blob: a4a551c1b3e2c9cad818350b726ca90fb74904a2 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000086#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000087#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000088#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000089#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000090#include "llvm/Support/raw_ostream.h"
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +000091#include "llvm/Support/SaveAndRestore.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000092#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000093using namespace llvm;
94
Chandler Carruthf1221bd2014-04-22 02:48:03 +000095#define DEBUG_TYPE "scalar-evolution"
96
Chris Lattner57ef9422006-12-19 22:30:33 +000097STATISTIC(NumArrayLenItCounts,
98 "Number of trip counts computed with array length");
99STATISTIC(NumTripCountsComputed,
100 "Number of loops with predictable loop counts");
101STATISTIC(NumTripCountsNotComputed,
102 "Number of loops without predictable loop counts");
103STATISTIC(NumBruteForceTripCountsComputed,
104 "Number of loops with trip counts computed by force");
105
Dan Gohmand78c4002008-05-13 00:00:25 +0000106static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000107MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
108 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000109 "symbolically execute a constant "
110 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000111 cl::init(100));
112
Benjamin Kramer214935e2012-10-26 17:31:32 +0000113// FIXME: Enable this with XDEBUG when the test suite is clean.
114static cl::opt<bool>
115VerifySCEV("verify-scev",
116 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
117
Chris Lattnerd934c702004-04-02 20:23:17 +0000118//===----------------------------------------------------------------------===//
119// SCEV class definitions
120//===----------------------------------------------------------------------===//
121
122//===----------------------------------------------------------------------===//
123// Implementation of the SCEV class.
124//
Dan Gohman3423e722009-06-30 20:13:32 +0000125
Davide Italiano2071f4c2015-10-25 19:55:24 +0000126LLVM_DUMP_METHOD
127void SCEV::dump() const {
128 print(dbgs());
129 dbgs() << '\n';
130}
131
Dan Gohman534749b2010-11-17 22:27:42 +0000132void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000133 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000134 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000135 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000136 return;
137 case scTruncate: {
138 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
139 const SCEV *Op = Trunc->getOperand();
140 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
141 << *Trunc->getType() << ")";
142 return;
143 }
144 case scZeroExtend: {
145 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
146 const SCEV *Op = ZExt->getOperand();
147 OS << "(zext " << *Op->getType() << " " << *Op << " to "
148 << *ZExt->getType() << ")";
149 return;
150 }
151 case scSignExtend: {
152 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
153 const SCEV *Op = SExt->getOperand();
154 OS << "(sext " << *Op->getType() << " " << *Op << " to "
155 << *SExt->getType() << ")";
156 return;
157 }
158 case scAddRecExpr: {
159 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
160 OS << "{" << *AR->getOperand(0);
161 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
162 OS << ",+," << *AR->getOperand(i);
163 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000164 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000165 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000166 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000167 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000168 if (AR->getNoWrapFlags(FlagNW) &&
169 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
170 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000171 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000172 OS << ">";
173 return;
174 }
175 case scAddExpr:
176 case scMulExpr:
177 case scUMaxExpr:
178 case scSMaxExpr: {
179 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000180 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000181 switch (NAry->getSCEVType()) {
182 case scAddExpr: OpStr = " + "; break;
183 case scMulExpr: OpStr = " * "; break;
184 case scUMaxExpr: OpStr = " umax "; break;
185 case scSMaxExpr: OpStr = " smax "; break;
186 }
187 OS << "(";
188 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
189 I != E; ++I) {
190 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000191 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000192 OS << OpStr;
193 }
194 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000195 switch (NAry->getSCEVType()) {
196 case scAddExpr:
197 case scMulExpr:
198 if (NAry->getNoWrapFlags(FlagNUW))
199 OS << "<nuw>";
200 if (NAry->getNoWrapFlags(FlagNSW))
201 OS << "<nsw>";
202 }
Dan Gohman534749b2010-11-17 22:27:42 +0000203 return;
204 }
205 case scUDivExpr: {
206 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
207 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
208 return;
209 }
210 case scUnknown: {
211 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000212 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000213 if (U->isSizeOf(AllocTy)) {
214 OS << "sizeof(" << *AllocTy << ")";
215 return;
216 }
217 if (U->isAlignOf(AllocTy)) {
218 OS << "alignof(" << *AllocTy << ")";
219 return;
220 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000221
Chris Lattner229907c2011-07-18 04:54:35 +0000222 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000223 Constant *FieldNo;
224 if (U->isOffsetOf(CTy, FieldNo)) {
225 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000226 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000227 OS << ")";
228 return;
229 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000230
Dan Gohman534749b2010-11-17 22:27:42 +0000231 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000232 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000233 return;
234 }
235 case scCouldNotCompute:
236 OS << "***COULDNOTCOMPUTE***";
237 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000238 }
239 llvm_unreachable("Unknown SCEV kind!");
240}
241
Chris Lattner229907c2011-07-18 04:54:35 +0000242Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000243 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000244 case scConstant:
245 return cast<SCEVConstant>(this)->getType();
246 case scTruncate:
247 case scZeroExtend:
248 case scSignExtend:
249 return cast<SCEVCastExpr>(this)->getType();
250 case scAddRecExpr:
251 case scMulExpr:
252 case scUMaxExpr:
253 case scSMaxExpr:
254 return cast<SCEVNAryExpr>(this)->getType();
255 case scAddExpr:
256 return cast<SCEVAddExpr>(this)->getType();
257 case scUDivExpr:
258 return cast<SCEVUDivExpr>(this)->getType();
259 case scUnknown:
260 return cast<SCEVUnknown>(this)->getType();
261 case scCouldNotCompute:
262 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000263 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000264 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000265}
266
Dan Gohmanbe928e32008-06-18 16:23:07 +0000267bool SCEV::isZero() const {
268 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
269 return SC->getValue()->isZero();
270 return false;
271}
272
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000273bool SCEV::isOne() const {
274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
275 return SC->getValue()->isOne();
276 return false;
277}
Chris Lattnerd934c702004-04-02 20:23:17 +0000278
Dan Gohman18a96bb2009-06-24 00:30:26 +0000279bool SCEV::isAllOnesValue() const {
280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
281 return SC->getValue()->isAllOnesValue();
282 return false;
283}
284
Andrew Trick881a7762012-01-07 00:27:31 +0000285/// isNonConstantNegative - Return true if the specified scev is negated, but
286/// not a constant.
287bool SCEV::isNonConstantNegative() const {
288 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
289 if (!Mul) return false;
290
291 // If there is a constant factor, it will be first.
292 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
293 if (!SC) return false;
294
295 // Return true if the value is negative, this matches things like (-42 * V).
296 return SC->getValue()->getValue().isNegative();
297}
298
Owen Anderson04052ec2009-06-22 21:57:23 +0000299SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000300 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000301
Chris Lattnerd934c702004-04-02 20:23:17 +0000302bool SCEVCouldNotCompute::classof(const SCEV *S) {
303 return S->getSCEVType() == scCouldNotCompute;
304}
305
Dan Gohmanaf752342009-07-07 17:06:11 +0000306const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000307 FoldingSetNodeID ID;
308 ID.AddInteger(scConstant);
309 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000310 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000311 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000312 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000313 UniqueSCEVs.InsertNode(S, IP);
314 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000315}
Chris Lattnerd934c702004-04-02 20:23:17 +0000316
Nick Lewycky31eaca52014-01-27 10:04:03 +0000317const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000318 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000319}
320
Dan Gohmanaf752342009-07-07 17:06:11 +0000321const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000322ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
323 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000324 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000325}
326
Dan Gohman24ceda82010-06-18 19:54:20 +0000327SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000328 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000329 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000330
Dan Gohman24ceda82010-06-18 19:54:20 +0000331SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000332 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000333 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000334 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
335 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000336 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000337}
Chris Lattnerd934c702004-04-02 20:23:17 +0000338
Dan Gohman24ceda82010-06-18 19:54:20 +0000339SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000340 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000341 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
343 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000344 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000345}
346
Dan Gohman24ceda82010-06-18 19:54:20 +0000347SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000348 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000349 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
351 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000352 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000353}
354
Dan Gohman7cac9572010-08-02 23:49:30 +0000355void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000356 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000357 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000358
359 // Remove this SCEVUnknown from the uniquing map.
360 SE->UniqueSCEVs.RemoveNode(this);
361
362 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000363 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000364}
365
366void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000367 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000368 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000369
370 // Remove this SCEVUnknown from the uniquing map.
371 SE->UniqueSCEVs.RemoveNode(this);
372
373 // Update this SCEVUnknown to point to the new value. This is needed
374 // because there may still be outstanding SCEVs which still point to
375 // this SCEVUnknown.
376 setValPtr(New);
377}
378
Chris Lattner229907c2011-07-18 04:54:35 +0000379bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000380 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000381 if (VCE->getOpcode() == Instruction::PtrToInt)
382 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000383 if (CE->getOpcode() == Instruction::GetElementPtr &&
384 CE->getOperand(0)->isNullValue() &&
385 CE->getNumOperands() == 2)
386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
387 if (CI->isOne()) {
388 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
389 ->getElementType();
390 return true;
391 }
Dan Gohmancf913832010-01-28 02:15:55 +0000392
393 return false;
394}
395
Chris Lattner229907c2011-07-18 04:54:35 +0000396bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000398 if (VCE->getOpcode() == Instruction::PtrToInt)
399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000400 if (CE->getOpcode() == Instruction::GetElementPtr &&
401 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000402 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000403 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000404 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000405 if (!STy->isPacked() &&
406 CE->getNumOperands() == 3 &&
407 CE->getOperand(1)->isNullValue()) {
408 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
409 if (CI->isOne() &&
410 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000411 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000412 AllocTy = STy->getElementType(1);
413 return true;
414 }
415 }
416 }
Dan Gohmancf913832010-01-28 02:15:55 +0000417
418 return false;
419}
420
Chris Lattner229907c2011-07-18 04:54:35 +0000421bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000422 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000423 if (VCE->getOpcode() == Instruction::PtrToInt)
424 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
425 if (CE->getOpcode() == Instruction::GetElementPtr &&
426 CE->getNumOperands() == 3 &&
427 CE->getOperand(0)->isNullValue() &&
428 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000429 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000430 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
431 // Ignore vector types here so that ScalarEvolutionExpander doesn't
432 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000433 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000434 CTy = Ty;
435 FieldNo = CE->getOperand(2);
436 return true;
437 }
438 }
439
440 return false;
441}
442
Chris Lattnereb3e8402004-06-20 06:23:15 +0000443//===----------------------------------------------------------------------===//
444// SCEV Utilities
445//===----------------------------------------------------------------------===//
446
447namespace {
448 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
449 /// than the complexity of the RHS. This comparator is used to canonicalize
450 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000451 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000452 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000453 public:
Dan Gohman992db002010-07-23 21:18:55 +0000454 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000455
Dan Gohman27065672010-08-27 15:26:01 +0000456 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000457 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000458 return compare(LHS, RHS) < 0;
459 }
460
461 // Return negative, zero, or positive, if LHS is less than, equal to, or
462 // greater than RHS, respectively. A three-way result allows recursive
463 // comparisons to be more efficient.
464 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000465 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
466 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000467 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000468
Dan Gohman9ba542c2009-05-07 14:39:04 +0000469 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000470 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
471 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000472 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000473
Dan Gohman24ceda82010-06-18 19:54:20 +0000474 // Aside from the getSCEVType() ordering, the particular ordering
475 // isn't very important except that it's beneficial to be consistent,
476 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000477 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000478 case scUnknown: {
479 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000480 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000481
482 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
483 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000484 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000485
486 // Order pointer values after integer values. This helps SCEVExpander
487 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000488 bool LIsPointer = LV->getType()->isPointerTy(),
489 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000490 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000491 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000492
493 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000494 unsigned LID = LV->getValueID(),
495 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000496 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000497 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000498
499 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000500 if (const Argument *LA = dyn_cast<Argument>(LV)) {
501 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000502 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
503 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000504 }
505
Dan Gohman27065672010-08-27 15:26:01 +0000506 // For instructions, compare their loop depth, and their operand
507 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000508 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
509 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000510
511 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000512 const BasicBlock *LParent = LInst->getParent(),
513 *RParent = RInst->getParent();
514 if (LParent != RParent) {
515 unsigned LDepth = LI->getLoopDepth(LParent),
516 RDepth = LI->getLoopDepth(RParent);
517 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000518 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000519 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000520
521 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000522 unsigned LNumOps = LInst->getNumOperands(),
523 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000524 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000525 }
526
Dan Gohman27065672010-08-27 15:26:01 +0000527 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000528 }
529
Dan Gohman27065672010-08-27 15:26:01 +0000530 case scConstant: {
531 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000532 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000533
534 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000535 const APInt &LA = LC->getValue()->getValue();
536 const APInt &RA = RC->getValue()->getValue();
537 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000538 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000539 return (int)LBitWidth - (int)RBitWidth;
540 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000541 }
542
Dan Gohman27065672010-08-27 15:26:01 +0000543 case scAddRecExpr: {
544 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000545 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000546
547 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000548 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
549 if (LLoop != RLoop) {
550 unsigned LDepth = LLoop->getLoopDepth(),
551 RDepth = RLoop->getLoopDepth();
552 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000553 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000554 }
Dan Gohman27065672010-08-27 15:26:01 +0000555
556 // Addrec complexity grows with operand count.
557 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
558 if (LNumOps != RNumOps)
559 return (int)LNumOps - (int)RNumOps;
560
561 // Lexicographically compare.
562 for (unsigned i = 0; i != LNumOps; ++i) {
563 long X = compare(LA->getOperand(i), RA->getOperand(i));
564 if (X != 0)
565 return X;
566 }
567
568 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000569 }
570
Dan Gohman27065672010-08-27 15:26:01 +0000571 case scAddExpr:
572 case scMulExpr:
573 case scSMaxExpr:
574 case scUMaxExpr: {
575 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000576 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000577
578 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000579 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000580 if (LNumOps != RNumOps)
581 return (int)LNumOps - (int)RNumOps;
582
Dan Gohman5ae31022010-07-23 21:20:52 +0000583 for (unsigned i = 0; i != LNumOps; ++i) {
584 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000585 return 1;
586 long X = compare(LC->getOperand(i), RC->getOperand(i));
587 if (X != 0)
588 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000589 }
Dan Gohman27065672010-08-27 15:26:01 +0000590 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000591 }
592
Dan Gohman27065672010-08-27 15:26:01 +0000593 case scUDivExpr: {
594 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000595 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000596
597 // Lexicographically compare udiv expressions.
598 long X = compare(LC->getLHS(), RC->getLHS());
599 if (X != 0)
600 return X;
601 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000602 }
603
Dan Gohman27065672010-08-27 15:26:01 +0000604 case scTruncate:
605 case scZeroExtend:
606 case scSignExtend: {
607 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000608 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000609
610 // Compare cast expressions by operand.
611 return compare(LC->getOperand(), RC->getOperand());
612 }
613
Benjamin Kramer987b8502014-02-11 19:02:55 +0000614 case scCouldNotCompute:
615 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000616 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000617 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000618 }
619 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000620}
Chris Lattnereb3e8402004-06-20 06:23:15 +0000621
622/// GroupByComplexity - Given a list of SCEV objects, order them by their
623/// complexity, and group objects of the same complexity together by value.
624/// When this routine is finished, we know that any duplicates in the vector are
625/// consecutive and that complexity is monotonically increasing.
626///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000627/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000628/// results from this routine. In other words, we don't want the results of
629/// this to depend on where the addresses of various SCEV objects happened to
630/// land in memory.
631///
Dan Gohmanaf752342009-07-07 17:06:11 +0000632static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000633 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000634 if (Ops.size() < 2) return; // Noop
635 if (Ops.size() == 2) {
636 // This is the common case, which also happens to be trivially simple.
637 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000638 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
639 if (SCEVComplexityCompare(LI)(RHS, LHS))
640 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000641 return;
642 }
643
Dan Gohman24ceda82010-06-18 19:54:20 +0000644 // Do the rough sort by complexity.
645 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
646
647 // Now that we are sorted by complexity, group elements of the same
648 // complexity. Note that this is, at worst, N^2, but the vector is likely to
649 // be extremely short in practice. Note that we take this approach because we
650 // do not want to depend on the addresses of the objects we are grouping.
651 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
652 const SCEV *S = Ops[i];
653 unsigned Complexity = S->getSCEVType();
654
655 // If there are any objects of the same complexity and same value as this
656 // one, group them.
657 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
658 if (Ops[j] == S) { // Found a duplicate.
659 // Move it to immediately after i'th element.
660 std::swap(Ops[i+1], Ops[j]);
661 ++i; // no need to rescan it.
662 if (i == e-2) return; // Done!
663 }
664 }
665 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000666}
667
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000668namespace {
669struct FindSCEVSize {
670 int Size;
671 FindSCEVSize() : Size(0) {}
672
673 bool follow(const SCEV *S) {
674 ++Size;
675 // Keep looking at all operands of S.
676 return true;
677 }
678 bool isDone() const {
679 return false;
680 }
681};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000682}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000683
684// Returns the size of the SCEV S.
685static inline int sizeOfSCEV(const SCEV *S) {
686 FindSCEVSize F;
687 SCEVTraversal<FindSCEVSize> ST(F);
688 ST.visitAll(S);
689 return F.Size;
690}
691
692namespace {
693
David Majnemer4e879362014-12-14 09:12:33 +0000694struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000695public:
696 // Computes the Quotient and Remainder of the division of Numerator by
697 // Denominator.
698 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
699 const SCEV *Denominator, const SCEV **Quotient,
700 const SCEV **Remainder) {
701 assert(Numerator && Denominator && "Uninitialized SCEV");
702
David Majnemer4e879362014-12-14 09:12:33 +0000703 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000704
705 // Check for the trivial case here to avoid having to check for it in the
706 // rest of the code.
707 if (Numerator == Denominator) {
708 *Quotient = D.One;
709 *Remainder = D.Zero;
710 return;
711 }
712
713 if (Numerator->isZero()) {
714 *Quotient = D.Zero;
715 *Remainder = D.Zero;
716 return;
717 }
718
Brendon Cahoona57cc8b2015-04-20 16:03:28 +0000719 // A simple case when N/1. The quotient is N.
720 if (Denominator->isOne()) {
721 *Quotient = Numerator;
722 *Remainder = D.Zero;
723 return;
724 }
725
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000726 // Split the Denominator when it is a product.
727 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
728 const SCEV *Q, *R;
729 *Quotient = Numerator;
730 for (const SCEV *Op : T->operands()) {
731 divide(SE, *Quotient, Op, &Q, &R);
732 *Quotient = Q;
733
734 // Bail out when the Numerator is not divisible by one of the terms of
735 // the Denominator.
736 if (!R->isZero()) {
737 *Quotient = D.Zero;
738 *Remainder = Numerator;
739 return;
740 }
741 }
742 *Remainder = D.Zero;
743 return;
744 }
745
746 D.visit(Numerator);
747 *Quotient = D.Quotient;
748 *Remainder = D.Remainder;
749 }
750
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000751 // Except in the trivial case described above, we do not know how to divide
752 // Expr by Denominator for the following functions with empty implementation.
753 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
754 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
755 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
756 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
757 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
758 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
759 void visitUnknown(const SCEVUnknown *Numerator) {}
760 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
761
David Majnemer4e879362014-12-14 09:12:33 +0000762 void visitConstant(const SCEVConstant *Numerator) {
763 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
764 APInt NumeratorVal = Numerator->getValue()->getValue();
765 APInt DenominatorVal = D->getValue()->getValue();
766 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
767 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
768
769 if (NumeratorBW > DenominatorBW)
770 DenominatorVal = DenominatorVal.sext(NumeratorBW);
771 else if (NumeratorBW < DenominatorBW)
772 NumeratorVal = NumeratorVal.sext(DenominatorBW);
773
774 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
775 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
776 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
777 Quotient = SE.getConstant(QuotientVal);
778 Remainder = SE.getConstant(RemainderVal);
779 return;
780 }
781 }
782
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000783 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
784 const SCEV *StartQ, *StartR, *StepQ, *StepR;
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000785 if (!Numerator->isAffine())
786 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000787 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
788 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
Brendon Cahoonf9751ad2015-04-22 15:06:40 +0000789 // Bail out if the types do not match.
790 Type *Ty = Denominator->getType();
791 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000792 Ty != StepQ->getType() || Ty != StepR->getType())
793 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000794 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
795 Numerator->getNoWrapFlags());
796 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
797 Numerator->getNoWrapFlags());
798 }
799
800 void visitAddExpr(const SCEVAddExpr *Numerator) {
801 SmallVector<const SCEV *, 2> Qs, Rs;
802 Type *Ty = Denominator->getType();
803
804 for (const SCEV *Op : Numerator->operands()) {
805 const SCEV *Q, *R;
806 divide(SE, Op, Denominator, &Q, &R);
807
808 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000809 if (Ty != Q->getType() || Ty != R->getType())
810 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000811
812 Qs.push_back(Q);
813 Rs.push_back(R);
814 }
815
816 if (Qs.size() == 1) {
817 Quotient = Qs[0];
818 Remainder = Rs[0];
819 return;
820 }
821
822 Quotient = SE.getAddExpr(Qs);
823 Remainder = SE.getAddExpr(Rs);
824 }
825
826 void visitMulExpr(const SCEVMulExpr *Numerator) {
827 SmallVector<const SCEV *, 2> Qs;
828 Type *Ty = Denominator->getType();
829
830 bool FoundDenominatorTerm = false;
831 for (const SCEV *Op : Numerator->operands()) {
832 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000833 if (Ty != Op->getType())
834 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000835
836 if (FoundDenominatorTerm) {
837 Qs.push_back(Op);
838 continue;
839 }
840
841 // Check whether Denominator divides one of the product operands.
842 const SCEV *Q, *R;
843 divide(SE, Op, Denominator, &Q, &R);
844 if (!R->isZero()) {
845 Qs.push_back(Op);
846 continue;
847 }
848
849 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000850 if (Ty != Q->getType())
851 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000852
853 FoundDenominatorTerm = true;
854 Qs.push_back(Q);
855 }
856
857 if (FoundDenominatorTerm) {
858 Remainder = Zero;
859 if (Qs.size() == 1)
860 Quotient = Qs[0];
861 else
862 Quotient = SE.getMulExpr(Qs);
863 return;
864 }
865
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000866 if (!isa<SCEVUnknown>(Denominator))
867 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000868
869 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
870 ValueToValueMap RewriteMap;
871 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
872 cast<SCEVConstant>(Zero)->getValue();
873 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
874
875 if (Remainder->isZero()) {
876 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
877 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
878 cast<SCEVConstant>(One)->getValue();
879 Quotient =
880 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
881 return;
882 }
883
884 // Quotient is (Numerator - Remainder) divided by Denominator.
885 const SCEV *Q, *R;
886 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000887 // This SCEV does not seem to simplify: fail the division here.
888 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
889 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000890 divide(SE, Diff, Denominator, &Q, &R);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000891 if (R != Zero)
892 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000893 Quotient = Q;
894 }
895
896private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000897 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
898 const SCEV *Denominator)
899 : SE(S), Denominator(Denominator) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +0000900 Zero = SE.getZero(Denominator->getType());
901 One = SE.getOne(Denominator->getType());
David Majnemer5d2670c2014-11-17 11:27:45 +0000902
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000903 // We generally do not know how to divide Expr by Denominator. We
904 // initialize the division to a "cannot divide" state to simplify the rest
905 // of the code.
906 cannotDivide(Numerator);
907 }
908
909 // Convenience function for giving up on the division. We set the quotient to
910 // be equal to zero and the remainder to be equal to the numerator.
911 void cannotDivide(const SCEV *Numerator) {
David Majnemer5d2670c2014-11-17 11:27:45 +0000912 Quotient = Zero;
913 Remainder = Numerator;
914 }
915
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000916 ScalarEvolution &SE;
917 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000918};
919
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000920}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000921
Chris Lattnerd934c702004-04-02 20:23:17 +0000922//===----------------------------------------------------------------------===//
923// Simple SCEV method implementations
924//===----------------------------------------------------------------------===//
925
Eli Friedman61f67622008-08-04 23:49:06 +0000926/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000927/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000928static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000929 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000930 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000931 // Handle the simplest case efficiently.
932 if (K == 1)
933 return SE.getTruncateOrZeroExtend(It, ResultTy);
934
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000935 // We are using the following formula for BC(It, K):
936 //
937 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
938 //
Eli Friedman61f67622008-08-04 23:49:06 +0000939 // Suppose, W is the bitwidth of the return value. We must be prepared for
940 // overflow. Hence, we must assure that the result of our computation is
941 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
942 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000943 //
Eli Friedman61f67622008-08-04 23:49:06 +0000944 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000945 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000946 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
947 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000948 //
Eli Friedman61f67622008-08-04 23:49:06 +0000949 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000950 //
Eli Friedman61f67622008-08-04 23:49:06 +0000951 // This formula is trivially equivalent to the previous formula. However,
952 // this formula can be implemented much more efficiently. The trick is that
953 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
954 // arithmetic. To do exact division in modular arithmetic, all we have
955 // to do is multiply by the inverse. Therefore, this step can be done at
956 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000957 //
Eli Friedman61f67622008-08-04 23:49:06 +0000958 // The next issue is how to safely do the division by 2^T. The way this
959 // is done is by doing the multiplication step at a width of at least W + T
960 // bits. This way, the bottom W+T bits of the product are accurate. Then,
961 // when we perform the division by 2^T (which is equivalent to a right shift
962 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
963 // truncated out after the division by 2^T.
964 //
965 // In comparison to just directly using the first formula, this technique
966 // is much more efficient; using the first formula requires W * K bits,
967 // but this formula less than W + K bits. Also, the first formula requires
968 // a division step, whereas this formula only requires multiplies and shifts.
969 //
970 // It doesn't matter whether the subtraction step is done in the calculation
971 // width or the input iteration count's width; if the subtraction overflows,
972 // the result must be zero anyway. We prefer here to do it in the width of
973 // the induction variable because it helps a lot for certain cases; CodeGen
974 // isn't smart enough to ignore the overflow, which leads to much less
975 // efficient code if the width of the subtraction is wider than the native
976 // register width.
977 //
978 // (It's possible to not widen at all by pulling out factors of 2 before
979 // the multiplication; for example, K=2 can be calculated as
980 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
981 // extra arithmetic, so it's not an obvious win, and it gets
982 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000983
Eli Friedman61f67622008-08-04 23:49:06 +0000984 // Protection from insane SCEVs; this bound is conservative,
985 // but it probably doesn't matter.
986 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000987 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000988
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000989 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000990
Eli Friedman61f67622008-08-04 23:49:06 +0000991 // Calculate K! / 2^T and T; we divide out the factors of two before
992 // multiplying for calculating K! / 2^T to avoid overflow.
993 // Other overflow doesn't matter because we only care about the bottom
994 // W bits of the result.
995 APInt OddFactorial(W, 1);
996 unsigned T = 1;
997 for (unsigned i = 3; i <= K; ++i) {
998 APInt Mult(W, i);
999 unsigned TwoFactors = Mult.countTrailingZeros();
1000 T += TwoFactors;
1001 Mult = Mult.lshr(TwoFactors);
1002 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001003 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001004
Eli Friedman61f67622008-08-04 23:49:06 +00001005 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001006 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001007
Dan Gohman8b0a4192010-03-01 17:49:51 +00001008 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001009 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001010
1011 // Calculate the multiplicative inverse of K! / 2^T;
1012 // this multiplication factor will perform the exact division by
1013 // K! / 2^T.
1014 APInt Mod = APInt::getSignedMinValue(W+1);
1015 APInt MultiplyFactor = OddFactorial.zext(W+1);
1016 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1017 MultiplyFactor = MultiplyFactor.trunc(W);
1018
1019 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001020 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001021 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001022 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001023 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001024 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001025 Dividend = SE.getMulExpr(Dividend,
1026 SE.getTruncateOrZeroExtend(S, CalculationTy));
1027 }
1028
1029 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001030 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001031
1032 // Truncate the result, and divide by K! / 2^T.
1033
1034 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1035 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001036}
1037
Chris Lattnerd934c702004-04-02 20:23:17 +00001038/// evaluateAtIteration - Return the value of this chain of recurrences at
1039/// the specified iteration number. We can evaluate this recurrence by
1040/// multiplying each element in the chain by the binomial coefficient
1041/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1042///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001043/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001044///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001045/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001046///
Dan Gohmanaf752342009-07-07 17:06:11 +00001047const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001048 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001049 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001050 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001051 // The computation is correct in the face of overflow provided that the
1052 // multiplication is performed _after_ the evaluation of the binomial
1053 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001054 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001055 if (isa<SCEVCouldNotCompute>(Coeff))
1056 return Coeff;
1057
1058 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001059 }
1060 return Result;
1061}
1062
Chris Lattnerd934c702004-04-02 20:23:17 +00001063//===----------------------------------------------------------------------===//
1064// SCEV Expression folder implementations
1065//===----------------------------------------------------------------------===//
1066
Dan Gohmanaf752342009-07-07 17:06:11 +00001067const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001068 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001069 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001070 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001071 assert(isSCEVable(Ty) &&
1072 "This is not a conversion to a SCEVable type!");
1073 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001074
Dan Gohman3a302cb2009-07-13 20:50:19 +00001075 FoldingSetNodeID ID;
1076 ID.AddInteger(scTruncate);
1077 ID.AddPointer(Op);
1078 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001079 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001080 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1081
Dan Gohman3423e722009-06-30 20:13:32 +00001082 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001083 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001084 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001085 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001086
Dan Gohman79af8542009-04-22 16:20:48 +00001087 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001088 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001089 return getTruncateExpr(ST->getOperand(), Ty);
1090
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001091 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001092 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001093 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1094
1095 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001096 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001097 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1098
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001099 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
Nick Lewycky2ce28322015-03-20 02:52:23 +00001100 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001101 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1102 SmallVector<const SCEV *, 4> Operands;
1103 bool hasTrunc = false;
1104 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1105 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001106 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1107 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001108 Operands.push_back(S);
1109 }
1110 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001111 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001112 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001113 }
1114
Nick Lewycky5c901f32011-01-19 18:56:00 +00001115 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
Nick Lewyckybe8af482015-03-20 02:25:00 +00001116 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001117 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1118 SmallVector<const SCEV *, 4> Operands;
1119 bool hasTrunc = false;
1120 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1121 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001122 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1123 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5c901f32011-01-19 18:56:00 +00001124 Operands.push_back(S);
1125 }
1126 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001127 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001128 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001129 }
1130
Dan Gohman5a728c92009-06-18 16:24:47 +00001131 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001132 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001133 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00001134 for (const SCEV *Op : AddRec->operands())
1135 Operands.push_back(getTruncateExpr(Op, Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001136 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001137 }
1138
Dan Gohman89dd42a2010-06-25 18:47:08 +00001139 // The cast wasn't folded; create an explicit cast node. We can reuse
1140 // the existing insert position since if we get here, we won't have
1141 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001142 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1143 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001144 UniqueSCEVs.InsertNode(S, IP);
1145 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001146}
1147
Sanjoy Das4153f472015-02-18 01:47:07 +00001148// Get the limit of a recurrence such that incrementing by Step cannot cause
1149// signed overflow as long as the value of the recurrence within the
1150// loop does not exceed this limit before incrementing.
1151static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1152 ICmpInst::Predicate *Pred,
1153 ScalarEvolution *SE) {
1154 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1155 if (SE->isKnownPositive(Step)) {
1156 *Pred = ICmpInst::ICMP_SLT;
1157 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1158 SE->getSignedRange(Step).getSignedMax());
1159 }
1160 if (SE->isKnownNegative(Step)) {
1161 *Pred = ICmpInst::ICMP_SGT;
1162 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1163 SE->getSignedRange(Step).getSignedMin());
1164 }
1165 return nullptr;
1166}
1167
1168// Get the limit of a recurrence such that incrementing by Step cannot cause
1169// unsigned overflow as long as the value of the recurrence within the loop does
1170// not exceed this limit before incrementing.
1171static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1172 ICmpInst::Predicate *Pred,
1173 ScalarEvolution *SE) {
1174 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1175 *Pred = ICmpInst::ICMP_ULT;
1176
1177 return SE->getConstant(APInt::getMinValue(BitWidth) -
1178 SE->getUnsignedRange(Step).getUnsignedMax());
1179}
1180
1181namespace {
1182
1183struct ExtendOpTraitsBase {
1184 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1185};
1186
1187// Used to make code generic over signed and unsigned overflow.
1188template <typename ExtendOp> struct ExtendOpTraits {
1189 // Members present:
1190 //
1191 // static const SCEV::NoWrapFlags WrapType;
1192 //
1193 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1194 //
1195 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1196 // ICmpInst::Predicate *Pred,
1197 // ScalarEvolution *SE);
1198};
1199
1200template <>
1201struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1202 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1203
1204 static const GetExtendExprTy GetExtendExpr;
1205
1206 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1207 ICmpInst::Predicate *Pred,
1208 ScalarEvolution *SE) {
1209 return getSignedOverflowLimitForStep(Step, Pred, SE);
1210 }
1211};
1212
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001213const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001214 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1215
1216template <>
1217struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1218 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1219
1220 static const GetExtendExprTy GetExtendExpr;
1221
1222 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1223 ICmpInst::Predicate *Pred,
1224 ScalarEvolution *SE) {
1225 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1226 }
1227};
1228
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001229const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001230 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
Alexander Kornienkof00654e2015-06-23 09:49:53 +00001231}
Sanjoy Das4153f472015-02-18 01:47:07 +00001232
1233// The recurrence AR has been shown to have no signed/unsigned wrap or something
1234// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1235// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1236// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1237// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1238// expression "Step + sext/zext(PreIncAR)" is congruent with
1239// "sext/zext(PostIncAR)"
1240template <typename ExtendOpTy>
1241static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1242 ScalarEvolution *SE) {
1243 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1244 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1245
1246 const Loop *L = AR->getLoop();
1247 const SCEV *Start = AR->getStart();
1248 const SCEV *Step = AR->getStepRecurrence(*SE);
1249
1250 // Check for a simple looking step prior to loop entry.
1251 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1252 if (!SA)
1253 return nullptr;
1254
1255 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1256 // subtraction is expensive. For this purpose, perform a quick and dirty
1257 // difference, by checking for Step in the operand list.
1258 SmallVector<const SCEV *, 4> DiffOps;
1259 for (const SCEV *Op : SA->operands())
1260 if (Op != Step)
1261 DiffOps.push_back(Op);
1262
1263 if (DiffOps.size() == SA->getNumOperands())
1264 return nullptr;
1265
1266 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1267 // `Step`:
1268
1269 // 1. NSW/NUW flags on the step increment.
Sanjoy Das0714e3e2015-10-23 06:33:47 +00001270 auto PreStartFlags =
1271 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1272 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
Sanjoy Das4153f472015-02-18 01:47:07 +00001273 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1274 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1275
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001276 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1277 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001278 //
1279
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001280 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1281 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1282 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001283 return PreStart;
1284
1285 // 2. Direct overflow check on the step operation's expression.
1286 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1287 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1288 const SCEV *OperandExtendedStart =
1289 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1290 (SE->*GetExtendExpr)(Step, WideTy));
1291 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1292 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1293 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1294 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1295 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1296 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1297 }
1298 return PreStart;
1299 }
1300
1301 // 3. Loop precondition.
1302 ICmpInst::Predicate Pred;
1303 const SCEV *OverflowLimit =
1304 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1305
1306 if (OverflowLimit &&
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001307 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
Sanjoy Das4153f472015-02-18 01:47:07 +00001308 return PreStart;
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001309
Sanjoy Das4153f472015-02-18 01:47:07 +00001310 return nullptr;
1311}
1312
1313// Get the normalized zero or sign extended expression for this AddRec's Start.
1314template <typename ExtendOpTy>
1315static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1316 ScalarEvolution *SE) {
1317 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1318
1319 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1320 if (!PreStart)
1321 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1322
1323 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1324 (SE->*GetExtendExpr)(PreStart, Ty));
1325}
1326
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001327// Try to prove away overflow by looking at "nearby" add recurrences. A
1328// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1329// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1330//
1331// Formally:
1332//
1333// {S,+,X} == {S-T,+,X} + T
1334// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1335//
1336// If ({S-T,+,X} + T) does not overflow ... (1)
1337//
1338// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1339//
1340// If {S-T,+,X} does not overflow ... (2)
1341//
1342// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1343// == {Ext(S-T)+Ext(T),+,Ext(X)}
1344//
1345// If (S-T)+T does not overflow ... (3)
1346//
1347// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1348// == {Ext(S),+,Ext(X)} == LHS
1349//
1350// Thus, if (1), (2) and (3) are true for some T, then
1351// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1352//
1353// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1354// does not overflow" restricted to the 0th iteration. Therefore we only need
1355// to check for (1) and (2).
1356//
1357// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1358// is `Delta` (defined below).
1359//
1360template <typename ExtendOpTy>
1361bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1362 const SCEV *Step,
1363 const Loop *L) {
1364 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1365
1366 // We restrict `Start` to a constant to prevent SCEV from spending too much
1367 // time here. It is correct (but more expensive) to continue with a
1368 // non-constant `Start` and do a general SCEV subtraction to compute
1369 // `PreStart` below.
1370 //
1371 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1372 if (!StartC)
1373 return false;
1374
1375 APInt StartAI = StartC->getValue()->getValue();
1376
1377 for (unsigned Delta : {-2, -1, 1, 2}) {
1378 const SCEV *PreStart = getConstant(StartAI - Delta);
1379
Sanjoy Das42801102015-10-23 06:57:21 +00001380 FoldingSetNodeID ID;
1381 ID.AddInteger(scAddRecExpr);
1382 ID.AddPointer(PreStart);
1383 ID.AddPointer(Step);
1384 ID.AddPointer(L);
1385 void *IP = nullptr;
1386 const auto *PreAR =
1387 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1388
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001389 // Give up if we don't already have the add recurrence we need because
1390 // actually constructing an add recurrence is relatively expensive.
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001391 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1392 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1393 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1394 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1395 DeltaS, &Pred, this);
1396 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1397 return true;
1398 }
1399 }
1400
1401 return false;
1402}
1403
Dan Gohmanaf752342009-07-07 17:06:11 +00001404const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001405 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001406 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001407 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001408 assert(isSCEVable(Ty) &&
1409 "This is not a conversion to a SCEVable type!");
1410 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001411
Dan Gohman3423e722009-06-30 20:13:32 +00001412 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001413 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1414 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001415 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001416
Dan Gohman79af8542009-04-22 16:20:48 +00001417 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001418 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001419 return getZeroExtendExpr(SZ->getOperand(), Ty);
1420
Dan Gohman74a0ba12009-07-13 20:55:53 +00001421 // Before doing any expensive analysis, check to see if we've already
1422 // computed a SCEV for this Op and Ty.
1423 FoldingSetNodeID ID;
1424 ID.AddInteger(scZeroExtend);
1425 ID.AddPointer(Op);
1426 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001427 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001428 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1429
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001430 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1431 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1432 // It's possible the bits taken off by the truncate were all zero bits. If
1433 // so, we should be able to simplify this further.
1434 const SCEV *X = ST->getOperand();
1435 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001436 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1437 unsigned NewBits = getTypeSizeInBits(Ty);
1438 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001439 CR.zextOrTrunc(NewBits)))
1440 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001441 }
1442
Dan Gohman76466372009-04-27 20:16:15 +00001443 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001444 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001445 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001446 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001447 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001448 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001449 const SCEV *Start = AR->getStart();
1450 const SCEV *Step = AR->getStepRecurrence(*this);
1451 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1452 const Loop *L = AR->getLoop();
1453
Dan Gohman62ef6a72009-07-25 01:22:26 +00001454 // If we have special knowledge that this addrec won't overflow,
1455 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001456 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001457 return getAddRecExpr(
1458 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1459 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001460
Dan Gohman76466372009-04-27 20:16:15 +00001461 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1462 // Note that this serves two purposes: It filters out loops that are
1463 // simply not analyzable, and it covers the case where this code is
1464 // being called from within backedge-taken count analysis, such that
1465 // attempting to ask for the backedge-taken count would likely result
1466 // in infinite recursion. In the later case, the analysis code will
1467 // cope with a conservative value, and it will take care to purge
1468 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001469 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001470 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001471 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001472 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001473
1474 // Check whether the backedge-taken count can be losslessly casted to
1475 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001476 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001477 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001478 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001479 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1480 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001481 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001482 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001483 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001484 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1485 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1486 const SCEV *WideMaxBECount =
1487 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001488 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001489 getAddExpr(WideStart,
1490 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001491 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001492 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001493 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1494 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001495 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001496 return getAddRecExpr(
1497 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1498 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001499 }
Dan Gohman76466372009-04-27 20:16:15 +00001500 // Similar to above, only this time treat the step value as signed.
1501 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001502 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001503 getAddExpr(WideStart,
1504 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001505 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001506 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001507 // Cache knowledge of AR NW, which is propagated to this AddRec.
1508 // Negative step causes unsigned wrap, but it still can't self-wrap.
1509 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001510 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001511 return getAddRecExpr(
1512 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1513 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001514 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001515 }
1516
1517 // If the backedge is guarded by a comparison with the pre-inc value
1518 // the addrec is safe. Also, if the entry is guarded by a comparison
1519 // with the start value and the backedge is guarded by a comparison
1520 // with the post-inc value, the addrec is safe.
1521 if (isKnownPositive(Step)) {
1522 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1523 getUnsignedRange(Step).getUnsignedMax());
1524 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001525 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001526 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001527 AR->getPostIncExpr(*this), N))) {
1528 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1529 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001530 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001531 return getAddRecExpr(
1532 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1533 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001534 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001535 } else if (isKnownNegative(Step)) {
1536 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1537 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001538 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1539 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001540 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001541 AR->getPostIncExpr(*this), N))) {
1542 // Cache knowledge of AR NW, which is propagated to this AddRec.
1543 // Negative step causes unsigned wrap, but it still can't self-wrap.
1544 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1545 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001546 return getAddRecExpr(
1547 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1548 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001549 }
Dan Gohman76466372009-04-27 20:16:15 +00001550 }
1551 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001552
1553 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1554 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1555 return getAddRecExpr(
1556 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1557 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1558 }
Dan Gohman76466372009-04-27 20:16:15 +00001559 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001560
Sanjoy Daseeca9f62015-10-22 19:57:38 +00001561 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1562 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1563 if (SA->getNoWrapFlags(SCEV::FlagNUW)) {
1564 // If the addition does not unsign overflow then we can, by definition,
1565 // commute the zero extension with the addition operation.
1566 SmallVector<const SCEV *, 4> Ops;
1567 for (const auto *Op : SA->operands())
1568 Ops.push_back(getZeroExtendExpr(Op, Ty));
1569 return getAddExpr(Ops, SCEV::FlagNUW);
1570 }
1571 }
1572
Dan Gohman74a0ba12009-07-13 20:55:53 +00001573 // The cast wasn't folded; create an explicit cast node.
1574 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001575 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001576 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1577 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001578 UniqueSCEVs.InsertNode(S, IP);
1579 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001580}
1581
Dan Gohmanaf752342009-07-07 17:06:11 +00001582const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001583 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001584 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001585 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001586 assert(isSCEVable(Ty) &&
1587 "This is not a conversion to a SCEVable type!");
1588 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001589
Dan Gohman3423e722009-06-30 20:13:32 +00001590 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001591 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1592 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001593 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001594
Dan Gohman79af8542009-04-22 16:20:48 +00001595 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001596 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001597 return getSignExtendExpr(SS->getOperand(), Ty);
1598
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001599 // sext(zext(x)) --> zext(x)
1600 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1601 return getZeroExtendExpr(SZ->getOperand(), Ty);
1602
Dan Gohman74a0ba12009-07-13 20:55:53 +00001603 // Before doing any expensive analysis, check to see if we've already
1604 // computed a SCEV for this Op and Ty.
1605 FoldingSetNodeID ID;
1606 ID.AddInteger(scSignExtend);
1607 ID.AddPointer(Op);
1608 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001609 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001610 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1611
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001612 // If the input value is provably positive, build a zext instead.
1613 if (isKnownNonNegative(Op))
1614 return getZeroExtendExpr(Op, Ty);
1615
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001616 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1617 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1618 // It's possible the bits taken off by the truncate were all sign bits. If
1619 // so, we should be able to simplify this further.
1620 const SCEV *X = ST->getOperand();
1621 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001622 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1623 unsigned NewBits = getTypeSizeInBits(Ty);
1624 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001625 CR.sextOrTrunc(NewBits)))
1626 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001627 }
1628
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001629 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001630 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001631 if (SA->getNumOperands() == 2) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001632 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1633 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001634 if (SMul && SC1) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001635 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001636 const APInt &C1 = SC1->getValue()->getValue();
1637 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001638 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001639 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001640 return getAddExpr(getSignExtendExpr(SC1, Ty),
1641 getSignExtendExpr(SMul, Ty));
1642 }
1643 }
1644 }
Sanjoy Dasa060e602015-10-22 19:57:25 +00001645
1646 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1647 if (SA->getNoWrapFlags(SCEV::FlagNSW)) {
1648 // If the addition does not sign overflow then we can, by definition,
1649 // commute the sign extension with the addition operation.
1650 SmallVector<const SCEV *, 4> Ops;
1651 for (const auto *Op : SA->operands())
1652 Ops.push_back(getSignExtendExpr(Op, Ty));
1653 return getAddExpr(Ops, SCEV::FlagNSW);
1654 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001655 }
Dan Gohman76466372009-04-27 20:16:15 +00001656 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001657 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001658 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001659 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001660 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001661 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001662 const SCEV *Start = AR->getStart();
1663 const SCEV *Step = AR->getStepRecurrence(*this);
1664 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1665 const Loop *L = AR->getLoop();
1666
Dan Gohman62ef6a72009-07-25 01:22:26 +00001667 // If we have special knowledge that this addrec won't overflow,
1668 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001669 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001670 return getAddRecExpr(
1671 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1672 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001673
Dan Gohman76466372009-04-27 20:16:15 +00001674 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1675 // Note that this serves two purposes: It filters out loops that are
1676 // simply not analyzable, and it covers the case where this code is
1677 // being called from within backedge-taken count analysis, such that
1678 // attempting to ask for the backedge-taken count would likely result
1679 // in infinite recursion. In the later case, the analysis code will
1680 // cope with a conservative value, and it will take care to purge
1681 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001682 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001683 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001684 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001685 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001686
1687 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001688 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001689 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001690 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001691 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001692 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1693 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001694 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001695 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001696 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001697 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1698 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1699 const SCEV *WideMaxBECount =
1700 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001701 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001702 getAddExpr(WideStart,
1703 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001704 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001705 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001706 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1707 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001708 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001709 return getAddRecExpr(
1710 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1711 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001712 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001713 // Similar to above, only this time treat the step value as unsigned.
1714 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001715 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001716 getAddExpr(WideStart,
1717 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001718 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001719 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001720 // If AR wraps around then
1721 //
1722 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1723 // => SAdd != OperandExtendedAdd
1724 //
1725 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1726 // (SAdd == OperandExtendedAdd => AR is NW)
1727
1728 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1729
Dan Gohman8c129d72009-07-16 17:34:36 +00001730 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001731 return getAddRecExpr(
1732 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1733 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001734 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001735 }
1736
1737 // If the backedge is guarded by a comparison with the pre-inc value
1738 // the addrec is safe. Also, if the entry is guarded by a comparison
1739 // with the start value and the backedge is guarded by a comparison
1740 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001741 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001742 const SCEV *OverflowLimit =
1743 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001744 if (OverflowLimit &&
1745 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1746 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1747 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1748 OverflowLimit)))) {
1749 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1750 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001751 return getAddRecExpr(
1752 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1753 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001754 }
1755 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001756 // If Start and Step are constants, check if we can apply this
1757 // transformation:
1758 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001759 auto *SC1 = dyn_cast<SCEVConstant>(Start);
1760 auto *SC2 = dyn_cast<SCEVConstant>(Step);
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001761 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001762 const APInt &C1 = SC1->getValue()->getValue();
1763 const APInt &C2 = SC2->getValue()->getValue();
1764 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1765 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001766 Start = getSignExtendExpr(Start, Ty);
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001767 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1768 AR->getNoWrapFlags());
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001769 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1770 }
1771 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001772
1773 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1774 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1775 return getAddRecExpr(
1776 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1777 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1778 }
Dan Gohman76466372009-04-27 20:16:15 +00001779 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001780
Dan Gohman74a0ba12009-07-13 20:55:53 +00001781 // The cast wasn't folded; create an explicit cast node.
1782 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001783 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001784 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1785 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001786 UniqueSCEVs.InsertNode(S, IP);
1787 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001788}
1789
Dan Gohman8db2edc2009-06-13 15:56:47 +00001790/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1791/// unspecified bits out to the given type.
1792///
Dan Gohmanaf752342009-07-07 17:06:11 +00001793const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001794 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001795 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1796 "This is not an extending conversion!");
1797 assert(isSCEVable(Ty) &&
1798 "This is not a conversion to a SCEVable type!");
1799 Ty = getEffectiveSCEVType(Ty);
1800
1801 // Sign-extend negative constants.
1802 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1803 if (SC->getValue()->getValue().isNegative())
1804 return getSignExtendExpr(Op, Ty);
1805
1806 // Peel off a truncate cast.
1807 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001808 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001809 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1810 return getAnyExtendExpr(NewOp, Ty);
1811 return getTruncateOrNoop(NewOp, Ty);
1812 }
1813
1814 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001815 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001816 if (!isa<SCEVZeroExtendExpr>(ZExt))
1817 return ZExt;
1818
1819 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001820 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001821 if (!isa<SCEVSignExtendExpr>(SExt))
1822 return SExt;
1823
Dan Gohman51ad99d2010-01-21 02:09:26 +00001824 // Force the cast to be folded into the operands of an addrec.
1825 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1826 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001827 for (const SCEV *Op : AR->operands())
1828 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001829 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001830 }
1831
Dan Gohman8db2edc2009-06-13 15:56:47 +00001832 // If the expression is obviously signed, use the sext cast value.
1833 if (isa<SCEVSMaxExpr>(Op))
1834 return SExt;
1835
1836 // Absent any other information, use the zext cast value.
1837 return ZExt;
1838}
1839
Dan Gohman038d02e2009-06-14 22:58:51 +00001840/// CollectAddOperandsWithScales - Process the given Ops list, which is
1841/// a list of operands to be added under the given scale, update the given
1842/// map. This is a helper function for getAddRecExpr. As an example of
1843/// what it does, given a sequence of operands that would form an add
1844/// expression like this:
1845///
Tobias Grosserba49e422014-03-05 10:37:17 +00001846/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001847///
1848/// where A and B are constants, update the map with these values:
1849///
1850/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1851///
1852/// and add 13 + A*B*29 to AccumulatedConstant.
1853/// This will allow getAddRecExpr to produce this:
1854///
1855/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1856///
1857/// This form often exposes folding opportunities that are hidden in
1858/// the original operand list.
1859///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001860/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001861/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1862/// the common case where no interesting opportunities are present, and
1863/// is also used as a check to avoid infinite recursion.
1864///
1865static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001866CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001867 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001868 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001869 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001870 const APInt &Scale,
1871 ScalarEvolution &SE) {
1872 bool Interesting = false;
1873
Dan Gohman45073042010-06-18 19:12:32 +00001874 // Iterate over the add operands. They are sorted, with constants first.
1875 unsigned i = 0;
1876 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1877 ++i;
1878 // Pull a buried constant out to the outside.
1879 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1880 Interesting = true;
1881 AccumulatedConstant += Scale * C->getValue()->getValue();
1882 }
1883
1884 // Next comes everything else. We're especially interested in multiplies
1885 // here, but they're in the middle, so just visit the rest with one loop.
1886 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001887 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1888 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1889 APInt NewScale =
1890 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1891 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1892 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001893 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001894 Interesting |=
1895 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001896 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001897 NewScale, SE);
1898 } else {
1899 // A multiplication of a constant with some other value. Update
1900 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001901 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1902 const SCEV *Key = SE.getMulExpr(MulOps);
Sanjoy Das7a9f8bb2015-09-17 19:04:09 +00001903 auto Pair = M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001904 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001905 NewOps.push_back(Pair.first->first);
1906 } else {
1907 Pair.first->second += NewScale;
1908 // The map already had an entry for this value, which may indicate
1909 // a folding opportunity.
1910 Interesting = true;
1911 }
1912 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001913 } else {
1914 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001915 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001916 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001917 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001918 NewOps.push_back(Pair.first->first);
1919 } else {
1920 Pair.first->second += Scale;
1921 // The map already had an entry for this value, which may indicate
1922 // a folding opportunity.
1923 Interesting = true;
1924 }
1925 }
1926 }
1927
1928 return Interesting;
1929}
1930
1931namespace {
1932 struct APIntCompare {
1933 bool operator()(const APInt &LHS, const APInt &RHS) const {
1934 return LHS.ult(RHS);
1935 }
1936 };
1937}
1938
Sanjoy Das81401d42015-01-10 23:41:24 +00001939// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1940// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1941// can't-overflow flags for the operation if possible.
1942static SCEV::NoWrapFlags
1943StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1944 const SmallVectorImpl<const SCEV *> &Ops,
Sanjoy Das8f274152015-10-22 19:57:19 +00001945 SCEV::NoWrapFlags Flags) {
Sanjoy Das81401d42015-01-10 23:41:24 +00001946 using namespace std::placeholders;
Sanjoy Das8f274152015-10-22 19:57:19 +00001947 typedef OverflowingBinaryOperator OBO;
Sanjoy Das81401d42015-01-10 23:41:24 +00001948
1949 bool CanAnalyze =
1950 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1951 (void)CanAnalyze;
1952 assert(CanAnalyze && "don't call from other places!");
1953
1954 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1955 SCEV::NoWrapFlags SignOrUnsignWrap =
Sanjoy Das8f274152015-10-22 19:57:19 +00001956 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001957
1958 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1959 auto IsKnownNonNegative =
1960 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
1961
1962 if (SignOrUnsignWrap == SCEV::FlagNSW &&
1963 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
Sanjoy Das8f274152015-10-22 19:57:19 +00001964 Flags =
1965 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001966
Sanjoy Das8f274152015-10-22 19:57:19 +00001967 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1968
1969 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1970 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1971
1972 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
1973 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
1974
1975 const APInt &C = cast<SCEVConstant>(Ops[0])->getValue()->getValue();
1976 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
1977 auto NSWRegion =
1978 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap);
1979 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
1980 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
1981 }
1982 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
1983 auto NUWRegion =
1984 ConstantRange::makeNoWrapRegion(Instruction::Add, C,
1985 OBO::NoUnsignedWrap);
1986 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
1987 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
1988 }
1989 }
1990
1991 return Flags;
Sanjoy Das81401d42015-01-10 23:41:24 +00001992}
1993
Dan Gohman4d5435d2009-05-24 23:45:28 +00001994/// getAddExpr - Get a canonical add expression, or something simpler if
1995/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001996const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001997 SCEV::NoWrapFlags Flags) {
1998 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1999 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002000 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00002001 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002002#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002003 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002004 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00002005 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002006 "SCEVAddExpr operand types don't match!");
2007#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002008
2009 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002010 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002011
Sanjoy Das64895612015-10-09 02:44:45 +00002012 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2013
Chris Lattnerd934c702004-04-02 20:23:17 +00002014 // If there are any constants, fold them together.
2015 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002016 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002017 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00002018 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002019 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002020 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00002021 Ops[0] = getConstant(LHSC->getValue()->getValue() +
2022 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00002023 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002024 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002025 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002026 }
2027
2028 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002029 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002030 Ops.erase(Ops.begin());
2031 --Idx;
2032 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002033
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002034 if (Ops.size() == 1) return Ops[0];
2035 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002036
Dan Gohman15871f22010-08-27 21:39:59 +00002037 // Okay, check to see if the same value occurs in the operand list more than
2038 // once. If so, merge them together into an multiply expression. Since we
2039 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00002040 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00002041 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00002042 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00002043 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00002044 // Scan ahead to count how many equal operands there are.
2045 unsigned Count = 2;
2046 while (i+Count != e && Ops[i+Count] == Ops[i])
2047 ++Count;
2048 // Merge the values into a multiply.
2049 const SCEV *Scale = getConstant(Ty, Count);
2050 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2051 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002052 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002053 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002054 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002055 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002056 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002057 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002058 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002059 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002060
Dan Gohman2e55cc52009-05-08 21:03:19 +00002061 // Check for truncates. If all the operands are truncated from the same
2062 // type, see if factoring out the truncate would permit the result to be
2063 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2064 // if the contents of the resulting outer trunc fold to something simple.
2065 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2066 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002067 Type *DstType = Trunc->getType();
2068 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002069 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002070 bool Ok = true;
2071 // Check all the operands to see if they can be represented in the
2072 // source type of the truncate.
2073 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2074 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2075 if (T->getOperand()->getType() != SrcType) {
2076 Ok = false;
2077 break;
2078 }
2079 LargeOps.push_back(T->getOperand());
2080 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002081 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002082 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002083 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002084 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2085 if (const SCEVTruncateExpr *T =
2086 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2087 if (T->getOperand()->getType() != SrcType) {
2088 Ok = false;
2089 break;
2090 }
2091 LargeMulOps.push_back(T->getOperand());
Sanjoy Das63914592015-10-18 00:29:20 +00002092 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002093 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002094 } else {
2095 Ok = false;
2096 break;
2097 }
2098 }
2099 if (Ok)
2100 LargeOps.push_back(getMulExpr(LargeMulOps));
2101 } else {
2102 Ok = false;
2103 break;
2104 }
2105 }
2106 if (Ok) {
2107 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002108 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002109 // If it folds to something simple, use it. Otherwise, don't.
2110 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2111 return getTruncateExpr(Fold, DstType);
2112 }
2113 }
2114
2115 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002116 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2117 ++Idx;
2118
2119 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002120 if (Idx < Ops.size()) {
2121 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002122 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002123 // If we have an add, expand the add operands onto the end of the operands
2124 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002125 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002126 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002127 DeletedAdd = true;
2128 }
2129
2130 // If we deleted at least one add, we added operands to the end of the list,
2131 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002132 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002133 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002134 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002135 }
2136
2137 // Skip over the add expression until we get to a multiply.
2138 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2139 ++Idx;
2140
Dan Gohman038d02e2009-06-14 22:58:51 +00002141 // Check to see if there are any folding opportunities present with
2142 // operands multiplied by constant values.
2143 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2144 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002145 DenseMap<const SCEV *, APInt> M;
2146 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002147 APInt AccumulatedConstant(BitWidth, 0);
2148 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002149 Ops.data(), Ops.size(),
2150 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00002151 // Some interesting folding opportunity is present, so its worthwhile to
2152 // re-generate the operands list. Group the operands by constant scale,
2153 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002154 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00002155 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00002156 E = NewOps.end(); I != E; ++I)
2157 MulOpLists[M.find(*I)->second].push_back(*I);
2158 // Re-generate the operands list.
2159 Ops.clear();
2160 if (AccumulatedConstant != 0)
2161 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00002162 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
2163 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00002164 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00002165 Ops.push_back(getMulExpr(getConstant(I->first),
2166 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002167 if (Ops.empty())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002168 return getZero(Ty);
Dan Gohman038d02e2009-06-14 22:58:51 +00002169 if (Ops.size() == 1)
2170 return Ops[0];
2171 return getAddExpr(Ops);
2172 }
2173 }
2174
Chris Lattnerd934c702004-04-02 20:23:17 +00002175 // If we are adding something to a multiply expression, make sure the
2176 // something is not already an operand of the multiply. If so, merge it into
2177 // the multiply.
2178 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002179 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002180 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002181 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002182 if (isa<SCEVConstant>(MulOpSCEV))
2183 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002184 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002185 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002186 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002187 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002188 if (Mul->getNumOperands() != 2) {
2189 // If the multiply has more than two operands, we must get the
2190 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002191 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2192 Mul->op_begin()+MulOp);
2193 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002194 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002195 }
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002196 const SCEV *One = getOne(Ty);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002197 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002198 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002199 if (Ops.size() == 2) return OuterMul;
2200 if (AddOp < Idx) {
2201 Ops.erase(Ops.begin()+AddOp);
2202 Ops.erase(Ops.begin()+Idx-1);
2203 } else {
2204 Ops.erase(Ops.begin()+Idx);
2205 Ops.erase(Ops.begin()+AddOp-1);
2206 }
2207 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002208 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002209 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002210
Chris Lattnerd934c702004-04-02 20:23:17 +00002211 // Check this multiply against other multiplies being added together.
2212 for (unsigned OtherMulIdx = Idx+1;
2213 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2214 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002215 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002216 // If MulOp occurs in OtherMul, we can fold the two multiplies
2217 // together.
2218 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2219 OMulOp != e; ++OMulOp)
2220 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2221 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002222 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002223 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002224 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002225 Mul->op_begin()+MulOp);
2226 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002227 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002228 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002229 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002230 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002231 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002232 OtherMul->op_begin()+OMulOp);
2233 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002234 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002235 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002236 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2237 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002238 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002239 Ops.erase(Ops.begin()+Idx);
2240 Ops.erase(Ops.begin()+OtherMulIdx-1);
2241 Ops.push_back(OuterMul);
2242 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002243 }
2244 }
2245 }
2246 }
2247
2248 // If there are any add recurrences in the operands list, see if any other
2249 // added values are loop invariant. If so, we can fold them into the
2250 // recurrence.
2251 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2252 ++Idx;
2253
2254 // Scan over all recurrences, trying to fold loop invariants into them.
2255 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2256 // Scan all of the other operands to this add and add them to the vector if
2257 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002258 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002259 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002260 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002261 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002262 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002263 LIOps.push_back(Ops[i]);
2264 Ops.erase(Ops.begin()+i);
2265 --i; --e;
2266 }
2267
2268 // If we found some loop invariants, fold them into the recurrence.
2269 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002270 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002271 LIOps.push_back(AddRec->getStart());
2272
Dan Gohmanaf752342009-07-07 17:06:11 +00002273 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002274 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002275 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002276
Dan Gohman16206132010-06-30 07:16:37 +00002277 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002278 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002279 // Always propagate NW.
2280 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002281 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002282
Chris Lattnerd934c702004-04-02 20:23:17 +00002283 // If all of the other operands were loop invariant, we are done.
2284 if (Ops.size() == 1) return NewRec;
2285
Nick Lewyckydb66b822011-09-06 05:08:09 +00002286 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002287 for (unsigned i = 0;; ++i)
2288 if (Ops[i] == AddRec) {
2289 Ops[i] = NewRec;
2290 break;
2291 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002292 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002293 }
2294
2295 // Okay, if there weren't any loop invariants to be folded, check to see if
2296 // there are multiple AddRec's with the same loop induction variable being
2297 // added together. If so, we can fold them.
2298 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002299 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2300 ++OtherIdx)
2301 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2302 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2303 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2304 AddRec->op_end());
2305 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2306 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00002307 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00002308 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002309 if (OtherAddRec->getLoop() == AddRecLoop) {
2310 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2311 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002312 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002313 AddRecOps.append(OtherAddRec->op_begin()+i,
2314 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002315 break;
2316 }
Dan Gohman028c1812010-08-29 14:53:34 +00002317 AddRecOps[i] = getAddExpr(AddRecOps[i],
2318 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002319 }
2320 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002321 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002322 // Step size has changed, so we cannot guarantee no self-wraparound.
2323 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002324 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002325 }
2326
2327 // Otherwise couldn't fold anything into this recurrence. Move onto the
2328 // next one.
2329 }
2330
2331 // Okay, it looks like we really DO need an add expr. Check to see if we
2332 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002333 FoldingSetNodeID ID;
2334 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002335 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2336 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002337 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002338 SCEVAddExpr *S =
2339 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2340 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002341 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2342 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002343 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2344 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002345 UniqueSCEVs.InsertNode(S, IP);
2346 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002347 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002348 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002349}
2350
Nick Lewycky287682e2011-10-04 06:51:26 +00002351static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2352 uint64_t k = i*j;
2353 if (j > 1 && k / j != i) Overflow = true;
2354 return k;
2355}
2356
2357/// Compute the result of "n choose k", the binomial coefficient. If an
2358/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002359/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002360static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2361 // We use the multiplicative formula:
2362 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2363 // At each iteration, we take the n-th term of the numeral and divide by the
2364 // (k-n)th term of the denominator. This division will always produce an
2365 // integral result, and helps reduce the chance of overflow in the
2366 // intermediate computations. However, we can still overflow even when the
2367 // final result would fit.
2368
2369 if (n == 0 || n == k) return 1;
2370 if (k > n) return 0;
2371
2372 if (k > n/2)
2373 k = n-k;
2374
2375 uint64_t r = 1;
2376 for (uint64_t i = 1; i <= k; ++i) {
2377 r = umul_ov(r, n-(i-1), Overflow);
2378 r /= i;
2379 }
2380 return r;
2381}
2382
Nick Lewycky05044c22014-12-06 00:45:50 +00002383/// Determine if any of the operands in this SCEV are a constant or if
2384/// any of the add or multiply expressions in this SCEV contain a constant.
2385static bool containsConstantSomewhere(const SCEV *StartExpr) {
2386 SmallVector<const SCEV *, 4> Ops;
2387 Ops.push_back(StartExpr);
2388 while (!Ops.empty()) {
2389 const SCEV *CurrentExpr = Ops.pop_back_val();
2390 if (isa<SCEVConstant>(*CurrentExpr))
2391 return true;
2392
2393 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2394 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002395 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002396 }
2397 }
2398 return false;
2399}
2400
Dan Gohman4d5435d2009-05-24 23:45:28 +00002401/// getMulExpr - Get a canonical multiply expression, or something simpler if
2402/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002403const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002404 SCEV::NoWrapFlags Flags) {
2405 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2406 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002407 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002408 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002409#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002410 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002411 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002412 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002413 "SCEVMulExpr operand types don't match!");
2414#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002415
2416 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002417 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002418
Sanjoy Das64895612015-10-09 02:44:45 +00002419 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2420
Chris Lattnerd934c702004-04-02 20:23:17 +00002421 // If there are any constants, fold them together.
2422 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002423 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002424
2425 // C1*(C2+V) -> C1*C2 + C1*V
2426 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002427 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2428 // If any of Add's ops are Adds or Muls with a constant,
2429 // apply this transformation as well.
2430 if (Add->getNumOperands() == 2)
2431 if (containsConstantSomewhere(Add))
2432 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2433 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002434
Chris Lattnerd934c702004-04-02 20:23:17 +00002435 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002436 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002437 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002438 ConstantInt *Fold = ConstantInt::get(getContext(),
2439 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002440 RHSC->getValue()->getValue());
2441 Ops[0] = getConstant(Fold);
2442 Ops.erase(Ops.begin()+1); // Erase the folded element
2443 if (Ops.size() == 1) return Ops[0];
2444 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002445 }
2446
2447 // If we are left with a constant one being multiplied, strip it off.
2448 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2449 Ops.erase(Ops.begin());
2450 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002451 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002452 // If we have a multiply of zero, it will always be zero.
2453 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002454 } else if (Ops[0]->isAllOnesValue()) {
2455 // If we have a mul by -1 of an add, try distributing the -1 among the
2456 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002457 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002458 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2459 SmallVector<const SCEV *, 4> NewOps;
2460 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002461 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2462 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002463 const SCEV *Mul = getMulExpr(Ops[0], *I);
2464 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2465 NewOps.push_back(Mul);
2466 }
2467 if (AnyFolded)
2468 return getAddExpr(NewOps);
Sanjoy Das63914592015-10-18 00:29:20 +00002469 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
Andrew Tricke92dcce2011-03-14 17:38:54 +00002470 // Negation preserves a recurrence's no self-wrap property.
2471 SmallVector<const SCEV *, 4> Operands;
2472 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2473 E = AddRec->op_end(); I != E; ++I) {
2474 Operands.push_back(getMulExpr(Ops[0], *I));
2475 }
2476 return getAddRecExpr(Operands, AddRec->getLoop(),
2477 AddRec->getNoWrapFlags(SCEV::FlagNW));
2478 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002479 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002480 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002481
2482 if (Ops.size() == 1)
2483 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002484 }
2485
2486 // Skip over the add expression until we get to a multiply.
2487 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2488 ++Idx;
2489
Chris Lattnerd934c702004-04-02 20:23:17 +00002490 // If there are mul operands inline them all into this expression.
2491 if (Idx < Ops.size()) {
2492 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002493 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002494 // If we have an mul, expand the mul operands onto the end of the operands
2495 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002496 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002497 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002498 DeletedMul = true;
2499 }
2500
2501 // If we deleted at least one mul, we added operands to the end of the list,
2502 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002503 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002504 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002505 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002506 }
2507
2508 // If there are any add recurrences in the operands list, see if any other
2509 // added values are loop invariant. If so, we can fold them into the
2510 // recurrence.
2511 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2512 ++Idx;
2513
2514 // Scan over all recurrences, trying to fold loop invariants into them.
2515 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2516 // Scan all of the other operands to this mul and add them to the vector if
2517 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002518 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002519 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002520 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002521 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002522 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002523 LIOps.push_back(Ops[i]);
2524 Ops.erase(Ops.begin()+i);
2525 --i; --e;
2526 }
2527
2528 // If we found some loop invariants, fold them into the recurrence.
2529 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002530 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002531 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002532 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002533 const SCEV *Scale = getMulExpr(LIOps);
2534 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2535 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002536
Dan Gohman16206132010-06-30 07:16:37 +00002537 // Build the new addrec. Propagate the NUW and NSW flags if both the
2538 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002539 //
2540 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002541 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002542 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2543 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002544
2545 // If all of the other operands were loop invariant, we are done.
2546 if (Ops.size() == 1) return NewRec;
2547
Nick Lewyckydb66b822011-09-06 05:08:09 +00002548 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002549 for (unsigned i = 0;; ++i)
2550 if (Ops[i] == AddRec) {
2551 Ops[i] = NewRec;
2552 break;
2553 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002554 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002555 }
2556
2557 // Okay, if there weren't any loop invariants to be folded, check to see if
2558 // there are multiple AddRec's with the same loop induction variable being
2559 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002560
2561 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2562 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2563 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2564 // ]]],+,...up to x=2n}.
2565 // Note that the arguments to choose() are always integers with values
2566 // known at compile time, never SCEV objects.
2567 //
2568 // The implementation avoids pointless extra computations when the two
2569 // addrec's are of different length (mathematically, it's equivalent to
2570 // an infinite stream of zeros on the right).
2571 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002572 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002573 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002574 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002575 const SCEVAddRecExpr *OtherAddRec =
2576 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2577 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002578 continue;
2579
Nick Lewycky97756402014-09-01 05:17:15 +00002580 bool Overflow = false;
2581 Type *Ty = AddRec->getType();
2582 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2583 SmallVector<const SCEV*, 7> AddRecOps;
2584 for (int x = 0, xe = AddRec->getNumOperands() +
2585 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002586 const SCEV *Term = getZero(Ty);
Nick Lewycky97756402014-09-01 05:17:15 +00002587 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2588 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2589 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2590 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2591 z < ze && !Overflow; ++z) {
2592 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2593 uint64_t Coeff;
2594 if (LargerThan64Bits)
2595 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2596 else
2597 Coeff = Coeff1*Coeff2;
2598 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2599 const SCEV *Term1 = AddRec->getOperand(y-z);
2600 const SCEV *Term2 = OtherAddRec->getOperand(z);
2601 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002602 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002603 }
Nick Lewycky97756402014-09-01 05:17:15 +00002604 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002605 }
Nick Lewycky97756402014-09-01 05:17:15 +00002606 if (!Overflow) {
2607 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2608 SCEV::FlagAnyWrap);
2609 if (Ops.size() == 2) return NewAddRec;
2610 Ops[Idx] = NewAddRec;
2611 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2612 OpsModified = true;
2613 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2614 if (!AddRec)
2615 break;
2616 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002617 }
Nick Lewycky97756402014-09-01 05:17:15 +00002618 if (OpsModified)
2619 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002620
2621 // Otherwise couldn't fold anything into this recurrence. Move onto the
2622 // next one.
2623 }
2624
2625 // Okay, it looks like we really DO need an mul expr. Check to see if we
2626 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002627 FoldingSetNodeID ID;
2628 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002629 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2630 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002631 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002632 SCEVMulExpr *S =
2633 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2634 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002635 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2636 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002637 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2638 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002639 UniqueSCEVs.InsertNode(S, IP);
2640 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002641 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002642 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002643}
2644
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002645/// getUDivExpr - Get a canonical unsigned division expression, or something
2646/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002647const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2648 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002649 assert(getEffectiveSCEVType(LHS->getType()) ==
2650 getEffectiveSCEVType(RHS->getType()) &&
2651 "SCEVUDivExpr operand types don't match!");
2652
Dan Gohmana30370b2009-05-04 22:02:23 +00002653 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002654 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002655 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002656 // If the denominator is zero, the result of the udiv is undefined. Don't
2657 // try to analyze it, because the resolution chosen here may differ from
2658 // the resolution chosen in other parts of the compiler.
2659 if (!RHSC->getValue()->isZero()) {
2660 // Determine if the division can be folded into the operands of
2661 // its operands.
2662 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002663 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002664 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002665 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002666 // For non-power-of-two values, effectively round the value up to the
2667 // nearest power of two.
2668 if (!RHSC->getValue()->getValue().isPowerOf2())
2669 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002670 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002671 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002672 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2673 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002674 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2675 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2676 const APInt &StepInt = Step->getValue()->getValue();
2677 const APInt &DivInt = RHSC->getValue()->getValue();
2678 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002679 getZeroExtendExpr(AR, ExtTy) ==
2680 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2681 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002682 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002683 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002684 for (const SCEV *Op : AR->operands())
2685 Operands.push_back(getUDivExpr(Op, RHS));
2686 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002687 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002688 /// Get a canonical UDivExpr for a recurrence.
2689 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2690 // We can currently only fold X%N if X is constant.
2691 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2692 if (StartC && !DivInt.urem(StepInt) &&
2693 getZeroExtendExpr(AR, ExtTy) ==
2694 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2695 getZeroExtendExpr(Step, ExtTy),
2696 AR->getLoop(), SCEV::FlagAnyWrap)) {
2697 const APInt &StartInt = StartC->getValue()->getValue();
2698 const APInt &StartRem = StartInt.urem(StepInt);
2699 if (StartRem != 0)
2700 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2701 AR->getLoop(), SCEV::FlagNW);
2702 }
2703 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002704 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2705 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2706 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002707 for (const SCEV *Op : M->operands())
2708 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002709 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2710 // Find an operand that's safely divisible.
2711 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2712 const SCEV *Op = M->getOperand(i);
2713 const SCEV *Div = getUDivExpr(Op, RHSC);
2714 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2715 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2716 M->op_end());
2717 Operands[i] = Div;
2718 return getMulExpr(Operands);
2719 }
2720 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002721 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002722 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002723 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002724 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002725 for (const SCEV *Op : A->operands())
2726 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002727 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2728 Operands.clear();
2729 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2730 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2731 if (isa<SCEVUDivExpr>(Op) ||
2732 getMulExpr(Op, RHS) != A->getOperand(i))
2733 break;
2734 Operands.push_back(Op);
2735 }
2736 if (Operands.size() == A->getNumOperands())
2737 return getAddExpr(Operands);
2738 }
2739 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002740
Dan Gohmanacd700a2010-04-22 01:35:11 +00002741 // Fold if both operands are constant.
2742 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2743 Constant *LHSCV = LHSC->getValue();
2744 Constant *RHSCV = RHSC->getValue();
2745 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2746 RHSCV)));
2747 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002748 }
2749 }
2750
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002751 FoldingSetNodeID ID;
2752 ID.AddInteger(scUDivExpr);
2753 ID.AddPointer(LHS);
2754 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002755 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002756 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002757 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2758 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002759 UniqueSCEVs.InsertNode(S, IP);
2760 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002761}
2762
Nick Lewycky31eaca52014-01-27 10:04:03 +00002763static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2764 APInt A = C1->getValue()->getValue().abs();
2765 APInt B = C2->getValue()->getValue().abs();
2766 uint32_t ABW = A.getBitWidth();
2767 uint32_t BBW = B.getBitWidth();
2768
2769 if (ABW > BBW)
2770 B = B.zext(ABW);
2771 else if (ABW < BBW)
2772 A = A.zext(BBW);
2773
2774 return APIntOps::GreatestCommonDivisor(A, B);
2775}
2776
2777/// getUDivExactExpr - Get a canonical unsigned division expression, or
2778/// something simpler if possible. There is no representation for an exact udiv
2779/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2780/// We can't do this when it's not exact because the udiv may be clearing bits.
2781const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2782 const SCEV *RHS) {
2783 // TODO: we could try to find factors in all sorts of things, but for now we
2784 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2785 // end of this file for inspiration.
2786
2787 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2788 if (!Mul)
2789 return getUDivExpr(LHS, RHS);
2790
2791 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2792 // If the mulexpr multiplies by a constant, then that constant must be the
2793 // first element of the mulexpr.
Sanjoy Das63914592015-10-18 00:29:20 +00002794 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
Nick Lewycky31eaca52014-01-27 10:04:03 +00002795 if (LHSCst == RHSCst) {
2796 SmallVector<const SCEV *, 2> Operands;
2797 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2798 return getMulExpr(Operands);
2799 }
2800
2801 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2802 // that there's a factor provided by one of the other terms. We need to
2803 // check.
2804 APInt Factor = gcd(LHSCst, RHSCst);
2805 if (!Factor.isIntN(1)) {
2806 LHSCst = cast<SCEVConstant>(
2807 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2808 RHSCst = cast<SCEVConstant>(
2809 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2810 SmallVector<const SCEV *, 2> Operands;
2811 Operands.push_back(LHSCst);
2812 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2813 LHS = getMulExpr(Operands);
2814 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002815 Mul = dyn_cast<SCEVMulExpr>(LHS);
2816 if (!Mul)
2817 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002818 }
2819 }
2820 }
2821
2822 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2823 if (Mul->getOperand(i) == RHS) {
2824 SmallVector<const SCEV *, 2> Operands;
2825 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2826 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2827 return getMulExpr(Operands);
2828 }
2829 }
2830
2831 return getUDivExpr(LHS, RHS);
2832}
Chris Lattnerd934c702004-04-02 20:23:17 +00002833
Dan Gohman4d5435d2009-05-24 23:45:28 +00002834/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2835/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002836const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2837 const Loop *L,
2838 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002839 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002840 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002841 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002842 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002843 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002844 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002845 }
2846
2847 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002848 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002849}
2850
Dan Gohman4d5435d2009-05-24 23:45:28 +00002851/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2852/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002853const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002854ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002855 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002856 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002857#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002858 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002859 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002860 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002861 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002862 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002863 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002864 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002865#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002866
Dan Gohmanbe928e32008-06-18 16:23:07 +00002867 if (Operands.back()->isZero()) {
2868 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002869 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002870 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002871
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002872 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2873 // use that information to infer NUW and NSW flags. However, computing a
2874 // BE count requires calling getAddRecExpr, so we may not yet have a
2875 // meaningful BE count at this point (and if we don't, we'd be stuck
2876 // with a SCEVCouldNotCompute as the cached BE count).
2877
Sanjoy Das81401d42015-01-10 23:41:24 +00002878 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002879
Dan Gohman223a5d22008-08-08 18:33:12 +00002880 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002881 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002882 const Loop *NestedLoop = NestedAR->getLoop();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002883 if (L->contains(NestedLoop)
2884 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2885 : (!NestedLoop->contains(L) &&
2886 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002887 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002888 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002889 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002890 // AddRecs require their operands be loop-invariant with respect to their
2891 // loops. Don't perform this transformation if it would break this
2892 // requirement.
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002893 bool AllInvariant =
2894 std::all_of(Operands.begin(), Operands.end(),
2895 [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2896
Dan Gohmancc030b72009-06-26 22:36:20 +00002897 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002898 // Create a recurrence for the outer loop with the same step size.
2899 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002900 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2901 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002902 SCEV::NoWrapFlags OuterFlags =
2903 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002904
2905 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002906 AllInvariant = std::all_of(
2907 NestedOperands.begin(), NestedOperands.end(),
2908 [&](const SCEV *Op) { return isLoopInvariant(Op, NestedLoop); });
2909
Andrew Trick8b55b732011-03-14 16:50:06 +00002910 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002911 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002912 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002913 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2914 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002915 SCEV::NoWrapFlags InnerFlags =
2916 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002917 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2918 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002919 }
2920 // Reset Operands to its original state.
2921 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002922 }
2923 }
2924
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002925 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2926 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002927 FoldingSetNodeID ID;
2928 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002929 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2930 ID.AddPointer(Operands[i]);
2931 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002932 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002933 SCEVAddRecExpr *S =
2934 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2935 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002936 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2937 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002938 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2939 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002940 UniqueSCEVs.InsertNode(S, IP);
2941 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002942 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002943 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002944}
2945
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002946const SCEV *
2947ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2948 const SmallVectorImpl<const SCEV *> &IndexExprs,
2949 bool InBounds) {
2950 // getSCEV(Base)->getType() has the same address space as Base->getType()
2951 // because SCEV::getType() preserves the address space.
2952 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2953 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2954 // instruction to its SCEV, because the Instruction may be guarded by control
2955 // flow and the no-overflow bits may not be valid for the expression in any
Jingyue Wu42f1d672015-07-28 18:22:40 +00002956 // context. This can be fixed similarly to how these flags are handled for
2957 // adds.
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002958 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2959
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002960 const SCEV *TotalOffset = getZero(IntPtrTy);
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002961 // The address space is unimportant. The first thing we do on CurTy is getting
2962 // its element type.
2963 Type *CurTy = PointerType::getUnqual(PointeeType);
2964 for (const SCEV *IndexExpr : IndexExprs) {
2965 // Compute the (potentially symbolic) offset in bytes for this index.
2966 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2967 // For a struct, add the member offset.
2968 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2969 unsigned FieldNo = Index->getZExtValue();
2970 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2971
2972 // Add the field offset to the running total offset.
2973 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2974
2975 // Update CurTy to the type of the field at Index.
2976 CurTy = STy->getTypeAtIndex(Index);
2977 } else {
2978 // Update CurTy to its element type.
2979 CurTy = cast<SequentialType>(CurTy)->getElementType();
2980 // For an array, add the element offset, explicitly scaled.
2981 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2982 // Getelementptr indices are signed.
2983 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2984
2985 // Multiply the index by the element size to compute the element offset.
2986 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2987
2988 // Add the element offset to the running total offset.
2989 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2990 }
2991 }
2992
2993 // Add the total offset from all the GEP indices to the base.
2994 return getAddExpr(BaseExpr, TotalOffset, Wrap);
2995}
2996
Dan Gohmanabd17092009-06-24 14:49:00 +00002997const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2998 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002999 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003000 Ops.push_back(LHS);
3001 Ops.push_back(RHS);
3002 return getSMaxExpr(Ops);
3003}
3004
Dan Gohmanaf752342009-07-07 17:06:11 +00003005const SCEV *
3006ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003007 assert(!Ops.empty() && "Cannot get empty smax!");
3008 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003009#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003010 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003011 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003012 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003013 "SCEVSMaxExpr operand types don't match!");
3014#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003015
3016 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003017 GroupByComplexity(Ops, &LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003018
3019 // If there are any constants, fold them together.
3020 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003021 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003022 ++Idx;
3023 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003024 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003025 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003026 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003027 APIntOps::smax(LHSC->getValue()->getValue(),
3028 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003029 Ops[0] = getConstant(Fold);
3030 Ops.erase(Ops.begin()+1); // Erase the folded element
3031 if (Ops.size() == 1) return Ops[0];
3032 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003033 }
3034
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003035 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003036 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3037 Ops.erase(Ops.begin());
3038 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003039 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3040 // If we have an smax with a constant maximum-int, it will always be
3041 // maximum-int.
3042 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003043 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003044
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003045 if (Ops.size() == 1) return Ops[0];
3046 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003047
3048 // Find the first SMax
3049 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3050 ++Idx;
3051
3052 // Check to see if one of the operands is an SMax. If so, expand its operands
3053 // onto our operand list, and recurse to simplify.
3054 if (Idx < Ops.size()) {
3055 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003056 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003057 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003058 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003059 DeletedSMax = true;
3060 }
3061
3062 if (DeletedSMax)
3063 return getSMaxExpr(Ops);
3064 }
3065
3066 // Okay, check to see if the same value occurs in the operand list twice. If
3067 // so, delete one. Since we sorted the list, these values are required to
3068 // be adjacent.
3069 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003070 // X smax Y smax Y --> X smax Y
3071 // X smax Y --> X, if X is always greater than Y
3072 if (Ops[i] == Ops[i+1] ||
3073 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3074 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3075 --i; --e;
3076 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003077 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3078 --i; --e;
3079 }
3080
3081 if (Ops.size() == 1) return Ops[0];
3082
3083 assert(!Ops.empty() && "Reduced smax down to nothing!");
3084
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003085 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003086 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003087 FoldingSetNodeID ID;
3088 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003089 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3090 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003091 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003092 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003093 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3094 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003095 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3096 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003097 UniqueSCEVs.InsertNode(S, IP);
3098 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003099}
3100
Dan Gohmanabd17092009-06-24 14:49:00 +00003101const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3102 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003103 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003104 Ops.push_back(LHS);
3105 Ops.push_back(RHS);
3106 return getUMaxExpr(Ops);
3107}
3108
Dan Gohmanaf752342009-07-07 17:06:11 +00003109const SCEV *
3110ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003111 assert(!Ops.empty() && "Cannot get empty umax!");
3112 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003113#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003114 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003115 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003116 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003117 "SCEVUMaxExpr operand types don't match!");
3118#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003119
3120 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003121 GroupByComplexity(Ops, &LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003122
3123 // If there are any constants, fold them together.
3124 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003125 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003126 ++Idx;
3127 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003128 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003129 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003130 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003131 APIntOps::umax(LHSC->getValue()->getValue(),
3132 RHSC->getValue()->getValue()));
3133 Ops[0] = getConstant(Fold);
3134 Ops.erase(Ops.begin()+1); // Erase the folded element
3135 if (Ops.size() == 1) return Ops[0];
3136 LHSC = cast<SCEVConstant>(Ops[0]);
3137 }
3138
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003139 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003140 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3141 Ops.erase(Ops.begin());
3142 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003143 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3144 // If we have an umax with a constant maximum-int, it will always be
3145 // maximum-int.
3146 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003147 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003148
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003149 if (Ops.size() == 1) return Ops[0];
3150 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003151
3152 // Find the first UMax
3153 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3154 ++Idx;
3155
3156 // Check to see if one of the operands is a UMax. If so, expand its operands
3157 // onto our operand list, and recurse to simplify.
3158 if (Idx < Ops.size()) {
3159 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003160 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003161 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003162 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003163 DeletedUMax = true;
3164 }
3165
3166 if (DeletedUMax)
3167 return getUMaxExpr(Ops);
3168 }
3169
3170 // Okay, check to see if the same value occurs in the operand list twice. If
3171 // so, delete one. Since we sorted the list, these values are required to
3172 // be adjacent.
3173 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003174 // X umax Y umax Y --> X umax Y
3175 // X umax Y --> X, if X is always greater than Y
3176 if (Ops[i] == Ops[i+1] ||
3177 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3178 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3179 --i; --e;
3180 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003181 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3182 --i; --e;
3183 }
3184
3185 if (Ops.size() == 1) return Ops[0];
3186
3187 assert(!Ops.empty() && "Reduced umax down to nothing!");
3188
3189 // Okay, it looks like we really DO need a umax expr. Check to see if we
3190 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003191 FoldingSetNodeID ID;
3192 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003193 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3194 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003195 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003196 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003197 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3198 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003199 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3200 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003201 UniqueSCEVs.InsertNode(S, IP);
3202 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003203}
3204
Dan Gohmanabd17092009-06-24 14:49:00 +00003205const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3206 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003207 // ~smax(~x, ~y) == smin(x, y).
3208 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3209}
3210
Dan Gohmanabd17092009-06-24 14:49:00 +00003211const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3212 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003213 // ~umax(~x, ~y) == umin(x, y)
3214 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3215}
3216
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003217const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003218 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003219 // constant expression and then folding it back into a ConstantInt.
3220 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003221 return getConstant(IntTy,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003222 F.getParent()->getDataLayout().getTypeAllocSize(AllocTy));
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003223}
3224
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003225const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3226 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003227 unsigned FieldNo) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003228 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003229 // constant expression and then folding it back into a ConstantInt.
3230 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003231 return getConstant(
3232 IntTy,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003233 F.getParent()->getDataLayout().getStructLayout(STy)->getElementOffset(
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003234 FieldNo));
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003235}
3236
Dan Gohmanaf752342009-07-07 17:06:11 +00003237const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003238 // Don't attempt to do anything other than create a SCEVUnknown object
3239 // here. createSCEV only calls getUnknown after checking for all other
3240 // interesting possibilities, and any other code that calls getUnknown
3241 // is doing so in order to hide a value from SCEV canonicalization.
3242
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003243 FoldingSetNodeID ID;
3244 ID.AddInteger(scUnknown);
3245 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003246 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003247 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3248 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3249 "Stale SCEVUnknown in uniquing map!");
3250 return S;
3251 }
3252 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3253 FirstUnknown);
3254 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003255 UniqueSCEVs.InsertNode(S, IP);
3256 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003257}
3258
Chris Lattnerd934c702004-04-02 20:23:17 +00003259//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003260// Basic SCEV Analysis and PHI Idiom Recognition Code
3261//
3262
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003263/// isSCEVable - Test if values of the given type are analyzable within
3264/// the SCEV framework. This primarily includes integer types, and it
3265/// can optionally include pointer types if the ScalarEvolution class
3266/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003267bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003268 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003269 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003270}
3271
3272/// getTypeSizeInBits - Return the size in bits of the specified type,
3273/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003274uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003275 assert(isSCEVable(Ty) && "Type is not SCEVable!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003276 return F.getParent()->getDataLayout().getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003277}
3278
3279/// getEffectiveSCEVType - Return a type with the same bitwidth as
3280/// the given type and which represents how SCEV will treat the given
3281/// type, for which isSCEVable must return true. For pointer types,
3282/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003283Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003284 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3285
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003286 if (Ty->isIntegerTy())
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003287 return Ty;
3288
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003289 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003290 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003291 return F.getParent()->getDataLayout().getIntPtrType(Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003292}
Chris Lattnerd934c702004-04-02 20:23:17 +00003293
Dan Gohmanaf752342009-07-07 17:06:11 +00003294const SCEV *ScalarEvolution::getCouldNotCompute() {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003295 return CouldNotCompute.get();
Dan Gohman31efa302009-04-18 17:58:19 +00003296}
3297
Shuxin Yangefc4c012013-07-08 17:33:13 +00003298namespace {
3299 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3300 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3301 // is set iff if find such SCEVUnknown.
3302 //
3303 struct FindInvalidSCEVUnknown {
3304 bool FindOne;
3305 FindInvalidSCEVUnknown() { FindOne = false; }
3306 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003307 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003308 case scConstant:
3309 return false;
3310 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003311 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003312 FindOne = true;
3313 return false;
3314 default:
3315 return true;
3316 }
3317 }
3318 bool isDone() const { return FindOne; }
3319 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +00003320}
Shuxin Yangefc4c012013-07-08 17:33:13 +00003321
3322bool ScalarEvolution::checkValidity(const SCEV *S) const {
3323 FindInvalidSCEVUnknown F;
3324 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3325 ST.visitAll(S);
3326
3327 return !F.FindOne;
3328}
3329
Chris Lattnerd934c702004-04-02 20:23:17 +00003330/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3331/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003332const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003333 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003334
Jingyue Wu42f1d672015-07-28 18:22:40 +00003335 const SCEV *S = getExistingSCEV(V);
3336 if (S == nullptr) {
3337 S = createSCEV(V);
3338 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
3339 }
3340 return S;
3341}
3342
3343const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3344 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3345
Shuxin Yangefc4c012013-07-08 17:33:13 +00003346 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3347 if (I != ValueExprMap.end()) {
3348 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003349 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003350 return S;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003351 ValueExprMap.erase(I);
Shuxin Yangefc4c012013-07-08 17:33:13 +00003352 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003353 return nullptr;
Chris Lattnerd934c702004-04-02 20:23:17 +00003354}
3355
Dan Gohman0a40ad92009-04-16 03:18:22 +00003356/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3357///
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003358const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3359 SCEV::NoWrapFlags Flags) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003360 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003361 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003362 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003363
Chris Lattner229907c2011-07-18 04:54:35 +00003364 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003365 Ty = getEffectiveSCEVType(Ty);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003366 return getMulExpr(
3367 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003368}
3369
3370/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003371const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003372 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003373 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003374 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003375
Chris Lattner229907c2011-07-18 04:54:35 +00003376 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003377 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003378 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003379 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003380 return getMinusSCEV(AllOnes, V);
3381}
3382
Andrew Trick8b55b732011-03-14 16:50:06 +00003383/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003384const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003385 SCEV::NoWrapFlags Flags) {
Dan Gohman46f00a22010-07-20 16:53:00 +00003386 // Fast path: X - X --> 0.
3387 if (LHS == RHS)
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00003388 return getZero(LHS->getType());
Dan Gohman46f00a22010-07-20 16:53:00 +00003389
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003390 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3391 // makes it so that we cannot make much use of NUW.
3392 auto AddFlags = SCEV::FlagAnyWrap;
3393 const bool RHSIsNotMinSigned =
3394 !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3395 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3396 // Let M be the minimum representable signed value. Then (-1)*RHS
3397 // signed-wraps if and only if RHS is M. That can happen even for
3398 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3399 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3400 // (-1)*RHS, we need to prove that RHS != M.
3401 //
3402 // If LHS is non-negative and we know that LHS - RHS does not
3403 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3404 // either by proving that RHS > M or that LHS >= 0.
3405 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3406 AddFlags = SCEV::FlagNSW;
3407 }
3408 }
3409
3410 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3411 // RHS is NSW and LHS >= 0.
3412 //
3413 // The difficulty here is that the NSW flag may have been proven
3414 // relative to a loop that is to be found in a recurrence in LHS and
3415 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3416 // larger scope than intended.
3417 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3418
3419 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003420}
3421
3422/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3423/// input value to the specified type. If the type must be extended, it is zero
3424/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003425const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003426ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3427 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003428 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3429 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003430 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003431 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003432 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003433 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003434 return getTruncateExpr(V, Ty);
3435 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003436}
3437
3438/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3439/// input value to the specified type. If the type must be extended, it is sign
3440/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003441const SCEV *
3442ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003443 Type *Ty) {
3444 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003445 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3446 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003447 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003448 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003449 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003450 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003451 return getTruncateExpr(V, Ty);
3452 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003453}
3454
Dan Gohmane712a2f2009-05-13 03:46:30 +00003455/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3456/// input value to the specified type. If the type must be extended, it is zero
3457/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003458const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003459ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3460 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003461 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3462 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003463 "Cannot noop or zero extend with non-integer arguments!");
3464 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3465 "getNoopOrZeroExtend cannot truncate!");
3466 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3467 return V; // No conversion
3468 return getZeroExtendExpr(V, Ty);
3469}
3470
3471/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3472/// input value to the specified type. If the type must be extended, it is sign
3473/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003474const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003475ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3476 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003477 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3478 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003479 "Cannot noop or sign extend with non-integer arguments!");
3480 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3481 "getNoopOrSignExtend cannot truncate!");
3482 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3483 return V; // No conversion
3484 return getSignExtendExpr(V, Ty);
3485}
3486
Dan Gohman8db2edc2009-06-13 15:56:47 +00003487/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3488/// the input value to the specified type. If the type must be extended,
3489/// it is extended with unspecified bits. The conversion must not be
3490/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003491const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003492ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3493 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003494 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3495 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003496 "Cannot noop or any extend with non-integer arguments!");
3497 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3498 "getNoopOrAnyExtend cannot truncate!");
3499 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3500 return V; // No conversion
3501 return getAnyExtendExpr(V, Ty);
3502}
3503
Dan Gohmane712a2f2009-05-13 03:46:30 +00003504/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3505/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003506const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003507ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3508 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003509 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3510 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003511 "Cannot truncate or noop with non-integer arguments!");
3512 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3513 "getTruncateOrNoop cannot extend!");
3514 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3515 return V; // No conversion
3516 return getTruncateExpr(V, Ty);
3517}
3518
Dan Gohman96212b62009-06-22 00:31:57 +00003519/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3520/// the types using zero-extension, and then perform a umax operation
3521/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003522const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3523 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003524 const SCEV *PromotedLHS = LHS;
3525 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003526
3527 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3528 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3529 else
3530 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3531
3532 return getUMaxExpr(PromotedLHS, PromotedRHS);
3533}
3534
Dan Gohman2bc22302009-06-22 15:03:27 +00003535/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3536/// the types using zero-extension, and then perform a umin operation
3537/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003538const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3539 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003540 const SCEV *PromotedLHS = LHS;
3541 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003542
3543 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3544 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3545 else
3546 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3547
3548 return getUMinExpr(PromotedLHS, PromotedRHS);
3549}
3550
Andrew Trick87716c92011-03-17 23:51:11 +00003551/// getPointerBase - Transitively follow the chain of pointer-type operands
3552/// until reaching a SCEV that does not have a single pointer operand. This
3553/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3554/// but corner cases do exist.
3555const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3556 // A pointer operand may evaluate to a nonpointer expression, such as null.
3557 if (!V->getType()->isPointerTy())
3558 return V;
3559
3560 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3561 return getPointerBase(Cast->getOperand());
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003562 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003563 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003564 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3565 I != E; ++I) {
3566 if ((*I)->getType()->isPointerTy()) {
3567 // Cannot find the base of an expression with multiple pointer operands.
3568 if (PtrOp)
3569 return V;
3570 PtrOp = *I;
3571 }
3572 }
3573 if (!PtrOp)
3574 return V;
3575 return getPointerBase(PtrOp);
3576 }
3577 return V;
3578}
3579
Dan Gohman0b89dff2009-07-25 01:13:03 +00003580/// PushDefUseChildren - Push users of the given Instruction
3581/// onto the given Worklist.
3582static void
3583PushDefUseChildren(Instruction *I,
3584 SmallVectorImpl<Instruction *> &Worklist) {
3585 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003586 for (User *U : I->users())
3587 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003588}
3589
3590/// ForgetSymbolicValue - This looks up computed SCEV values for all
3591/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003592/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003593/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003594void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003595ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003596 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003597 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003598
Dan Gohman0b89dff2009-07-25 01:13:03 +00003599 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003600 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003601 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003602 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003603 if (!Visited.insert(I).second)
3604 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003605
Sanjoy Das63914592015-10-18 00:29:20 +00003606 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003607 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003608 const SCEV *Old = It->second;
3609
Dan Gohman0b89dff2009-07-25 01:13:03 +00003610 // Short-circuit the def-use traversal if the symbolic name
3611 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003612 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003613 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003614
Dan Gohman0b89dff2009-07-25 01:13:03 +00003615 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003616 // structure, it's a PHI that's in the progress of being computed
3617 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3618 // additional loop trip count information isn't going to change anything.
3619 // In the second case, createNodeForPHI will perform the necessary
3620 // updates on its own when it gets to that point. In the third, we do
3621 // want to forget the SCEVUnknown.
3622 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003623 !isa<SCEVUnknown>(Old) ||
3624 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003625 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003626 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003627 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003628 }
3629
3630 PushDefUseChildren(I, Worklist);
3631 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003632}
Chris Lattnerd934c702004-04-02 20:23:17 +00003633
Sanjoy Das55015d22015-10-02 23:09:44 +00003634const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3635 const Loop *L = LI.getLoopFor(PN->getParent());
3636 if (!L || L->getHeader() != PN->getParent())
3637 return nullptr;
3638
3639 // The loop may have multiple entrances or multiple exits; we can analyze
3640 // this phi as an addrec if it has a unique entry value and a unique
3641 // backedge value.
3642 Value *BEValueV = nullptr, *StartValueV = nullptr;
3643 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3644 Value *V = PN->getIncomingValue(i);
3645 if (L->contains(PN->getIncomingBlock(i))) {
3646 if (!BEValueV) {
3647 BEValueV = V;
3648 } else if (BEValueV != V) {
3649 BEValueV = nullptr;
3650 break;
3651 }
3652 } else if (!StartValueV) {
3653 StartValueV = V;
3654 } else if (StartValueV != V) {
3655 StartValueV = nullptr;
3656 break;
3657 }
3658 }
3659 if (BEValueV && StartValueV) {
3660 // While we are analyzing this PHI node, handle its value symbolically.
3661 const SCEV *SymbolicName = getUnknown(PN);
3662 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3663 "PHI node already processed?");
3664 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3665
3666 // Using this symbolic name for the PHI, analyze the value coming around
3667 // the back-edge.
3668 const SCEV *BEValue = getSCEV(BEValueV);
3669
3670 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3671 // has a special value for the first iteration of the loop.
3672
3673 // If the value coming around the backedge is an add with the symbolic
3674 // value we just inserted, then we found a simple induction variable!
3675 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3676 // If there is a single occurrence of the symbolic value, replace it
3677 // with a recurrence.
3678 unsigned FoundIndex = Add->getNumOperands();
3679 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3680 if (Add->getOperand(i) == SymbolicName)
3681 if (FoundIndex == e) {
3682 FoundIndex = i;
Dan Gohman6635bb22010-04-12 07:49:36 +00003683 break;
3684 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003685
3686 if (FoundIndex != Add->getNumOperands()) {
3687 // Create an add with everything but the specified operand.
3688 SmallVector<const SCEV *, 8> Ops;
3689 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3690 if (i != FoundIndex)
3691 Ops.push_back(Add->getOperand(i));
3692 const SCEV *Accum = getAddExpr(Ops);
3693
3694 // This is not a valid addrec if the step amount is varying each
3695 // loop iteration, but is not itself an addrec in this loop.
3696 if (isLoopInvariant(Accum, L) ||
3697 (isa<SCEVAddRecExpr>(Accum) &&
3698 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3699 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3700
3701 // If the increment doesn't overflow, then neither the addrec nor
3702 // the post-increment will overflow.
3703 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3704 if (OBO->getOperand(0) == PN) {
3705 if (OBO->hasNoUnsignedWrap())
3706 Flags = setFlags(Flags, SCEV::FlagNUW);
3707 if (OBO->hasNoSignedWrap())
3708 Flags = setFlags(Flags, SCEV::FlagNSW);
3709 }
3710 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3711 // If the increment is an inbounds GEP, then we know the address
3712 // space cannot be wrapped around. We cannot make any guarantee
3713 // about signed or unsigned overflow because pointers are
3714 // unsigned but we may have a negative index from the base
3715 // pointer. We can guarantee that no unsigned wrap occurs if the
3716 // indices form a positive value.
3717 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3718 Flags = setFlags(Flags, SCEV::FlagNW);
3719
3720 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3721 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3722 Flags = setFlags(Flags, SCEV::FlagNUW);
3723 }
3724
3725 // We cannot transfer nuw and nsw flags from subtraction
3726 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3727 // for instance.
3728 }
3729
3730 const SCEV *StartVal = getSCEV(StartValueV);
3731 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3732
3733 // Since the no-wrap flags are on the increment, they apply to the
3734 // post-incremented value as well.
3735 if (isLoopInvariant(Accum, L))
3736 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
3737
3738 // Okay, for the entire analysis of this edge we assumed the PHI
3739 // to be symbolic. We now need to go back and purge all of the
3740 // entries for the scalars that use the symbolic expression.
3741 ForgetSymbolicName(PN, SymbolicName);
3742 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3743 return PHISCEV;
Dan Gohman6635bb22010-04-12 07:49:36 +00003744 }
3745 }
Sanjoy Das63914592015-10-18 00:29:20 +00003746 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003747 // Otherwise, this could be a loop like this:
3748 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3749 // In this case, j = {1,+,1} and BEValue is j.
3750 // Because the other in-value of i (0) fits the evolution of BEValue
3751 // i really is an addrec evolution.
3752 if (AddRec->getLoop() == L && AddRec->isAffine()) {
3753 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003754
Sanjoy Das55015d22015-10-02 23:09:44 +00003755 // If StartVal = j.start - j.stride, we can use StartVal as the
3756 // initial step of the addrec evolution.
3757 if (StartVal ==
3758 getMinusSCEV(AddRec->getOperand(0), AddRec->getOperand(1))) {
3759 // FIXME: For constant StartVal, we should be able to infer
3760 // no-wrap flags.
3761 const SCEV *PHISCEV = getAddRecExpr(StartVal, AddRec->getOperand(1),
3762 L, SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00003763
Sanjoy Das55015d22015-10-02 23:09:44 +00003764 // Okay, for the entire analysis of this edge we assumed the PHI
3765 // to be symbolic. We now need to go back and purge all of the
3766 // entries for the scalars that use the symbolic expression.
3767 ForgetSymbolicName(PN, SymbolicName);
3768 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3769 return PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003770 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003771 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003772 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003773 }
3774
3775 return nullptr;
3776}
3777
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003778// Checks if the SCEV S is available at BB. S is considered available at BB
3779// if S can be materialized at BB without introducing a fault.
3780static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
3781 BasicBlock *BB) {
3782 struct CheckAvailable {
3783 bool TraversalDone = false;
3784 bool Available = true;
Sanjoy Das55015d22015-10-02 23:09:44 +00003785
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003786 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
3787 BasicBlock *BB = nullptr;
3788 DominatorTree &DT;
Sanjoy Das55015d22015-10-02 23:09:44 +00003789
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003790 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
3791 : L(L), BB(BB), DT(DT) {}
Sanjoy Das55015d22015-10-02 23:09:44 +00003792
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003793 bool setUnavailable() {
3794 TraversalDone = true;
3795 Available = false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003796 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003797 }
3798
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003799 bool follow(const SCEV *S) {
3800 switch (S->getSCEVType()) {
3801 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
3802 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
Sanjoy Dasbb5ffc52015-10-24 05:37:28 +00003803 // These expressions are available if their operand(s) is/are.
3804 return true;
Sanjoy Das55015d22015-10-02 23:09:44 +00003805
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003806 case scAddRecExpr: {
3807 // We allow add recurrences that are on the loop BB is in, or some
3808 // outer loop. This guarantees availability because the value of the
3809 // add recurrence at BB is simply the "current" value of the induction
3810 // variable. We can relax this in the future; for instance an add
3811 // recurrence on a sibling dominating loop is also available at BB.
3812 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
3813 if (L && (ARLoop == L || ARLoop->contains(L)))
Sanjoy Das55015d22015-10-02 23:09:44 +00003814 return true;
3815
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003816 return setUnavailable();
Sanjoy Das55015d22015-10-02 23:09:44 +00003817 }
3818
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003819 case scUnknown: {
3820 // For SCEVUnknown, we check for simple dominance.
3821 const auto *SU = cast<SCEVUnknown>(S);
3822 Value *V = SU->getValue();
Sanjoy Das55015d22015-10-02 23:09:44 +00003823
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003824 if (isa<Argument>(V))
3825 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003826
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003827 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
3828 return false;
3829
3830 return setUnavailable();
3831 }
3832
3833 case scUDivExpr:
3834 case scCouldNotCompute:
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003835 // We do not try to smart about these at all.
3836 return setUnavailable();
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003837 }
3838 llvm_unreachable("switch should be fully covered!");
3839 }
3840
3841 bool isDone() { return TraversalDone; }
Sanjoy Das55015d22015-10-02 23:09:44 +00003842 };
3843
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003844 CheckAvailable CA(L, BB, DT);
3845 SCEVTraversal<CheckAvailable> ST(CA);
3846
3847 ST.visitAll(S);
3848 return CA.Available;
3849}
3850
3851// Try to match a control flow sequence that branches out at BI and merges back
3852// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
3853// match.
3854static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
3855 Value *&C, Value *&LHS, Value *&RHS) {
3856 C = BI->getCondition();
3857
3858 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
3859 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
3860
3861 if (!LeftEdge.isSingleEdge())
3862 return false;
3863
3864 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
3865
3866 Use &LeftUse = Merge->getOperandUse(0);
3867 Use &RightUse = Merge->getOperandUse(1);
3868
3869 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
3870 LHS = LeftUse;
3871 RHS = RightUse;
3872 return true;
3873 }
3874
3875 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
3876 LHS = RightUse;
3877 RHS = LeftUse;
3878 return true;
3879 }
3880
3881 return false;
3882}
3883
3884const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003885 if (PN->getNumIncomingValues() == 2) {
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003886 const Loop *L = LI.getLoopFor(PN->getParent());
3887
Sanjoy Das55015d22015-10-02 23:09:44 +00003888 // Try to match
3889 //
3890 // br %cond, label %left, label %right
3891 // left:
3892 // br label %merge
3893 // right:
3894 // br label %merge
3895 // merge:
3896 // V = phi [ %x, %left ], [ %y, %right ]
3897 //
3898 // as "select %cond, %x, %y"
3899
3900 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
3901 assert(IDom && "At least the entry block should dominate PN");
3902
3903 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
3904 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
3905
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003906 if (BI && BI->isConditional() &&
3907 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
3908 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
3909 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
Sanjoy Das55015d22015-10-02 23:09:44 +00003910 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
3911 }
3912
3913 return nullptr;
3914}
3915
3916const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3917 if (const SCEV *S = createAddRecFromPHI(PN))
3918 return S;
3919
3920 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
3921 return S;
Misha Brukman01808ca2005-04-21 21:13:18 +00003922
Dan Gohmana9c205c2010-02-25 06:57:05 +00003923 // If the PHI has a single incoming value, follow that value, unless the
3924 // PHI's incoming blocks are in a different loop, in which case doing so
3925 // risks breaking LCSSA form. Instcombine would normally zap these, but
3926 // it doesn't have DominatorTree information, so it may miss cases.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003927 if (Value *V = SimplifyInstruction(PN, F.getParent()->getDataLayout(), &TLI,
3928 &DT, &AC))
3929 if (LI.replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003930 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003931
Chris Lattnerd934c702004-04-02 20:23:17 +00003932 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003933 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003934}
3935
Sanjoy Das55015d22015-10-02 23:09:44 +00003936const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
3937 Value *Cond,
3938 Value *TrueVal,
3939 Value *FalseVal) {
Mehdi Amini044cb342015-10-07 18:14:25 +00003940 // Handle "constant" branch or select. This can occur for instance when a
3941 // loop pass transforms an inner loop and moves on to process the outer loop.
3942 if (auto *CI = dyn_cast<ConstantInt>(Cond))
3943 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
3944
Sanjoy Dasd0671342015-10-02 19:39:59 +00003945 // Try to match some simple smax or umax patterns.
3946 auto *ICI = dyn_cast<ICmpInst>(Cond);
3947 if (!ICI)
3948 return getUnknown(I);
3949
3950 Value *LHS = ICI->getOperand(0);
3951 Value *RHS = ICI->getOperand(1);
3952
3953 switch (ICI->getPredicate()) {
3954 case ICmpInst::ICMP_SLT:
3955 case ICmpInst::ICMP_SLE:
3956 std::swap(LHS, RHS);
3957 // fall through
3958 case ICmpInst::ICMP_SGT:
3959 case ICmpInst::ICMP_SGE:
3960 // a >s b ? a+x : b+x -> smax(a, b)+x
3961 // a >s b ? b+x : a+x -> smin(a, b)+x
3962 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
3963 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
3964 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
3965 const SCEV *LA = getSCEV(TrueVal);
3966 const SCEV *RA = getSCEV(FalseVal);
3967 const SCEV *LDiff = getMinusSCEV(LA, LS);
3968 const SCEV *RDiff = getMinusSCEV(RA, RS);
3969 if (LDiff == RDiff)
3970 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3971 LDiff = getMinusSCEV(LA, RS);
3972 RDiff = getMinusSCEV(RA, LS);
3973 if (LDiff == RDiff)
3974 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3975 }
3976 break;
3977 case ICmpInst::ICMP_ULT:
3978 case ICmpInst::ICMP_ULE:
3979 std::swap(LHS, RHS);
3980 // fall through
3981 case ICmpInst::ICMP_UGT:
3982 case ICmpInst::ICMP_UGE:
3983 // a >u b ? a+x : b+x -> umax(a, b)+x
3984 // a >u b ? b+x : a+x -> umin(a, b)+x
3985 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
3986 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
3987 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
3988 const SCEV *LA = getSCEV(TrueVal);
3989 const SCEV *RA = getSCEV(FalseVal);
3990 const SCEV *LDiff = getMinusSCEV(LA, LS);
3991 const SCEV *RDiff = getMinusSCEV(RA, RS);
3992 if (LDiff == RDiff)
3993 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3994 LDiff = getMinusSCEV(LA, RS);
3995 RDiff = getMinusSCEV(RA, LS);
3996 if (LDiff == RDiff)
3997 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3998 }
3999 break;
4000 case ICmpInst::ICMP_NE:
4001 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4002 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4003 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4004 const SCEV *One = getOne(I->getType());
4005 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4006 const SCEV *LA = getSCEV(TrueVal);
4007 const SCEV *RA = getSCEV(FalseVal);
4008 const SCEV *LDiff = getMinusSCEV(LA, LS);
4009 const SCEV *RDiff = getMinusSCEV(RA, One);
4010 if (LDiff == RDiff)
4011 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4012 }
4013 break;
4014 case ICmpInst::ICMP_EQ:
4015 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4016 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4017 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4018 const SCEV *One = getOne(I->getType());
4019 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4020 const SCEV *LA = getSCEV(TrueVal);
4021 const SCEV *RA = getSCEV(FalseVal);
4022 const SCEV *LDiff = getMinusSCEV(LA, One);
4023 const SCEV *RDiff = getMinusSCEV(RA, LS);
4024 if (LDiff == RDiff)
4025 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4026 }
4027 break;
4028 default:
4029 break;
4030 }
4031
4032 return getUnknown(I);
4033}
4034
Dan Gohmanee750d12009-05-08 20:26:55 +00004035/// createNodeForGEP - Expand GEP instructions into add and multiply
4036/// operations. This allows them to be analyzed by regular SCEV code.
4037///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004038const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman2173bd32009-05-08 20:36:47 +00004039 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00004040 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00004041 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00004042 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00004043
Jingyue Wu2982d4d2015-05-18 17:03:25 +00004044 SmallVector<const SCEV *, 4> IndexExprs;
4045 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4046 IndexExprs.push_back(getSCEV(*Index));
4047 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs,
4048 GEP->isInBounds());
Dan Gohmanee750d12009-05-08 20:26:55 +00004049}
4050
Nick Lewycky3783b462007-11-22 07:59:40 +00004051/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4052/// guaranteed to end in (at every loop iteration). It is, at the same time,
4053/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
4054/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004055uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00004056ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00004057 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00004058 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00004059
Dan Gohmana30370b2009-05-04 22:02:23 +00004060 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00004061 return std::min(GetMinTrailingZeros(T->getOperand()),
4062 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00004063
Dan Gohmana30370b2009-05-04 22:02:23 +00004064 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004065 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4066 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4067 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004068 }
4069
Dan Gohmana30370b2009-05-04 22:02:23 +00004070 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004071 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4072 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4073 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004074 }
4075
Dan Gohmana30370b2009-05-04 22:02:23 +00004076 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004077 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004078 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004079 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004080 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004081 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004082 }
4083
Dan Gohmana30370b2009-05-04 22:02:23 +00004084 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004085 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004086 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4087 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00004088 for (unsigned i = 1, e = M->getNumOperands();
4089 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004090 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00004091 BitWidth);
4092 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004093 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004094
Dan Gohmana30370b2009-05-04 22:02:23 +00004095 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004096 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004097 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004098 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004099 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004100 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004101 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004102
Dan Gohmana30370b2009-05-04 22:02:23 +00004103 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004104 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004105 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004106 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004107 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004108 return MinOpRes;
4109 }
4110
Dan Gohmana30370b2009-05-04 22:02:23 +00004111 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004112 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004113 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004114 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004115 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004116 return MinOpRes;
4117 }
4118
Dan Gohmanc702fc02009-06-19 23:29:04 +00004119 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4120 // For a SCEVUnknown, ask ValueTracking.
4121 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00004122 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004123 computeKnownBits(U->getValue(), Zeros, Ones, F.getParent()->getDataLayout(),
4124 0, &AC, nullptr, &DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004125 return Zeros.countTrailingOnes();
4126 }
4127
4128 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00004129 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00004130}
Chris Lattnerd934c702004-04-02 20:23:17 +00004131
Sanjoy Das1f05c512014-10-10 21:22:34 +00004132/// GetRangeFromMetadata - Helper method to assign a range to V from
4133/// metadata present in the IR.
4134static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004135 if (Instruction *I = dyn_cast<Instruction>(V))
4136 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4137 return getConstantRangeFromMetadata(*MD);
Sanjoy Das1f05c512014-10-10 21:22:34 +00004138
4139 return None;
4140}
4141
Sanjoy Das91b54772015-03-09 21:43:43 +00004142/// getRange - Determine the range for a particular SCEV. If SignHint is
4143/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4144/// with a "cleaner" unsigned (resp. signed) representation.
Dan Gohmane65c9172009-07-13 21:35:55 +00004145///
4146ConstantRange
Sanjoy Das91b54772015-03-09 21:43:43 +00004147ScalarEvolution::getRange(const SCEV *S,
4148 ScalarEvolution::RangeSignHint SignHint) {
4149 DenseMap<const SCEV *, ConstantRange> &Cache =
4150 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4151 : SignedRanges;
4152
Dan Gohman761065e2010-11-17 02:44:44 +00004153 // See if we've computed this range already.
Sanjoy Das91b54772015-03-09 21:43:43 +00004154 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4155 if (I != Cache.end())
Dan Gohman761065e2010-11-17 02:44:44 +00004156 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00004157
4158 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das91b54772015-03-09 21:43:43 +00004159 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004160
Dan Gohman85be4332010-01-26 19:19:05 +00004161 unsigned BitWidth = getTypeSizeInBits(S->getType());
4162 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4163
Sanjoy Das91b54772015-03-09 21:43:43 +00004164 // If the value has known zeros, the maximum value will have those known zeros
4165 // as well.
Dan Gohman85be4332010-01-26 19:19:05 +00004166 uint32_t TZ = GetMinTrailingZeros(S);
Sanjoy Das91b54772015-03-09 21:43:43 +00004167 if (TZ != 0) {
4168 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4169 ConservativeResult =
4170 ConstantRange(APInt::getMinValue(BitWidth),
4171 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4172 else
4173 ConservativeResult = ConstantRange(
4174 APInt::getSignedMinValue(BitWidth),
4175 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4176 }
Dan Gohman85be4332010-01-26 19:19:05 +00004177
Dan Gohmane65c9172009-07-13 21:35:55 +00004178 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004179 ConstantRange X = getRange(Add->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004180 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004181 X = X.add(getRange(Add->getOperand(i), SignHint));
4182 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004183 }
4184
4185 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004186 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004187 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004188 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4189 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004190 }
4191
4192 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004193 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004194 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004195 X = X.smax(getRange(SMax->getOperand(i), SignHint));
4196 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004197 }
4198
4199 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004200 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004201 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004202 X = X.umax(getRange(UMax->getOperand(i), SignHint));
4203 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004204 }
4205
4206 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004207 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4208 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4209 return setRange(UDiv, SignHint,
4210 ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004211 }
4212
4213 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004214 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4215 return setRange(ZExt, SignHint,
4216 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004217 }
4218
4219 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004220 ConstantRange X = getRange(SExt->getOperand(), SignHint);
4221 return setRange(SExt, SignHint,
4222 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004223 }
4224
4225 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004226 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4227 return setRange(Trunc, SignHint,
4228 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004229 }
4230
Dan Gohmane65c9172009-07-13 21:35:55 +00004231 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004232 // If there's no unsigned wrap, the value will never be less than its
4233 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00004234 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00004235 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00004236 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00004237 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00004238 ConservativeResult.intersectWith(
4239 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004240
Dan Gohman51ad99d2010-01-21 02:09:26 +00004241 // If there's no signed wrap, and all the operands have the same sign or
4242 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00004243 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004244 bool AllNonNeg = true;
4245 bool AllNonPos = true;
4246 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4247 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4248 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4249 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004250 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00004251 ConservativeResult = ConservativeResult.intersectWith(
4252 ConstantRange(APInt(BitWidth, 0),
4253 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004254 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00004255 ConservativeResult = ConservativeResult.intersectWith(
4256 ConstantRange(APInt::getSignedMinValue(BitWidth),
4257 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004258 }
Dan Gohmane65c9172009-07-13 21:35:55 +00004259
4260 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00004261 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00004262 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00004263 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00004264 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4265 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004266
4267 // Check for overflow. This must be done with ConstantRange arithmetic
4268 // because we could be called from within the ScalarEvolution overflow
4269 // checking code.
4270
Dan Gohmane65c9172009-07-13 21:35:55 +00004271 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
Sanjoy Das91b54772015-03-09 21:43:43 +00004272 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4273 ConstantRange ZExtMaxBECountRange =
4274 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004275
4276 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00004277 const SCEV *Step = AddRec->getStepRecurrence(*this);
Sanjoy Das91b54772015-03-09 21:43:43 +00004278 ConstantRange StepSRange = getSignedRange(Step);
4279 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004280
Sanjoy Das91b54772015-03-09 21:43:43 +00004281 ConstantRange StartURange = getUnsignedRange(Start);
4282 ConstantRange EndURange =
4283 StartURange.add(MaxBECountRange.multiply(StepSRange));
Dan Gohmanf76210e2010-04-12 07:39:33 +00004284
Sanjoy Das91b54772015-03-09 21:43:43 +00004285 // Check for unsigned overflow.
4286 ConstantRange ZExtStartURange =
4287 StartURange.zextOrTrunc(BitWidth * 2 + 1);
4288 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4289 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4290 ZExtEndURange) {
4291 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4292 EndURange.getUnsignedMin());
4293 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4294 EndURange.getUnsignedMax());
4295 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4296 if (!IsFullRange)
4297 ConservativeResult =
4298 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4299 }
Dan Gohmanf76210e2010-04-12 07:39:33 +00004300
Sanjoy Das91b54772015-03-09 21:43:43 +00004301 ConstantRange StartSRange = getSignedRange(Start);
4302 ConstantRange EndSRange =
4303 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4304
4305 // Check for signed overflow. This must be done with ConstantRange
4306 // arithmetic because we could be called from within the ScalarEvolution
4307 // overflow checking code.
4308 ConstantRange SExtStartSRange =
4309 StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4310 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4311 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4312 SExtEndSRange) {
4313 APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4314 EndSRange.getSignedMin());
4315 APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4316 EndSRange.getSignedMax());
4317 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4318 if (!IsFullRange)
4319 ConservativeResult =
4320 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4321 }
Dan Gohmand261d272009-06-24 01:05:09 +00004322 }
Dan Gohmand261d272009-06-24 01:05:09 +00004323 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004324
Sanjoy Das91b54772015-03-09 21:43:43 +00004325 return setRange(AddRec, SignHint, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004326 }
4327
Dan Gohmanc702fc02009-06-19 23:29:04 +00004328 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004329 // Check if the IR explicitly contains !range metadata.
4330 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4331 if (MDRange.hasValue())
4332 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4333
Sanjoy Das91b54772015-03-09 21:43:43 +00004334 // Split here to avoid paying the compile-time cost of calling both
4335 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4336 // if needed.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004337 const DataLayout &DL = F.getParent()->getDataLayout();
Sanjoy Das91b54772015-03-09 21:43:43 +00004338 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4339 // For a SCEVUnknown, ask ValueTracking.
4340 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004341 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
Sanjoy Das91b54772015-03-09 21:43:43 +00004342 if (Ones != ~Zeros + 1)
4343 ConservativeResult =
4344 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4345 } else {
4346 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4347 "generalize as needed!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004348 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004349 if (NS > 1)
4350 ConservativeResult = ConservativeResult.intersectWith(
4351 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4352 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
Sanjoy Das91b54772015-03-09 21:43:43 +00004353 }
4354
4355 return setRange(U, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004356 }
4357
Sanjoy Das91b54772015-03-09 21:43:43 +00004358 return setRange(S, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004359}
4360
Jingyue Wu42f1d672015-07-28 18:22:40 +00004361SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004362 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004363 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4364
4365 // Return early if there are no flags to propagate to the SCEV.
4366 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4367 if (BinOp->hasNoUnsignedWrap())
4368 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4369 if (BinOp->hasNoSignedWrap())
4370 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4371 if (Flags == SCEV::FlagAnyWrap) {
4372 return SCEV::FlagAnyWrap;
4373 }
4374
4375 // Here we check that BinOp is in the header of the innermost loop
4376 // containing BinOp, since we only deal with instructions in the loop
4377 // header. The actual loop we need to check later will come from an add
4378 // recurrence, but getting that requires computing the SCEV of the operands,
4379 // which can be expensive. This check we can do cheaply to rule out some
4380 // cases early.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004381 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00004382 if (innermostContainingLoop == nullptr ||
4383 innermostContainingLoop->getHeader() != BinOp->getParent())
4384 return SCEV::FlagAnyWrap;
4385
4386 // Only proceed if we can prove that BinOp does not yield poison.
4387 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4388
4389 // At this point we know that if V is executed, then it does not wrap
4390 // according to at least one of NSW or NUW. If V is not executed, then we do
4391 // not know if the calculation that V represents would wrap. Multiple
4392 // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4393 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4394 // derived from other instructions that map to the same SCEV. We cannot make
4395 // that guarantee for cases where V is not executed. So we need to find the
4396 // loop that V is considered in relation to and prove that V is executed for
4397 // every iteration of that loop. That implies that the value that V
4398 // calculates does not wrap anywhere in the loop, so then we can apply the
4399 // flags to the SCEV.
4400 //
4401 // We check isLoopInvariant to disambiguate in case we are adding two
4402 // recurrences from different loops, so that we know which loop to prove
4403 // that V is executed in.
4404 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4405 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4406 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4407 const int OtherOpIndex = 1 - OpIndex;
4408 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4409 if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4410 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4411 return Flags;
4412 }
4413 }
4414 return SCEV::FlagAnyWrap;
4415}
4416
4417/// createSCEV - We know that there is no SCEV for the specified value. Analyze
4418/// the expression.
Chris Lattnerd934c702004-04-02 20:23:17 +00004419///
Dan Gohmanaf752342009-07-07 17:06:11 +00004420const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004421 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004422 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004423
Dan Gohman05e89732008-06-22 19:56:46 +00004424 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004425 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004426 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004427
4428 // Don't attempt to analyze instructions in blocks that aren't
4429 // reachable. Such instructions don't matter, and they aren't required
4430 // to obey basic rules for definitions dominating uses which this
4431 // analysis depends on.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004432 if (!DT.isReachableFromEntry(I->getParent()))
Dan Gohman69451a02010-03-09 23:46:50 +00004433 return getUnknown(V);
4434 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004435 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004436 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4437 return getConstant(CI);
4438 else if (isa<ConstantPointerNull>(V))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004439 return getZero(V->getType());
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004440 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4441 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004442 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004443 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004444
Dan Gohman80ca01c2009-07-17 20:47:02 +00004445 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004446 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004447 case Instruction::Add: {
4448 // The simple thing to do would be to just call getSCEV on both operands
4449 // and call getAddExpr with the result. However if we're looking at a
4450 // bunch of things all added together, this can be quite inefficient,
4451 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4452 // Instead, gather up all the operands and make a single getAddExpr call.
4453 // LLVM IR canonical form means we need only traverse the left operands.
4454 SmallVector<const SCEV *, 4> AddOps;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004455 for (Value *Op = U;; Op = U->getOperand(0)) {
4456 U = dyn_cast<Operator>(Op);
4457 unsigned Opcode = U ? U->getOpcode() : 0;
4458 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) {
4459 assert(Op != V && "V should be an add");
4460 AddOps.push_back(getSCEV(Op));
Dan Gohman47308d52010-08-31 22:53:17 +00004461 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004462 }
4463
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004464 if (auto *OpSCEV = getExistingSCEV(U)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00004465 AddOps.push_back(OpSCEV);
4466 break;
4467 }
4468
4469 // If a NUW or NSW flag can be applied to the SCEV for this
4470 // addition, then compute the SCEV for this addition by itself
4471 // with a separate call to getAddExpr. We need to do that
4472 // instead of pushing the operands of the addition onto AddOps,
4473 // since the flags are only known to apply to this particular
4474 // addition - they may not apply to other additions that can be
4475 // formed with operands from AddOps.
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004476 const SCEV *RHS = getSCEV(U->getOperand(1));
4477 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4478 if (Flags != SCEV::FlagAnyWrap) {
4479 const SCEV *LHS = getSCEV(U->getOperand(0));
4480 if (Opcode == Instruction::Sub)
4481 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4482 else
4483 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4484 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004485 }
4486
Dan Gohman47308d52010-08-31 22:53:17 +00004487 if (Opcode == Instruction::Sub)
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004488 AddOps.push_back(getNegativeSCEV(RHS));
Dan Gohman47308d52010-08-31 22:53:17 +00004489 else
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004490 AddOps.push_back(RHS);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004491 }
Andrew Trickd25089f2011-11-29 02:16:38 +00004492 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004493 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004494
Dan Gohmane5fb1032010-08-16 16:03:49 +00004495 case Instruction::Mul: {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004496 SmallVector<const SCEV *, 4> MulOps;
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004497 for (Value *Op = U;; Op = U->getOperand(0)) {
4498 U = dyn_cast<Operator>(Op);
4499 if (!U || U->getOpcode() != Instruction::Mul) {
4500 assert(Op != V && "V should be a mul");
4501 MulOps.push_back(getSCEV(Op));
4502 break;
4503 }
4504
4505 if (auto *OpSCEV = getExistingSCEV(U)) {
4506 MulOps.push_back(OpSCEV);
4507 break;
4508 }
4509
4510 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4511 if (Flags != SCEV::FlagAnyWrap) {
4512 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)),
4513 getSCEV(U->getOperand(1)), Flags));
4514 break;
4515 }
4516
Dan Gohmane5fb1032010-08-16 16:03:49 +00004517 MulOps.push_back(getSCEV(U->getOperand(1)));
4518 }
Dan Gohmane5fb1032010-08-16 16:03:49 +00004519 return getMulExpr(MulOps);
4520 }
Dan Gohman05e89732008-06-22 19:56:46 +00004521 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004522 return getUDivExpr(getSCEV(U->getOperand(0)),
4523 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004524 case Instruction::Sub:
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004525 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)),
4526 getNoWrapFlagsFromUB(U));
Dan Gohman0ec05372009-04-21 02:26:00 +00004527 case Instruction::And:
4528 // For an expression like x&255 that merely masks off the high bits,
4529 // use zext(trunc(x)) as the SCEV expression.
4530 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004531 if (CI->isNullValue())
4532 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004533 if (CI->isAllOnesValue())
4534 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004535 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004536
4537 // Instcombine's ShrinkDemandedConstant may strip bits out of
4538 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004539 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004540 // knew about to reconstruct a low-bits mask value.
4541 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004542 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004543 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004544 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004545 computeKnownBits(U->getOperand(0), KnownZero, KnownOne,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004546 F.getParent()->getDataLayout(), 0, &AC, nullptr, &DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004547
Nick Lewycky31eaca52014-01-27 10:04:03 +00004548 APInt EffectiveMask =
4549 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4550 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4551 const SCEV *MulCount = getConstant(
4552 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4553 return getMulExpr(
4554 getZeroExtendExpr(
4555 getTruncateExpr(
4556 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4557 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4558 U->getType()),
4559 MulCount);
4560 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004561 }
4562 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004563
Dan Gohman05e89732008-06-22 19:56:46 +00004564 case Instruction::Or:
4565 // If the RHS of the Or is a constant, we may have something like:
4566 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4567 // optimizations will transparently handle this case.
4568 //
4569 // In order for this transformation to be safe, the LHS must be of the
4570 // form X*(2^n) and the Or constant must be less than 2^n.
4571 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004572 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004573 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004574 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004575 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4576 // Build a plain add SCEV.
4577 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4578 // If the LHS of the add was an addrec and it has no-wrap flags,
4579 // transfer the no-wrap flags, since an or won't introduce a wrap.
4580 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4581 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004582 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4583 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004584 }
4585 return S;
4586 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004587 }
Dan Gohman05e89732008-06-22 19:56:46 +00004588 break;
4589 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004590 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004591 // If the RHS of the xor is a signbit, then this is just an add.
4592 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004593 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004594 return getAddExpr(getSCEV(U->getOperand(0)),
4595 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004596
4597 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004598 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004599 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004600
4601 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4602 // This is a variant of the check for xor with -1, and it handles
4603 // the case where instcombine has trimmed non-demanded bits out
4604 // of an xor with -1.
4605 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4606 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4607 if (BO->getOpcode() == Instruction::And &&
4608 LCI->getValue() == CI->getValue())
4609 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004610 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004611 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004612 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004613 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004614 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4615
Dan Gohman8b0a4192010-03-01 17:49:51 +00004616 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004617 // mask off the high bits. Complement the operand and
4618 // re-apply the zext.
4619 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4620 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4621
4622 // If C is a single bit, it may be in the sign-bit position
4623 // before the zero-extend. In this case, represent the xor
4624 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004625 APInt Trunc = CI->getValue().trunc(Z0TySize);
4626 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004627 Trunc.isSignBit())
4628 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4629 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004630 }
Dan Gohman05e89732008-06-22 19:56:46 +00004631 }
4632 break;
4633
4634 case Instruction::Shl:
4635 // Turn shift left of a constant amount into a multiply.
4636 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004637 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004638
4639 // If the shift count is not less than the bitwidth, the result of
4640 // the shift is undefined. Don't try to analyze it, because the
4641 // resolution chosen here may differ from the resolution chosen in
4642 // other parts of the compiler.
4643 if (SA->getValue().uge(BitWidth))
4644 break;
4645
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004646 // It is currently not resolved how to interpret NSW for left
4647 // shift by BitWidth - 1, so we avoid applying flags in that
4648 // case. Remove this check (or this comment) once the situation
4649 // is resolved. See
4650 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
4651 // and http://reviews.llvm.org/D8890 .
4652 auto Flags = SCEV::FlagAnyWrap;
4653 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U);
4654
Owen Andersonedb4a702009-07-24 23:12:02 +00004655 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004656 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004657 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags);
Dan Gohman05e89732008-06-22 19:56:46 +00004658 }
4659 break;
4660
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004661 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004662 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004663 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004664 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004665
4666 // If the shift count is not less than the bitwidth, the result of
4667 // the shift is undefined. Don't try to analyze it, because the
4668 // resolution chosen here may differ from the resolution chosen in
4669 // other parts of the compiler.
4670 if (SA->getValue().uge(BitWidth))
4671 break;
4672
Owen Andersonedb4a702009-07-24 23:12:02 +00004673 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004674 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004675 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004676 }
4677 break;
4678
Dan Gohman0ec05372009-04-21 02:26:00 +00004679 case Instruction::AShr:
4680 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4681 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004682 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004683 if (L->getOpcode() == Instruction::Shl &&
4684 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004685 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4686
4687 // If the shift count is not less than the bitwidth, the result of
4688 // the shift is undefined. Don't try to analyze it, because the
4689 // resolution chosen here may differ from the resolution chosen in
4690 // other parts of the compiler.
4691 if (CI->getValue().uge(BitWidth))
4692 break;
4693
Dan Gohmandf199482009-04-25 17:05:40 +00004694 uint64_t Amt = BitWidth - CI->getZExtValue();
4695 if (Amt == BitWidth)
4696 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004697 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004698 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004699 IntegerType::get(getContext(),
4700 Amt)),
4701 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004702 }
4703 break;
4704
Dan Gohman05e89732008-06-22 19:56:46 +00004705 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004706 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004707
4708 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004709 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004710
4711 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004712 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004713
4714 case Instruction::BitCast:
4715 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004716 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004717 return getSCEV(U->getOperand(0));
4718 break;
4719
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004720 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4721 // lead to pointer expressions which cannot safely be expanded to GEPs,
4722 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4723 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004724
Dan Gohmanee750d12009-05-08 20:26:55 +00004725 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004726 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004727
Dan Gohman05e89732008-06-22 19:56:46 +00004728 case Instruction::PHI:
4729 return createNodeForPHI(cast<PHINode>(U));
4730
4731 case Instruction::Select:
Sanjoy Dasd0671342015-10-02 19:39:59 +00004732 // U can also be a select constant expr, which let fall through. Since
4733 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
4734 // constant expressions cannot have instructions as operands, we'd have
4735 // returned getUnknown for a select constant expressions anyway.
4736 if (isa<Instruction>(U))
Sanjoy Das55015d22015-10-02 23:09:44 +00004737 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
4738 U->getOperand(1), U->getOperand(2));
Dan Gohman05e89732008-06-22 19:56:46 +00004739
4740 default: // We cannot analyze this expression.
4741 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004742 }
4743
Dan Gohmanc8e23622009-04-21 23:15:49 +00004744 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004745}
4746
4747
4748
4749//===----------------------------------------------------------------------===//
4750// Iteration Count Computation Code
4751//
4752
Chandler Carruth6666c272014-10-11 00:12:11 +00004753unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4754 if (BasicBlock *ExitingBB = L->getExitingBlock())
4755 return getSmallConstantTripCount(L, ExitingBB);
4756
4757 // No trip count information for multiple exits.
4758 return 0;
4759}
4760
Andrew Trick2b6860f2011-08-11 23:36:16 +00004761/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004762/// normal unsigned value. Returns 0 if the trip count is unknown or not
4763/// constant. Will also return 0 if the maximum trip count is very large (>=
4764/// 2^32).
4765///
4766/// This "trip count" assumes that control exits via ExitingBlock. More
4767/// precisely, it is the number of times that control may reach ExitingBlock
4768/// before taking the branch. For loops with multiple exits, it may not be the
4769/// number times that the loop header executes because the loop may exit
4770/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004771unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4772 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004773 assert(ExitingBlock && "Must pass a non-null exiting block!");
4774 assert(L->isLoopExiting(ExitingBlock) &&
4775 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004776 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004777 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004778 if (!ExitCount)
4779 return 0;
4780
4781 ConstantInt *ExitConst = ExitCount->getValue();
4782
4783 // Guard against huge trip counts.
4784 if (ExitConst->getValue().getActiveBits() > 32)
4785 return 0;
4786
4787 // In case of integer overflow, this returns 0, which is correct.
4788 return ((unsigned)ExitConst->getZExtValue()) + 1;
4789}
4790
Chandler Carruth6666c272014-10-11 00:12:11 +00004791unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4792 if (BasicBlock *ExitingBB = L->getExitingBlock())
4793 return getSmallConstantTripMultiple(L, ExitingBB);
4794
4795 // No trip multiple information for multiple exits.
4796 return 0;
4797}
4798
Andrew Trick2b6860f2011-08-11 23:36:16 +00004799/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4800/// trip count of this loop as a normal unsigned value, if possible. This
4801/// means that the actual trip count is always a multiple of the returned
4802/// value (don't forget the trip count could very well be zero as well!).
4803///
4804/// Returns 1 if the trip count is unknown or not guaranteed to be the
4805/// multiple of a constant (which is also the case if the trip count is simply
4806/// constant, use getSmallConstantTripCount for that case), Will also return 1
4807/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004808///
4809/// As explained in the comments for getSmallConstantTripCount, this assumes
4810/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004811unsigned
4812ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4813 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004814 assert(ExitingBlock && "Must pass a non-null exiting block!");
4815 assert(L->isLoopExiting(ExitingBlock) &&
4816 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004817 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004818 if (ExitCount == getCouldNotCompute())
4819 return 1;
4820
4821 // Get the trip count from the BE count by adding 1.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004822 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004823 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4824 // to factor simple cases.
4825 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4826 TCMul = Mul->getOperand(0);
4827
4828 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4829 if (!MulC)
4830 return 1;
4831
4832 ConstantInt *Result = MulC->getValue();
4833
Hal Finkel30bd9342012-10-24 19:46:44 +00004834 // Guard against huge trip counts (this requires checking
4835 // for zero to handle the case where the trip count == -1 and the
4836 // addition wraps).
4837 if (!Result || Result->getValue().getActiveBits() > 32 ||
4838 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004839 return 1;
4840
4841 return (unsigned)Result->getZExtValue();
4842}
4843
Andrew Trick3ca3f982011-07-26 17:19:55 +00004844// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004845// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004846// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004847const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4848 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004849}
4850
Dan Gohman0bddac12009-02-24 18:55:53 +00004851/// getBackedgeTakenCount - If the specified loop has a predictable
4852/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4853/// object. The backedge-taken count is the number of times the loop header
4854/// will be branched to from within the loop. This is one less than the
4855/// trip count of the loop, since it doesn't count the first iteration,
4856/// when the header is branched to from outside the loop.
4857///
4858/// Note that it is not valid to call this method on a loop without a
4859/// loop-invariant backedge-taken count (see
4860/// hasLoopInvariantBackedgeTakenCount).
4861///
Dan Gohmanaf752342009-07-07 17:06:11 +00004862const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004863 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004864}
4865
4866/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4867/// return the least SCEV value that is known never to be less than the
4868/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004869const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004870 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004871}
4872
Dan Gohmandc191042009-07-08 19:23:34 +00004873/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4874/// onto the given Worklist.
4875static void
4876PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4877 BasicBlock *Header = L->getHeader();
4878
4879 // Push all Loop-header PHIs onto the Worklist stack.
4880 for (BasicBlock::iterator I = Header->begin();
4881 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4882 Worklist.push_back(PN);
4883}
4884
Dan Gohman2b8da352009-04-30 20:47:05 +00004885const ScalarEvolution::BackedgeTakenInfo &
4886ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004887 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004888 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004889 // update the value. The temporary CouldNotCompute value tells SCEV
4890 // code elsewhere that it shouldn't attempt to request a new
4891 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004892 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004893 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004894 if (!Pair.second)
4895 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004896
Sanjoy Das413dbbb2015-10-08 18:46:59 +00004897 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
Andrew Trick3ca3f982011-07-26 17:19:55 +00004898 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4899 // must be cleared in this scope.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00004900 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004901
4902 if (Result.getExact(this) != getCouldNotCompute()) {
4903 assert(isLoopInvariant(Result.getExact(this), L) &&
4904 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004905 "Computed backedge-taken count isn't loop invariant for loop!");
4906 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004907 }
4908 else if (Result.getMax(this) == getCouldNotCompute() &&
4909 isa<PHINode>(L->getHeader()->begin())) {
4910 // Only count loops that have phi nodes as not being computable.
4911 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004912 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004913
Chris Lattnera337f5e2011-01-09 02:16:18 +00004914 // Now that we know more about the trip count for this loop, forget any
4915 // existing SCEV values for PHI nodes in this loop since they are only
4916 // conservative estimates made without the benefit of trip count
4917 // information. This is similar to the code in forgetLoop, except that
4918 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004919 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004920 SmallVector<Instruction *, 16> Worklist;
4921 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004922
Chris Lattnera337f5e2011-01-09 02:16:18 +00004923 SmallPtrSet<Instruction *, 8> Visited;
4924 while (!Worklist.empty()) {
4925 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004926 if (!Visited.insert(I).second)
4927 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004928
Chris Lattnera337f5e2011-01-09 02:16:18 +00004929 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004930 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004931 if (It != ValueExprMap.end()) {
4932 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004933
Chris Lattnera337f5e2011-01-09 02:16:18 +00004934 // SCEVUnknown for a PHI either means that it has an unrecognized
4935 // structure, or it's a PHI that's in the progress of being computed
4936 // by createNodeForPHI. In the former case, additional loop trip
4937 // count information isn't going to change anything. In the later
4938 // case, createNodeForPHI will perform the necessary updates on its
4939 // own when it gets to that point.
4940 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4941 forgetMemoizedResults(Old);
4942 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004943 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004944 if (PHINode *PN = dyn_cast<PHINode>(I))
4945 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004946 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004947
4948 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004949 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004950 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004951
4952 // Re-lookup the insert position, since the call to
Sanjoy Das413dbbb2015-10-08 18:46:59 +00004953 // computeBackedgeTakenCount above could result in a
Dan Gohman6acd95b2011-04-25 22:48:29 +00004954 // recusive call to getBackedgeTakenInfo (on a different
4955 // loop), which would invalidate the iterator computed
4956 // earlier.
4957 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004958}
4959
Dan Gohman880c92a2009-10-31 15:04:55 +00004960/// forgetLoop - This method should be called by the client when it has
4961/// changed a loop in a way that may effect ScalarEvolution's ability to
4962/// compute a trip count, or if the loop is deleted.
4963void ScalarEvolution::forgetLoop(const Loop *L) {
4964 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004965 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4966 BackedgeTakenCounts.find(L);
4967 if (BTCPos != BackedgeTakenCounts.end()) {
4968 BTCPos->second.clear();
4969 BackedgeTakenCounts.erase(BTCPos);
4970 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004971
Dan Gohman880c92a2009-10-31 15:04:55 +00004972 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004973 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004974 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004975
Dan Gohmandc191042009-07-08 19:23:34 +00004976 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004977 while (!Worklist.empty()) {
4978 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004979 if (!Visited.insert(I).second)
4980 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004981
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004982 ValueExprMapType::iterator It =
4983 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004984 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004985 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004986 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004987 if (PHINode *PN = dyn_cast<PHINode>(I))
4988 ConstantEvolutionLoopExitValue.erase(PN);
4989 }
4990
4991 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004992 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004993
4994 // Forget all contained loops too, to avoid dangling entries in the
4995 // ValuesAtScopes map.
4996 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4997 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004998}
4999
Eric Christopheref6d5932010-07-29 01:25:38 +00005000/// forgetValue - This method should be called by the client when it has
5001/// changed a value in a way that may effect its value, or which may
5002/// disconnect it from a def-use chain linking it to a loop.
5003void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005004 Instruction *I = dyn_cast<Instruction>(V);
5005 if (!I) return;
5006
5007 // Drop information about expressions based on loop-header PHIs.
5008 SmallVector<Instruction *, 16> Worklist;
5009 Worklist.push_back(I);
5010
5011 SmallPtrSet<Instruction *, 8> Visited;
5012 while (!Worklist.empty()) {
5013 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005014 if (!Visited.insert(I).second)
5015 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005016
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005017 ValueExprMapType::iterator It =
5018 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005019 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005020 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005021 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005022 if (PHINode *PN = dyn_cast<PHINode>(I))
5023 ConstantEvolutionLoopExitValue.erase(PN);
5024 }
5025
5026 PushDefUseChildren(I, Worklist);
5027 }
5028}
5029
Andrew Trick3ca3f982011-07-26 17:19:55 +00005030/// getExact - Get the exact loop backedge taken count considering all loop
Sanjoy Das135e5b92015-07-21 20:59:22 +00005031/// exits. A computable result can only be returned for loops with a single
5032/// exit. Returning the minimum taken count among all exits is incorrect
5033/// because one of the loop's exit limit's may have been skipped. HowFarToZero
5034/// assumes that the limit of each loop test is never skipped. This is a valid
5035/// assumption as long as the loop exits via that test. For precise results, it
5036/// is the caller's responsibility to specify the relevant loop exit using
Andrew Trick90c7a102011-11-16 00:52:40 +00005037/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00005038const SCEV *
5039ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
5040 // If any exits were not computable, the loop is not computable.
5041 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5042
Andrew Trick90c7a102011-11-16 00:52:40 +00005043 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00005044 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005045 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5046
Craig Topper9f008862014-04-15 04:59:12 +00005047 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005048 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005049 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005050
5051 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5052
5053 if (!BECount)
5054 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00005055 else if (BECount != ENT->ExactNotTaken)
5056 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005057 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00005058 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005059 return BECount;
5060}
5061
5062/// getExact - Get the exact not taken count for this loop exit.
5063const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00005064ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005065 ScalarEvolution *SE) const {
5066 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005067 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005068
Andrew Trick77c55422011-08-02 04:23:35 +00005069 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005070 return ENT->ExactNotTaken;
5071 }
5072 return SE->getCouldNotCompute();
5073}
5074
5075/// getMax - Get the max backedge taken count for the loop.
5076const SCEV *
5077ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5078 return Max ? Max : SE->getCouldNotCompute();
5079}
5080
Andrew Trick9093e152013-03-26 03:14:53 +00005081bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5082 ScalarEvolution *SE) const {
5083 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5084 return true;
5085
5086 if (!ExitNotTaken.ExitingBlock)
5087 return false;
5088
5089 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005090 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00005091
5092 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
5093 && SE->hasOperand(ENT->ExactNotTaken, S)) {
5094 return true;
5095 }
5096 }
5097 return false;
5098}
5099
Andrew Trick3ca3f982011-07-26 17:19:55 +00005100/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5101/// computable exit into a persistent ExitNotTakenInfo array.
5102ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5103 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
5104 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
5105
5106 if (!Complete)
5107 ExitNotTaken.setIncomplete();
5108
5109 unsigned NumExits = ExitCounts.size();
5110 if (NumExits == 0) return;
5111
Andrew Trick77c55422011-08-02 04:23:35 +00005112 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005113 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
5114 if (NumExits == 1) return;
5115
5116 // Handle the rare case of multiple computable exits.
5117 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
5118
5119 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
5120 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
5121 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00005122 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005123 ENT->ExactNotTaken = ExitCounts[i].second;
5124 }
5125}
5126
5127/// clear - Invalidate this result and free the ExitNotTakenInfo array.
5128void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00005129 ExitNotTaken.ExitingBlock = nullptr;
5130 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005131 delete[] ExitNotTaken.getNextExit();
5132}
5133
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005134/// computeBackedgeTakenCount - Compute the number of times the backedge
Dan Gohman0bddac12009-02-24 18:55:53 +00005135/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00005136ScalarEvolution::BackedgeTakenInfo
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005137ScalarEvolution::computeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00005138 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00005139 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00005140
Andrew Trick839e30b2014-05-23 19:47:13 +00005141 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005142 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005143 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00005144 const SCEV *MustExitMaxBECount = nullptr;
5145 const SCEV *MayExitMaxBECount = nullptr;
5146
5147 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5148 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00005149 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005150 BasicBlock *ExitBB = ExitingBlocks[i];
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005151 ExitLimit EL = computeExitLimit(L, ExitBB);
Andrew Trick839e30b2014-05-23 19:47:13 +00005152
5153 // 1. For each exit that can be computed, add an entry to ExitCounts.
5154 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005155 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00005156 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00005157 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005158 CouldComputeBECount = false;
5159 else
Andrew Trick839e30b2014-05-23 19:47:13 +00005160 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00005161
Andrew Trick839e30b2014-05-23 19:47:13 +00005162 // 2. Derive the loop's MaxBECount from each exit's max number of
5163 // non-exiting iterations. Partition the loop exits into two kinds:
5164 // LoopMustExits and LoopMayExits.
5165 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005166 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5167 // is a LoopMayExit. If any computable LoopMustExit is found, then
5168 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5169 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5170 // considered greater than any computable EL.Max.
5171 if (EL.Max != getCouldNotCompute() && Latch &&
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005172 DT.dominates(ExitBB, Latch)) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005173 if (!MustExitMaxBECount)
5174 MustExitMaxBECount = EL.Max;
5175 else {
5176 MustExitMaxBECount =
5177 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00005178 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005179 } else if (MayExitMaxBECount != getCouldNotCompute()) {
5180 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5181 MayExitMaxBECount = EL.Max;
5182 else {
5183 MayExitMaxBECount =
5184 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5185 }
Andrew Trick90c7a102011-11-16 00:52:40 +00005186 }
Dan Gohman96212b62009-06-22 00:31:57 +00005187 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005188 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5189 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00005190 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005191}
5192
Andrew Trick3ca3f982011-07-26 17:19:55 +00005193ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005194ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00005195
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005196 // Okay, we've chosen an exiting block. See what condition causes us to exit
5197 // at this block and remember the exit block and whether all other targets
Benjamin Kramer5a188542014-02-11 15:44:32 +00005198 // lead to the loop header.
5199 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00005200 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005201 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
5202 SI != SE; ++SI)
5203 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005204 if (Exit) // Multiple exit successors.
5205 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005206 Exit = *SI;
5207 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005208 MustExecuteLoopHeader = false;
5209 }
Dan Gohmance973df2009-06-24 04:48:43 +00005210
Chris Lattner18954852007-01-07 02:24:26 +00005211 // At this point, we know we have a conditional branch that determines whether
5212 // the loop is exited. However, we don't know if the branch is executed each
5213 // time through the loop. If not, then the execution count of the branch will
5214 // not be equal to the trip count of the loop.
5215 //
5216 // Currently we check for this by checking to see if the Exit branch goes to
5217 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00005218 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00005219 // loop header. This is common for un-rotated loops.
5220 //
5221 // If both of those tests fail, walk up the unique predecessor chain to the
5222 // header, stopping if there is an edge that doesn't exit the loop. If the
5223 // header is reached, the execution count of the branch will be equal to the
5224 // trip count of the loop.
5225 //
5226 // More extensive analysis could be done to handle more cases here.
5227 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00005228 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005229 // The simple checks failed, try climbing the unique predecessor chain
5230 // up to the header.
5231 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00005232 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00005233 BasicBlock *Pred = BB->getUniquePredecessor();
5234 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005235 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005236 TerminatorInst *PredTerm = Pred->getTerminator();
Pete Cooperebcd7482015-08-06 20:22:46 +00005237 for (const BasicBlock *PredSucc : PredTerm->successors()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005238 if (PredSucc == BB)
5239 continue;
5240 // If the predecessor has a successor that isn't BB and isn't
5241 // outside the loop, assume the worst.
5242 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005243 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005244 }
5245 if (Pred == L->getHeader()) {
5246 Ok = true;
5247 break;
5248 }
5249 BB = Pred;
5250 }
5251 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005252 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005253 }
5254
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005255 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005256 TerminatorInst *Term = ExitingBlock->getTerminator();
5257 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5258 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5259 // Proceed to the next level to examine the exit condition expression.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005260 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
Benjamin Kramer5a188542014-02-11 15:44:32 +00005261 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005262 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005263 }
5264
5265 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005266 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005267 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005268
5269 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005270}
5271
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005272/// computeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005273/// backedge of the specified loop will execute if its exit condition
5274/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00005275///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005276/// @param ControlsExit is true if ExitCond directly controls the exit
5277/// branch. In this case, we can assume that the loop exits only if the
5278/// condition is true and can infer that failing to meet the condition prior to
5279/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005280ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005281ScalarEvolution::computeExitLimitFromCond(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005282 Value *ExitCond,
5283 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005284 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005285 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00005286 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00005287 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5288 if (BO->getOpcode() == Instruction::And) {
5289 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00005290 bool EitherMayExit = L->contains(TBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005291 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005292 ControlsExit && !EitherMayExit);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005293 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005294 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005295 const SCEV *BECount = getCouldNotCompute();
5296 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005297 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005298 // Both conditions must be true for the loop to continue executing.
5299 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005300 if (EL0.Exact == getCouldNotCompute() ||
5301 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005302 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005303 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005304 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5305 if (EL0.Max == getCouldNotCompute())
5306 MaxBECount = EL1.Max;
5307 else if (EL1.Max == getCouldNotCompute())
5308 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005309 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005310 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005311 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005312 // Both conditions must be true at the same time for the loop to exit.
5313 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005314 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005315 if (EL0.Max == EL1.Max)
5316 MaxBECount = EL0.Max;
5317 if (EL0.Exact == EL1.Exact)
5318 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005319 }
5320
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005321 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005322 }
5323 if (BO->getOpcode() == Instruction::Or) {
5324 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005325 bool EitherMayExit = L->contains(FBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005326 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005327 ControlsExit && !EitherMayExit);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005328 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005329 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005330 const SCEV *BECount = getCouldNotCompute();
5331 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005332 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005333 // Both conditions must be false for the loop to continue executing.
5334 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005335 if (EL0.Exact == getCouldNotCompute() ||
5336 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005337 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005338 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005339 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5340 if (EL0.Max == getCouldNotCompute())
5341 MaxBECount = EL1.Max;
5342 else if (EL1.Max == getCouldNotCompute())
5343 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005344 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005345 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005346 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005347 // Both conditions must be false at the same time for the loop to exit.
5348 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005349 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005350 if (EL0.Max == EL1.Max)
5351 MaxBECount = EL0.Max;
5352 if (EL0.Exact == EL1.Exact)
5353 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005354 }
5355
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005356 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005357 }
5358 }
5359
5360 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005361 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005362 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005363 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005364
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005365 // Check for a constant condition. These are normally stripped out by
5366 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5367 // preserve the CFG and is temporarily leaving constant conditions
5368 // in place.
5369 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5370 if (L->contains(FBB) == !CI->getZExtValue())
5371 // The backedge is always taken.
5372 return getCouldNotCompute();
5373 else
5374 // The backedge is never taken.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00005375 return getZero(CI->getType());
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005376 }
5377
Eli Friedmanebf98b02009-05-09 12:32:42 +00005378 // If it's not an integer or pointer comparison then compute it the hard way.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005379 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005380}
5381
Andrew Trick3ca3f982011-07-26 17:19:55 +00005382ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005383ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005384 ICmpInst *ExitCond,
5385 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005386 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005387 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005388
Reid Spencer266e42b2006-12-23 06:05:41 +00005389 // If the condition was exit on true, convert the condition to exit on false
5390 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005391 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005392 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005393 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005394 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005395
5396 // Handle common loops like: for (X = "string"; *X; ++X)
5397 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5398 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005399 ExitLimit ItCnt =
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005400 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005401 if (ItCnt.hasAnyInfo())
5402 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005403 }
5404
Dan Gohmanaf752342009-07-07 17:06:11 +00005405 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5406 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005407
5408 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005409 LHS = getSCEVAtScope(LHS, L);
5410 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005411
Dan Gohmance973df2009-06-24 04:48:43 +00005412 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005413 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005414 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005415 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005416 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005417 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005418 }
5419
Dan Gohman81585c12010-05-03 16:35:17 +00005420 // Simplify the operands before analyzing them.
5421 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5422
Chris Lattnerd934c702004-04-02 20:23:17 +00005423 // If we have a comparison of a chrec against a constant, try to use value
5424 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005425 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5426 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005427 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005428 // Form the constant range.
5429 ConstantRange CompRange(
5430 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005431
Dan Gohmanaf752342009-07-07 17:06:11 +00005432 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005433 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005434 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005435
Chris Lattnerd934c702004-04-02 20:23:17 +00005436 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005437 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005438 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005439 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005440 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005441 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005442 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005443 case ICmpInst::ICMP_EQ: { // while (X == Y)
5444 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005445 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5446 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005447 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005448 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005449 case ICmpInst::ICMP_SLT:
5450 case ICmpInst::ICMP_ULT: { // while (X < Y)
5451 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005452 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005453 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005454 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005455 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005456 case ICmpInst::ICMP_SGT:
5457 case ICmpInst::ICMP_UGT: { // while (X > Y)
5458 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005459 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005460 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005461 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005462 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005463 default:
Chris Lattner09169212004-04-02 20:26:46 +00005464#if 0
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005465 dbgs() << "computeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00005466 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00005467 dbgs() << "[unsigned] ";
5468 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00005469 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00005470 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005471#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00005472 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005473 }
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005474 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005475}
5476
Benjamin Kramer5a188542014-02-11 15:44:32 +00005477ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005478ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
Benjamin Kramer5a188542014-02-11 15:44:32 +00005479 SwitchInst *Switch,
5480 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005481 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005482 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5483
5484 // Give up if the exit is the default dest of a switch.
5485 if (Switch->getDefaultDest() == ExitingBlock)
5486 return getCouldNotCompute();
5487
5488 assert(L->contains(Switch->getDefaultDest()) &&
5489 "Default case must not exit the loop!");
5490 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5491 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5492
5493 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005494 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005495 if (EL.hasAnyInfo())
5496 return EL;
5497
5498 return getCouldNotCompute();
5499}
5500
Chris Lattnerec901cc2004-10-12 01:49:27 +00005501static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005502EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5503 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005504 const SCEV *InVal = SE.getConstant(C);
5505 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005506 assert(isa<SCEVConstant>(Val) &&
5507 "Evaluation of SCEV at constant didn't fold correctly?");
5508 return cast<SCEVConstant>(Val)->getValue();
5509}
5510
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005511/// computeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005512/// 'icmp op load X, cst', try to see if we can compute the backedge
5513/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005514ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005515ScalarEvolution::computeLoadConstantCompareExitLimit(
Andrew Trick3ca3f982011-07-26 17:19:55 +00005516 LoadInst *LI,
5517 Constant *RHS,
5518 const Loop *L,
5519 ICmpInst::Predicate predicate) {
5520
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005521 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005522
5523 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005524 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005525 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005526 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005527
5528 // Make sure that it is really a constant global we are gepping, with an
5529 // initializer, and make sure the first IDX is really 0.
5530 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005531 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005532 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5533 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005534 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005535
5536 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005537 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005538 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005539 unsigned VarIdxNum = 0;
5540 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5541 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5542 Indexes.push_back(CI);
5543 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005544 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005545 VarIdx = GEP->getOperand(i);
5546 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005547 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005548 }
5549
Andrew Trick7004e4b2012-03-26 22:33:59 +00005550 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5551 if (!VarIdx)
5552 return getCouldNotCompute();
5553
Chris Lattnerec901cc2004-10-12 01:49:27 +00005554 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5555 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005556 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005557 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005558
5559 // We can only recognize very limited forms of loop index expressions, in
5560 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005561 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005562 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005563 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5564 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005565 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005566
5567 unsigned MaxSteps = MaxBruteForceIterations;
5568 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005569 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005570 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005571 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005572
5573 // Form the GEP offset.
5574 Indexes[VarIdxNum] = Val;
5575
Chris Lattnere166a852012-01-24 05:49:24 +00005576 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5577 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005578 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005579
5580 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005581 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005582 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005583 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005584#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005585 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00005586 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5587 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00005588#endif
5589 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005590 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005591 }
5592 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005593 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005594}
5595
5596
Chris Lattnerdd730472004-04-17 22:58:41 +00005597/// CanConstantFold - Return true if we can constant fold an instruction of the
5598/// specified type, assuming that all operands were constants.
5599static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005600 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005601 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5602 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005603 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005604
Chris Lattnerdd730472004-04-17 22:58:41 +00005605 if (const CallInst *CI = dyn_cast<CallInst>(I))
5606 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005607 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005608 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005609}
5610
Andrew Trick3a86ba72011-10-05 03:25:31 +00005611/// Determine whether this instruction can constant evolve within this loop
5612/// assuming its operands can all constant evolve.
5613static bool canConstantEvolve(Instruction *I, const Loop *L) {
5614 // An instruction outside of the loop can't be derived from a loop PHI.
5615 if (!L->contains(I)) return false;
5616
5617 if (isa<PHINode>(I)) {
David Blaikie19ef0d32015-03-24 16:33:19 +00005618 // We don't currently keep track of the control flow needed to evaluate
5619 // PHIs, so we cannot handle PHIs inside of loops.
5620 return L->getHeader() == I->getParent();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005621 }
5622
5623 // If we won't be able to constant fold this expression even if the operands
5624 // are constants, bail early.
5625 return CanConstantFold(I);
5626}
5627
5628/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5629/// recursing through each instruction operand until reaching a loop header phi.
5630static PHINode *
5631getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005632 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005633
5634 // Otherwise, we can evaluate this instruction if all of its operands are
5635 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005636 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005637 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5638 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5639
5640 if (isa<Constant>(*OpI)) continue;
5641
5642 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005643 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005644
5645 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005646 if (!P)
5647 // If this operand is already visited, reuse the prior result.
5648 // We may have P != PHI if this is the deepest point at which the
5649 // inconsistent paths meet.
5650 P = PHIMap.lookup(OpInst);
5651 if (!P) {
5652 // Recurse and memoize the results, whether a phi is found or not.
5653 // This recursive call invalidates pointers into PHIMap.
5654 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5655 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005656 }
Craig Topper9f008862014-04-15 04:59:12 +00005657 if (!P)
5658 return nullptr; // Not evolving from PHI
5659 if (PHI && PHI != P)
5660 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005661 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005662 }
5663 // This is a expression evolving from a constant PHI!
5664 return PHI;
5665}
5666
Chris Lattnerdd730472004-04-17 22:58:41 +00005667/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5668/// in the loop that V is derived from. We allow arbitrary operations along the
5669/// way, but the operands of an operation must either be constants or a value
5670/// derived from a constant PHI. If this expression does not fit with these
5671/// constraints, return null.
5672static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005673 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005674 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005675
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00005676 if (PHINode *PN = dyn_cast<PHINode>(I))
Andrew Trick3a86ba72011-10-05 03:25:31 +00005677 return PN;
Chris Lattnerdd730472004-04-17 22:58:41 +00005678
Andrew Trick3a86ba72011-10-05 03:25:31 +00005679 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005680 DenseMap<Instruction *, PHINode *> PHIMap;
5681 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005682}
5683
5684/// EvaluateExpression - Given an expression that passes the
5685/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5686/// in the loop has the value PHIVal. If we can't fold this expression for some
5687/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005688static Constant *EvaluateExpression(Value *V, const Loop *L,
5689 DenseMap<Instruction *, Constant *> &Vals,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005690 const DataLayout &DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005691 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005692 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005693 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005694 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005695 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005696
Andrew Trick3a86ba72011-10-05 03:25:31 +00005697 if (Constant *C = Vals.lookup(I)) return C;
5698
Nick Lewyckya6674c72011-10-22 19:58:20 +00005699 // An instruction inside the loop depends on a value outside the loop that we
5700 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005701 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005702
5703 // An unmapped PHI can be due to a branch or another loop inside this loop,
5704 // or due to this not being the initial iteration through a loop where we
5705 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005706 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005707
Dan Gohmanf820bd32010-06-22 13:15:46 +00005708 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005709
5710 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005711 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5712 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005713 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005714 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005715 continue;
5716 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005717 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005718 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005719 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005720 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005721 }
5722
Nick Lewyckya6674c72011-10-22 19:58:20 +00005723 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005724 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005725 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005726 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5727 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005728 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005729 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005730 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005731 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005732}
5733
5734/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5735/// in the header of its containing loop, we know the loop executes a
5736/// constant number of times, and the PHI node is just a recurrence
5737/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005738Constant *
5739ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005740 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005741 const Loop *L) {
Sanjoy Das4493b402015-10-07 17:38:25 +00005742 auto I = ConstantEvolutionLoopExitValue.find(PN);
Chris Lattnerdd730472004-04-17 22:58:41 +00005743 if (I != ConstantEvolutionLoopExitValue.end())
5744 return I->second;
5745
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005746 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005747 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005748
5749 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5750
Andrew Trick3a86ba72011-10-05 03:25:31 +00005751 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005752 BasicBlock *Header = L->getHeader();
5753 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005754
Sanjoy Dasdd709962015-10-08 18:28:36 +00005755 BasicBlock *Latch = L->getLoopLatch();
5756 if (!Latch)
5757 return nullptr;
5758
5759 // Since the loop has one latch, the PHI node must have two entries. One
Chris Lattnerdd730472004-04-17 22:58:41 +00005760 // entry must be a constant (coming in from outside of the loop), and the
5761 // second must be derived from the same PHI.
Sanjoy Dasdd709962015-10-08 18:28:36 +00005762
5763 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0)
5764 ? PN->getIncomingBlock(1)
5765 : PN->getIncomingBlock(0);
5766
5767 assert(PN->getNumIncomingValues() == 2 && "Follows from having one latch!");
5768
5769 // Note: not all PHI nodes in the same block have to have their incoming
5770 // values in the same order, so we use the basic block to look up the incoming
5771 // value, not an index.
5772
Sanjoy Das4493b402015-10-07 17:38:25 +00005773 for (auto &I : *Header) {
5774 PHINode *PHI = dyn_cast<PHINode>(&I);
5775 if (!PHI) break;
5776 auto *StartCST =
Sanjoy Dasdd709962015-10-08 18:28:36 +00005777 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch));
Craig Topper9f008862014-04-15 04:59:12 +00005778 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005779 CurrentIterVals[PHI] = StartCST;
5780 }
5781 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005782 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005783
Sanjoy Dasdd709962015-10-08 18:28:36 +00005784 Value *BEValue = PN->getIncomingValueForBlock(Latch);
Chris Lattnerdd730472004-04-17 22:58:41 +00005785
5786 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005787 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005788 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005789
Dan Gohman0bddac12009-02-24 18:55:53 +00005790 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005791 unsigned IterationNum = 0;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005792 const DataLayout &DL = F.getParent()->getDataLayout();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005793 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005794 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005795 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005796
Nick Lewyckya6674c72011-10-22 19:58:20 +00005797 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005798 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005799 DenseMap<Instruction *, Constant *> NextIterVals;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005800 Constant *NextPHI =
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005801 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005802 if (!NextPHI)
5803 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005804 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005805
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005806 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5807
Nick Lewyckya6674c72011-10-22 19:58:20 +00005808 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5809 // cease to be able to evaluate one of them or if they stop evolving,
5810 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005811 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00005812 for (const auto &I : CurrentIterVals) {
5813 PHINode *PHI = dyn_cast<PHINode>(I.first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005814 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Sanjoy Das4493b402015-10-07 17:38:25 +00005815 PHIsToCompute.emplace_back(PHI, I.second);
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005816 }
5817 // We use two distinct loops because EvaluateExpression may invalidate any
5818 // iterators into CurrentIterVals.
Sanjoy Das4493b402015-10-07 17:38:25 +00005819 for (const auto &I : PHIsToCompute) {
5820 PHINode *PHI = I.first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005821 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005822 if (!NextPHI) { // Not already computed.
Sanjoy Dasdd709962015-10-08 18:28:36 +00005823 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005824 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005825 }
Sanjoy Das4493b402015-10-07 17:38:25 +00005826 if (NextPHI != I.second)
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005827 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005828 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005829
5830 // If all entries in CurrentIterVals == NextIterVals then we can stop
5831 // iterating, the loop can't continue to change.
5832 if (StoppedEvolving)
5833 return RetVal = CurrentIterVals[PN];
5834
Andrew Trick3a86ba72011-10-05 03:25:31 +00005835 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005836 }
5837}
5838
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005839const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
Nick Lewyckya6674c72011-10-22 19:58:20 +00005840 Value *Cond,
5841 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005842 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005843 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005844
Dan Gohman866971e2010-06-19 14:17:24 +00005845 // If the loop is canonicalized, the PHI will have exactly two entries.
5846 // That's the only form we support here.
5847 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5848
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005849 DenseMap<Instruction *, Constant *> CurrentIterVals;
5850 BasicBlock *Header = L->getHeader();
5851 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5852
Sanjoy Dasdd709962015-10-08 18:28:36 +00005853 BasicBlock *Latch = L->getLoopLatch();
5854 assert(Latch && "Should follow from NumIncomingValues == 2!");
5855
5856 // NonLatch is the preheader, or something equivalent.
5857 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0)
5858 ? PN->getIncomingBlock(1)
5859 : PN->getIncomingBlock(0);
5860
5861 // Note: not all PHI nodes in the same block have to have their incoming
5862 // values in the same order, so we use the basic block to look up the incoming
5863 // value, not an index.
5864
Sanjoy Das4493b402015-10-07 17:38:25 +00005865 for (auto &I : *Header) {
5866 PHINode *PHI = dyn_cast<PHINode>(&I);
5867 if (!PHI)
5868 break;
5869 auto *StartCST =
Sanjoy Dasdd709962015-10-08 18:28:36 +00005870 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch));
Craig Topper9f008862014-04-15 04:59:12 +00005871 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005872 CurrentIterVals[PHI] = StartCST;
5873 }
5874 if (!CurrentIterVals.count(PN))
5875 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005876
5877 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5878 // the loop symbolically to determine when the condition gets a value of
5879 // "ExitWhen".
Andrew Trick90c7a102011-11-16 00:52:40 +00005880 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005881 const DataLayout &DL = F.getParent()->getDataLayout();
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005882 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Sanjoy Das4493b402015-10-07 17:38:25 +00005883 auto *CondVal = dyn_cast_or_null<ConstantInt>(
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005884 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005885
Zhou Sheng75b871f2007-01-11 12:24:14 +00005886 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005887 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005888
Reid Spencer983e3b32007-03-01 07:25:48 +00005889 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005890 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005891 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005892 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005893
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005894 // Update all the PHI nodes for the next iteration.
5895 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005896
5897 // Create a list of which PHIs we need to compute. We want to do this before
5898 // calling EvaluateExpression on them because that may invalidate iterators
5899 // into CurrentIterVals.
5900 SmallVector<PHINode *, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00005901 for (const auto &I : CurrentIterVals) {
5902 PHINode *PHI = dyn_cast<PHINode>(I.first);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005903 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005904 PHIsToCompute.push_back(PHI);
5905 }
Sanjoy Das4493b402015-10-07 17:38:25 +00005906 for (PHINode *PHI : PHIsToCompute) {
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005907 Constant *&NextPHI = NextIterVals[PHI];
5908 if (NextPHI) continue; // Already computed!
5909
Sanjoy Dasdd709962015-10-08 18:28:36 +00005910 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005911 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005912 }
5913 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005914 }
5915
5916 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005917 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005918}
5919
Dan Gohman237d9e52009-09-03 15:00:26 +00005920/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005921/// at the specified scope in the program. The L value specifies a loop
5922/// nest to evaluate the expression at, where null is the top-level or a
5923/// specified loop is immediately inside of the loop.
5924///
5925/// This method can be used to compute the exit value for a variable defined
5926/// in a loop by querying what the value will hold in the parent loop.
5927///
Dan Gohman8ca08852009-05-24 23:25:42 +00005928/// In the case that a relevant loop exit value cannot be computed, the
5929/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005930const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005931 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005932 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5933 for (unsigned u = 0; u < Values.size(); u++) {
5934 if (Values[u].first == L)
5935 return Values[u].second ? Values[u].second : V;
5936 }
Craig Topper9f008862014-04-15 04:59:12 +00005937 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005938 // Otherwise compute it.
5939 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005940 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5941 for (unsigned u = Values2.size(); u > 0; u--) {
5942 if (Values2[u - 1].first == L) {
5943 Values2[u - 1].second = C;
5944 break;
5945 }
5946 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005947 return C;
5948}
5949
Nick Lewyckya6674c72011-10-22 19:58:20 +00005950/// This builds up a Constant using the ConstantExpr interface. That way, we
5951/// will return Constants for objects which aren't represented by a
5952/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5953/// Returns NULL if the SCEV isn't representable as a Constant.
5954static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005955 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005956 case scCouldNotCompute:
5957 case scAddRecExpr:
5958 break;
5959 case scConstant:
5960 return cast<SCEVConstant>(V)->getValue();
5961 case scUnknown:
5962 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5963 case scSignExtend: {
5964 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5965 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5966 return ConstantExpr::getSExt(CastOp, SS->getType());
5967 break;
5968 }
5969 case scZeroExtend: {
5970 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5971 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5972 return ConstantExpr::getZExt(CastOp, SZ->getType());
5973 break;
5974 }
5975 case scTruncate: {
5976 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5977 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5978 return ConstantExpr::getTrunc(CastOp, ST->getType());
5979 break;
5980 }
5981 case scAddExpr: {
5982 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5983 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005984 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5985 unsigned AS = PTy->getAddressSpace();
5986 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5987 C = ConstantExpr::getBitCast(C, DestPtrTy);
5988 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005989 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5990 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005991 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005992
5993 // First pointer!
5994 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005995 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005996 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005997 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005998 // The offsets have been converted to bytes. We can add bytes to an
5999 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006000 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006001 }
6002
6003 // Don't bother trying to sum two pointers. We probably can't
6004 // statically compute a load that results from it anyway.
6005 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00006006 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006007
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006008 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6009 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00006010 C2 = ConstantExpr::getIntegerCast(
6011 C2, Type::getInt32Ty(C->getContext()), true);
David Blaikie4a2e73b2015-04-02 18:55:32 +00006012 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006013 } else
6014 C = ConstantExpr::getAdd(C, C2);
6015 }
6016 return C;
6017 }
6018 break;
6019 }
6020 case scMulExpr: {
6021 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6022 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6023 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00006024 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006025 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6026 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006027 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006028 C = ConstantExpr::getMul(C, C2);
6029 }
6030 return C;
6031 }
6032 break;
6033 }
6034 case scUDivExpr: {
6035 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6036 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6037 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6038 if (LHS->getType() == RHS->getType())
6039 return ConstantExpr::getUDiv(LHS, RHS);
6040 break;
6041 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00006042 case scSMaxExpr:
6043 case scUMaxExpr:
6044 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006045 }
Craig Topper9f008862014-04-15 04:59:12 +00006046 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006047}
6048
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006049const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006050 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00006051
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006052 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00006053 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00006054 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006055 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006056 const Loop *LI = this->LI[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00006057 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
6058 if (PHINode *PN = dyn_cast<PHINode>(I))
6059 if (PN->getParent() == LI->getHeader()) {
6060 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00006061 // to see if the loop that contains it has a known backedge-taken
6062 // count. If so, we may be able to force computation of the exit
6063 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00006064 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00006065 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00006066 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006067 // Okay, we know how many times the containing loop executes. If
6068 // this is a constant evolving PHI node, get the final value at
6069 // the specified iteration number.
6070 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00006071 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00006072 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00006073 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00006074 }
6075 }
6076
Reid Spencere6328ca2006-12-04 21:33:23 +00006077 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00006078 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00006079 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00006080 // result. This is particularly useful for computing loop exit values.
6081 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006082 SmallVector<Constant *, 4> Operands;
6083 bool MadeImprovement = false;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00006084 for (Value *Op : I->operands()) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006085 if (Constant *C = dyn_cast<Constant>(Op)) {
6086 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006087 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00006088 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006089
6090 // If any of the operands is non-constant and if they are
6091 // non-integer and non-pointer, don't even try to analyze them
6092 // with scev techniques.
6093 if (!isSCEVable(Op->getType()))
6094 return V;
6095
6096 const SCEV *OrigV = getSCEV(Op);
6097 const SCEV *OpV = getSCEVAtScope(OrigV, L);
6098 MadeImprovement |= OrigV != OpV;
6099
Nick Lewyckya6674c72011-10-22 19:58:20 +00006100 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006101 if (!C) return V;
6102 if (C->getType() != Op->getType())
6103 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6104 Op->getType(),
6105 false),
6106 C, Op->getType());
6107 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00006108 }
Dan Gohmance973df2009-06-24 04:48:43 +00006109
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006110 // Check to see if getSCEVAtScope actually made an improvement.
6111 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00006112 Constant *C = nullptr;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006113 const DataLayout &DL = F.getParent()->getDataLayout();
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006114 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006115 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006116 Operands[1], DL, &TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006117 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6118 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00006119 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006120 } else
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006121 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006122 DL, &TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006123 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00006124 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006125 }
Chris Lattnerdd730472004-04-17 22:58:41 +00006126 }
6127 }
6128
6129 // This is some other type of SCEVUnknown, just return it.
6130 return V;
6131 }
6132
Dan Gohmana30370b2009-05-04 22:02:23 +00006133 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006134 // Avoid performing the look-up in the common case where the specified
6135 // expression has no loop-variant portions.
6136 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006137 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006138 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006139 // Okay, at least one of these operands is loop variant but might be
6140 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00006141 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6142 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00006143 NewOps.push_back(OpAtScope);
6144
6145 for (++i; i != e; ++i) {
6146 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006147 NewOps.push_back(OpAtScope);
6148 }
6149 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006150 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006151 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006152 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006153 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006154 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006155 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006156 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00006157 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006158 }
6159 }
6160 // If we got here, all operands are loop invariant.
6161 return Comm;
6162 }
6163
Dan Gohmana30370b2009-05-04 22:02:23 +00006164 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006165 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6166 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00006167 if (LHS == Div->getLHS() && RHS == Div->getRHS())
6168 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00006169 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00006170 }
6171
6172 // If this is a loop recurrence for a loop that does not contain L, then we
6173 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00006174 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006175 // First, attempt to evaluate each operand.
6176 // Avoid performing the look-up in the common case where the specified
6177 // expression has no loop-variant portions.
6178 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6179 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6180 if (OpAtScope == AddRec->getOperand(i))
6181 continue;
6182
6183 // Okay, at least one of these operands is loop variant but might be
6184 // foldable. Build a new instance of the folded commutative expression.
6185 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6186 AddRec->op_begin()+i);
6187 NewOps.push_back(OpAtScope);
6188 for (++i; i != e; ++i)
6189 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6190
Andrew Trick759ba082011-04-27 01:21:25 +00006191 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00006192 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00006193 AddRec->getNoWrapFlags(SCEV::FlagNW));
6194 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00006195 // The addrec may be folded to a nonrecurrence, for example, if the
6196 // induction variable is multiplied by zero after constant folding. Go
6197 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00006198 if (!AddRec)
6199 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006200 break;
6201 }
6202
6203 // If the scope is outside the addrec's loop, evaluate it by using the
6204 // loop exit value of the addrec.
6205 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006206 // To evaluate this recurrence, we need to know how many times the AddRec
6207 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006208 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006209 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00006210
Eli Friedman61f67622008-08-04 23:49:06 +00006211 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006212 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00006213 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006214
Dan Gohman8ca08852009-05-24 23:25:42 +00006215 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00006216 }
6217
Dan Gohmana30370b2009-05-04 22:02:23 +00006218 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006219 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006220 if (Op == Cast->getOperand())
6221 return Cast; // must be loop invariant
6222 return getZeroExtendExpr(Op, Cast->getType());
6223 }
6224
Dan Gohmana30370b2009-05-04 22:02:23 +00006225 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006226 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006227 if (Op == Cast->getOperand())
6228 return Cast; // must be loop invariant
6229 return getSignExtendExpr(Op, Cast->getType());
6230 }
6231
Dan Gohmana30370b2009-05-04 22:02:23 +00006232 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006233 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006234 if (Op == Cast->getOperand())
6235 return Cast; // must be loop invariant
6236 return getTruncateExpr(Op, Cast->getType());
6237 }
6238
Torok Edwinfbcc6632009-07-14 16:55:14 +00006239 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006240}
6241
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006242/// getSCEVAtScope - This is a convenience function which does
6243/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00006244const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00006245 return getSCEVAtScope(getSCEV(V), L);
6246}
6247
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006248/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6249/// following equation:
6250///
6251/// A * X = B (mod N)
6252///
6253/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6254/// A and B isn't important.
6255///
6256/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006257static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006258 ScalarEvolution &SE) {
6259 uint32_t BW = A.getBitWidth();
6260 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6261 assert(A != 0 && "A must be non-zero.");
6262
6263 // 1. D = gcd(A, N)
6264 //
6265 // The gcd of A and N may have only one prime factor: 2. The number of
6266 // trailing zeros in A is its multiplicity
6267 uint32_t Mult2 = A.countTrailingZeros();
6268 // D = 2^Mult2
6269
6270 // 2. Check if B is divisible by D.
6271 //
6272 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6273 // is not less than multiplicity of this prime factor for D.
6274 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00006275 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006276
6277 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6278 // modulo (N / D).
6279 //
6280 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6281 // bit width during computations.
6282 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6283 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00006284 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006285 APInt I = AD.multiplicativeInverse(Mod);
6286
6287 // 4. Compute the minimum unsigned root of the equation:
6288 // I * (B / D) mod (N / D)
6289 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6290
6291 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6292 // bits.
6293 return SE.getConstant(Result.trunc(BW));
6294}
Chris Lattnerd934c702004-04-02 20:23:17 +00006295
6296/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6297/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
6298/// might be the same) or two SCEVCouldNotCompute objects.
6299///
Dan Gohmanaf752342009-07-07 17:06:11 +00006300static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00006301SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006302 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00006303 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6304 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6305 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00006306
Chris Lattnerd934c702004-04-02 20:23:17 +00006307 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00006308 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00006309 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006310 return std::make_pair(CNC, CNC);
6311 }
6312
Reid Spencer983e3b32007-03-01 07:25:48 +00006313 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00006314 const APInt &L = LC->getValue()->getValue();
6315 const APInt &M = MC->getValue()->getValue();
6316 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00006317 APInt Two(BitWidth, 2);
6318 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006319
Dan Gohmance973df2009-06-24 04:48:43 +00006320 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006321 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006322 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006323 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6324 // The B coefficient is M-N/2
6325 APInt B(M);
6326 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006327
Reid Spencer983e3b32007-03-01 07:25:48 +00006328 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006329 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006330
Reid Spencer983e3b32007-03-01 07:25:48 +00006331 // Compute the B^2-4ac term.
6332 APInt SqrtTerm(B);
6333 SqrtTerm *= B;
6334 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006335
Nick Lewyckyfb780832012-08-01 09:14:36 +00006336 if (SqrtTerm.isNegative()) {
6337 // The loop is provably infinite.
6338 const SCEV *CNC = SE.getCouldNotCompute();
6339 return std::make_pair(CNC, CNC);
6340 }
6341
Reid Spencer983e3b32007-03-01 07:25:48 +00006342 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6343 // integer value or else APInt::sqrt() will assert.
6344 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006345
Dan Gohmance973df2009-06-24 04:48:43 +00006346 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006347 // The divisions must be performed as signed divisions.
6348 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006349 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006350 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006351 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00006352 return std::make_pair(CNC, CNC);
6353 }
6354
Owen Anderson47db9412009-07-22 00:24:57 +00006355 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006356
6357 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006358 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006359 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006360 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006361
Dan Gohmance973df2009-06-24 04:48:43 +00006362 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00006363 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00006364 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006365}
6366
6367/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006368/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006369///
6370/// This is only used for loops with a "x != y" exit test. The exit condition is
6371/// now expressed as a single expression, V = x-y. So the exit test is
6372/// effectively V != 0. We know and take advantage of the fact that this
6373/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006374ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006375ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006376 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006377 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006378 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006379 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006380 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006381 }
6382
Dan Gohman48f82222009-05-04 22:30:44 +00006383 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006384 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006385 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006386
Chris Lattnerdff679f2011-01-09 22:39:48 +00006387 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6388 // the quadratic equation to solve it.
6389 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6390 std::pair<const SCEV *,const SCEV *> Roots =
6391 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006392 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6393 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006394 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00006395#if 0
David Greenedf1c4972009-12-23 22:18:14 +00006396 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00006397 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00006398#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00006399 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006400 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006401 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6402 R1->getValue(),
6403 R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00006404 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00006405 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006406
Chris Lattnerd934c702004-04-02 20:23:17 +00006407 // We can only use this value if the chrec ends up with an exact zero
6408 // value at this index. When solving for "X*X != 5", for example, we
6409 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006410 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006411 if (Val->isZero())
6412 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006413 }
6414 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006415 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006416 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006417
Chris Lattnerdff679f2011-01-09 22:39:48 +00006418 // Otherwise we can only handle this if it is affine.
6419 if (!AddRec->isAffine())
6420 return getCouldNotCompute();
6421
6422 // If this is an affine expression, the execution count of this branch is
6423 // the minimum unsigned root of the following equation:
6424 //
6425 // Start + Step*N = 0 (mod 2^BW)
6426 //
6427 // equivalent to:
6428 //
6429 // Step*N = -Start (mod 2^BW)
6430 //
6431 // where BW is the common bit width of Start and Step.
6432
6433 // Get the initial value for the loop.
6434 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6435 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6436
6437 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006438 //
6439 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6440 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6441 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6442 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006443 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006444 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006445 return getCouldNotCompute();
6446
Andrew Trick8b55b732011-03-14 16:50:06 +00006447 // For positive steps (counting up until unsigned overflow):
6448 // N = -Start/Step (as unsigned)
6449 // For negative steps (counting down to zero):
6450 // N = Start/-Step
6451 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006452 bool CountDown = StepC->getValue()->getValue().isNegative();
6453 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006454
6455 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006456 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6457 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006458 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6459 ConstantRange CR = getUnsignedRange(Start);
6460 const SCEV *MaxBECount;
6461 if (!CountDown && CR.getUnsignedMin().isMinValue())
6462 // When counting up, the worst starting value is 1, not 0.
6463 MaxBECount = CR.getUnsignedMax().isMinValue()
6464 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6465 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6466 else
6467 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6468 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006469 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006470 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006471
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006472 // As a special case, handle the instance where Step is a positive power of
6473 // two. In this case, determining whether Step divides Distance evenly can be
6474 // done by counting and comparing the number of trailing zeros of Step and
6475 // Distance.
6476 if (!CountDown) {
6477 const APInt &StepV = StepC->getValue()->getValue();
6478 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6479 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6480 // case is not handled as this code is guarded by !CountDown.
6481 if (StepV.isPowerOf2() &&
Sanjoy Dasf3132d32015-09-10 05:27:38 +00006482 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
6483 // Here we've constrained the equation to be of the form
6484 //
6485 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
6486 //
6487 // where we're operating on a W bit wide integer domain and k is
6488 // non-negative. The smallest unsigned solution for X is the trip count.
6489 //
6490 // (0) is equivalent to:
6491 //
6492 // 2^(N + k) * Distance' - 2^N * X = L * 2^W
6493 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
6494 // <=> 2^k * Distance' - X = L * 2^(W - N)
6495 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
6496 //
6497 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
6498 // by 2^(W - N).
6499 //
6500 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
6501 //
6502 // E.g. say we're solving
6503 //
6504 // 2 * Val = 2 * X (in i8) ... (3)
6505 //
6506 // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
6507 //
6508 // Note: It is tempting to solve (3) by setting X = Val, but Val is not
6509 // necessarily the smallest unsigned value of X that satisfies (3).
6510 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
6511 // is i8 1, not i8 -127
6512
6513 const auto *ModuloResult = getUDivExactExpr(Distance, Step);
6514
6515 // Since SCEV does not have a URem node, we construct one using a truncate
6516 // and a zero extend.
6517
6518 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
6519 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
6520 auto *WideTy = Distance->getType();
6521
6522 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
6523 }
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006524 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006525
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006526 // If the condition controls loop exit (the loop exits only if the expression
6527 // is true) and the addition is no-wrap we can use unsigned divide to
6528 // compute the backedge count. In this case, the step may not divide the
6529 // distance, but we don't care because if the condition is "missed" the loop
6530 // will have undefined behavior due to wrapping.
6531 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6532 const SCEV *Exact =
6533 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6534 return ExitLimit(Exact, Exact);
6535 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006536
Chris Lattnerdff679f2011-01-09 22:39:48 +00006537 // Then, try to solve the above equation provided that Start is constant.
6538 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6539 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6540 -StartC->getValue()->getValue(),
6541 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006542 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006543}
6544
6545/// HowFarToNonZero - Return the number of times a backedge checking the
6546/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006547/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006548ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006549ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006550 // Loops that look like: while (X == 0) are very strange indeed. We don't
6551 // handle them yet except for the trivial case. This could be expanded in the
6552 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006553
Chris Lattnerd934c702004-04-02 20:23:17 +00006554 // If the value is a constant, check to see if it is known to be non-zero
6555 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006556 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006557 if (!C->getValue()->isNullValue())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00006558 return getZero(C->getType());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006559 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006560 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006561
Chris Lattnerd934c702004-04-02 20:23:17 +00006562 // We could implement others, but I really doubt anyone writes loops like
6563 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006564 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006565}
6566
Dan Gohmanf9081a22008-09-15 22:18:04 +00006567/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6568/// (which may not be an immediate predecessor) which has exactly one
6569/// successor from which BB is reachable, or null if no such block is
6570/// found.
6571///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006572std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006573ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006574 // If the block has a unique predecessor, then there is no path from the
6575 // predecessor to the block that does not go through the direct edge
6576 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006577 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006578 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006579
6580 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006581 // If the header has a unique predecessor outside the loop, it must be
6582 // a block that has exactly one successor that can reach the loop.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006583 if (Loop *L = LI.getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006584 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006585
Dan Gohman4e3c1132010-04-15 16:19:08 +00006586 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006587}
6588
Dan Gohman450f4e02009-06-20 00:35:32 +00006589/// HasSameValue - SCEV structural equivalence is usually sufficient for
6590/// testing whether two expressions are equal, however for the purposes of
6591/// looking for a condition guarding a loop, it can be useful to be a little
6592/// more general, since a front-end may have replicated the controlling
6593/// expression.
6594///
Dan Gohmanaf752342009-07-07 17:06:11 +00006595static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006596 // Quick check to see if they are the same SCEV.
6597 if (A == B) return true;
6598
Sanjoy Dasf1090b62015-09-27 21:09:48 +00006599 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
6600 // Not all instructions that are "identical" compute the same value. For
6601 // instance, two distinct alloca instructions allocating the same type are
6602 // identical and do not read memory; but compute distinct values.
6603 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
6604 };
6605
Dan Gohman450f4e02009-06-20 00:35:32 +00006606 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6607 // two different instructions with the same value. Check for this case.
6608 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6609 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6610 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6611 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Sanjoy Dasf1090b62015-09-27 21:09:48 +00006612 if (ComputesEqualValues(AI, BI))
Dan Gohman450f4e02009-06-20 00:35:32 +00006613 return true;
6614
6615 // Otherwise assume they may have a different value.
6616 return false;
6617}
6618
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006619/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006620/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006621///
6622bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006623 const SCEV *&LHS, const SCEV *&RHS,
6624 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006625 bool Changed = false;
6626
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006627 // If we hit the max recursion limit bail out.
6628 if (Depth >= 3)
6629 return false;
6630
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006631 // Canonicalize a constant to the right side.
6632 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6633 // Check for both operands constant.
6634 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6635 if (ConstantExpr::getICmp(Pred,
6636 LHSC->getValue(),
6637 RHSC->getValue())->isNullValue())
6638 goto trivially_false;
6639 else
6640 goto trivially_true;
6641 }
6642 // Otherwise swap the operands to put the constant on the right.
6643 std::swap(LHS, RHS);
6644 Pred = ICmpInst::getSwappedPredicate(Pred);
6645 Changed = true;
6646 }
6647
6648 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006649 // addrec's loop, put the addrec on the left. Also make a dominance check,
6650 // as both operands could be addrecs loop-invariant in each other's loop.
6651 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6652 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006653 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006654 std::swap(LHS, RHS);
6655 Pred = ICmpInst::getSwappedPredicate(Pred);
6656 Changed = true;
6657 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006658 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006659
6660 // If there's a constant operand, canonicalize comparisons with boundary
6661 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6662 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6663 const APInt &RA = RC->getValue()->getValue();
6664 switch (Pred) {
6665 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6666 case ICmpInst::ICMP_EQ:
6667 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006668 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6669 if (!RA)
6670 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6671 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006672 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6673 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006674 RHS = AE->getOperand(1);
6675 LHS = ME->getOperand(1);
6676 Changed = true;
6677 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006678 break;
6679 case ICmpInst::ICMP_UGE:
6680 if ((RA - 1).isMinValue()) {
6681 Pred = ICmpInst::ICMP_NE;
6682 RHS = getConstant(RA - 1);
6683 Changed = true;
6684 break;
6685 }
6686 if (RA.isMaxValue()) {
6687 Pred = ICmpInst::ICMP_EQ;
6688 Changed = true;
6689 break;
6690 }
6691 if (RA.isMinValue()) goto trivially_true;
6692
6693 Pred = ICmpInst::ICMP_UGT;
6694 RHS = getConstant(RA - 1);
6695 Changed = true;
6696 break;
6697 case ICmpInst::ICMP_ULE:
6698 if ((RA + 1).isMaxValue()) {
6699 Pred = ICmpInst::ICMP_NE;
6700 RHS = getConstant(RA + 1);
6701 Changed = true;
6702 break;
6703 }
6704 if (RA.isMinValue()) {
6705 Pred = ICmpInst::ICMP_EQ;
6706 Changed = true;
6707 break;
6708 }
6709 if (RA.isMaxValue()) goto trivially_true;
6710
6711 Pred = ICmpInst::ICMP_ULT;
6712 RHS = getConstant(RA + 1);
6713 Changed = true;
6714 break;
6715 case ICmpInst::ICMP_SGE:
6716 if ((RA - 1).isMinSignedValue()) {
6717 Pred = ICmpInst::ICMP_NE;
6718 RHS = getConstant(RA - 1);
6719 Changed = true;
6720 break;
6721 }
6722 if (RA.isMaxSignedValue()) {
6723 Pred = ICmpInst::ICMP_EQ;
6724 Changed = true;
6725 break;
6726 }
6727 if (RA.isMinSignedValue()) goto trivially_true;
6728
6729 Pred = ICmpInst::ICMP_SGT;
6730 RHS = getConstant(RA - 1);
6731 Changed = true;
6732 break;
6733 case ICmpInst::ICMP_SLE:
6734 if ((RA + 1).isMaxSignedValue()) {
6735 Pred = ICmpInst::ICMP_NE;
6736 RHS = getConstant(RA + 1);
6737 Changed = true;
6738 break;
6739 }
6740 if (RA.isMinSignedValue()) {
6741 Pred = ICmpInst::ICMP_EQ;
6742 Changed = true;
6743 break;
6744 }
6745 if (RA.isMaxSignedValue()) goto trivially_true;
6746
6747 Pred = ICmpInst::ICMP_SLT;
6748 RHS = getConstant(RA + 1);
6749 Changed = true;
6750 break;
6751 case ICmpInst::ICMP_UGT:
6752 if (RA.isMinValue()) {
6753 Pred = ICmpInst::ICMP_NE;
6754 Changed = true;
6755 break;
6756 }
6757 if ((RA + 1).isMaxValue()) {
6758 Pred = ICmpInst::ICMP_EQ;
6759 RHS = getConstant(RA + 1);
6760 Changed = true;
6761 break;
6762 }
6763 if (RA.isMaxValue()) goto trivially_false;
6764 break;
6765 case ICmpInst::ICMP_ULT:
6766 if (RA.isMaxValue()) {
6767 Pred = ICmpInst::ICMP_NE;
6768 Changed = true;
6769 break;
6770 }
6771 if ((RA - 1).isMinValue()) {
6772 Pred = ICmpInst::ICMP_EQ;
6773 RHS = getConstant(RA - 1);
6774 Changed = true;
6775 break;
6776 }
6777 if (RA.isMinValue()) goto trivially_false;
6778 break;
6779 case ICmpInst::ICMP_SGT:
6780 if (RA.isMinSignedValue()) {
6781 Pred = ICmpInst::ICMP_NE;
6782 Changed = true;
6783 break;
6784 }
6785 if ((RA + 1).isMaxSignedValue()) {
6786 Pred = ICmpInst::ICMP_EQ;
6787 RHS = getConstant(RA + 1);
6788 Changed = true;
6789 break;
6790 }
6791 if (RA.isMaxSignedValue()) goto trivially_false;
6792 break;
6793 case ICmpInst::ICMP_SLT:
6794 if (RA.isMaxSignedValue()) {
6795 Pred = ICmpInst::ICMP_NE;
6796 Changed = true;
6797 break;
6798 }
6799 if ((RA - 1).isMinSignedValue()) {
6800 Pred = ICmpInst::ICMP_EQ;
6801 RHS = getConstant(RA - 1);
6802 Changed = true;
6803 break;
6804 }
6805 if (RA.isMinSignedValue()) goto trivially_false;
6806 break;
6807 }
6808 }
6809
6810 // Check for obvious equality.
6811 if (HasSameValue(LHS, RHS)) {
6812 if (ICmpInst::isTrueWhenEqual(Pred))
6813 goto trivially_true;
6814 if (ICmpInst::isFalseWhenEqual(Pred))
6815 goto trivially_false;
6816 }
6817
Dan Gohman81585c12010-05-03 16:35:17 +00006818 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6819 // adding or subtracting 1 from one of the operands.
6820 switch (Pred) {
6821 case ICmpInst::ICMP_SLE:
6822 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6823 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006824 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006825 Pred = ICmpInst::ICMP_SLT;
6826 Changed = true;
6827 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006828 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006829 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006830 Pred = ICmpInst::ICMP_SLT;
6831 Changed = true;
6832 }
6833 break;
6834 case ICmpInst::ICMP_SGE:
6835 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006836 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006837 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006838 Pred = ICmpInst::ICMP_SGT;
6839 Changed = true;
6840 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6841 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006842 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006843 Pred = ICmpInst::ICMP_SGT;
6844 Changed = true;
6845 }
6846 break;
6847 case ICmpInst::ICMP_ULE:
6848 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006849 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006850 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006851 Pred = ICmpInst::ICMP_ULT;
6852 Changed = true;
6853 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006854 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006855 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006856 Pred = ICmpInst::ICMP_ULT;
6857 Changed = true;
6858 }
6859 break;
6860 case ICmpInst::ICMP_UGE:
6861 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006862 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006863 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006864 Pred = ICmpInst::ICMP_UGT;
6865 Changed = true;
6866 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006867 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006868 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006869 Pred = ICmpInst::ICMP_UGT;
6870 Changed = true;
6871 }
6872 break;
6873 default:
6874 break;
6875 }
6876
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006877 // TODO: More simplifications are possible here.
6878
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006879 // Recursively simplify until we either hit a recursion limit or nothing
6880 // changes.
6881 if (Changed)
6882 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6883
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006884 return Changed;
6885
6886trivially_true:
6887 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006888 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006889 Pred = ICmpInst::ICMP_EQ;
6890 return true;
6891
6892trivially_false:
6893 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006894 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006895 Pred = ICmpInst::ICMP_NE;
6896 return true;
6897}
6898
Dan Gohmane65c9172009-07-13 21:35:55 +00006899bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6900 return getSignedRange(S).getSignedMax().isNegative();
6901}
6902
6903bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6904 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6905}
6906
6907bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6908 return !getSignedRange(S).getSignedMin().isNegative();
6909}
6910
6911bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6912 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6913}
6914
6915bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6916 return isKnownNegative(S) || isKnownPositive(S);
6917}
6918
6919bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6920 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006921 // Canonicalize the inputs first.
6922 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6923
Dan Gohman07591692010-04-11 22:16:48 +00006924 // If LHS or RHS is an addrec, check to see if the condition is true in
6925 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006926 // If LHS and RHS are both addrec, both conditions must be true in
6927 // every iteration of the loop.
6928 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6929 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6930 bool LeftGuarded = false;
6931 bool RightGuarded = false;
6932 if (LAR) {
6933 const Loop *L = LAR->getLoop();
6934 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6935 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6936 if (!RAR) return true;
6937 LeftGuarded = true;
6938 }
6939 }
6940 if (RAR) {
6941 const Loop *L = RAR->getLoop();
6942 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6943 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6944 if (!LAR) return true;
6945 RightGuarded = true;
6946 }
6947 }
6948 if (LeftGuarded && RightGuarded)
6949 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006950
Sanjoy Das7d910f22015-10-02 18:50:30 +00006951 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
6952 return true;
6953
Dan Gohman07591692010-04-11 22:16:48 +00006954 // Otherwise see what can be done with known constant ranges.
6955 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6956}
6957
Sanjoy Das5dab2052015-07-27 21:42:49 +00006958bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
6959 ICmpInst::Predicate Pred,
6960 bool &Increasing) {
6961 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
6962
6963#ifndef NDEBUG
6964 // Verify an invariant: inverting the predicate should turn a monotonically
6965 // increasing change to a monotonically decreasing one, and vice versa.
6966 bool IncreasingSwapped;
6967 bool ResultSwapped = isMonotonicPredicateImpl(
6968 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
6969
6970 assert(Result == ResultSwapped && "should be able to analyze both!");
6971 if (ResultSwapped)
6972 assert(Increasing == !IncreasingSwapped &&
6973 "monotonicity should flip as we flip the predicate");
6974#endif
6975
6976 return Result;
6977}
6978
6979bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
6980 ICmpInst::Predicate Pred,
6981 bool &Increasing) {
Sanjoy Das5dab2052015-07-27 21:42:49 +00006982
6983 // A zero step value for LHS means the induction variable is essentially a
6984 // loop invariant value. We don't really depend on the predicate actually
6985 // flipping from false to true (for increasing predicates, and the other way
6986 // around for decreasing predicates), all we care about is that *if* the
6987 // predicate changes then it only changes from false to true.
6988 //
6989 // A zero step value in itself is not very useful, but there may be places
6990 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
6991 // as general as possible.
6992
Sanjoy Das366acc12015-08-06 20:43:41 +00006993 switch (Pred) {
6994 default:
6995 return false; // Conservative answer
6996
6997 case ICmpInst::ICMP_UGT:
6998 case ICmpInst::ICMP_UGE:
6999 case ICmpInst::ICMP_ULT:
7000 case ICmpInst::ICMP_ULE:
7001 if (!LHS->getNoWrapFlags(SCEV::FlagNUW))
7002 return false;
7003
7004 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007005 return true;
Sanjoy Das366acc12015-08-06 20:43:41 +00007006
7007 case ICmpInst::ICMP_SGT:
7008 case ICmpInst::ICMP_SGE:
7009 case ICmpInst::ICMP_SLT:
7010 case ICmpInst::ICMP_SLE: {
7011 if (!LHS->getNoWrapFlags(SCEV::FlagNSW))
7012 return false;
7013
7014 const SCEV *Step = LHS->getStepRecurrence(*this);
7015
7016 if (isKnownNonNegative(Step)) {
7017 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7018 return true;
7019 }
7020
7021 if (isKnownNonPositive(Step)) {
7022 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7023 return true;
7024 }
7025
7026 return false;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007027 }
7028
Sanjoy Das5dab2052015-07-27 21:42:49 +00007029 }
7030
Sanjoy Das366acc12015-08-06 20:43:41 +00007031 llvm_unreachable("switch has default clause!");
Sanjoy Das5dab2052015-07-27 21:42:49 +00007032}
7033
7034bool ScalarEvolution::isLoopInvariantPredicate(
7035 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7036 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7037 const SCEV *&InvariantRHS) {
7038
7039 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7040 if (!isLoopInvariant(RHS, L)) {
7041 if (!isLoopInvariant(LHS, L))
7042 return false;
7043
7044 std::swap(LHS, RHS);
7045 Pred = ICmpInst::getSwappedPredicate(Pred);
7046 }
7047
7048 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7049 if (!ArLHS || ArLHS->getLoop() != L)
7050 return false;
7051
7052 bool Increasing;
7053 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7054 return false;
7055
7056 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7057 // true as the loop iterates, and the backedge is control dependent on
7058 // "ArLHS `Pred` RHS" == true then we can reason as follows:
7059 //
7060 // * if the predicate was false in the first iteration then the predicate
7061 // is never evaluated again, since the loop exits without taking the
7062 // backedge.
7063 // * if the predicate was true in the first iteration then it will
7064 // continue to be true for all future iterations since it is
7065 // monotonically increasing.
7066 //
7067 // For both the above possibilities, we can replace the loop varying
7068 // predicate with its value on the first iteration of the loop (which is
7069 // loop invariant).
7070 //
7071 // A similar reasoning applies for a monotonically decreasing predicate, by
7072 // replacing true with false and false with true in the above two bullets.
7073
7074 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7075
7076 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7077 return false;
7078
7079 InvariantPred = Pred;
7080 InvariantLHS = ArLHS->getStart();
7081 InvariantRHS = RHS;
7082 return true;
7083}
7084
Dan Gohman07591692010-04-11 22:16:48 +00007085bool
7086ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
7087 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007088 if (HasSameValue(LHS, RHS))
7089 return ICmpInst::isTrueWhenEqual(Pred);
7090
Dan Gohman07591692010-04-11 22:16:48 +00007091 // This code is split out from isKnownPredicate because it is called from
7092 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00007093 switch (Pred) {
7094 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00007095 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00007096 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00007097 std::swap(LHS, RHS);
7098 case ICmpInst::ICMP_SLT: {
7099 ConstantRange LHSRange = getSignedRange(LHS);
7100 ConstantRange RHSRange = getSignedRange(RHS);
7101 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
7102 return true;
7103 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
7104 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007105 break;
7106 }
7107 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00007108 std::swap(LHS, RHS);
7109 case ICmpInst::ICMP_SLE: {
7110 ConstantRange LHSRange = getSignedRange(LHS);
7111 ConstantRange RHSRange = getSignedRange(RHS);
7112 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
7113 return true;
7114 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
7115 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007116 break;
7117 }
7118 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00007119 std::swap(LHS, RHS);
7120 case ICmpInst::ICMP_ULT: {
7121 ConstantRange LHSRange = getUnsignedRange(LHS);
7122 ConstantRange RHSRange = getUnsignedRange(RHS);
7123 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
7124 return true;
7125 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
7126 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007127 break;
7128 }
7129 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00007130 std::swap(LHS, RHS);
7131 case ICmpInst::ICMP_ULE: {
7132 ConstantRange LHSRange = getUnsignedRange(LHS);
7133 ConstantRange RHSRange = getUnsignedRange(RHS);
7134 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
7135 return true;
7136 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
7137 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007138 break;
7139 }
7140 case ICmpInst::ICMP_NE: {
7141 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
7142 return true;
7143 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
7144 return true;
7145
7146 const SCEV *Diff = getMinusSCEV(LHS, RHS);
7147 if (isKnownNonZero(Diff))
7148 return true;
7149 break;
7150 }
7151 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00007152 // The check at the top of the function catches the case where
7153 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00007154 break;
7155 }
7156 return false;
7157}
7158
Sanjoy Das11231482015-10-22 19:57:29 +00007159bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7160 const SCEV *LHS,
7161 const SCEV *RHS) {
7162
7163 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7164 // Return Y via OutY.
7165 auto MatchBinaryAddToConst =
7166 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7167 SCEV::NoWrapFlags ExpectedFlags) {
7168 const SCEV *NonConstOp, *ConstOp;
7169 SCEV::NoWrapFlags FlagsPresent;
7170
7171 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7172 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7173 return false;
7174
7175 OutY = cast<SCEVConstant>(ConstOp)->getValue()->getValue();
Sanjoy Das52f7b082015-10-23 20:09:57 +00007176 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
Sanjoy Das11231482015-10-22 19:57:29 +00007177 };
7178
7179 APInt C;
7180
7181 switch (Pred) {
7182 default:
7183 break;
7184
7185 case ICmpInst::ICMP_SGE:
7186 std::swap(LHS, RHS);
7187 case ICmpInst::ICMP_SLE:
7188 // X s<= (X + C)<nsw> if C >= 0
7189 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7190 return true;
7191
7192 // (X + C)<nsw> s<= X if C <= 0
7193 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7194 !C.isStrictlyPositive())
7195 return true;
7196
7197 case ICmpInst::ICMP_SGT:
7198 std::swap(LHS, RHS);
7199 case ICmpInst::ICMP_SLT:
7200 // X s< (X + C)<nsw> if C > 0
7201 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7202 C.isStrictlyPositive())
7203 return true;
7204
7205 // (X + C)<nsw> s< X if C < 0
7206 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7207 return true;
7208 }
7209
7210 return false;
7211}
7212
Sanjoy Das7d910f22015-10-02 18:50:30 +00007213bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7214 const SCEV *LHS,
7215 const SCEV *RHS) {
Sanjoy Das10dffcb2015-10-08 03:46:00 +00007216 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
Sanjoy Das7d910f22015-10-02 18:50:30 +00007217 return false;
7218
7219 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7220 // the stack can result in exponential time complexity.
7221 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7222
7223 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7224 //
7225 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7226 // isKnownPredicate. isKnownPredicate is more powerful, but also more
7227 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7228 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
7229 // use isKnownPredicate later if needed.
Sanjoy Das10dffcb2015-10-08 03:46:00 +00007230 if (isKnownNonNegative(RHS) &&
Sanjoy Das7d910f22015-10-02 18:50:30 +00007231 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7232 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS))
7233 return true;
7234
7235 return false;
7236}
7237
Dan Gohmane65c9172009-07-13 21:35:55 +00007238/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7239/// protected by a conditional between LHS and RHS. This is used to
7240/// to eliminate casts.
7241bool
7242ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7243 ICmpInst::Predicate Pred,
7244 const SCEV *LHS, const SCEV *RHS) {
7245 // Interpret a null as meaning no loop, where there is obviously no guard
7246 // (interprocedural conditions notwithstanding).
7247 if (!L) return true;
7248
Sanjoy Das1f05c512014-10-10 21:22:34 +00007249 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7250
Dan Gohmane65c9172009-07-13 21:35:55 +00007251 BasicBlock *Latch = L->getLoopLatch();
7252 if (!Latch)
7253 return false;
7254
7255 BranchInst *LoopContinuePredicate =
7256 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007257 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7258 isImpliedCond(Pred, LHS, RHS,
7259 LoopContinuePredicate->getCondition(),
7260 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7261 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007262
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007263 // We don't want more than one activation of the following loops on the stack
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007264 // -- that can lead to O(n!) time complexity.
7265 if (WalkingBEDominatingConds)
7266 return false;
7267
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +00007268 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007269
Sanjoy Dasb174f9a2015-09-25 23:53:50 +00007270 // See if we can exploit a trip count to prove the predicate.
7271 const auto &BETakenInfo = getBackedgeTakenInfo(L);
7272 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7273 if (LatchBECount != getCouldNotCompute()) {
7274 // We know that Latch branches back to the loop header exactly
7275 // LatchBECount times. This means the backdege condition at Latch is
7276 // equivalent to "{0,+,1} u< LatchBECount".
7277 Type *Ty = LatchBECount->getType();
7278 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7279 const SCEV *LoopCounter =
7280 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7281 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7282 LatchBECount))
7283 return true;
7284 }
7285
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007286 // Check conditions due to any @llvm.assume intrinsics.
7287 for (auto &AssumeVH : AC.assumptions()) {
7288 if (!AssumeVH)
7289 continue;
7290 auto *CI = cast<CallInst>(AssumeVH);
7291 if (!DT.dominates(CI, Latch->getTerminator()))
7292 continue;
7293
7294 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7295 return true;
7296 }
7297
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007298 // If the loop is not reachable from the entry block, we risk running into an
7299 // infinite loop as we walk up into the dom tree. These loops do not matter
7300 // anyway, so we just return a conservative answer when we see them.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007301 if (!DT.isReachableFromEntry(L->getHeader()))
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007302 return false;
7303
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007304 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7305 DTN != HeaderDTN; DTN = DTN->getIDom()) {
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007306
7307 assert(DTN && "should reach the loop header before reaching the root!");
7308
7309 BasicBlock *BB = DTN->getBlock();
7310 BasicBlock *PBB = BB->getSinglePredecessor();
7311 if (!PBB)
7312 continue;
7313
7314 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7315 if (!ContinuePredicate || !ContinuePredicate->isConditional())
7316 continue;
7317
7318 Value *Condition = ContinuePredicate->getCondition();
7319
7320 // If we have an edge `E` within the loop body that dominates the only
7321 // latch, the condition guarding `E` also guards the backedge. This
7322 // reasoning works only for loops with a single latch.
7323
7324 BasicBlockEdge DominatingEdge(PBB, BB);
7325 if (DominatingEdge.isSingleEdge()) {
7326 // We're constructively (and conservatively) enumerating edges within the
7327 // loop body that dominate the latch. The dominator tree better agree
7328 // with us on this:
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007329 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007330
7331 if (isImpliedCond(Pred, LHS, RHS, Condition,
7332 BB != ContinuePredicate->getSuccessor(0)))
7333 return true;
7334 }
7335 }
7336
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007337 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007338}
7339
Dan Gohmanb50349a2010-04-11 19:27:13 +00007340/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00007341/// by a conditional between LHS and RHS. This is used to help avoid max
7342/// expressions in loop trip counts, and to eliminate casts.
7343bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00007344ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7345 ICmpInst::Predicate Pred,
7346 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00007347 // Interpret a null as meaning no loop, where there is obviously no guard
7348 // (interprocedural conditions notwithstanding).
7349 if (!L) return false;
7350
Sanjoy Das1f05c512014-10-10 21:22:34 +00007351 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7352
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007353 // Starting at the loop predecessor, climb up the predecessor chain, as long
7354 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00007355 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00007356 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00007357 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00007358 Pair.first;
7359 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00007360
7361 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00007362 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00007363 if (!LoopEntryPredicate ||
7364 LoopEntryPredicate->isUnconditional())
7365 continue;
7366
Dan Gohmane18c2d62010-08-10 23:46:30 +00007367 if (isImpliedCond(Pred, LHS, RHS,
7368 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00007369 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00007370 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007371 }
7372
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007373 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007374 for (auto &AssumeVH : AC.assumptions()) {
Chandler Carruth66b31302015-01-04 12:03:27 +00007375 if (!AssumeVH)
7376 continue;
7377 auto *CI = cast<CallInst>(AssumeVH);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007378 if (!DT.dominates(CI, L->getHeader()))
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007379 continue;
7380
7381 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7382 return true;
7383 }
7384
Dan Gohman2a62fd92008-08-12 20:17:31 +00007385 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007386}
7387
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007388/// RAII wrapper to prevent recursive application of isImpliedCond.
7389/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7390/// currently evaluating isImpliedCond.
7391struct MarkPendingLoopPredicate {
7392 Value *Cond;
7393 DenseSet<Value*> &LoopPreds;
7394 bool Pending;
7395
7396 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7397 : Cond(C), LoopPreds(LP) {
7398 Pending = !LoopPreds.insert(Cond).second;
7399 }
7400 ~MarkPendingLoopPredicate() {
7401 if (!Pending)
7402 LoopPreds.erase(Cond);
7403 }
7404};
7405
Dan Gohman430f0cc2009-07-21 23:03:19 +00007406/// isImpliedCond - Test whether the condition described by Pred, LHS,
7407/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007408bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007409 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00007410 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007411 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007412 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7413 if (Mark.Pending)
7414 return false;
7415
Dan Gohman8b0a4192010-03-01 17:49:51 +00007416 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007417 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007418 if (BO->getOpcode() == Instruction::And) {
7419 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007420 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7421 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007422 } else if (BO->getOpcode() == Instruction::Or) {
7423 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007424 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7425 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007426 }
7427 }
7428
Dan Gohmane18c2d62010-08-10 23:46:30 +00007429 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007430 if (!ICI) return false;
7431
Andrew Trickfa594032012-11-29 18:35:13 +00007432 // Now that we found a conditional branch that dominates the loop or controls
7433 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00007434 ICmpInst::Predicate FoundPred;
7435 if (Inverse)
7436 FoundPred = ICI->getInversePredicate();
7437 else
7438 FoundPred = ICI->getPredicate();
7439
7440 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7441 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00007442
Sanjoy Dasdf1635d2015-09-25 19:59:52 +00007443 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
7444}
7445
7446bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
7447 const SCEV *RHS,
7448 ICmpInst::Predicate FoundPred,
7449 const SCEV *FoundLHS,
7450 const SCEV *FoundRHS) {
Sanjoy Das14598832015-03-26 17:28:26 +00007451 // Balance the types.
7452 if (getTypeSizeInBits(LHS->getType()) <
7453 getTypeSizeInBits(FoundLHS->getType())) {
7454 if (CmpInst::isSigned(Pred)) {
7455 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7456 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7457 } else {
7458 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7459 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7460 }
7461 } else if (getTypeSizeInBits(LHS->getType()) >
Dan Gohmane65c9172009-07-13 21:35:55 +00007462 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00007463 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007464 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7465 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7466 } else {
7467 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7468 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7469 }
7470 }
7471
Dan Gohman430f0cc2009-07-21 23:03:19 +00007472 // Canonicalize the query to match the way instcombine will have
7473 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00007474 if (SimplifyICmpOperands(Pred, LHS, RHS))
7475 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00007476 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00007477 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7478 if (FoundLHS == FoundRHS)
7479 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00007480
7481 // Check to see if we can make the LHS or RHS match.
7482 if (LHS == FoundRHS || RHS == FoundLHS) {
7483 if (isa<SCEVConstant>(RHS)) {
7484 std::swap(FoundLHS, FoundRHS);
7485 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7486 } else {
7487 std::swap(LHS, RHS);
7488 Pred = ICmpInst::getSwappedPredicate(Pred);
7489 }
7490 }
7491
7492 // Check whether the found predicate is the same as the desired predicate.
7493 if (FoundPred == Pred)
7494 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7495
7496 // Check whether swapping the found predicate makes it the same as the
7497 // desired predicate.
7498 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7499 if (isa<SCEVConstant>(RHS))
7500 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7501 else
7502 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7503 RHS, LHS, FoundLHS, FoundRHS);
7504 }
7505
Sanjoy Das6e78b172015-10-22 19:57:34 +00007506 // Unsigned comparison is the same as signed comparison when both the operands
7507 // are non-negative.
7508 if (CmpInst::isUnsigned(FoundPred) &&
7509 CmpInst::getSignedPredicate(FoundPred) == Pred &&
7510 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
7511 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7512
Sanjoy Dasc5676df2014-11-13 00:00:58 +00007513 // Check if we can make progress by sharpening ranges.
7514 if (FoundPred == ICmpInst::ICMP_NE &&
7515 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7516
7517 const SCEVConstant *C = nullptr;
7518 const SCEV *V = nullptr;
7519
7520 if (isa<SCEVConstant>(FoundLHS)) {
7521 C = cast<SCEVConstant>(FoundLHS);
7522 V = FoundRHS;
7523 } else {
7524 C = cast<SCEVConstant>(FoundRHS);
7525 V = FoundLHS;
7526 }
7527
7528 // The guarding predicate tells us that C != V. If the known range
7529 // of V is [C, t), we can sharpen the range to [C + 1, t). The
7530 // range we consider has to correspond to same signedness as the
7531 // predicate we're interested in folding.
7532
7533 APInt Min = ICmpInst::isSigned(Pred) ?
7534 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7535
7536 if (Min == C->getValue()->getValue()) {
7537 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
7538 // This is true even if (Min + 1) wraps around -- in case of
7539 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
7540
7541 APInt SharperMin = Min + 1;
7542
7543 switch (Pred) {
7544 case ICmpInst::ICMP_SGE:
7545 case ICmpInst::ICMP_UGE:
7546 // We know V `Pred` SharperMin. If this implies LHS `Pred`
7547 // RHS, we're done.
7548 if (isImpliedCondOperands(Pred, LHS, RHS, V,
7549 getConstant(SharperMin)))
7550 return true;
7551
7552 case ICmpInst::ICMP_SGT:
7553 case ICmpInst::ICMP_UGT:
7554 // We know from the range information that (V `Pred` Min ||
7555 // V == Min). We know from the guarding condition that !(V
7556 // == Min). This gives us
7557 //
7558 // V `Pred` Min || V == Min && !(V == Min)
7559 // => V `Pred` Min
7560 //
7561 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
7562
7563 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
7564 return true;
7565
7566 default:
7567 // No change
7568 break;
7569 }
7570 }
7571 }
7572
Dan Gohman430f0cc2009-07-21 23:03:19 +00007573 // Check whether the actual condition is beyond sufficient.
7574 if (FoundPred == ICmpInst::ICMP_EQ)
7575 if (ICmpInst::isTrueWhenEqual(Pred))
7576 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
7577 return true;
7578 if (Pred == ICmpInst::ICMP_NE)
7579 if (!ICmpInst::isTrueWhenEqual(FoundPred))
7580 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
7581 return true;
7582
7583 // Otherwise assume the worst.
7584 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007585}
7586
Sanjoy Das1ed69102015-10-13 02:53:27 +00007587bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
7588 const SCEV *&L, const SCEV *&R,
7589 SCEV::NoWrapFlags &Flags) {
7590 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
7591 if (!AE || AE->getNumOperands() != 2)
7592 return false;
7593
7594 L = AE->getOperand(0);
7595 R = AE->getOperand(1);
7596 Flags = AE->getNoWrapFlags();
7597 return true;
7598}
7599
7600bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
7601 const SCEV *More,
7602 APInt &C) {
Sanjoy Das96709c42015-09-25 23:53:45 +00007603 // We avoid subtracting expressions here because this function is usually
7604 // fairly deep in the call stack (i.e. is called many times).
7605
Sanjoy Das96709c42015-09-25 23:53:45 +00007606 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
7607 const auto *LAR = cast<SCEVAddRecExpr>(Less);
7608 const auto *MAR = cast<SCEVAddRecExpr>(More);
7609
7610 if (LAR->getLoop() != MAR->getLoop())
7611 return false;
7612
7613 // We look at affine expressions only; not for correctness but to keep
7614 // getStepRecurrence cheap.
7615 if (!LAR->isAffine() || !MAR->isAffine())
7616 return false;
7617
Sanjoy Das1ed69102015-10-13 02:53:27 +00007618 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
Sanjoy Das96709c42015-09-25 23:53:45 +00007619 return false;
7620
7621 Less = LAR->getStart();
7622 More = MAR->getStart();
7623
7624 // fall through
7625 }
7626
7627 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
7628 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue();
7629 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue();
7630 C = M - L;
7631 return true;
7632 }
7633
7634 const SCEV *L, *R;
Sanjoy Das1ed69102015-10-13 02:53:27 +00007635 SCEV::NoWrapFlags Flags;
7636 if (splitBinaryAdd(Less, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00007637 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7638 if (R == More) {
7639 C = -(LC->getValue()->getValue());
7640 return true;
7641 }
7642
Sanjoy Das1ed69102015-10-13 02:53:27 +00007643 if (splitBinaryAdd(More, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00007644 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7645 if (R == Less) {
7646 C = LC->getValue()->getValue();
7647 return true;
7648 }
7649
7650 return false;
7651}
7652
7653bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
7654 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
7655 const SCEV *FoundLHS, const SCEV *FoundRHS) {
7656 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
7657 return false;
7658
7659 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7660 if (!AddRecLHS)
7661 return false;
7662
7663 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
7664 if (!AddRecFoundLHS)
7665 return false;
7666
7667 // We'd like to let SCEV reason about control dependencies, so we constrain
7668 // both the inequalities to be about add recurrences on the same loop. This
7669 // way we can use isLoopEntryGuardedByCond later.
7670
7671 const Loop *L = AddRecFoundLHS->getLoop();
7672 if (L != AddRecLHS->getLoop())
7673 return false;
7674
7675 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
7676 //
7677 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
7678 // ... (2)
7679 //
7680 // Informal proof for (2), assuming (1) [*]:
7681 //
7682 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
7683 //
7684 // Then
7685 //
7686 // FoundLHS s< FoundRHS s< INT_MIN - C
7687 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
7688 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
7689 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
7690 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
7691 // <=> FoundLHS + C s< FoundRHS + C
7692 //
7693 // [*]: (1) can be proved by ruling out overflow.
7694 //
7695 // [**]: This can be proved by analyzing all the four possibilities:
7696 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
7697 // (A s>= 0, B s>= 0).
7698 //
7699 // Note:
7700 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
7701 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
7702 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
7703 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
7704 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
7705 // C)".
7706
7707 APInt LDiff, RDiff;
Sanjoy Das1ed69102015-10-13 02:53:27 +00007708 if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
7709 !computeConstantDifference(FoundRHS, RHS, RDiff) ||
Sanjoy Das96709c42015-09-25 23:53:45 +00007710 LDiff != RDiff)
7711 return false;
7712
7713 if (LDiff == 0)
7714 return true;
7715
Sanjoy Das96709c42015-09-25 23:53:45 +00007716 APInt FoundRHSLimit;
7717
7718 if (Pred == CmpInst::ICMP_ULT) {
7719 FoundRHSLimit = -RDiff;
7720 } else {
7721 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
Sanjoy Das4f1c4592015-09-28 21:14:32 +00007722 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
Sanjoy Das96709c42015-09-25 23:53:45 +00007723 }
7724
7725 // Try to prove (1) or (2), as needed.
7726 return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
7727 getConstant(FoundRHSLimit));
7728}
7729
Dan Gohman430f0cc2009-07-21 23:03:19 +00007730/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00007731/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007732/// and FoundRHS is true.
7733bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
7734 const SCEV *LHS, const SCEV *RHS,
7735 const SCEV *FoundLHS,
7736 const SCEV *FoundRHS) {
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007737 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
7738 return true;
7739
Sanjoy Das96709c42015-09-25 23:53:45 +00007740 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
7741 return true;
7742
Dan Gohman430f0cc2009-07-21 23:03:19 +00007743 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7744 FoundLHS, FoundRHS) ||
7745 // ~x < ~y --> x > y
7746 isImpliedCondOperandsHelper(Pred, LHS, RHS,
7747 getNotSCEV(FoundRHS),
7748 getNotSCEV(FoundLHS));
7749}
7750
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007751
7752/// If Expr computes ~A, return A else return nullptr
7753static const SCEV *MatchNotExpr(const SCEV *Expr) {
7754 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
Sanjoy Das16e7ff12015-10-13 23:28:31 +00007755 if (!Add || Add->getNumOperands() != 2 ||
7756 !Add->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007757 return nullptr;
7758
7759 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
Sanjoy Das16e7ff12015-10-13 23:28:31 +00007760 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
7761 !AddRHS->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007762 return nullptr;
7763
7764 return AddRHS->getOperand(1);
7765}
7766
7767
7768/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7769template<typename MaxExprType>
7770static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7771 const SCEV *Candidate) {
7772 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7773 if (!MaxExpr) return false;
7774
7775 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
7776 return It != MaxExpr->op_end();
7777}
7778
7779
7780/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
7781template<typename MaxExprType>
7782static bool IsMinConsistingOf(ScalarEvolution &SE,
7783 const SCEV *MaybeMinExpr,
7784 const SCEV *Candidate) {
7785 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
7786 if (!MaybeMaxExpr)
7787 return false;
7788
7789 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
7790}
7791
Hal Finkela8d205f2015-08-19 01:51:51 +00007792static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
7793 ICmpInst::Predicate Pred,
7794 const SCEV *LHS, const SCEV *RHS) {
7795
7796 // If both sides are affine addrecs for the same loop, with equal
7797 // steps, and we know the recurrences don't wrap, then we only
7798 // need to check the predicate on the starting values.
7799
7800 if (!ICmpInst::isRelational(Pred))
7801 return false;
7802
7803 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7804 if (!LAR)
7805 return false;
7806 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7807 if (!RAR)
7808 return false;
7809 if (LAR->getLoop() != RAR->getLoop())
7810 return false;
7811 if (!LAR->isAffine() || !RAR->isAffine())
7812 return false;
7813
7814 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
7815 return false;
7816
Hal Finkelff08a2e2015-08-19 17:26:07 +00007817 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
7818 SCEV::FlagNSW : SCEV::FlagNUW;
7819 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
Hal Finkela8d205f2015-08-19 01:51:51 +00007820 return false;
7821
7822 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
7823}
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007824
7825/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
7826/// expression?
7827static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
7828 ICmpInst::Predicate Pred,
7829 const SCEV *LHS, const SCEV *RHS) {
7830 switch (Pred) {
7831 default:
7832 return false;
7833
7834 case ICmpInst::ICMP_SGE:
7835 std::swap(LHS, RHS);
7836 // fall through
7837 case ICmpInst::ICMP_SLE:
7838 return
7839 // min(A, ...) <= A
7840 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
7841 // A <= max(A, ...)
7842 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
7843
7844 case ICmpInst::ICMP_UGE:
7845 std::swap(LHS, RHS);
7846 // fall through
7847 case ICmpInst::ICMP_ULE:
7848 return
7849 // min(A, ...) <= A
7850 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
7851 // A <= max(A, ...)
7852 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
7853 }
7854
7855 llvm_unreachable("covered switch fell through?!");
7856}
7857
Dan Gohman430f0cc2009-07-21 23:03:19 +00007858/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00007859/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007860/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00007861bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00007862ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
7863 const SCEV *LHS, const SCEV *RHS,
7864 const SCEV *FoundLHS,
7865 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007866 auto IsKnownPredicateFull =
7867 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7868 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
Sanjoy Das11231482015-10-22 19:57:29 +00007869 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
7870 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
7871 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007872 };
7873
Dan Gohmane65c9172009-07-13 21:35:55 +00007874 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00007875 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7876 case ICmpInst::ICMP_EQ:
7877 case ICmpInst::ICMP_NE:
7878 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
7879 return true;
7880 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00007881 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007882 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007883 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
7884 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007885 return true;
7886 break;
7887 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007888 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007889 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
7890 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007891 return true;
7892 break;
7893 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007894 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007895 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
7896 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007897 return true;
7898 break;
7899 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007900 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007901 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
7902 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007903 return true;
7904 break;
7905 }
7906
7907 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007908}
7909
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007910/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
7911/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
7912bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
7913 const SCEV *LHS,
7914 const SCEV *RHS,
7915 const SCEV *FoundLHS,
7916 const SCEV *FoundRHS) {
7917 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
7918 // The restriction on `FoundRHS` be lifted easily -- it exists only to
7919 // reduce the compile time impact of this optimization.
7920 return false;
7921
7922 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
7923 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
7924 !isa<SCEVConstant>(AddLHS->getOperand(0)))
7925 return false;
7926
7927 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue();
7928
7929 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
7930 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
7931 ConstantRange FoundLHSRange =
7932 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
7933
7934 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
7935 // for `LHS`:
7936 APInt Addend =
7937 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue();
7938 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
7939
7940 // We can also compute the range of values for `LHS` that satisfy the
7941 // consequent, "`LHS` `Pred` `RHS`":
7942 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue();
7943 ConstantRange SatisfyingLHSRange =
7944 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
7945
7946 // The antecedent implies the consequent if every value of `LHS` that
7947 // satisfies the antecedent also satisfies the consequent.
7948 return SatisfyingLHSRange.contains(LHSRange);
7949}
7950
Johannes Doerfert2683e562015-02-09 12:34:23 +00007951// Verify if an linear IV with positive stride can overflow when in a
7952// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007953// stride and the knowledge of NSW/NUW flags on the recurrence.
7954bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
7955 bool IsSigned, bool NoWrap) {
7956 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00007957
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007958 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00007959 const SCEV *One = getOne(Stride->getType());
Andrew Trick2afa3252011-03-09 17:29:58 +00007960
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007961 if (IsSigned) {
7962 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7963 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7964 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7965 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00007966
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007967 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7968 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00007969 }
Dan Gohman01048422009-06-21 23:46:38 +00007970
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007971 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7972 APInt MaxValue = APInt::getMaxValue(BitWidth);
7973 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7974 .getUnsignedMax();
7975
7976 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7977 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7978}
7979
Johannes Doerfert2683e562015-02-09 12:34:23 +00007980// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007981// greater-than comparison, knowing the invariant term of the comparison,
7982// the stride and the knowledge of NSW/NUW flags on the recurrence.
7983bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7984 bool IsSigned, bool NoWrap) {
7985 if (NoWrap) return false;
7986
7987 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00007988 const SCEV *One = getOne(Stride->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007989
7990 if (IsSigned) {
7991 APInt MinRHS = getSignedRange(RHS).getSignedMin();
7992 APInt MinValue = APInt::getSignedMinValue(BitWidth);
7993 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7994 .getSignedMax();
7995
7996 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7997 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7998 }
7999
8000 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8001 APInt MinValue = APInt::getMinValue(BitWidth);
8002 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8003 .getUnsignedMax();
8004
8005 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8006 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8007}
8008
8009// Compute the backedge taken count knowing the interval difference, the
8010// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00008011const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008012 bool Equality) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008013 const SCEV *One = getOne(Step->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008014 Delta = Equality ? getAddExpr(Delta, Step)
8015 : getAddExpr(Delta, getMinusSCEV(Step, One));
8016 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00008017}
8018
Chris Lattner587a75b2005-08-15 23:33:51 +00008019/// HowManyLessThans - Return the number of times a backedge containing the
8020/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00008021/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00008022///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008023/// @param ControlsExit is true when the LHS < RHS condition directly controls
8024/// the branch (loops exits only if condition is true). In this case, we can use
8025/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00008026ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00008027ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008028 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008029 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008030 // We handle only IV < Invariant
8031 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00008032 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008033
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008034 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00008035
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008036 // Avoid weird loops
8037 if (!IV || IV->getLoop() != L || !IV->isAffine())
8038 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008039
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008040 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008041 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008042
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008043 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008044
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008045 // Avoid negative or zero stride values
8046 if (!isKnownPositive(Stride))
8047 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008048
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008049 // Avoid proven overflow cases: this will ensure that the backedge taken count
8050 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008051 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008052 // behaviors like the case of C language.
8053 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8054 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008055
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008056 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8057 : ICmpInst::ICMP_ULT;
8058 const SCEV *Start = IV->getStart();
8059 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008060 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8061 const SCEV *Diff = getMinusSCEV(RHS, Start);
8062 // If we have NoWrap set, then we can assume that the increment won't
8063 // overflow, in which case if RHS - Start is a constant, we don't need to
8064 // do a max operation since we can just figure it out statically
8065 if (NoWrap && isa<SCEVConstant>(Diff)) {
8066 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
8067 if (D.isNegative())
8068 End = Start;
8069 } else
8070 End = IsSigned ? getSMaxExpr(RHS, Start)
8071 : getUMaxExpr(RHS, Start);
8072 }
Dan Gohman51aaf022010-01-26 04:40:18 +00008073
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008074 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00008075
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008076 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8077 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00008078
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008079 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8080 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00008081
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008082 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8083 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8084 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00008085
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008086 // Although End can be a MAX expression we estimate MaxEnd considering only
8087 // the case End = RHS. This is safe because in the other case (End - Start)
8088 // is zero, leading to a zero maximum backedge taken count.
8089 APInt MaxEnd =
8090 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8091 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8092
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00008093 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008094 if (isa<SCEVConstant>(BECount))
8095 MaxBECount = BECount;
8096 else
8097 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8098 getConstant(MinStride), false);
8099
8100 if (isa<SCEVCouldNotCompute>(MaxBECount))
8101 MaxBECount = BECount;
8102
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008103 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008104}
8105
8106ScalarEvolution::ExitLimit
8107ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8108 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008109 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008110 // We handle only IV > Invariant
8111 if (!isLoopInvariant(RHS, L))
8112 return getCouldNotCompute();
8113
8114 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8115
8116 // Avoid weird loops
8117 if (!IV || IV->getLoop() != L || !IV->isAffine())
8118 return getCouldNotCompute();
8119
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008120 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008121 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8122
8123 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8124
8125 // Avoid negative or zero stride values
8126 if (!isKnownPositive(Stride))
8127 return getCouldNotCompute();
8128
8129 // Avoid proven overflow cases: this will ensure that the backedge taken count
8130 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008131 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008132 // behaviors like the case of C language.
8133 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8134 return getCouldNotCompute();
8135
8136 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8137 : ICmpInst::ICMP_UGT;
8138
8139 const SCEV *Start = IV->getStart();
8140 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008141 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8142 const SCEV *Diff = getMinusSCEV(RHS, Start);
8143 // If we have NoWrap set, then we can assume that the increment won't
8144 // overflow, in which case if RHS - Start is a constant, we don't need to
8145 // do a max operation since we can just figure it out statically
8146 if (NoWrap && isa<SCEVConstant>(Diff)) {
8147 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
8148 if (!D.isNegative())
8149 End = Start;
8150 } else
8151 End = IsSigned ? getSMinExpr(RHS, Start)
8152 : getUMinExpr(RHS, Start);
8153 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008154
8155 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8156
8157 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8158 : getUnsignedRange(Start).getUnsignedMax();
8159
8160 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8161 : getUnsignedRange(Stride).getUnsignedMin();
8162
8163 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8164 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8165 : APInt::getMinValue(BitWidth) + (MinStride - 1);
8166
8167 // Although End can be a MIN expression we estimate MinEnd considering only
8168 // the case End = RHS. This is safe because in the other case (Start - End)
8169 // is zero, leading to a zero maximum backedge taken count.
8170 APInt MinEnd =
8171 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8172 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8173
8174
8175 const SCEV *MaxBECount = getCouldNotCompute();
8176 if (isa<SCEVConstant>(BECount))
8177 MaxBECount = BECount;
8178 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00008179 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008180 getConstant(MinStride), false);
8181
8182 if (isa<SCEVCouldNotCompute>(MaxBECount))
8183 MaxBECount = BECount;
8184
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008185 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00008186}
8187
Chris Lattnerd934c702004-04-02 20:23:17 +00008188/// getNumIterationsInRange - Return the number of iterations of this loop that
8189/// produce values in the specified constant range. Another way of looking at
8190/// this is that it returns the first iteration number where the value is not in
8191/// the condition, thus computing the exit count. If the iteration count can't
8192/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00008193const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00008194 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00008195 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00008196 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008197
8198 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00008199 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00008200 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00008201 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008202 Operands[0] = SE.getZero(SC->getType());
Andrew Trick8b55b732011-03-14 16:50:06 +00008203 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00008204 getNoWrapFlags(FlagNW));
Sanjoy Das63914592015-10-18 00:29:20 +00008205 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00008206 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00008207 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00008208 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00008209 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008210 }
8211
8212 // The only time we can solve this is when we have all constant indices.
8213 // Otherwise, we cannot determine the overflow conditions.
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00008214 if (std::any_of(op_begin(), op_end(),
8215 [](const SCEV *Op) { return !isa<SCEVConstant>(Op);}))
8216 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008217
8218 // Okay at this point we know that all elements of the chrec are constants and
8219 // that the start element is zero.
8220
8221 // First check to see if the range contains zero. If not, the first
8222 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00008223 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00008224 if (!Range.contains(APInt(BitWidth, 0)))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008225 return SE.getZero(getType());
Misha Brukman01808ca2005-04-21 21:13:18 +00008226
Chris Lattnerd934c702004-04-02 20:23:17 +00008227 if (isAffine()) {
8228 // If this is an affine expression then we have this situation:
8229 // Solve {0,+,A} in Range === Ax in Range
8230
Nick Lewycky52460262007-07-16 02:08:00 +00008231 // We know that zero is in the range. If A is positive then we know that
8232 // the upper value of the range must be the first possible exit value.
8233 // If A is negative then the lower of the range is the last possible loop
8234 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00008235 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00008236 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
8237 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00008238
Nick Lewycky52460262007-07-16 02:08:00 +00008239 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00008240 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00008241 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00008242
8243 // Evaluate at the exit value. If we really did fall out of the valid
8244 // range, then we computed our trip count, otherwise wrap around or other
8245 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00008246 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008247 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00008248 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008249
8250 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00008251 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00008252 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00008253 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00008254 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00008255 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00008256 } else if (isQuadratic()) {
8257 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8258 // quadratic equation to solve it. To do this, we must frame our problem in
8259 // terms of figuring out when zero is crossed, instead of when
8260 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00008261 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00008262 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00008263 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8264 // getNoWrapFlags(FlagNW)
8265 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00008266
8267 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00008268 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00008269 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00008270 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8271 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00008272 if (R1) {
8273 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00008274 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00008275 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00008276 R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00008277 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00008278 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00008279
Chris Lattnerd934c702004-04-02 20:23:17 +00008280 // Make sure the root is not off by one. The returned iteration should
8281 // not be in the range, but the previous one should be. When solving
8282 // for "X*X < 5", for example, we should not return a root of 2.
8283 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00008284 R1->getValue(),
8285 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008286 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008287 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00008288 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00008289 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00008290
Dan Gohmana37eaf22007-10-22 18:31:58 +00008291 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008292 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00008293 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00008294 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008295 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008296
Chris Lattnerd934c702004-04-02 20:23:17 +00008297 // If R1 was not in the range, then it is a good return value. Make
8298 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00008299 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00008300 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00008301 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008302 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00008303 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00008304 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008305 }
8306 }
8307 }
8308
Dan Gohman31efa302009-04-18 17:58:19 +00008309 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008310}
8311
Sebastian Pop448712b2014-05-07 18:01:20 +00008312namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008313struct FindUndefs {
8314 bool Found;
8315 FindUndefs() : Found(false) {}
8316
8317 bool follow(const SCEV *S) {
8318 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8319 if (isa<UndefValue>(C->getValue()))
8320 Found = true;
8321 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8322 if (isa<UndefValue>(C->getValue()))
8323 Found = true;
8324 }
8325
8326 // Keep looking if we haven't found it yet.
8327 return !Found;
8328 }
8329 bool isDone() const {
8330 // Stop recursion if we have found an undef.
8331 return Found;
8332 }
8333};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008334}
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008335
8336// Return true when S contains at least an undef value.
8337static inline bool
8338containsUndefs(const SCEV *S) {
8339 FindUndefs F;
8340 SCEVTraversal<FindUndefs> ST(F);
8341 ST.visitAll(S);
8342
8343 return F.Found;
8344}
8345
8346namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00008347// Collect all steps of SCEV expressions.
8348struct SCEVCollectStrides {
8349 ScalarEvolution &SE;
8350 SmallVectorImpl<const SCEV *> &Strides;
8351
8352 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8353 : SE(SE), Strides(S) {}
8354
8355 bool follow(const SCEV *S) {
8356 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8357 Strides.push_back(AR->getStepRecurrence(SE));
8358 return true;
8359 }
8360 bool isDone() const { return false; }
8361};
8362
8363// Collect all SCEVUnknown and SCEVMulExpr expressions.
8364struct SCEVCollectTerms {
8365 SmallVectorImpl<const SCEV *> &Terms;
8366
8367 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8368 : Terms(T) {}
8369
8370 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008371 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008372 if (!containsUndefs(S))
8373 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00008374
8375 // Stop recursion: once we collected a term, do not walk its operands.
8376 return false;
8377 }
8378
8379 // Keep looking.
8380 return true;
8381 }
8382 bool isDone() const { return false; }
8383};
Tobias Grosser374bce02015-10-12 08:02:00 +00008384
8385// Check if a SCEV contains an AddRecExpr.
8386struct SCEVHasAddRec {
8387 bool &ContainsAddRec;
8388
8389 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8390 ContainsAddRec = false;
8391 }
8392
8393 bool follow(const SCEV *S) {
8394 if (isa<SCEVAddRecExpr>(S)) {
8395 ContainsAddRec = true;
8396
8397 // Stop recursion: once we collected a term, do not walk its operands.
8398 return false;
8399 }
8400
8401 // Keep looking.
8402 return true;
8403 }
8404 bool isDone() const { return false; }
8405};
8406
8407// Find factors that are multiplied with an expression that (possibly as a
8408// subexpression) contains an AddRecExpr. In the expression:
8409//
8410// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
8411//
8412// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
8413// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
8414// parameters as they form a product with an induction variable.
8415//
8416// This collector expects all array size parameters to be in the same MulExpr.
8417// It might be necessary to later add support for collecting parameters that are
8418// spread over different nested MulExpr.
8419struct SCEVCollectAddRecMultiplies {
8420 SmallVectorImpl<const SCEV *> &Terms;
8421 ScalarEvolution &SE;
8422
8423 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
8424 : Terms(T), SE(SE) {}
8425
8426 bool follow(const SCEV *S) {
8427 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
8428 bool HasAddRec = false;
8429 SmallVector<const SCEV *, 0> Operands;
8430 for (auto Op : Mul->operands()) {
8431 if (isa<SCEVUnknown>(Op)) {
8432 Operands.push_back(Op);
8433 } else {
8434 bool ContainsAddRec;
8435 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
8436 visitAll(Op, ContiansAddRec);
8437 HasAddRec |= ContainsAddRec;
8438 }
8439 }
8440 if (Operands.size() == 0)
8441 return true;
8442
8443 if (!HasAddRec)
8444 return false;
8445
8446 Terms.push_back(SE.getMulExpr(Operands));
8447 // Stop recursion: once we collected a term, do not walk its operands.
8448 return false;
8449 }
8450
8451 // Keep looking.
8452 return true;
8453 }
8454 bool isDone() const { return false; }
8455};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008456}
Sebastian Pop448712b2014-05-07 18:01:20 +00008457
Tobias Grosser374bce02015-10-12 08:02:00 +00008458/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
8459/// two places:
8460/// 1) The strides of AddRec expressions.
8461/// 2) Unknowns that are multiplied with AddRec expressions.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008462void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
8463 SmallVectorImpl<const SCEV *> &Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008464 SmallVector<const SCEV *, 4> Strides;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008465 SCEVCollectStrides StrideCollector(*this, Strides);
8466 visitAll(Expr, StrideCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00008467
8468 DEBUG({
8469 dbgs() << "Strides:\n";
8470 for (const SCEV *S : Strides)
8471 dbgs() << *S << "\n";
8472 });
8473
8474 for (const SCEV *S : Strides) {
8475 SCEVCollectTerms TermCollector(Terms);
8476 visitAll(S, TermCollector);
8477 }
8478
8479 DEBUG({
8480 dbgs() << "Terms:\n";
8481 for (const SCEV *T : Terms)
8482 dbgs() << *T << "\n";
8483 });
Tobias Grosser374bce02015-10-12 08:02:00 +00008484
8485 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
8486 visitAll(Expr, MulCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00008487}
8488
Sebastian Popb1a548f2014-05-12 19:01:53 +00008489static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00008490 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00008491 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00008492 int Last = Terms.size() - 1;
8493 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00008494
Sebastian Pop448712b2014-05-07 18:01:20 +00008495 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00008496 if (Last == 0) {
8497 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008498 SmallVector<const SCEV *, 2> Qs;
8499 for (const SCEV *Op : M->operands())
8500 if (!isa<SCEVConstant>(Op))
8501 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00008502
Sebastian Pope30bd352014-05-27 22:41:56 +00008503 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00008504 }
8505
Sebastian Pope30bd352014-05-27 22:41:56 +00008506 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008507 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00008508 }
8509
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008510 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008511 // Normalize the terms before the next call to findArrayDimensionsRec.
8512 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008513 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008514
8515 // Bail out when GCD does not evenly divide one of the terms.
8516 if (!R->isZero())
8517 return false;
8518
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008519 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00008520 }
8521
Tobias Grosser3080cf12014-05-08 07:55:34 +00008522 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00008523 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
8524 return isa<SCEVConstant>(E);
8525 }),
8526 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00008527
Sebastian Pop448712b2014-05-07 18:01:20 +00008528 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00008529 if (!findArrayDimensionsRec(SE, Terms, Sizes))
8530 return false;
8531
Sebastian Pope30bd352014-05-27 22:41:56 +00008532 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008533 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00008534}
Sebastian Popc62c6792013-11-12 22:47:20 +00008535
Sebastian Pop448712b2014-05-07 18:01:20 +00008536namespace {
8537struct FindParameter {
8538 bool FoundParameter;
8539 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00008540
Sebastian Pop448712b2014-05-07 18:01:20 +00008541 bool follow(const SCEV *S) {
8542 if (isa<SCEVUnknown>(S)) {
8543 FoundParameter = true;
8544 // Stop recursion: we found a parameter.
8545 return false;
8546 }
8547 // Keep looking.
8548 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00008549 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008550 bool isDone() const {
8551 // Stop recursion if we have found a parameter.
8552 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00008553 }
Sebastian Popc62c6792013-11-12 22:47:20 +00008554};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008555}
Sebastian Popc62c6792013-11-12 22:47:20 +00008556
Sebastian Pop448712b2014-05-07 18:01:20 +00008557// Returns true when S contains at least a SCEVUnknown parameter.
8558static inline bool
8559containsParameters(const SCEV *S) {
8560 FindParameter F;
8561 SCEVTraversal<FindParameter> ST(F);
8562 ST.visitAll(S);
8563
8564 return F.FoundParameter;
8565}
8566
8567// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
8568static inline bool
8569containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
8570 for (const SCEV *T : Terms)
8571 if (containsParameters(T))
8572 return true;
8573 return false;
8574}
8575
8576// Return the number of product terms in S.
8577static inline int numberOfTerms(const SCEV *S) {
8578 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
8579 return Expr->getNumOperands();
8580 return 1;
8581}
8582
Sebastian Popa6e58602014-05-27 22:41:45 +00008583static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
8584 if (isa<SCEVConstant>(T))
8585 return nullptr;
8586
8587 if (isa<SCEVUnknown>(T))
8588 return T;
8589
8590 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
8591 SmallVector<const SCEV *, 2> Factors;
8592 for (const SCEV *Op : M->operands())
8593 if (!isa<SCEVConstant>(Op))
8594 Factors.push_back(Op);
8595
8596 return SE.getMulExpr(Factors);
8597 }
8598
8599 return T;
8600}
8601
8602/// Return the size of an element read or written by Inst.
8603const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
8604 Type *Ty;
8605 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
8606 Ty = Store->getValueOperand()->getType();
8607 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00008608 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00008609 else
8610 return nullptr;
8611
8612 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
8613 return getSizeOfExpr(ETy, Ty);
8614}
8615
Sebastian Pop448712b2014-05-07 18:01:20 +00008616/// Second step of delinearization: compute the array dimensions Sizes from the
8617/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00008618void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
8619 SmallVectorImpl<const SCEV *> &Sizes,
8620 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00008621
Sebastian Pop53524082014-05-29 19:44:05 +00008622 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00008623 return;
8624
8625 // Early return when Terms do not contain parameters: we do not delinearize
8626 // non parametric SCEVs.
8627 if (!containsParameters(Terms))
8628 return;
8629
8630 DEBUG({
8631 dbgs() << "Terms:\n";
8632 for (const SCEV *T : Terms)
8633 dbgs() << *T << "\n";
8634 });
8635
8636 // Remove duplicates.
8637 std::sort(Terms.begin(), Terms.end());
8638 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
8639
8640 // Put larger terms first.
8641 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
8642 return numberOfTerms(LHS) > numberOfTerms(RHS);
8643 });
8644
Sebastian Popa6e58602014-05-27 22:41:45 +00008645 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8646
Tobias Grosser374bce02015-10-12 08:02:00 +00008647 // Try to divide all terms by the element size. If term is not divisible by
8648 // element size, proceed with the original term.
Sebastian Popa6e58602014-05-27 22:41:45 +00008649 for (const SCEV *&Term : Terms) {
8650 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008651 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Tobias Grosser374bce02015-10-12 08:02:00 +00008652 if (!Q->isZero())
8653 Term = Q;
Sebastian Popa6e58602014-05-27 22:41:45 +00008654 }
8655
8656 SmallVector<const SCEV *, 4> NewTerms;
8657
8658 // Remove constant factors.
8659 for (const SCEV *T : Terms)
8660 if (const SCEV *NewT = removeConstantFactors(SE, T))
8661 NewTerms.push_back(NewT);
8662
Sebastian Pop448712b2014-05-07 18:01:20 +00008663 DEBUG({
8664 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00008665 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00008666 dbgs() << *T << "\n";
8667 });
8668
Sebastian Popa6e58602014-05-27 22:41:45 +00008669 if (NewTerms.empty() ||
8670 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00008671 Sizes.clear();
8672 return;
8673 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008674
Sebastian Popa6e58602014-05-27 22:41:45 +00008675 // The last element to be pushed into Sizes is the size of an element.
8676 Sizes.push_back(ElementSize);
8677
Sebastian Pop448712b2014-05-07 18:01:20 +00008678 DEBUG({
8679 dbgs() << "Sizes:\n";
8680 for (const SCEV *S : Sizes)
8681 dbgs() << *S << "\n";
8682 });
8683}
8684
8685/// Third step of delinearization: compute the access functions for the
8686/// Subscripts based on the dimensions in Sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008687void ScalarEvolution::computeAccessFunctions(
8688 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
8689 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008690
Sebastian Popb1a548f2014-05-12 19:01:53 +00008691 // Early exit in case this SCEV is not an affine multivariate function.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008692 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008693 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008694
Sanjoy Das1195dbe2015-10-08 03:45:58 +00008695 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008696 if (!AR->isAffine())
8697 return;
8698
8699 const SCEV *Res = Expr;
Sebastian Pop448712b2014-05-07 18:01:20 +00008700 int Last = Sizes.size() - 1;
8701 for (int i = Last; i >= 0; i--) {
8702 const SCEV *Q, *R;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008703 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00008704
8705 DEBUG({
8706 dbgs() << "Res: " << *Res << "\n";
8707 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
8708 dbgs() << "Res divided by Sizes[i]:\n";
8709 dbgs() << "Quotient: " << *Q << "\n";
8710 dbgs() << "Remainder: " << *R << "\n";
8711 });
8712
8713 Res = Q;
8714
Sebastian Popa6e58602014-05-27 22:41:45 +00008715 // Do not record the last subscript corresponding to the size of elements in
8716 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00008717 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008718
8719 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00008720 if (isa<SCEVAddRecExpr>(R)) {
8721 Subscripts.clear();
8722 Sizes.clear();
8723 return;
8724 }
Sebastian Popa6e58602014-05-27 22:41:45 +00008725
Sebastian Pop448712b2014-05-07 18:01:20 +00008726 continue;
8727 }
8728
8729 // Record the access function for the current subscript.
8730 Subscripts.push_back(R);
8731 }
8732
8733 // Also push in last position the remainder of the last division: it will be
8734 // the access function of the innermost dimension.
8735 Subscripts.push_back(Res);
8736
8737 std::reverse(Subscripts.begin(), Subscripts.end());
8738
8739 DEBUG({
8740 dbgs() << "Subscripts:\n";
8741 for (const SCEV *S : Subscripts)
8742 dbgs() << *S << "\n";
8743 });
Sebastian Pop448712b2014-05-07 18:01:20 +00008744}
8745
Sebastian Popc62c6792013-11-12 22:47:20 +00008746/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
8747/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00008748/// is the offset start of the array. The SCEV->delinearize algorithm computes
8749/// the multiples of SCEV coefficients: that is a pattern matching of sub
8750/// expressions in the stride and base of a SCEV corresponding to the
8751/// computation of a GCD (greatest common divisor) of base and stride. When
8752/// SCEV->delinearize fails, it returns the SCEV unchanged.
8753///
8754/// For example: when analyzing the memory access A[i][j][k] in this loop nest
8755///
8756/// void foo(long n, long m, long o, double A[n][m][o]) {
8757///
8758/// for (long i = 0; i < n; i++)
8759/// for (long j = 0; j < m; j++)
8760/// for (long k = 0; k < o; k++)
8761/// A[i][j][k] = 1.0;
8762/// }
8763///
8764/// the delinearization input is the following AddRec SCEV:
8765///
8766/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
8767///
8768/// From this SCEV, we are able to say that the base offset of the access is %A
8769/// because it appears as an offset that does not divide any of the strides in
8770/// the loops:
8771///
8772/// CHECK: Base offset: %A
8773///
8774/// and then SCEV->delinearize determines the size of some of the dimensions of
8775/// the array as these are the multiples by which the strides are happening:
8776///
8777/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
8778///
8779/// Note that the outermost dimension remains of UnknownSize because there are
8780/// no strides that would help identifying the size of the last dimension: when
8781/// the array has been statically allocated, one could compute the size of that
8782/// dimension by dividing the overall size of the array by the size of the known
8783/// dimensions: %m * %o * 8.
8784///
8785/// Finally delinearize provides the access functions for the array reference
8786/// that does correspond to A[i][j][k] of the above C testcase:
8787///
8788/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
8789///
8790/// The testcases are checking the output of a function pass:
8791/// DelinearizationPass that walks through all loads and stores of a function
8792/// asking for the SCEV of the memory access with respect to all enclosing
8793/// loops, calling SCEV->delinearize on that and printing the results.
8794
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008795void ScalarEvolution::delinearize(const SCEV *Expr,
Sebastian Pop28e6b972014-05-27 22:41:51 +00008796 SmallVectorImpl<const SCEV *> &Subscripts,
8797 SmallVectorImpl<const SCEV *> &Sizes,
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008798 const SCEV *ElementSize) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008799 // First step: collect parametric terms.
8800 SmallVector<const SCEV *, 4> Terms;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008801 collectParametricTerms(Expr, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00008802
Sebastian Popb1a548f2014-05-12 19:01:53 +00008803 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008804 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008805
Sebastian Pop448712b2014-05-07 18:01:20 +00008806 // Second step: find subscript sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008807 findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00008808
Sebastian Popb1a548f2014-05-12 19:01:53 +00008809 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008810 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008811
Sebastian Pop448712b2014-05-07 18:01:20 +00008812 // Third step: compute the access functions for each subscript.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008813 computeAccessFunctions(Expr, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00008814
Sebastian Pop28e6b972014-05-27 22:41:51 +00008815 if (Subscripts.empty())
8816 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008817
Sebastian Pop448712b2014-05-07 18:01:20 +00008818 DEBUG({
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008819 dbgs() << "succeeded to delinearize " << *Expr << "\n";
Sebastian Pop448712b2014-05-07 18:01:20 +00008820 dbgs() << "ArrayDecl[UnknownSize]";
8821 for (const SCEV *S : Sizes)
8822 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00008823
Sebastian Pop444621a2014-05-09 22:45:02 +00008824 dbgs() << "\nArrayRef";
8825 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00008826 dbgs() << "[" << *S << "]";
8827 dbgs() << "\n";
8828 });
Sebastian Popc62c6792013-11-12 22:47:20 +00008829}
Chris Lattnerd934c702004-04-02 20:23:17 +00008830
8831//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00008832// SCEVCallbackVH Class Implementation
8833//===----------------------------------------------------------------------===//
8834
Dan Gohmand33a0902009-05-19 19:22:47 +00008835void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00008836 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00008837 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
8838 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008839 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00008840 // this now dangles!
8841}
8842
Dan Gohman7a066722010-07-28 01:09:07 +00008843void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00008844 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00008845
Dan Gohman48f82222009-05-04 22:30:44 +00008846 // Forget all the expressions associated with users of the old value,
8847 // so that future queries will recompute the expressions using the new
8848 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00008849 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00008850 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00008851 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00008852 while (!Worklist.empty()) {
8853 User *U = Worklist.pop_back_val();
8854 // Deleting the Old value will cause this to dangle. Postpone
8855 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008856 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00008857 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00008858 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00008859 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00008860 if (PHINode *PN = dyn_cast<PHINode>(U))
8861 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008862 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00008863 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00008864 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008865 // Delete the Old value.
8866 if (PHINode *PN = dyn_cast<PHINode>(Old))
8867 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008868 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00008869 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00008870}
8871
Dan Gohmand33a0902009-05-19 19:22:47 +00008872ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00008873 : CallbackVH(V), SE(se) {}
8874
8875//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00008876// ScalarEvolution Class Implementation
8877//===----------------------------------------------------------------------===//
8878
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008879ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
8880 AssumptionCache &AC, DominatorTree &DT,
8881 LoopInfo &LI)
8882 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
8883 CouldNotCompute(new SCEVCouldNotCompute()),
Sanjoy Das7d910f22015-10-02 18:50:30 +00008884 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
8885 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
8886 FirstUnknown(nullptr) {}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008887
8888ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
8889 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
8890 CouldNotCompute(std::move(Arg.CouldNotCompute)),
8891 ValueExprMap(std::move(Arg.ValueExprMap)),
Sanjoy Das7d910f22015-10-02 18:50:30 +00008892 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008893 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
8894 ConstantEvolutionLoopExitValue(
8895 std::move(Arg.ConstantEvolutionLoopExitValue)),
8896 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
8897 LoopDispositions(std::move(Arg.LoopDispositions)),
8898 BlockDispositions(std::move(Arg.BlockDispositions)),
8899 UnsignedRanges(std::move(Arg.UnsignedRanges)),
8900 SignedRanges(std::move(Arg.SignedRanges)),
8901 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
8902 SCEVAllocator(std::move(Arg.SCEVAllocator)),
8903 FirstUnknown(Arg.FirstUnknown) {
8904 Arg.FirstUnknown = nullptr;
Dan Gohmanc8e23622009-04-21 23:15:49 +00008905}
8906
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008907ScalarEvolution::~ScalarEvolution() {
Dan Gohman7cac9572010-08-02 23:49:30 +00008908 // Iterate through all the SCEVUnknown instances and call their
8909 // destructors, so that they release their references to their values.
Naomi Musgravef90c1be2015-09-16 23:46:40 +00008910 for (SCEVUnknown *U = FirstUnknown; U;) {
8911 SCEVUnknown *Tmp = U;
8912 U = U->Next;
8913 Tmp->~SCEVUnknown();
8914 }
Craig Topper9f008862014-04-15 04:59:12 +00008915 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00008916
Dan Gohman9bad2fb2010-08-27 18:55:03 +00008917 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00008918
8919 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
8920 // that a loop had multiple computable exits.
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00008921 for (auto &BTCI : BackedgeTakenCounts)
8922 BTCI.second.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00008923
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00008924 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00008925 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
Sanjoy Das7d910f22015-10-02 18:50:30 +00008926 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
Dan Gohman0a40ad92009-04-16 03:18:22 +00008927}
8928
Dan Gohmanc8e23622009-04-21 23:15:49 +00008929bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00008930 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00008931}
8932
Dan Gohmanc8e23622009-04-21 23:15:49 +00008933static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00008934 const Loop *L) {
8935 // Print all inner loops first
8936 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
8937 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00008938
Dan Gohmanbc694912010-01-09 18:17:45 +00008939 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008940 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008941 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008942
Dan Gohmancb0efec2009-12-18 01:14:11 +00008943 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00008944 L->getExitBlocks(ExitBlocks);
8945 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00008946 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008947
Dan Gohman0bddac12009-02-24 18:55:53 +00008948 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
8949 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00008950 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00008951 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00008952 }
8953
Dan Gohmanbc694912010-01-09 18:17:45 +00008954 OS << "\n"
8955 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008956 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008957 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00008958
8959 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
8960 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
8961 } else {
8962 OS << "Unpredictable max backedge-taken count. ";
8963 }
8964
8965 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00008966}
8967
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008968void ScalarEvolution::print(raw_ostream &OS) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00008969 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00008970 // out SCEV values of all instructions that are interesting. Doing
8971 // this potentially causes it to create new SCEV objects though,
8972 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00008973 // observable from outside the class though, so casting away the
8974 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00008975 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00008976
Dan Gohmanbc694912010-01-09 18:17:45 +00008977 OS << "Classifying expressions for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00008978 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008979 OS << "\n";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00008980 for (Instruction &I : instructions(F))
8981 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
8982 OS << I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00008983 OS << " --> ";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00008984 const SCEV *SV = SE.getSCEV(&I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008985 SV->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00008986 if (!isa<SCEVCouldNotCompute>(SV)) {
8987 OS << " U: ";
8988 SE.getUnsignedRange(SV).print(OS);
8989 OS << " S: ";
8990 SE.getSignedRange(SV).print(OS);
8991 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008992
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00008993 const Loop *L = LI.getLoopFor(I.getParent());
Dan Gohmanb9063a82009-06-19 17:49:54 +00008994
Dan Gohmanaf752342009-07-07 17:06:11 +00008995 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00008996 if (AtUse != SV) {
8997 OS << " --> ";
8998 AtUse->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00008999 if (!isa<SCEVCouldNotCompute>(AtUse)) {
9000 OS << " U: ";
9001 SE.getUnsignedRange(AtUse).print(OS);
9002 OS << " S: ";
9003 SE.getSignedRange(AtUse).print(OS);
9004 }
Dan Gohmanb9063a82009-06-19 17:49:54 +00009005 }
9006
9007 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00009008 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00009009 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00009010 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00009011 OS << "<<Unknown>>";
9012 } else {
9013 OS << *ExitValue;
9014 }
9015 }
9016
Chris Lattnerd934c702004-04-02 20:23:17 +00009017 OS << "\n";
9018 }
9019
Dan Gohmanbc694912010-01-09 18:17:45 +00009020 OS << "Determining loop execution counts for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009021 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009022 OS << "\n";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009023 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
Dan Gohmanc8e23622009-04-21 23:15:49 +00009024 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009025}
Dan Gohmane20f8242009-04-21 00:47:46 +00009026
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009027ScalarEvolution::LoopDisposition
9028ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009029 auto &Values = LoopDispositions[S];
9030 for (auto &V : Values) {
9031 if (V.getPointer() == L)
9032 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009033 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009034 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009035 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009036 auto &Values2 = LoopDispositions[S];
9037 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9038 if (V.getPointer() == L) {
9039 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009040 break;
9041 }
9042 }
9043 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009044}
9045
9046ScalarEvolution::LoopDisposition
9047ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009048 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009049 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009050 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009051 case scTruncate:
9052 case scZeroExtend:
9053 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009054 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00009055 case scAddRecExpr: {
9056 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9057
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009058 // If L is the addrec's loop, it's computable.
9059 if (AR->getLoop() == L)
9060 return LoopComputable;
9061
Dan Gohmanafd6db92010-11-17 21:23:15 +00009062 // Add recurrences are never invariant in the function-body (null loop).
9063 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009064 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009065
9066 // This recurrence is variant w.r.t. L if L contains AR's loop.
9067 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009068 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009069
9070 // This recurrence is invariant w.r.t. L if AR's loop contains L.
9071 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009072 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009073
9074 // This recurrence is variant w.r.t. L if any of its operands
9075 // are variant.
9076 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
9077 I != E; ++I)
9078 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009079 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009080
9081 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009082 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009083 }
9084 case scAddExpr:
9085 case scMulExpr:
9086 case scUMaxExpr:
9087 case scSMaxExpr: {
9088 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00009089 bool HasVarying = false;
9090 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
9091 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009092 LoopDisposition D = getLoopDisposition(*I, L);
9093 if (D == LoopVariant)
9094 return LoopVariant;
9095 if (D == LoopComputable)
9096 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009097 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009098 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009099 }
9100 case scUDivExpr: {
9101 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009102 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9103 if (LD == LoopVariant)
9104 return LoopVariant;
9105 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9106 if (RD == LoopVariant)
9107 return LoopVariant;
9108 return (LD == LoopInvariant && RD == LoopInvariant) ?
9109 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009110 }
9111 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009112 // All non-instruction values are loop invariant. All instructions are loop
9113 // invariant if they are not contained in the specified loop.
9114 // Instructions are never considered invariant in the function body
9115 // (null loop) because they are defined within the "loop".
9116 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9117 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9118 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009119 case scCouldNotCompute:
9120 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00009121 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009122 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009123}
9124
9125bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9126 return getLoopDisposition(S, L) == LoopInvariant;
9127}
9128
9129bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9130 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009131}
Dan Gohman20d9ce22010-11-17 21:41:58 +00009132
Dan Gohman8ea83d82010-11-18 00:34:22 +00009133ScalarEvolution::BlockDisposition
9134ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009135 auto &Values = BlockDispositions[S];
9136 for (auto &V : Values) {
9137 if (V.getPointer() == BB)
9138 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009139 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009140 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009141 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009142 auto &Values2 = BlockDispositions[S];
9143 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9144 if (V.getPointer() == BB) {
9145 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009146 break;
9147 }
9148 }
9149 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009150}
9151
Dan Gohman8ea83d82010-11-18 00:34:22 +00009152ScalarEvolution::BlockDisposition
9153ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009154 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00009155 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009156 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009157 case scTruncate:
9158 case scZeroExtend:
9159 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009160 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00009161 case scAddRecExpr: {
9162 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00009163 // to test for proper dominance too, because the instruction which
9164 // produces the addrec's value is a PHI, and a PHI effectively properly
9165 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00009166 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009167 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009168 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009169 }
9170 // FALL THROUGH into SCEVNAryExpr handling.
9171 case scAddExpr:
9172 case scMulExpr:
9173 case scUMaxExpr:
9174 case scSMaxExpr: {
9175 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009176 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009177 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00009178 I != E; ++I) {
9179 BlockDisposition D = getBlockDisposition(*I, BB);
9180 if (D == DoesNotDominateBlock)
9181 return DoesNotDominateBlock;
9182 if (D == DominatesBlock)
9183 Proper = false;
9184 }
9185 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009186 }
9187 case scUDivExpr: {
9188 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009189 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9190 BlockDisposition LD = getBlockDisposition(LHS, BB);
9191 if (LD == DoesNotDominateBlock)
9192 return DoesNotDominateBlock;
9193 BlockDisposition RD = getBlockDisposition(RHS, BB);
9194 if (RD == DoesNotDominateBlock)
9195 return DoesNotDominateBlock;
9196 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9197 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009198 }
9199 case scUnknown:
9200 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00009201 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9202 if (I->getParent() == BB)
9203 return DominatesBlock;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009204 if (DT.properlyDominates(I->getParent(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009205 return ProperlyDominatesBlock;
9206 return DoesNotDominateBlock;
9207 }
9208 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009209 case scCouldNotCompute:
9210 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00009211 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009212 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00009213}
9214
9215bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9216 return getBlockDisposition(S, BB) >= DominatesBlock;
9217}
9218
9219bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9220 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009221}
Dan Gohman534749b2010-11-17 22:27:42 +00009222
Andrew Trick365e31c2012-07-13 23:33:03 +00009223namespace {
9224// Search for a SCEV expression node within an expression tree.
9225// Implements SCEVTraversal::Visitor.
9226struct SCEVSearch {
9227 const SCEV *Node;
9228 bool IsFound;
9229
9230 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9231
9232 bool follow(const SCEV *S) {
9233 IsFound |= (S == Node);
9234 return !IsFound;
9235 }
9236 bool isDone() const { return IsFound; }
9237};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00009238}
Andrew Trick365e31c2012-07-13 23:33:03 +00009239
Dan Gohman534749b2010-11-17 22:27:42 +00009240bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00009241 SCEVSearch Search(Op);
9242 visitAll(S, Search);
9243 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00009244}
Dan Gohman7e6b3932010-11-17 23:28:48 +00009245
9246void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9247 ValuesAtScopes.erase(S);
9248 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009249 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00009250 UnsignedRanges.erase(S);
9251 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00009252
9253 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
9254 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
9255 BackedgeTakenInfo &BEInfo = I->second;
9256 if (BEInfo.hasOperand(S, this)) {
9257 BEInfo.clear();
9258 BackedgeTakenCounts.erase(I++);
9259 }
9260 else
9261 ++I;
9262 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00009263}
Benjamin Kramer214935e2012-10-26 17:31:32 +00009264
9265typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009266
Alp Tokercb402912014-01-24 17:20:08 +00009267/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009268static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9269 size_t Pos = 0;
9270 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9271 Str.replace(Pos, From.size(), To.data(), To.size());
9272 Pos += To.size();
9273 }
9274}
9275
Benjamin Kramer214935e2012-10-26 17:31:32 +00009276/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9277static void
9278getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9279 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
9280 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
9281
9282 std::string &S = Map[L];
9283 if (S.empty()) {
9284 raw_string_ostream OS(S);
9285 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009286
9287 // false and 0 are semantically equivalent. This can happen in dead loops.
9288 replaceSubString(OS.str(), "false", "0");
9289 // Remove wrap flags, their use in SCEV is highly fragile.
9290 // FIXME: Remove this when SCEV gets smarter about them.
9291 replaceSubString(OS.str(), "<nw>", "");
9292 replaceSubString(OS.str(), "<nsw>", "");
9293 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00009294 }
9295 }
9296}
9297
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009298void ScalarEvolution::verify() const {
Benjamin Kramer214935e2012-10-26 17:31:32 +00009299 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9300
9301 // Gather stringified backedge taken counts for all loops using SCEV's caches.
9302 // FIXME: It would be much better to store actual values instead of strings,
9303 // but SCEV pointers will change if we drop the caches.
9304 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009305 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
Benjamin Kramer214935e2012-10-26 17:31:32 +00009306 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9307
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009308 // Gather stringified backedge taken counts for all loops using a fresh
9309 // ScalarEvolution object.
9310 ScalarEvolution SE2(F, TLI, AC, DT, LI);
9311 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9312 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
Benjamin Kramer214935e2012-10-26 17:31:32 +00009313
9314 // Now compare whether they're the same with and without caches. This allows
9315 // verifying that no pass changed the cache.
9316 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9317 "New loops suddenly appeared!");
9318
9319 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9320 OldE = BackedgeDumpsOld.end(),
9321 NewI = BackedgeDumpsNew.begin();
9322 OldI != OldE; ++OldI, ++NewI) {
9323 assert(OldI->first == NewI->first && "Loop order changed!");
9324
9325 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9326 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009327 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00009328 // means that a pass is buggy or SCEV has to learn a new pattern but is
9329 // usually not harmful.
9330 if (OldI->second != NewI->second &&
9331 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009332 NewI->second.find("undef") == std::string::npos &&
9333 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00009334 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009335 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00009336 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009337 << "' changed from '" << OldI->second
9338 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00009339 std::abort();
9340 }
9341 }
9342
9343 // TODO: Verify more things.
9344}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009345
9346char ScalarEvolutionAnalysis::PassID;
9347
9348ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
9349 AnalysisManager<Function> *AM) {
9350 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F),
9351 AM->getResult<AssumptionAnalysis>(F),
9352 AM->getResult<DominatorTreeAnalysis>(F),
9353 AM->getResult<LoopAnalysis>(F));
9354}
9355
9356PreservedAnalyses
9357ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) {
9358 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS);
9359 return PreservedAnalyses::all();
9360}
9361
9362INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
9363 "Scalar Evolution Analysis", false, true)
9364INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
9365INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
9366INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
9367INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
9368INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
9369 "Scalar Evolution Analysis", false, true)
9370char ScalarEvolutionWrapperPass::ID = 0;
9371
9372ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
9373 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
9374}
9375
9376bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
9377 SE.reset(new ScalarEvolution(
9378 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
9379 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
9380 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
9381 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
9382 return false;
9383}
9384
9385void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
9386
9387void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
9388 SE->print(OS);
9389}
9390
9391void ScalarEvolutionWrapperPass::verifyAnalysis() const {
9392 if (!VerifySCEV)
9393 return;
9394
9395 SE->verify();
9396}
9397
9398void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
9399 AU.setPreservesAll();
9400 AU.addRequiredTransitive<AssumptionCacheTracker>();
9401 AU.addRequiredTransitive<LoopInfoWrapperPass>();
9402 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
9403 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
9404}