blob: 48f5c59ba610cbdaf99cedaea4586623e0ae9e9c [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000023#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000024#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000025#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000028#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000029#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/GlobalAlias.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000037#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000038#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000039#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000040#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000041#include <algorithm>
42#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000043#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000044using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000045using namespace llvm::PatternMatch;
46
47const unsigned MaxDepth = 6;
48
Philip Reames1c292272015-03-10 22:43:20 +000049// Controls the number of uses of the value searched for possible
50// dominating comparisons.
51static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000052 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000053
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +000054// This optimization is known to cause performance regressions is some cases,
55// keep it under a temporary flag for now.
56static cl::opt<bool>
57DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
58 cl::Hidden, cl::init(true));
59
Sanjay Patelaee84212014-11-04 16:27:42 +000060/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
61/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000062static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000063 if (unsigned BitWidth = Ty->getScalarSizeInBits())
64 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000065
Mehdi Aminia28d91d2015-03-10 02:37:25 +000066 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000067}
Chris Lattner965c7692008-06-02 01:18:21 +000068
Benjamin Kramercfd8d902014-09-12 08:56:53 +000069namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000070// Simplifying using an assume can only be done in a particular control-flow
71// context (the context instruction provides that context). If an assume and
72// the context instruction are not in the same block then the DT helps in
73// figuring out if we can use it.
74struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000075 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +000076 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000077 const Instruction *CxtI;
78 const DominatorTree *DT;
79
Matthias Braun37e5d792016-01-28 06:29:33 +000080 /// Set of assumptions that should be excluded from further queries.
81 /// This is because of the potential for mutual recursion to cause
82 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
83 /// classic case of this is assume(x = y), which will attempt to determine
84 /// bits in x from bits in y, which will attempt to determine bits in y from
85 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
86 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
87 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
88 /// on.
Li Huang755f75f2016-10-15 19:00:04 +000089 std::array<const Value *, MaxDepth> Excluded;
Matthias Braun37e5d792016-01-28 06:29:33 +000090 unsigned NumExcluded;
91
Daniel Jasperaec2fa32016-12-19 08:22:17 +000092 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
93 const DominatorTree *DT)
94 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000095
96 Query(const Query &Q, const Value *NewExcl)
Daniel Jasperaec2fa32016-12-19 08:22:17 +000097 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +000098 Excluded = Q.Excluded;
99 Excluded[NumExcluded++] = NewExcl;
100 assert(NumExcluded <= Excluded.size());
101 }
102
103 bool isExcluded(const Value *Value) const {
104 if (NumExcluded == 0)
105 return false;
106 auto End = Excluded.begin() + NumExcluded;
107 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000108 }
109};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000110} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000111
Sanjay Patel547e9752014-11-04 16:09:50 +0000112// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000113// the preferred context instruction (if any).
114static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
115 // If we've been provided with a context instruction, then use that (provided
116 // it has been inserted).
117 if (CxtI && CxtI->getParent())
118 return CxtI;
119
120 // If the value is really an already-inserted instruction, then use that.
121 CxtI = dyn_cast<Instruction>(V);
122 if (CxtI && CxtI->getParent())
123 return CxtI;
124
125 return nullptr;
126}
127
Pete Cooper35b00d52016-08-13 01:05:32 +0000128static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000129 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000130
Pete Cooper35b00d52016-08-13 01:05:32 +0000131void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000132 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000133 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000134 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000135 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000136 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000137}
138
Pete Cooper35b00d52016-08-13 01:05:32 +0000139bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
140 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000141 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000142 const DominatorTree *DT) {
143 assert(LHS->getType() == RHS->getType() &&
144 "LHS and RHS should have the same type");
145 assert(LHS->getType()->isIntOrIntVectorTy() &&
146 "LHS and RHS should be integers");
147 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
148 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
149 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000150 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
151 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
Jingyue Wuca321902015-05-14 23:53:19 +0000152 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
153}
154
Pete Cooper35b00d52016-08-13 01:05:32 +0000155static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000156 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000157
Pete Cooper35b00d52016-08-13 01:05:32 +0000158void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000159 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000160 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000161 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000162 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000163 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000164}
165
Pete Cooper35b00d52016-08-13 01:05:32 +0000166static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000167 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000168
Pete Cooper35b00d52016-08-13 01:05:32 +0000169bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
170 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000171 unsigned Depth, AssumptionCache *AC,
172 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000173 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000174 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000175 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000176}
177
Pete Cooper35b00d52016-08-13 01:05:32 +0000178static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000179
Pete Cooper35b00d52016-08-13 01:05:32 +0000180bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000181 AssumptionCache *AC, const Instruction *CxtI,
182 const DominatorTree *DT) {
183 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000184}
185
Pete Cooper35b00d52016-08-13 01:05:32 +0000186bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000187 unsigned Depth,
188 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000189 const DominatorTree *DT) {
190 bool NonNegative, Negative;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000191 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +0000192 return NonNegative;
193}
194
Pete Cooper35b00d52016-08-13 01:05:32 +0000195bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000196 AssumptionCache *AC, const Instruction *CxtI,
197 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000198 if (auto *CI = dyn_cast<ConstantInt>(V))
199 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000200
Philip Reames8f12eba2016-03-09 21:31:47 +0000201 // TODO: We'd doing two recursive queries here. We should factor this such
202 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000203 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
204 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000205}
206
Pete Cooper35b00d52016-08-13 01:05:32 +0000207bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000208 AssumptionCache *AC, const Instruction *CxtI,
209 const DominatorTree *DT) {
Nick Lewycky762f8a82016-04-21 00:53:14 +0000210 bool NonNegative, Negative;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000211 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
Nick Lewycky762f8a82016-04-21 00:53:14 +0000212 return Negative;
213}
214
Pete Cooper35b00d52016-08-13 01:05:32 +0000215static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000216
Pete Cooper35b00d52016-08-13 01:05:32 +0000217bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000218 const DataLayout &DL,
219 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000220 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000221 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
222 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000223 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000224}
225
Pete Cooper35b00d52016-08-13 01:05:32 +0000226static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000227 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000228
Pete Cooper35b00d52016-08-13 01:05:32 +0000229bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
230 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000231 unsigned Depth, AssumptionCache *AC,
232 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000233 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000234 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000235}
236
Pete Cooper35b00d52016-08-13 01:05:32 +0000237static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
238 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000239
Pete Cooper35b00d52016-08-13 01:05:32 +0000240unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000241 unsigned Depth, AssumptionCache *AC,
242 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000243 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000244 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000245}
246
Pete Cooper35b00d52016-08-13 01:05:32 +0000247static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
248 bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000249 APInt &KnownZero, APInt &KnownOne,
250 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000251 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000252 if (!Add) {
Pete Cooper35b00d52016-08-13 01:05:32 +0000253 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000254 // We know that the top bits of C-X are clear if X contains less bits
255 // than C (i.e. no wrap-around can happen). For example, 20-X is
256 // positive if we can prove that X is >= 0 and < 16.
257 if (!CLHS->getValue().isNegative()) {
258 unsigned BitWidth = KnownZero.getBitWidth();
259 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
260 // NLZ can't be BitWidth with no sign bit
261 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000262 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000263
264 // If all of the MaskV bits are known to be zero, then we know the
265 // output top bits are zero, because we now know that the output is
266 // from [0-C].
267 if ((KnownZero2 & MaskV) == MaskV) {
268 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
269 // Top bits known zero.
270 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
271 }
272 }
273 }
274 }
275
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000276 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000277
David Majnemer97ddca32014-08-22 00:40:43 +0000278 // If an initial sequence of bits in the result is not needed, the
279 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000280 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000281 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
282 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000283
David Majnemer97ddca32014-08-22 00:40:43 +0000284 // Carry in a 1 for a subtract, rather than a 0.
285 APInt CarryIn(BitWidth, 0);
286 if (!Add) {
287 // Sum = LHS + ~RHS + 1
288 std::swap(KnownZero2, KnownOne2);
289 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000290 }
291
David Majnemer97ddca32014-08-22 00:40:43 +0000292 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
293 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
294
295 // Compute known bits of the carry.
296 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
297 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
298
299 // Compute set of known bits (where all three relevant bits are known).
300 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
301 APInt RHSKnown = KnownZero2 | KnownOne2;
302 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
303 APInt Known = LHSKnown & RHSKnown & CarryKnown;
304
305 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
306 "known bits of sum differ");
307
308 // Compute known bits of the result.
309 KnownZero = ~PossibleSumOne & Known;
310 KnownOne = PossibleSumOne & Known;
311
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000312 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000313 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000314 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000315 // Adding two non-negative numbers, or subtracting a negative number from
316 // a non-negative one, can't wrap into negative.
317 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
318 KnownZero |= APInt::getSignBit(BitWidth);
319 // Adding two negative numbers, or subtracting a non-negative number from
320 // a negative one, can't wrap into non-negative.
321 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
322 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000323 }
324 }
325}
326
Pete Cooper35b00d52016-08-13 01:05:32 +0000327static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000328 APInt &KnownZero, APInt &KnownOne,
329 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000330 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000331 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000332 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
333 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000334
335 bool isKnownNegative = false;
336 bool isKnownNonNegative = false;
337 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000338 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000339 if (Op0 == Op1) {
340 // The product of a number with itself is non-negative.
341 isKnownNonNegative = true;
342 } else {
343 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
344 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
345 bool isKnownNegativeOp1 = KnownOne.isNegative();
346 bool isKnownNegativeOp0 = KnownOne2.isNegative();
347 // The product of two numbers with the same sign is non-negative.
348 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
349 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
350 // The product of a negative number and a non-negative number is either
351 // negative or zero.
352 if (!isKnownNonNegative)
353 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000354 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000355 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000356 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000357 }
358 }
359
360 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000361 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000362 // More trickiness is possible, but this is sufficient for the
363 // interesting case of alignment computation.
364 KnownOne.clearAllBits();
365 unsigned TrailZ = KnownZero.countTrailingOnes() +
366 KnownZero2.countTrailingOnes();
367 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
368 KnownZero2.countLeadingOnes(),
369 BitWidth) - BitWidth;
370
371 TrailZ = std::min(TrailZ, BitWidth);
372 LeadZ = std::min(LeadZ, BitWidth);
373 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
374 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000375
376 // Only make use of no-wrap flags if we failed to compute the sign bit
377 // directly. This matters if the multiplication always overflows, in
378 // which case we prefer to follow the result of the direct computation,
379 // though as the program is invoking undefined behaviour we can choose
380 // whatever we like here.
381 if (isKnownNonNegative && !KnownOne.isNegative())
382 KnownZero.setBit(BitWidth - 1);
383 else if (isKnownNegative && !KnownZero.isNegative())
384 KnownOne.setBit(BitWidth - 1);
385}
386
Jingyue Wu37fcb592014-06-19 16:50:16 +0000387void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000388 APInt &KnownZero,
389 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000390 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000391 unsigned NumRanges = Ranges.getNumOperands() / 2;
392 assert(NumRanges >= 1);
393
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000394 KnownZero.setAllBits();
395 KnownOne.setAllBits();
396
Rafael Espindola53190532012-03-30 15:52:11 +0000397 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000398 ConstantInt *Lower =
399 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
400 ConstantInt *Upper =
401 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000402 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000403
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000404 // The first CommonPrefixBits of all values in Range are equal.
405 unsigned CommonPrefixBits =
406 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
407
408 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
409 KnownOne &= Range.getUnsignedMax() & Mask;
410 KnownZero &= ~Range.getUnsignedMax() & Mask;
411 }
Rafael Espindola53190532012-03-30 15:52:11 +0000412}
Jay Foad5a29c362014-05-15 12:12:55 +0000413
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000414static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000415 SmallVector<const Value *, 16> WorkSet(1, I);
416 SmallPtrSet<const Value *, 32> Visited;
417 SmallPtrSet<const Value *, 16> EphValues;
418
Hal Finkelf2199b22015-10-23 20:37:08 +0000419 // The instruction defining an assumption's condition itself is always
420 // considered ephemeral to that assumption (even if it has other
421 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000422 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000423 return true;
424
Hal Finkel60db0582014-09-07 18:57:58 +0000425 while (!WorkSet.empty()) {
426 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000427 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000428 continue;
429
430 // If all uses of this value are ephemeral, then so is this value.
David Majnemer0a16c222016-08-11 21:15:00 +0000431 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000432 if (V == E)
433 return true;
434
435 EphValues.insert(V);
436 if (const User *U = dyn_cast<User>(V))
437 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
438 J != JE; ++J) {
439 if (isSafeToSpeculativelyExecute(*J))
440 WorkSet.push_back(*J);
441 }
442 }
443 }
444
445 return false;
446}
447
448// Is this an intrinsic that cannot be speculated but also cannot trap?
449static bool isAssumeLikeIntrinsic(const Instruction *I) {
450 if (const CallInst *CI = dyn_cast<CallInst>(I))
451 if (Function *F = CI->getCalledFunction())
452 switch (F->getIntrinsicID()) {
453 default: break;
454 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
455 case Intrinsic::assume:
456 case Intrinsic::dbg_declare:
457 case Intrinsic::dbg_value:
458 case Intrinsic::invariant_start:
459 case Intrinsic::invariant_end:
460 case Intrinsic::lifetime_start:
461 case Intrinsic::lifetime_end:
462 case Intrinsic::objectsize:
463 case Intrinsic::ptr_annotation:
464 case Intrinsic::var_annotation:
465 return true;
466 }
467
468 return false;
469}
470
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000471bool llvm::isValidAssumeForContext(const Instruction *Inv,
472 const Instruction *CxtI,
473 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000474
475 // There are two restrictions on the use of an assume:
476 // 1. The assume must dominate the context (or the control flow must
477 // reach the assume whenever it reaches the context).
478 // 2. The context must not be in the assume's set of ephemeral values
479 // (otherwise we will use the assume to prove that the condition
480 // feeding the assume is trivially true, thus causing the removal of
481 // the assume).
482
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000483 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000484 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000485 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000486 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
487 // We don't have a DT, but this trivially dominates.
488 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000489 }
490
Pete Cooper54a02552016-08-12 01:00:15 +0000491 // With or without a DT, the only remaining case we will check is if the
492 // instructions are in the same BB. Give up if that is not the case.
493 if (Inv->getParent() != CxtI->getParent())
494 return false;
495
496 // If we have a dom tree, then we now know that the assume doens't dominate
497 // the other instruction. If we don't have a dom tree then we can check if
498 // the assume is first in the BB.
499 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000500 // Search forward from the assume until we reach the context (or the end
501 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000502 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000503 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000504 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000505 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000506 }
507
Pete Cooper54a02552016-08-12 01:00:15 +0000508 // The context comes first, but they're both in the same block. Make sure
509 // there is nothing in between that might interrupt the control flow.
510 for (BasicBlock::const_iterator I =
511 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
512 I != IE; ++I)
513 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
514 return false;
515
516 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000517}
518
Pete Cooper35b00d52016-08-13 01:05:32 +0000519static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000520 APInt &KnownOne, unsigned Depth,
521 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000522 // Use of assumptions is context-sensitive. If we don't have a context, we
523 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000524 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000525 return;
526
527 unsigned BitWidth = KnownZero.getBitWidth();
528
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000529 for (auto &AssumeVH : Q.AC->assumptions()) {
530 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000531 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000532 CallInst *I = cast<CallInst>(AssumeVH);
533 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
534 "Got assumption for the wrong function!");
535 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000536 continue;
537
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000538 // Warning: This loop can end up being somewhat performance sensetive.
539 // We're running this loop for once for each value queried resulting in a
540 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000541
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000542 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
543 "must be an assume intrinsic");
544
545 Value *Arg = I->getArgOperand(0);
546
547 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000548 assert(BitWidth == 1 && "assume operand is not i1?");
549 KnownZero.clearAllBits();
550 KnownOne.setAllBits();
551 return;
552 }
553
David Majnemer9b609752014-12-12 23:59:29 +0000554 // The remaining tests are all recursive, so bail out if we hit the limit.
555 if (Depth == MaxDepth)
556 continue;
557
Hal Finkel60db0582014-09-07 18:57:58 +0000558 Value *A, *B;
559 auto m_V = m_CombineOr(m_Specific(V),
560 m_CombineOr(m_PtrToInt(m_Specific(V)),
561 m_BitCast(m_Specific(V))));
562
563 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000564 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000565 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000566 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000567 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000568 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000569 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000570 KnownZero |= RHSKnownZero;
571 KnownOne |= RHSKnownOne;
572 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000573 } else if (match(Arg,
574 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000575 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000576 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000577 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000578 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000579 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000580 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000581
582 // For those bits in the mask that are known to be one, we can propagate
583 // known bits from the RHS to V.
584 KnownZero |= RHSKnownZero & MaskKnownOne;
585 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000586 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000587 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
588 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000589 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000590 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000591 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000592 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000593 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000594 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000595
596 // For those bits in the mask that are known to be one, we can propagate
597 // inverted known bits from the RHS to V.
598 KnownZero |= RHSKnownOne & MaskKnownOne;
599 KnownOne |= RHSKnownZero & MaskKnownOne;
600 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000601 } else if (match(Arg,
602 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000603 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000604 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000605 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000606 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000607 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000608 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000609
610 // For those bits in B that are known to be zero, we can propagate known
611 // bits from the RHS to V.
612 KnownZero |= RHSKnownZero & BKnownZero;
613 KnownOne |= RHSKnownOne & BKnownZero;
614 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000615 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
616 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000617 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000618 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000619 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000620 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000621 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000622 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000623
624 // For those bits in B that are known to be zero, we can propagate
625 // inverted known bits from the RHS to V.
626 KnownZero |= RHSKnownOne & BKnownZero;
627 KnownOne |= RHSKnownZero & BKnownZero;
628 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000629 } else if (match(Arg,
630 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000631 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000632 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000633 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000634 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000635 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000636 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000637
638 // For those bits in B that are known to be zero, we can propagate known
639 // bits from the RHS to V. For those bits in B that are known to be one,
640 // we can propagate inverted known bits from the RHS to V.
641 KnownZero |= RHSKnownZero & BKnownZero;
642 KnownOne |= RHSKnownOne & BKnownZero;
643 KnownZero |= RHSKnownOne & BKnownOne;
644 KnownOne |= RHSKnownZero & BKnownOne;
645 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000646 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
647 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000648 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000649 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000650 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000651 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000652 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000653 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000654
655 // For those bits in B that are known to be zero, we can propagate
656 // inverted known bits from the RHS to V. For those bits in B that are
657 // known to be one, we can propagate known bits from the RHS to V.
658 KnownZero |= RHSKnownOne & BKnownZero;
659 KnownOne |= RHSKnownZero & BKnownZero;
660 KnownZero |= RHSKnownZero & BKnownOne;
661 KnownOne |= RHSKnownOne & BKnownOne;
662 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000663 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
664 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000665 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000666 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000667 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000668 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000669 // For those bits in RHS that are known, we can propagate them to known
670 // bits in V shifted to the right by C.
671 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
672 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
673 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000674 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
675 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000676 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000677 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000678 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000679 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000680 // For those bits in RHS that are known, we can propagate them inverted
681 // to known bits in V shifted to the right by C.
682 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
683 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
684 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000685 } else if (match(Arg,
686 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000687 m_AShr(m_V, m_ConstantInt(C))),
688 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000689 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000690 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000691 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000692 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000693 // For those bits in RHS that are known, we can propagate them to known
694 // bits in V shifted to the right by C.
695 KnownZero |= RHSKnownZero << C->getZExtValue();
696 KnownOne |= RHSKnownOne << C->getZExtValue();
697 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000698 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000699 m_LShr(m_V, m_ConstantInt(C)),
700 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000701 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000702 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000703 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000704 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000705 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000706 // For those bits in RHS that are known, we can propagate them inverted
707 // to known bits in V shifted to the right by C.
708 KnownZero |= RHSKnownOne << C->getZExtValue();
709 KnownOne |= RHSKnownZero << C->getZExtValue();
710 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000711 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000712 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000713 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000714 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000715 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000716
717 if (RHSKnownZero.isNegative()) {
718 // We know that the sign bit is zero.
719 KnownZero |= APInt::getSignBit(BitWidth);
720 }
721 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000722 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000723 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000724 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000725 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000726 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000727
728 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
729 // We know that the sign bit is zero.
730 KnownZero |= APInt::getSignBit(BitWidth);
731 }
732 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000733 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000734 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000735 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000736 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000737 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000738
739 if (RHSKnownOne.isNegative()) {
740 // We know that the sign bit is one.
741 KnownOne |= APInt::getSignBit(BitWidth);
742 }
743 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000744 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000745 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000746 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000747 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000748 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000749
750 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
751 // We know that the sign bit is one.
752 KnownOne |= APInt::getSignBit(BitWidth);
753 }
754 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000755 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000756 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000757 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000758 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000759 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000760
761 // Whatever high bits in c are zero are known to be zero.
762 KnownZero |=
763 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
764 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000765 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000766 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000767 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000770
771 // Whatever high bits in c are zero are known to be zero (if c is a power
772 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000773 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000774 KnownZero |=
775 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
776 else
777 KnownZero |=
778 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000779 }
780 }
781}
782
Hal Finkelf2199b22015-10-23 20:37:08 +0000783// Compute known bits from a shift operator, including those with a
784// non-constant shift amount. KnownZero and KnownOne are the outputs of this
785// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
786// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
787// functors that, given the known-zero or known-one bits respectively, and a
788// shift amount, compute the implied known-zero or known-one bits of the shift
789// operator's result respectively for that shift amount. The results from calling
790// KZF and KOF are conservatively combined for all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000791static void computeKnownBitsFromShiftOperator(
792 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2,
793 APInt &KnownOne2, unsigned Depth, const Query &Q,
794 function_ref<APInt(const APInt &, unsigned)> KZF,
795 function_ref<APInt(const APInt &, unsigned)> KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000796 unsigned BitWidth = KnownZero.getBitWidth();
797
798 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
799 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
800
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000801 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000802 KnownZero = KZF(KnownZero, ShiftAmt);
803 KnownOne = KOF(KnownOne, ShiftAmt);
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000804 // If there is conflict between KnownZero and KnownOne, this must be an
805 // overflowing left shift, so the shift result is undefined. Clear KnownZero
806 // and KnownOne bits so that other code could propagate this undef.
807 if ((KnownZero & KnownOne) != 0) {
808 KnownZero.clearAllBits();
809 KnownOne.clearAllBits();
810 }
811
Hal Finkelf2199b22015-10-23 20:37:08 +0000812 return;
813 }
814
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000815 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000816
817 // Note: We cannot use KnownZero.getLimitedValue() here, because if
818 // BitWidth > 64 and any upper bits are known, we'll end up returning the
819 // limit value (which implies all bits are known).
820 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
821 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
822
823 // It would be more-clearly correct to use the two temporaries for this
824 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000825 KnownZero.clearAllBits();
826 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000827
James Molloy493e57d2015-10-26 14:10:46 +0000828 // If we know the shifter operand is nonzero, we can sometimes infer more
829 // known bits. However this is expensive to compute, so be lazy about it and
830 // only compute it when absolutely necessary.
831 Optional<bool> ShifterOperandIsNonZero;
832
Hal Finkelf2199b22015-10-23 20:37:08 +0000833 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000834 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
835 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000836 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000837 if (!*ShifterOperandIsNonZero)
838 return;
839 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000840
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000841 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000842
843 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
844 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
845 // Combine the shifted known input bits only for those shift amounts
846 // compatible with its known constraints.
847 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
848 continue;
849 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
850 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000851 // If we know the shifter is nonzero, we may be able to infer more known
852 // bits. This check is sunk down as far as possible to avoid the expensive
853 // call to isKnownNonZero if the cheaper checks above fail.
854 if (ShiftAmt == 0) {
855 if (!ShifterOperandIsNonZero.hasValue())
856 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000857 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000858 if (*ShifterOperandIsNonZero)
859 continue;
860 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000861
862 KnownZero &= KZF(KnownZero2, ShiftAmt);
863 KnownOne &= KOF(KnownOne2, ShiftAmt);
864 }
865
866 // If there are no compatible shift amounts, then we've proven that the shift
867 // amount must be >= the BitWidth, and the result is undefined. We could
868 // return anything we'd like, but we need to make sure the sets of known bits
869 // stay disjoint (it should be better for some other code to actually
870 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000871 if ((KnownZero & KnownOne) != 0) {
872 KnownZero.clearAllBits();
873 KnownOne.clearAllBits();
874 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000875}
876
Pete Cooper35b00d52016-08-13 01:05:32 +0000877static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000878 APInt &KnownOne, unsigned Depth,
879 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000880 unsigned BitWidth = KnownZero.getBitWidth();
881
Chris Lattner965c7692008-06-02 01:18:21 +0000882 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000883 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000884 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000885 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000886 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000887 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000888 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000889 case Instruction::And: {
890 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000891 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
892 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000893
Chris Lattner965c7692008-06-02 01:18:21 +0000894 // Output known-1 bits are only known if set in both the LHS & RHS.
895 KnownOne &= KnownOne2;
896 // Output known-0 are known to be clear if zero in either the LHS | RHS.
897 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000898
899 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
900 // here we handle the more general case of adding any odd number by
901 // matching the form add(x, add(x, y)) where y is odd.
902 // TODO: This could be generalized to clearing any bit set in y where the
903 // following bit is known to be unset in y.
904 Value *Y = nullptr;
905 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
906 m_Value(Y))) ||
907 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
908 m_Value(Y)))) {
909 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000910 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000911 if (KnownOne3.countTrailingOnes() > 0)
912 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
913 }
Jay Foad5a29c362014-05-15 12:12:55 +0000914 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000915 }
916 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000917 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
918 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000919
Chris Lattner965c7692008-06-02 01:18:21 +0000920 // Output known-0 bits are only known if clear in both the LHS & RHS.
921 KnownZero &= KnownZero2;
922 // Output known-1 are known to be set if set in either the LHS | RHS.
923 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000924 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000925 }
926 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000927 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
928 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000929
Chris Lattner965c7692008-06-02 01:18:21 +0000930 // Output known-0 bits are known if clear or set in both the LHS & RHS.
931 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
932 // Output known-1 are known to be set if set in only one of the LHS, RHS.
933 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
934 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000935 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000936 }
937 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000938 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000939 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000940 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000941 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000942 }
943 case Instruction::UDiv: {
944 // For the purposes of computing leading zeros we can conservatively
945 // treat a udiv as a logical right shift by the power of 2 known to
946 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000947 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000948 unsigned LeadZ = KnownZero2.countLeadingOnes();
949
Jay Foad25a5e4c2010-12-01 08:53:58 +0000950 KnownOne2.clearAllBits();
951 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000952 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000953 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
954 if (RHSUnknownLeadingOnes != BitWidth)
955 LeadZ = std::min(BitWidth,
956 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
957
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000958 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000959 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000960 }
David Majnemera19d0f22016-08-06 08:16:00 +0000961 case Instruction::Select: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000962 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
963 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000964
Pete Cooper35b00d52016-08-13 01:05:32 +0000965 const Value *LHS;
966 const Value *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000967 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
968 if (SelectPatternResult::isMinOrMax(SPF)) {
969 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
970 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
971 } else {
972 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
973 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
974 }
975
976 unsigned MaxHighOnes = 0;
977 unsigned MaxHighZeros = 0;
978 if (SPF == SPF_SMAX) {
979 // If both sides are negative, the result is negative.
980 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
981 // We can derive a lower bound on the result by taking the max of the
982 // leading one bits.
983 MaxHighOnes =
984 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
985 // If either side is non-negative, the result is non-negative.
986 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
987 MaxHighZeros = 1;
988 } else if (SPF == SPF_SMIN) {
989 // If both sides are non-negative, the result is non-negative.
990 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
991 // We can derive an upper bound on the result by taking the max of the
992 // leading zero bits.
993 MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
994 KnownZero2.countLeadingOnes());
995 // If either side is negative, the result is negative.
996 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
997 MaxHighOnes = 1;
998 } else if (SPF == SPF_UMAX) {
999 // We can derive a lower bound on the result by taking the max of the
1000 // leading one bits.
1001 MaxHighOnes =
1002 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1003 } else if (SPF == SPF_UMIN) {
1004 // We can derive an upper bound on the result by taking the max of the
1005 // leading zero bits.
1006 MaxHighZeros =
1007 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
1008 }
1009
Chris Lattner965c7692008-06-02 01:18:21 +00001010 // Only known if known in both the LHS and RHS.
1011 KnownOne &= KnownOne2;
1012 KnownZero &= KnownZero2;
David Majnemera19d0f22016-08-06 08:16:00 +00001013 if (MaxHighOnes > 0)
1014 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
1015 if (MaxHighZeros > 0)
1016 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001017 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001018 }
Chris Lattner965c7692008-06-02 01:18:21 +00001019 case Instruction::FPTrunc:
1020 case Instruction::FPExt:
1021 case Instruction::FPToUI:
1022 case Instruction::FPToSI:
1023 case Instruction::SIToFP:
1024 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001025 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001026 case Instruction::PtrToInt:
1027 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001028 // Fall through and handle them the same as zext/trunc.
1029 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001030 case Instruction::ZExt:
1031 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001032 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001033
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001034 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001035 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1036 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001037 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001038
1039 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001040 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1041 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001042 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001043 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1044 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001045 // Any top bits are known to be zero.
1046 if (BitWidth > SrcBitWidth)
1047 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001048 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001049 }
1050 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001051 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001052 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001053 // TODO: For now, not handling conversions like:
1054 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001055 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001056 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001057 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001058 }
1059 break;
1060 }
1061 case Instruction::SExt: {
1062 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001063 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001064
Jay Foad583abbc2010-12-07 08:25:19 +00001065 KnownZero = KnownZero.trunc(SrcBitWidth);
1066 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001067 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001068 KnownZero = KnownZero.zext(BitWidth);
1069 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001070
1071 // If the sign bit of the input is known set or clear, then we know the
1072 // top bits of the result.
1073 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1074 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1075 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1076 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001077 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001078 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001079 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001080 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001081 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1082 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1083 APInt KZResult =
1084 (KnownZero << ShiftAmt) |
1085 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1086 // If this shift has "nsw" keyword, then the result is either a poison
1087 // value or has the same sign bit as the first operand.
1088 if (NSW && KnownZero.isNegative())
1089 KZResult.setBit(BitWidth - 1);
1090 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001091 };
1092
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001093 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1094 APInt KOResult = KnownOne << ShiftAmt;
1095 if (NSW && KnownOne.isNegative())
1096 KOResult.setBit(BitWidth - 1);
1097 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001098 };
1099
1100 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001101 KnownZero2, KnownOne2, Depth, Q, KZF,
1102 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001103 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001104 }
1105 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001106 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001107 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1108 return APIntOps::lshr(KnownZero, ShiftAmt) |
1109 // High bits known zero.
1110 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1111 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001112
Hal Finkelf2199b22015-10-23 20:37:08 +00001113 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1114 return APIntOps::lshr(KnownOne, ShiftAmt);
1115 };
1116
1117 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001118 KnownZero2, KnownOne2, Depth, Q, KZF,
1119 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001120 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001121 }
1122 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001123 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001124 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1125 return APIntOps::ashr(KnownZero, ShiftAmt);
1126 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001127
Hal Finkelf2199b22015-10-23 20:37:08 +00001128 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1129 return APIntOps::ashr(KnownOne, ShiftAmt);
1130 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001131
Hal Finkelf2199b22015-10-23 20:37:08 +00001132 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001133 KnownZero2, KnownOne2, Depth, Q, KZF,
1134 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001135 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001136 }
Chris Lattner965c7692008-06-02 01:18:21 +00001137 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001138 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001139 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001140 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1141 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001142 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001143 }
Chris Lattner965c7692008-06-02 01:18:21 +00001144 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001145 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001146 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001147 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1148 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001149 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001150 }
1151 case Instruction::SRem:
1152 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001153 APInt RA = Rem->getValue().abs();
1154 if (RA.isPowerOf2()) {
1155 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001156 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001157 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001158
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001159 // The low bits of the first operand are unchanged by the srem.
1160 KnownZero = KnownZero2 & LowBits;
1161 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001162
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001163 // If the first operand is non-negative or has all low bits zero, then
1164 // the upper bits are all zero.
1165 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1166 KnownZero |= ~LowBits;
1167
1168 // If the first operand is negative and not all low bits are zero, then
1169 // the upper bits are all one.
1170 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1171 KnownOne |= ~LowBits;
1172
Craig Topper1bef2c82012-12-22 19:15:35 +00001173 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001174 }
1175 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001176
1177 // The sign bit is the LHS's sign bit, except when the result of the
1178 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001179 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001180 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001181 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1182 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001183 // If it's known zero, our sign bit is also zero.
1184 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001185 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001186 }
1187
Chris Lattner965c7692008-06-02 01:18:21 +00001188 break;
1189 case Instruction::URem: {
1190 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001191 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001192 if (RA.isPowerOf2()) {
1193 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001194 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001195 KnownZero |= ~LowBits;
1196 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001197 break;
1198 }
1199 }
1200
1201 // Since the result is less than or equal to either operand, any leading
1202 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001203 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1204 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001205
Chris Lattner4612ae12009-01-20 18:22:57 +00001206 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001207 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001208 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001209 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001210 break;
1211 }
1212
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001213 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001214 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001215 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001216 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001217 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001218
Chris Lattner965c7692008-06-02 01:18:21 +00001219 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001220 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001221 break;
1222 }
1223 case Instruction::GetElementPtr: {
1224 // Analyze all of the subscripts of this getelementptr instruction
1225 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001226 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001227 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1228 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001229 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1230
1231 gep_type_iterator GTI = gep_type_begin(I);
1232 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1233 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001234 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001235 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001236
1237 // Handle case when index is vector zeroinitializer
1238 Constant *CIndex = cast<Constant>(Index);
1239 if (CIndex->isZeroValue())
1240 continue;
1241
1242 if (CIndex->getType()->isVectorTy())
1243 Index = CIndex->getSplatValue();
1244
Chris Lattner965c7692008-06-02 01:18:21 +00001245 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001246 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001247 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001248 TrailZ = std::min<unsigned>(TrailZ,
1249 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001250 } else {
1251 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001252 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001253 if (!IndexedTy->isSized()) {
1254 TrailZ = 0;
1255 break;
1256 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001257 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001258 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001259 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001260 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001261 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001262 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001263 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001264 }
1265 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001266
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001267 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001268 break;
1269 }
1270 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001271 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001272 // Handle the case of a simple two-predecessor recurrence PHI.
1273 // There's a lot more that could theoretically be done here, but
1274 // this is sufficient to catch some interesting cases.
1275 if (P->getNumIncomingValues() == 2) {
1276 for (unsigned i = 0; i != 2; ++i) {
1277 Value *L = P->getIncomingValue(i);
1278 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001279 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001280 if (!LU)
1281 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001282 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001283 // Check for operations that have the property that if
1284 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001285 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001286 if (Opcode == Instruction::Add ||
1287 Opcode == Instruction::Sub ||
1288 Opcode == Instruction::And ||
1289 Opcode == Instruction::Or ||
1290 Opcode == Instruction::Mul) {
1291 Value *LL = LU->getOperand(0);
1292 Value *LR = LU->getOperand(1);
1293 // Find a recurrence.
1294 if (LL == I)
1295 L = LR;
1296 else if (LR == I)
1297 L = LL;
1298 else
1299 break;
1300 // Ok, we have a PHI of the form L op= R. Check for low
1301 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001302 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001303
1304 // We need to take the minimum number of known bits
1305 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001306 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001307
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001308 KnownZero = APInt::getLowBitsSet(
1309 BitWidth, std::min(KnownZero2.countTrailingOnes(),
1310 KnownZero3.countTrailingOnes()));
1311
1312 if (DontImproveNonNegativePhiBits)
1313 break;
1314
1315 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1316 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1317 // If initial value of recurrence is nonnegative, and we are adding
1318 // a nonnegative number with nsw, the result can only be nonnegative
1319 // or poison value regardless of the number of times we execute the
1320 // add in phi recurrence. If initial value is negative and we are
1321 // adding a negative number with nsw, the result can only be
1322 // negative or poison value. Similar arguments apply to sub and mul.
1323 //
1324 // (add non-negative, non-negative) --> non-negative
1325 // (add negative, negative) --> negative
1326 if (Opcode == Instruction::Add) {
1327 if (KnownZero2.isNegative() && KnownZero3.isNegative())
1328 KnownZero.setBit(BitWidth - 1);
1329 else if (KnownOne2.isNegative() && KnownOne3.isNegative())
1330 KnownOne.setBit(BitWidth - 1);
1331 }
1332
1333 // (sub nsw non-negative, negative) --> non-negative
1334 // (sub nsw negative, non-negative) --> negative
1335 else if (Opcode == Instruction::Sub && LL == I) {
1336 if (KnownZero2.isNegative() && KnownOne3.isNegative())
1337 KnownZero.setBit(BitWidth - 1);
1338 else if (KnownOne2.isNegative() && KnownZero3.isNegative())
1339 KnownOne.setBit(BitWidth - 1);
1340 }
1341
1342 // (mul nsw non-negative, non-negative) --> non-negative
1343 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() &&
1344 KnownZero3.isNegative())
1345 KnownZero.setBit(BitWidth - 1);
1346 }
1347
Chris Lattner965c7692008-06-02 01:18:21 +00001348 break;
1349 }
1350 }
1351 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001352
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001353 // Unreachable blocks may have zero-operand PHI nodes.
1354 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001355 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001356
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001357 // Otherwise take the unions of the known bit sets of the operands,
1358 // taking conservative care to avoid excessive recursion.
1359 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001360 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001361 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001362 break;
1363
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001364 KnownZero = APInt::getAllOnesValue(BitWidth);
1365 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001366 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001367 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001368 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001369
1370 KnownZero2 = APInt(BitWidth, 0);
1371 KnownOne2 = APInt(BitWidth, 0);
1372 // Recurse, but cap the recursion to one level, because we don't
1373 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001374 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001375 KnownZero &= KnownZero2;
1376 KnownOne &= KnownOne2;
1377 // If all bits have been ruled out, there's no need to check
1378 // more operands.
1379 if (!KnownZero && !KnownOne)
1380 break;
1381 }
1382 }
Chris Lattner965c7692008-06-02 01:18:21 +00001383 break;
1384 }
1385 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001386 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001387 // If range metadata is attached to this call, set known bits from that,
1388 // and then intersect with known bits based on other properties of the
1389 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001390 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001391 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Pete Cooper35b00d52016-08-13 01:05:32 +00001392 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001393 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1394 KnownZero |= KnownZero2;
1395 KnownOne |= KnownOne2;
1396 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001397 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001398 switch (II->getIntrinsicID()) {
1399 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001400 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001401 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001402 KnownZero |= KnownZero2.byteSwap();
1403 KnownOne |= KnownOne2.byteSwap();
1404 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001405 case Intrinsic::ctlz:
1406 case Intrinsic::cttz: {
1407 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001408 // If this call is undefined for 0, the result will be less than 2^n.
1409 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1410 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001411 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001412 break;
1413 }
1414 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001415 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001416 // We can bound the space the count needs. Also, bits known to be zero
1417 // can't contribute to the population.
1418 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1419 unsigned LeadingZeros =
1420 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001421 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001422 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1423 KnownOne &= ~KnownZero;
1424 // TODO: we could bound KnownOne using the lower bound on the number
1425 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001426 break;
1427 }
Chad Rosierb3628842011-05-26 23:13:19 +00001428 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001429 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001430 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001431 }
1432 }
1433 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001434 case Instruction::ExtractElement:
1435 // Look through extract element. At the moment we keep this simple and skip
1436 // tracking the specific element. But at least we might find information
1437 // valid for all elements of the vector (for example if vector is sign
1438 // extended, shifted, etc).
1439 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1440 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001441 case Instruction::ExtractValue:
1442 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001443 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001444 if (EVI->getNumIndices() != 1) break;
1445 if (EVI->getIndices()[0] == 0) {
1446 switch (II->getIntrinsicID()) {
1447 default: break;
1448 case Intrinsic::uadd_with_overflow:
1449 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001450 computeKnownBitsAddSub(true, II->getArgOperand(0),
1451 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001452 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001453 break;
1454 case Intrinsic::usub_with_overflow:
1455 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001456 computeKnownBitsAddSub(false, II->getArgOperand(0),
1457 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001458 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001459 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001460 case Intrinsic::umul_with_overflow:
1461 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001462 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001463 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1464 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001465 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001466 }
1467 }
1468 }
Chris Lattner965c7692008-06-02 01:18:21 +00001469 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001470}
1471
1472/// Determine which bits of V are known to be either zero or one and return
1473/// them in the KnownZero/KnownOne bit sets.
1474///
1475/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1476/// we cannot optimize based on the assumption that it is zero without changing
1477/// it to be an explicit zero. If we don't change it to zero, other code could
1478/// optimized based on the contradictory assumption that it is non-zero.
1479/// Because instcombine aggressively folds operations with undef args anyway,
1480/// this won't lose us code quality.
1481///
1482/// This function is defined on values with integer type, values with pointer
1483/// type, and vectors of integers. In the case
1484/// where V is a vector, known zero, and known one values are the
1485/// same width as the vector element, and the bit is set only if it is true
1486/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00001487void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001488 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001489 assert(V && "No Value?");
1490 assert(Depth <= MaxDepth && "Limit Search Depth");
1491 unsigned BitWidth = KnownZero.getBitWidth();
1492
1493 assert((V->getType()->isIntOrIntVectorTy() ||
1494 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001495 "Not integer or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001496 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001497 (!V->getType()->isIntOrIntVectorTy() ||
1498 V->getType()->getScalarSizeInBits() == BitWidth) &&
1499 KnownZero.getBitWidth() == BitWidth &&
1500 KnownOne.getBitWidth() == BitWidth &&
1501 "V, KnownOne and KnownZero should have same BitWidth");
1502
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001503 const APInt *C;
1504 if (match(V, m_APInt(C))) {
1505 // We know all of the bits for a scalar constant or a splat vector constant!
1506 KnownOne = *C;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001507 KnownZero = ~KnownOne;
1508 return;
1509 }
1510 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001511 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001512 KnownOne.clearAllBits();
1513 KnownZero = APInt::getAllOnesValue(BitWidth);
1514 return;
1515 }
1516 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001517 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001518 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001519 // We know that CDS must be a vector of integers. Take the intersection of
1520 // each element.
1521 KnownZero.setAllBits(); KnownOne.setAllBits();
1522 APInt Elt(KnownZero.getBitWidth(), 0);
1523 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1524 Elt = CDS->getElementAsInteger(i);
1525 KnownZero &= ~Elt;
1526 KnownOne &= Elt;
1527 }
1528 return;
1529 }
1530
Pete Cooper35b00d52016-08-13 01:05:32 +00001531 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001532 // We know that CV must be a vector of integers. Take the intersection of
1533 // each element.
1534 KnownZero.setAllBits(); KnownOne.setAllBits();
1535 APInt Elt(KnownZero.getBitWidth(), 0);
1536 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1537 Constant *Element = CV->getAggregateElement(i);
1538 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1539 if (!ElementCI) {
1540 KnownZero.clearAllBits();
1541 KnownOne.clearAllBits();
1542 return;
1543 }
1544 Elt = ElementCI->getValue();
1545 KnownZero &= ~Elt;
1546 KnownOne &= Elt;
1547 }
1548 return;
1549 }
1550
Jingyue Wu12b0c282015-06-15 05:46:29 +00001551 // Start out not knowing anything.
1552 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1553
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001554 // We can't imply anything about undefs.
1555 if (isa<UndefValue>(V))
1556 return;
1557
1558 // There's no point in looking through other users of ConstantData for
1559 // assumptions. Confirm that we've handled them all.
1560 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1561
Jingyue Wu12b0c282015-06-15 05:46:29 +00001562 // Limit search depth.
1563 // All recursive calls that increase depth must come after this.
1564 if (Depth == MaxDepth)
1565 return;
1566
1567 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1568 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001569 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001570 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001571 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001572 return;
1573 }
1574
Pete Cooper35b00d52016-08-13 01:05:32 +00001575 if (const Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001576 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001577
Artur Pilipenko029d8532015-09-30 11:55:45 +00001578 // Aligned pointers have trailing zeros - refine KnownZero set
1579 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001580 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001581 if (Align)
1582 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1583 }
1584
Philip Reames146307e2016-03-03 19:44:06 +00001585 // computeKnownBitsFromAssume strictly refines KnownZero and
1586 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001587
1588 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001589 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001590
Jay Foad5a29c362014-05-15 12:12:55 +00001591 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001592}
1593
Sanjay Patelaee84212014-11-04 16:27:42 +00001594/// Determine whether the sign bit is known to be zero or one.
1595/// Convenience wrapper around computeKnownBits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001596void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001597 unsigned Depth, const Query &Q) {
1598 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001599 if (!BitWidth) {
1600 KnownZero = false;
1601 KnownOne = false;
1602 return;
1603 }
1604 APInt ZeroBits(BitWidth, 0);
1605 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001606 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001607 KnownOne = OneBits[BitWidth - 1];
1608 KnownZero = ZeroBits[BitWidth - 1];
1609}
1610
Sanjay Patelaee84212014-11-04 16:27:42 +00001611/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001612/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001613/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001614/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001615bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001616 const Query &Q) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001617 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001618 if (C->isNullValue())
1619 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001620
1621 const APInt *ConstIntOrConstSplatInt;
1622 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1623 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001624 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001625
1626 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1627 // it is shifted off the end then the result is undefined.
1628 if (match(V, m_Shl(m_One(), m_Value())))
1629 return true;
1630
1631 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1632 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001633 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001634 return true;
1635
1636 // The remaining tests are all recursive, so bail out if we hit the limit.
1637 if (Depth++ == MaxDepth)
1638 return false;
1639
Craig Topper9f008862014-04-15 04:59:12 +00001640 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001641 // A shift left or a logical shift right of a power of two is a power of two
1642 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001643 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001644 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001645 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001646
Pete Cooper35b00d52016-08-13 01:05:32 +00001647 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001648 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001649
Pete Cooper35b00d52016-08-13 01:05:32 +00001650 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001651 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1652 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001653
Duncan Sandsba286d72011-10-26 20:55:21 +00001654 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1655 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001656 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1657 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001658 return true;
1659 // X & (-X) is always a power of two or zero.
1660 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1661 return true;
1662 return false;
1663 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001664
David Majnemerb7d54092013-07-30 21:01:36 +00001665 // Adding a power-of-two or zero to the same power-of-two or zero yields
1666 // either the original power-of-two, a larger power-of-two or zero.
1667 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001668 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001669 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1670 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1671 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001672 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001673 return true;
1674 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1675 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001676 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001677 return true;
1678
1679 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1680 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001681 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001682
1683 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001684 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001685 // If i8 V is a power of two or zero:
1686 // ZeroBits: 1 1 1 0 1 1 1 1
1687 // ~ZeroBits: 0 0 0 1 0 0 0 0
1688 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1689 // If OrZero isn't set, we cannot give back a zero result.
1690 // Make sure either the LHS or RHS has a bit set.
1691 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1692 return true;
1693 }
1694 }
David Majnemerbeab5672013-05-18 19:30:37 +00001695
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001696 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001697 // is a power of two only if the first operand is a power of two and not
1698 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001699 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1700 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001701 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001702 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001703 }
1704
Duncan Sandsd3951082011-01-25 09:38:29 +00001705 return false;
1706}
1707
Chandler Carruth80d3e562012-12-07 02:08:58 +00001708/// \brief Test whether a GEP's result is known to be non-null.
1709///
1710/// Uses properties inherent in a GEP to try to determine whether it is known
1711/// to be non-null.
1712///
1713/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001714static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001715 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001716 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1717 return false;
1718
1719 // FIXME: Support vector-GEPs.
1720 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1721
1722 // If the base pointer is non-null, we cannot walk to a null address with an
1723 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001724 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001725 return true;
1726
Chandler Carruth80d3e562012-12-07 02:08:58 +00001727 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1728 // If so, then the GEP cannot produce a null pointer, as doing so would
1729 // inherently violate the inbounds contract within address space zero.
1730 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1731 GTI != GTE; ++GTI) {
1732 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001733 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001734 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1735 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001736 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001737 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1738 if (ElementOffset > 0)
1739 return true;
1740 continue;
1741 }
1742
1743 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001744 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001745 continue;
1746
1747 // Fast path the constant operand case both for efficiency and so we don't
1748 // increment Depth when just zipping down an all-constant GEP.
1749 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1750 if (!OpC->isZero())
1751 return true;
1752 continue;
1753 }
1754
1755 // We post-increment Depth here because while isKnownNonZero increments it
1756 // as well, when we pop back up that increment won't persist. We don't want
1757 // to recurse 10k times just because we have 10k GEP operands. We don't
1758 // bail completely out because we want to handle constant GEPs regardless
1759 // of depth.
1760 if (Depth++ >= MaxDepth)
1761 continue;
1762
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001763 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001764 return true;
1765 }
1766
1767 return false;
1768}
1769
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001770/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1771/// ensure that the value it's attached to is never Value? 'RangeType' is
1772/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001773static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001774 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1775 assert(NumRanges >= 1);
1776 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001777 ConstantInt *Lower =
1778 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1779 ConstantInt *Upper =
1780 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001781 ConstantRange Range(Lower->getValue(), Upper->getValue());
1782 if (Range.contains(Value))
1783 return false;
1784 }
1785 return true;
1786}
1787
Sanjay Patelaee84212014-11-04 16:27:42 +00001788/// Return true if the given value is known to be non-zero when defined.
1789/// For vectors return true if every element is known to be non-zero when
1790/// defined. Supports values with integer or pointer type and vectors of
1791/// integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001792bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001793 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001794 if (C->isNullValue())
1795 return false;
1796 if (isa<ConstantInt>(C))
1797 // Must be non-zero due to null test above.
1798 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001799
1800 // For constant vectors, check that all elements are undefined or known
1801 // non-zero to determine that the whole vector is known non-zero.
1802 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1803 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1804 Constant *Elt = C->getAggregateElement(i);
1805 if (!Elt || Elt->isNullValue())
1806 return false;
1807 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1808 return false;
1809 }
1810 return true;
1811 }
1812
Duncan Sandsd3951082011-01-25 09:38:29 +00001813 return false;
1814 }
1815
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001816 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001817 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001818 // If the possible ranges don't contain zero, then the value is
1819 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001820 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001821 const APInt ZeroValue(Ty->getBitWidth(), 0);
1822 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1823 return true;
1824 }
1825 }
1826 }
1827
Duncan Sandsd3951082011-01-25 09:38:29 +00001828 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001829 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001830 return false;
1831
Chandler Carruth80d3e562012-12-07 02:08:58 +00001832 // Check for pointer simplifications.
1833 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001834 if (isKnownNonNull(V))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001835 return true;
Pete Cooper35b00d52016-08-13 01:05:32 +00001836 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001837 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001838 return true;
1839 }
1840
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001841 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001842
1843 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001844 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001845 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001846 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001847
1848 // ext X != 0 if X != 0.
1849 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001850 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001851
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001852 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001853 // if the lowest bit is shifted off the end.
1854 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001855 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001856 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001857 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001858 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001859
Duncan Sandsd3951082011-01-25 09:38:29 +00001860 APInt KnownZero(BitWidth, 0);
1861 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001862 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001863 if (KnownOne[0])
1864 return true;
1865 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001866 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001867 // defined if the sign bit is shifted off the end.
1868 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001869 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001870 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001871 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001872 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001873
Duncan Sandsd3951082011-01-25 09:38:29 +00001874 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001875 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001876 if (XKnownNegative)
1877 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001878
1879 // If the shifter operand is a constant, and all of the bits shifted
1880 // out are known to be zero, and X is known non-zero then at least one
1881 // non-zero bit must remain.
1882 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1883 APInt KnownZero(BitWidth, 0);
1884 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001885 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001886
James Molloyb6be1eb2015-09-24 16:06:32 +00001887 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1888 // Is there a known one in the portion not shifted out?
1889 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1890 return true;
1891 // Are all the bits to be shifted out known zero?
1892 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001893 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001894 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001895 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001896 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001897 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001898 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001899 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001900 // X + Y.
1901 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1902 bool XKnownNonNegative, XKnownNegative;
1903 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001904 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1905 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001906
1907 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001908 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001909 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001910 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001911 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001912
1913 // If X and Y are both negative (as signed values) then their sum is not
1914 // zero unless both X and Y equal INT_MIN.
1915 if (BitWidth && XKnownNegative && YKnownNegative) {
1916 APInt KnownZero(BitWidth, 0);
1917 APInt KnownOne(BitWidth, 0);
1918 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1919 // The sign bit of X is set. If some other bit is set then X is not equal
1920 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001921 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001922 if ((KnownOne & Mask) != 0)
1923 return true;
1924 // The sign bit of Y is set. If some other bit is set then Y is not equal
1925 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001926 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001927 if ((KnownOne & Mask) != 0)
1928 return true;
1929 }
1930
1931 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001932 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001933 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001934 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001935 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001936 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001937 return true;
1938 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001939 // X * Y.
1940 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001941 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001942 // If X and Y are non-zero then so is X * Y as long as the multiplication
1943 // does not overflow.
1944 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001945 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001946 return true;
1947 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001948 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001949 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001950 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1951 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001952 return true;
1953 }
James Molloy897048b2015-09-29 14:08:45 +00001954 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00001955 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00001956 // Try and detect a recurrence that monotonically increases from a
1957 // starting value, as these are common as induction variables.
1958 if (PN->getNumIncomingValues() == 2) {
1959 Value *Start = PN->getIncomingValue(0);
1960 Value *Induction = PN->getIncomingValue(1);
1961 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1962 std::swap(Start, Induction);
1963 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1964 if (!C->isZero() && !C->isNegative()) {
1965 ConstantInt *X;
1966 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1967 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1968 !X->isNegative())
1969 return true;
1970 }
1971 }
1972 }
Jun Bum Limca832662016-02-01 17:03:07 +00001973 // Check if all incoming values are non-zero constant.
1974 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1975 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1976 });
1977 if (AllNonZeroConstants)
1978 return true;
James Molloy897048b2015-09-29 14:08:45 +00001979 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001980
1981 if (!BitWidth) return false;
1982 APInt KnownZero(BitWidth, 0);
1983 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001984 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001985 return KnownOne != 0;
1986}
1987
James Molloy1d88d6f2015-10-22 13:18:42 +00001988/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00001989static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
1990 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00001991 if (!BO || BO->getOpcode() != Instruction::Add)
1992 return false;
1993 Value *Op = nullptr;
1994 if (V2 == BO->getOperand(0))
1995 Op = BO->getOperand(1);
1996 else if (V2 == BO->getOperand(1))
1997 Op = BO->getOperand(0);
1998 else
1999 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002000 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002001}
2002
2003/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00002004static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002005 if (V1->getType()->isVectorTy() || V1 == V2)
2006 return false;
2007 if (V1->getType() != V2->getType())
2008 // We can't look through casts yet.
2009 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002010 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002011 return true;
2012
2013 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2014 // Are any known bits in V1 contradictory to known bits in V2? If V1
2015 // has a known zero where V2 has a known one, they must not be equal.
2016 auto BitWidth = Ty->getBitWidth();
2017 APInt KnownZero1(BitWidth, 0);
2018 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002019 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002020 APInt KnownZero2(BitWidth, 0);
2021 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002022 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002023
2024 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2025 if (OppositeBits.getBoolValue())
2026 return true;
2027 }
2028 return false;
2029}
2030
Sanjay Patelaee84212014-11-04 16:27:42 +00002031/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2032/// simplify operations downstream. Mask is known to be zero for bits that V
2033/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002034///
2035/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002036/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002037/// where V is a vector, the mask, known zero, and known one values are the
2038/// same width as the vector element, and the bit is set only if it is true
2039/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002040bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002041 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00002042 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002043 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002044 return (KnownZero & Mask) == Mask;
2045}
2046
Sanjay Patela06d9892016-06-22 19:20:59 +00002047/// For vector constants, loop over the elements and find the constant with the
2048/// minimum number of sign bits. Return 0 if the value is not a vector constant
2049/// or if any element was not analyzed; otherwise, return the count for the
2050/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002051static unsigned computeNumSignBitsVectorConstant(const Value *V,
2052 unsigned TyBits) {
2053 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002054 if (!CV || !CV->getType()->isVectorTy())
2055 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002056
Sanjay Patela06d9892016-06-22 19:20:59 +00002057 unsigned MinSignBits = TyBits;
2058 unsigned NumElts = CV->getType()->getVectorNumElements();
2059 for (unsigned i = 0; i != NumElts; ++i) {
2060 // If we find a non-ConstantInt, bail out.
2061 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2062 if (!Elt)
2063 return 0;
2064
2065 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2066 APInt EltVal = Elt->getValue();
2067 if (EltVal.isNegative())
2068 EltVal = ~EltVal;
2069 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2070 }
2071
2072 return MinSignBits;
2073}
Chris Lattner965c7692008-06-02 01:18:21 +00002074
Sanjay Patelaee84212014-11-04 16:27:42 +00002075/// Return the number of times the sign bit of the register is replicated into
2076/// the other bits. We know that at least 1 bit is always equal to the sign bit
2077/// (itself), but other cases can give us information. For example, immediately
2078/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002079/// other, so we return 3. For vectors, return the number of sign bits for the
2080/// vector element with the mininum number of known sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002081unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002082 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002083 unsigned Tmp, Tmp2;
2084 unsigned FirstAnswer = 1;
2085
Jay Foada0653a32014-05-14 21:14:37 +00002086 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002087 // below.
2088
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002089 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002090 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002091
Pete Cooper35b00d52016-08-13 01:05:32 +00002092 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002093 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002094 default: break;
2095 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002096 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002097 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002098
Nadav Rotemc99a3872015-03-06 00:23:58 +00002099 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002100 const APInt *Denominator;
2101 // sdiv X, C -> adds log(C) sign bits.
2102 if (match(U->getOperand(1), m_APInt(Denominator))) {
2103
2104 // Ignore non-positive denominator.
2105 if (!Denominator->isStrictlyPositive())
2106 break;
2107
2108 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002109 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002110
2111 // Add floor(log(C)) bits to the numerator bits.
2112 return std::min(TyBits, NumBits + Denominator->logBase2());
2113 }
2114 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002115 }
2116
2117 case Instruction::SRem: {
2118 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002119 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2120 // positive constant. This let us put a lower bound on the number of sign
2121 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002122 if (match(U->getOperand(1), m_APInt(Denominator))) {
2123
2124 // Ignore non-positive denominator.
2125 if (!Denominator->isStrictlyPositive())
2126 break;
2127
2128 // Calculate the incoming numerator bits. SRem by a positive constant
2129 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002130 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002131 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002132
2133 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002134 // denominator. Given that the denominator is positive, there are two
2135 // cases:
2136 //
2137 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2138 // (1 << ceilLogBase2(C)).
2139 //
2140 // 2. the numerator is negative. Then the result range is (-C,0] and
2141 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2142 //
2143 // Thus a lower bound on the number of sign bits is `TyBits -
2144 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002145
Sanjoy Dase561fee2015-03-25 22:33:53 +00002146 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002147 return std::max(NumrBits, ResBits);
2148 }
2149 break;
2150 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002151
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002152 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002153 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002154 // ashr X, C -> adds C sign bits. Vectors too.
2155 const APInt *ShAmt;
2156 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2157 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002158 if (Tmp > TyBits) Tmp = TyBits;
2159 }
2160 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002161 }
2162 case Instruction::Shl: {
2163 const APInt *ShAmt;
2164 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002165 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002166 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002167 Tmp2 = ShAmt->getZExtValue();
2168 if (Tmp2 >= TyBits || // Bad shift.
2169 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2170 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002171 }
2172 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002173 }
Chris Lattner965c7692008-06-02 01:18:21 +00002174 case Instruction::And:
2175 case Instruction::Or:
2176 case Instruction::Xor: // NOT is handled here.
2177 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002178 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002179 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002180 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002181 FirstAnswer = std::min(Tmp, Tmp2);
2182 // We computed what we know about the sign bits as our first
2183 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002184 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002185 }
2186 break;
2187
2188 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002189 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002190 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002191 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002192 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002193
Chris Lattner965c7692008-06-02 01:18:21 +00002194 case Instruction::Add:
2195 // Add can have at most one carry bit. Thus we know that the output
2196 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002197 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002198 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002199
Chris Lattner965c7692008-06-02 01:18:21 +00002200 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002201 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002202 if (CRHS->isAllOnesValue()) {
2203 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002204 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002205
Chris Lattner965c7692008-06-02 01:18:21 +00002206 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2207 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002208 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002209 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002210
Chris Lattner965c7692008-06-02 01:18:21 +00002211 // If we are subtracting one from a positive number, there is no carry
2212 // out of the result.
2213 if (KnownZero.isNegative())
2214 return Tmp;
2215 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002216
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002217 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002218 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002219 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002220
Chris Lattner965c7692008-06-02 01:18:21 +00002221 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002222 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002223 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002224
Chris Lattner965c7692008-06-02 01:18:21 +00002225 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002226 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002227 if (CLHS->isNullValue()) {
2228 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002229 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002230 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2231 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002232 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002233 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002234
Chris Lattner965c7692008-06-02 01:18:21 +00002235 // If the input is known to be positive (the sign bit is known clear),
2236 // the output of the NEG has the same number of sign bits as the input.
2237 if (KnownZero.isNegative())
2238 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002239
Chris Lattner965c7692008-06-02 01:18:21 +00002240 // Otherwise, we treat this like a SUB.
2241 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002242
Chris Lattner965c7692008-06-02 01:18:21 +00002243 // Sub can have at most one carry bit. Thus we know that the output
2244 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002245 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002246 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002247 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002248
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002249 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002250 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002251 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002252 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002253 if (NumIncomingValues > 4) break;
2254 // Unreachable blocks may have zero-operand PHI nodes.
2255 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002256
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002257 // Take the minimum of all incoming values. This can't infinitely loop
2258 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002259 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002260 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002261 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002262 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002263 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002264 }
2265 return Tmp;
2266 }
2267
Chris Lattner965c7692008-06-02 01:18:21 +00002268 case Instruction::Trunc:
2269 // FIXME: it's tricky to do anything useful for this, but it is an important
2270 // case for targets like X86.
2271 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002272
2273 case Instruction::ExtractElement:
2274 // Look through extract element. At the moment we keep this simple and skip
2275 // tracking the specific element. But at least we might find information
2276 // valid for all elements of the vector (for example if vector is sign
2277 // extended, shifted, etc).
2278 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002279 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002280
Chris Lattner965c7692008-06-02 01:18:21 +00002281 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2282 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002283
2284 // If we can examine all elements of a vector constant successfully, we're
2285 // done (we can't do any better than that). If not, keep trying.
2286 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2287 return VecSignBits;
2288
Chris Lattner965c7692008-06-02 01:18:21 +00002289 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002290 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002291
Sanjay Patele0536212016-06-23 17:41:59 +00002292 // If we know that the sign bit is either zero or one, determine the number of
2293 // identical bits in the top of the input value.
2294 if (KnownZero.isNegative())
2295 return std::max(FirstAnswer, KnownZero.countLeadingOnes());
Craig Topper1bef2c82012-12-22 19:15:35 +00002296
Sanjay Patele0536212016-06-23 17:41:59 +00002297 if (KnownOne.isNegative())
2298 return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2299
2300 // computeKnownBits gave us no extra information about the top bits.
2301 return FirstAnswer;
Chris Lattner965c7692008-06-02 01:18:21 +00002302}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002303
Sanjay Patelaee84212014-11-04 16:27:42 +00002304/// This function computes the integer multiple of Base that equals V.
2305/// If successful, it returns true and returns the multiple in
2306/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002307/// through SExt instructions only if LookThroughSExt is true.
2308bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002309 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002310 const unsigned MaxDepth = 6;
2311
Dan Gohman6a976bb2009-11-18 00:58:27 +00002312 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002313 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002314 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002315
Chris Lattner229907c2011-07-18 04:54:35 +00002316 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002317
Dan Gohman6a976bb2009-11-18 00:58:27 +00002318 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002319
2320 if (Base == 0)
2321 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002322
Victor Hernandez47444882009-11-10 08:28:35 +00002323 if (Base == 1) {
2324 Multiple = V;
2325 return true;
2326 }
2327
2328 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2329 Constant *BaseVal = ConstantInt::get(T, Base);
2330 if (CO && CO == BaseVal) {
2331 // Multiple is 1.
2332 Multiple = ConstantInt::get(T, 1);
2333 return true;
2334 }
2335
2336 if (CI && CI->getZExtValue() % Base == 0) {
2337 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002338 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002339 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002340
Victor Hernandez47444882009-11-10 08:28:35 +00002341 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002342
Victor Hernandez47444882009-11-10 08:28:35 +00002343 Operator *I = dyn_cast<Operator>(V);
2344 if (!I) return false;
2345
2346 switch (I->getOpcode()) {
2347 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002348 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002349 if (!LookThroughSExt) return false;
2350 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002351 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002352 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2353 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002354 case Instruction::Shl:
2355 case Instruction::Mul: {
2356 Value *Op0 = I->getOperand(0);
2357 Value *Op1 = I->getOperand(1);
2358
2359 if (I->getOpcode() == Instruction::Shl) {
2360 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2361 if (!Op1CI) return false;
2362 // Turn Op0 << Op1 into Op0 * 2^Op1
2363 APInt Op1Int = Op1CI->getValue();
2364 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002365 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002366 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002367 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002368 }
2369
Craig Topper9f008862014-04-15 04:59:12 +00002370 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002371 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2372 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2373 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002374 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002375 MulC->getType()->getPrimitiveSizeInBits())
2376 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002377 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002378 MulC->getType()->getPrimitiveSizeInBits())
2379 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002380
Chris Lattner72d283c2010-09-05 17:20:46 +00002381 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2382 Multiple = ConstantExpr::getMul(MulC, Op1C);
2383 return true;
2384 }
Victor Hernandez47444882009-11-10 08:28:35 +00002385
2386 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2387 if (Mul0CI->getValue() == 1) {
2388 // V == Base * Op1, so return Op1
2389 Multiple = Op1;
2390 return true;
2391 }
2392 }
2393
Craig Topper9f008862014-04-15 04:59:12 +00002394 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002395 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2396 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2397 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002398 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002399 MulC->getType()->getPrimitiveSizeInBits())
2400 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002401 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002402 MulC->getType()->getPrimitiveSizeInBits())
2403 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002404
Chris Lattner72d283c2010-09-05 17:20:46 +00002405 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2406 Multiple = ConstantExpr::getMul(MulC, Op0C);
2407 return true;
2408 }
Victor Hernandez47444882009-11-10 08:28:35 +00002409
2410 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2411 if (Mul1CI->getValue() == 1) {
2412 // V == Base * Op0, so return Op0
2413 Multiple = Op0;
2414 return true;
2415 }
2416 }
Victor Hernandez47444882009-11-10 08:28:35 +00002417 }
2418 }
2419
2420 // We could not determine if V is a multiple of Base.
2421 return false;
2422}
2423
David Majnemerb4b27232016-04-19 19:10:21 +00002424Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2425 const TargetLibraryInfo *TLI) {
2426 const Function *F = ICS.getCalledFunction();
2427 if (!F)
2428 return Intrinsic::not_intrinsic;
2429
2430 if (F->isIntrinsic())
2431 return F->getIntrinsicID();
2432
2433 if (!TLI)
2434 return Intrinsic::not_intrinsic;
2435
2436 LibFunc::Func Func;
2437 // We're going to make assumptions on the semantics of the functions, check
2438 // that the target knows that it's available in this environment and it does
2439 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002440 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2441 return Intrinsic::not_intrinsic;
2442
2443 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002444 return Intrinsic::not_intrinsic;
2445
2446 // Otherwise check if we have a call to a function that can be turned into a
2447 // vector intrinsic.
2448 switch (Func) {
2449 default:
2450 break;
2451 case LibFunc::sin:
2452 case LibFunc::sinf:
2453 case LibFunc::sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002454 return Intrinsic::sin;
David Majnemerb4b27232016-04-19 19:10:21 +00002455 case LibFunc::cos:
2456 case LibFunc::cosf:
2457 case LibFunc::cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002458 return Intrinsic::cos;
David Majnemerb4b27232016-04-19 19:10:21 +00002459 case LibFunc::exp:
2460 case LibFunc::expf:
2461 case LibFunc::expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002462 return Intrinsic::exp;
David Majnemerb4b27232016-04-19 19:10:21 +00002463 case LibFunc::exp2:
2464 case LibFunc::exp2f:
2465 case LibFunc::exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002466 return Intrinsic::exp2;
David Majnemerb4b27232016-04-19 19:10:21 +00002467 case LibFunc::log:
2468 case LibFunc::logf:
2469 case LibFunc::logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002470 return Intrinsic::log;
David Majnemerb4b27232016-04-19 19:10:21 +00002471 case LibFunc::log10:
2472 case LibFunc::log10f:
2473 case LibFunc::log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002474 return Intrinsic::log10;
David Majnemerb4b27232016-04-19 19:10:21 +00002475 case LibFunc::log2:
2476 case LibFunc::log2f:
2477 case LibFunc::log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002478 return Intrinsic::log2;
David Majnemerb4b27232016-04-19 19:10:21 +00002479 case LibFunc::fabs:
2480 case LibFunc::fabsf:
2481 case LibFunc::fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002482 return Intrinsic::fabs;
David Majnemerb4b27232016-04-19 19:10:21 +00002483 case LibFunc::fmin:
2484 case LibFunc::fminf:
2485 case LibFunc::fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002486 return Intrinsic::minnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002487 case LibFunc::fmax:
2488 case LibFunc::fmaxf:
2489 case LibFunc::fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002490 return Intrinsic::maxnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002491 case LibFunc::copysign:
2492 case LibFunc::copysignf:
2493 case LibFunc::copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002494 return Intrinsic::copysign;
David Majnemerb4b27232016-04-19 19:10:21 +00002495 case LibFunc::floor:
2496 case LibFunc::floorf:
2497 case LibFunc::floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002498 return Intrinsic::floor;
David Majnemerb4b27232016-04-19 19:10:21 +00002499 case LibFunc::ceil:
2500 case LibFunc::ceilf:
2501 case LibFunc::ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002502 return Intrinsic::ceil;
David Majnemerb4b27232016-04-19 19:10:21 +00002503 case LibFunc::trunc:
2504 case LibFunc::truncf:
2505 case LibFunc::truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002506 return Intrinsic::trunc;
David Majnemerb4b27232016-04-19 19:10:21 +00002507 case LibFunc::rint:
2508 case LibFunc::rintf:
2509 case LibFunc::rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002510 return Intrinsic::rint;
David Majnemerb4b27232016-04-19 19:10:21 +00002511 case LibFunc::nearbyint:
2512 case LibFunc::nearbyintf:
2513 case LibFunc::nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002514 return Intrinsic::nearbyint;
David Majnemerb4b27232016-04-19 19:10:21 +00002515 case LibFunc::round:
2516 case LibFunc::roundf:
2517 case LibFunc::roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002518 return Intrinsic::round;
David Majnemerb4b27232016-04-19 19:10:21 +00002519 case LibFunc::pow:
2520 case LibFunc::powf:
2521 case LibFunc::powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002522 return Intrinsic::pow;
David Majnemerb4b27232016-04-19 19:10:21 +00002523 case LibFunc::sqrt:
2524 case LibFunc::sqrtf:
2525 case LibFunc::sqrtl:
2526 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002527 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002528 return Intrinsic::not_intrinsic;
2529 }
2530
2531 return Intrinsic::not_intrinsic;
2532}
2533
Sanjay Patelaee84212014-11-04 16:27:42 +00002534/// Return true if we can prove that the specified FP value is never equal to
2535/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002536///
2537/// NOTE: this function will need to be revisited when we support non-default
2538/// rounding modes!
2539///
David Majnemer3ee5f342016-04-13 06:55:52 +00002540bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2541 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002542 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2543 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002544
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002545 // FIXME: Magic number! At the least, this should be given a name because it's
2546 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2547 // expose it as a parameter, so it can be used for testing / experimenting.
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002548 if (Depth == MaxDepth)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002549 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002550
Dan Gohman80ca01c2009-07-17 20:47:02 +00002551 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002552 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002553
2554 // Check if the nsz fast-math flag is set
2555 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2556 if (FPO->hasNoSignedZeros())
2557 return true;
2558
Chris Lattnera12a6de2008-06-02 01:29:46 +00002559 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002560 if (I->getOpcode() == Instruction::FAdd)
2561 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2562 if (CFP->isNullValue())
2563 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002564
Chris Lattnera12a6de2008-06-02 01:29:46 +00002565 // sitofp and uitofp turn into +0.0 for zero.
2566 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2567 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002568
David Majnemer3ee5f342016-04-13 06:55:52 +00002569 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002570 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002571 switch (IID) {
2572 default:
2573 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002574 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002575 case Intrinsic::sqrt:
2576 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2577 // fabs(x) != -0.0
2578 case Intrinsic::fabs:
2579 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002580 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002581 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002582
Chris Lattnera12a6de2008-06-02 01:29:46 +00002583 return false;
2584}
2585
David Majnemer3ee5f342016-04-13 06:55:52 +00002586bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2587 const TargetLibraryInfo *TLI,
2588 unsigned Depth) {
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002589 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2590 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2591
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002592 // FIXME: Magic number! At the least, this should be given a name because it's
2593 // used similarly in CannotBeNegativeZero(). A better fix may be to
2594 // expose it as a parameter, so it can be used for testing / experimenting.
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002595 if (Depth == MaxDepth)
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002596 return false; // Limit search depth.
2597
2598 const Operator *I = dyn_cast<Operator>(V);
2599 if (!I) return false;
2600
2601 switch (I->getOpcode()) {
2602 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002603 // Unsigned integers are always nonnegative.
2604 case Instruction::UIToFP:
2605 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002606 case Instruction::FMul:
2607 // x*x is always non-negative or a NaN.
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002608 if (I->getOperand(0) == I->getOperand(1))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002609 return true;
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002610 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002611 case Instruction::FAdd:
2612 case Instruction::FDiv:
2613 case Instruction::FRem:
David Majnemer3ee5f342016-04-13 06:55:52 +00002614 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2615 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002616 case Instruction::Select:
David Majnemer3ee5f342016-04-13 06:55:52 +00002617 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2618 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002619 case Instruction::FPExt:
2620 case Instruction::FPTrunc:
2621 // Widening/narrowing never change sign.
David Majnemer3ee5f342016-04-13 06:55:52 +00002622 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2623 case Instruction::Call:
David Majnemerb4b27232016-04-19 19:10:21 +00002624 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002625 switch (IID) {
2626 default:
2627 break;
2628 case Intrinsic::maxnum:
2629 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2630 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2631 case Intrinsic::minnum:
2632 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2633 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2634 case Intrinsic::exp:
2635 case Intrinsic::exp2:
2636 case Intrinsic::fabs:
2637 case Intrinsic::sqrt:
2638 return true;
2639 case Intrinsic::powi:
2640 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2641 // powi(x,n) is non-negative if n is even.
2642 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2643 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002644 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002645 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2646 case Intrinsic::fma:
2647 case Intrinsic::fmuladd:
2648 // x*x+y is non-negative if y is non-negative.
2649 return I->getOperand(0) == I->getOperand(1) &&
2650 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2651 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002652 break;
2653 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002654 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002655}
2656
Sanjay Patelaee84212014-11-04 16:27:42 +00002657/// If the specified value can be set by repeating the same byte in memory,
2658/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002659/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2660/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2661/// byte store (e.g. i16 0x1234), return null.
2662Value *llvm::isBytewiseValue(Value *V) {
2663 // All byte-wide stores are splatable, even of arbitrary variables.
2664 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002665
2666 // Handle 'null' ConstantArrayZero etc.
2667 if (Constant *C = dyn_cast<Constant>(V))
2668 if (C->isNullValue())
2669 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002670
Chris Lattner9cb10352010-12-26 20:15:01 +00002671 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002672 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002673 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2674 if (CFP->getType()->isFloatTy())
2675 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2676 if (CFP->getType()->isDoubleTy())
2677 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2678 // Don't handle long double formats, which have strange constraints.
2679 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002680
Benjamin Kramer17d90152015-02-07 19:29:02 +00002681 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002682 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002683 if (CI->getBitWidth() % 8 == 0) {
2684 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002685
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002686 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002687 return nullptr;
2688 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002689 }
2690 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002691
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002692 // A ConstantDataArray/Vector is splatable if all its members are equal and
2693 // also splatable.
2694 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2695 Value *Elt = CA->getElementAsConstant(0);
2696 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002697 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002698 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002699
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002700 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2701 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002702 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002703
Chris Lattner9cb10352010-12-26 20:15:01 +00002704 return Val;
2705 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002706
Chris Lattner9cb10352010-12-26 20:15:01 +00002707 // Conceptually, we could handle things like:
2708 // %a = zext i8 %X to i16
2709 // %b = shl i16 %a, 8
2710 // %c = or i16 %a, %b
2711 // but until there is an example that actually needs this, it doesn't seem
2712 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002713 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002714}
2715
2716
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002717// This is the recursive version of BuildSubAggregate. It takes a few different
2718// arguments. Idxs is the index within the nested struct From that we are
2719// looking at now (which is of type IndexedType). IdxSkip is the number of
2720// indices from Idxs that should be left out when inserting into the resulting
2721// struct. To is the result struct built so far, new insertvalue instructions
2722// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002723static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002724 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002725 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002726 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002727 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002728 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002729 // Save the original To argument so we can modify it
2730 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002731 // General case, the type indexed by Idxs is a struct
2732 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2733 // Process each struct element recursively
2734 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002735 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002736 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002737 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002738 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002739 if (!To) {
2740 // Couldn't find any inserted value for this index? Cleanup
2741 while (PrevTo != OrigTo) {
2742 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2743 PrevTo = Del->getAggregateOperand();
2744 Del->eraseFromParent();
2745 }
2746 // Stop processing elements
2747 break;
2748 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002749 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002750 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002751 if (To)
2752 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002753 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002754 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2755 // the struct's elements had a value that was inserted directly. In the latter
2756 // case, perhaps we can't determine each of the subelements individually, but
2757 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002758
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002759 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002760 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002761
2762 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002763 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002764
2765 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002766 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002767 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002768}
2769
2770// This helper takes a nested struct and extracts a part of it (which is again a
2771// struct) into a new value. For example, given the struct:
2772// { a, { b, { c, d }, e } }
2773// and the indices "1, 1" this returns
2774// { c, d }.
2775//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002776// It does this by inserting an insertvalue for each element in the resulting
2777// struct, as opposed to just inserting a single struct. This will only work if
2778// each of the elements of the substruct are known (ie, inserted into From by an
2779// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002780//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002781// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002782static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002783 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002784 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002785 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002786 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002787 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002788 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002789 unsigned IdxSkip = Idxs.size();
2790
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002791 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002792}
2793
Sanjay Patelaee84212014-11-04 16:27:42 +00002794/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002795/// the scalar value indexed is already around as a register, for example if it
2796/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002797///
2798/// If InsertBefore is not null, this function will duplicate (modified)
2799/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002800Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2801 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002802 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002803 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002804 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002805 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002806 // We have indices, so V should have an indexable type.
2807 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2808 "Not looking at a struct or array?");
2809 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2810 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002811
Chris Lattner67058832012-01-25 06:48:06 +00002812 if (Constant *C = dyn_cast<Constant>(V)) {
2813 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002814 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002815 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2816 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002817
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002818 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002819 // Loop the indices for the insertvalue instruction in parallel with the
2820 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002821 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002822 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2823 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002824 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002825 // We can't handle this without inserting insertvalues
2826 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002827 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002828
2829 // The requested index identifies a part of a nested aggregate. Handle
2830 // this specially. For example,
2831 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2832 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2833 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2834 // This can be changed into
2835 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2836 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2837 // which allows the unused 0,0 element from the nested struct to be
2838 // removed.
2839 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2840 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002841 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002842
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002843 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002844 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002845 // looking for, then.
2846 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002847 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002848 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002849 }
2850 // If we end up here, the indices of the insertvalue match with those
2851 // requested (though possibly only partially). Now we recursively look at
2852 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002853 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002854 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002855 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002856 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002857
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002858 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002859 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002860 // something else, we can extract from that something else directly instead.
2861 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002862
2863 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002864 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002865 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002866 SmallVector<unsigned, 5> Idxs;
2867 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002868 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002869 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002870
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002871 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002872 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002873
Craig Topper1bef2c82012-12-22 19:15:35 +00002874 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002875 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002876
Jay Foad57aa6362011-07-13 10:26:04 +00002877 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002878 }
2879 // Otherwise, we don't know (such as, extracting from a function return value
2880 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002881 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002882}
Evan Chengda3db112008-06-30 07:31:25 +00002883
Sanjay Patelaee84212014-11-04 16:27:42 +00002884/// Analyze the specified pointer to see if it can be expressed as a base
2885/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002886Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002887 const DataLayout &DL) {
2888 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002889 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002890
2891 // We walk up the defs but use a visited set to handle unreachable code. In
2892 // that case, we stop after accumulating the cycle once (not that it
2893 // matters).
2894 SmallPtrSet<Value *, 16> Visited;
2895 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002896 if (Ptr->getType()->isVectorTy())
2897 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002898
Nuno Lopes368c4d02012-12-31 20:48:35 +00002899 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00002900 // If one of the values we have visited is an addrspacecast, then
2901 // the pointer type of this GEP may be different from the type
2902 // of the Ptr parameter which was passed to this function. This
2903 // means when we construct GEPOffset, we need to use the size
2904 // of GEP's pointer type rather than the size of the original
2905 // pointer type.
2906 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002907 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2908 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002909
Tom Stellard17eb3412016-10-07 14:23:29 +00002910 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002911
Nuno Lopes368c4d02012-12-31 20:48:35 +00002912 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00002913 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2914 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002915 Ptr = cast<Operator>(Ptr)->getOperand(0);
2916 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002917 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002918 break;
2919 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002920 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002921 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002922 }
2923 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002924 Offset = ByteOffset.getSExtValue();
2925 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002926}
2927
David L Kreitzer752c1442016-04-13 14:31:06 +00002928bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2929 // Make sure the GEP has exactly three arguments.
2930 if (GEP->getNumOperands() != 3)
2931 return false;
2932
2933 // Make sure the index-ee is a pointer to array of i8.
2934 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2935 if (!AT || !AT->getElementType()->isIntegerTy(8))
2936 return false;
2937
2938 // Check to make sure that the first operand of the GEP is an integer and
2939 // has value 0 so that we are sure we're indexing into the initializer.
2940 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2941 if (!FirstIdx || !FirstIdx->isZero())
2942 return false;
2943
2944 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002945}
Chris Lattnere28618d2010-11-30 22:25:26 +00002946
Sanjay Patelaee84212014-11-04 16:27:42 +00002947/// This function computes the length of a null-terminated C string pointed to
2948/// by V. If successful, it returns true and returns the string in Str.
2949/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002950bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2951 uint64_t Offset, bool TrimAtNul) {
2952 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002953
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002954 // Look through bitcast instructions and geps.
2955 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002956
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002957 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002958 // offset.
2959 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002960 // The GEP operator should be based on a pointer to string constant, and is
2961 // indexing into the string constant.
2962 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002963 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002964
Evan Chengda3db112008-06-30 07:31:25 +00002965 // If the second index isn't a ConstantInt, then this is a variable index
2966 // into the array. If this occurs, we can't say anything meaningful about
2967 // the string.
2968 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002969 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002970 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002971 else
2972 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002973 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2974 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002975 }
Nick Lewycky46209882011-10-20 00:34:35 +00002976
Evan Chengda3db112008-06-30 07:31:25 +00002977 // The GEP instruction, constant or instruction, must reference a global
2978 // variable that is a constant and is initialized. The referenced constant
2979 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002980 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002981 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002982 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002983
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002984 // Handle the all-zeros case.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002985 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002986 // This is a degenerate case. The initializer is constant zero so the
2987 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002988 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002989 return true;
2990 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002991
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002992 // This must be a ConstantDataArray.
2993 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002994 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002995 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002996
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00002997 // Get the number of elements in the array.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002998 uint64_t NumElts = Array->getType()->getArrayNumElements();
2999
3000 // Start out with the entire array in the StringRef.
3001 Str = Array->getAsString();
3002
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003003 if (Offset > NumElts)
3004 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003005
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003006 // Skip over 'offset' bytes.
3007 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003008
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003009 if (TrimAtNul) {
3010 // Trim off the \0 and anything after it. If the array is not nul
3011 // terminated, we just return the whole end of string. The client may know
3012 // some other way that the string is length-bound.
3013 Str = Str.substr(0, Str.find('\0'));
3014 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003015 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003016}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003017
3018// These next two are very similar to the above, but also look through PHI
3019// nodes.
3020// TODO: See if we can integrate these two together.
3021
Sanjay Patelaee84212014-11-04 16:27:42 +00003022/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003023/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003024static uint64_t GetStringLengthH(const Value *V,
3025 SmallPtrSetImpl<const PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003026 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003027 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003028
3029 // If this is a PHI node, there are two cases: either we have already seen it
3030 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003031 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003032 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003033 return ~0ULL; // already in the set.
3034
3035 // If it was new, see if all the input strings are the same length.
3036 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003037 for (Value *IncValue : PN->incoming_values()) {
3038 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003039 if (Len == 0) return 0; // Unknown length -> unknown.
3040
3041 if (Len == ~0ULL) continue;
3042
3043 if (Len != LenSoFar && LenSoFar != ~0ULL)
3044 return 0; // Disagree -> unknown.
3045 LenSoFar = Len;
3046 }
3047
3048 // Success, all agree.
3049 return LenSoFar;
3050 }
3051
3052 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003053 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003054 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3055 if (Len1 == 0) return 0;
3056 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3057 if (Len2 == 0) return 0;
3058 if (Len1 == ~0ULL) return Len2;
3059 if (Len2 == ~0ULL) return Len1;
3060 if (Len1 != Len2) return 0;
3061 return Len1;
3062 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003063
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003064 // Otherwise, see if we can read the string.
3065 StringRef StrData;
3066 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003067 return 0;
3068
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003069 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003070}
3071
Sanjay Patelaee84212014-11-04 16:27:42 +00003072/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003073/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003074uint64_t llvm::GetStringLength(const Value *V) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003075 if (!V->getType()->isPointerTy()) return 0;
3076
Pete Cooper35b00d52016-08-13 01:05:32 +00003077 SmallPtrSet<const PHINode*, 32> PHIs;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003078 uint64_t Len = GetStringLengthH(V, PHIs);
3079 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3080 // an empty string as a length.
3081 return Len == ~0ULL ? 1 : Len;
3082}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003083
Adam Nemete2b885c2015-04-23 20:09:20 +00003084/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3085/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003086static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3087 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003088 // Find the loop-defined value.
3089 Loop *L = LI->getLoopFor(PN->getParent());
3090 if (PN->getNumIncomingValues() != 2)
3091 return true;
3092
3093 // Find the value from previous iteration.
3094 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3095 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3096 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3097 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3098 return true;
3099
3100 // If a new pointer is loaded in the loop, the pointer references a different
3101 // object in every iteration. E.g.:
3102 // for (i)
3103 // int *p = a[i];
3104 // ...
3105 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3106 if (!L->isLoopInvariant(Load->getPointerOperand()))
3107 return false;
3108 return true;
3109}
3110
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003111Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3112 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003113 if (!V->getType()->isPointerTy())
3114 return V;
3115 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3116 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3117 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003118 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3119 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003120 V = cast<Operator>(V)->getOperand(0);
3121 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003122 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003123 return V;
3124 V = GA->getAliasee();
3125 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003126 if (auto CS = CallSite(V))
3127 if (Value *RV = CS.getReturnedArgOperand()) {
3128 V = RV;
3129 continue;
3130 }
3131
Dan Gohman05b18f12010-12-15 20:49:55 +00003132 // See if InstructionSimplify knows any relevant tricks.
3133 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003134 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003135 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003136 V = Simplified;
3137 continue;
3138 }
3139
Dan Gohmana4fcd242010-12-15 20:02:24 +00003140 return V;
3141 }
3142 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3143 }
3144 return V;
3145}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003146
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003147void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003148 const DataLayout &DL, LoopInfo *LI,
3149 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003150 SmallPtrSet<Value *, 4> Visited;
3151 SmallVector<Value *, 4> Worklist;
3152 Worklist.push_back(V);
3153 do {
3154 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003155 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003156
David Blaikie70573dc2014-11-19 07:49:26 +00003157 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003158 continue;
3159
3160 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3161 Worklist.push_back(SI->getTrueValue());
3162 Worklist.push_back(SI->getFalseValue());
3163 continue;
3164 }
3165
3166 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003167 // If this PHI changes the underlying object in every iteration of the
3168 // loop, don't look through it. Consider:
3169 // int **A;
3170 // for (i) {
3171 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3172 // Curr = A[i];
3173 // *Prev, *Curr;
3174 //
3175 // Prev is tracking Curr one iteration behind so they refer to different
3176 // underlying objects.
3177 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3178 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003179 for (Value *IncValue : PN->incoming_values())
3180 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003181 continue;
3182 }
3183
3184 Objects.push_back(P);
3185 } while (!Worklist.empty());
3186}
3187
Sanjay Patelaee84212014-11-04 16:27:42 +00003188/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003189bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003190 for (const User *U : V->users()) {
3191 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003192 if (!II) return false;
3193
3194 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3195 II->getIntrinsicID() != Intrinsic::lifetime_end)
3196 return false;
3197 }
3198 return true;
3199}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003200
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003201bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3202 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003203 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003204 const Operator *Inst = dyn_cast<Operator>(V);
3205 if (!Inst)
3206 return false;
3207
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003208 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3209 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3210 if (C->canTrap())
3211 return false;
3212
3213 switch (Inst->getOpcode()) {
3214 default:
3215 return true;
3216 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003217 case Instruction::URem: {
3218 // x / y is undefined if y == 0.
3219 const APInt *V;
3220 if (match(Inst->getOperand(1), m_APInt(V)))
3221 return *V != 0;
3222 return false;
3223 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003224 case Instruction::SDiv:
3225 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003226 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003227 const APInt *Numerator, *Denominator;
3228 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3229 return false;
3230 // We cannot hoist this division if the denominator is 0.
3231 if (*Denominator == 0)
3232 return false;
3233 // It's safe to hoist if the denominator is not 0 or -1.
3234 if (*Denominator != -1)
3235 return true;
3236 // At this point we know that the denominator is -1. It is safe to hoist as
3237 // long we know that the numerator is not INT_MIN.
3238 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3239 return !Numerator->isMinSignedValue();
3240 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003241 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003242 }
3243 case Instruction::Load: {
3244 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003245 if (!LI->isUnordered() ||
3246 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003247 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003248 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003249 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003250 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003251 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003252 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3253 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003254 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003255 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003256 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3257 switch (II->getIntrinsicID()) {
3258 // These synthetic intrinsics have no side-effects and just mark
3259 // information about their operands.
3260 // FIXME: There are other no-op synthetic instructions that potentially
3261 // should be considered at least *safe* to speculate...
3262 case Intrinsic::dbg_declare:
3263 case Intrinsic::dbg_value:
3264 return true;
3265
3266 case Intrinsic::bswap:
3267 case Intrinsic::ctlz:
3268 case Intrinsic::ctpop:
3269 case Intrinsic::cttz:
3270 case Intrinsic::objectsize:
3271 case Intrinsic::sadd_with_overflow:
3272 case Intrinsic::smul_with_overflow:
3273 case Intrinsic::ssub_with_overflow:
3274 case Intrinsic::uadd_with_overflow:
3275 case Intrinsic::umul_with_overflow:
3276 case Intrinsic::usub_with_overflow:
3277 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003278 // These intrinsics are defined to have the same behavior as libm
3279 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003280 case Intrinsic::sqrt:
3281 case Intrinsic::fma:
3282 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003283 return true;
3284 // These intrinsics are defined to have the same behavior as libm
3285 // functions, and the corresponding libm functions never set errno.
3286 case Intrinsic::trunc:
3287 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003288 case Intrinsic::fabs:
3289 case Intrinsic::minnum:
3290 case Intrinsic::maxnum:
3291 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003292 // These intrinsics are defined to have the same behavior as libm
3293 // functions, which never overflow when operating on the IEEE754 types
3294 // that we support, and never set errno otherwise.
3295 case Intrinsic::ceil:
3296 case Intrinsic::floor:
3297 case Intrinsic::nearbyint:
3298 case Intrinsic::rint:
3299 case Intrinsic::round:
3300 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003301 // TODO: are convert_{from,to}_fp16 safe?
3302 // TODO: can we list target-specific intrinsics here?
3303 default: break;
3304 }
3305 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003306 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003307 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003308 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003309 case Instruction::VAArg:
3310 case Instruction::Alloca:
3311 case Instruction::Invoke:
3312 case Instruction::PHI:
3313 case Instruction::Store:
3314 case Instruction::Ret:
3315 case Instruction::Br:
3316 case Instruction::IndirectBr:
3317 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003318 case Instruction::Unreachable:
3319 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003320 case Instruction::AtomicRMW:
3321 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003322 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003323 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003324 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003325 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003326 case Instruction::CatchRet:
3327 case Instruction::CleanupPad:
3328 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003329 return false; // Misc instructions which have effects
3330 }
3331}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003332
Quentin Colombet6443cce2015-08-06 18:44:34 +00003333bool llvm::mayBeMemoryDependent(const Instruction &I) {
3334 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3335}
3336
Sanjay Patelaee84212014-11-04 16:27:42 +00003337/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003338bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003339 assert(V->getType()->isPointerTy() && "V must be pointer type");
3340
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003341 // Alloca never returns null, malloc might.
3342 if (isa<AllocaInst>(V)) return true;
3343
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003344 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003345 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003346 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003347
Peter Collingbourne235c2752016-12-08 19:01:00 +00003348 // A global variable in address space 0 is non null unless extern weak
3349 // or an absolute symbol reference. Other address spaces may have null as a
3350 // valid address for a global, so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003351 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Peter Collingbourne235c2752016-12-08 19:01:00 +00003352 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
Pete Cooper6b716212015-08-27 03:16:29 +00003353 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003354
Sanjoy Das5056e192016-05-07 02:08:22 +00003355 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003356 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003357 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003358
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003359 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003360 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003361 return true;
3362
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003363 return false;
3364}
David Majnemer491331a2015-01-02 07:29:43 +00003365
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003366static bool isKnownNonNullFromDominatingCondition(const Value *V,
3367 const Instruction *CtxI,
3368 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003369 assert(V->getType()->isPointerTy() && "V must be pointer type");
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003370 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003371 assert(CtxI && "Context instruction required for analysis");
3372 assert(DT && "Dominator tree required for analysis");
Chen Li0d043b52015-09-14 18:10:43 +00003373
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003374 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003375 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003376 // Avoid massive lists
3377 if (NumUsesExplored >= DomConditionsMaxUses)
3378 break;
3379 NumUsesExplored++;
3380 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003381 CmpInst::Predicate Pred;
3382 if (!match(const_cast<User *>(U),
3383 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3384 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003385 continue;
3386
Sanjoy Das987aaa12016-05-07 02:08:24 +00003387 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003388 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3389 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003390
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003391 BasicBlock *NonNullSuccessor =
3392 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3393 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3394 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3395 return true;
3396 } else if (Pred == ICmpInst::ICMP_NE &&
3397 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3398 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003399 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003400 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003401 }
3402 }
3403
3404 return false;
3405}
3406
3407bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003408 const DominatorTree *DT) {
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003409 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3410 return false;
3411
Sean Silva45835e72016-07-02 23:47:27 +00003412 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003413 return true;
3414
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003415 if (!CtxI || !DT)
3416 return false;
3417
3418 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003419}
3420
Pete Cooper35b00d52016-08-13 01:05:32 +00003421OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3422 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003423 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003424 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003425 const Instruction *CxtI,
3426 const DominatorTree *DT) {
3427 // Multiplying n * m significant bits yields a result of n + m significant
3428 // bits. If the total number of significant bits does not exceed the
3429 // result bit width (minus 1), there is no overflow.
3430 // This means if we have enough leading zero bits in the operands
3431 // we can guarantee that the result does not overflow.
3432 // Ref: "Hacker's Delight" by Henry Warren
3433 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3434 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003435 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003436 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003437 APInt RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003438 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3439 DT);
3440 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3441 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003442 // Note that underestimating the number of zero bits gives a more
3443 // conservative answer.
3444 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3445 RHSKnownZero.countLeadingOnes();
3446 // First handle the easy case: if we have enough zero bits there's
3447 // definitely no overflow.
3448 if (ZeroBits >= BitWidth)
3449 return OverflowResult::NeverOverflows;
3450
3451 // Get the largest possible values for each operand.
3452 APInt LHSMax = ~LHSKnownZero;
3453 APInt RHSMax = ~RHSKnownZero;
3454
3455 // We know the multiply operation doesn't overflow if the maximum values for
3456 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003457 bool MaxOverflow;
3458 LHSMax.umul_ov(RHSMax, MaxOverflow);
3459 if (!MaxOverflow)
3460 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003461
David Majnemerc8a576b2015-01-02 07:29:47 +00003462 // We know it always overflows if multiplying the smallest possible values for
3463 // the operands also results in overflow.
3464 bool MinOverflow;
3465 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3466 if (MinOverflow)
3467 return OverflowResult::AlwaysOverflows;
3468
3469 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003470}
David Majnemer5310c1e2015-01-07 00:39:50 +00003471
Pete Cooper35b00d52016-08-13 01:05:32 +00003472OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3473 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003474 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003475 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003476 const Instruction *CxtI,
3477 const DominatorTree *DT) {
3478 bool LHSKnownNonNegative, LHSKnownNegative;
3479 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003480 AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003481 if (LHSKnownNonNegative || LHSKnownNegative) {
3482 bool RHSKnownNonNegative, RHSKnownNegative;
3483 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003484 AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003485
3486 if (LHSKnownNegative && RHSKnownNegative) {
3487 // The sign bit is set in both cases: this MUST overflow.
3488 // Create a simple add instruction, and insert it into the struct.
3489 return OverflowResult::AlwaysOverflows;
3490 }
3491
3492 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3493 // The sign bit is clear in both cases: this CANNOT overflow.
3494 // Create a simple add instruction, and insert it into the struct.
3495 return OverflowResult::NeverOverflows;
3496 }
3497 }
3498
3499 return OverflowResult::MayOverflow;
3500}
James Molloy71b91c22015-05-11 14:42:20 +00003501
Pete Cooper35b00d52016-08-13 01:05:32 +00003502static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3503 const Value *RHS,
3504 const AddOperator *Add,
3505 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003506 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003507 const Instruction *CxtI,
3508 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003509 if (Add && Add->hasNoSignedWrap()) {
3510 return OverflowResult::NeverOverflows;
3511 }
3512
3513 bool LHSKnownNonNegative, LHSKnownNegative;
3514 bool RHSKnownNonNegative, RHSKnownNegative;
3515 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003516 AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003517 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003518 AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003519
3520 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3521 (LHSKnownNegative && RHSKnownNonNegative)) {
3522 // The sign bits are opposite: this CANNOT overflow.
3523 return OverflowResult::NeverOverflows;
3524 }
3525
3526 // The remaining code needs Add to be available. Early returns if not so.
3527 if (!Add)
3528 return OverflowResult::MayOverflow;
3529
3530 // If the sign of Add is the same as at least one of the operands, this add
3531 // CANNOT overflow. This is particularly useful when the sum is
3532 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3533 // operands.
3534 bool LHSOrRHSKnownNonNegative =
3535 (LHSKnownNonNegative || RHSKnownNonNegative);
3536 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3537 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3538 bool AddKnownNonNegative, AddKnownNegative;
3539 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003540 /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003541 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3542 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3543 return OverflowResult::NeverOverflows;
3544 }
3545 }
3546
3547 return OverflowResult::MayOverflow;
3548}
3549
Pete Cooper35b00d52016-08-13 01:05:32 +00003550bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3551 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003552#ifndef NDEBUG
3553 auto IID = II->getIntrinsicID();
3554 assert((IID == Intrinsic::sadd_with_overflow ||
3555 IID == Intrinsic::uadd_with_overflow ||
3556 IID == Intrinsic::ssub_with_overflow ||
3557 IID == Intrinsic::usub_with_overflow ||
3558 IID == Intrinsic::smul_with_overflow ||
3559 IID == Intrinsic::umul_with_overflow) &&
3560 "Not an overflow intrinsic!");
3561#endif
3562
Pete Cooper35b00d52016-08-13 01:05:32 +00003563 SmallVector<const BranchInst *, 2> GuardingBranches;
3564 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003565
Pete Cooper35b00d52016-08-13 01:05:32 +00003566 for (const User *U : II->users()) {
3567 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003568 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3569
3570 if (EVI->getIndices()[0] == 0)
3571 Results.push_back(EVI);
3572 else {
3573 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3574
Pete Cooper35b00d52016-08-13 01:05:32 +00003575 for (const auto *U : EVI->users())
3576 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003577 assert(B->isConditional() && "How else is it using an i1?");
3578 GuardingBranches.push_back(B);
3579 }
3580 }
3581 } else {
3582 // We are using the aggregate directly in a way we don't want to analyze
3583 // here (storing it to a global, say).
3584 return false;
3585 }
3586 }
3587
Pete Cooper35b00d52016-08-13 01:05:32 +00003588 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003589 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3590 if (!NoWrapEdge.isSingleEdge())
3591 return false;
3592
3593 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003594 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003595 // If the extractvalue itself is not executed on overflow, the we don't
3596 // need to check each use separately, since domination is transitive.
3597 if (DT.dominates(NoWrapEdge, Result->getParent()))
3598 continue;
3599
3600 for (auto &RU : Result->uses())
3601 if (!DT.dominates(NoWrapEdge, RU))
3602 return false;
3603 }
3604
3605 return true;
3606 };
3607
3608 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3609}
3610
3611
Pete Cooper35b00d52016-08-13 01:05:32 +00003612OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003613 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003614 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003615 const Instruction *CxtI,
3616 const DominatorTree *DT) {
3617 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003618 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003619}
3620
Pete Cooper35b00d52016-08-13 01:05:32 +00003621OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3622 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003623 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003624 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003625 const Instruction *CxtI,
3626 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003627 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003628}
3629
Jingyue Wu42f1d672015-07-28 18:22:40 +00003630bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003631 // A memory operation returns normally if it isn't volatile. A volatile
3632 // operation is allowed to trap.
3633 //
3634 // An atomic operation isn't guaranteed to return in a reasonable amount of
3635 // time because it's possible for another thread to interfere with it for an
3636 // arbitrary length of time, but programs aren't allowed to rely on that.
3637 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3638 return !LI->isVolatile();
3639 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3640 return !SI->isVolatile();
3641 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3642 return !CXI->isVolatile();
3643 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3644 return !RMWI->isVolatile();
3645 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3646 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003647
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003648 // If there is no successor, then execution can't transfer to it.
3649 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3650 return !CRI->unwindsToCaller();
3651 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3652 return !CatchSwitch->unwindsToCaller();
3653 if (isa<ResumeInst>(I))
3654 return false;
3655 if (isa<ReturnInst>(I))
3656 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003657
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003658 // Calls can throw, or contain an infinite loop, or kill the process.
3659 if (CallSite CS = CallSite(const_cast<Instruction*>(I))) {
3660 // Calls which don't write to arbitrary memory are safe.
3661 // FIXME: Ignoring infinite loops without any side-effects is too aggressive,
3662 // but it's consistent with other passes. See http://llvm.org/PR965 .
3663 // FIXME: This isn't aggressive enough; a call which only writes to a
3664 // global is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003665 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3666 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003667 }
3668
3669 // Other instructions return normally.
3670 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003671}
3672
3673bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3674 const Loop *L) {
3675 // The loop header is guaranteed to be executed for every iteration.
3676 //
3677 // FIXME: Relax this constraint to cover all basic blocks that are
3678 // guaranteed to be executed at every iteration.
3679 if (I->getParent() != L->getHeader()) return false;
3680
3681 for (const Instruction &LI : *L->getHeader()) {
3682 if (&LI == I) return true;
3683 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3684 }
3685 llvm_unreachable("Instruction not contained in its own parent basic block.");
3686}
3687
3688bool llvm::propagatesFullPoison(const Instruction *I) {
3689 switch (I->getOpcode()) {
3690 case Instruction::Add:
3691 case Instruction::Sub:
3692 case Instruction::Xor:
3693 case Instruction::Trunc:
3694 case Instruction::BitCast:
3695 case Instruction::AddrSpaceCast:
3696 // These operations all propagate poison unconditionally. Note that poison
3697 // is not any particular value, so xor or subtraction of poison with
3698 // itself still yields poison, not zero.
3699 return true;
3700
3701 case Instruction::AShr:
3702 case Instruction::SExt:
3703 // For these operations, one bit of the input is replicated across
3704 // multiple output bits. A replicated poison bit is still poison.
3705 return true;
3706
3707 case Instruction::Shl: {
3708 // Left shift *by* a poison value is poison. The number of
3709 // positions to shift is unsigned, so no negative values are
3710 // possible there. Left shift by zero places preserves poison. So
3711 // it only remains to consider left shift of poison by a positive
3712 // number of places.
3713 //
3714 // A left shift by a positive number of places leaves the lowest order bit
3715 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3716 // make the poison operand violate that flag, yielding a fresh full-poison
3717 // value.
3718 auto *OBO = cast<OverflowingBinaryOperator>(I);
3719 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3720 }
3721
3722 case Instruction::Mul: {
3723 // A multiplication by zero yields a non-poison zero result, so we need to
3724 // rule out zero as an operand. Conservatively, multiplication by a
3725 // non-zero constant is not multiplication by zero.
3726 //
3727 // Multiplication by a non-zero constant can leave some bits
3728 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3729 // order bit unpoisoned. So we need to consider that.
3730 //
3731 // Multiplication by 1 preserves poison. If the multiplication has a
3732 // no-wrap flag, then we can make the poison operand violate that flag
3733 // when multiplied by any integer other than 0 and 1.
3734 auto *OBO = cast<OverflowingBinaryOperator>(I);
3735 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3736 for (Value *V : OBO->operands()) {
3737 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3738 // A ConstantInt cannot yield poison, so we can assume that it is
3739 // the other operand that is poison.
3740 return !CI->isZero();
3741 }
3742 }
3743 }
3744 return false;
3745 }
3746
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003747 case Instruction::ICmp:
3748 // Comparing poison with any value yields poison. This is why, for
3749 // instance, x s< (x +nsw 1) can be folded to true.
3750 return true;
3751
Jingyue Wu42f1d672015-07-28 18:22:40 +00003752 case Instruction::GetElementPtr:
3753 // A GEP implicitly represents a sequence of additions, subtractions,
3754 // truncations, sign extensions and multiplications. The multiplications
3755 // are by the non-zero sizes of some set of types, so we do not have to be
3756 // concerned with multiplication by zero. If the GEP is in-bounds, then
3757 // these operations are implicitly no-signed-wrap so poison is propagated
3758 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3759 return cast<GEPOperator>(I)->isInBounds();
3760
3761 default:
3762 return false;
3763 }
3764}
3765
3766const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3767 switch (I->getOpcode()) {
3768 case Instruction::Store:
3769 return cast<StoreInst>(I)->getPointerOperand();
3770
3771 case Instruction::Load:
3772 return cast<LoadInst>(I)->getPointerOperand();
3773
3774 case Instruction::AtomicCmpXchg:
3775 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3776
3777 case Instruction::AtomicRMW:
3778 return cast<AtomicRMWInst>(I)->getPointerOperand();
3779
3780 case Instruction::UDiv:
3781 case Instruction::SDiv:
3782 case Instruction::URem:
3783 case Instruction::SRem:
3784 return I->getOperand(1);
3785
3786 default:
3787 return nullptr;
3788 }
3789}
3790
3791bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3792 // We currently only look for uses of poison values within the same basic
3793 // block, as that makes it easier to guarantee that the uses will be
3794 // executed given that PoisonI is executed.
3795 //
3796 // FIXME: Expand this to consider uses beyond the same basic block. To do
3797 // this, look out for the distinction between post-dominance and strong
3798 // post-dominance.
3799 const BasicBlock *BB = PoisonI->getParent();
3800
3801 // Set of instructions that we have proved will yield poison if PoisonI
3802 // does.
3803 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003804 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003805 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003806 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003807
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003808 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003809
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003810 unsigned Iter = 0;
3811 while (Iter++ < MaxDepth) {
3812 for (auto &I : make_range(Begin, End)) {
3813 if (&I != PoisonI) {
3814 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3815 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3816 return true;
3817 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3818 return false;
3819 }
3820
3821 // Mark poison that propagates from I through uses of I.
3822 if (YieldsPoison.count(&I)) {
3823 for (const User *User : I.users()) {
3824 const Instruction *UserI = cast<Instruction>(User);
3825 if (propagatesFullPoison(UserI))
3826 YieldsPoison.insert(User);
3827 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003828 }
3829 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003830
3831 if (auto *NextBB = BB->getSingleSuccessor()) {
3832 if (Visited.insert(NextBB).second) {
3833 BB = NextBB;
3834 Begin = BB->getFirstNonPHI()->getIterator();
3835 End = BB->end();
3836 continue;
3837 }
3838 }
3839
3840 break;
3841 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003842 return false;
3843}
3844
Pete Cooper35b00d52016-08-13 01:05:32 +00003845static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00003846 if (FMF.noNaNs())
3847 return true;
3848
3849 if (auto *C = dyn_cast<ConstantFP>(V))
3850 return !C->isNaN();
3851 return false;
3852}
3853
Pete Cooper35b00d52016-08-13 01:05:32 +00003854static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00003855 if (auto *C = dyn_cast<ConstantFP>(V))
3856 return !C->isZero();
3857 return false;
3858}
3859
Sanjay Patel819f0962016-11-13 19:30:19 +00003860/// Match non-obvious integer minimum and maximum sequences.
3861static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
3862 Value *CmpLHS, Value *CmpRHS,
3863 Value *TrueVal, Value *FalseVal,
3864 Value *&LHS, Value *&RHS) {
3865 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
3866 return {SPF_UNKNOWN, SPNB_NA, false};
3867
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003868 // Z = X -nsw Y
3869 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
3870 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
3871 if (match(TrueVal, m_Zero()) &&
3872 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) {
3873 LHS = TrueVal;
3874 RHS = FalseVal;
3875 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
3876 }
3877
3878 // Z = X -nsw Y
3879 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
3880 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
3881 if (match(FalseVal, m_Zero()) &&
3882 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) {
3883 LHS = TrueVal;
3884 RHS = FalseVal;
3885 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
3886 }
3887
Sanjay Patel819f0962016-11-13 19:30:19 +00003888 const APInt *C1;
3889 if (!match(CmpRHS, m_APInt(C1)))
3890 return {SPF_UNKNOWN, SPNB_NA, false};
3891
3892 // An unsigned min/max can be written with a signed compare.
3893 const APInt *C2;
3894 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
3895 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
3896 // Is the sign bit set?
3897 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
3898 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
3899 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) {
3900 LHS = TrueVal;
3901 RHS = FalseVal;
3902 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
3903 }
3904
3905 // Is the sign bit clear?
3906 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
3907 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
3908 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
3909 C2->isMinSignedValue()) {
3910 LHS = TrueVal;
3911 RHS = FalseVal;
3912 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
3913 }
3914 }
3915
3916 // Look through 'not' ops to find disguised signed min/max.
3917 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
3918 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
3919 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
3920 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) {
3921 LHS = TrueVal;
3922 RHS = FalseVal;
3923 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
3924 }
3925
3926 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
3927 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
3928 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
3929 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) {
3930 LHS = TrueVal;
3931 RHS = FalseVal;
3932 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
3933 }
3934
3935 return {SPF_UNKNOWN, SPNB_NA, false};
3936}
3937
James Molloy134bec22015-08-11 09:12:57 +00003938static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3939 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003940 Value *CmpLHS, Value *CmpRHS,
3941 Value *TrueVal, Value *FalseVal,
3942 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003943 LHS = CmpLHS;
3944 RHS = CmpRHS;
3945
James Molloy134bec22015-08-11 09:12:57 +00003946 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3947 // return inconsistent results between implementations.
3948 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3949 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3950 // Therefore we behave conservatively and only proceed if at least one of the
3951 // operands is known to not be zero, or if we don't care about signed zeroes.
3952 switch (Pred) {
3953 default: break;
3954 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3955 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3956 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3957 !isKnownNonZero(CmpRHS))
3958 return {SPF_UNKNOWN, SPNB_NA, false};
3959 }
3960
3961 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3962 bool Ordered = false;
3963
3964 // When given one NaN and one non-NaN input:
3965 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3966 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3967 // ordered comparison fails), which could be NaN or non-NaN.
3968 // so here we discover exactly what NaN behavior is required/accepted.
3969 if (CmpInst::isFPPredicate(Pred)) {
3970 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3971 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3972
3973 if (LHSSafe && RHSSafe) {
3974 // Both operands are known non-NaN.
3975 NaNBehavior = SPNB_RETURNS_ANY;
3976 } else if (CmpInst::isOrdered(Pred)) {
3977 // An ordered comparison will return false when given a NaN, so it
3978 // returns the RHS.
3979 Ordered = true;
3980 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003981 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003982 NaNBehavior = SPNB_RETURNS_NAN;
3983 else if (RHSSafe)
3984 NaNBehavior = SPNB_RETURNS_OTHER;
3985 else
3986 // Completely unsafe.
3987 return {SPF_UNKNOWN, SPNB_NA, false};
3988 } else {
3989 Ordered = false;
3990 // An unordered comparison will return true when given a NaN, so it
3991 // returns the LHS.
3992 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003993 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003994 NaNBehavior = SPNB_RETURNS_OTHER;
3995 else if (RHSSafe)
3996 NaNBehavior = SPNB_RETURNS_NAN;
3997 else
3998 // Completely unsafe.
3999 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004000 }
4001 }
4002
James Molloy71b91c22015-05-11 14:42:20 +00004003 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004004 std::swap(CmpLHS, CmpRHS);
4005 Pred = CmpInst::getSwappedPredicate(Pred);
4006 if (NaNBehavior == SPNB_RETURNS_NAN)
4007 NaNBehavior = SPNB_RETURNS_OTHER;
4008 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4009 NaNBehavior = SPNB_RETURNS_NAN;
4010 Ordered = !Ordered;
4011 }
4012
4013 // ([if]cmp X, Y) ? X : Y
4014 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004015 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004016 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004017 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004018 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004019 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004020 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004021 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004022 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004023 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004024 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4025 case FCmpInst::FCMP_UGT:
4026 case FCmpInst::FCMP_UGE:
4027 case FCmpInst::FCMP_OGT:
4028 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4029 case FCmpInst::FCMP_ULT:
4030 case FCmpInst::FCMP_ULE:
4031 case FCmpInst::FCMP_OLT:
4032 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004033 }
4034 }
4035
Sanjay Patele372aec2016-10-27 15:26:10 +00004036 const APInt *C1;
4037 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004038 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4039 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4040
4041 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4042 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Sanjay Patele372aec2016-10-27 15:26:10 +00004043 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004044 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004045 }
4046
4047 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4048 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Sanjay Patele372aec2016-10-27 15:26:10 +00004049 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
James Molloy134bec22015-08-11 09:12:57 +00004050 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004051 }
4052 }
James Molloy71b91c22015-05-11 14:42:20 +00004053 }
4054
Sanjay Patel819f0962016-11-13 19:30:19 +00004055 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004056}
James Molloy270ef8c2015-05-15 16:04:50 +00004057
James Molloy569cea62015-09-02 17:25:25 +00004058static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4059 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00004060 CastInst *CI = dyn_cast<CastInst>(V1);
4061 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00004062 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00004063 return nullptr;
4064 *CastOp = CI->getOpcode();
4065
David Majnemerd2a074b2016-04-29 18:40:34 +00004066 if (auto *CI2 = dyn_cast<CastInst>(V2)) {
James Molloy569cea62015-09-02 17:25:25 +00004067 // If V1 and V2 are both the same cast from the same type, we can look
4068 // through V1.
4069 if (CI2->getOpcode() == CI->getOpcode() &&
4070 CI2->getSrcTy() == CI->getSrcTy())
4071 return CI2->getOperand(0);
4072 return nullptr;
4073 } else if (!C) {
4074 return nullptr;
4075 }
4076
David Majnemerd2a074b2016-04-29 18:40:34 +00004077 Constant *CastedTo = nullptr;
4078
David Majnemer826e9832016-04-29 21:22:04 +00004079 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
4080 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
4081
David Majnemerd2a074b2016-04-29 18:40:34 +00004082 if (isa<SExtInst>(CI) && CmpI->isSigned())
4083 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
4084
David Majnemer826e9832016-04-29 21:22:04 +00004085 if (isa<TruncInst>(CI))
4086 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
4087
4088 if (isa<FPTruncInst>(CI))
4089 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
4090
4091 if (isa<FPExtInst>(CI))
4092 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
4093
David Majnemerd2a074b2016-04-29 18:40:34 +00004094 if (isa<FPToUIInst>(CI))
4095 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
4096
4097 if (isa<FPToSIInst>(CI))
4098 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
4099
4100 if (isa<UIToFPInst>(CI))
4101 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
4102
4103 if (isa<SIToFPInst>(CI))
4104 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
4105
4106 if (!CastedTo)
4107 return nullptr;
4108
4109 Constant *CastedBack =
4110 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
4111 // Make sure the cast doesn't lose any information.
4112 if (CastedBack != C)
4113 return nullptr;
4114
4115 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004116}
4117
Sanjay Patele8dc0902016-05-23 17:57:54 +00004118SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004119 Instruction::CastOps *CastOp) {
4120 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004121 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004122
James Molloy134bec22015-08-11 09:12:57 +00004123 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4124 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004125
James Molloy134bec22015-08-11 09:12:57 +00004126 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004127 Value *CmpLHS = CmpI->getOperand(0);
4128 Value *CmpRHS = CmpI->getOperand(1);
4129 Value *TrueVal = SI->getTrueValue();
4130 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004131 FastMathFlags FMF;
4132 if (isa<FPMathOperator>(CmpI))
4133 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004134
4135 // Bail out early.
4136 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004137 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004138
4139 // Deal with type mismatches.
4140 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004141 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004142 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004143 cast<CastInst>(TrueVal)->getOperand(0), C,
4144 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004145 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004146 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004147 C, cast<CastInst>(FalseVal)->getOperand(0),
4148 LHS, RHS);
4149 }
James Molloy134bec22015-08-11 09:12:57 +00004150 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004151 LHS, RHS);
4152}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004153
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004154/// Return true if "icmp Pred LHS RHS" is always true.
Pete Cooper35b00d52016-08-13 01:05:32 +00004155static bool isTruePredicate(CmpInst::Predicate Pred,
4156 const Value *LHS, const Value *RHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004157 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004158 AssumptionCache *AC, const Instruction *CxtI,
4159 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004160 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004161 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4162 return true;
4163
4164 switch (Pred) {
4165 default:
4166 return false;
4167
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004168 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004169 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004170
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004171 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004172 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004173 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004174 return false;
4175 }
4176
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004177 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004178 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004179
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004180 // LHS u<= LHS +_{nuw} C for any C
4181 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004182 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004183
4184 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004185 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4186 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004187 const APInt *&CA, const APInt *&CB) {
4188 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4189 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4190 return true;
4191
4192 // If X & C == 0 then (X | C) == X +_{nuw} C
4193 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4194 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4195 unsigned BitWidth = CA->getBitWidth();
4196 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004197 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
Sanjoy Das92568102015-11-10 23:56:20 +00004198
4199 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4200 return true;
4201 }
4202
4203 return false;
4204 };
4205
Pete Cooper35b00d52016-08-13 01:05:32 +00004206 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004207 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004208 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4209 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004210
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004211 return false;
4212 }
4213 }
4214}
4215
4216/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004217/// ALHS ARHS" is true. Otherwise, return None.
4218static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004219isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4220 const Value *ARHS, const Value *BLHS,
4221 const Value *BRHS, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004222 unsigned Depth, AssumptionCache *AC,
4223 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004224 switch (Pred) {
4225 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004226 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004227
4228 case CmpInst::ICMP_SLT:
4229 case CmpInst::ICMP_SLE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004230 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004231 DT) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004232 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004233 return true;
4234 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004235
4236 case CmpInst::ICMP_ULT:
4237 case CmpInst::ICMP_ULE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004238 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4239 DT) &&
4240 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004241 return true;
4242 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004243 }
4244}
4245
Chad Rosier226a7342016-05-05 17:41:19 +00004246/// Return true if the operands of the two compares match. IsSwappedOps is true
4247/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004248static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4249 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004250 bool &IsSwappedOps) {
4251
4252 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4253 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4254 return IsMatchingOps || IsSwappedOps;
4255}
4256
Chad Rosier41dd31f2016-04-20 19:15:26 +00004257/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4258/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4259/// BRHS" is false. Otherwise, return None if we can't infer anything.
4260static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004261 const Value *ALHS,
4262 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004263 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004264 const Value *BLHS,
4265 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004266 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004267 // Canonicalize the operands so they're matching.
4268 if (IsSwappedOps) {
4269 std::swap(BLHS, BRHS);
4270 BPred = ICmpInst::getSwappedPredicate(BPred);
4271 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004272 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004273 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004274 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004275 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004276
Chad Rosier41dd31f2016-04-20 19:15:26 +00004277 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004278}
4279
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004280/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4281/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4282/// C2" is false. Otherwise, return None if we can't infer anything.
4283static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004284isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4285 const ConstantInt *C1,
4286 CmpInst::Predicate BPred,
4287 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004288 assert(ALHS == BLHS && "LHS operands must match.");
4289 ConstantRange DomCR =
4290 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4291 ConstantRange CR =
4292 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4293 ConstantRange Intersection = DomCR.intersectWith(CR);
4294 ConstantRange Difference = DomCR.difference(CR);
4295 if (Intersection.isEmptySet())
4296 return false;
4297 if (Difference.isEmptySet())
4298 return true;
4299 return None;
4300}
4301
Pete Cooper35b00d52016-08-13 01:05:32 +00004302Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00004303 const DataLayout &DL, bool InvertAPred,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004304 unsigned Depth, AssumptionCache *AC,
4305 const Instruction *CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004306 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00004307 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4308 if (LHS->getType() != RHS->getType())
4309 return None;
4310
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004311 Type *OpTy = LHS->getType();
4312 assert(OpTy->getScalarType()->isIntegerTy(1));
4313
4314 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00004315 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004316 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004317
4318 if (OpTy->isVectorTy())
4319 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004320 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004321 assert(OpTy->isIntegerTy(1) && "implied by above");
4322
4323 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004324 Value *ALHS, *ARHS;
4325 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004326
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004327 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4328 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004329 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004330
Chad Rosiere2cbd132016-04-25 17:23:36 +00004331 if (InvertAPred)
4332 APred = CmpInst::getInversePredicate(APred);
4333
Chad Rosier226a7342016-05-05 17:41:19 +00004334 // Can we infer anything when the two compares have matching operands?
4335 bool IsSwappedOps;
4336 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4337 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4338 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004339 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004340 // No amount of additional analysis will infer the second condition, so
4341 // early exit.
4342 return None;
4343 }
4344
4345 // Can we infer anything when the LHS operands match and the RHS operands are
4346 // constants (not necessarily matching)?
4347 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4348 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4349 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4350 cast<ConstantInt>(BRHS)))
4351 return Implication;
4352 // No amount of additional analysis will infer the second condition, so
4353 // early exit.
4354 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004355 }
4356
Chad Rosier41dd31f2016-04-20 19:15:26 +00004357 if (APred == BPred)
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004358 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4359 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004360
Chad Rosier41dd31f2016-04-20 19:15:26 +00004361 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004362}