBAA tags of the struct are.
2662
2663The current metadata format is very simple. ``!tbaa.struct`` metadata
2664nodes are a list of operands which are in conceptual groups of three.
2665For each group of three, the first operand gives the byte offset of a
2666field in bytes, the second gives its size in bytes, and the third gives
2667its tbaa tag. e.g.:
2668
2669.. code-block:: llvm
2670
2671 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2672
2673This describes a struct with two fields. The first is at offset 0 bytes
2674with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2675and has size 4 bytes and has tbaa tag !2.
2676
2677Note that the fields need not be contiguous. In this example, there is a
26784 byte gap between the two fields. This gap represents padding which
2679does not carry useful data and need not be preserved.
2680
2681'``fpmath``' Metadata
2682^^^^^^^^^^^^^^^^^^^^^
2683
2684``fpmath`` metadata may be attached to any instruction of floating point
2685type. It can be used to express the maximum acceptable error in the
2686result of that instruction, in ULPs, thus potentially allowing the
2687compiler to use a more efficient but less accurate method of computing
2688it. ULP is defined as follows:
2689
2690 If ``x`` is a real number that lies between two finite consecutive
2691 floating-point numbers ``a`` and ``b``, without being equal to one
2692 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2693 distance between the two non-equal finite floating-point numbers
2694 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2695
2696The metadata node shall consist of a single positive floating point
2697number representing the maximum relative error, for example:
2698
2699.. code-block:: llvm
2700
2701 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2702
2703'``range``' Metadata
2704^^^^^^^^^^^^^^^^^^^^
2705
2706``range`` metadata may be attached only to loads of integer types. It
2707expresses the possible ranges the loaded value is in. The ranges are
2708represented with a flattened list of integers. The loaded value is known
2709to be in the union of the ranges defined by each consecutive pair. Each
2710pair has the following properties:
2711
2712- The type must match the type loaded by the instruction.
2713- The pair ``a,b`` represents the range ``[a,b)``.
2714- Both ``a`` and ``b`` are constants.
2715- The range is allowed to wrap.
2716- The range should not represent the full or empty set. That is,
2717 ``a!=b``.
2718
2719In addition, the pairs must be in signed order of the lower bound and
2720they must be non-contiguous.
2721
2722Examples:
2723
2724.. code-block:: llvm
2725
2726 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2727 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2728 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2729 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2730 ...
2731 !0 = metadata !{ i8 0, i8 2 }
2732 !1 = metadata !{ i8 255, i8 2 }
2733 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2734 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2735
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002736'``llvm.loop``'
2737^^^^^^^^^^^^^^^
2738
2739It is sometimes useful to attach information to loop constructs. Currently,
2740loop metadata is implemented as metadata attached to the branch instruction
2741in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002742guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002743specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002744
2745The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002746itself to avoid merging it with any other identifier metadata, e.g.,
2747during module linkage or function inlining. That is, each loop should refer
2748to their own identification metadata even if they reside in separate functions.
2749The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002750constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002751
2752.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002753
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002754 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002755 !1 = metadata !{ metadata !1 }
2756
Paul Redmond5fdf8362013-05-28 20:00:34 +00002757The loop identifier metadata can be used to specify additional per-loop
2758metadata. Any operands after the first operand can be treated as user-defined
2759metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2760by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002761
Paul Redmond5fdf8362013-05-28 20:00:34 +00002762.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002763
Paul Redmond5fdf8362013-05-28 20:00:34 +00002764 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2765 ...
2766 !0 = metadata !{ metadata !0, metadata !1 }
2767 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002768
2769'``llvm.mem``'
2770^^^^^^^^^^^^^^^
2771
2772Metadata types used to annotate memory accesses with information helpful
2773for optimizations are prefixed with ``llvm.mem``.
2774
2775'``llvm.mem.parallel_loop_access``' Metadata
2776^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2777
2778For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002779the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002780also all of the memory accessing instructions in the loop body need to be
2781marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2782is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002783the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002784converted to sequential loops due to optimization passes that are unaware of
2785the parallel semantics and that insert new memory instructions to the loop
2786body.
2787
2788Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002789both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002790metadata types that refer to the same loop identifier metadata.
2791
2792.. code-block:: llvm
2793
2794 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002795 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002796 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002797 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002798 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002799 ...
2800 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002801
2802 for.end:
2803 ...
2804 !0 = metadata !{ metadata !0 }
2805
2806It is also possible to have nested parallel loops. In that case the
2807memory accesses refer to a list of loop identifier metadata nodes instead of
2808the loop identifier metadata node directly:
2809
2810.. code-block:: llvm
2811
2812 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002813 ...
2814 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
2815 ...
2816 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002817
2818 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002819 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002820 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002821 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002822 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002823 ...
2824 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002825
2826 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002827 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002828 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00002829 ...
2830 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002831
2832 outer.for.end: ; preds = %for.body
2833 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002834 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2835 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2836 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002837
Paul Redmond5fdf8362013-05-28 20:00:34 +00002838'``llvm.vectorizer``'
2839^^^^^^^^^^^^^^^^^^^^^
2840
2841Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2842vectorization parameters such as vectorization factor and unroll factor.
2843
2844``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2845loop identification metadata.
2846
2847'``llvm.vectorizer.unroll``' Metadata
2848^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2849
2850This metadata instructs the loop vectorizer to unroll the specified
2851loop exactly ``N`` times.
2852
2853The first operand is the string ``llvm.vectorizer.unroll`` and the second
2854operand is an integer specifying the unroll factor. For example:
2855
2856.. code-block:: llvm
2857
2858 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2859
2860Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2861loop.
2862
2863If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2864determined automatically.
2865
2866'``llvm.vectorizer.width``' Metadata
2867^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2868
Paul Redmondeccbb322013-05-30 17:22:46 +00002869This metadata sets the target width of the vectorizer to ``N``. Without
2870this metadata, the vectorizer will choose a width automatically.
2871Regardless of this metadata, the vectorizer will only vectorize loops if
2872it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002873
2874The first operand is the string ``llvm.vectorizer.width`` and the second
2875operand is an integer specifying the width. For example:
2876
2877.. code-block:: llvm
2878
2879 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2880
2881Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2882loop.
2883
2884If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2885automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002886
Sean Silvab084af42012-12-07 10:36:55 +00002887Module Flags Metadata
2888=====================
2889
2890Information about the module as a whole is difficult to convey to LLVM's
2891subsystems. The LLVM IR isn't sufficient to transmit this information.
2892The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002893this. These flags are in the form of key / value pairs --- much like a
2894dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002895look it up.
2896
2897The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2898Each triplet has the following form:
2899
2900- The first element is a *behavior* flag, which specifies the behavior
2901 when two (or more) modules are merged together, and it encounters two
2902 (or more) metadata with the same ID. The supported behaviors are
2903 described below.
2904- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002905 metadata. Each module may only have one flag entry for each unique ID (not
2906 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002907- The third element is the value of the flag.
2908
2909When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002910``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2911each unique metadata ID string, there will be exactly one entry in the merged
2912modules ``llvm.module.flags`` metadata table, and the value for that entry will
2913be determined by the merge behavior flag, as described below. The only exception
2914is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002915
2916The following behaviors are supported:
2917
2918.. list-table::
2919 :header-rows: 1
2920 :widths: 10 90
2921
2922 * - Value
2923 - Behavior
2924
2925 * - 1
2926 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002927 Emits an error if two values disagree, otherwise the resulting value
2928 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002929
2930 * - 2
2931 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002932 Emits a warning if two values disagree. The result value will be the
2933 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002934
2935 * - 3
2936 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002937 Adds a requirement that another module flag be present and have a
2938 specified value after linking is performed. The value must be a
2939 metadata pair, where the first element of the pair is the ID of the
2940 module flag to be restricted, and the second element of the pair is
2941 the value the module flag should be restricted to. This behavior can
2942 be used to restrict the allowable results (via triggering of an
2943 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002944
2945 * - 4
2946 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002947 Uses the specified value, regardless of the behavior or value of the
2948 other module. If both modules specify **Override**, but the values
2949 differ, an error will be emitted.
2950
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002951 * - 5
2952 - **Append**
2953 Appends the two values, which are required to be metadata nodes.
2954
2955 * - 6
2956 - **AppendUnique**
2957 Appends the two values, which are required to be metadata
2958 nodes. However, duplicate entries in the second list are dropped
2959 during the append operation.
2960
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002961It is an error for a particular unique flag ID to have multiple behaviors,
2962except in the case of **Require** (which adds restrictions on another metadata
2963value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002964
2965An example of module flags:
2966
2967.. code-block:: llvm
2968
2969 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2970 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2971 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2972 !3 = metadata !{ i32 3, metadata !"qux",
2973 metadata !{
2974 metadata !"foo", i32 1
2975 }
2976 }
2977 !llvm.module.flags = !{ !0, !1, !2, !3 }
2978
2979- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2980 if two or more ``!"foo"`` flags are seen is to emit an error if their
2981 values are not equal.
2982
2983- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2984 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002985 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002986
2987- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2988 behavior if two or more ``!"qux"`` flags are seen is to emit a
2989 warning if their values are not equal.
2990
2991- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2992
2993 ::
2994
2995 metadata !{ metadata !"foo", i32 1 }
2996
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002997 The behavior is to emit an error if the ``llvm.module.flags`` does not
2998 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2999 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003000
3001Objective-C Garbage Collection Module Flags Metadata
3002----------------------------------------------------
3003
3004On the Mach-O platform, Objective-C stores metadata about garbage
3005collection in a special section called "image info". The metadata
3006consists of a version number and a bitmask specifying what types of
3007garbage collection are supported (if any) by the file. If two or more
3008modules are linked together their garbage collection metadata needs to
3009be merged rather than appended together.
3010
3011The Objective-C garbage collection module flags metadata consists of the
3012following key-value pairs:
3013
3014.. list-table::
3015 :header-rows: 1
3016 :widths: 30 70
3017
3018 * - Key
3019 - Value
3020
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003021 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003022 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003023
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003024 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003025 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003026 always 0.
3027
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003028 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003029 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003030 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3031 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3032 Objective-C ABI version 2.
3033
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003034 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003035 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003036 not. Valid values are 0, for no garbage collection, and 2, for garbage
3037 collection supported.
3038
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003039 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003040 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003041 If present, its value must be 6. This flag requires that the
3042 ``Objective-C Garbage Collection`` flag have the value 2.
3043
3044Some important flag interactions:
3045
3046- If a module with ``Objective-C Garbage Collection`` set to 0 is
3047 merged with a module with ``Objective-C Garbage Collection`` set to
3048 2, then the resulting module has the
3049 ``Objective-C Garbage Collection`` flag set to 0.
3050- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3051 merged with a module with ``Objective-C GC Only`` set to 6.
3052
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003053Automatic Linker Flags Module Flags Metadata
3054--------------------------------------------
3055
3056Some targets support embedding flags to the linker inside individual object
3057files. Typically this is used in conjunction with language extensions which
3058allow source files to explicitly declare the libraries they depend on, and have
3059these automatically be transmitted to the linker via object files.
3060
3061These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003062using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003063to be ``AppendUnique``, and the value for the key is expected to be a metadata
3064node which should be a list of other metadata nodes, each of which should be a
3065list of metadata strings defining linker options.
3066
3067For example, the following metadata section specifies two separate sets of
3068linker options, presumably to link against ``libz`` and the ``Cocoa``
3069framework::
3070
Michael Liaoa7699082013-03-06 18:24:34 +00003071 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003072 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003073 metadata !{ metadata !"-lz" },
3074 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003075 !llvm.module.flags = !{ !0 }
3076
3077The metadata encoding as lists of lists of options, as opposed to a collapsed
3078list of options, is chosen so that the IR encoding can use multiple option
3079strings to specify e.g., a single library, while still having that specifier be
3080preserved as an atomic element that can be recognized by a target specific
3081assembly writer or object file emitter.
3082
3083Each individual option is required to be either a valid option for the target's
3084linker, or an option that is reserved by the target specific assembly writer or
3085object file emitter. No other aspect of these options is defined by the IR.
3086
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003087.. _intrinsicglobalvariables:
3088
Sean Silvab084af42012-12-07 10:36:55 +00003089Intrinsic Global Variables
3090==========================
3091
3092LLVM has a number of "magic" global variables that contain data that
3093affect code generation or other IR semantics. These are documented here.
3094All globals of this sort should have a section specified as
3095"``llvm.metadata``". This section and all globals that start with
3096"``llvm.``" are reserved for use by LLVM.
3097
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003098.. _gv_llvmused:
3099
Sean Silvab084af42012-12-07 10:36:55 +00003100The '``llvm.used``' Global Variable
3101-----------------------------------
3102
Rafael Espindola74f2e462013-04-22 14:58:02 +00003103The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003104:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003105pointers to named global variables, functions and aliases which may optionally
3106have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003107use of it is:
3108
3109.. code-block:: llvm
3110
3111 @X = global i8 4
3112 @Y = global i32 123
3113
3114 @llvm.used = appending global [2 x i8*] [
3115 i8* @X,
3116 i8* bitcast (i32* @Y to i8*)
3117 ], section "llvm.metadata"
3118
Rafael Espindola74f2e462013-04-22 14:58:02 +00003119If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3120and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003121symbol that it cannot see (which is why they have to be named). For example, if
3122a variable has internal linkage and no references other than that from the
3123``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3124references from inline asms and other things the compiler cannot "see", and
3125corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003126
3127On some targets, the code generator must emit a directive to the
3128assembler or object file to prevent the assembler and linker from
3129molesting the symbol.
3130
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003131.. _gv_llvmcompilerused:
3132
Sean Silvab084af42012-12-07 10:36:55 +00003133The '``llvm.compiler.used``' Global Variable
3134--------------------------------------------
3135
3136The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3137directive, except that it only prevents the compiler from touching the
3138symbol. On targets that support it, this allows an intelligent linker to
3139optimize references to the symbol without being impeded as it would be
3140by ``@llvm.used``.
3141
3142This is a rare construct that should only be used in rare circumstances,
3143and should not be exposed to source languages.
3144
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003145.. _gv_llvmglobalctors:
3146
Sean Silvab084af42012-12-07 10:36:55 +00003147The '``llvm.global_ctors``' Global Variable
3148-------------------------------------------
3149
3150.. code-block:: llvm
3151
3152 %0 = type { i32, void ()* }
3153 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3154
3155The ``@llvm.global_ctors`` array contains a list of constructor
3156functions and associated priorities. The functions referenced by this
3157array will be called in ascending order of priority (i.e. lowest first)
3158when the module is loaded. The order of functions with the same priority
3159is not defined.
3160
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003161.. _llvmglobaldtors:
3162
Sean Silvab084af42012-12-07 10:36:55 +00003163The '``llvm.global_dtors``' Global Variable
3164-------------------------------------------
3165
3166.. code-block:: llvm
3167
3168 %0 = type { i32, void ()* }
3169 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3170
3171The ``@llvm.global_dtors`` array contains a list of destructor functions
3172and associated priorities. The functions referenced by this array will
3173be called in descending order of priority (i.e. highest first) when the
3174module is loaded. The order of functions with the same priority is not
3175defined.
3176
3177Instruction Reference
3178=====================
3179
3180The LLVM instruction set consists of several different classifications
3181of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3182instructions <binaryops>`, :ref:`bitwise binary
3183instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3184:ref:`other instructions <otherops>`.
3185
3186.. _terminators:
3187
3188Terminator Instructions
3189-----------------------
3190
3191As mentioned :ref:`previously <functionstructure>`, every basic block in a
3192program ends with a "Terminator" instruction, which indicates which
3193block should be executed after the current block is finished. These
3194terminator instructions typically yield a '``void``' value: they produce
3195control flow, not values (the one exception being the
3196':ref:`invoke <i_invoke>`' instruction).
3197
3198The terminator instructions are: ':ref:`ret <i_ret>`',
3199':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3200':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3201':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3202
3203.. _i_ret:
3204
3205'``ret``' Instruction
3206^^^^^^^^^^^^^^^^^^^^^
3207
3208Syntax:
3209"""""""
3210
3211::
3212
3213 ret <type> <value> ; Return a value from a non-void function
3214 ret void ; Return from void function
3215
3216Overview:
3217"""""""""
3218
3219The '``ret``' instruction is used to return control flow (and optionally
3220a value) from a function back to the caller.
3221
3222There are two forms of the '``ret``' instruction: one that returns a
3223value and then causes control flow, and one that just causes control
3224flow to occur.
3225
3226Arguments:
3227""""""""""
3228
3229The '``ret``' instruction optionally accepts a single argument, the
3230return value. The type of the return value must be a ':ref:`first
3231class <t_firstclass>`' type.
3232
3233A function is not :ref:`well formed <wellformed>` if it it has a non-void
3234return type and contains a '``ret``' instruction with no return value or
3235a return value with a type that does not match its type, or if it has a
3236void return type and contains a '``ret``' instruction with a return
3237value.
3238
3239Semantics:
3240""""""""""
3241
3242When the '``ret``' instruction is executed, control flow returns back to
3243the calling function's context. If the caller is a
3244":ref:`call <i_call>`" instruction, execution continues at the
3245instruction after the call. If the caller was an
3246":ref:`invoke <i_invoke>`" instruction, execution continues at the
3247beginning of the "normal" destination block. If the instruction returns
3248a value, that value shall set the call or invoke instruction's return
3249value.
3250
3251Example:
3252""""""""
3253
3254.. code-block:: llvm
3255
3256 ret i32 5 ; Return an integer value of 5
3257 ret void ; Return from a void function
3258 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3259
3260.. _i_br:
3261
3262'``br``' Instruction
3263^^^^^^^^^^^^^^^^^^^^
3264
3265Syntax:
3266"""""""
3267
3268::
3269
3270 br i1 <cond>, label <iftrue>, label <iffalse>
3271 br label <dest> ; Unconditional branch
3272
3273Overview:
3274"""""""""
3275
3276The '``br``' instruction is used to cause control flow to transfer to a
3277different basic block in the current function. There are two forms of
3278this instruction, corresponding to a conditional branch and an
3279unconditional branch.
3280
3281Arguments:
3282""""""""""
3283
3284The conditional branch form of the '``br``' instruction takes a single
3285'``i1``' value and two '``label``' values. The unconditional form of the
3286'``br``' instruction takes a single '``label``' value as a target.
3287
3288Semantics:
3289""""""""""
3290
3291Upon execution of a conditional '``br``' instruction, the '``i1``'
3292argument is evaluated. If the value is ``true``, control flows to the
3293'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3294to the '``iffalse``' ``label`` argument.
3295
3296Example:
3297""""""""
3298
3299.. code-block:: llvm
3300
3301 Test:
3302 %cond = icmp eq i32 %a, %b
3303 br i1 %cond, label %IfEqual, label %IfUnequal
3304 IfEqual:
3305 ret i32 1
3306 IfUnequal:
3307 ret i32 0
3308
3309.. _i_switch:
3310
3311'``switch``' Instruction
3312^^^^^^^^^^^^^^^^^^^^^^^^
3313
3314Syntax:
3315"""""""
3316
3317::
3318
3319 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3320
3321Overview:
3322"""""""""
3323
3324The '``switch``' instruction is used to transfer control flow to one of
3325several different places. It is a generalization of the '``br``'
3326instruction, allowing a branch to occur to one of many possible
3327destinations.
3328
3329Arguments:
3330""""""""""
3331
3332The '``switch``' instruction uses three parameters: an integer
3333comparison value '``value``', a default '``label``' destination, and an
3334array of pairs of comparison value constants and '``label``'s. The table
3335is not allowed to contain duplicate constant entries.
3336
3337Semantics:
3338""""""""""
3339
3340The ``switch`` instruction specifies a table of values and destinations.
3341When the '``switch``' instruction is executed, this table is searched
3342for the given value. If the value is found, control flow is transferred
3343to the corresponding destination; otherwise, control flow is transferred
3344to the default destination.
3345
3346Implementation:
3347"""""""""""""""
3348
3349Depending on properties of the target machine and the particular
3350``switch`` instruction, this instruction may be code generated in
3351different ways. For example, it could be generated as a series of
3352chained conditional branches or with a lookup table.
3353
3354Example:
3355""""""""
3356
3357.. code-block:: llvm
3358
3359 ; Emulate a conditional br instruction
3360 %Val = zext i1 %value to i32
3361 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3362
3363 ; Emulate an unconditional br instruction
3364 switch i32 0, label %dest [ ]
3365
3366 ; Implement a jump table:
3367 switch i32 %val, label %otherwise [ i32 0, label %onzero
3368 i32 1, label %onone
3369 i32 2, label %ontwo ]
3370
3371.. _i_indirectbr:
3372
3373'``indirectbr``' Instruction
3374^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3375
3376Syntax:
3377"""""""
3378
3379::
3380
3381 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3382
3383Overview:
3384"""""""""
3385
3386The '``indirectbr``' instruction implements an indirect branch to a
3387label within the current function, whose address is specified by
3388"``address``". Address must be derived from a
3389:ref:`blockaddress <blockaddress>` constant.
3390
3391Arguments:
3392""""""""""
3393
3394The '``address``' argument is the address of the label to jump to. The
3395rest of the arguments indicate the full set of possible destinations
3396that the address may point to. Blocks are allowed to occur multiple
3397times in the destination list, though this isn't particularly useful.
3398
3399This destination list is required so that dataflow analysis has an
3400accurate understanding of the CFG.
3401
3402Semantics:
3403""""""""""
3404
3405Control transfers to the block specified in the address argument. All
3406possible destination blocks must be listed in the label list, otherwise
3407this instruction has undefined behavior. This implies that jumps to
3408labels defined in other functions have undefined behavior as well.
3409
3410Implementation:
3411"""""""""""""""
3412
3413This is typically implemented with a jump through a register.
3414
3415Example:
3416""""""""
3417
3418.. code-block:: llvm
3419
3420 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3421
3422.. _i_invoke:
3423
3424'``invoke``' Instruction
3425^^^^^^^^^^^^^^^^^^^^^^^^
3426
3427Syntax:
3428"""""""
3429
3430::
3431
3432 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3433 to label <normal label> unwind label <exception label>
3434
3435Overview:
3436"""""""""
3437
3438The '``invoke``' instruction causes control to transfer to a specified
3439function, with the possibility of control flow transfer to either the
3440'``normal``' label or the '``exception``' label. If the callee function
3441returns with the "``ret``" instruction, control flow will return to the
3442"normal" label. If the callee (or any indirect callees) returns via the
3443":ref:`resume <i_resume>`" instruction or other exception handling
3444mechanism, control is interrupted and continued at the dynamically
3445nearest "exception" label.
3446
3447The '``exception``' label is a `landing
3448pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3449'``exception``' label is required to have the
3450":ref:`landingpad <i_landingpad>`" instruction, which contains the
3451information about the behavior of the program after unwinding happens,
3452as its first non-PHI instruction. The restrictions on the
3453"``landingpad``" instruction's tightly couples it to the "``invoke``"
3454instruction, so that the important information contained within the
3455"``landingpad``" instruction can't be lost through normal code motion.
3456
3457Arguments:
3458""""""""""
3459
3460This instruction requires several arguments:
3461
3462#. The optional "cconv" marker indicates which :ref:`calling
3463 convention <callingconv>` the call should use. If none is
3464 specified, the call defaults to using C calling conventions.
3465#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3466 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3467 are valid here.
3468#. '``ptr to function ty``': shall be the signature of the pointer to
3469 function value being invoked. In most cases, this is a direct
3470 function invocation, but indirect ``invoke``'s are just as possible,
3471 branching off an arbitrary pointer to function value.
3472#. '``function ptr val``': An LLVM value containing a pointer to a
3473 function to be invoked.
3474#. '``function args``': argument list whose types match the function
3475 signature argument types and parameter attributes. All arguments must
3476 be of :ref:`first class <t_firstclass>` type. If the function signature
3477 indicates the function accepts a variable number of arguments, the
3478 extra arguments can be specified.
3479#. '``normal label``': the label reached when the called function
3480 executes a '``ret``' instruction.
3481#. '``exception label``': the label reached when a callee returns via
3482 the :ref:`resume <i_resume>` instruction or other exception handling
3483 mechanism.
3484#. The optional :ref:`function attributes <fnattrs>` list. Only
3485 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3486 attributes are valid here.
3487
3488Semantics:
3489""""""""""
3490
3491This instruction is designed to operate as a standard '``call``'
3492instruction in most regards. The primary difference is that it
3493establishes an association with a label, which is used by the runtime
3494library to unwind the stack.
3495
3496This instruction is used in languages with destructors to ensure that
3497proper cleanup is performed in the case of either a ``longjmp`` or a
3498thrown exception. Additionally, this is important for implementation of
3499'``catch``' clauses in high-level languages that support them.
3500
3501For the purposes of the SSA form, the definition of the value returned
3502by the '``invoke``' instruction is deemed to occur on the edge from the
3503current block to the "normal" label. If the callee unwinds then no
3504return value is available.
3505
3506Example:
3507""""""""
3508
3509.. code-block:: llvm
3510
3511 %retval = invoke i32 @Test(i32 15) to label %Continue
3512 unwind label %TestCleanup ; {i32}:retval set
3513 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3514 unwind label %TestCleanup ; {i32}:retval set
3515
3516.. _i_resume:
3517
3518'``resume``' Instruction
3519^^^^^^^^^^^^^^^^^^^^^^^^
3520
3521Syntax:
3522"""""""
3523
3524::
3525
3526 resume <type> <value>
3527
3528Overview:
3529"""""""""
3530
3531The '``resume``' instruction is a terminator instruction that has no
3532successors.
3533
3534Arguments:
3535""""""""""
3536
3537The '``resume``' instruction requires one argument, which must have the
3538same type as the result of any '``landingpad``' instruction in the same
3539function.
3540
3541Semantics:
3542""""""""""
3543
3544The '``resume``' instruction resumes propagation of an existing
3545(in-flight) exception whose unwinding was interrupted with a
3546:ref:`landingpad <i_landingpad>` instruction.
3547
3548Example:
3549""""""""
3550
3551.. code-block:: llvm
3552
3553 resume { i8*, i32 } %exn
3554
3555.. _i_unreachable:
3556
3557'``unreachable``' Instruction
3558^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3559
3560Syntax:
3561"""""""
3562
3563::
3564
3565 unreachable
3566
3567Overview:
3568"""""""""
3569
3570The '``unreachable``' instruction has no defined semantics. This
3571instruction is used to inform the optimizer that a particular portion of
3572the code is not reachable. This can be used to indicate that the code
3573after a no-return function cannot be reached, and other facts.
3574
3575Semantics:
3576""""""""""
3577
3578The '``unreachable``' instruction has no defined semantics.
3579
3580.. _binaryops:
3581
3582Binary Operations
3583-----------------
3584
3585Binary operators are used to do most of the computation in a program.
3586They require two operands of the same type, execute an operation on
3587them, and produce a single value. The operands might represent multiple
3588data, as is the case with the :ref:`vector <t_vector>` data type. The
3589result value has the same type as its operands.
3590
3591There are several different binary operators:
3592
3593.. _i_add:
3594
3595'``add``' Instruction
3596^^^^^^^^^^^^^^^^^^^^^
3597
3598Syntax:
3599"""""""
3600
3601::
3602
3603 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3604 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3605 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3606 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3607
3608Overview:
3609"""""""""
3610
3611The '``add``' instruction returns the sum of its two operands.
3612
3613Arguments:
3614""""""""""
3615
3616The two arguments to the '``add``' instruction must be
3617:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3618arguments must have identical types.
3619
3620Semantics:
3621""""""""""
3622
3623The value produced is the integer sum of the two operands.
3624
3625If the sum has unsigned overflow, the result returned is the
3626mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3627the result.
3628
3629Because LLVM integers use a two's complement representation, this
3630instruction is appropriate for both signed and unsigned integers.
3631
3632``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3633respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3634result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3635unsigned and/or signed overflow, respectively, occurs.
3636
3637Example:
3638""""""""
3639
3640.. code-block:: llvm
3641
3642 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3643
3644.. _i_fadd:
3645
3646'``fadd``' Instruction
3647^^^^^^^^^^^^^^^^^^^^^^
3648
3649Syntax:
3650"""""""
3651
3652::
3653
3654 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3655
3656Overview:
3657"""""""""
3658
3659The '``fadd``' instruction returns the sum of its two operands.
3660
3661Arguments:
3662""""""""""
3663
3664The two arguments to the '``fadd``' instruction must be :ref:`floating
3665point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3666Both arguments must have identical types.
3667
3668Semantics:
3669""""""""""
3670
3671The value produced is the floating point sum of the two operands. This
3672instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3673which are optimization hints to enable otherwise unsafe floating point
3674optimizations:
3675
3676Example:
3677""""""""
3678
3679.. code-block:: llvm
3680
3681 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3682
3683'``sub``' Instruction
3684^^^^^^^^^^^^^^^^^^^^^
3685
3686Syntax:
3687"""""""
3688
3689::
3690
3691 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3692 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3693 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3694 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3695
3696Overview:
3697"""""""""
3698
3699The '``sub``' instruction returns the difference of its two operands.
3700
3701Note that the '``sub``' instruction is used to represent the '``neg``'
3702instruction present in most other intermediate representations.
3703
3704Arguments:
3705""""""""""
3706
3707The two arguments to the '``sub``' instruction must be
3708:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3709arguments must have identical types.
3710
3711Semantics:
3712""""""""""
3713
3714The value produced is the integer difference of the two operands.
3715
3716If the difference has unsigned overflow, the result returned is the
3717mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3718the result.
3719
3720Because LLVM integers use a two's complement representation, this
3721instruction is appropriate for both signed and unsigned integers.
3722
3723``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3724respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3725result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3726unsigned and/or signed overflow, respectively, occurs.
3727
3728Example:
3729""""""""
3730
3731.. code-block:: llvm
3732
3733 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3734 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3735
3736.. _i_fsub:
3737
3738'``fsub``' Instruction
3739^^^^^^^^^^^^^^^^^^^^^^
3740
3741Syntax:
3742"""""""
3743
3744::
3745
3746 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3747
3748Overview:
3749"""""""""
3750
3751The '``fsub``' instruction returns the difference of its two operands.
3752
3753Note that the '``fsub``' instruction is used to represent the '``fneg``'
3754instruction present in most other intermediate representations.
3755
3756Arguments:
3757""""""""""
3758
3759The two arguments to the '``fsub``' instruction must be :ref:`floating
3760point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3761Both arguments must have identical types.
3762
3763Semantics:
3764""""""""""
3765
3766The value produced is the floating point difference of the two operands.
3767This instruction can also take any number of :ref:`fast-math
3768flags <fastmath>`, which are optimization hints to enable otherwise
3769unsafe floating point optimizations:
3770
3771Example:
3772""""""""
3773
3774.. code-block:: llvm
3775
3776 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3777 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3778
3779'``mul``' Instruction
3780^^^^^^^^^^^^^^^^^^^^^
3781
3782Syntax:
3783"""""""
3784
3785::
3786
3787 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3788 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3789 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3790 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3791
3792Overview:
3793"""""""""
3794
3795The '``mul``' instruction returns the product of its two operands.
3796
3797Arguments:
3798""""""""""
3799
3800The two arguments to the '``mul``' instruction must be
3801:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3802arguments must have identical types.
3803
3804Semantics:
3805""""""""""
3806
3807The value produced is the integer product of the two operands.
3808
3809If the result of the multiplication has unsigned overflow, the result
3810returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3811bit width of the result.
3812
3813Because LLVM integers use a two's complement representation, and the
3814result is the same width as the operands, this instruction returns the
3815correct result for both signed and unsigned integers. If a full product
3816(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3817sign-extended or zero-extended as appropriate to the width of the full
3818product.
3819
3820``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3821respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3822result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3823unsigned and/or signed overflow, respectively, occurs.
3824
3825Example:
3826""""""""
3827
3828.. code-block:: llvm
3829
3830 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3831
3832.. _i_fmul:
3833
3834'``fmul``' Instruction
3835^^^^^^^^^^^^^^^^^^^^^^
3836
3837Syntax:
3838"""""""
3839
3840::
3841
3842 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3843
3844Overview:
3845"""""""""
3846
3847The '``fmul``' instruction returns the product of its two operands.
3848
3849Arguments:
3850""""""""""
3851
3852The two arguments to the '``fmul``' instruction must be :ref:`floating
3853point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3854Both arguments must have identical types.
3855
3856Semantics:
3857""""""""""
3858
3859The value produced is the floating point product of the two operands.
3860This instruction can also take any number of :ref:`fast-math
3861flags <fastmath>`, which are optimization hints to enable otherwise
3862unsafe floating point optimizations:
3863
3864Example:
3865""""""""
3866
3867.. code-block:: llvm
3868
3869 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3870
3871'``udiv``' Instruction
3872^^^^^^^^^^^^^^^^^^^^^^
3873
3874Syntax:
3875"""""""
3876
3877::
3878
3879 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3880 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3881
3882Overview:
3883"""""""""
3884
3885The '``udiv``' instruction returns the quotient of its two operands.
3886
3887Arguments:
3888""""""""""
3889
3890The two arguments to the '``udiv``' instruction must be
3891:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3892arguments must have identical types.
3893
3894Semantics:
3895""""""""""
3896
3897The value produced is the unsigned integer quotient of the two operands.
3898
3899Note that unsigned integer division and signed integer division are
3900distinct operations; for signed integer division, use '``sdiv``'.
3901
3902Division by zero leads to undefined behavior.
3903
3904If the ``exact`` keyword is present, the result value of the ``udiv`` is
3905a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3906such, "((a udiv exact b) mul b) == a").
3907
3908Example:
3909""""""""
3910
3911.. code-block:: llvm
3912
3913 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3914
3915'``sdiv``' Instruction
3916^^^^^^^^^^^^^^^^^^^^^^
3917
3918Syntax:
3919"""""""
3920
3921::
3922
3923 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3924 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3925
3926Overview:
3927"""""""""
3928
3929The '``sdiv``' instruction returns the quotient of its two operands.
3930
3931Arguments:
3932""""""""""
3933
3934The two arguments to the '``sdiv``' instruction must be
3935:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3936arguments must have identical types.
3937
3938Semantics:
3939""""""""""
3940
3941The value produced is the signed integer quotient of the two operands
3942rounded towards zero.
3943
3944Note that signed integer division and unsigned integer division are
3945distinct operations; for unsigned integer division, use '``udiv``'.
3946
3947Division by zero leads to undefined behavior. Overflow also leads to
3948undefined behavior; this is a rare case, but can occur, for example, by
3949doing a 32-bit division of -2147483648 by -1.
3950
3951If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3952a :ref:`poison value <poisonvalues>` if the result would be rounded.
3953
3954Example:
3955""""""""
3956
3957.. code-block:: llvm
3958
3959 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3960
3961.. _i_fdiv:
3962
3963'``fdiv``' Instruction
3964^^^^^^^^^^^^^^^^^^^^^^
3965
3966Syntax:
3967"""""""
3968
3969::
3970
3971 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3972
3973Overview:
3974"""""""""
3975
3976The '``fdiv``' instruction returns the quotient of its two operands.
3977
3978Arguments:
3979""""""""""
3980
3981The two arguments to the '``fdiv``' instruction must be :ref:`floating
3982point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3983Both arguments must have identical types.
3984
3985Semantics:
3986""""""""""
3987
3988The value produced is the floating point quotient of the two operands.
3989This instruction can also take any number of :ref:`fast-math
3990flags <fastmath>`, which are optimization hints to enable otherwise
3991unsafe floating point optimizations:
3992
3993Example:
3994""""""""
3995
3996.. code-block:: llvm
3997
3998 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3999
4000'``urem``' Instruction
4001^^^^^^^^^^^^^^^^^^^^^^
4002
4003Syntax:
4004"""""""
4005
4006::
4007
4008 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
4009
4010Overview:
4011"""""""""
4012
4013The '``urem``' instruction returns the remainder from the unsigned
4014division of its two arguments.
4015
4016Arguments:
4017""""""""""
4018
4019The two arguments to the '``urem``' instruction must be
4020:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4021arguments must have identical types.
4022
4023Semantics:
4024""""""""""
4025
4026This instruction returns the unsigned integer *remainder* of a division.
4027This instruction always performs an unsigned division to get the
4028remainder.
4029
4030Note that unsigned integer remainder and signed integer remainder are
4031distinct operations; for signed integer remainder, use '``srem``'.
4032
4033Taking the remainder of a division by zero leads to undefined behavior.
4034
4035Example:
4036""""""""
4037
4038.. code-block:: llvm
4039
4040 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4041
4042'``srem``' Instruction
4043^^^^^^^^^^^^^^^^^^^^^^
4044
4045Syntax:
4046"""""""
4047
4048::
4049
4050 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4051
4052Overview:
4053"""""""""
4054
4055The '``srem``' instruction returns the remainder from the signed
4056division of its two operands. This instruction can also take
4057:ref:`vector <t_vector>` versions of the values in which case the elements
4058must be integers.
4059
4060Arguments:
4061""""""""""
4062
4063The two arguments to the '``srem``' instruction must be
4064:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4065arguments must have identical types.
4066
4067Semantics:
4068""""""""""
4069
4070This instruction returns the *remainder* of a division (where the result
4071is either zero or has the same sign as the dividend, ``op1``), not the
4072*modulo* operator (where the result is either zero or has the same sign
4073as the divisor, ``op2``) of a value. For more information about the
4074difference, see `The Math
4075Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4076table of how this is implemented in various languages, please see
4077`Wikipedia: modulo
4078operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4079
4080Note that signed integer remainder and unsigned integer remainder are
4081distinct operations; for unsigned integer remainder, use '``urem``'.
4082
4083Taking the remainder of a division by zero leads to undefined behavior.
4084Overflow also leads to undefined behavior; this is a rare case, but can
4085occur, for example, by taking the remainder of a 32-bit division of
4086-2147483648 by -1. (The remainder doesn't actually overflow, but this
4087rule lets srem be implemented using instructions that return both the
4088result of the division and the remainder.)
4089
4090Example:
4091""""""""
4092
4093.. code-block:: llvm
4094
4095 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4096
4097.. _i_frem:
4098
4099'``frem``' Instruction
4100^^^^^^^^^^^^^^^^^^^^^^
4101
4102Syntax:
4103"""""""
4104
4105::
4106
4107 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4108
4109Overview:
4110"""""""""
4111
4112The '``frem``' instruction returns the remainder from the division of
4113its two operands.
4114
4115Arguments:
4116""""""""""
4117
4118The two arguments to the '``frem``' instruction must be :ref:`floating
4119point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4120Both arguments must have identical types.
4121
4122Semantics:
4123""""""""""
4124
4125This instruction returns the *remainder* of a division. The remainder
4126has the same sign as the dividend. This instruction can also take any
4127number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4128to enable otherwise unsafe floating point optimizations:
4129
4130Example:
4131""""""""
4132
4133.. code-block:: llvm
4134
4135 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4136
4137.. _bitwiseops:
4138
4139Bitwise Binary Operations
4140-------------------------
4141
4142Bitwise binary operators are used to do various forms of bit-twiddling
4143in a program. They are generally very efficient instructions and can
4144commonly be strength reduced from other instructions. They require two
4145operands of the same type, execute an operation on them, and produce a
4146single value. The resulting value is the same type as its operands.
4147
4148'``shl``' Instruction
4149^^^^^^^^^^^^^^^^^^^^^
4150
4151Syntax:
4152"""""""
4153
4154::
4155
4156 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4157 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4158 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4159 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4160
4161Overview:
4162"""""""""
4163
4164The '``shl``' instruction returns the first operand shifted to the left
4165a specified number of bits.
4166
4167Arguments:
4168""""""""""
4169
4170Both arguments to the '``shl``' instruction must be the same
4171:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4172'``op2``' is treated as an unsigned value.
4173
4174Semantics:
4175""""""""""
4176
4177The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4178where ``n`` is the width of the result. If ``op2`` is (statically or
4179dynamically) negative or equal to or larger than the number of bits in
4180``op1``, the result is undefined. If the arguments are vectors, each
4181vector element of ``op1`` is shifted by the corresponding shift amount
4182in ``op2``.
4183
4184If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4185value <poisonvalues>` if it shifts out any non-zero bits. If the
4186``nsw`` keyword is present, then the shift produces a :ref:`poison
4187value <poisonvalues>` if it shifts out any bits that disagree with the
4188resultant sign bit. As such, NUW/NSW have the same semantics as they
4189would if the shift were expressed as a mul instruction with the same
4190nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4191
4192Example:
4193""""""""
4194
4195.. code-block:: llvm
4196
4197 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4198 <result> = shl i32 4, 2 ; yields {i32}: 16
4199 <result> = shl i32 1, 10 ; yields {i32}: 1024
4200 <result> = shl i32 1, 32 ; undefined
4201 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4202
4203'``lshr``' Instruction
4204^^^^^^^^^^^^^^^^^^^^^^
4205
4206Syntax:
4207"""""""
4208
4209::
4210
4211 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4212 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4213
4214Overview:
4215"""""""""
4216
4217The '``lshr``' instruction (logical shift right) returns the first
4218operand shifted to the right a specified number of bits with zero fill.
4219
4220Arguments:
4221""""""""""
4222
4223Both arguments to the '``lshr``' instruction must be the same
4224:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4225'``op2``' is treated as an unsigned value.
4226
4227Semantics:
4228""""""""""
4229
4230This instruction always performs a logical shift right operation. The
4231most significant bits of the result will be filled with zero bits after
4232the shift. If ``op2`` is (statically or dynamically) equal to or larger
4233than the number of bits in ``op1``, the result is undefined. If the
4234arguments are vectors, each vector element of ``op1`` is shifted by the
4235corresponding shift amount in ``op2``.
4236
4237If the ``exact`` keyword is present, the result value of the ``lshr`` is
4238a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4239non-zero.
4240
4241Example:
4242""""""""
4243
4244.. code-block:: llvm
4245
4246 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4247 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4248 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004249 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004250 <result> = lshr i32 1, 32 ; undefined
4251 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4252
4253'``ashr``' Instruction
4254^^^^^^^^^^^^^^^^^^^^^^
4255
4256Syntax:
4257"""""""
4258
4259::
4260
4261 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4262 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4263
4264Overview:
4265"""""""""
4266
4267The '``ashr``' instruction (arithmetic shift right) returns the first
4268operand shifted to the right a specified number of bits with sign
4269extension.
4270
4271Arguments:
4272""""""""""
4273
4274Both arguments to the '``ashr``' instruction must be the same
4275:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4276'``op2``' is treated as an unsigned value.
4277
4278Semantics:
4279""""""""""
4280
4281This instruction always performs an arithmetic shift right operation,
4282The most significant bits of the result will be filled with the sign bit
4283of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4284than the number of bits in ``op1``, the result is undefined. If the
4285arguments are vectors, each vector element of ``op1`` is shifted by the
4286corresponding shift amount in ``op2``.
4287
4288If the ``exact`` keyword is present, the result value of the ``ashr`` is
4289a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4290non-zero.
4291
4292Example:
4293""""""""
4294
4295.. code-block:: llvm
4296
4297 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4298 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4299 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4300 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4301 <result> = ashr i32 1, 32 ; undefined
4302 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4303
4304'``and``' Instruction
4305^^^^^^^^^^^^^^^^^^^^^
4306
4307Syntax:
4308"""""""
4309
4310::
4311
4312 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4313
4314Overview:
4315"""""""""
4316
4317The '``and``' instruction returns the bitwise logical and of its two
4318operands.
4319
4320Arguments:
4321""""""""""
4322
4323The two arguments to the '``and``' instruction must be
4324:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4325arguments must have identical types.
4326
4327Semantics:
4328""""""""""
4329
4330The truth table used for the '``and``' instruction is:
4331
4332+-----+-----+-----+
4333| In0 | In1 | Out |
4334+-----+-----+-----+
4335| 0 | 0 | 0 |
4336+-----+-----+-----+
4337| 0 | 1 | 0 |
4338+-----+-----+-----+
4339| 1 | 0 | 0 |
4340+-----+-----+-----+
4341| 1 | 1 | 1 |
4342+-----+-----+-----+
4343
4344Example:
4345""""""""
4346
4347.. code-block:: llvm
4348
4349 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4350 <result> = and i32 15, 40 ; yields {i32}:result = 8
4351 <result> = and i32 4, 8 ; yields {i32}:result = 0
4352
4353'``or``' Instruction
4354^^^^^^^^^^^^^^^^^^^^
4355
4356Syntax:
4357"""""""
4358
4359::
4360
4361 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4362
4363Overview:
4364"""""""""
4365
4366The '``or``' instruction returns the bitwise logical inclusive or of its
4367two operands.
4368
4369Arguments:
4370""""""""""
4371
4372The two arguments to the '``or``' instruction must be
4373:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4374arguments must have identical types.
4375
4376Semantics:
4377""""""""""
4378
4379The truth table used for the '``or``' instruction is:
4380
4381+-----+-----+-----+
4382| In0 | In1 | Out |
4383+-----+-----+-----+
4384| 0 | 0 | 0 |
4385+-----+-----+-----+
4386| 0 | 1 | 1 |
4387+-----+-----+-----+
4388| 1 | 0 | 1 |
4389+-----+-----+-----+
4390| 1 | 1 | 1 |
4391+-----+-----+-----+
4392
4393Example:
4394""""""""
4395
4396::
4397
4398 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4399 <result> = or i32 15, 40 ; yields {i32}:result = 47
4400 <result> = or i32 4, 8 ; yields {i32}:result = 12
4401
4402'``xor``' Instruction
4403^^^^^^^^^^^^^^^^^^^^^
4404
4405Syntax:
4406"""""""
4407
4408::
4409
4410 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4411
4412Overview:
4413"""""""""
4414
4415The '``xor``' instruction returns the bitwise logical exclusive or of
4416its two operands. The ``xor`` is used to implement the "one's
4417complement" operation, which is the "~" operator in C.
4418
4419Arguments:
4420""""""""""
4421
4422The two arguments to the '``xor``' instruction must be
4423:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4424arguments must have identical types.
4425
4426Semantics:
4427""""""""""
4428
4429The truth table used for the '``xor``' instruction is:
4430
4431+-----+-----+-----+
4432| In0 | In1 | Out |
4433+-----+-----+-----+
4434| 0 | 0 | 0 |
4435+-----+-----+-----+
4436| 0 | 1 | 1 |
4437+-----+-----+-----+
4438| 1 | 0 | 1 |
4439+-----+-----+-----+
4440| 1 | 1 | 0 |
4441+-----+-----+-----+
4442
4443Example:
4444""""""""
4445
4446.. code-block:: llvm
4447
4448 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4449 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4450 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4451 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4452
4453Vector Operations
4454-----------------
4455
4456LLVM supports several instructions to represent vector operations in a
4457target-independent manner. These instructions cover the element-access
4458and vector-specific operations needed to process vectors effectively.
4459While LLVM does directly support these vector operations, many
4460sophisticated algorithms will want to use target-specific intrinsics to
4461take full advantage of a specific target.
4462
4463.. _i_extractelement:
4464
4465'``extractelement``' Instruction
4466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4467
4468Syntax:
4469"""""""
4470
4471::
4472
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004473 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004474
4475Overview:
4476"""""""""
4477
4478The '``extractelement``' instruction extracts a single scalar element
4479from a vector at a specified index.
4480
4481Arguments:
4482""""""""""
4483
4484The first operand of an '``extractelement``' instruction is a value of
4485:ref:`vector <t_vector>` type. The second operand is an index indicating
4486the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004487variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004488
4489Semantics:
4490""""""""""
4491
4492The result is a scalar of the same type as the element type of ``val``.
4493Its value is the value at position ``idx`` of ``val``. If ``idx``
4494exceeds the length of ``val``, the results are undefined.
4495
4496Example:
4497""""""""
4498
4499.. code-block:: llvm
4500
4501 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4502
4503.. _i_insertelement:
4504
4505'``insertelement``' Instruction
4506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4507
4508Syntax:
4509"""""""
4510
4511::
4512
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004513 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004514
4515Overview:
4516"""""""""
4517
4518The '``insertelement``' instruction inserts a scalar element into a
4519vector at a specified index.
4520
4521Arguments:
4522""""""""""
4523
4524The first operand of an '``insertelement``' instruction is a value of
4525:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4526type must equal the element type of the first operand. The third operand
4527is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004528index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004529
4530Semantics:
4531""""""""""
4532
4533The result is a vector of the same type as ``val``. Its element values
4534are those of ``val`` except at position ``idx``, where it gets the value
4535``elt``. If ``idx`` exceeds the length of ``val``, the results are
4536undefined.
4537
4538Example:
4539""""""""
4540
4541.. code-block:: llvm
4542
4543 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4544
4545.. _i_shufflevector:
4546
4547'``shufflevector``' Instruction
4548^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4549
4550Syntax:
4551"""""""
4552
4553::
4554
4555 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4556
4557Overview:
4558"""""""""
4559
4560The '``shufflevector``' instruction constructs a permutation of elements
4561from two input vectors, returning a vector with the same element type as
4562the input and length that is the same as the shuffle mask.
4563
4564Arguments:
4565""""""""""
4566
4567The first two operands of a '``shufflevector``' instruction are vectors
4568with the same type. The third argument is a shuffle mask whose element
4569type is always 'i32'. The result of the instruction is a vector whose
4570length is the same as the shuffle mask and whose element type is the
4571same as the element type of the first two operands.
4572
4573The shuffle mask operand is required to be a constant vector with either
4574constant integer or undef values.
4575
4576Semantics:
4577""""""""""
4578
4579The elements of the two input vectors are numbered from left to right
4580across both of the vectors. The shuffle mask operand specifies, for each
4581element of the result vector, which element of the two input vectors the
4582result element gets. The element selector may be undef (meaning "don't
4583care") and the second operand may be undef if performing a shuffle from
4584only one vector.
4585
4586Example:
4587""""""""
4588
4589.. code-block:: llvm
4590
4591 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4592 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4593 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4594 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4595 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4596 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4597 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4598 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4599
4600Aggregate Operations
4601--------------------
4602
4603LLVM supports several instructions for working with
4604:ref:`aggregate <t_aggregate>` values.
4605
4606.. _i_extractvalue:
4607
4608'``extractvalue``' Instruction
4609^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4610
4611Syntax:
4612"""""""
4613
4614::
4615
4616 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4617
4618Overview:
4619"""""""""
4620
4621The '``extractvalue``' instruction extracts the value of a member field
4622from an :ref:`aggregate <t_aggregate>` value.
4623
4624Arguments:
4625""""""""""
4626
4627The first operand of an '``extractvalue``' instruction is a value of
4628:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4629constant indices to specify which value to extract in a similar manner
4630as indices in a '``getelementptr``' instruction.
4631
4632The major differences to ``getelementptr`` indexing are:
4633
4634- Since the value being indexed is not a pointer, the first index is
4635 omitted and assumed to be zero.
4636- At least one index must be specified.
4637- Not only struct indices but also array indices must be in bounds.
4638
4639Semantics:
4640""""""""""
4641
4642The result is the value at the position in the aggregate specified by
4643the index operands.
4644
4645Example:
4646""""""""
4647
4648.. code-block:: llvm
4649
4650 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4651
4652.. _i_insertvalue:
4653
4654'``insertvalue``' Instruction
4655^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4656
4657Syntax:
4658"""""""
4659
4660::
4661
4662 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4663
4664Overview:
4665"""""""""
4666
4667The '``insertvalue``' instruction inserts a value into a member field in
4668an :ref:`aggregate <t_aggregate>` value.
4669
4670Arguments:
4671""""""""""
4672
4673The first operand of an '``insertvalue``' instruction is a value of
4674:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4675a first-class value to insert. The following operands are constant
4676indices indicating the position at which to insert the value in a
4677similar manner as indices in a '``extractvalue``' instruction. The value
4678to insert must have the same type as the value identified by the
4679indices.
4680
4681Semantics:
4682""""""""""
4683
4684The result is an aggregate of the same type as ``val``. Its value is
4685that of ``val`` except that the value at the position specified by the
4686indices is that of ``elt``.
4687
4688Example:
4689""""""""
4690
4691.. code-block:: llvm
4692
4693 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4694 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4695 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4696
4697.. _memoryops:
4698
4699Memory Access and Addressing Operations
4700---------------------------------------
4701
4702A key design point of an SSA-based representation is how it represents
4703memory. In LLVM, no memory locations are in SSA form, which makes things
4704very simple. This section describes how to read, write, and allocate
4705memory in LLVM.
4706
4707.. _i_alloca:
4708
4709'``alloca``' Instruction
4710^^^^^^^^^^^^^^^^^^^^^^^^
4711
4712Syntax:
4713"""""""
4714
4715::
4716
David Majnemerc4ab61c2014-03-09 06:41:58 +00004717 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields {type*}:result
Sean Silvab084af42012-12-07 10:36:55 +00004718
4719Overview:
4720"""""""""
4721
4722The '``alloca``' instruction allocates memory on the stack frame of the
4723currently executing function, to be automatically released when this
4724function returns to its caller. The object is always allocated in the
4725generic address space (address space zero).
4726
4727Arguments:
4728""""""""""
4729
4730The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4731bytes of memory on the runtime stack, returning a pointer of the
4732appropriate type to the program. If "NumElements" is specified, it is
4733the number of elements allocated, otherwise "NumElements" is defaulted
4734to be one. If a constant alignment is specified, the value result of the
4735allocation is guaranteed to be aligned to at least that boundary. If not
4736specified, or if zero, the target can choose to align the allocation on
4737any convenient boundary compatible with the type.
4738
4739'``type``' may be any sized type.
4740
4741Semantics:
4742""""""""""
4743
4744Memory is allocated; a pointer is returned. The operation is undefined
4745if there is insufficient stack space for the allocation. '``alloca``'d
4746memory is automatically released when the function returns. The
4747'``alloca``' instruction is commonly used to represent automatic
4748variables that must have an address available. When the function returns
4749(either with the ``ret`` or ``resume`` instructions), the memory is
4750reclaimed. Allocating zero bytes is legal, but the result is undefined.
4751The order in which memory is allocated (ie., which way the stack grows)
4752is not specified.
4753
4754Example:
4755""""""""
4756
4757.. code-block:: llvm
4758
4759 %ptr = alloca i32 ; yields {i32*}:ptr
4760 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4761 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4762 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4763
4764.. _i_load:
4765
4766'``load``' Instruction
4767^^^^^^^^^^^^^^^^^^^^^^
4768
4769Syntax:
4770"""""""
4771
4772::
4773
4774 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4775 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4776 !<index> = !{ i32 1 }
4777
4778Overview:
4779"""""""""
4780
4781The '``load``' instruction is used to read from memory.
4782
4783Arguments:
4784""""""""""
4785
Eli Bendersky239a78b2013-04-17 20:17:08 +00004786The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004787from which to load. The pointer must point to a :ref:`first
4788class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4789then the optimizer is not allowed to modify the number or order of
4790execution of this ``load`` with other :ref:`volatile
4791operations <volatile>`.
4792
4793If the ``load`` is marked as ``atomic``, it takes an extra
4794:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4795``release`` and ``acq_rel`` orderings are not valid on ``load``
4796instructions. Atomic loads produce :ref:`defined <memmodel>` results
4797when they may see multiple atomic stores. The type of the pointee must
4798be an integer type whose bit width is a power of two greater than or
4799equal to eight and less than or equal to a target-specific size limit.
4800``align`` must be explicitly specified on atomic loads, and the load has
4801undefined behavior if the alignment is not set to a value which is at
4802least the size in bytes of the pointee. ``!nontemporal`` does not have
4803any defined semantics for atomic loads.
4804
4805The optional constant ``align`` argument specifies the alignment of the
4806operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004807or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004808alignment for the target. It is the responsibility of the code emitter
4809to ensure that the alignment information is correct. Overestimating the
4810alignment results in undefined behavior. Underestimating the alignment
4811may produce less efficient code. An alignment of 1 is always safe.
4812
4813The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004814metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004815``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004816metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004817that this load is not expected to be reused in the cache. The code
4818generator may select special instructions to save cache bandwidth, such
4819as the ``MOVNT`` instruction on x86.
4820
4821The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004822metadata name ``<index>`` corresponding to a metadata node with no
4823entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004824instruction tells the optimizer and code generator that this load
4825address points to memory which does not change value during program
4826execution. The optimizer may then move this load around, for example, by
4827hoisting it out of loops using loop invariant code motion.
4828
4829Semantics:
4830""""""""""
4831
4832The location of memory pointed to is loaded. If the value being loaded
4833is of scalar type then the number of bytes read does not exceed the
4834minimum number of bytes needed to hold all bits of the type. For
4835example, loading an ``i24`` reads at most three bytes. When loading a
4836value of a type like ``i20`` with a size that is not an integral number
4837of bytes, the result is undefined if the value was not originally
4838written using a store of the same type.
4839
4840Examples:
4841"""""""""
4842
4843.. code-block:: llvm
4844
4845 %ptr = alloca i32 ; yields {i32*}:ptr
4846 store i32 3, i32* %ptr ; yields {void}
4847 %val = load i32* %ptr ; yields {i32}:val = i32 3
4848
4849.. _i_store:
4850
4851'``store``' Instruction
4852^^^^^^^^^^^^^^^^^^^^^^^
4853
4854Syntax:
4855"""""""
4856
4857::
4858
4859 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4860 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4861
4862Overview:
4863"""""""""
4864
4865The '``store``' instruction is used to write to memory.
4866
4867Arguments:
4868""""""""""
4869
Eli Benderskyca380842013-04-17 17:17:20 +00004870There are two arguments to the ``store`` instruction: a value to store
4871and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004872operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004873the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004874then the optimizer is not allowed to modify the number or order of
4875execution of this ``store`` with other :ref:`volatile
4876operations <volatile>`.
4877
4878If the ``store`` is marked as ``atomic``, it takes an extra
4879:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4880``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4881instructions. Atomic loads produce :ref:`defined <memmodel>` results
4882when they may see multiple atomic stores. The type of the pointee must
4883be an integer type whose bit width is a power of two greater than or
4884equal to eight and less than or equal to a target-specific size limit.
4885``align`` must be explicitly specified on atomic stores, and the store
4886has undefined behavior if the alignment is not set to a value which is
4887at least the size in bytes of the pointee. ``!nontemporal`` does not
4888have any defined semantics for atomic stores.
4889
Eli Benderskyca380842013-04-17 17:17:20 +00004890The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004891operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004892or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004893alignment for the target. It is the responsibility of the code emitter
4894to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004895alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004896alignment may produce less efficient code. An alignment of 1 is always
4897safe.
4898
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004899The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004900name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004901value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004902tells the optimizer and code generator that this load is not expected to
4903be reused in the cache. The code generator may select special
4904instructions to save cache bandwidth, such as the MOVNT instruction on
4905x86.
4906
4907Semantics:
4908""""""""""
4909
Eli Benderskyca380842013-04-17 17:17:20 +00004910The contents of memory are updated to contain ``<value>`` at the
4911location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004912of scalar type then the number of bytes written does not exceed the
4913minimum number of bytes needed to hold all bits of the type. For
4914example, storing an ``i24`` writes at most three bytes. When writing a
4915value of a type like ``i20`` with a size that is not an integral number
4916of bytes, it is unspecified what happens to the extra bits that do not
4917belong to the type, but they will typically be overwritten.
4918
4919Example:
4920""""""""
4921
4922.. code-block:: llvm
4923
4924 %ptr = alloca i32 ; yields {i32*}:ptr
4925 store i32 3, i32* %ptr ; yields {void}
4926 %val = load i32* %ptr ; yields {i32}:val = i32 3
4927
4928.. _i_fence:
4929
4930'``fence``' Instruction
4931^^^^^^^^^^^^^^^^^^^^^^^
4932
4933Syntax:
4934"""""""
4935
4936::
4937
4938 fence [singlethread] <ordering> ; yields {void}
4939
4940Overview:
4941"""""""""
4942
4943The '``fence``' instruction is used to introduce happens-before edges
4944between operations.
4945
4946Arguments:
4947""""""""""
4948
4949'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4950defines what *synchronizes-with* edges they add. They can only be given
4951``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4952
4953Semantics:
4954""""""""""
4955
4956A fence A which has (at least) ``release`` ordering semantics
4957*synchronizes with* a fence B with (at least) ``acquire`` ordering
4958semantics if and only if there exist atomic operations X and Y, both
4959operating on some atomic object M, such that A is sequenced before X, X
4960modifies M (either directly or through some side effect of a sequence
4961headed by X), Y is sequenced before B, and Y observes M. This provides a
4962*happens-before* dependency between A and B. Rather than an explicit
4963``fence``, one (but not both) of the atomic operations X or Y might
4964provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4965still *synchronize-with* the explicit ``fence`` and establish the
4966*happens-before* edge.
4967
4968A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4969``acquire`` and ``release`` semantics specified above, participates in
4970the global program order of other ``seq_cst`` operations and/or fences.
4971
4972The optional ":ref:`singlethread <singlethread>`" argument specifies
4973that the fence only synchronizes with other fences in the same thread.
4974(This is useful for interacting with signal handlers.)
4975
4976Example:
4977""""""""
4978
4979.. code-block:: llvm
4980
4981 fence acquire ; yields {void}
4982 fence singlethread seq_cst ; yields {void}
4983
4984.. _i_cmpxchg:
4985
4986'``cmpxchg``' Instruction
4987^^^^^^^^^^^^^^^^^^^^^^^^^
4988
4989Syntax:
4990"""""""
4991
4992::
4993
Tim Northovere94a5182014-03-11 10:48:52 +00004994 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields {ty}
Sean Silvab084af42012-12-07 10:36:55 +00004995
4996Overview:
4997"""""""""
4998
4999The '``cmpxchg``' instruction is used to atomically modify memory. It
5000loads a value in memory and compares it to a given value. If they are
5001equal, it stores a new value into the memory.
5002
5003Arguments:
5004""""""""""
5005
5006There are three arguments to the '``cmpxchg``' instruction: an address
5007to operate on, a value to compare to the value currently be at that
5008address, and a new value to place at that address if the compared values
5009are equal. The type of '<cmp>' must be an integer type whose bit width
5010is a power of two greater than or equal to eight and less than or equal
5011to a target-specific size limit. '<cmp>' and '<new>' must have the same
5012type, and the type of '<pointer>' must be a pointer to that type. If the
5013``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5014to modify the number or order of execution of this ``cmpxchg`` with
5015other :ref:`volatile operations <volatile>`.
5016
Tim Northovere94a5182014-03-11 10:48:52 +00005017The success and failure :ref:`ordering <ordering>` arguments specify how this
5018``cmpxchg`` synchronizes with other atomic operations. The both ordering
5019parameters must be at least ``monotonic``, the ordering constraint on failure
5020must be no stronger than that on success, and the failure ordering cannot be
5021either ``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005022
5023The optional "``singlethread``" argument declares that the ``cmpxchg``
5024is only atomic with respect to code (usually signal handlers) running in
5025the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5026respect to all other code in the system.
5027
5028The pointer passed into cmpxchg must have alignment greater than or
5029equal to the size in memory of the operand.
5030
5031Semantics:
5032""""""""""
5033
5034The contents of memory at the location specified by the '``<pointer>``'
5035operand is read and compared to '``<cmp>``'; if the read value is the
5036equal, '``<new>``' is written. The original value at the location is
5037returned.
5038
Tim Northovere94a5182014-03-11 10:48:52 +00005039A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5040identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5041load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005042
5043Example:
5044""""""""
5045
5046.. code-block:: llvm
5047
5048 entry:
5049 %orig = atomic load i32* %ptr unordered ; yields {i32}
5050 br label %loop
5051
5052 loop:
5053 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5054 %squared = mul i32 %cmp, %cmp
Tim Northovere94a5182014-03-11 10:48:52 +00005055 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields {i32}
Sean Silvab084af42012-12-07 10:36:55 +00005056 %success = icmp eq i32 %cmp, %old
5057 br i1 %success, label %done, label %loop
5058
5059 done:
5060 ...
5061
5062.. _i_atomicrmw:
5063
5064'``atomicrmw``' Instruction
5065^^^^^^^^^^^^^^^^^^^^^^^^^^^
5066
5067Syntax:
5068"""""""
5069
5070::
5071
5072 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5073
5074Overview:
5075"""""""""
5076
5077The '``atomicrmw``' instruction is used to atomically modify memory.
5078
5079Arguments:
5080""""""""""
5081
5082There are three arguments to the '``atomicrmw``' instruction: an
5083operation to apply, an address whose value to modify, an argument to the
5084operation. The operation must be one of the following keywords:
5085
5086- xchg
5087- add
5088- sub
5089- and
5090- nand
5091- or
5092- xor
5093- max
5094- min
5095- umax
5096- umin
5097
5098The type of '<value>' must be an integer type whose bit width is a power
5099of two greater than or equal to eight and less than or equal to a
5100target-specific size limit. The type of the '``<pointer>``' operand must
5101be a pointer to that type. If the ``atomicrmw`` is marked as
5102``volatile``, then the optimizer is not allowed to modify the number or
5103order of execution of this ``atomicrmw`` with other :ref:`volatile
5104operations <volatile>`.
5105
5106Semantics:
5107""""""""""
5108
5109The contents of memory at the location specified by the '``<pointer>``'
5110operand are atomically read, modified, and written back. The original
5111value at the location is returned. The modification is specified by the
5112operation argument:
5113
5114- xchg: ``*ptr = val``
5115- add: ``*ptr = *ptr + val``
5116- sub: ``*ptr = *ptr - val``
5117- and: ``*ptr = *ptr & val``
5118- nand: ``*ptr = ~(*ptr & val)``
5119- or: ``*ptr = *ptr | val``
5120- xor: ``*ptr = *ptr ^ val``
5121- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5122- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5123- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5124 comparison)
5125- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5126 comparison)
5127
5128Example:
5129""""""""
5130
5131.. code-block:: llvm
5132
5133 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5134
5135.. _i_getelementptr:
5136
5137'``getelementptr``' Instruction
5138^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5139
5140Syntax:
5141"""""""
5142
5143::
5144
5145 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5146 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5147 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5148
5149Overview:
5150"""""""""
5151
5152The '``getelementptr``' instruction is used to get the address of a
5153subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5154address calculation only and does not access memory.
5155
5156Arguments:
5157""""""""""
5158
5159The first argument is always a pointer or a vector of pointers, and
5160forms the basis of the calculation. The remaining arguments are indices
5161that indicate which of the elements of the aggregate object are indexed.
5162The interpretation of each index is dependent on the type being indexed
5163into. The first index always indexes the pointer value given as the
5164first argument, the second index indexes a value of the type pointed to
5165(not necessarily the value directly pointed to, since the first index
5166can be non-zero), etc. The first type indexed into must be a pointer
5167value, subsequent types can be arrays, vectors, and structs. Note that
5168subsequent types being indexed into can never be pointers, since that
5169would require loading the pointer before continuing calculation.
5170
5171The type of each index argument depends on the type it is indexing into.
5172When indexing into a (optionally packed) structure, only ``i32`` integer
5173**constants** are allowed (when using a vector of indices they must all
5174be the **same** ``i32`` integer constant). When indexing into an array,
5175pointer or vector, integers of any width are allowed, and they are not
5176required to be constant. These integers are treated as signed values
5177where relevant.
5178
5179For example, let's consider a C code fragment and how it gets compiled
5180to LLVM:
5181
5182.. code-block:: c
5183
5184 struct RT {
5185 char A;
5186 int B[10][20];
5187 char C;
5188 };
5189 struct ST {
5190 int X;
5191 double Y;
5192 struct RT Z;
5193 };
5194
5195 int *foo(struct ST *s) {
5196 return &s[1].Z.B[5][13];
5197 }
5198
5199The LLVM code generated by Clang is:
5200
5201.. code-block:: llvm
5202
5203 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5204 %struct.ST = type { i32, double, %struct.RT }
5205
5206 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5207 entry:
5208 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5209 ret i32* %arrayidx
5210 }
5211
5212Semantics:
5213""""""""""
5214
5215In the example above, the first index is indexing into the
5216'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5217= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5218indexes into the third element of the structure, yielding a
5219'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5220structure. The third index indexes into the second element of the
5221structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5222dimensions of the array are subscripted into, yielding an '``i32``'
5223type. The '``getelementptr``' instruction returns a pointer to this
5224element, thus computing a value of '``i32*``' type.
5225
5226Note that it is perfectly legal to index partially through a structure,
5227returning a pointer to an inner element. Because of this, the LLVM code
5228for the given testcase is equivalent to:
5229
5230.. code-block:: llvm
5231
5232 define i32* @foo(%struct.ST* %s) {
5233 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5234 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5235 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5236 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5237 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5238 ret i32* %t5
5239 }
5240
5241If the ``inbounds`` keyword is present, the result value of the
5242``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5243pointer is not an *in bounds* address of an allocated object, or if any
5244of the addresses that would be formed by successive addition of the
5245offsets implied by the indices to the base address with infinitely
5246precise signed arithmetic are not an *in bounds* address of that
5247allocated object. The *in bounds* addresses for an allocated object are
5248all the addresses that point into the object, plus the address one byte
5249past the end. In cases where the base is a vector of pointers the
5250``inbounds`` keyword applies to each of the computations element-wise.
5251
5252If the ``inbounds`` keyword is not present, the offsets are added to the
5253base address with silently-wrapping two's complement arithmetic. If the
5254offsets have a different width from the pointer, they are sign-extended
5255or truncated to the width of the pointer. The result value of the
5256``getelementptr`` may be outside the object pointed to by the base
5257pointer. The result value may not necessarily be used to access memory
5258though, even if it happens to point into allocated storage. See the
5259:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5260information.
5261
5262The getelementptr instruction is often confusing. For some more insight
5263into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5264
5265Example:
5266""""""""
5267
5268.. code-block:: llvm
5269
5270 ; yields [12 x i8]*:aptr
5271 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5272 ; yields i8*:vptr
5273 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5274 ; yields i8*:eptr
5275 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5276 ; yields i32*:iptr
5277 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5278
5279In cases where the pointer argument is a vector of pointers, each index
5280must be a vector with the same number of elements. For example:
5281
5282.. code-block:: llvm
5283
5284 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5285
5286Conversion Operations
5287---------------------
5288
5289The instructions in this category are the conversion instructions
5290(casting) which all take a single operand and a type. They perform
5291various bit conversions on the operand.
5292
5293'``trunc .. to``' Instruction
5294^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5295
5296Syntax:
5297"""""""
5298
5299::
5300
5301 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5302
5303Overview:
5304"""""""""
5305
5306The '``trunc``' instruction truncates its operand to the type ``ty2``.
5307
5308Arguments:
5309""""""""""
5310
5311The '``trunc``' instruction takes a value to trunc, and a type to trunc
5312it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5313of the same number of integers. The bit size of the ``value`` must be
5314larger than the bit size of the destination type, ``ty2``. Equal sized
5315types are not allowed.
5316
5317Semantics:
5318""""""""""
5319
5320The '``trunc``' instruction truncates the high order bits in ``value``
5321and converts the remaining bits to ``ty2``. Since the source size must
5322be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5323It will always truncate bits.
5324
5325Example:
5326""""""""
5327
5328.. code-block:: llvm
5329
5330 %X = trunc i32 257 to i8 ; yields i8:1
5331 %Y = trunc i32 123 to i1 ; yields i1:true
5332 %Z = trunc i32 122 to i1 ; yields i1:false
5333 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5334
5335'``zext .. to``' Instruction
5336^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5337
5338Syntax:
5339"""""""
5340
5341::
5342
5343 <result> = zext <ty> <value> to <ty2> ; yields ty2
5344
5345Overview:
5346"""""""""
5347
5348The '``zext``' instruction zero extends its operand to type ``ty2``.
5349
5350Arguments:
5351""""""""""
5352
5353The '``zext``' instruction takes a value to cast, and a type to cast it
5354to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5355the same number of integers. The bit size of the ``value`` must be
5356smaller than the bit size of the destination type, ``ty2``.
5357
5358Semantics:
5359""""""""""
5360
5361The ``zext`` fills the high order bits of the ``value`` with zero bits
5362until it reaches the size of the destination type, ``ty2``.
5363
5364When zero extending from i1, the result will always be either 0 or 1.
5365
5366Example:
5367""""""""
5368
5369.. code-block:: llvm
5370
5371 %X = zext i32 257 to i64 ; yields i64:257
5372 %Y = zext i1 true to i32 ; yields i32:1
5373 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5374
5375'``sext .. to``' Instruction
5376^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5377
5378Syntax:
5379"""""""
5380
5381::
5382
5383 <result> = sext <ty> <value> to <ty2> ; yields ty2
5384
5385Overview:
5386"""""""""
5387
5388The '``sext``' sign extends ``value`` to the type ``ty2``.
5389
5390Arguments:
5391""""""""""
5392
5393The '``sext``' instruction takes a value to cast, and a type to cast it
5394to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5395the same number of integers. The bit size of the ``value`` must be
5396smaller than the bit size of the destination type, ``ty2``.
5397
5398Semantics:
5399""""""""""
5400
5401The '``sext``' instruction performs a sign extension by copying the sign
5402bit (highest order bit) of the ``value`` until it reaches the bit size
5403of the type ``ty2``.
5404
5405When sign extending from i1, the extension always results in -1 or 0.
5406
5407Example:
5408""""""""
5409
5410.. code-block:: llvm
5411
5412 %X = sext i8 -1 to i16 ; yields i16 :65535
5413 %Y = sext i1 true to i32 ; yields i32:-1
5414 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5415
5416'``fptrunc .. to``' Instruction
5417^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5418
5419Syntax:
5420"""""""
5421
5422::
5423
5424 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5425
5426Overview:
5427"""""""""
5428
5429The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5430
5431Arguments:
5432""""""""""
5433
5434The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5435value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5436The size of ``value`` must be larger than the size of ``ty2``. This
5437implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5438
5439Semantics:
5440""""""""""
5441
5442The '``fptrunc``' instruction truncates a ``value`` from a larger
5443:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5444point <t_floating>` type. If the value cannot fit within the
5445destination type, ``ty2``, then the results are undefined.
5446
5447Example:
5448""""""""
5449
5450.. code-block:: llvm
5451
5452 %X = fptrunc double 123.0 to float ; yields float:123.0
5453 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5454
5455'``fpext .. to``' Instruction
5456^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5457
5458Syntax:
5459"""""""
5460
5461::
5462
5463 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5464
5465Overview:
5466"""""""""
5467
5468The '``fpext``' extends a floating point ``value`` to a larger floating
5469point value.
5470
5471Arguments:
5472""""""""""
5473
5474The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5475``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5476to. The source type must be smaller than the destination type.
5477
5478Semantics:
5479""""""""""
5480
5481The '``fpext``' instruction extends the ``value`` from a smaller
5482:ref:`floating point <t_floating>` type to a larger :ref:`floating
5483point <t_floating>` type. The ``fpext`` cannot be used to make a
5484*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5485*no-op cast* for a floating point cast.
5486
5487Example:
5488""""""""
5489
5490.. code-block:: llvm
5491
5492 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5493 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5494
5495'``fptoui .. to``' Instruction
5496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5497
5498Syntax:
5499"""""""
5500
5501::
5502
5503 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5504
5505Overview:
5506"""""""""
5507
5508The '``fptoui``' converts a floating point ``value`` to its unsigned
5509integer equivalent of type ``ty2``.
5510
5511Arguments:
5512""""""""""
5513
5514The '``fptoui``' instruction takes a value to cast, which must be a
5515scalar or vector :ref:`floating point <t_floating>` value, and a type to
5516cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5517``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5518type with the same number of elements as ``ty``
5519
5520Semantics:
5521""""""""""
5522
5523The '``fptoui``' instruction converts its :ref:`floating
5524point <t_floating>` operand into the nearest (rounding towards zero)
5525unsigned integer value. If the value cannot fit in ``ty2``, the results
5526are undefined.
5527
5528Example:
5529""""""""
5530
5531.. code-block:: llvm
5532
5533 %X = fptoui double 123.0 to i32 ; yields i32:123
5534 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5535 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5536
5537'``fptosi .. to``' Instruction
5538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5539
5540Syntax:
5541"""""""
5542
5543::
5544
5545 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5546
5547Overview:
5548"""""""""
5549
5550The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5551``value`` to type ``ty2``.
5552
5553Arguments:
5554""""""""""
5555
5556The '``fptosi``' instruction takes a value to cast, which must be a
5557scalar or vector :ref:`floating point <t_floating>` value, and a type to
5558cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5559``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5560type with the same number of elements as ``ty``
5561
5562Semantics:
5563""""""""""
5564
5565The '``fptosi``' instruction converts its :ref:`floating
5566point <t_floating>` operand into the nearest (rounding towards zero)
5567signed integer value. If the value cannot fit in ``ty2``, the results
5568are undefined.
5569
5570Example:
5571""""""""
5572
5573.. code-block:: llvm
5574
5575 %X = fptosi double -123.0 to i32 ; yields i32:-123
5576 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5577 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5578
5579'``uitofp .. to``' Instruction
5580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5581
5582Syntax:
5583"""""""
5584
5585::
5586
5587 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5588
5589Overview:
5590"""""""""
5591
5592The '``uitofp``' instruction regards ``value`` as an unsigned integer
5593and converts that value to the ``ty2`` type.
5594
5595Arguments:
5596""""""""""
5597
5598The '``uitofp``' instruction takes a value to cast, which must be a
5599scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5600``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5601``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5602type with the same number of elements as ``ty``
5603
5604Semantics:
5605""""""""""
5606
5607The '``uitofp``' instruction interprets its operand as an unsigned
5608integer quantity and converts it to the corresponding floating point
5609value. If the value cannot fit in the floating point value, the results
5610are undefined.
5611
5612Example:
5613""""""""
5614
5615.. code-block:: llvm
5616
5617 %X = uitofp i32 257 to float ; yields float:257.0
5618 %Y = uitofp i8 -1 to double ; yields double:255.0
5619
5620'``sitofp .. to``' Instruction
5621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5622
5623Syntax:
5624"""""""
5625
5626::
5627
5628 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5629
5630Overview:
5631"""""""""
5632
5633The '``sitofp``' instruction regards ``value`` as a signed integer and
5634converts that value to the ``ty2`` type.
5635
5636Arguments:
5637""""""""""
5638
5639The '``sitofp``' instruction takes a value to cast, which must be a
5640scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5641``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5642``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5643type with the same number of elements as ``ty``
5644
5645Semantics:
5646""""""""""
5647
5648The '``sitofp``' instruction interprets its operand as a signed integer
5649quantity and converts it to the corresponding floating point value. If
5650the value cannot fit in the floating point value, the results are
5651undefined.
5652
5653Example:
5654""""""""
5655
5656.. code-block:: llvm
5657
5658 %X = sitofp i32 257 to float ; yields float:257.0
5659 %Y = sitofp i8 -1 to double ; yields double:-1.0
5660
5661.. _i_ptrtoint:
5662
5663'``ptrtoint .. to``' Instruction
5664^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5665
5666Syntax:
5667"""""""
5668
5669::
5670
5671 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5672
5673Overview:
5674"""""""""
5675
5676The '``ptrtoint``' instruction converts the pointer or a vector of
5677pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5678
5679Arguments:
5680""""""""""
5681
5682The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5683a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5684type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5685a vector of integers type.
5686
5687Semantics:
5688""""""""""
5689
5690The '``ptrtoint``' instruction converts ``value`` to integer type
5691``ty2`` by interpreting the pointer value as an integer and either
5692truncating or zero extending that value to the size of the integer type.
5693If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5694``value`` is larger than ``ty2`` then a truncation is done. If they are
5695the same size, then nothing is done (*no-op cast*) other than a type
5696change.
5697
5698Example:
5699""""""""
5700
5701.. code-block:: llvm
5702
5703 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5704 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5705 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5706
5707.. _i_inttoptr:
5708
5709'``inttoptr .. to``' Instruction
5710^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5711
5712Syntax:
5713"""""""
5714
5715::
5716
5717 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5718
5719Overview:
5720"""""""""
5721
5722The '``inttoptr``' instruction converts an integer ``value`` to a
5723pointer type, ``ty2``.
5724
5725Arguments:
5726""""""""""
5727
5728The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5729cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5730type.
5731
5732Semantics:
5733""""""""""
5734
5735The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5736applying either a zero extension or a truncation depending on the size
5737of the integer ``value``. If ``value`` is larger than the size of a
5738pointer then a truncation is done. If ``value`` is smaller than the size
5739of a pointer then a zero extension is done. If they are the same size,
5740nothing is done (*no-op cast*).
5741
5742Example:
5743""""""""
5744
5745.. code-block:: llvm
5746
5747 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5748 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5749 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5750 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5751
5752.. _i_bitcast:
5753
5754'``bitcast .. to``' Instruction
5755^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5756
5757Syntax:
5758"""""""
5759
5760::
5761
5762 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5763
5764Overview:
5765"""""""""
5766
5767The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5768changing any bits.
5769
5770Arguments:
5771""""""""""
5772
5773The '``bitcast``' instruction takes a value to cast, which must be a
5774non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005775also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5776bit sizes of ``value`` and the destination type, ``ty2``, must be
5777identical. If the source type is a pointer, the destination type must
5778also be a pointer of the same size. This instruction supports bitwise
5779conversion of vectors to integers and to vectors of other types (as
5780long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005781
5782Semantics:
5783""""""""""
5784
Matt Arsenault24b49c42013-07-31 17:49:08 +00005785The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5786is always a *no-op cast* because no bits change with this
5787conversion. The conversion is done as if the ``value`` had been stored
5788to memory and read back as type ``ty2``. Pointer (or vector of
5789pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005790pointers) types with the same address space through this instruction.
5791To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5792or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005793
5794Example:
5795""""""""
5796
5797.. code-block:: llvm
5798
5799 %X = bitcast i8 255 to i8 ; yields i8 :-1
5800 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5801 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5802 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5803
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005804.. _i_addrspacecast:
5805
5806'``addrspacecast .. to``' Instruction
5807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5808
5809Syntax:
5810"""""""
5811
5812::
5813
5814 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5815
5816Overview:
5817"""""""""
5818
5819The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5820address space ``n`` to type ``pty2`` in address space ``m``.
5821
5822Arguments:
5823""""""""""
5824
5825The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5826to cast and a pointer type to cast it to, which must have a different
5827address space.
5828
5829Semantics:
5830""""""""""
5831
5832The '``addrspacecast``' instruction converts the pointer value
5833``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005834value modification, depending on the target and the address space
5835pair. Pointer conversions within the same address space must be
5836performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005837conversion is legal then both result and operand refer to the same memory
5838location.
5839
5840Example:
5841""""""""
5842
5843.. code-block:: llvm
5844
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005845 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5846 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5847 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005848
Sean Silvab084af42012-12-07 10:36:55 +00005849.. _otherops:
5850
5851Other Operations
5852----------------
5853
5854The instructions in this category are the "miscellaneous" instructions,
5855which defy better classification.
5856
5857.. _i_icmp:
5858
5859'``icmp``' Instruction
5860^^^^^^^^^^^^^^^^^^^^^^
5861
5862Syntax:
5863"""""""
5864
5865::
5866
5867 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5868
5869Overview:
5870"""""""""
5871
5872The '``icmp``' instruction returns a boolean value or a vector of
5873boolean values based on comparison of its two integer, integer vector,
5874pointer, or pointer vector operands.
5875
5876Arguments:
5877""""""""""
5878
5879The '``icmp``' instruction takes three operands. The first operand is
5880the condition code indicating the kind of comparison to perform. It is
5881not a value, just a keyword. The possible condition code are:
5882
5883#. ``eq``: equal
5884#. ``ne``: not equal
5885#. ``ugt``: unsigned greater than
5886#. ``uge``: unsigned greater or equal
5887#. ``ult``: unsigned less than
5888#. ``ule``: unsigned less or equal
5889#. ``sgt``: signed greater than
5890#. ``sge``: signed greater or equal
5891#. ``slt``: signed less than
5892#. ``sle``: signed less or equal
5893
5894The remaining two arguments must be :ref:`integer <t_integer>` or
5895:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5896must also be identical types.
5897
5898Semantics:
5899""""""""""
5900
5901The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5902code given as ``cond``. The comparison performed always yields either an
5903:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5904
5905#. ``eq``: yields ``true`` if the operands are equal, ``false``
5906 otherwise. No sign interpretation is necessary or performed.
5907#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5908 otherwise. No sign interpretation is necessary or performed.
5909#. ``ugt``: interprets the operands as unsigned values and yields
5910 ``true`` if ``op1`` is greater than ``op2``.
5911#. ``uge``: interprets the operands as unsigned values and yields
5912 ``true`` if ``op1`` is greater than or equal to ``op2``.
5913#. ``ult``: interprets the operands as unsigned values and yields
5914 ``true`` if ``op1`` is less than ``op2``.
5915#. ``ule``: interprets the operands as unsigned values and yields
5916 ``true`` if ``op1`` is less than or equal to ``op2``.
5917#. ``sgt``: interprets the operands as signed values and yields ``true``
5918 if ``op1`` is greater than ``op2``.
5919#. ``sge``: interprets the operands as signed values and yields ``true``
5920 if ``op1`` is greater than or equal to ``op2``.
5921#. ``slt``: interprets the operands as signed values and yields ``true``
5922 if ``op1`` is less than ``op2``.
5923#. ``sle``: interprets the operands as signed values and yields ``true``
5924 if ``op1`` is less than or equal to ``op2``.
5925
5926If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5927are compared as if they were integers.
5928
5929If the operands are integer vectors, then they are compared element by
5930element. The result is an ``i1`` vector with the same number of elements
5931as the values being compared. Otherwise, the result is an ``i1``.
5932
5933Example:
5934""""""""
5935
5936.. code-block:: llvm
5937
5938 <result> = icmp eq i32 4, 5 ; yields: result=false
5939 <result> = icmp ne float* %X, %X ; yields: result=false
5940 <result> = icmp ult i16 4, 5 ; yields: result=true
5941 <result> = icmp sgt i16 4, 5 ; yields: result=false
5942 <result> = icmp ule i16 -4, 5 ; yields: result=false
5943 <result> = icmp sge i16 4, 5 ; yields: result=false
5944
5945Note that the code generator does not yet support vector types with the
5946``icmp`` instruction.
5947
5948.. _i_fcmp:
5949
5950'``fcmp``' Instruction
5951^^^^^^^^^^^^^^^^^^^^^^
5952
5953Syntax:
5954"""""""
5955
5956::
5957
5958 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5959
5960Overview:
5961"""""""""
5962
5963The '``fcmp``' instruction returns a boolean value or vector of boolean
5964values based on comparison of its operands.
5965
5966If the operands are floating point scalars, then the result type is a
5967boolean (:ref:`i1 <t_integer>`).
5968
5969If the operands are floating point vectors, then the result type is a
5970vector of boolean with the same number of elements as the operands being
5971compared.
5972
5973Arguments:
5974""""""""""
5975
5976The '``fcmp``' instruction takes three operands. The first operand is
5977the condition code indicating the kind of comparison to perform. It is
5978not a value, just a keyword. The possible condition code are:
5979
5980#. ``false``: no comparison, always returns false
5981#. ``oeq``: ordered and equal
5982#. ``ogt``: ordered and greater than
5983#. ``oge``: ordered and greater than or equal
5984#. ``olt``: ordered and less than
5985#. ``ole``: ordered and less than or equal
5986#. ``one``: ordered and not equal
5987#. ``ord``: ordered (no nans)
5988#. ``ueq``: unordered or equal
5989#. ``ugt``: unordered or greater than
5990#. ``uge``: unordered or greater than or equal
5991#. ``ult``: unordered or less than
5992#. ``ule``: unordered or less than or equal
5993#. ``une``: unordered or not equal
5994#. ``uno``: unordered (either nans)
5995#. ``true``: no comparison, always returns true
5996
5997*Ordered* means that neither operand is a QNAN while *unordered* means
5998that either operand may be a QNAN.
5999
6000Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6001point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6002type. They must have identical types.
6003
6004Semantics:
6005""""""""""
6006
6007The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6008condition code given as ``cond``. If the operands are vectors, then the
6009vectors are compared element by element. Each comparison performed
6010always yields an :ref:`i1 <t_integer>` result, as follows:
6011
6012#. ``false``: always yields ``false``, regardless of operands.
6013#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6014 is equal to ``op2``.
6015#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6016 is greater than ``op2``.
6017#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6018 is greater than or equal to ``op2``.
6019#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6020 is less than ``op2``.
6021#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6022 is less than or equal to ``op2``.
6023#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6024 is not equal to ``op2``.
6025#. ``ord``: yields ``true`` if both operands are not a QNAN.
6026#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6027 equal to ``op2``.
6028#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6029 greater than ``op2``.
6030#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6031 greater than or equal to ``op2``.
6032#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6033 less than ``op2``.
6034#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6035 less than or equal to ``op2``.
6036#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6037 not equal to ``op2``.
6038#. ``uno``: yields ``true`` if either operand is a QNAN.
6039#. ``true``: always yields ``true``, regardless of operands.
6040
6041Example:
6042""""""""
6043
6044.. code-block:: llvm
6045
6046 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6047 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6048 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6049 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6050
6051Note that the code generator does not yet support vector types with the
6052``fcmp`` instruction.
6053
6054.. _i_phi:
6055
6056'``phi``' Instruction
6057^^^^^^^^^^^^^^^^^^^^^
6058
6059Syntax:
6060"""""""
6061
6062::
6063
6064 <result> = phi <ty> [ <val0>, <label0>], ...
6065
6066Overview:
6067"""""""""
6068
6069The '``phi``' instruction is used to implement the φ node in the SSA
6070graph representing the function.
6071
6072Arguments:
6073""""""""""
6074
6075The type of the incoming values is specified with the first type field.
6076After this, the '``phi``' instruction takes a list of pairs as
6077arguments, with one pair for each predecessor basic block of the current
6078block. Only values of :ref:`first class <t_firstclass>` type may be used as
6079the value arguments to the PHI node. Only labels may be used as the
6080label arguments.
6081
6082There must be no non-phi instructions between the start of a basic block
6083and the PHI instructions: i.e. PHI instructions must be first in a basic
6084block.
6085
6086For the purposes of the SSA form, the use of each incoming value is
6087deemed to occur on the edge from the corresponding predecessor block to
6088the current block (but after any definition of an '``invoke``'
6089instruction's return value on the same edge).
6090
6091Semantics:
6092""""""""""
6093
6094At runtime, the '``phi``' instruction logically takes on the value
6095specified by the pair corresponding to the predecessor basic block that
6096executed just prior to the current block.
6097
6098Example:
6099""""""""
6100
6101.. code-block:: llvm
6102
6103 Loop: ; Infinite loop that counts from 0 on up...
6104 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6105 %nextindvar = add i32 %indvar, 1
6106 br label %Loop
6107
6108.. _i_select:
6109
6110'``select``' Instruction
6111^^^^^^^^^^^^^^^^^^^^^^^^
6112
6113Syntax:
6114"""""""
6115
6116::
6117
6118 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6119
6120 selty is either i1 or {<N x i1>}
6121
6122Overview:
6123"""""""""
6124
6125The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006126condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006127
6128Arguments:
6129""""""""""
6130
6131The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6132values indicating the condition, and two values of the same :ref:`first
6133class <t_firstclass>` type. If the val1/val2 are vectors and the
6134condition is a scalar, then entire vectors are selected, not individual
6135elements.
6136
6137Semantics:
6138""""""""""
6139
6140If the condition is an i1 and it evaluates to 1, the instruction returns
6141the first value argument; otherwise, it returns the second value
6142argument.
6143
6144If the condition is a vector of i1, then the value arguments must be
6145vectors of the same size, and the selection is done element by element.
6146
6147Example:
6148""""""""
6149
6150.. code-block:: llvm
6151
6152 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6153
6154.. _i_call:
6155
6156'``call``' Instruction
6157^^^^^^^^^^^^^^^^^^^^^^
6158
6159Syntax:
6160"""""""
6161
6162::
6163
Reid Kleckner5772b772014-04-24 20:14:34 +00006164 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006165
6166Overview:
6167"""""""""
6168
6169The '``call``' instruction represents a simple function call.
6170
6171Arguments:
6172""""""""""
6173
6174This instruction requires several arguments:
6175
Reid Kleckner5772b772014-04-24 20:14:34 +00006176#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6177 should perform tail call optimization. The ``tail`` marker is a hint that
6178 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6179 means that the call must be tail call optimized in order for the program to
6180 be correct. The ``musttail`` marker provides these guarantees:
6181
6182 #. The call will not cause unbounded stack growth if it is part of a
6183 recursive cycle in the call graph.
6184 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6185 forwarded in place.
6186
6187 Both markers imply that the callee does not access allocas or varargs from
6188 the caller. Calls marked ``musttail`` must obey the following additional
6189 rules:
6190
6191 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6192 or a pointer bitcast followed by a ret instruction.
6193 - The ret instruction must return the (possibly bitcasted) value
6194 produced by the call or void.
6195 - The caller and callee prototypes must match. Pointer types of
6196 parameters or return types may differ in pointee type, but not
6197 in address space.
6198 - The calling conventions of the caller and callee must match.
6199 - All ABI-impacting function attributes, such as sret, byval, inreg,
6200 returned, and inalloca, must match.
6201
6202 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6203 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006204
6205 - Caller and callee both have the calling convention ``fastcc``.
6206 - The call is in tail position (ret immediately follows call and ret
6207 uses value of call or is void).
6208 - Option ``-tailcallopt`` is enabled, or
6209 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6210 - `Platform specific constraints are
6211 met. <CodeGenerator.html#tailcallopt>`_
6212
6213#. The optional "cconv" marker indicates which :ref:`calling
6214 convention <callingconv>` the call should use. If none is
6215 specified, the call defaults to using C calling conventions. The
6216 calling convention of the call must match the calling convention of
6217 the target function, or else the behavior is undefined.
6218#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6219 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6220 are valid here.
6221#. '``ty``': the type of the call instruction itself which is also the
6222 type of the return value. Functions that return no value are marked
6223 ``void``.
6224#. '``fnty``': shall be the signature of the pointer to function value
6225 being invoked. The argument types must match the types implied by
6226 this signature. This type can be omitted if the function is not
6227 varargs and if the function type does not return a pointer to a
6228 function.
6229#. '``fnptrval``': An LLVM value containing a pointer to a function to
6230 be invoked. In most cases, this is a direct function invocation, but
6231 indirect ``call``'s are just as possible, calling an arbitrary pointer
6232 to function value.
6233#. '``function args``': argument list whose types match the function
6234 signature argument types and parameter attributes. All arguments must
6235 be of :ref:`first class <t_firstclass>` type. If the function signature
6236 indicates the function accepts a variable number of arguments, the
6237 extra arguments can be specified.
6238#. The optional :ref:`function attributes <fnattrs>` list. Only
6239 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6240 attributes are valid here.
6241
6242Semantics:
6243""""""""""
6244
6245The '``call``' instruction is used to cause control flow to transfer to
6246a specified function, with its incoming arguments bound to the specified
6247values. Upon a '``ret``' instruction in the called function, control
6248flow continues with the instruction after the function call, and the
6249return value of the function is bound to the result argument.
6250
6251Example:
6252""""""""
6253
6254.. code-block:: llvm
6255
6256 %retval = call i32 @test(i32 %argc)
6257 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6258 %X = tail call i32 @foo() ; yields i32
6259 %Y = tail call fastcc i32 @foo() ; yields i32
6260 call void %foo(i8 97 signext)
6261
6262 %struct.A = type { i32, i8 }
6263 %r = call %struct.A @foo() ; yields { 32, i8 }
6264 %gr = extractvalue %struct.A %r, 0 ; yields i32
6265 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6266 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6267 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6268
6269llvm treats calls to some functions with names and arguments that match
6270the standard C99 library as being the C99 library functions, and may
6271perform optimizations or generate code for them under that assumption.
6272This is something we'd like to change in the future to provide better
6273support for freestanding environments and non-C-based languages.
6274
6275.. _i_va_arg:
6276
6277'``va_arg``' Instruction
6278^^^^^^^^^^^^^^^^^^^^^^^^
6279
6280Syntax:
6281"""""""
6282
6283::
6284
6285 <resultval> = va_arg <va_list*> <arglist>, <argty>
6286
6287Overview:
6288"""""""""
6289
6290The '``va_arg``' instruction is used to access arguments passed through
6291the "variable argument" area of a function call. It is used to implement
6292the ``va_arg`` macro in C.
6293
6294Arguments:
6295""""""""""
6296
6297This instruction takes a ``va_list*`` value and the type of the
6298argument. It returns a value of the specified argument type and
6299increments the ``va_list`` to point to the next argument. The actual
6300type of ``va_list`` is target specific.
6301
6302Semantics:
6303""""""""""
6304
6305The '``va_arg``' instruction loads an argument of the specified type
6306from the specified ``va_list`` and causes the ``va_list`` to point to
6307the next argument. For more information, see the variable argument
6308handling :ref:`Intrinsic Functions <int_varargs>`.
6309
6310It is legal for this instruction to be called in a function which does
6311not take a variable number of arguments, for example, the ``vfprintf``
6312function.
6313
6314``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6315function <intrinsics>` because it takes a type as an argument.
6316
6317Example:
6318""""""""
6319
6320See the :ref:`variable argument processing <int_varargs>` section.
6321
6322Note that the code generator does not yet fully support va\_arg on many
6323targets. Also, it does not currently support va\_arg with aggregate
6324types on any target.
6325
6326.. _i_landingpad:
6327
6328'``landingpad``' Instruction
6329^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6330
6331Syntax:
6332"""""""
6333
6334::
6335
6336 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6337 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6338
6339 <clause> := catch <type> <value>
6340 <clause> := filter <array constant type> <array constant>
6341
6342Overview:
6343"""""""""
6344
6345The '``landingpad``' instruction is used by `LLVM's exception handling
6346system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006347is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006348code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6349defines values supplied by the personality function (``pers_fn``) upon
6350re-entry to the function. The ``resultval`` has the type ``resultty``.
6351
6352Arguments:
6353""""""""""
6354
6355This instruction takes a ``pers_fn`` value. This is the personality
6356function associated with the unwinding mechanism. The optional
6357``cleanup`` flag indicates that the landing pad block is a cleanup.
6358
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006359A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006360contains the global variable representing the "type" that may be caught
6361or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6362clause takes an array constant as its argument. Use
6363"``[0 x i8**] undef``" for a filter which cannot throw. The
6364'``landingpad``' instruction must contain *at least* one ``clause`` or
6365the ``cleanup`` flag.
6366
6367Semantics:
6368""""""""""
6369
6370The '``landingpad``' instruction defines the values which are set by the
6371personality function (``pers_fn``) upon re-entry to the function, and
6372therefore the "result type" of the ``landingpad`` instruction. As with
6373calling conventions, how the personality function results are
6374represented in LLVM IR is target specific.
6375
6376The clauses are applied in order from top to bottom. If two
6377``landingpad`` instructions are merged together through inlining, the
6378clauses from the calling function are appended to the list of clauses.
6379When the call stack is being unwound due to an exception being thrown,
6380the exception is compared against each ``clause`` in turn. If it doesn't
6381match any of the clauses, and the ``cleanup`` flag is not set, then
6382unwinding continues further up the call stack.
6383
6384The ``landingpad`` instruction has several restrictions:
6385
6386- A landing pad block is a basic block which is the unwind destination
6387 of an '``invoke``' instruction.
6388- A landing pad block must have a '``landingpad``' instruction as its
6389 first non-PHI instruction.
6390- There can be only one '``landingpad``' instruction within the landing
6391 pad block.
6392- A basic block that is not a landing pad block may not include a
6393 '``landingpad``' instruction.
6394- All '``landingpad``' instructions in a function must have the same
6395 personality function.
6396
6397Example:
6398""""""""
6399
6400.. code-block:: llvm
6401
6402 ;; A landing pad which can catch an integer.
6403 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6404 catch i8** @_ZTIi
6405 ;; A landing pad that is a cleanup.
6406 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6407 cleanup
6408 ;; A landing pad which can catch an integer and can only throw a double.
6409 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6410 catch i8** @_ZTIi
6411 filter [1 x i8**] [@_ZTId]
6412
6413.. _intrinsics:
6414
6415Intrinsic Functions
6416===================
6417
6418LLVM supports the notion of an "intrinsic function". These functions
6419have well known names and semantics and are required to follow certain
6420restrictions. Overall, these intrinsics represent an extension mechanism
6421for the LLVM language that does not require changing all of the
6422transformations in LLVM when adding to the language (or the bitcode
6423reader/writer, the parser, etc...).
6424
6425Intrinsic function names must all start with an "``llvm.``" prefix. This
6426prefix is reserved in LLVM for intrinsic names; thus, function names may
6427not begin with this prefix. Intrinsic functions must always be external
6428functions: you cannot define the body of intrinsic functions. Intrinsic
6429functions may only be used in call or invoke instructions: it is illegal
6430to take the address of an intrinsic function. Additionally, because
6431intrinsic functions are part of the LLVM language, it is required if any
6432are added that they be documented here.
6433
6434Some intrinsic functions can be overloaded, i.e., the intrinsic
6435represents a family of functions that perform the same operation but on
6436different data types. Because LLVM can represent over 8 million
6437different integer types, overloading is used commonly to allow an
6438intrinsic function to operate on any integer type. One or more of the
6439argument types or the result type can be overloaded to accept any
6440integer type. Argument types may also be defined as exactly matching a
6441previous argument's type or the result type. This allows an intrinsic
6442function which accepts multiple arguments, but needs all of them to be
6443of the same type, to only be overloaded with respect to a single
6444argument or the result.
6445
6446Overloaded intrinsics will have the names of its overloaded argument
6447types encoded into its function name, each preceded by a period. Only
6448those types which are overloaded result in a name suffix. Arguments
6449whose type is matched against another type do not. For example, the
6450``llvm.ctpop`` function can take an integer of any width and returns an
6451integer of exactly the same integer width. This leads to a family of
6452functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6453``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6454overloaded, and only one type suffix is required. Because the argument's
6455type is matched against the return type, it does not require its own
6456name suffix.
6457
6458To learn how to add an intrinsic function, please see the `Extending
6459LLVM Guide <ExtendingLLVM.html>`_.
6460
6461.. _int_varargs:
6462
6463Variable Argument Handling Intrinsics
6464-------------------------------------
6465
6466Variable argument support is defined in LLVM with the
6467:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6468functions. These functions are related to the similarly named macros
6469defined in the ``<stdarg.h>`` header file.
6470
6471All of these functions operate on arguments that use a target-specific
6472value type "``va_list``". The LLVM assembly language reference manual
6473does not define what this type is, so all transformations should be
6474prepared to handle these functions regardless of the type used.
6475
6476This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6477variable argument handling intrinsic functions are used.
6478
6479.. code-block:: llvm
6480
6481 define i32 @test(i32 %X, ...) {
6482 ; Initialize variable argument processing
6483 %ap = alloca i8*
6484 %ap2 = bitcast i8** %ap to i8*
6485 call void @llvm.va_start(i8* %ap2)
6486
6487 ; Read a single integer argument
6488 %tmp = va_arg i8** %ap, i32
6489
6490 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6491 %aq = alloca i8*
6492 %aq2 = bitcast i8** %aq to i8*
6493 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6494 call void @llvm.va_end(i8* %aq2)
6495
6496 ; Stop processing of arguments.
6497 call void @llvm.va_end(i8* %ap2)
6498 ret i32 %tmp
6499 }
6500
6501 declare void @llvm.va_start(i8*)
6502 declare void @llvm.va_copy(i8*, i8*)
6503 declare void @llvm.va_end(i8*)
6504
6505.. _int_va_start:
6506
6507'``llvm.va_start``' Intrinsic
6508^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6509
6510Syntax:
6511"""""""
6512
6513::
6514
Nick Lewycky04f6de02013-09-11 22:04:52 +00006515 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006516
6517Overview:
6518"""""""""
6519
6520The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6521subsequent use by ``va_arg``.
6522
6523Arguments:
6524""""""""""
6525
6526The argument is a pointer to a ``va_list`` element to initialize.
6527
6528Semantics:
6529""""""""""
6530
6531The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6532available in C. In a target-dependent way, it initializes the
6533``va_list`` element to which the argument points, so that the next call
6534to ``va_arg`` will produce the first variable argument passed to the
6535function. Unlike the C ``va_start`` macro, this intrinsic does not need
6536to know the last argument of the function as the compiler can figure
6537that out.
6538
6539'``llvm.va_end``' Intrinsic
6540^^^^^^^^^^^^^^^^^^^^^^^^^^^
6541
6542Syntax:
6543"""""""
6544
6545::
6546
6547 declare void @llvm.va_end(i8* <arglist>)
6548
6549Overview:
6550"""""""""
6551
6552The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6553initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6554
6555Arguments:
6556""""""""""
6557
6558The argument is a pointer to a ``va_list`` to destroy.
6559
6560Semantics:
6561""""""""""
6562
6563The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6564available in C. In a target-dependent way, it destroys the ``va_list``
6565element to which the argument points. Calls to
6566:ref:`llvm.va_start <int_va_start>` and
6567:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6568``llvm.va_end``.
6569
6570.. _int_va_copy:
6571
6572'``llvm.va_copy``' Intrinsic
6573^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6574
6575Syntax:
6576"""""""
6577
6578::
6579
6580 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6581
6582Overview:
6583"""""""""
6584
6585The '``llvm.va_copy``' intrinsic copies the current argument position
6586from the source argument list to the destination argument list.
6587
6588Arguments:
6589""""""""""
6590
6591The first argument is a pointer to a ``va_list`` element to initialize.
6592The second argument is a pointer to a ``va_list`` element to copy from.
6593
6594Semantics:
6595""""""""""
6596
6597The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6598available in C. In a target-dependent way, it copies the source
6599``va_list`` element into the destination ``va_list`` element. This
6600intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6601arbitrarily complex and require, for example, memory allocation.
6602
6603Accurate Garbage Collection Intrinsics
6604--------------------------------------
6605
6606LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6607(GC) requires the implementation and generation of these intrinsics.
6608These intrinsics allow identification of :ref:`GC roots on the
6609stack <int_gcroot>`, as well as garbage collector implementations that
6610require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6611Front-ends for type-safe garbage collected languages should generate
6612these intrinsics to make use of the LLVM garbage collectors. For more
6613details, see `Accurate Garbage Collection with
6614LLVM <GarbageCollection.html>`_.
6615
6616The garbage collection intrinsics only operate on objects in the generic
6617address space (address space zero).
6618
6619.. _int_gcroot:
6620
6621'``llvm.gcroot``' Intrinsic
6622^^^^^^^^^^^^^^^^^^^^^^^^^^^
6623
6624Syntax:
6625"""""""
6626
6627::
6628
6629 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6630
6631Overview:
6632"""""""""
6633
6634The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6635the code generator, and allows some metadata to be associated with it.
6636
6637Arguments:
6638""""""""""
6639
6640The first argument specifies the address of a stack object that contains
6641the root pointer. The second pointer (which must be either a constant or
6642a global value address) contains the meta-data to be associated with the
6643root.
6644
6645Semantics:
6646""""""""""
6647
6648At runtime, a call to this intrinsic stores a null pointer into the
6649"ptrloc" location. At compile-time, the code generator generates
6650information to allow the runtime to find the pointer at GC safe points.
6651The '``llvm.gcroot``' intrinsic may only be used in a function which
6652:ref:`specifies a GC algorithm <gc>`.
6653
6654.. _int_gcread:
6655
6656'``llvm.gcread``' Intrinsic
6657^^^^^^^^^^^^^^^^^^^^^^^^^^^
6658
6659Syntax:
6660"""""""
6661
6662::
6663
6664 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6665
6666Overview:
6667"""""""""
6668
6669The '``llvm.gcread``' intrinsic identifies reads of references from heap
6670locations, allowing garbage collector implementations that require read
6671barriers.
6672
6673Arguments:
6674""""""""""
6675
6676The second argument is the address to read from, which should be an
6677address allocated from the garbage collector. The first object is a
6678pointer to the start of the referenced object, if needed by the language
6679runtime (otherwise null).
6680
6681Semantics:
6682""""""""""
6683
6684The '``llvm.gcread``' intrinsic has the same semantics as a load
6685instruction, but may be replaced with substantially more complex code by
6686the garbage collector runtime, as needed. The '``llvm.gcread``'
6687intrinsic may only be used in a function which :ref:`specifies a GC
6688algorithm <gc>`.
6689
6690.. _int_gcwrite:
6691
6692'``llvm.gcwrite``' Intrinsic
6693^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6694
6695Syntax:
6696"""""""
6697
6698::
6699
6700 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6701
6702Overview:
6703"""""""""
6704
6705The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6706locations, allowing garbage collector implementations that require write
6707barriers (such as generational or reference counting collectors).
6708
6709Arguments:
6710""""""""""
6711
6712The first argument is the reference to store, the second is the start of
6713the object to store it to, and the third is the address of the field of
6714Obj to store to. If the runtime does not require a pointer to the
6715object, Obj may be null.
6716
6717Semantics:
6718""""""""""
6719
6720The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6721instruction, but may be replaced with substantially more complex code by
6722the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6723intrinsic may only be used in a function which :ref:`specifies a GC
6724algorithm <gc>`.
6725
6726Code Generator Intrinsics
6727-------------------------
6728
6729These intrinsics are provided by LLVM to expose special features that
6730may only be implemented with code generator support.
6731
6732'``llvm.returnaddress``' Intrinsic
6733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6734
6735Syntax:
6736"""""""
6737
6738::
6739
6740 declare i8 *@llvm.returnaddress(i32 <level>)
6741
6742Overview:
6743"""""""""
6744
6745The '``llvm.returnaddress``' intrinsic attempts to compute a
6746target-specific value indicating the return address of the current
6747function or one of its callers.
6748
6749Arguments:
6750""""""""""
6751
6752The argument to this intrinsic indicates which function to return the
6753address for. Zero indicates the calling function, one indicates its
6754caller, etc. The argument is **required** to be a constant integer
6755value.
6756
6757Semantics:
6758""""""""""
6759
6760The '``llvm.returnaddress``' intrinsic either returns a pointer
6761indicating the return address of the specified call frame, or zero if it
6762cannot be identified. The value returned by this intrinsic is likely to
6763be incorrect or 0 for arguments other than zero, so it should only be
6764used for debugging purposes.
6765
6766Note that calling this intrinsic does not prevent function inlining or
6767other aggressive transformations, so the value returned may not be that
6768of the obvious source-language caller.
6769
6770'``llvm.frameaddress``' Intrinsic
6771^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6772
6773Syntax:
6774"""""""
6775
6776::
6777
6778 declare i8* @llvm.frameaddress(i32 <level>)
6779
6780Overview:
6781"""""""""
6782
6783The '``llvm.frameaddress``' intrinsic attempts to return the
6784target-specific frame pointer value for the specified stack frame.
6785
6786Arguments:
6787""""""""""
6788
6789The argument to this intrinsic indicates which function to return the
6790frame pointer for. Zero indicates the calling function, one indicates
6791its caller, etc. The argument is **required** to be a constant integer
6792value.
6793
6794Semantics:
6795""""""""""
6796
6797The '``llvm.frameaddress``' intrinsic either returns a pointer
6798indicating the frame address of the specified call frame, or zero if it
6799cannot be identified. The value returned by this intrinsic is likely to
6800be incorrect or 0 for arguments other than zero, so it should only be
6801used for debugging purposes.
6802
6803Note that calling this intrinsic does not prevent function inlining or
6804other aggressive transformations, so the value returned may not be that
6805of the obvious source-language caller.
6806
6807.. _int_stacksave:
6808
6809'``llvm.stacksave``' Intrinsic
6810^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6811
6812Syntax:
6813"""""""
6814
6815::
6816
6817 declare i8* @llvm.stacksave()
6818
6819Overview:
6820"""""""""
6821
6822The '``llvm.stacksave``' intrinsic is used to remember the current state
6823of the function stack, for use with
6824:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6825implementing language features like scoped automatic variable sized
6826arrays in C99.
6827
6828Semantics:
6829""""""""""
6830
6831This intrinsic returns a opaque pointer value that can be passed to
6832:ref:`llvm.stackrestore <int_stackrestore>`. When an
6833``llvm.stackrestore`` intrinsic is executed with a value saved from
6834``llvm.stacksave``, it effectively restores the state of the stack to
6835the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6836practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6837were allocated after the ``llvm.stacksave`` was executed.
6838
6839.. _int_stackrestore:
6840
6841'``llvm.stackrestore``' Intrinsic
6842^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6843
6844Syntax:
6845"""""""
6846
6847::
6848
6849 declare void @llvm.stackrestore(i8* %ptr)
6850
6851Overview:
6852"""""""""
6853
6854The '``llvm.stackrestore``' intrinsic is used to restore the state of
6855the function stack to the state it was in when the corresponding
6856:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6857useful for implementing language features like scoped automatic variable
6858sized arrays in C99.
6859
6860Semantics:
6861""""""""""
6862
6863See the description for :ref:`llvm.stacksave <int_stacksave>`.
6864
6865'``llvm.prefetch``' Intrinsic
6866^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6867
6868Syntax:
6869"""""""
6870
6871::
6872
6873 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6874
6875Overview:
6876"""""""""
6877
6878The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6879insert a prefetch instruction if supported; otherwise, it is a noop.
6880Prefetches have no effect on the behavior of the program but can change
6881its performance characteristics.
6882
6883Arguments:
6884""""""""""
6885
6886``address`` is the address to be prefetched, ``rw`` is the specifier
6887determining if the fetch should be for a read (0) or write (1), and
6888``locality`` is a temporal locality specifier ranging from (0) - no
6889locality, to (3) - extremely local keep in cache. The ``cache type``
6890specifies whether the prefetch is performed on the data (1) or
6891instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6892arguments must be constant integers.
6893
6894Semantics:
6895""""""""""
6896
6897This intrinsic does not modify the behavior of the program. In
6898particular, prefetches cannot trap and do not produce a value. On
6899targets that support this intrinsic, the prefetch can provide hints to
6900the processor cache for better performance.
6901
6902'``llvm.pcmarker``' Intrinsic
6903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6904
6905Syntax:
6906"""""""
6907
6908::
6909
6910 declare void @llvm.pcmarker(i32 <id>)
6911
6912Overview:
6913"""""""""
6914
6915The '``llvm.pcmarker``' intrinsic is a method to export a Program
6916Counter (PC) in a region of code to simulators and other tools. The
6917method is target specific, but it is expected that the marker will use
6918exported symbols to transmit the PC of the marker. The marker makes no
6919guarantees that it will remain with any specific instruction after
6920optimizations. It is possible that the presence of a marker will inhibit
6921optimizations. The intended use is to be inserted after optimizations to
6922allow correlations of simulation runs.
6923
6924Arguments:
6925""""""""""
6926
6927``id`` is a numerical id identifying the marker.
6928
6929Semantics:
6930""""""""""
6931
6932This intrinsic does not modify the behavior of the program. Backends
6933that do not support this intrinsic may ignore it.
6934
6935'``llvm.readcyclecounter``' Intrinsic
6936^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6937
6938Syntax:
6939"""""""
6940
6941::
6942
6943 declare i64 @llvm.readcyclecounter()
6944
6945Overview:
6946"""""""""
6947
6948The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6949counter register (or similar low latency, high accuracy clocks) on those
6950targets that support it. On X86, it should map to RDTSC. On Alpha, it
6951should map to RPCC. As the backing counters overflow quickly (on the
6952order of 9 seconds on alpha), this should only be used for small
6953timings.
6954
6955Semantics:
6956""""""""""
6957
6958When directly supported, reading the cycle counter should not modify any
6959memory. Implementations are allowed to either return a application
6960specific value or a system wide value. On backends without support, this
6961is lowered to a constant 0.
6962
Tim Northoverbc933082013-05-23 19:11:20 +00006963Note that runtime support may be conditional on the privilege-level code is
6964running at and the host platform.
6965
Renato Golinc0a3c1d2014-03-26 12:52:28 +00006966'``llvm.clear_cache``' Intrinsic
6967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6968
6969Syntax:
6970"""""""
6971
6972::
6973
6974 declare void @llvm.clear_cache(i8*, i8*)
6975
6976Overview:
6977"""""""""
6978
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00006979The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
6980in the specified range to the execution unit of the processor. On
6981targets with non-unified instruction and data cache, the implementation
6982flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00006983
6984Semantics:
6985""""""""""
6986
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00006987On platforms with coherent instruction and data caches (e.g. x86), this
6988intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00006989cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00006990instructions or a system call, if cache flushing requires special
6991privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00006992
Sean Silvad02bf3e2014-04-07 22:29:53 +00006993The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00006994time library.
Renato Golin93010e62014-03-26 14:01:32 +00006995
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00006996This instrinsic does *not* empty the instruction pipeline. Modifications
6997of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00006998
Sean Silvab084af42012-12-07 10:36:55 +00006999Standard C Library Intrinsics
7000-----------------------------
7001
7002LLVM provides intrinsics for a few important standard C library
7003functions. These intrinsics allow source-language front-ends to pass
7004information about the alignment of the pointer arguments to the code
7005generator, providing opportunity for more efficient code generation.
7006
7007.. _int_memcpy:
7008
7009'``llvm.memcpy``' Intrinsic
7010^^^^^^^^^^^^^^^^^^^^^^^^^^^
7011
7012Syntax:
7013"""""""
7014
7015This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7016integer bit width and for different address spaces. Not all targets
7017support all bit widths however.
7018
7019::
7020
7021 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7022 i32 <len>, i32 <align>, i1 <isvolatile>)
7023 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7024 i64 <len>, i32 <align>, i1 <isvolatile>)
7025
7026Overview:
7027"""""""""
7028
7029The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7030source location to the destination location.
7031
7032Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7033intrinsics do not return a value, takes extra alignment/isvolatile
7034arguments and the pointers can be in specified address spaces.
7035
7036Arguments:
7037""""""""""
7038
7039The first argument is a pointer to the destination, the second is a
7040pointer to the source. The third argument is an integer argument
7041specifying the number of bytes to copy, the fourth argument is the
7042alignment of the source and destination locations, and the fifth is a
7043boolean indicating a volatile access.
7044
7045If the call to this intrinsic has an alignment value that is not 0 or 1,
7046then the caller guarantees that both the source and destination pointers
7047are aligned to that boundary.
7048
7049If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7050a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7051very cleanly specified and it is unwise to depend on it.
7052
7053Semantics:
7054""""""""""
7055
7056The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7057source location to the destination location, which are not allowed to
7058overlap. It copies "len" bytes of memory over. If the argument is known
7059to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007060argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007061
7062'``llvm.memmove``' Intrinsic
7063^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7064
7065Syntax:
7066"""""""
7067
7068This is an overloaded intrinsic. You can use llvm.memmove on any integer
7069bit width and for different address space. Not all targets support all
7070bit widths however.
7071
7072::
7073
7074 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7075 i32 <len>, i32 <align>, i1 <isvolatile>)
7076 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7077 i64 <len>, i32 <align>, i1 <isvolatile>)
7078
7079Overview:
7080"""""""""
7081
7082The '``llvm.memmove.*``' intrinsics move a block of memory from the
7083source location to the destination location. It is similar to the
7084'``llvm.memcpy``' intrinsic but allows the two memory locations to
7085overlap.
7086
7087Note that, unlike the standard libc function, the ``llvm.memmove.*``
7088intrinsics do not return a value, takes extra alignment/isvolatile
7089arguments and the pointers can be in specified address spaces.
7090
7091Arguments:
7092""""""""""
7093
7094The first argument is a pointer to the destination, the second is a
7095pointer to the source. The third argument is an integer argument
7096specifying the number of bytes to copy, the fourth argument is the
7097alignment of the source and destination locations, and the fifth is a
7098boolean indicating a volatile access.
7099
7100If the call to this intrinsic has an alignment value that is not 0 or 1,
7101then the caller guarantees that the source and destination pointers are
7102aligned to that boundary.
7103
7104If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7105is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7106not very cleanly specified and it is unwise to depend on it.
7107
7108Semantics:
7109""""""""""
7110
7111The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7112source location to the destination location, which may overlap. It
7113copies "len" bytes of memory over. If the argument is known to be
7114aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007115otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007116
7117'``llvm.memset.*``' Intrinsics
7118^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7119
7120Syntax:
7121"""""""
7122
7123This is an overloaded intrinsic. You can use llvm.memset on any integer
7124bit width and for different address spaces. However, not all targets
7125support all bit widths.
7126
7127::
7128
7129 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7130 i32 <len>, i32 <align>, i1 <isvolatile>)
7131 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7132 i64 <len>, i32 <align>, i1 <isvolatile>)
7133
7134Overview:
7135"""""""""
7136
7137The '``llvm.memset.*``' intrinsics fill a block of memory with a
7138particular byte value.
7139
7140Note that, unlike the standard libc function, the ``llvm.memset``
7141intrinsic does not return a value and takes extra alignment/volatile
7142arguments. Also, the destination can be in an arbitrary address space.
7143
7144Arguments:
7145""""""""""
7146
7147The first argument is a pointer to the destination to fill, the second
7148is the byte value with which to fill it, the third argument is an
7149integer argument specifying the number of bytes to fill, and the fourth
7150argument is the known alignment of the destination location.
7151
7152If the call to this intrinsic has an alignment value that is not 0 or 1,
7153then the caller guarantees that the destination pointer is aligned to
7154that boundary.
7155
7156If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7157a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7158very cleanly specified and it is unwise to depend on it.
7159
7160Semantics:
7161""""""""""
7162
7163The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7164at the destination location. If the argument is known to be aligned to
7165some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007166it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007167
7168'``llvm.sqrt.*``' Intrinsic
7169^^^^^^^^^^^^^^^^^^^^^^^^^^^
7170
7171Syntax:
7172"""""""
7173
7174This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7175floating point or vector of floating point type. Not all targets support
7176all types however.
7177
7178::
7179
7180 declare float @llvm.sqrt.f32(float %Val)
7181 declare double @llvm.sqrt.f64(double %Val)
7182 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7183 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7184 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7185
7186Overview:
7187"""""""""
7188
7189The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7190returning the same value as the libm '``sqrt``' functions would. Unlike
7191``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7192negative numbers other than -0.0 (which allows for better optimization,
7193because there is no need to worry about errno being set).
7194``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7195
7196Arguments:
7197""""""""""
7198
7199The argument and return value are floating point numbers of the same
7200type.
7201
7202Semantics:
7203""""""""""
7204
7205This function returns the sqrt of the specified operand if it is a
7206nonnegative floating point number.
7207
7208'``llvm.powi.*``' Intrinsic
7209^^^^^^^^^^^^^^^^^^^^^^^^^^^
7210
7211Syntax:
7212"""""""
7213
7214This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7215floating point or vector of floating point type. Not all targets support
7216all types however.
7217
7218::
7219
7220 declare float @llvm.powi.f32(float %Val, i32 %power)
7221 declare double @llvm.powi.f64(double %Val, i32 %power)
7222 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7223 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7224 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7225
7226Overview:
7227"""""""""
7228
7229The '``llvm.powi.*``' intrinsics return the first operand raised to the
7230specified (positive or negative) power. The order of evaluation of
7231multiplications is not defined. When a vector of floating point type is
7232used, the second argument remains a scalar integer value.
7233
7234Arguments:
7235""""""""""
7236
7237The second argument is an integer power, and the first is a value to
7238raise to that power.
7239
7240Semantics:
7241""""""""""
7242
7243This function returns the first value raised to the second power with an
7244unspecified sequence of rounding operations.
7245
7246'``llvm.sin.*``' Intrinsic
7247^^^^^^^^^^^^^^^^^^^^^^^^^^
7248
7249Syntax:
7250"""""""
7251
7252This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7253floating point or vector of floating point type. Not all targets support
7254all types however.
7255
7256::
7257
7258 declare float @llvm.sin.f32(float %Val)
7259 declare double @llvm.sin.f64(double %Val)
7260 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7261 declare fp128 @llvm.sin.f128(fp128 %Val)
7262 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7263
7264Overview:
7265"""""""""
7266
7267The '``llvm.sin.*``' intrinsics return the sine of the operand.
7268
7269Arguments:
7270""""""""""
7271
7272The argument and return value are floating point numbers of the same
7273type.
7274
7275Semantics:
7276""""""""""
7277
7278This function returns the sine of the specified operand, returning the
7279same values as the libm ``sin`` functions would, and handles error
7280conditions in the same way.
7281
7282'``llvm.cos.*``' Intrinsic
7283^^^^^^^^^^^^^^^^^^^^^^^^^^
7284
7285Syntax:
7286"""""""
7287
7288This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7289floating point or vector of floating point type. Not all targets support
7290all types however.
7291
7292::
7293
7294 declare float @llvm.cos.f32(float %Val)
7295 declare double @llvm.cos.f64(double %Val)
7296 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7297 declare fp128 @llvm.cos.f128(fp128 %Val)
7298 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7299
7300Overview:
7301"""""""""
7302
7303The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7304
7305Arguments:
7306""""""""""
7307
7308The argument and return value are floating point numbers of the same
7309type.
7310
7311Semantics:
7312""""""""""
7313
7314This function returns the cosine of the specified operand, returning the
7315same values as the libm ``cos`` functions would, and handles error
7316conditions in the same way.
7317
7318'``llvm.pow.*``' Intrinsic
7319^^^^^^^^^^^^^^^^^^^^^^^^^^
7320
7321Syntax:
7322"""""""
7323
7324This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7325floating point or vector of floating point type. Not all targets support
7326all types however.
7327
7328::
7329
7330 declare float @llvm.pow.f32(float %Val, float %Power)
7331 declare double @llvm.pow.f64(double %Val, double %Power)
7332 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7333 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7334 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7335
7336Overview:
7337"""""""""
7338
7339The '``llvm.pow.*``' intrinsics return the first operand raised to the
7340specified (positive or negative) power.
7341
7342Arguments:
7343""""""""""
7344
7345The second argument is a floating point power, and the first is a value
7346to raise to that power.
7347
7348Semantics:
7349""""""""""
7350
7351This function returns the first value raised to the second power,
7352returning the same values as the libm ``pow`` functions would, and
7353handles error conditions in the same way.
7354
7355'``llvm.exp.*``' Intrinsic
7356^^^^^^^^^^^^^^^^^^^^^^^^^^
7357
7358Syntax:
7359"""""""
7360
7361This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7362floating point or vector of floating point type. Not all targets support
7363all types however.
7364
7365::
7366
7367 declare float @llvm.exp.f32(float %Val)
7368 declare double @llvm.exp.f64(double %Val)
7369 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7370 declare fp128 @llvm.exp.f128(fp128 %Val)
7371 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7372
7373Overview:
7374"""""""""
7375
7376The '``llvm.exp.*``' intrinsics perform the exp function.
7377
7378Arguments:
7379""""""""""
7380
7381The argument and return value are floating point numbers of the same
7382type.
7383
7384Semantics:
7385""""""""""
7386
7387This function returns the same values as the libm ``exp`` functions
7388would, and handles error conditions in the same way.
7389
7390'``llvm.exp2.*``' Intrinsic
7391^^^^^^^^^^^^^^^^^^^^^^^^^^^
7392
7393Syntax:
7394"""""""
7395
7396This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7397floating point or vector of floating point type. Not all targets support
7398all types however.
7399
7400::
7401
7402 declare float @llvm.exp2.f32(float %Val)
7403 declare double @llvm.exp2.f64(double %Val)
7404 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7405 declare fp128 @llvm.exp2.f128(fp128 %Val)
7406 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7407
7408Overview:
7409"""""""""
7410
7411The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7412
7413Arguments:
7414""""""""""
7415
7416The argument and return value are floating point numbers of the same
7417type.
7418
7419Semantics:
7420""""""""""
7421
7422This function returns the same values as the libm ``exp2`` functions
7423would, and handles error conditions in the same way.
7424
7425'``llvm.log.*``' Intrinsic
7426^^^^^^^^^^^^^^^^^^^^^^^^^^
7427
7428Syntax:
7429"""""""
7430
7431This is an overloaded intrinsic. You can use ``llvm.log`` on any
7432floating point or vector of floating point type. Not all targets support
7433all types however.
7434
7435::
7436
7437 declare float @llvm.log.f32(float %Val)
7438 declare double @llvm.log.f64(double %Val)
7439 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7440 declare fp128 @llvm.log.f128(fp128 %Val)
7441 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7442
7443Overview:
7444"""""""""
7445
7446The '``llvm.log.*``' intrinsics perform the log function.
7447
7448Arguments:
7449""""""""""
7450
7451The argument and return value are floating point numbers of the same
7452type.
7453
7454Semantics:
7455""""""""""
7456
7457This function returns the same values as the libm ``log`` functions
7458would, and handles error conditions in the same way.
7459
7460'``llvm.log10.*``' Intrinsic
7461^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7462
7463Syntax:
7464"""""""
7465
7466This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7467floating point or vector of floating point type. Not all targets support
7468all types however.
7469
7470::
7471
7472 declare float @llvm.log10.f32(float %Val)
7473 declare double @llvm.log10.f64(double %Val)
7474 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7475 declare fp128 @llvm.log10.f128(fp128 %Val)
7476 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7477
7478Overview:
7479"""""""""
7480
7481The '``llvm.log10.*``' intrinsics perform the log10 function.
7482
7483Arguments:
7484""""""""""
7485
7486The argument and return value are floating point numbers of the same
7487type.
7488
7489Semantics:
7490""""""""""
7491
7492This function returns the same values as the libm ``log10`` functions
7493would, and handles error conditions in the same way.
7494
7495'``llvm.log2.*``' Intrinsic
7496^^^^^^^^^^^^^^^^^^^^^^^^^^^
7497
7498Syntax:
7499"""""""
7500
7501This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7502floating point or vector of floating point type. Not all targets support
7503all types however.
7504
7505::
7506
7507 declare float @llvm.log2.f32(float %Val)
7508 declare double @llvm.log2.f64(double %Val)
7509 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7510 declare fp128 @llvm.log2.f128(fp128 %Val)
7511 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7512
7513Overview:
7514"""""""""
7515
7516The '``llvm.log2.*``' intrinsics perform the log2 function.
7517
7518Arguments:
7519""""""""""
7520
7521The argument and return value are floating point numbers of the same
7522type.
7523
7524Semantics:
7525""""""""""
7526
7527This function returns the same values as the libm ``log2`` functions
7528would, and handles error conditions in the same way.
7529
7530'``llvm.fma.*``' Intrinsic
7531^^^^^^^^^^^^^^^^^^^^^^^^^^
7532
7533Syntax:
7534"""""""
7535
7536This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7537floating point or vector of floating point type. Not all targets support
7538all types however.
7539
7540::
7541
7542 declare float @llvm.fma.f32(float %a, float %b, float %c)
7543 declare double @llvm.fma.f64(double %a, double %b, double %c)
7544 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7545 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7546 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7547
7548Overview:
7549"""""""""
7550
7551The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7552operation.
7553
7554Arguments:
7555""""""""""
7556
7557The argument and return value are floating point numbers of the same
7558type.
7559
7560Semantics:
7561""""""""""
7562
7563This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007564would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007565
7566'``llvm.fabs.*``' Intrinsic
7567^^^^^^^^^^^^^^^^^^^^^^^^^^^
7568
7569Syntax:
7570"""""""
7571
7572This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7573floating point or vector of floating point type. Not all targets support
7574all types however.
7575
7576::
7577
7578 declare float @llvm.fabs.f32(float %Val)
7579 declare double @llvm.fabs.f64(double %Val)
7580 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7581 declare fp128 @llvm.fabs.f128(fp128 %Val)
7582 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7583
7584Overview:
7585"""""""""
7586
7587The '``llvm.fabs.*``' intrinsics return the absolute value of the
7588operand.
7589
7590Arguments:
7591""""""""""
7592
7593The argument and return value are floating point numbers of the same
7594type.
7595
7596Semantics:
7597""""""""""
7598
7599This function returns the same values as the libm ``fabs`` functions
7600would, and handles error conditions in the same way.
7601
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007602'``llvm.copysign.*``' Intrinsic
7603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7604
7605Syntax:
7606"""""""
7607
7608This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7609floating point or vector of floating point type. Not all targets support
7610all types however.
7611
7612::
7613
7614 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7615 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7616 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7617 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7618 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7619
7620Overview:
7621"""""""""
7622
7623The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7624first operand and the sign of the second operand.
7625
7626Arguments:
7627""""""""""
7628
7629The arguments and return value are floating point numbers of the same
7630type.
7631
7632Semantics:
7633""""""""""
7634
7635This function returns the same values as the libm ``copysign``
7636functions would, and handles error conditions in the same way.
7637
Sean Silvab084af42012-12-07 10:36:55 +00007638'``llvm.floor.*``' Intrinsic
7639^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7640
7641Syntax:
7642"""""""
7643
7644This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7645floating point or vector of floating point type. Not all targets support
7646all types however.
7647
7648::
7649
7650 declare float @llvm.floor.f32(float %Val)
7651 declare double @llvm.floor.f64(double %Val)
7652 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7653 declare fp128 @llvm.floor.f128(fp128 %Val)
7654 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7655
7656Overview:
7657"""""""""
7658
7659The '``llvm.floor.*``' intrinsics return the floor of the operand.
7660
7661Arguments:
7662""""""""""
7663
7664The argument and return value are floating point numbers of the same
7665type.
7666
7667Semantics:
7668""""""""""
7669
7670This function returns the same values as the libm ``floor`` functions
7671would, and handles error conditions in the same way.
7672
7673'``llvm.ceil.*``' Intrinsic
7674^^^^^^^^^^^^^^^^^^^^^^^^^^^
7675
7676Syntax:
7677"""""""
7678
7679This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7680floating point or vector of floating point type. Not all targets support
7681all types however.
7682
7683::
7684
7685 declare float @llvm.ceil.f32(float %Val)
7686 declare double @llvm.ceil.f64(double %Val)
7687 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7688 declare fp128 @llvm.ceil.f128(fp128 %Val)
7689 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7690
7691Overview:
7692"""""""""
7693
7694The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7695
7696Arguments:
7697""""""""""
7698
7699The argument and return value are floating point numbers of the same
7700type.
7701
7702Semantics:
7703""""""""""
7704
7705This function returns the same values as the libm ``ceil`` functions
7706would, and handles error conditions in the same way.
7707
7708'``llvm.trunc.*``' Intrinsic
7709^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7710
7711Syntax:
7712"""""""
7713
7714This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7715floating point or vector of floating point type. Not all targets support
7716all types however.
7717
7718::
7719
7720 declare float @llvm.trunc.f32(float %Val)
7721 declare double @llvm.trunc.f64(double %Val)
7722 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7723 declare fp128 @llvm.trunc.f128(fp128 %Val)
7724 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7725
7726Overview:
7727"""""""""
7728
7729The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7730nearest integer not larger in magnitude than the operand.
7731
7732Arguments:
7733""""""""""
7734
7735The argument and return value are floating point numbers of the same
7736type.
7737
7738Semantics:
7739""""""""""
7740
7741This function returns the same values as the libm ``trunc`` functions
7742would, and handles error conditions in the same way.
7743
7744'``llvm.rint.*``' Intrinsic
7745^^^^^^^^^^^^^^^^^^^^^^^^^^^
7746
7747Syntax:
7748"""""""
7749
7750This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7751floating point or vector of floating point type. Not all targets support
7752all types however.
7753
7754::
7755
7756 declare float @llvm.rint.f32(float %Val)
7757 declare double @llvm.rint.f64(double %Val)
7758 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7759 declare fp128 @llvm.rint.f128(fp128 %Val)
7760 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7761
7762Overview:
7763"""""""""
7764
7765The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7766nearest integer. It may raise an inexact floating-point exception if the
7767operand isn't an integer.
7768
7769Arguments:
7770""""""""""
7771
7772The argument and return value are floating point numbers of the same
7773type.
7774
7775Semantics:
7776""""""""""
7777
7778This function returns the same values as the libm ``rint`` functions
7779would, and handles error conditions in the same way.
7780
7781'``llvm.nearbyint.*``' Intrinsic
7782^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7783
7784Syntax:
7785"""""""
7786
7787This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7788floating point or vector of floating point type. Not all targets support
7789all types however.
7790
7791::
7792
7793 declare float @llvm.nearbyint.f32(float %Val)
7794 declare double @llvm.nearbyint.f64(double %Val)
7795 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7796 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7797 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7798
7799Overview:
7800"""""""""
7801
7802The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7803nearest integer.
7804
7805Arguments:
7806""""""""""
7807
7808The argument and return value are floating point numbers of the same
7809type.
7810
7811Semantics:
7812""""""""""
7813
7814This function returns the same values as the libm ``nearbyint``
7815functions would, and handles error conditions in the same way.
7816
Hal Finkel171817e2013-08-07 22:49:12 +00007817'``llvm.round.*``' Intrinsic
7818^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7819
7820Syntax:
7821"""""""
7822
7823This is an overloaded intrinsic. You can use ``llvm.round`` on any
7824floating point or vector of floating point type. Not all targets support
7825all types however.
7826
7827::
7828
7829 declare float @llvm.round.f32(float %Val)
7830 declare double @llvm.round.f64(double %Val)
7831 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7832 declare fp128 @llvm.round.f128(fp128 %Val)
7833 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7834
7835Overview:
7836"""""""""
7837
7838The '``llvm.round.*``' intrinsics returns the operand rounded to the
7839nearest integer.
7840
7841Arguments:
7842""""""""""
7843
7844The argument and return value are floating point numbers of the same
7845type.
7846
7847Semantics:
7848""""""""""
7849
7850This function returns the same values as the libm ``round``
7851functions would, and handles error conditions in the same way.
7852
Sean Silvab084af42012-12-07 10:36:55 +00007853Bit Manipulation Intrinsics
7854---------------------------
7855
7856LLVM provides intrinsics for a few important bit manipulation
7857operations. These allow efficient code generation for some algorithms.
7858
7859'``llvm.bswap.*``' Intrinsics
7860^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7861
7862Syntax:
7863"""""""
7864
7865This is an overloaded intrinsic function. You can use bswap on any
7866integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7867
7868::
7869
7870 declare i16 @llvm.bswap.i16(i16 <id>)
7871 declare i32 @llvm.bswap.i32(i32 <id>)
7872 declare i64 @llvm.bswap.i64(i64 <id>)
7873
7874Overview:
7875"""""""""
7876
7877The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7878values with an even number of bytes (positive multiple of 16 bits).
7879These are useful for performing operations on data that is not in the
7880target's native byte order.
7881
7882Semantics:
7883""""""""""
7884
7885The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7886and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7887intrinsic returns an i32 value that has the four bytes of the input i32
7888swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7889returned i32 will have its bytes in 3, 2, 1, 0 order. The
7890``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7891concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7892respectively).
7893
7894'``llvm.ctpop.*``' Intrinsic
7895^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7896
7897Syntax:
7898"""""""
7899
7900This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7901bit width, or on any vector with integer elements. Not all targets
7902support all bit widths or vector types, however.
7903
7904::
7905
7906 declare i8 @llvm.ctpop.i8(i8 <src>)
7907 declare i16 @llvm.ctpop.i16(i16 <src>)
7908 declare i32 @llvm.ctpop.i32(i32 <src>)
7909 declare i64 @llvm.ctpop.i64(i64 <src>)
7910 declare i256 @llvm.ctpop.i256(i256 <src>)
7911 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7912
7913Overview:
7914"""""""""
7915
7916The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7917in a value.
7918
7919Arguments:
7920""""""""""
7921
7922The only argument is the value to be counted. The argument may be of any
7923integer type, or a vector with integer elements. The return type must
7924match the argument type.
7925
7926Semantics:
7927""""""""""
7928
7929The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7930each element of a vector.
7931
7932'``llvm.ctlz.*``' Intrinsic
7933^^^^^^^^^^^^^^^^^^^^^^^^^^^
7934
7935Syntax:
7936"""""""
7937
7938This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7939integer bit width, or any vector whose elements are integers. Not all
7940targets support all bit widths or vector types, however.
7941
7942::
7943
7944 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7945 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7946 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7947 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7948 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7949 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7950
7951Overview:
7952"""""""""
7953
7954The '``llvm.ctlz``' family of intrinsic functions counts the number of
7955leading zeros in a variable.
7956
7957Arguments:
7958""""""""""
7959
7960The first argument is the value to be counted. This argument may be of
7961any integer type, or a vectory with integer element type. The return
7962type must match the first argument type.
7963
7964The second argument must be a constant and is a flag to indicate whether
7965the intrinsic should ensure that a zero as the first argument produces a
7966defined result. Historically some architectures did not provide a
7967defined result for zero values as efficiently, and many algorithms are
7968now predicated on avoiding zero-value inputs.
7969
7970Semantics:
7971""""""""""
7972
7973The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7974zeros in a variable, or within each element of the vector. If
7975``src == 0`` then the result is the size in bits of the type of ``src``
7976if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7977``llvm.ctlz(i32 2) = 30``.
7978
7979'``llvm.cttz.*``' Intrinsic
7980^^^^^^^^^^^^^^^^^^^^^^^^^^^
7981
7982Syntax:
7983"""""""
7984
7985This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7986integer bit width, or any vector of integer elements. Not all targets
7987support all bit widths or vector types, however.
7988
7989::
7990
7991 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7992 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7993 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7994 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7995 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7996 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7997
7998Overview:
7999"""""""""
8000
8001The '``llvm.cttz``' family of intrinsic functions counts the number of
8002trailing zeros.
8003
8004Arguments:
8005""""""""""
8006
8007The first argument is the value to be counted. This argument may be of
8008any integer type, or a vectory with integer element type. The return
8009type must match the first argument type.
8010
8011The second argument must be a constant and is a flag to indicate whether
8012the intrinsic should ensure that a zero as the first argument produces a
8013defined result. Historically some architectures did not provide a
8014defined result for zero values as efficiently, and many algorithms are
8015now predicated on avoiding zero-value inputs.
8016
8017Semantics:
8018""""""""""
8019
8020The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8021zeros in a variable, or within each element of a vector. If ``src == 0``
8022then the result is the size in bits of the type of ``src`` if
8023``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8024``llvm.cttz(2) = 1``.
8025
8026Arithmetic with Overflow Intrinsics
8027-----------------------------------
8028
8029LLVM provides intrinsics for some arithmetic with overflow operations.
8030
8031'``llvm.sadd.with.overflow.*``' Intrinsics
8032^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8033
8034Syntax:
8035"""""""
8036
8037This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8038on any integer bit width.
8039
8040::
8041
8042 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8043 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8044 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8045
8046Overview:
8047"""""""""
8048
8049The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8050a signed addition of the two arguments, and indicate whether an overflow
8051occurred during the signed summation.
8052
8053Arguments:
8054""""""""""
8055
8056The arguments (%a and %b) and the first element of the result structure
8057may be of integer types of any bit width, but they must have the same
8058bit width. The second element of the result structure must be of type
8059``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8060addition.
8061
8062Semantics:
8063""""""""""
8064
8065The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008066a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008067first element of which is the signed summation, and the second element
8068of which is a bit specifying if the signed summation resulted in an
8069overflow.
8070
8071Examples:
8072"""""""""
8073
8074.. code-block:: llvm
8075
8076 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8077 %sum = extractvalue {i32, i1} %res, 0
8078 %obit = extractvalue {i32, i1} %res, 1
8079 br i1 %obit, label %overflow, label %normal
8080
8081'``llvm.uadd.with.overflow.*``' Intrinsics
8082^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8083
8084Syntax:
8085"""""""
8086
8087This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8088on any integer bit width.
8089
8090::
8091
8092 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8093 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8094 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8095
8096Overview:
8097"""""""""
8098
8099The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8100an unsigned addition of the two arguments, and indicate whether a carry
8101occurred during the unsigned summation.
8102
8103Arguments:
8104""""""""""
8105
8106The arguments (%a and %b) and the first element of the result structure
8107may be of integer types of any bit width, but they must have the same
8108bit width. The second element of the result structure must be of type
8109``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8110addition.
8111
8112Semantics:
8113""""""""""
8114
8115The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008116an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008117first element of which is the sum, and the second element of which is a
8118bit specifying if the unsigned summation resulted in a carry.
8119
8120Examples:
8121"""""""""
8122
8123.. code-block:: llvm
8124
8125 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8126 %sum = extractvalue {i32, i1} %res, 0
8127 %obit = extractvalue {i32, i1} %res, 1
8128 br i1 %obit, label %carry, label %normal
8129
8130'``llvm.ssub.with.overflow.*``' Intrinsics
8131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8132
8133Syntax:
8134"""""""
8135
8136This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8137on any integer bit width.
8138
8139::
8140
8141 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8142 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8143 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8144
8145Overview:
8146"""""""""
8147
8148The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8149a signed subtraction of the two arguments, and indicate whether an
8150overflow occurred during the signed subtraction.
8151
8152Arguments:
8153""""""""""
8154
8155The arguments (%a and %b) and the first element of the result structure
8156may be of integer types of any bit width, but they must have the same
8157bit width. The second element of the result structure must be of type
8158``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8159subtraction.
8160
8161Semantics:
8162""""""""""
8163
8164The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008165a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008166first element of which is the subtraction, and the second element of
8167which is a bit specifying if the signed subtraction resulted in an
8168overflow.
8169
8170Examples:
8171"""""""""
8172
8173.. code-block:: llvm
8174
8175 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8176 %sum = extractvalue {i32, i1} %res, 0
8177 %obit = extractvalue {i32, i1} %res, 1
8178 br i1 %obit, label %overflow, label %normal
8179
8180'``llvm.usub.with.overflow.*``' Intrinsics
8181^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8182
8183Syntax:
8184"""""""
8185
8186This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8187on any integer bit width.
8188
8189::
8190
8191 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8192 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8193 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8194
8195Overview:
8196"""""""""
8197
8198The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8199an unsigned subtraction of the two arguments, and indicate whether an
8200overflow occurred during the unsigned subtraction.
8201
8202Arguments:
8203""""""""""
8204
8205The arguments (%a and %b) and the first element of the result structure
8206may be of integer types of any bit width, but they must have the same
8207bit width. The second element of the result structure must be of type
8208``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8209subtraction.
8210
8211Semantics:
8212""""""""""
8213
8214The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008215an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008216the first element of which is the subtraction, and the second element of
8217which is a bit specifying if the unsigned subtraction resulted in an
8218overflow.
8219
8220Examples:
8221"""""""""
8222
8223.. code-block:: llvm
8224
8225 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8226 %sum = extractvalue {i32, i1} %res, 0
8227 %obit = extractvalue {i32, i1} %res, 1
8228 br i1 %obit, label %overflow, label %normal
8229
8230'``llvm.smul.with.overflow.*``' Intrinsics
8231^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8232
8233Syntax:
8234"""""""
8235
8236This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8237on any integer bit width.
8238
8239::
8240
8241 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8242 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8243 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8244
8245Overview:
8246"""""""""
8247
8248The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8249a signed multiplication of the two arguments, and indicate whether an
8250overflow occurred during the signed multiplication.
8251
8252Arguments:
8253""""""""""
8254
8255The arguments (%a and %b) and the first element of the result structure
8256may be of integer types of any bit width, but they must have the same
8257bit width. The second element of the result structure must be of type
8258``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8259multiplication.
8260
8261Semantics:
8262""""""""""
8263
8264The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008265a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008266the first element of which is the multiplication, and the second element
8267of which is a bit specifying if the signed multiplication resulted in an
8268overflow.
8269
8270Examples:
8271"""""""""
8272
8273.. code-block:: llvm
8274
8275 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8276 %sum = extractvalue {i32, i1} %res, 0
8277 %obit = extractvalue {i32, i1} %res, 1
8278 br i1 %obit, label %overflow, label %normal
8279
8280'``llvm.umul.with.overflow.*``' Intrinsics
8281^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8282
8283Syntax:
8284"""""""
8285
8286This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8287on any integer bit width.
8288
8289::
8290
8291 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8292 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8293 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8294
8295Overview:
8296"""""""""
8297
8298The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8299a unsigned multiplication of the two arguments, and indicate whether an
8300overflow occurred during the unsigned multiplication.
8301
8302Arguments:
8303""""""""""
8304
8305The arguments (%a and %b) and the first element of the result structure
8306may be of integer types of any bit width, but they must have the same
8307bit width. The second element of the result structure must be of type
8308``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8309multiplication.
8310
8311Semantics:
8312""""""""""
8313
8314The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008315an unsigned multiplication of the two arguments. They return a structure ---
8316the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008317element of which is a bit specifying if the unsigned multiplication
8318resulted in an overflow.
8319
8320Examples:
8321"""""""""
8322
8323.. code-block:: llvm
8324
8325 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8326 %sum = extractvalue {i32, i1} %res, 0
8327 %obit = extractvalue {i32, i1} %res, 1
8328 br i1 %obit, label %overflow, label %normal
8329
8330Specialised Arithmetic Intrinsics
8331---------------------------------
8332
8333'``llvm.fmuladd.*``' Intrinsic
8334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8335
8336Syntax:
8337"""""""
8338
8339::
8340
8341 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8342 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8343
8344Overview:
8345"""""""""
8346
8347The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008348expressions that can be fused if the code generator determines that (a) the
8349target instruction set has support for a fused operation, and (b) that the
8350fused operation is more efficient than the equivalent, separate pair of mul
8351and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008352
8353Arguments:
8354""""""""""
8355
8356The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8357multiplicands, a and b, and an addend c.
8358
8359Semantics:
8360""""""""""
8361
8362The expression:
8363
8364::
8365
8366 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8367
8368is equivalent to the expression a \* b + c, except that rounding will
8369not be performed between the multiplication and addition steps if the
8370code generator fuses the operations. Fusion is not guaranteed, even if
8371the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008372corresponding llvm.fma.\* intrinsic function should be used
8373instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008374
8375Examples:
8376"""""""""
8377
8378.. code-block:: llvm
8379
8380 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8381
8382Half Precision Floating Point Intrinsics
8383----------------------------------------
8384
8385For most target platforms, half precision floating point is a
8386storage-only format. This means that it is a dense encoding (in memory)
8387but does not support computation in the format.
8388
8389This means that code must first load the half-precision floating point
8390value as an i16, then convert it to float with
8391:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8392then be performed on the float value (including extending to double
8393etc). To store the value back to memory, it is first converted to float
8394if needed, then converted to i16 with
8395:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8396i16 value.
8397
8398.. _int_convert_to_fp16:
8399
8400'``llvm.convert.to.fp16``' Intrinsic
8401^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8402
8403Syntax:
8404"""""""
8405
8406::
8407
8408 declare i16 @llvm.convert.to.fp16(f32 %a)
8409
8410Overview:
8411"""""""""
8412
8413The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8414from single precision floating point format to half precision floating
8415point format.
8416
8417Arguments:
8418""""""""""
8419
8420The intrinsic function contains single argument - the value to be
8421converted.
8422
8423Semantics:
8424""""""""""
8425
8426The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8427from single precision floating point format to half precision floating
8428point format. The return value is an ``i16`` which contains the
8429converted number.
8430
8431Examples:
8432"""""""""
8433
8434.. code-block:: llvm
8435
8436 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8437 store i16 %res, i16* @x, align 2
8438
8439.. _int_convert_from_fp16:
8440
8441'``llvm.convert.from.fp16``' Intrinsic
8442^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8443
8444Syntax:
8445"""""""
8446
8447::
8448
8449 declare f32 @llvm.convert.from.fp16(i16 %a)
8450
8451Overview:
8452"""""""""
8453
8454The '``llvm.convert.from.fp16``' intrinsic function performs a
8455conversion from half precision floating point format to single precision
8456floating point format.
8457
8458Arguments:
8459""""""""""
8460
8461The intrinsic function contains single argument - the value to be
8462converted.
8463
8464Semantics:
8465""""""""""
8466
8467The '``llvm.convert.from.fp16``' intrinsic function performs a
8468conversion from half single precision floating point format to single
8469precision floating point format. The input half-float value is
8470represented by an ``i16`` value.
8471
8472Examples:
8473"""""""""
8474
8475.. code-block:: llvm
8476
8477 %a = load i16* @x, align 2
8478 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8479
8480Debugger Intrinsics
8481-------------------
8482
8483The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8484prefix), are described in the `LLVM Source Level
8485Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8486document.
8487
8488Exception Handling Intrinsics
8489-----------------------------
8490
8491The LLVM exception handling intrinsics (which all start with
8492``llvm.eh.`` prefix), are described in the `LLVM Exception
8493Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8494
8495.. _int_trampoline:
8496
8497Trampoline Intrinsics
8498---------------------
8499
8500These intrinsics make it possible to excise one parameter, marked with
8501the :ref:`nest <nest>` attribute, from a function. The result is a
8502callable function pointer lacking the nest parameter - the caller does
8503not need to provide a value for it. Instead, the value to use is stored
8504in advance in a "trampoline", a block of memory usually allocated on the
8505stack, which also contains code to splice the nest value into the
8506argument list. This is used to implement the GCC nested function address
8507extension.
8508
8509For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8510then the resulting function pointer has signature ``i32 (i32, i32)*``.
8511It can be created as follows:
8512
8513.. code-block:: llvm
8514
8515 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8516 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8517 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8518 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8519 %fp = bitcast i8* %p to i32 (i32, i32)*
8520
8521The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8522``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8523
8524.. _int_it:
8525
8526'``llvm.init.trampoline``' Intrinsic
8527^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8528
8529Syntax:
8530"""""""
8531
8532::
8533
8534 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8535
8536Overview:
8537"""""""""
8538
8539This fills the memory pointed to by ``tramp`` with executable code,
8540turning it into a trampoline.
8541
8542Arguments:
8543""""""""""
8544
8545The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8546pointers. The ``tramp`` argument must point to a sufficiently large and
8547sufficiently aligned block of memory; this memory is written to by the
8548intrinsic. Note that the size and the alignment are target-specific -
8549LLVM currently provides no portable way of determining them, so a
8550front-end that generates this intrinsic needs to have some
8551target-specific knowledge. The ``func`` argument must hold a function
8552bitcast to an ``i8*``.
8553
8554Semantics:
8555""""""""""
8556
8557The block of memory pointed to by ``tramp`` is filled with target
8558dependent code, turning it into a function. Then ``tramp`` needs to be
8559passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8560be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8561function's signature is the same as that of ``func`` with any arguments
8562marked with the ``nest`` attribute removed. At most one such ``nest``
8563argument is allowed, and it must be of pointer type. Calling the new
8564function is equivalent to calling ``func`` with the same argument list,
8565but with ``nval`` used for the missing ``nest`` argument. If, after
8566calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8567modified, then the effect of any later call to the returned function
8568pointer is undefined.
8569
8570.. _int_at:
8571
8572'``llvm.adjust.trampoline``' Intrinsic
8573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8574
8575Syntax:
8576"""""""
8577
8578::
8579
8580 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8581
8582Overview:
8583"""""""""
8584
8585This performs any required machine-specific adjustment to the address of
8586a trampoline (passed as ``tramp``).
8587
8588Arguments:
8589""""""""""
8590
8591``tramp`` must point to a block of memory which already has trampoline
8592code filled in by a previous call to
8593:ref:`llvm.init.trampoline <int_it>`.
8594
8595Semantics:
8596""""""""""
8597
8598On some architectures the address of the code to be executed needs to be
8599different to the address where the trampoline is actually stored. This
8600intrinsic returns the executable address corresponding to ``tramp``
8601after performing the required machine specific adjustments. The pointer
8602returned can then be :ref:`bitcast and executed <int_trampoline>`.
8603
8604Memory Use Markers
8605------------------
8606
8607This class of intrinsics exists to information about the lifetime of
8608memory objects and ranges where variables are immutable.
8609
Reid Klecknera534a382013-12-19 02:14:12 +00008610.. _int_lifestart:
8611
Sean Silvab084af42012-12-07 10:36:55 +00008612'``llvm.lifetime.start``' Intrinsic
8613^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8614
8615Syntax:
8616"""""""
8617
8618::
8619
8620 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8621
8622Overview:
8623"""""""""
8624
8625The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8626object's lifetime.
8627
8628Arguments:
8629""""""""""
8630
8631The first argument is a constant integer representing the size of the
8632object, or -1 if it is variable sized. The second argument is a pointer
8633to the object.
8634
8635Semantics:
8636""""""""""
8637
8638This intrinsic indicates that before this point in the code, the value
8639of the memory pointed to by ``ptr`` is dead. This means that it is known
8640to never be used and has an undefined value. A load from the pointer
8641that precedes this intrinsic can be replaced with ``'undef'``.
8642
Reid Klecknera534a382013-12-19 02:14:12 +00008643.. _int_lifeend:
8644
Sean Silvab084af42012-12-07 10:36:55 +00008645'``llvm.lifetime.end``' Intrinsic
8646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8647
8648Syntax:
8649"""""""
8650
8651::
8652
8653 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8654
8655Overview:
8656"""""""""
8657
8658The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8659object's lifetime.
8660
8661Arguments:
8662""""""""""
8663
8664The first argument is a constant integer representing the size of the
8665object, or -1 if it is variable sized. The second argument is a pointer
8666to the object.
8667
8668Semantics:
8669""""""""""
8670
8671This intrinsic indicates that after this point in the code, the value of
8672the memory pointed to by ``ptr`` is dead. This means that it is known to
8673never be used and has an undefined value. Any stores into the memory
8674object following this intrinsic may be removed as dead.
8675
8676'``llvm.invariant.start``' Intrinsic
8677^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8678
8679Syntax:
8680"""""""
8681
8682::
8683
8684 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8685
8686Overview:
8687"""""""""
8688
8689The '``llvm.invariant.start``' intrinsic specifies that the contents of
8690a memory object will not change.
8691
8692Arguments:
8693""""""""""
8694
8695The first argument is a constant integer representing the size of the
8696object, or -1 if it is variable sized. The second argument is a pointer
8697to the object.
8698
8699Semantics:
8700""""""""""
8701
8702This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8703the return value, the referenced memory location is constant and
8704unchanging.
8705
8706'``llvm.invariant.end``' Intrinsic
8707^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8708
8709Syntax:
8710"""""""
8711
8712::
8713
8714 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8715
8716Overview:
8717"""""""""
8718
8719The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8720memory object are mutable.
8721
8722Arguments:
8723""""""""""
8724
8725The first argument is the matching ``llvm.invariant.start`` intrinsic.
8726The second argument is a constant integer representing the size of the
8727object, or -1 if it is variable sized and the third argument is a
8728pointer to the object.
8729
8730Semantics:
8731""""""""""
8732
8733This intrinsic indicates that the memory is mutable again.
8734
8735General Intrinsics
8736------------------
8737
8738This class of intrinsics is designed to be generic and has no specific
8739purpose.
8740
8741'``llvm.var.annotation``' Intrinsic
8742^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8743
8744Syntax:
8745"""""""
8746
8747::
8748
8749 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8750
8751Overview:
8752"""""""""
8753
8754The '``llvm.var.annotation``' intrinsic.
8755
8756Arguments:
8757""""""""""
8758
8759The first argument is a pointer to a value, the second is a pointer to a
8760global string, the third is a pointer to a global string which is the
8761source file name, and the last argument is the line number.
8762
8763Semantics:
8764""""""""""
8765
8766This intrinsic allows annotation of local variables with arbitrary
8767strings. This can be useful for special purpose optimizations that want
8768to look for these annotations. These have no other defined use; they are
8769ignored by code generation and optimization.
8770
Michael Gottesman88d18832013-03-26 00:34:27 +00008771'``llvm.ptr.annotation.*``' Intrinsic
8772^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8773
8774Syntax:
8775"""""""
8776
8777This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8778pointer to an integer of any width. *NOTE* you must specify an address space for
8779the pointer. The identifier for the default address space is the integer
8780'``0``'.
8781
8782::
8783
8784 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8785 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8786 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8787 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8788 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8789
8790Overview:
8791"""""""""
8792
8793The '``llvm.ptr.annotation``' intrinsic.
8794
8795Arguments:
8796""""""""""
8797
8798The first argument is a pointer to an integer value of arbitrary bitwidth
8799(result of some expression), the second is a pointer to a global string, the
8800third is a pointer to a global string which is the source file name, and the
8801last argument is the line number. It returns the value of the first argument.
8802
8803Semantics:
8804""""""""""
8805
8806This intrinsic allows annotation of a pointer to an integer with arbitrary
8807strings. This can be useful for special purpose optimizations that want to look
8808for these annotations. These have no other defined use; they are ignored by code
8809generation and optimization.
8810
Sean Silvab084af42012-12-07 10:36:55 +00008811'``llvm.annotation.*``' Intrinsic
8812^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8813
8814Syntax:
8815"""""""
8816
8817This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8818any integer bit width.
8819
8820::
8821
8822 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8823 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8824 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8825 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8826 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8827
8828Overview:
8829"""""""""
8830
8831The '``llvm.annotation``' intrinsic.
8832
8833Arguments:
8834""""""""""
8835
8836The first argument is an integer value (result of some expression), the
8837second is a pointer to a global string, the third is a pointer to a
8838global string which is the source file name, and the last argument is
8839the line number. It returns the value of the first argument.
8840
8841Semantics:
8842""""""""""
8843
8844This intrinsic allows annotations to be put on arbitrary expressions
8845with arbitrary strings. This can be useful for special purpose
8846optimizations that want to look for these annotations. These have no
8847other defined use; they are ignored by code generation and optimization.
8848
8849'``llvm.trap``' Intrinsic
8850^^^^^^^^^^^^^^^^^^^^^^^^^
8851
8852Syntax:
8853"""""""
8854
8855::
8856
8857 declare void @llvm.trap() noreturn nounwind
8858
8859Overview:
8860"""""""""
8861
8862The '``llvm.trap``' intrinsic.
8863
8864Arguments:
8865""""""""""
8866
8867None.
8868
8869Semantics:
8870""""""""""
8871
8872This intrinsic is lowered to the target dependent trap instruction. If
8873the target does not have a trap instruction, this intrinsic will be
8874lowered to a call of the ``abort()`` function.
8875
8876'``llvm.debugtrap``' Intrinsic
8877^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8878
8879Syntax:
8880"""""""
8881
8882::
8883
8884 declare void @llvm.debugtrap() nounwind
8885
8886Overview:
8887"""""""""
8888
8889The '``llvm.debugtrap``' intrinsic.
8890
8891Arguments:
8892""""""""""
8893
8894None.
8895
8896Semantics:
8897""""""""""
8898
8899This intrinsic is lowered to code which is intended to cause an
8900execution trap with the intention of requesting the attention of a
8901debugger.
8902
8903'``llvm.stackprotector``' Intrinsic
8904^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8905
8906Syntax:
8907"""""""
8908
8909::
8910
8911 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8912
8913Overview:
8914"""""""""
8915
8916The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8917onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8918is placed on the stack before local variables.
8919
8920Arguments:
8921""""""""""
8922
8923The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8924The first argument is the value loaded from the stack guard
8925``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8926enough space to hold the value of the guard.
8927
8928Semantics:
8929""""""""""
8930
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008931This intrinsic causes the prologue/epilogue inserter to force the position of
8932the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8933to ensure that if a local variable on the stack is overwritten, it will destroy
8934the value of the guard. When the function exits, the guard on the stack is
8935checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8936different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8937calling the ``__stack_chk_fail()`` function.
8938
8939'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008940^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008941
8942Syntax:
8943"""""""
8944
8945::
8946
8947 declare void @llvm.stackprotectorcheck(i8** <guard>)
8948
8949Overview:
8950"""""""""
8951
8952The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008953created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008954``__stack_chk_fail()`` function.
8955
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008956Arguments:
8957""""""""""
8958
8959The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8960the variable ``@__stack_chk_guard``.
8961
8962Semantics:
8963""""""""""
8964
8965This intrinsic is provided to perform the stack protector check by comparing
8966``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8967values do not match call the ``__stack_chk_fail()`` function.
8968
8969The reason to provide this as an IR level intrinsic instead of implementing it
8970via other IR operations is that in order to perform this operation at the IR
8971level without an intrinsic, one would need to create additional basic blocks to
8972handle the success/failure cases. This makes it difficult to stop the stack
8973protector check from disrupting sibling tail calls in Codegen. With this
8974intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00008975codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008976
Sean Silvab084af42012-12-07 10:36:55 +00008977'``llvm.objectsize``' Intrinsic
8978^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8979
8980Syntax:
8981"""""""
8982
8983::
8984
8985 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8986 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8987
8988Overview:
8989"""""""""
8990
8991The ``llvm.objectsize`` intrinsic is designed to provide information to
8992the optimizers to determine at compile time whether a) an operation
8993(like memcpy) will overflow a buffer that corresponds to an object, or
8994b) that a runtime check for overflow isn't necessary. An object in this
8995context means an allocation of a specific class, structure, array, or
8996other object.
8997
8998Arguments:
8999""""""""""
9000
9001The ``llvm.objectsize`` intrinsic takes two arguments. The first
9002argument is a pointer to or into the ``object``. The second argument is
9003a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9004or -1 (if false) when the object size is unknown. The second argument
9005only accepts constants.
9006
9007Semantics:
9008""""""""""
9009
9010The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9011the size of the object concerned. If the size cannot be determined at
9012compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9013on the ``min`` argument).
9014
9015'``llvm.expect``' Intrinsic
9016^^^^^^^^^^^^^^^^^^^^^^^^^^^
9017
9018Syntax:
9019"""""""
9020
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009021This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9022integer bit width.
9023
Sean Silvab084af42012-12-07 10:36:55 +00009024::
9025
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009026 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009027 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9028 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9029
9030Overview:
9031"""""""""
9032
9033The ``llvm.expect`` intrinsic provides information about expected (the
9034most probable) value of ``val``, which can be used by optimizers.
9035
9036Arguments:
9037""""""""""
9038
9039The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9040a value. The second argument is an expected value, this needs to be a
9041constant value, variables are not allowed.
9042
9043Semantics:
9044""""""""""
9045
9046This intrinsic is lowered to the ``val``.
9047
9048'``llvm.donothing``' Intrinsic
9049^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9050
9051Syntax:
9052"""""""
9053
9054::
9055
9056 declare void @llvm.donothing() nounwind readnone
9057
9058Overview:
9059"""""""""
9060
9061The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9062only intrinsic that can be called with an invoke instruction.
9063
9064Arguments:
9065""""""""""
9066
9067None.
9068
9069Semantics:
9070""""""""""
9071
9072This intrinsic does nothing, and it's removed by optimizers and ignored
9073by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009074
9075Stack Map Intrinsics
9076--------------------
9077
9078LLVM provides experimental intrinsics to support runtime patching
9079mechanisms commonly desired in dynamic language JITs. These intrinsics
9080are described in :doc:`StackMaps`.