blob: d2f9a1d4f16bdf136436373e9b1a6e2e2641ab9e [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000443A symbol with ``internal`` or ``private`` linkage must have ``default``
444visibility.
445
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000446.. _namedtypes:
447
Nico Rieck7157bb72014-01-14 15:22:47 +0000448DLL Storage Classes
449-------------------
450
451All Global Variables, Functions and Aliases can have one of the following
452DLL storage class:
453
454``dllimport``
455 "``dllimport``" causes the compiler to reference a function or variable via
456 a global pointer to a pointer that is set up by the DLL exporting the
457 symbol. On Microsoft Windows targets, the pointer name is formed by
458 combining ``__imp_`` and the function or variable name.
459``dllexport``
460 "``dllexport``" causes the compiler to provide a global pointer to a pointer
461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
462 Microsoft Windows targets, the pointer name is formed by combining
463 ``__imp_`` and the function or variable name. Since this storage class
464 exists for defining a dll interface, the compiler, assembler and linker know
465 it is externally referenced and must refrain from deleting the symbol.
466
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000467Structure Types
468---------------
Sean Silvab084af42012-12-07 10:36:55 +0000469
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000470LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
471types <t_struct>`. Literal types are uniqued structurally, but identified types
472are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
473to forward declare a type which is not yet available.
474
475An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000476
477.. code-block:: llvm
478
479 %mytype = type { %mytype*, i32 }
480
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000481Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
482literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000483
484.. _globalvars:
485
486Global Variables
487----------------
488
489Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000490instead of run-time.
491
492Global variables definitions must be initialized, may have an explicit section
493to be placed in, and may have an optional explicit alignment specified.
494
495Global variables in other translation units can also be declared, in which
496case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000497
498A variable may be defined as ``thread_local``, which means that it will
499not be shared by threads (each thread will have a separated copy of the
500variable). Not all targets support thread-local variables. Optionally, a
501TLS model may be specified:
502
503``localdynamic``
504 For variables that are only used within the current shared library.
505``initialexec``
506 For variables in modules that will not be loaded dynamically.
507``localexec``
508 For variables defined in the executable and only used within it.
509
510The models correspond to the ELF TLS models; see `ELF Handling For
511Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
512more information on under which circumstances the different models may
513be used. The target may choose a different TLS model if the specified
514model is not supported, or if a better choice of model can be made.
515
Michael Gottesman006039c2013-01-31 05:48:48 +0000516A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000517the contents of the variable will **never** be modified (enabling better
518optimization, allowing the global data to be placed in the read-only
519section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000520initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000521variable.
522
523LLVM explicitly allows *declarations* of global variables to be marked
524constant, even if the final definition of the global is not. This
525capability can be used to enable slightly better optimization of the
526program, but requires the language definition to guarantee that
527optimizations based on the 'constantness' are valid for the translation
528units that do not include the definition.
529
530As SSA values, global variables define pointer values that are in scope
531(i.e. they dominate) all basic blocks in the program. Global variables
532always define a pointer to their "content" type because they describe a
533region of memory, and all memory objects in LLVM are accessed through
534pointers.
535
536Global variables can be marked with ``unnamed_addr`` which indicates
537that the address is not significant, only the content. Constants marked
538like this can be merged with other constants if they have the same
539initializer. Note that a constant with significant address *can* be
540merged with a ``unnamed_addr`` constant, the result being a constant
541whose address is significant.
542
543A global variable may be declared to reside in a target-specific
544numbered address space. For targets that support them, address spaces
545may affect how optimizations are performed and/or what target
546instructions are used to access the variable. The default address space
547is zero. The address space qualifier must precede any other attributes.
548
549LLVM allows an explicit section to be specified for globals. If the
550target supports it, it will emit globals to the section specified.
551
Michael Gottesmane743a302013-02-04 03:22:00 +0000552By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000553variables defined within the module are not modified from their
554initial values before the start of the global initializer. This is
555true even for variables potentially accessible from outside the
556module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000557``@llvm.used`` or dllexported variables. This assumption may be suppressed
558by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000559
Sean Silvab084af42012-12-07 10:36:55 +0000560An explicit alignment may be specified for a global, which must be a
561power of 2. If not present, or if the alignment is set to zero, the
562alignment of the global is set by the target to whatever it feels
563convenient. If an explicit alignment is specified, the global is forced
564to have exactly that alignment. Targets and optimizers are not allowed
565to over-align the global if the global has an assigned section. In this
566case, the extra alignment could be observable: for example, code could
567assume that the globals are densely packed in their section and try to
568iterate over them as an array, alignment padding would break this
569iteration.
570
Nico Rieck7157bb72014-01-14 15:22:47 +0000571Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
572
573Syntax::
574
575 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
576 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
577 <global | constant> <Type>
578 [, section "name"] [, align <Alignment>]
579
Sean Silvab084af42012-12-07 10:36:55 +0000580For example, the following defines a global in a numbered address space
581with an initializer, section, and alignment:
582
583.. code-block:: llvm
584
585 @G = addrspace(5) constant float 1.0, section "foo", align 4
586
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000587The following example just declares a global variable
588
589.. code-block:: llvm
590
591 @G = external global i32
592
Sean Silvab084af42012-12-07 10:36:55 +0000593The following example defines a thread-local global with the
594``initialexec`` TLS model:
595
596.. code-block:: llvm
597
598 @G = thread_local(initialexec) global i32 0, align 4
599
600.. _functionstructure:
601
602Functions
603---------
604
605LLVM function definitions consist of the "``define``" keyword, an
606optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000607style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
608an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000609an optional ``unnamed_addr`` attribute, a return type, an optional
610:ref:`parameter attribute <paramattrs>` for the return type, a function
611name, a (possibly empty) argument list (each with optional :ref:`parameter
612attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
613an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000614collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
615curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000616
617LLVM function declarations consist of the "``declare``" keyword, an
618optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000619style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
620an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000621an optional ``unnamed_addr`` attribute, a return type, an optional
622:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000623name, a possibly empty list of arguments, an optional alignment, an optional
624:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000625
Bill Wendling6822ecb2013-10-27 05:09:12 +0000626A function definition contains a list of basic blocks, forming the CFG (Control
627Flow Graph) for the function. Each basic block may optionally start with a label
628(giving the basic block a symbol table entry), contains a list of instructions,
629and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
630function return). If an explicit label is not provided, a block is assigned an
631implicit numbered label, using the next value from the same counter as used for
632unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
633entry block does not have an explicit label, it will be assigned label "%0",
634then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000635
636The first basic block in a function is special in two ways: it is
637immediately executed on entrance to the function, and it is not allowed
638to have predecessor basic blocks (i.e. there can not be any branches to
639the entry block of a function). Because the block can have no
640predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
641
642LLVM allows an explicit section to be specified for functions. If the
643target supports it, it will emit functions to the section specified.
644
645An explicit alignment may be specified for a function. If not present,
646or if the alignment is set to zero, the alignment of the function is set
647by the target to whatever it feels convenient. If an explicit alignment
648is specified, the function is forced to have at least that much
649alignment. All alignments must be a power of 2.
650
651If the ``unnamed_addr`` attribute is given, the address is know to not
652be significant and two identical functions can be merged.
653
654Syntax::
655
Nico Rieck7157bb72014-01-14 15:22:47 +0000656 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000657 [cconv] [ret attrs]
658 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola84c76ae2014-03-07 04:28:28 +0000659 [unnamed_addr] [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000660 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000661
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000662.. _langref_aliases:
663
Sean Silvab084af42012-12-07 10:36:55 +0000664Aliases
665-------
666
667Aliases act as "second name" for the aliasee value (which can be either
668function, global variable, another alias or bitcast of global value).
Nico Rieck7157bb72014-01-14 15:22:47 +0000669Aliases may have an optional :ref:`linkage type <linkage>`, an optional
670:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
671<dllstorageclass>`.
Sean Silvab084af42012-12-07 10:36:55 +0000672
673Syntax::
674
Nico Rieck7157bb72014-01-14 15:22:47 +0000675 @<Name> = [Visibility] [DLLStorageClass] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000676
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000677The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000678``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000679might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000680alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000681
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000682Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
683the aliasee.
684
685The aliasee must be a definition.
686
Rafael Espindola24a669d2014-03-27 15:26:56 +0000687Aliases are not allowed to point to aliases with linkages that can be
688overridden. Since they are only a second name, the possibility of the
689intermediate alias being overridden cannot be represented in an object file.
690
Sean Silvab084af42012-12-07 10:36:55 +0000691.. _namedmetadatastructure:
692
693Named Metadata
694--------------
695
696Named metadata is a collection of metadata. :ref:`Metadata
697nodes <metadata>` (but not metadata strings) are the only valid
698operands for a named metadata.
699
700Syntax::
701
702 ; Some unnamed metadata nodes, which are referenced by the named metadata.
703 !0 = metadata !{metadata !"zero"}
704 !1 = metadata !{metadata !"one"}
705 !2 = metadata !{metadata !"two"}
706 ; A named metadata.
707 !name = !{!0, !1, !2}
708
709.. _paramattrs:
710
711Parameter Attributes
712--------------------
713
714The return type and each parameter of a function type may have a set of
715*parameter attributes* associated with them. Parameter attributes are
716used to communicate additional information about the result or
717parameters of a function. Parameter attributes are considered to be part
718of the function, not of the function type, so functions with different
719parameter attributes can have the same function type.
720
721Parameter attributes are simple keywords that follow the type specified.
722If multiple parameter attributes are needed, they are space separated.
723For example:
724
725.. code-block:: llvm
726
727 declare i32 @printf(i8* noalias nocapture, ...)
728 declare i32 @atoi(i8 zeroext)
729 declare signext i8 @returns_signed_char()
730
731Note that any attributes for the function result (``nounwind``,
732``readonly``) come immediately after the argument list.
733
734Currently, only the following parameter attributes are defined:
735
736``zeroext``
737 This indicates to the code generator that the parameter or return
738 value should be zero-extended to the extent required by the target's
739 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
740 the caller (for a parameter) or the callee (for a return value).
741``signext``
742 This indicates to the code generator that the parameter or return
743 value should be sign-extended to the extent required by the target's
744 ABI (which is usually 32-bits) by the caller (for a parameter) or
745 the callee (for a return value).
746``inreg``
747 This indicates that this parameter or return value should be treated
748 in a special target-dependent fashion during while emitting code for
749 a function call or return (usually, by putting it in a register as
750 opposed to memory, though some targets use it to distinguish between
751 two different kinds of registers). Use of this attribute is
752 target-specific.
753``byval``
754 This indicates that the pointer parameter should really be passed by
755 value to the function. The attribute implies that a hidden copy of
756 the pointee is made between the caller and the callee, so the callee
757 is unable to modify the value in the caller. This attribute is only
758 valid on LLVM pointer arguments. It is generally used to pass
759 structs and arrays by value, but is also valid on pointers to
760 scalars. The copy is considered to belong to the caller not the
761 callee (for example, ``readonly`` functions should not write to
762 ``byval`` parameters). This is not a valid attribute for return
763 values.
764
765 The byval attribute also supports specifying an alignment with the
766 align attribute. It indicates the alignment of the stack slot to
767 form and the known alignment of the pointer specified to the call
768 site. If the alignment is not specified, then the code generator
769 makes a target-specific assumption.
770
Reid Klecknera534a382013-12-19 02:14:12 +0000771.. _attr_inalloca:
772
773``inalloca``
774
Reid Kleckner60d3a832014-01-16 22:59:24 +0000775 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000776 address of outgoing stack arguments. An ``inalloca`` argument must
777 be a pointer to stack memory produced by an ``alloca`` instruction.
778 The alloca, or argument allocation, must also be tagged with the
779 inalloca keyword. Only the past argument may have the ``inalloca``
780 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000781
Reid Kleckner436c42e2014-01-17 23:58:17 +0000782 An argument allocation may be used by a call at most once because
783 the call may deallocate it. The ``inalloca`` attribute cannot be
784 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000785 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
786 ``inalloca`` attribute also disables LLVM's implicit lowering of
787 large aggregate return values, which means that frontend authors
788 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000789
Reid Kleckner60d3a832014-01-16 22:59:24 +0000790 When the call site is reached, the argument allocation must have
791 been the most recent stack allocation that is still live, or the
792 results are undefined. It is possible to allocate additional stack
793 space after an argument allocation and before its call site, but it
794 must be cleared off with :ref:`llvm.stackrestore
795 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000796
797 See :doc:`InAlloca` for more information on how to use this
798 attribute.
799
Sean Silvab084af42012-12-07 10:36:55 +0000800``sret``
801 This indicates that the pointer parameter specifies the address of a
802 structure that is the return value of the function in the source
803 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000804 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000805 not to trap and to be properly aligned. This may only be applied to
806 the first parameter. This is not a valid attribute for return
807 values.
Sean Silva1703e702014-04-08 21:06:22 +0000808
809.. _noalias:
810
Sean Silvab084af42012-12-07 10:36:55 +0000811``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000812 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000813 the argument or return value do not alias pointer values which are
814 not *based* on it, ignoring certain "irrelevant" dependencies. For a
815 call to the parent function, dependencies between memory references
816 from before or after the call and from those during the call are
817 "irrelevant" to the ``noalias`` keyword for the arguments and return
818 value used in that call. The caller shares the responsibility with
819 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000820 details, please see the discussion of the NoAlias response in :ref:`alias
821 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000822
823 Note that this definition of ``noalias`` is intentionally similar
824 to the definition of ``restrict`` in C99 for function arguments,
825 though it is slightly weaker.
826
827 For function return values, C99's ``restrict`` is not meaningful,
828 while LLVM's ``noalias`` is.
829``nocapture``
830 This indicates that the callee does not make any copies of the
831 pointer that outlive the callee itself. This is not a valid
832 attribute for return values.
833
834.. _nest:
835
836``nest``
837 This indicates that the pointer parameter can be excised using the
838 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000839 attribute for return values and can only be applied to one parameter.
840
841``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000842 This indicates that the function always returns the argument as its return
843 value. This is an optimization hint to the code generator when generating
844 the caller, allowing tail call optimization and omission of register saves
845 and restores in some cases; it is not checked or enforced when generating
846 the callee. The parameter and the function return type must be valid
847 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
848 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000849
850.. _gc:
851
852Garbage Collector Names
853-----------------------
854
855Each function may specify a garbage collector name, which is simply a
856string:
857
858.. code-block:: llvm
859
860 define void @f() gc "name" { ... }
861
862The compiler declares the supported values of *name*. Specifying a
863collector which will cause the compiler to alter its output in order to
864support the named garbage collection algorithm.
865
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000866.. _prefixdata:
867
868Prefix Data
869-----------
870
871Prefix data is data associated with a function which the code generator
872will emit immediately before the function body. The purpose of this feature
873is to allow frontends to associate language-specific runtime metadata with
874specific functions and make it available through the function pointer while
875still allowing the function pointer to be called. To access the data for a
876given function, a program may bitcast the function pointer to a pointer to
877the constant's type. This implies that the IR symbol points to the start
878of the prefix data.
879
880To maintain the semantics of ordinary function calls, the prefix data must
881have a particular format. Specifically, it must begin with a sequence of
882bytes which decode to a sequence of machine instructions, valid for the
883module's target, which transfer control to the point immediately succeeding
884the prefix data, without performing any other visible action. This allows
885the inliner and other passes to reason about the semantics of the function
886definition without needing to reason about the prefix data. Obviously this
887makes the format of the prefix data highly target dependent.
888
Peter Collingbourne213358a2013-09-23 20:14:21 +0000889Prefix data is laid out as if it were an initializer for a global variable
890of the prefix data's type. No padding is automatically placed between the
891prefix data and the function body. If padding is required, it must be part
892of the prefix data.
893
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000894A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
895which encodes the ``nop`` instruction:
896
897.. code-block:: llvm
898
899 define void @f() prefix i8 144 { ... }
900
901Generally prefix data can be formed by encoding a relative branch instruction
902which skips the metadata, as in this example of valid prefix data for the
903x86_64 architecture, where the first two bytes encode ``jmp .+10``:
904
905.. code-block:: llvm
906
907 %0 = type <{ i8, i8, i8* }>
908
909 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
910
911A function may have prefix data but no body. This has similar semantics
912to the ``available_externally`` linkage in that the data may be used by the
913optimizers but will not be emitted in the object file.
914
Bill Wendling63b88192013-02-06 06:52:58 +0000915.. _attrgrp:
916
917Attribute Groups
918----------------
919
920Attribute groups are groups of attributes that are referenced by objects within
921the IR. They are important for keeping ``.ll`` files readable, because a lot of
922functions will use the same set of attributes. In the degenerative case of a
923``.ll`` file that corresponds to a single ``.c`` file, the single attribute
924group will capture the important command line flags used to build that file.
925
926An attribute group is a module-level object. To use an attribute group, an
927object references the attribute group's ID (e.g. ``#37``). An object may refer
928to more than one attribute group. In that situation, the attributes from the
929different groups are merged.
930
931Here is an example of attribute groups for a function that should always be
932inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
933
934.. code-block:: llvm
935
936 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000937 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000938
939 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000940 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000941
942 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
943 define void @f() #0 #1 { ... }
944
Sean Silvab084af42012-12-07 10:36:55 +0000945.. _fnattrs:
946
947Function Attributes
948-------------------
949
950Function attributes are set to communicate additional information about
951a function. Function attributes are considered to be part of the
952function, not of the function type, so functions with different function
953attributes can have the same function type.
954
955Function attributes are simple keywords that follow the type specified.
956If multiple attributes are needed, they are space separated. For
957example:
958
959.. code-block:: llvm
960
961 define void @f() noinline { ... }
962 define void @f() alwaysinline { ... }
963 define void @f() alwaysinline optsize { ... }
964 define void @f() optsize { ... }
965
Sean Silvab084af42012-12-07 10:36:55 +0000966``alignstack(<n>)``
967 This attribute indicates that, when emitting the prologue and
968 epilogue, the backend should forcibly align the stack pointer.
969 Specify the desired alignment, which must be a power of two, in
970 parentheses.
971``alwaysinline``
972 This attribute indicates that the inliner should attempt to inline
973 this function into callers whenever possible, ignoring any active
974 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000975``builtin``
976 This indicates that the callee function at a call site should be
977 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000978 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000979 direct calls to functions which are declared with the ``nobuiltin``
980 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000981``cold``
982 This attribute indicates that this function is rarely called. When
983 computing edge weights, basic blocks post-dominated by a cold
984 function call are also considered to be cold; and, thus, given low
985 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000986``inlinehint``
987 This attribute indicates that the source code contained a hint that
988 inlining this function is desirable (such as the "inline" keyword in
989 C/C++). It is just a hint; it imposes no requirements on the
990 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000991``minsize``
992 This attribute suggests that optimization passes and code generator
993 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000994 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000995 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +0000996``naked``
997 This attribute disables prologue / epilogue emission for the
998 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +0000999``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001000 This indicates that the callee function at a call site is not recognized as
1001 a built-in function. LLVM will retain the original call and not replace it
1002 with equivalent code based on the semantics of the built-in function, unless
1003 the call site uses the ``builtin`` attribute. This is valid at call sites
1004 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001005``noduplicate``
1006 This attribute indicates that calls to the function cannot be
1007 duplicated. A call to a ``noduplicate`` function may be moved
1008 within its parent function, but may not be duplicated within
1009 its parent function.
1010
1011 A function containing a ``noduplicate`` call may still
1012 be an inlining candidate, provided that the call is not
1013 duplicated by inlining. That implies that the function has
1014 internal linkage and only has one call site, so the original
1015 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001016``noimplicitfloat``
1017 This attributes disables implicit floating point instructions.
1018``noinline``
1019 This attribute indicates that the inliner should never inline this
1020 function in any situation. This attribute may not be used together
1021 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001022``nonlazybind``
1023 This attribute suppresses lazy symbol binding for the function. This
1024 may make calls to the function faster, at the cost of extra program
1025 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001026``noredzone``
1027 This attribute indicates that the code generator should not use a
1028 red zone, even if the target-specific ABI normally permits it.
1029``noreturn``
1030 This function attribute indicates that the function never returns
1031 normally. This produces undefined behavior at runtime if the
1032 function ever does dynamically return.
1033``nounwind``
1034 This function attribute indicates that the function never returns
1035 with an unwind or exceptional control flow. If the function does
1036 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001037``optnone``
1038 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001039 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001040 exception of interprocedural optimization passes.
1041 This attribute cannot be used together with the ``alwaysinline``
1042 attribute; this attribute is also incompatible
1043 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001044
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001045 This attribute requires the ``noinline`` attribute to be specified on
1046 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001047 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001048 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001049``optsize``
1050 This attribute suggests that optimization passes and code generator
1051 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001052 and otherwise do optimizations specifically to reduce code size as
1053 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001054``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001055 On a function, this attribute indicates that the function computes its
1056 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001057 without dereferencing any pointer arguments or otherwise accessing
1058 any mutable state (e.g. memory, control registers, etc) visible to
1059 caller functions. It does not write through any pointer arguments
1060 (including ``byval`` arguments) and never changes any state visible
1061 to callers. This means that it cannot unwind exceptions by calling
1062 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001063
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001064 On an argument, this attribute indicates that the function does not
1065 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001066 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001067``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001068 On a function, this attribute indicates that the function does not write
1069 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001070 modify any state (e.g. memory, control registers, etc) visible to
1071 caller functions. It may dereference pointer arguments and read
1072 state that may be set in the caller. A readonly function always
1073 returns the same value (or unwinds an exception identically) when
1074 called with the same set of arguments and global state. It cannot
1075 unwind an exception by calling the ``C++`` exception throwing
1076 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001077
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001078 On an argument, this attribute indicates that the function does not write
1079 through this pointer argument, even though it may write to the memory that
1080 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001081``returns_twice``
1082 This attribute indicates that this function can return twice. The C
1083 ``setjmp`` is an example of such a function. The compiler disables
1084 some optimizations (like tail calls) in the caller of these
1085 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001086``sanitize_address``
1087 This attribute indicates that AddressSanitizer checks
1088 (dynamic address safety analysis) are enabled for this function.
1089``sanitize_memory``
1090 This attribute indicates that MemorySanitizer checks (dynamic detection
1091 of accesses to uninitialized memory) are enabled for this function.
1092``sanitize_thread``
1093 This attribute indicates that ThreadSanitizer checks
1094 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001095``ssp``
1096 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001097 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001098 placed on the stack before the local variables that's checked upon
1099 return from the function to see if it has been overwritten. A
1100 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001101 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001102
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001103 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1104 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1105 - Calls to alloca() with variable sizes or constant sizes greater than
1106 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001107
Josh Magee24c7f062014-02-01 01:36:16 +00001108 Variables that are identified as requiring a protector will be arranged
1109 on the stack such that they are adjacent to the stack protector guard.
1110
Sean Silvab084af42012-12-07 10:36:55 +00001111 If a function that has an ``ssp`` attribute is inlined into a
1112 function that doesn't have an ``ssp`` attribute, then the resulting
1113 function will have an ``ssp`` attribute.
1114``sspreq``
1115 This attribute indicates that the function should *always* emit a
1116 stack smashing protector. This overrides the ``ssp`` function
1117 attribute.
1118
Josh Magee24c7f062014-02-01 01:36:16 +00001119 Variables that are identified as requiring a protector will be arranged
1120 on the stack such that they are adjacent to the stack protector guard.
1121 The specific layout rules are:
1122
1123 #. Large arrays and structures containing large arrays
1124 (``>= ssp-buffer-size``) are closest to the stack protector.
1125 #. Small arrays and structures containing small arrays
1126 (``< ssp-buffer-size``) are 2nd closest to the protector.
1127 #. Variables that have had their address taken are 3rd closest to the
1128 protector.
1129
Sean Silvab084af42012-12-07 10:36:55 +00001130 If a function that has an ``sspreq`` attribute is inlined into a
1131 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001132 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1133 an ``sspreq`` attribute.
1134``sspstrong``
1135 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001136 protector. This attribute causes a strong heuristic to be used when
1137 determining if a function needs stack protectors. The strong heuristic
1138 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001139
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001140 - Arrays of any size and type
1141 - Aggregates containing an array of any size and type.
1142 - Calls to alloca().
1143 - Local variables that have had their address taken.
1144
Josh Magee24c7f062014-02-01 01:36:16 +00001145 Variables that are identified as requiring a protector will be arranged
1146 on the stack such that they are adjacent to the stack protector guard.
1147 The specific layout rules are:
1148
1149 #. Large arrays and structures containing large arrays
1150 (``>= ssp-buffer-size``) are closest to the stack protector.
1151 #. Small arrays and structures containing small arrays
1152 (``< ssp-buffer-size``) are 2nd closest to the protector.
1153 #. Variables that have had their address taken are 3rd closest to the
1154 protector.
1155
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001156 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001157
1158 If a function that has an ``sspstrong`` attribute is inlined into a
1159 function that doesn't have an ``sspstrong`` attribute, then the
1160 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001161``uwtable``
1162 This attribute indicates that the ABI being targeted requires that
1163 an unwind table entry be produce for this function even if we can
1164 show that no exceptions passes by it. This is normally the case for
1165 the ELF x86-64 abi, but it can be disabled for some compilation
1166 units.
Sean Silvab084af42012-12-07 10:36:55 +00001167
1168.. _moduleasm:
1169
1170Module-Level Inline Assembly
1171----------------------------
1172
1173Modules may contain "module-level inline asm" blocks, which corresponds
1174to the GCC "file scope inline asm" blocks. These blocks are internally
1175concatenated by LLVM and treated as a single unit, but may be separated
1176in the ``.ll`` file if desired. The syntax is very simple:
1177
1178.. code-block:: llvm
1179
1180 module asm "inline asm code goes here"
1181 module asm "more can go here"
1182
1183The strings can contain any character by escaping non-printable
1184characters. The escape sequence used is simply "\\xx" where "xx" is the
1185two digit hex code for the number.
1186
1187The inline asm code is simply printed to the machine code .s file when
1188assembly code is generated.
1189
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001190.. _langref_datalayout:
1191
Sean Silvab084af42012-12-07 10:36:55 +00001192Data Layout
1193-----------
1194
1195A module may specify a target specific data layout string that specifies
1196how data is to be laid out in memory. The syntax for the data layout is
1197simply:
1198
1199.. code-block:: llvm
1200
1201 target datalayout = "layout specification"
1202
1203The *layout specification* consists of a list of specifications
1204separated by the minus sign character ('-'). Each specification starts
1205with a letter and may include other information after the letter to
1206define some aspect of the data layout. The specifications accepted are
1207as follows:
1208
1209``E``
1210 Specifies that the target lays out data in big-endian form. That is,
1211 the bits with the most significance have the lowest address
1212 location.
1213``e``
1214 Specifies that the target lays out data in little-endian form. That
1215 is, the bits with the least significance have the lowest address
1216 location.
1217``S<size>``
1218 Specifies the natural alignment of the stack in bits. Alignment
1219 promotion of stack variables is limited to the natural stack
1220 alignment to avoid dynamic stack realignment. The stack alignment
1221 must be a multiple of 8-bits. If omitted, the natural stack
1222 alignment defaults to "unspecified", which does not prevent any
1223 alignment promotions.
1224``p[n]:<size>:<abi>:<pref>``
1225 This specifies the *size* of a pointer and its ``<abi>`` and
1226 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001227 bits. The address space, ``n`` is optional, and if not specified,
1228 denotes the default address space 0. The value of ``n`` must be
1229 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001230``i<size>:<abi>:<pref>``
1231 This specifies the alignment for an integer type of a given bit
1232 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1233``v<size>:<abi>:<pref>``
1234 This specifies the alignment for a vector type of a given bit
1235 ``<size>``.
1236``f<size>:<abi>:<pref>``
1237 This specifies the alignment for a floating point type of a given bit
1238 ``<size>``. Only values of ``<size>`` that are supported by the target
1239 will work. 32 (float) and 64 (double) are supported on all targets; 80
1240 or 128 (different flavors of long double) are also supported on some
1241 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001242``a:<abi>:<pref>``
1243 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001244``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001245 If present, specifies that llvm names are mangled in the output. The
1246 options are
1247
1248 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1249 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1250 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1251 symbols get a ``_`` prefix.
1252 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1253 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001254``n<size1>:<size2>:<size3>...``
1255 This specifies a set of native integer widths for the target CPU in
1256 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1257 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1258 this set are considered to support most general arithmetic operations
1259 efficiently.
1260
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001261On every specification that takes a ``<abi>:<pref>``, specifying the
1262``<pref>`` alignment is optional. If omitted, the preceding ``:``
1263should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1264
Sean Silvab084af42012-12-07 10:36:55 +00001265When constructing the data layout for a given target, LLVM starts with a
1266default set of specifications which are then (possibly) overridden by
1267the specifications in the ``datalayout`` keyword. The default
1268specifications are given in this list:
1269
1270- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001271- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1272- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1273 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001274- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001275- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1276- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1277- ``i16:16:16`` - i16 is 16-bit aligned
1278- ``i32:32:32`` - i32 is 32-bit aligned
1279- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1280 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001281- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001282- ``f32:32:32`` - float is 32-bit aligned
1283- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001284- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001285- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1286- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001287- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001288
1289When LLVM is determining the alignment for a given type, it uses the
1290following rules:
1291
1292#. If the type sought is an exact match for one of the specifications,
1293 that specification is used.
1294#. If no match is found, and the type sought is an integer type, then
1295 the smallest integer type that is larger than the bitwidth of the
1296 sought type is used. If none of the specifications are larger than
1297 the bitwidth then the largest integer type is used. For example,
1298 given the default specifications above, the i7 type will use the
1299 alignment of i8 (next largest) while both i65 and i256 will use the
1300 alignment of i64 (largest specified).
1301#. If no match is found, and the type sought is a vector type, then the
1302 largest vector type that is smaller than the sought vector type will
1303 be used as a fall back. This happens because <128 x double> can be
1304 implemented in terms of 64 <2 x double>, for example.
1305
1306The function of the data layout string may not be what you expect.
1307Notably, this is not a specification from the frontend of what alignment
1308the code generator should use.
1309
1310Instead, if specified, the target data layout is required to match what
1311the ultimate *code generator* expects. This string is used by the
1312mid-level optimizers to improve code, and this only works if it matches
1313what the ultimate code generator uses. If you would like to generate IR
1314that does not embed this target-specific detail into the IR, then you
1315don't have to specify the string. This will disable some optimizations
1316that require precise layout information, but this also prevents those
1317optimizations from introducing target specificity into the IR.
1318
Bill Wendling5cc90842013-10-18 23:41:25 +00001319.. _langref_triple:
1320
1321Target Triple
1322-------------
1323
1324A module may specify a target triple string that describes the target
1325host. The syntax for the target triple is simply:
1326
1327.. code-block:: llvm
1328
1329 target triple = "x86_64-apple-macosx10.7.0"
1330
1331The *target triple* string consists of a series of identifiers delimited
1332by the minus sign character ('-'). The canonical forms are:
1333
1334::
1335
1336 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1337 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1338
1339This information is passed along to the backend so that it generates
1340code for the proper architecture. It's possible to override this on the
1341command line with the ``-mtriple`` command line option.
1342
Sean Silvab084af42012-12-07 10:36:55 +00001343.. _pointeraliasing:
1344
1345Pointer Aliasing Rules
1346----------------------
1347
1348Any memory access must be done through a pointer value associated with
1349an address range of the memory access, otherwise the behavior is
1350undefined. Pointer values are associated with address ranges according
1351to the following rules:
1352
1353- A pointer value is associated with the addresses associated with any
1354 value it is *based* on.
1355- An address of a global variable is associated with the address range
1356 of the variable's storage.
1357- The result value of an allocation instruction is associated with the
1358 address range of the allocated storage.
1359- A null pointer in the default address-space is associated with no
1360 address.
1361- An integer constant other than zero or a pointer value returned from
1362 a function not defined within LLVM may be associated with address
1363 ranges allocated through mechanisms other than those provided by
1364 LLVM. Such ranges shall not overlap with any ranges of addresses
1365 allocated by mechanisms provided by LLVM.
1366
1367A pointer value is *based* on another pointer value according to the
1368following rules:
1369
1370- A pointer value formed from a ``getelementptr`` operation is *based*
1371 on the first operand of the ``getelementptr``.
1372- The result value of a ``bitcast`` is *based* on the operand of the
1373 ``bitcast``.
1374- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1375 values that contribute (directly or indirectly) to the computation of
1376 the pointer's value.
1377- The "*based* on" relationship is transitive.
1378
1379Note that this definition of *"based"* is intentionally similar to the
1380definition of *"based"* in C99, though it is slightly weaker.
1381
1382LLVM IR does not associate types with memory. The result type of a
1383``load`` merely indicates the size and alignment of the memory from
1384which to load, as well as the interpretation of the value. The first
1385operand type of a ``store`` similarly only indicates the size and
1386alignment of the store.
1387
1388Consequently, type-based alias analysis, aka TBAA, aka
1389``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1390:ref:`Metadata <metadata>` may be used to encode additional information
1391which specialized optimization passes may use to implement type-based
1392alias analysis.
1393
1394.. _volatile:
1395
1396Volatile Memory Accesses
1397------------------------
1398
1399Certain memory accesses, such as :ref:`load <i_load>`'s,
1400:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1401marked ``volatile``. The optimizers must not change the number of
1402volatile operations or change their order of execution relative to other
1403volatile operations. The optimizers *may* change the order of volatile
1404operations relative to non-volatile operations. This is not Java's
1405"volatile" and has no cross-thread synchronization behavior.
1406
Andrew Trick89fc5a62013-01-30 21:19:35 +00001407IR-level volatile loads and stores cannot safely be optimized into
1408llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1409flagged volatile. Likewise, the backend should never split or merge
1410target-legal volatile load/store instructions.
1411
Andrew Trick7e6f9282013-01-31 00:49:39 +00001412.. admonition:: Rationale
1413
1414 Platforms may rely on volatile loads and stores of natively supported
1415 data width to be executed as single instruction. For example, in C
1416 this holds for an l-value of volatile primitive type with native
1417 hardware support, but not necessarily for aggregate types. The
1418 frontend upholds these expectations, which are intentionally
1419 unspecified in the IR. The rules above ensure that IR transformation
1420 do not violate the frontend's contract with the language.
1421
Sean Silvab084af42012-12-07 10:36:55 +00001422.. _memmodel:
1423
1424Memory Model for Concurrent Operations
1425--------------------------------------
1426
1427The LLVM IR does not define any way to start parallel threads of
1428execution or to register signal handlers. Nonetheless, there are
1429platform-specific ways to create them, and we define LLVM IR's behavior
1430in their presence. This model is inspired by the C++0x memory model.
1431
1432For a more informal introduction to this model, see the :doc:`Atomics`.
1433
1434We define a *happens-before* partial order as the least partial order
1435that
1436
1437- Is a superset of single-thread program order, and
1438- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1439 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1440 techniques, like pthread locks, thread creation, thread joining,
1441 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1442 Constraints <ordering>`).
1443
1444Note that program order does not introduce *happens-before* edges
1445between a thread and signals executing inside that thread.
1446
1447Every (defined) read operation (load instructions, memcpy, atomic
1448loads/read-modify-writes, etc.) R reads a series of bytes written by
1449(defined) write operations (store instructions, atomic
1450stores/read-modify-writes, memcpy, etc.). For the purposes of this
1451section, initialized globals are considered to have a write of the
1452initializer which is atomic and happens before any other read or write
1453of the memory in question. For each byte of a read R, R\ :sub:`byte`
1454may see any write to the same byte, except:
1455
1456- If write\ :sub:`1` happens before write\ :sub:`2`, and
1457 write\ :sub:`2` happens before R\ :sub:`byte`, then
1458 R\ :sub:`byte` does not see write\ :sub:`1`.
1459- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1460 R\ :sub:`byte` does not see write\ :sub:`3`.
1461
1462Given that definition, R\ :sub:`byte` is defined as follows:
1463
1464- If R is volatile, the result is target-dependent. (Volatile is
1465 supposed to give guarantees which can support ``sig_atomic_t`` in
1466 C/C++, and may be used for accesses to addresses which do not behave
1467 like normal memory. It does not generally provide cross-thread
1468 synchronization.)
1469- Otherwise, if there is no write to the same byte that happens before
1470 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1471- Otherwise, if R\ :sub:`byte` may see exactly one write,
1472 R\ :sub:`byte` returns the value written by that write.
1473- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1474 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1475 Memory Ordering Constraints <ordering>` section for additional
1476 constraints on how the choice is made.
1477- Otherwise R\ :sub:`byte` returns ``undef``.
1478
1479R returns the value composed of the series of bytes it read. This
1480implies that some bytes within the value may be ``undef`` **without**
1481the entire value being ``undef``. Note that this only defines the
1482semantics of the operation; it doesn't mean that targets will emit more
1483than one instruction to read the series of bytes.
1484
1485Note that in cases where none of the atomic intrinsics are used, this
1486model places only one restriction on IR transformations on top of what
1487is required for single-threaded execution: introducing a store to a byte
1488which might not otherwise be stored is not allowed in general.
1489(Specifically, in the case where another thread might write to and read
1490from an address, introducing a store can change a load that may see
1491exactly one write into a load that may see multiple writes.)
1492
1493.. _ordering:
1494
1495Atomic Memory Ordering Constraints
1496----------------------------------
1497
1498Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1499:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1500:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001501ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001502the same address they *synchronize with*. These semantics are borrowed
1503from Java and C++0x, but are somewhat more colloquial. If these
1504descriptions aren't precise enough, check those specs (see spec
1505references in the :doc:`atomics guide <Atomics>`).
1506:ref:`fence <i_fence>` instructions treat these orderings somewhat
1507differently since they don't take an address. See that instruction's
1508documentation for details.
1509
1510For a simpler introduction to the ordering constraints, see the
1511:doc:`Atomics`.
1512
1513``unordered``
1514 The set of values that can be read is governed by the happens-before
1515 partial order. A value cannot be read unless some operation wrote
1516 it. This is intended to provide a guarantee strong enough to model
1517 Java's non-volatile shared variables. This ordering cannot be
1518 specified for read-modify-write operations; it is not strong enough
1519 to make them atomic in any interesting way.
1520``monotonic``
1521 In addition to the guarantees of ``unordered``, there is a single
1522 total order for modifications by ``monotonic`` operations on each
1523 address. All modification orders must be compatible with the
1524 happens-before order. There is no guarantee that the modification
1525 orders can be combined to a global total order for the whole program
1526 (and this often will not be possible). The read in an atomic
1527 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1528 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1529 order immediately before the value it writes. If one atomic read
1530 happens before another atomic read of the same address, the later
1531 read must see the same value or a later value in the address's
1532 modification order. This disallows reordering of ``monotonic`` (or
1533 stronger) operations on the same address. If an address is written
1534 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1535 read that address repeatedly, the other threads must eventually see
1536 the write. This corresponds to the C++0x/C1x
1537 ``memory_order_relaxed``.
1538``acquire``
1539 In addition to the guarantees of ``monotonic``, a
1540 *synchronizes-with* edge may be formed with a ``release`` operation.
1541 This is intended to model C++'s ``memory_order_acquire``.
1542``release``
1543 In addition to the guarantees of ``monotonic``, if this operation
1544 writes a value which is subsequently read by an ``acquire``
1545 operation, it *synchronizes-with* that operation. (This isn't a
1546 complete description; see the C++0x definition of a release
1547 sequence.) This corresponds to the C++0x/C1x
1548 ``memory_order_release``.
1549``acq_rel`` (acquire+release)
1550 Acts as both an ``acquire`` and ``release`` operation on its
1551 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1552``seq_cst`` (sequentially consistent)
1553 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1554 operation which only reads, ``release`` for an operation which only
1555 writes), there is a global total order on all
1556 sequentially-consistent operations on all addresses, which is
1557 consistent with the *happens-before* partial order and with the
1558 modification orders of all the affected addresses. Each
1559 sequentially-consistent read sees the last preceding write to the
1560 same address in this global order. This corresponds to the C++0x/C1x
1561 ``memory_order_seq_cst`` and Java volatile.
1562
1563.. _singlethread:
1564
1565If an atomic operation is marked ``singlethread``, it only *synchronizes
1566with* or participates in modification and seq\_cst total orderings with
1567other operations running in the same thread (for example, in signal
1568handlers).
1569
1570.. _fastmath:
1571
1572Fast-Math Flags
1573---------------
1574
1575LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1576:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1577:ref:`frem <i_frem>`) have the following flags that can set to enable
1578otherwise unsafe floating point operations
1579
1580``nnan``
1581 No NaNs - Allow optimizations to assume the arguments and result are not
1582 NaN. Such optimizations are required to retain defined behavior over
1583 NaNs, but the value of the result is undefined.
1584
1585``ninf``
1586 No Infs - Allow optimizations to assume the arguments and result are not
1587 +/-Inf. Such optimizations are required to retain defined behavior over
1588 +/-Inf, but the value of the result is undefined.
1589
1590``nsz``
1591 No Signed Zeros - Allow optimizations to treat the sign of a zero
1592 argument or result as insignificant.
1593
1594``arcp``
1595 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1596 argument rather than perform division.
1597
1598``fast``
1599 Fast - Allow algebraically equivalent transformations that may
1600 dramatically change results in floating point (e.g. reassociate). This
1601 flag implies all the others.
1602
1603.. _typesystem:
1604
1605Type System
1606===========
1607
1608The LLVM type system is one of the most important features of the
1609intermediate representation. Being typed enables a number of
1610optimizations to be performed on the intermediate representation
1611directly, without having to do extra analyses on the side before the
1612transformation. A strong type system makes it easier to read the
1613generated code and enables novel analyses and transformations that are
1614not feasible to perform on normal three address code representations.
1615
Rafael Espindola08013342013-12-07 19:34:20 +00001616.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001617
Rafael Espindola08013342013-12-07 19:34:20 +00001618Void Type
1619---------
Sean Silvab084af42012-12-07 10:36:55 +00001620
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001621:Overview:
1622
Rafael Espindola08013342013-12-07 19:34:20 +00001623
1624The void type does not represent any value and has no size.
1625
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001626:Syntax:
1627
Rafael Espindola08013342013-12-07 19:34:20 +00001628
1629::
1630
1631 void
Sean Silvab084af42012-12-07 10:36:55 +00001632
1633
Rafael Espindola08013342013-12-07 19:34:20 +00001634.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001635
Rafael Espindola08013342013-12-07 19:34:20 +00001636Function Type
1637-------------
Sean Silvab084af42012-12-07 10:36:55 +00001638
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001639:Overview:
1640
Sean Silvab084af42012-12-07 10:36:55 +00001641
Rafael Espindola08013342013-12-07 19:34:20 +00001642The function type can be thought of as a function signature. It consists of a
1643return type and a list of formal parameter types. The return type of a function
1644type is a void type or first class type --- except for :ref:`label <t_label>`
1645and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001646
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001647:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001648
Rafael Espindola08013342013-12-07 19:34:20 +00001649::
Sean Silvab084af42012-12-07 10:36:55 +00001650
Rafael Espindola08013342013-12-07 19:34:20 +00001651 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001652
Rafael Espindola08013342013-12-07 19:34:20 +00001653...where '``<parameter list>``' is a comma-separated list of type
1654specifiers. Optionally, the parameter list may include a type ``...``, which
1655indicates that the function takes a variable number of arguments. Variable
1656argument functions can access their arguments with the :ref:`variable argument
1657handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1658except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001659
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001660:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001661
Rafael Espindola08013342013-12-07 19:34:20 +00001662+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1663| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1664+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1665| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1666+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1667| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1668+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1669| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1670+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1671
1672.. _t_firstclass:
1673
1674First Class Types
1675-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001676
1677The :ref:`first class <t_firstclass>` types are perhaps the most important.
1678Values of these types are the only ones which can be produced by
1679instructions.
1680
Rafael Espindola08013342013-12-07 19:34:20 +00001681.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001682
Rafael Espindola08013342013-12-07 19:34:20 +00001683Single Value Types
1684^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001685
Rafael Espindola08013342013-12-07 19:34:20 +00001686These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001687
1688.. _t_integer:
1689
1690Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001691""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001692
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001693:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001694
1695The integer type is a very simple type that simply specifies an
1696arbitrary bit width for the integer type desired. Any bit width from 1
1697bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1698
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001699:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001700
1701::
1702
1703 iN
1704
1705The number of bits the integer will occupy is specified by the ``N``
1706value.
1707
1708Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001709*********
Sean Silvab084af42012-12-07 10:36:55 +00001710
1711+----------------+------------------------------------------------+
1712| ``i1`` | a single-bit integer. |
1713+----------------+------------------------------------------------+
1714| ``i32`` | a 32-bit integer. |
1715+----------------+------------------------------------------------+
1716| ``i1942652`` | a really big integer of over 1 million bits. |
1717+----------------+------------------------------------------------+
1718
1719.. _t_floating:
1720
1721Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001722""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001723
1724.. list-table::
1725 :header-rows: 1
1726
1727 * - Type
1728 - Description
1729
1730 * - ``half``
1731 - 16-bit floating point value
1732
1733 * - ``float``
1734 - 32-bit floating point value
1735
1736 * - ``double``
1737 - 64-bit floating point value
1738
1739 * - ``fp128``
1740 - 128-bit floating point value (112-bit mantissa)
1741
1742 * - ``x86_fp80``
1743 - 80-bit floating point value (X87)
1744
1745 * - ``ppc_fp128``
1746 - 128-bit floating point value (two 64-bits)
1747
Reid Kleckner9a16d082014-03-05 02:41:37 +00001748X86_mmx Type
1749""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001750
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001751:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001752
Reid Kleckner9a16d082014-03-05 02:41:37 +00001753The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001754machine. The operations allowed on it are quite limited: parameters and
1755return values, load and store, and bitcast. User-specified MMX
1756instructions are represented as intrinsic or asm calls with arguments
1757and/or results of this type. There are no arrays, vectors or constants
1758of this type.
1759
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001760:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001761
1762::
1763
Reid Kleckner9a16d082014-03-05 02:41:37 +00001764 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001765
Sean Silvab084af42012-12-07 10:36:55 +00001766
Rafael Espindola08013342013-12-07 19:34:20 +00001767.. _t_pointer:
1768
1769Pointer Type
1770""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001771
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001772:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001773
Rafael Espindola08013342013-12-07 19:34:20 +00001774The pointer type is used to specify memory locations. Pointers are
1775commonly used to reference objects in memory.
1776
1777Pointer types may have an optional address space attribute defining the
1778numbered address space where the pointed-to object resides. The default
1779address space is number zero. The semantics of non-zero address spaces
1780are target-specific.
1781
1782Note that LLVM does not permit pointers to void (``void*``) nor does it
1783permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001784
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001785:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001786
1787::
1788
Rafael Espindola08013342013-12-07 19:34:20 +00001789 <type> *
1790
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001791:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001792
1793+-------------------------+--------------------------------------------------------------------------------------------------------------+
1794| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1795+-------------------------+--------------------------------------------------------------------------------------------------------------+
1796| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1797+-------------------------+--------------------------------------------------------------------------------------------------------------+
1798| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1799+-------------------------+--------------------------------------------------------------------------------------------------------------+
1800
1801.. _t_vector:
1802
1803Vector Type
1804"""""""""""
1805
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001806:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001807
1808A vector type is a simple derived type that represents a vector of
1809elements. Vector types are used when multiple primitive data are
1810operated in parallel using a single instruction (SIMD). A vector type
1811requires a size (number of elements) and an underlying primitive data
1812type. Vector types are considered :ref:`first class <t_firstclass>`.
1813
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001814:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001815
1816::
1817
1818 < <# elements> x <elementtype> >
1819
1820The number of elements is a constant integer value larger than 0;
1821elementtype may be any integer or floating point type, or a pointer to
1822these types. Vectors of size zero are not allowed.
1823
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001824:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001825
1826+-------------------+--------------------------------------------------+
1827| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1828+-------------------+--------------------------------------------------+
1829| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1830+-------------------+--------------------------------------------------+
1831| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1832+-------------------+--------------------------------------------------+
1833| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1834+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001835
1836.. _t_label:
1837
1838Label Type
1839^^^^^^^^^^
1840
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001841:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001842
1843The label type represents code labels.
1844
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001845:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001846
1847::
1848
1849 label
1850
1851.. _t_metadata:
1852
1853Metadata Type
1854^^^^^^^^^^^^^
1855
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001856:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001857
1858The metadata type represents embedded metadata. No derived types may be
1859created from metadata except for :ref:`function <t_function>` arguments.
1860
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001861:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001862
1863::
1864
1865 metadata
1866
Sean Silvab084af42012-12-07 10:36:55 +00001867.. _t_aggregate:
1868
1869Aggregate Types
1870^^^^^^^^^^^^^^^
1871
1872Aggregate Types are a subset of derived types that can contain multiple
1873member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1874aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1875aggregate types.
1876
1877.. _t_array:
1878
1879Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001880""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001881
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001882:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001883
1884The array type is a very simple derived type that arranges elements
1885sequentially in memory. The array type requires a size (number of
1886elements) and an underlying data type.
1887
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001888:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001889
1890::
1891
1892 [<# elements> x <elementtype>]
1893
1894The number of elements is a constant integer value; ``elementtype`` may
1895be any type with a size.
1896
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001897:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001898
1899+------------------+--------------------------------------+
1900| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1901+------------------+--------------------------------------+
1902| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1903+------------------+--------------------------------------+
1904| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1905+------------------+--------------------------------------+
1906
1907Here are some examples of multidimensional arrays:
1908
1909+-----------------------------+----------------------------------------------------------+
1910| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1911+-----------------------------+----------------------------------------------------------+
1912| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1913+-----------------------------+----------------------------------------------------------+
1914| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1915+-----------------------------+----------------------------------------------------------+
1916
1917There is no restriction on indexing beyond the end of the array implied
1918by a static type (though there are restrictions on indexing beyond the
1919bounds of an allocated object in some cases). This means that
1920single-dimension 'variable sized array' addressing can be implemented in
1921LLVM with a zero length array type. An implementation of 'pascal style
1922arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1923example.
1924
Sean Silvab084af42012-12-07 10:36:55 +00001925.. _t_struct:
1926
1927Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001928""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001929
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001930:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001931
1932The structure type is used to represent a collection of data members
1933together in memory. The elements of a structure may be any type that has
1934a size.
1935
1936Structures in memory are accessed using '``load``' and '``store``' by
1937getting a pointer to a field with the '``getelementptr``' instruction.
1938Structures in registers are accessed using the '``extractvalue``' and
1939'``insertvalue``' instructions.
1940
1941Structures may optionally be "packed" structures, which indicate that
1942the alignment of the struct is one byte, and that there is no padding
1943between the elements. In non-packed structs, padding between field types
1944is inserted as defined by the DataLayout string in the module, which is
1945required to match what the underlying code generator expects.
1946
1947Structures can either be "literal" or "identified". A literal structure
1948is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1949identified types are always defined at the top level with a name.
1950Literal types are uniqued by their contents and can never be recursive
1951or opaque since there is no way to write one. Identified types can be
1952recursive, can be opaqued, and are never uniqued.
1953
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001954:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001955
1956::
1957
1958 %T1 = type { <type list> } ; Identified normal struct type
1959 %T2 = type <{ <type list> }> ; Identified packed struct type
1960
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001961:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001962
1963+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1964| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1965+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001966| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001967+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1968| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1969+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1970
1971.. _t_opaque:
1972
1973Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001974""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001975
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001976:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001977
1978Opaque structure types are used to represent named structure types that
1979do not have a body specified. This corresponds (for example) to the C
1980notion of a forward declared structure.
1981
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001982:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001983
1984::
1985
1986 %X = type opaque
1987 %52 = type opaque
1988
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001989:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001990
1991+--------------+-------------------+
1992| ``opaque`` | An opaque type. |
1993+--------------+-------------------+
1994
Sean Silva1703e702014-04-08 21:06:22 +00001995.. _constants:
1996
Sean Silvab084af42012-12-07 10:36:55 +00001997Constants
1998=========
1999
2000LLVM has several different basic types of constants. This section
2001describes them all and their syntax.
2002
2003Simple Constants
2004----------------
2005
2006**Boolean constants**
2007 The two strings '``true``' and '``false``' are both valid constants
2008 of the ``i1`` type.
2009**Integer constants**
2010 Standard integers (such as '4') are constants of the
2011 :ref:`integer <t_integer>` type. Negative numbers may be used with
2012 integer types.
2013**Floating point constants**
2014 Floating point constants use standard decimal notation (e.g.
2015 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2016 hexadecimal notation (see below). The assembler requires the exact
2017 decimal value of a floating-point constant. For example, the
2018 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2019 decimal in binary. Floating point constants must have a :ref:`floating
2020 point <t_floating>` type.
2021**Null pointer constants**
2022 The identifier '``null``' is recognized as a null pointer constant
2023 and must be of :ref:`pointer type <t_pointer>`.
2024
2025The one non-intuitive notation for constants is the hexadecimal form of
2026floating point constants. For example, the form
2027'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2028than) '``double 4.5e+15``'. The only time hexadecimal floating point
2029constants are required (and the only time that they are generated by the
2030disassembler) is when a floating point constant must be emitted but it
2031cannot be represented as a decimal floating point number in a reasonable
2032number of digits. For example, NaN's, infinities, and other special
2033values are represented in their IEEE hexadecimal format so that assembly
2034and disassembly do not cause any bits to change in the constants.
2035
2036When using the hexadecimal form, constants of types half, float, and
2037double are represented using the 16-digit form shown above (which
2038matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002039must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002040precision, respectively. Hexadecimal format is always used for long
2041double, and there are three forms of long double. The 80-bit format used
2042by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2043128-bit format used by PowerPC (two adjacent doubles) is represented by
2044``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002045represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2046will only work if they match the long double format on your target.
2047The IEEE 16-bit format (half precision) is represented by ``0xH``
2048followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2049(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002050
Reid Kleckner9a16d082014-03-05 02:41:37 +00002051There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002052
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002053.. _complexconstants:
2054
Sean Silvab084af42012-12-07 10:36:55 +00002055Complex Constants
2056-----------------
2057
2058Complex constants are a (potentially recursive) combination of simple
2059constants and smaller complex constants.
2060
2061**Structure constants**
2062 Structure constants are represented with notation similar to
2063 structure type definitions (a comma separated list of elements,
2064 surrounded by braces (``{}``)). For example:
2065 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2066 "``@G = external global i32``". Structure constants must have
2067 :ref:`structure type <t_struct>`, and the number and types of elements
2068 must match those specified by the type.
2069**Array constants**
2070 Array constants are represented with notation similar to array type
2071 definitions (a comma separated list of elements, surrounded by
2072 square brackets (``[]``)). For example:
2073 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2074 :ref:`array type <t_array>`, and the number and types of elements must
2075 match those specified by the type.
2076**Vector constants**
2077 Vector constants are represented with notation similar to vector
2078 type definitions (a comma separated list of elements, surrounded by
2079 less-than/greater-than's (``<>``)). For example:
2080 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2081 must have :ref:`vector type <t_vector>`, and the number and types of
2082 elements must match those specified by the type.
2083**Zero initialization**
2084 The string '``zeroinitializer``' can be used to zero initialize a
2085 value to zero of *any* type, including scalar and
2086 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2087 having to print large zero initializers (e.g. for large arrays) and
2088 is always exactly equivalent to using explicit zero initializers.
2089**Metadata node**
2090 A metadata node is a structure-like constant with :ref:`metadata
2091 type <t_metadata>`. For example:
2092 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2093 constants that are meant to be interpreted as part of the
2094 instruction stream, metadata is a place to attach additional
2095 information such as debug info.
2096
2097Global Variable and Function Addresses
2098--------------------------------------
2099
2100The addresses of :ref:`global variables <globalvars>` and
2101:ref:`functions <functionstructure>` are always implicitly valid
2102(link-time) constants. These constants are explicitly referenced when
2103the :ref:`identifier for the global <identifiers>` is used and always have
2104:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2105file:
2106
2107.. code-block:: llvm
2108
2109 @X = global i32 17
2110 @Y = global i32 42
2111 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2112
2113.. _undefvalues:
2114
2115Undefined Values
2116----------------
2117
2118The string '``undef``' can be used anywhere a constant is expected, and
2119indicates that the user of the value may receive an unspecified
2120bit-pattern. Undefined values may be of any type (other than '``label``'
2121or '``void``') and be used anywhere a constant is permitted.
2122
2123Undefined values are useful because they indicate to the compiler that
2124the program is well defined no matter what value is used. This gives the
2125compiler more freedom to optimize. Here are some examples of
2126(potentially surprising) transformations that are valid (in pseudo IR):
2127
2128.. code-block:: llvm
2129
2130 %A = add %X, undef
2131 %B = sub %X, undef
2132 %C = xor %X, undef
2133 Safe:
2134 %A = undef
2135 %B = undef
2136 %C = undef
2137
2138This is safe because all of the output bits are affected by the undef
2139bits. Any output bit can have a zero or one depending on the input bits.
2140
2141.. code-block:: llvm
2142
2143 %A = or %X, undef
2144 %B = and %X, undef
2145 Safe:
2146 %A = -1
2147 %B = 0
2148 Unsafe:
2149 %A = undef
2150 %B = undef
2151
2152These logical operations have bits that are not always affected by the
2153input. For example, if ``%X`` has a zero bit, then the output of the
2154'``and``' operation will always be a zero for that bit, no matter what
2155the corresponding bit from the '``undef``' is. As such, it is unsafe to
2156optimize or assume that the result of the '``and``' is '``undef``'.
2157However, it is safe to assume that all bits of the '``undef``' could be
21580, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2159all the bits of the '``undef``' operand to the '``or``' could be set,
2160allowing the '``or``' to be folded to -1.
2161
2162.. code-block:: llvm
2163
2164 %A = select undef, %X, %Y
2165 %B = select undef, 42, %Y
2166 %C = select %X, %Y, undef
2167 Safe:
2168 %A = %X (or %Y)
2169 %B = 42 (or %Y)
2170 %C = %Y
2171 Unsafe:
2172 %A = undef
2173 %B = undef
2174 %C = undef
2175
2176This set of examples shows that undefined '``select``' (and conditional
2177branch) conditions can go *either way*, but they have to come from one
2178of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2179both known to have a clear low bit, then ``%A`` would have to have a
2180cleared low bit. However, in the ``%C`` example, the optimizer is
2181allowed to assume that the '``undef``' operand could be the same as
2182``%Y``, allowing the whole '``select``' to be eliminated.
2183
2184.. code-block:: llvm
2185
2186 %A = xor undef, undef
2187
2188 %B = undef
2189 %C = xor %B, %B
2190
2191 %D = undef
2192 %E = icmp lt %D, 4
2193 %F = icmp gte %D, 4
2194
2195 Safe:
2196 %A = undef
2197 %B = undef
2198 %C = undef
2199 %D = undef
2200 %E = undef
2201 %F = undef
2202
2203This example points out that two '``undef``' operands are not
2204necessarily the same. This can be surprising to people (and also matches
2205C semantics) where they assume that "``X^X``" is always zero, even if
2206``X`` is undefined. This isn't true for a number of reasons, but the
2207short answer is that an '``undef``' "variable" can arbitrarily change
2208its value over its "live range". This is true because the variable
2209doesn't actually *have a live range*. Instead, the value is logically
2210read from arbitrary registers that happen to be around when needed, so
2211the value is not necessarily consistent over time. In fact, ``%A`` and
2212``%C`` need to have the same semantics or the core LLVM "replace all
2213uses with" concept would not hold.
2214
2215.. code-block:: llvm
2216
2217 %A = fdiv undef, %X
2218 %B = fdiv %X, undef
2219 Safe:
2220 %A = undef
2221 b: unreachable
2222
2223These examples show the crucial difference between an *undefined value*
2224and *undefined behavior*. An undefined value (like '``undef``') is
2225allowed to have an arbitrary bit-pattern. This means that the ``%A``
2226operation can be constant folded to '``undef``', because the '``undef``'
2227could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2228However, in the second example, we can make a more aggressive
2229assumption: because the ``undef`` is allowed to be an arbitrary value,
2230we are allowed to assume that it could be zero. Since a divide by zero
2231has *undefined behavior*, we are allowed to assume that the operation
2232does not execute at all. This allows us to delete the divide and all
2233code after it. Because the undefined operation "can't happen", the
2234optimizer can assume that it occurs in dead code.
2235
2236.. code-block:: llvm
2237
2238 a: store undef -> %X
2239 b: store %X -> undef
2240 Safe:
2241 a: <deleted>
2242 b: unreachable
2243
2244These examples reiterate the ``fdiv`` example: a store *of* an undefined
2245value can be assumed to not have any effect; we can assume that the
2246value is overwritten with bits that happen to match what was already
2247there. However, a store *to* an undefined location could clobber
2248arbitrary memory, therefore, it has undefined behavior.
2249
2250.. _poisonvalues:
2251
2252Poison Values
2253-------------
2254
2255Poison values are similar to :ref:`undef values <undefvalues>`, however
2256they also represent the fact that an instruction or constant expression
2257which cannot evoke side effects has nevertheless detected a condition
2258which results in undefined behavior.
2259
2260There is currently no way of representing a poison value in the IR; they
2261only exist when produced by operations such as :ref:`add <i_add>` with
2262the ``nsw`` flag.
2263
2264Poison value behavior is defined in terms of value *dependence*:
2265
2266- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2267- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2268 their dynamic predecessor basic block.
2269- Function arguments depend on the corresponding actual argument values
2270 in the dynamic callers of their functions.
2271- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2272 instructions that dynamically transfer control back to them.
2273- :ref:`Invoke <i_invoke>` instructions depend on the
2274 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2275 call instructions that dynamically transfer control back to them.
2276- Non-volatile loads and stores depend on the most recent stores to all
2277 of the referenced memory addresses, following the order in the IR
2278 (including loads and stores implied by intrinsics such as
2279 :ref:`@llvm.memcpy <int_memcpy>`.)
2280- An instruction with externally visible side effects depends on the
2281 most recent preceding instruction with externally visible side
2282 effects, following the order in the IR. (This includes :ref:`volatile
2283 operations <volatile>`.)
2284- An instruction *control-depends* on a :ref:`terminator
2285 instruction <terminators>` if the terminator instruction has
2286 multiple successors and the instruction is always executed when
2287 control transfers to one of the successors, and may not be executed
2288 when control is transferred to another.
2289- Additionally, an instruction also *control-depends* on a terminator
2290 instruction if the set of instructions it otherwise depends on would
2291 be different if the terminator had transferred control to a different
2292 successor.
2293- Dependence is transitive.
2294
2295Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2296with the additional affect that any instruction which has a *dependence*
2297on a poison value has undefined behavior.
2298
2299Here are some examples:
2300
2301.. code-block:: llvm
2302
2303 entry:
2304 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2305 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2306 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2307 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2308
2309 store i32 %poison, i32* @g ; Poison value stored to memory.
2310 %poison2 = load i32* @g ; Poison value loaded back from memory.
2311
2312 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2313
2314 %narrowaddr = bitcast i32* @g to i16*
2315 %wideaddr = bitcast i32* @g to i64*
2316 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2317 %poison4 = load i64* %wideaddr ; Returns a poison value.
2318
2319 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2320 br i1 %cmp, label %true, label %end ; Branch to either destination.
2321
2322 true:
2323 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2324 ; it has undefined behavior.
2325 br label %end
2326
2327 end:
2328 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2329 ; Both edges into this PHI are
2330 ; control-dependent on %cmp, so this
2331 ; always results in a poison value.
2332
2333 store volatile i32 0, i32* @g ; This would depend on the store in %true
2334 ; if %cmp is true, or the store in %entry
2335 ; otherwise, so this is undefined behavior.
2336
2337 br i1 %cmp, label %second_true, label %second_end
2338 ; The same branch again, but this time the
2339 ; true block doesn't have side effects.
2340
2341 second_true:
2342 ; No side effects!
2343 ret void
2344
2345 second_end:
2346 store volatile i32 0, i32* @g ; This time, the instruction always depends
2347 ; on the store in %end. Also, it is
2348 ; control-equivalent to %end, so this is
2349 ; well-defined (ignoring earlier undefined
2350 ; behavior in this example).
2351
2352.. _blockaddress:
2353
2354Addresses of Basic Blocks
2355-------------------------
2356
2357``blockaddress(@function, %block)``
2358
2359The '``blockaddress``' constant computes the address of the specified
2360basic block in the specified function, and always has an ``i8*`` type.
2361Taking the address of the entry block is illegal.
2362
2363This value only has defined behavior when used as an operand to the
2364':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2365against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002366undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002367no label is equal to the null pointer. This may be passed around as an
2368opaque pointer sized value as long as the bits are not inspected. This
2369allows ``ptrtoint`` and arithmetic to be performed on these values so
2370long as the original value is reconstituted before the ``indirectbr``
2371instruction.
2372
2373Finally, some targets may provide defined semantics when using the value
2374as the operand to an inline assembly, but that is target specific.
2375
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002376.. _constantexprs:
2377
Sean Silvab084af42012-12-07 10:36:55 +00002378Constant Expressions
2379--------------------
2380
2381Constant expressions are used to allow expressions involving other
2382constants to be used as constants. Constant expressions may be of any
2383:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2384that does not have side effects (e.g. load and call are not supported).
2385The following is the syntax for constant expressions:
2386
2387``trunc (CST to TYPE)``
2388 Truncate a constant to another type. The bit size of CST must be
2389 larger than the bit size of TYPE. Both types must be integers.
2390``zext (CST to TYPE)``
2391 Zero extend a constant to another type. The bit size of CST must be
2392 smaller than the bit size of TYPE. Both types must be integers.
2393``sext (CST to TYPE)``
2394 Sign extend a constant to another type. The bit size of CST must be
2395 smaller than the bit size of TYPE. Both types must be integers.
2396``fptrunc (CST to TYPE)``
2397 Truncate a floating point constant to another floating point type.
2398 The size of CST must be larger than the size of TYPE. Both types
2399 must be floating point.
2400``fpext (CST to TYPE)``
2401 Floating point extend a constant to another type. The size of CST
2402 must be smaller or equal to the size of TYPE. Both types must be
2403 floating point.
2404``fptoui (CST to TYPE)``
2405 Convert a floating point constant to the corresponding unsigned
2406 integer constant. TYPE must be a scalar or vector integer type. CST
2407 must be of scalar or vector floating point type. Both CST and TYPE
2408 must be scalars, or vectors of the same number of elements. If the
2409 value won't fit in the integer type, the results are undefined.
2410``fptosi (CST to TYPE)``
2411 Convert a floating point constant to the corresponding signed
2412 integer constant. TYPE must be a scalar or vector integer type. CST
2413 must be of scalar or vector floating point type. Both CST and TYPE
2414 must be scalars, or vectors of the same number of elements. If the
2415 value won't fit in the integer type, the results are undefined.
2416``uitofp (CST to TYPE)``
2417 Convert an unsigned integer constant to the corresponding floating
2418 point constant. TYPE must be a scalar or vector floating point type.
2419 CST must be of scalar or vector integer type. Both CST and TYPE must
2420 be scalars, or vectors of the same number of elements. If the value
2421 won't fit in the floating point type, the results are undefined.
2422``sitofp (CST to TYPE)``
2423 Convert a signed integer constant to the corresponding floating
2424 point constant. TYPE must be a scalar or vector floating point type.
2425 CST must be of scalar or vector integer type. Both CST and TYPE must
2426 be scalars, or vectors of the same number of elements. If the value
2427 won't fit in the floating point type, the results are undefined.
2428``ptrtoint (CST to TYPE)``
2429 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002430 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002431 pointer type. The ``CST`` value is zero extended, truncated, or
2432 unchanged to make it fit in ``TYPE``.
2433``inttoptr (CST to TYPE)``
2434 Convert an integer constant to a pointer constant. TYPE must be a
2435 pointer type. CST must be of integer type. The CST value is zero
2436 extended, truncated, or unchanged to make it fit in a pointer size.
2437 This one is *really* dangerous!
2438``bitcast (CST to TYPE)``
2439 Convert a constant, CST, to another TYPE. The constraints of the
2440 operands are the same as those for the :ref:`bitcast
2441 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002442``addrspacecast (CST to TYPE)``
2443 Convert a constant pointer or constant vector of pointer, CST, to another
2444 TYPE in a different address space. The constraints of the operands are the
2445 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002446``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2447 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2448 constants. As with the :ref:`getelementptr <i_getelementptr>`
2449 instruction, the index list may have zero or more indexes, which are
2450 required to make sense for the type of "CSTPTR".
2451``select (COND, VAL1, VAL2)``
2452 Perform the :ref:`select operation <i_select>` on constants.
2453``icmp COND (VAL1, VAL2)``
2454 Performs the :ref:`icmp operation <i_icmp>` on constants.
2455``fcmp COND (VAL1, VAL2)``
2456 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2457``extractelement (VAL, IDX)``
2458 Perform the :ref:`extractelement operation <i_extractelement>` on
2459 constants.
2460``insertelement (VAL, ELT, IDX)``
2461 Perform the :ref:`insertelement operation <i_insertelement>` on
2462 constants.
2463``shufflevector (VEC1, VEC2, IDXMASK)``
2464 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2465 constants.
2466``extractvalue (VAL, IDX0, IDX1, ...)``
2467 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2468 constants. The index list is interpreted in a similar manner as
2469 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2470 least one index value must be specified.
2471``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2472 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2473 The index list is interpreted in a similar manner as indices in a
2474 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2475 value must be specified.
2476``OPCODE (LHS, RHS)``
2477 Perform the specified operation of the LHS and RHS constants. OPCODE
2478 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2479 binary <bitwiseops>` operations. The constraints on operands are
2480 the same as those for the corresponding instruction (e.g. no bitwise
2481 operations on floating point values are allowed).
2482
2483Other Values
2484============
2485
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002486.. _inlineasmexprs:
2487
Sean Silvab084af42012-12-07 10:36:55 +00002488Inline Assembler Expressions
2489----------------------------
2490
2491LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2492Inline Assembly <moduleasm>`) through the use of a special value. This
2493value represents the inline assembler as a string (containing the
2494instructions to emit), a list of operand constraints (stored as a
2495string), a flag that indicates whether or not the inline asm expression
2496has side effects, and a flag indicating whether the function containing
2497the asm needs to align its stack conservatively. An example inline
2498assembler expression is:
2499
2500.. code-block:: llvm
2501
2502 i32 (i32) asm "bswap $0", "=r,r"
2503
2504Inline assembler expressions may **only** be used as the callee operand
2505of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2506Thus, typically we have:
2507
2508.. code-block:: llvm
2509
2510 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2511
2512Inline asms with side effects not visible in the constraint list must be
2513marked as having side effects. This is done through the use of the
2514'``sideeffect``' keyword, like so:
2515
2516.. code-block:: llvm
2517
2518 call void asm sideeffect "eieio", ""()
2519
2520In some cases inline asms will contain code that will not work unless
2521the stack is aligned in some way, such as calls or SSE instructions on
2522x86, yet will not contain code that does that alignment within the asm.
2523The compiler should make conservative assumptions about what the asm
2524might contain and should generate its usual stack alignment code in the
2525prologue if the '``alignstack``' keyword is present:
2526
2527.. code-block:: llvm
2528
2529 call void asm alignstack "eieio", ""()
2530
2531Inline asms also support using non-standard assembly dialects. The
2532assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2533the inline asm is using the Intel dialect. Currently, ATT and Intel are
2534the only supported dialects. An example is:
2535
2536.. code-block:: llvm
2537
2538 call void asm inteldialect "eieio", ""()
2539
2540If multiple keywords appear the '``sideeffect``' keyword must come
2541first, the '``alignstack``' keyword second and the '``inteldialect``'
2542keyword last.
2543
2544Inline Asm Metadata
2545^^^^^^^^^^^^^^^^^^^
2546
2547The call instructions that wrap inline asm nodes may have a
2548"``!srcloc``" MDNode attached to it that contains a list of constant
2549integers. If present, the code generator will use the integer as the
2550location cookie value when report errors through the ``LLVMContext``
2551error reporting mechanisms. This allows a front-end to correlate backend
2552errors that occur with inline asm back to the source code that produced
2553it. For example:
2554
2555.. code-block:: llvm
2556
2557 call void asm sideeffect "something bad", ""(), !srcloc !42
2558 ...
2559 !42 = !{ i32 1234567 }
2560
2561It is up to the front-end to make sense of the magic numbers it places
2562in the IR. If the MDNode contains multiple constants, the code generator
2563will use the one that corresponds to the line of the asm that the error
2564occurs on.
2565
2566.. _metadata:
2567
2568Metadata Nodes and Metadata Strings
2569-----------------------------------
2570
2571LLVM IR allows metadata to be attached to instructions in the program
2572that can convey extra information about the code to the optimizers and
2573code generator. One example application of metadata is source-level
2574debug information. There are two metadata primitives: strings and nodes.
2575All metadata has the ``metadata`` type and is identified in syntax by a
2576preceding exclamation point ('``!``').
2577
2578A metadata string is a string surrounded by double quotes. It can
2579contain any character by escaping non-printable characters with
2580"``\xx``" where "``xx``" is the two digit hex code. For example:
2581"``!"test\00"``".
2582
2583Metadata nodes are represented with notation similar to structure
2584constants (a comma separated list of elements, surrounded by braces and
2585preceded by an exclamation point). Metadata nodes can have any values as
2586their operand. For example:
2587
2588.. code-block:: llvm
2589
2590 !{ metadata !"test\00", i32 10}
2591
2592A :ref:`named metadata <namedmetadatastructure>` is a collection of
2593metadata nodes, which can be looked up in the module symbol table. For
2594example:
2595
2596.. code-block:: llvm
2597
2598 !foo = metadata !{!4, !3}
2599
2600Metadata can be used as function arguments. Here ``llvm.dbg.value``
2601function is using two metadata arguments:
2602
2603.. code-block:: llvm
2604
2605 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2606
2607Metadata can be attached with an instruction. Here metadata ``!21`` is
2608attached to the ``add`` instruction using the ``!dbg`` identifier:
2609
2610.. code-block:: llvm
2611
2612 %indvar.next = add i64 %indvar, 1, !dbg !21
2613
2614More information about specific metadata nodes recognized by the
2615optimizers and code generator is found below.
2616
2617'``tbaa``' Metadata
2618^^^^^^^^^^^^^^^^^^^
2619
2620In LLVM IR, memory does not have types, so LLVM's own type system is not
2621suitable for doing TBAA. Instead, metadata is added to the IR to
2622describe a type system of a higher level language. This can be used to
2623implement typical C/C++ TBAA, but it can also be used to implement
2624custom alias analysis behavior for other languages.
2625
2626The current metadata format is very simple. TBAA metadata nodes have up
2627to three fields, e.g.:
2628
2629.. code-block:: llvm
2630
2631 !0 = metadata !{ metadata !"an example type tree" }
2632 !1 = metadata !{ metadata !"int", metadata !0 }
2633 !2 = metadata !{ metadata !"float", metadata !0 }
2634 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2635
2636The first field is an identity field. It can be any value, usually a
2637metadata string, which uniquely identifies the type. The most important
2638name in the tree is the name of the root node. Two trees with different
2639root node names are entirely disjoint, even if they have leaves with
2640common names.
2641
2642The second field identifies the type's parent node in the tree, or is
2643null or omitted for a root node. A type is considered to alias all of
2644its descendants and all of its ancestors in the tree. Also, a type is
2645considered to alias all types in other trees, so that bitcode produced
2646from multiple front-ends is handled conservatively.
2647
2648If the third field is present, it's an integer which if equal to 1
2649indicates that the type is "constant" (meaning
2650``pointsToConstantMemory`` should return true; see `other useful
2651AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2652
2653'``tbaa.struct``' Metadata
2654^^^^^^^^^^^^^^^^^^^^^^^^^^
2655
2656The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2657aggregate assignment operations in C and similar languages, however it
2658is defined to copy a contiguous region of memory, which is more than
2659strictly necessary for aggregate types which contain holes due to
2660padding. Also, it doesn't contain any TBAA information about the fields
2661of the aggregate.
2662
2663``!tbaa.struct`` metadata can describe which memory subregions in a
2664memcpy are padding and what the TBAA tags of the struct are.
2665
2666The current metadata format is very simple. ``!tbaa.struct`` metadata
2667nodes are a list of operands which are in conceptual groups of three.
2668For each group of three, the first operand gives the byte offset of a
2669field in bytes, the second gives its size in bytes, and the third gives
2670its tbaa tag. e.g.:
2671
2672.. code-block:: llvm
2673
2674 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2675
2676This describes a struct with two fields. The first is at offset 0 bytes
2677with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2678and has size 4 bytes and has tbaa tag !2.
2679
2680Note that the fields need not be contiguous. In this example, there is a
26814 byte gap between the two fields. This gap represents padding which
2682does not carry useful data and need not be preserved.
2683
2684'``fpmath``' Metadata
2685^^^^^^^^^^^^^^^^^^^^^
2686
2687``fpmath`` metadata may be attached to any instruction of floating point
2688type. It can be used to express the maximum acceptable error in the
2689result of that instruction, in ULPs, thus potentially allowing the
2690compiler to use a more efficient but less accurate method of computing
2691it. ULP is defined as follows:
2692
2693 If ``x`` is a real number that lies between two finite consecutive
2694 floating-point numbers ``a`` and ``b``, without being equal to one
2695 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2696 distance between the two non-equal finite floating-point numbers
2697 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2698
2699The metadata node shall consist of a single positive floating point
2700number representing the maximum relative error, for example:
2701
2702.. code-block:: llvm
2703
2704 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2705
2706'``range``' Metadata
2707^^^^^^^^^^^^^^^^^^^^
2708
2709``range`` metadata may be attached only to loads of integer types. It
2710expresses the possible ranges the loaded value is in. The ranges are
2711represented with a flattened list of integers. The loaded value is known
2712to be in the union of the ranges defined by each consecutive pair. Each
2713pair has the following properties:
2714
2715- The type must match the type loaded by the instruction.
2716- The pair ``a,b`` represents the range ``[a,b)``.
2717- Both ``a`` and ``b`` are constants.
2718- The range is allowed to wrap.
2719- The range should not represent the full or empty set. That is,
2720 ``a!=b``.
2721
2722In addition, the pairs must be in signed order of the lower bound and
2723they must be non-contiguous.
2724
2725Examples:
2726
2727.. code-block:: llvm
2728
2729 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2730 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2731 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2732 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2733 ...
2734 !0 = metadata !{ i8 0, i8 2 }
2735 !1 = metadata !{ i8 255, i8 2 }
2736 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2737 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2738
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002739'``llvm.loop``'
2740^^^^^^^^^^^^^^^
2741
2742It is sometimes useful to attach information to loop constructs. Currently,
2743loop metadata is implemented as metadata attached to the branch instruction
2744in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002745guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002746specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002747
2748The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002749itself to avoid merging it with any other identifier metadata, e.g.,
2750during module linkage or function inlining. That is, each loop should refer
2751to their own identification metadata even if they reside in separate functions.
2752The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002753constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002754
2755.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002756
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002757 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002758 !1 = metadata !{ metadata !1 }
2759
Paul Redmond5fdf8362013-05-28 20:00:34 +00002760The loop identifier metadata can be used to specify additional per-loop
2761metadata. Any operands after the first operand can be treated as user-defined
2762metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2763by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002764
Paul Redmond5fdf8362013-05-28 20:00:34 +00002765.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002766
Paul Redmond5fdf8362013-05-28 20:00:34 +00002767 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2768 ...
2769 !0 = metadata !{ metadata !0, metadata !1 }
2770 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002771
2772'``llvm.mem``'
2773^^^^^^^^^^^^^^^
2774
2775Metadata types used to annotate memory accesses with information helpful
2776for optimizations are prefixed with ``llvm.mem``.
2777
2778'``llvm.mem.parallel_loop_access``' Metadata
2779^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2780
2781For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002782the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002783also all of the memory accessing instructions in the loop body need to be
2784marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2785is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002786the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002787converted to sequential loops due to optimization passes that are unaware of
2788the parallel semantics and that insert new memory instructions to the loop
2789body.
2790
2791Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002792both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002793metadata types that refer to the same loop identifier metadata.
2794
2795.. code-block:: llvm
2796
2797 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002798 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002799 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002800 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002801 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002802 ...
2803 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002804
2805 for.end:
2806 ...
2807 !0 = metadata !{ metadata !0 }
2808
2809It is also possible to have nested parallel loops. In that case the
2810memory accesses refer to a list of loop identifier metadata nodes instead of
2811the loop identifier metadata node directly:
2812
2813.. code-block:: llvm
2814
2815 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002816 ...
2817 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
2818 ...
2819 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002820
2821 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002822 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002823 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002824 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002825 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002826 ...
2827 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002828
2829 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002830 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002831 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00002832 ...
2833 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002834
2835 outer.for.end: ; preds = %for.body
2836 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002837 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2838 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2839 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002840
Paul Redmond5fdf8362013-05-28 20:00:34 +00002841'``llvm.vectorizer``'
2842^^^^^^^^^^^^^^^^^^^^^
2843
2844Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2845vectorization parameters such as vectorization factor and unroll factor.
2846
2847``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2848loop identification metadata.
2849
2850'``llvm.vectorizer.unroll``' Metadata
2851^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2852
2853This metadata instructs the loop vectorizer to unroll the specified
2854loop exactly ``N`` times.
2855
2856The first operand is the string ``llvm.vectorizer.unroll`` and the second
2857operand is an integer specifying the unroll factor. For example:
2858
2859.. code-block:: llvm
2860
2861 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2862
2863Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2864loop.
2865
2866If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2867determined automatically.
2868
2869'``llvm.vectorizer.width``' Metadata
2870^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2871
Paul Redmondeccbb322013-05-30 17:22:46 +00002872This metadata sets the target width of the vectorizer to ``N``. Without
2873this metadata, the vectorizer will choose a width automatically.
2874Regardless of this metadata, the vectorizer will only vectorize loops if
2875it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002876
2877The first operand is the string ``llvm.vectorizer.width`` and the second
2878operand is an integer specifying the width. For example:
2879
2880.. code-block:: llvm
2881
2882 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2883
2884Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2885loop.
2886
2887If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2888automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002889
Sean Silvab084af42012-12-07 10:36:55 +00002890Module Flags Metadata
2891=====================
2892
2893Information about the module as a whole is difficult to convey to LLVM's
2894subsystems. The LLVM IR isn't sufficient to transmit this information.
2895The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002896this. These flags are in the form of key / value pairs --- much like a
2897dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002898look it up.
2899
2900The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2901Each triplet has the following form:
2902
2903- The first element is a *behavior* flag, which specifies the behavior
2904 when two (or more) modules are merged together, and it encounters two
2905 (or more) metadata with the same ID. The supported behaviors are
2906 described below.
2907- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002908 metadata. Each module may only have one flag entry for each unique ID (not
2909 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002910- The third element is the value of the flag.
2911
2912When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002913``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2914each unique metadata ID string, there will be exactly one entry in the merged
2915modules ``llvm.module.flags`` metadata table, and the value for that entry will
2916be determined by the merge behavior flag, as described below. The only exception
2917is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002918
2919The following behaviors are supported:
2920
2921.. list-table::
2922 :header-rows: 1
2923 :widths: 10 90
2924
2925 * - Value
2926 - Behavior
2927
2928 * - 1
2929 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002930 Emits an error if two values disagree, otherwise the resulting value
2931 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002932
2933 * - 2
2934 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002935 Emits a warning if two values disagree. The result value will be the
2936 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002937
2938 * - 3
2939 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002940 Adds a requirement that another module flag be present and have a
2941 specified value after linking is performed. The value must be a
2942 metadata pair, where the first element of the pair is the ID of the
2943 module flag to be restricted, and the second element of the pair is
2944 the value the module flag should be restricted to. This behavior can
2945 be used to restrict the allowable results (via triggering of an
2946 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002947
2948 * - 4
2949 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002950 Uses the specified value, regardless of the behavior or value of the
2951 other module. If both modules specify **Override**, but the values
2952 differ, an error will be emitted.
2953
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002954 * - 5
2955 - **Append**
2956 Appends the two values, which are required to be metadata nodes.
2957
2958 * - 6
2959 - **AppendUnique**
2960 Appends the two values, which are required to be metadata
2961 nodes. However, duplicate entries in the second list are dropped
2962 during the append operation.
2963
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002964It is an error for a particular unique flag ID to have multiple behaviors,
2965except in the case of **Require** (which adds restrictions on another metadata
2966value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002967
2968An example of module flags:
2969
2970.. code-block:: llvm
2971
2972 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2973 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2974 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2975 !3 = metadata !{ i32 3, metadata !"qux",
2976 metadata !{
2977 metadata !"foo", i32 1
2978 }
2979 }
2980 !llvm.module.flags = !{ !0, !1, !2, !3 }
2981
2982- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2983 if two or more ``!"foo"`` flags are seen is to emit an error if their
2984 values are not equal.
2985
2986- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2987 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002988 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002989
2990- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2991 behavior if two or more ``!"qux"`` flags are seen is to emit a
2992 warning if their values are not equal.
2993
2994- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2995
2996 ::
2997
2998 metadata !{ metadata !"foo", i32 1 }
2999
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003000 The behavior is to emit an error if the ``llvm.module.flags`` does not
3001 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3002 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003003
3004Objective-C Garbage Collection Module Flags Metadata
3005----------------------------------------------------
3006
3007On the Mach-O platform, Objective-C stores metadata about garbage
3008collection in a special section called "image info". The metadata
3009consists of a version number and a bitmask specifying what types of
3010garbage collection are supported (if any) by the file. If two or more
3011modules are linked together their garbage collection metadata needs to
3012be merged rather than appended together.
3013
3014The Objective-C garbage collection module flags metadata consists of the
3015following key-value pairs:
3016
3017.. list-table::
3018 :header-rows: 1
3019 :widths: 30 70
3020
3021 * - Key
3022 - Value
3023
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003024 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003025 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003026
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003027 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003028 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003029 always 0.
3030
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003031 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003032 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003033 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3034 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3035 Objective-C ABI version 2.
3036
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003037 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003038 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003039 not. Valid values are 0, for no garbage collection, and 2, for garbage
3040 collection supported.
3041
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003042 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003043 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003044 If present, its value must be 6. This flag requires that the
3045 ``Objective-C Garbage Collection`` flag have the value 2.
3046
3047Some important flag interactions:
3048
3049- If a module with ``Objective-C Garbage Collection`` set to 0 is
3050 merged with a module with ``Objective-C Garbage Collection`` set to
3051 2, then the resulting module has the
3052 ``Objective-C Garbage Collection`` flag set to 0.
3053- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3054 merged with a module with ``Objective-C GC Only`` set to 6.
3055
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003056Automatic Linker Flags Module Flags Metadata
3057--------------------------------------------
3058
3059Some targets support embedding flags to the linker inside individual object
3060files. Typically this is used in conjunction with language extensions which
3061allow source files to explicitly declare the libraries they depend on, and have
3062these automatically be transmitted to the linker via object files.
3063
3064These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003065using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003066to be ``AppendUnique``, and the value for the key is expected to be a metadata
3067node which should be a list of other metadata nodes, each of which should be a
3068list of metadata strings defining linker options.
3069
3070For example, the following metadata section specifies two separate sets of
3071linker options, presumably to link against ``libz`` and the ``Cocoa``
3072framework::
3073
Michael Liaoa7699082013-03-06 18:24:34 +00003074 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003075 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003076 metadata !{ metadata !"-lz" },
3077 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003078 !llvm.module.flags = !{ !0 }
3079
3080The metadata encoding as lists of lists of options, as opposed to a collapsed
3081list of options, is chosen so that the IR encoding can use multiple option
3082strings to specify e.g., a single library, while still having that specifier be
3083preserved as an atomic element that can be recognized by a target specific
3084assembly writer or object file emitter.
3085
3086Each individual option is required to be either a valid option for the target's
3087linker, or an option that is reserved by the target specific assembly writer or
3088object file emitter. No other aspect of these options is defined by the IR.
3089
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003090.. _intrinsicglobalvariables:
3091
Sean Silvab084af42012-12-07 10:36:55 +00003092Intrinsic Global Variables
3093==========================
3094
3095LLVM has a number of "magic" global variables that contain data that
3096affect code generation or other IR semantics. These are documented here.
3097All globals of this sort should have a section specified as
3098"``llvm.metadata``". This section and all globals that start with
3099"``llvm.``" are reserved for use by LLVM.
3100
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003101.. _gv_llvmused:
3102
Sean Silvab084af42012-12-07 10:36:55 +00003103The '``llvm.used``' Global Variable
3104-----------------------------------
3105
Rafael Espindola74f2e462013-04-22 14:58:02 +00003106The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003107:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003108pointers to named global variables, functions and aliases which may optionally
3109have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003110use of it is:
3111
3112.. code-block:: llvm
3113
3114 @X = global i8 4
3115 @Y = global i32 123
3116
3117 @llvm.used = appending global [2 x i8*] [
3118 i8* @X,
3119 i8* bitcast (i32* @Y to i8*)
3120 ], section "llvm.metadata"
3121
Rafael Espindola74f2e462013-04-22 14:58:02 +00003122If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3123and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003124symbol that it cannot see (which is why they have to be named). For example, if
3125a variable has internal linkage and no references other than that from the
3126``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3127references from inline asms and other things the compiler cannot "see", and
3128corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003129
3130On some targets, the code generator must emit a directive to the
3131assembler or object file to prevent the assembler and linker from
3132molesting the symbol.
3133
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003134.. _gv_llvmcompilerused:
3135
Sean Silvab084af42012-12-07 10:36:55 +00003136The '``llvm.compiler.used``' Global Variable
3137--------------------------------------------
3138
3139The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3140directive, except that it only prevents the compiler from touching the
3141symbol. On targets that support it, this allows an intelligent linker to
3142optimize references to the symbol without being impeded as it would be
3143by ``@llvm.used``.
3144
3145This is a rare construct that should only be used in rare circumstances,
3146and should not be exposed to source languages.
3147
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003148.. _gv_llvmglobalctors:
3149
Sean Silvab084af42012-12-07 10:36:55 +00003150The '``llvm.global_ctors``' Global Variable
3151-------------------------------------------
3152
3153.. code-block:: llvm
3154
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003155 %0 = type { i32, void ()*, i8* }
3156 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003157
3158The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003159functions, priorities, and an optional associated global or function.
3160The functions referenced by this array will be called in ascending order
3161of priority (i.e. lowest first) when the module is loaded. The order of
3162functions with the same priority is not defined.
3163
3164If the third field is present, non-null, and points to a global variable
3165or function, the initializer function will only run if the associated
3166data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003167
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003168.. _llvmglobaldtors:
3169
Sean Silvab084af42012-12-07 10:36:55 +00003170The '``llvm.global_dtors``' Global Variable
3171-------------------------------------------
3172
3173.. code-block:: llvm
3174
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003175 %0 = type { i32, void ()*, i8* }
3176 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003177
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003178The ``@llvm.global_dtors`` array contains a list of destructor
3179functions, priorities, and an optional associated global or function.
3180The functions referenced by this array will be called in descending
3181order of priority (i.e. highest first) when the module is loaded. The
3182order of functions with the same priority is not defined.
3183
3184If the third field is present, non-null, and points to a global variable
3185or function, the destructor function will only run if the associated
3186data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003187
3188Instruction Reference
3189=====================
3190
3191The LLVM instruction set consists of several different classifications
3192of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3193instructions <binaryops>`, :ref:`bitwise binary
3194instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3195:ref:`other instructions <otherops>`.
3196
3197.. _terminators:
3198
3199Terminator Instructions
3200-----------------------
3201
3202As mentioned :ref:`previously <functionstructure>`, every basic block in a
3203program ends with a "Terminator" instruction, which indicates which
3204block should be executed after the current block is finished. These
3205terminator instructions typically yield a '``void``' value: they produce
3206control flow, not values (the one exception being the
3207':ref:`invoke <i_invoke>`' instruction).
3208
3209The terminator instructions are: ':ref:`ret <i_ret>`',
3210':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3211':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3212':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3213
3214.. _i_ret:
3215
3216'``ret``' Instruction
3217^^^^^^^^^^^^^^^^^^^^^
3218
3219Syntax:
3220"""""""
3221
3222::
3223
3224 ret <type> <value> ; Return a value from a non-void function
3225 ret void ; Return from void function
3226
3227Overview:
3228"""""""""
3229
3230The '``ret``' instruction is used to return control flow (and optionally
3231a value) from a function back to the caller.
3232
3233There are two forms of the '``ret``' instruction: one that returns a
3234value and then causes control flow, and one that just causes control
3235flow to occur.
3236
3237Arguments:
3238""""""""""
3239
3240The '``ret``' instruction optionally accepts a single argument, the
3241return value. The type of the return value must be a ':ref:`first
3242class <t_firstclass>`' type.
3243
3244A function is not :ref:`well formed <wellformed>` if it it has a non-void
3245return type and contains a '``ret``' instruction with no return value or
3246a return value with a type that does not match its type, or if it has a
3247void return type and contains a '``ret``' instruction with a return
3248value.
3249
3250Semantics:
3251""""""""""
3252
3253When the '``ret``' instruction is executed, control flow returns back to
3254the calling function's context. If the caller is a
3255":ref:`call <i_call>`" instruction, execution continues at the
3256instruction after the call. If the caller was an
3257":ref:`invoke <i_invoke>`" instruction, execution continues at the
3258beginning of the "normal" destination block. If the instruction returns
3259a value, that value shall set the call or invoke instruction's return
3260value.
3261
3262Example:
3263""""""""
3264
3265.. code-block:: llvm
3266
3267 ret i32 5 ; Return an integer value of 5
3268 ret void ; Return from a void function
3269 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3270
3271.. _i_br:
3272
3273'``br``' Instruction
3274^^^^^^^^^^^^^^^^^^^^
3275
3276Syntax:
3277"""""""
3278
3279::
3280
3281 br i1 <cond>, label <iftrue>, label <iffalse>
3282 br label <dest> ; Unconditional branch
3283
3284Overview:
3285"""""""""
3286
3287The '``br``' instruction is used to cause control flow to transfer to a
3288different basic block in the current function. There are two forms of
3289this instruction, corresponding to a conditional branch and an
3290unconditional branch.
3291
3292Arguments:
3293""""""""""
3294
3295The conditional branch form of the '``br``' instruction takes a single
3296'``i1``' value and two '``label``' values. The unconditional form of the
3297'``br``' instruction takes a single '``label``' value as a target.
3298
3299Semantics:
3300""""""""""
3301
3302Upon execution of a conditional '``br``' instruction, the '``i1``'
3303argument is evaluated. If the value is ``true``, control flows to the
3304'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3305to the '``iffalse``' ``label`` argument.
3306
3307Example:
3308""""""""
3309
3310.. code-block:: llvm
3311
3312 Test:
3313 %cond = icmp eq i32 %a, %b
3314 br i1 %cond, label %IfEqual, label %IfUnequal
3315 IfEqual:
3316 ret i32 1
3317 IfUnequal:
3318 ret i32 0
3319
3320.. _i_switch:
3321
3322'``switch``' Instruction
3323^^^^^^^^^^^^^^^^^^^^^^^^
3324
3325Syntax:
3326"""""""
3327
3328::
3329
3330 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3331
3332Overview:
3333"""""""""
3334
3335The '``switch``' instruction is used to transfer control flow to one of
3336several different places. It is a generalization of the '``br``'
3337instruction, allowing a branch to occur to one of many possible
3338destinations.
3339
3340Arguments:
3341""""""""""
3342
3343The '``switch``' instruction uses three parameters: an integer
3344comparison value '``value``', a default '``label``' destination, and an
3345array of pairs of comparison value constants and '``label``'s. The table
3346is not allowed to contain duplicate constant entries.
3347
3348Semantics:
3349""""""""""
3350
3351The ``switch`` instruction specifies a table of values and destinations.
3352When the '``switch``' instruction is executed, this table is searched
3353for the given value. If the value is found, control flow is transferred
3354to the corresponding destination; otherwise, control flow is transferred
3355to the default destination.
3356
3357Implementation:
3358"""""""""""""""
3359
3360Depending on properties of the target machine and the particular
3361``switch`` instruction, this instruction may be code generated in
3362different ways. For example, it could be generated as a series of
3363chained conditional branches or with a lookup table.
3364
3365Example:
3366""""""""
3367
3368.. code-block:: llvm
3369
3370 ; Emulate a conditional br instruction
3371 %Val = zext i1 %value to i32
3372 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3373
3374 ; Emulate an unconditional br instruction
3375 switch i32 0, label %dest [ ]
3376
3377 ; Implement a jump table:
3378 switch i32 %val, label %otherwise [ i32 0, label %onzero
3379 i32 1, label %onone
3380 i32 2, label %ontwo ]
3381
3382.. _i_indirectbr:
3383
3384'``indirectbr``' Instruction
3385^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3386
3387Syntax:
3388"""""""
3389
3390::
3391
3392 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3393
3394Overview:
3395"""""""""
3396
3397The '``indirectbr``' instruction implements an indirect branch to a
3398label within the current function, whose address is specified by
3399"``address``". Address must be derived from a
3400:ref:`blockaddress <blockaddress>` constant.
3401
3402Arguments:
3403""""""""""
3404
3405The '``address``' argument is the address of the label to jump to. The
3406rest of the arguments indicate the full set of possible destinations
3407that the address may point to. Blocks are allowed to occur multiple
3408times in the destination list, though this isn't particularly useful.
3409
3410This destination list is required so that dataflow analysis has an
3411accurate understanding of the CFG.
3412
3413Semantics:
3414""""""""""
3415
3416Control transfers to the block specified in the address argument. All
3417possible destination blocks must be listed in the label list, otherwise
3418this instruction has undefined behavior. This implies that jumps to
3419labels defined in other functions have undefined behavior as well.
3420
3421Implementation:
3422"""""""""""""""
3423
3424This is typically implemented with a jump through a register.
3425
3426Example:
3427""""""""
3428
3429.. code-block:: llvm
3430
3431 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3432
3433.. _i_invoke:
3434
3435'``invoke``' Instruction
3436^^^^^^^^^^^^^^^^^^^^^^^^
3437
3438Syntax:
3439"""""""
3440
3441::
3442
3443 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3444 to label <normal label> unwind label <exception label>
3445
3446Overview:
3447"""""""""
3448
3449The '``invoke``' instruction causes control to transfer to a specified
3450function, with the possibility of control flow transfer to either the
3451'``normal``' label or the '``exception``' label. If the callee function
3452returns with the "``ret``" instruction, control flow will return to the
3453"normal" label. If the callee (or any indirect callees) returns via the
3454":ref:`resume <i_resume>`" instruction or other exception handling
3455mechanism, control is interrupted and continued at the dynamically
3456nearest "exception" label.
3457
3458The '``exception``' label is a `landing
3459pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3460'``exception``' label is required to have the
3461":ref:`landingpad <i_landingpad>`" instruction, which contains the
3462information about the behavior of the program after unwinding happens,
3463as its first non-PHI instruction. The restrictions on the
3464"``landingpad``" instruction's tightly couples it to the "``invoke``"
3465instruction, so that the important information contained within the
3466"``landingpad``" instruction can't be lost through normal code motion.
3467
3468Arguments:
3469""""""""""
3470
3471This instruction requires several arguments:
3472
3473#. The optional "cconv" marker indicates which :ref:`calling
3474 convention <callingconv>` the call should use. If none is
3475 specified, the call defaults to using C calling conventions.
3476#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3477 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3478 are valid here.
3479#. '``ptr to function ty``': shall be the signature of the pointer to
3480 function value being invoked. In most cases, this is a direct
3481 function invocation, but indirect ``invoke``'s are just as possible,
3482 branching off an arbitrary pointer to function value.
3483#. '``function ptr val``': An LLVM value containing a pointer to a
3484 function to be invoked.
3485#. '``function args``': argument list whose types match the function
3486 signature argument types and parameter attributes. All arguments must
3487 be of :ref:`first class <t_firstclass>` type. If the function signature
3488 indicates the function accepts a variable number of arguments, the
3489 extra arguments can be specified.
3490#. '``normal label``': the label reached when the called function
3491 executes a '``ret``' instruction.
3492#. '``exception label``': the label reached when a callee returns via
3493 the :ref:`resume <i_resume>` instruction or other exception handling
3494 mechanism.
3495#. The optional :ref:`function attributes <fnattrs>` list. Only
3496 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3497 attributes are valid here.
3498
3499Semantics:
3500""""""""""
3501
3502This instruction is designed to operate as a standard '``call``'
3503instruction in most regards. The primary difference is that it
3504establishes an association with a label, which is used by the runtime
3505library to unwind the stack.
3506
3507This instruction is used in languages with destructors to ensure that
3508proper cleanup is performed in the case of either a ``longjmp`` or a
3509thrown exception. Additionally, this is important for implementation of
3510'``catch``' clauses in high-level languages that support them.
3511
3512For the purposes of the SSA form, the definition of the value returned
3513by the '``invoke``' instruction is deemed to occur on the edge from the
3514current block to the "normal" label. If the callee unwinds then no
3515return value is available.
3516
3517Example:
3518""""""""
3519
3520.. code-block:: llvm
3521
3522 %retval = invoke i32 @Test(i32 15) to label %Continue
3523 unwind label %TestCleanup ; {i32}:retval set
3524 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3525 unwind label %TestCleanup ; {i32}:retval set
3526
3527.. _i_resume:
3528
3529'``resume``' Instruction
3530^^^^^^^^^^^^^^^^^^^^^^^^
3531
3532Syntax:
3533"""""""
3534
3535::
3536
3537 resume <type> <value>
3538
3539Overview:
3540"""""""""
3541
3542The '``resume``' instruction is a terminator instruction that has no
3543successors.
3544
3545Arguments:
3546""""""""""
3547
3548The '``resume``' instruction requires one argument, which must have the
3549same type as the result of any '``landingpad``' instruction in the same
3550function.
3551
3552Semantics:
3553""""""""""
3554
3555The '``resume``' instruction resumes propagation of an existing
3556(in-flight) exception whose unwinding was interrupted with a
3557:ref:`landingpad <i_landingpad>` instruction.
3558
3559Example:
3560""""""""
3561
3562.. code-block:: llvm
3563
3564 resume { i8*, i32 } %exn
3565
3566.. _i_unreachable:
3567
3568'``unreachable``' Instruction
3569^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3570
3571Syntax:
3572"""""""
3573
3574::
3575
3576 unreachable
3577
3578Overview:
3579"""""""""
3580
3581The '``unreachable``' instruction has no defined semantics. This
3582instruction is used to inform the optimizer that a particular portion of
3583the code is not reachable. This can be used to indicate that the code
3584after a no-return function cannot be reached, and other facts.
3585
3586Semantics:
3587""""""""""
3588
3589The '``unreachable``' instruction has no defined semantics.
3590
3591.. _binaryops:
3592
3593Binary Operations
3594-----------------
3595
3596Binary operators are used to do most of the computation in a program.
3597They require two operands of the same type, execute an operation on
3598them, and produce a single value. The operands might represent multiple
3599data, as is the case with the :ref:`vector <t_vector>` data type. The
3600result value has the same type as its operands.
3601
3602There are several different binary operators:
3603
3604.. _i_add:
3605
3606'``add``' Instruction
3607^^^^^^^^^^^^^^^^^^^^^
3608
3609Syntax:
3610"""""""
3611
3612::
3613
3614 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3615 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3616 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3617 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3618
3619Overview:
3620"""""""""
3621
3622The '``add``' instruction returns the sum of its two operands.
3623
3624Arguments:
3625""""""""""
3626
3627The two arguments to the '``add``' instruction must be
3628:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3629arguments must have identical types.
3630
3631Semantics:
3632""""""""""
3633
3634The value produced is the integer sum of the two operands.
3635
3636If the sum has unsigned overflow, the result returned is the
3637mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3638the result.
3639
3640Because LLVM integers use a two's complement representation, this
3641instruction is appropriate for both signed and unsigned integers.
3642
3643``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3644respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3645result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3646unsigned and/or signed overflow, respectively, occurs.
3647
3648Example:
3649""""""""
3650
3651.. code-block:: llvm
3652
3653 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3654
3655.. _i_fadd:
3656
3657'``fadd``' Instruction
3658^^^^^^^^^^^^^^^^^^^^^^
3659
3660Syntax:
3661"""""""
3662
3663::
3664
3665 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3666
3667Overview:
3668"""""""""
3669
3670The '``fadd``' instruction returns the sum of its two operands.
3671
3672Arguments:
3673""""""""""
3674
3675The two arguments to the '``fadd``' instruction must be :ref:`floating
3676point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3677Both arguments must have identical types.
3678
3679Semantics:
3680""""""""""
3681
3682The value produced is the floating point sum of the two operands. This
3683instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3684which are optimization hints to enable otherwise unsafe floating point
3685optimizations:
3686
3687Example:
3688""""""""
3689
3690.. code-block:: llvm
3691
3692 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3693
3694'``sub``' Instruction
3695^^^^^^^^^^^^^^^^^^^^^
3696
3697Syntax:
3698"""""""
3699
3700::
3701
3702 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3703 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3704 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3705 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3706
3707Overview:
3708"""""""""
3709
3710The '``sub``' instruction returns the difference of its two operands.
3711
3712Note that the '``sub``' instruction is used to represent the '``neg``'
3713instruction present in most other intermediate representations.
3714
3715Arguments:
3716""""""""""
3717
3718The two arguments to the '``sub``' instruction must be
3719:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3720arguments must have identical types.
3721
3722Semantics:
3723""""""""""
3724
3725The value produced is the integer difference of the two operands.
3726
3727If the difference has unsigned overflow, the result returned is the
3728mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3729the result.
3730
3731Because LLVM integers use a two's complement representation, this
3732instruction is appropriate for both signed and unsigned integers.
3733
3734``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3735respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3736result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3737unsigned and/or signed overflow, respectively, occurs.
3738
3739Example:
3740""""""""
3741
3742.. code-block:: llvm
3743
3744 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3745 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3746
3747.. _i_fsub:
3748
3749'``fsub``' Instruction
3750^^^^^^^^^^^^^^^^^^^^^^
3751
3752Syntax:
3753"""""""
3754
3755::
3756
3757 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3758
3759Overview:
3760"""""""""
3761
3762The '``fsub``' instruction returns the difference of its two operands.
3763
3764Note that the '``fsub``' instruction is used to represent the '``fneg``'
3765instruction present in most other intermediate representations.
3766
3767Arguments:
3768""""""""""
3769
3770The two arguments to the '``fsub``' instruction must be :ref:`floating
3771point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3772Both arguments must have identical types.
3773
3774Semantics:
3775""""""""""
3776
3777The value produced is the floating point difference of the two operands.
3778This instruction can also take any number of :ref:`fast-math
3779flags <fastmath>`, which are optimization hints to enable otherwise
3780unsafe floating point optimizations:
3781
3782Example:
3783""""""""
3784
3785.. code-block:: llvm
3786
3787 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3788 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3789
3790'``mul``' Instruction
3791^^^^^^^^^^^^^^^^^^^^^
3792
3793Syntax:
3794"""""""
3795
3796::
3797
3798 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3799 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3800 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3801 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3802
3803Overview:
3804"""""""""
3805
3806The '``mul``' instruction returns the product of its two operands.
3807
3808Arguments:
3809""""""""""
3810
3811The two arguments to the '``mul``' instruction must be
3812:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3813arguments must have identical types.
3814
3815Semantics:
3816""""""""""
3817
3818The value produced is the integer product of the two operands.
3819
3820If the result of the multiplication has unsigned overflow, the result
3821returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3822bit width of the result.
3823
3824Because LLVM integers use a two's complement representation, and the
3825result is the same width as the operands, this instruction returns the
3826correct result for both signed and unsigned integers. If a full product
3827(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3828sign-extended or zero-extended as appropriate to the width of the full
3829product.
3830
3831``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3832respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3833result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3834unsigned and/or signed overflow, respectively, occurs.
3835
3836Example:
3837""""""""
3838
3839.. code-block:: llvm
3840
3841 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3842
3843.. _i_fmul:
3844
3845'``fmul``' Instruction
3846^^^^^^^^^^^^^^^^^^^^^^
3847
3848Syntax:
3849"""""""
3850
3851::
3852
3853 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3854
3855Overview:
3856"""""""""
3857
3858The '``fmul``' instruction returns the product of its two operands.
3859
3860Arguments:
3861""""""""""
3862
3863The two arguments to the '``fmul``' instruction must be :ref:`floating
3864point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3865Both arguments must have identical types.
3866
3867Semantics:
3868""""""""""
3869
3870The value produced is the floating point product of the two operands.
3871This instruction can also take any number of :ref:`fast-math
3872flags <fastmath>`, which are optimization hints to enable otherwise
3873unsafe floating point optimizations:
3874
3875Example:
3876""""""""
3877
3878.. code-block:: llvm
3879
3880 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3881
3882'``udiv``' Instruction
3883^^^^^^^^^^^^^^^^^^^^^^
3884
3885Syntax:
3886"""""""
3887
3888::
3889
3890 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3891 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3892
3893Overview:
3894"""""""""
3895
3896The '``udiv``' instruction returns the quotient of its two operands.
3897
3898Arguments:
3899""""""""""
3900
3901The two arguments to the '``udiv``' instruction must be
3902:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3903arguments must have identical types.
3904
3905Semantics:
3906""""""""""
3907
3908The value produced is the unsigned integer quotient of the two operands.
3909
3910Note that unsigned integer division and signed integer division are
3911distinct operations; for signed integer division, use '``sdiv``'.
3912
3913Division by zero leads to undefined behavior.
3914
3915If the ``exact`` keyword is present, the result value of the ``udiv`` is
3916a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3917such, "((a udiv exact b) mul b) == a").
3918
3919Example:
3920""""""""
3921
3922.. code-block:: llvm
3923
3924 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3925
3926'``sdiv``' Instruction
3927^^^^^^^^^^^^^^^^^^^^^^
3928
3929Syntax:
3930"""""""
3931
3932::
3933
3934 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3935 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3936
3937Overview:
3938"""""""""
3939
3940The '``sdiv``' instruction returns the quotient of its two operands.
3941
3942Arguments:
3943""""""""""
3944
3945The two arguments to the '``sdiv``' instruction must be
3946:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3947arguments must have identical types.
3948
3949Semantics:
3950""""""""""
3951
3952The value produced is the signed integer quotient of the two operands
3953rounded towards zero.
3954
3955Note that signed integer division and unsigned integer division are
3956distinct operations; for unsigned integer division, use '``udiv``'.
3957
3958Division by zero leads to undefined behavior. Overflow also leads to
3959undefined behavior; this is a rare case, but can occur, for example, by
3960doing a 32-bit division of -2147483648 by -1.
3961
3962If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3963a :ref:`poison value <poisonvalues>` if the result would be rounded.
3964
3965Example:
3966""""""""
3967
3968.. code-block:: llvm
3969
3970 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3971
3972.. _i_fdiv:
3973
3974'``fdiv``' Instruction
3975^^^^^^^^^^^^^^^^^^^^^^
3976
3977Syntax:
3978"""""""
3979
3980::
3981
3982 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3983
3984Overview:
3985"""""""""
3986
3987The '``fdiv``' instruction returns the quotient of its two operands.
3988
3989Arguments:
3990""""""""""
3991
3992The two arguments to the '``fdiv``' instruction must be :ref:`floating
3993point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3994Both arguments must have identical types.
3995
3996Semantics:
3997""""""""""
3998
3999The value produced is the floating point quotient of the two operands.
4000This instruction can also take any number of :ref:`fast-math
4001flags <fastmath>`, which are optimization hints to enable otherwise
4002unsafe floating point optimizations:
4003
4004Example:
4005""""""""
4006
4007.. code-block:: llvm
4008
4009 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
4010
4011'``urem``' Instruction
4012^^^^^^^^^^^^^^^^^^^^^^
4013
4014Syntax:
4015"""""""
4016
4017::
4018
4019 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
4020
4021Overview:
4022"""""""""
4023
4024The '``urem``' instruction returns the remainder from the unsigned
4025division of its two arguments.
4026
4027Arguments:
4028""""""""""
4029
4030The two arguments to the '``urem``' instruction must be
4031:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4032arguments must have identical types.
4033
4034Semantics:
4035""""""""""
4036
4037This instruction returns the unsigned integer *remainder* of a division.
4038This instruction always performs an unsigned division to get the
4039remainder.
4040
4041Note that unsigned integer remainder and signed integer remainder are
4042distinct operations; for signed integer remainder, use '``srem``'.
4043
4044Taking the remainder of a division by zero leads to undefined behavior.
4045
4046Example:
4047""""""""
4048
4049.. code-block:: llvm
4050
4051 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4052
4053'``srem``' Instruction
4054^^^^^^^^^^^^^^^^^^^^^^
4055
4056Syntax:
4057"""""""
4058
4059::
4060
4061 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4062
4063Overview:
4064"""""""""
4065
4066The '``srem``' instruction returns the remainder from the signed
4067division of its two operands. This instruction can also take
4068:ref:`vector <t_vector>` versions of the values in which case the elements
4069must be integers.
4070
4071Arguments:
4072""""""""""
4073
4074The two arguments to the '``srem``' instruction must be
4075:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4076arguments must have identical types.
4077
4078Semantics:
4079""""""""""
4080
4081This instruction returns the *remainder* of a division (where the result
4082is either zero or has the same sign as the dividend, ``op1``), not the
4083*modulo* operator (where the result is either zero or has the same sign
4084as the divisor, ``op2``) of a value. For more information about the
4085difference, see `The Math
4086Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4087table of how this is implemented in various languages, please see
4088`Wikipedia: modulo
4089operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4090
4091Note that signed integer remainder and unsigned integer remainder are
4092distinct operations; for unsigned integer remainder, use '``urem``'.
4093
4094Taking the remainder of a division by zero leads to undefined behavior.
4095Overflow also leads to undefined behavior; this is a rare case, but can
4096occur, for example, by taking the remainder of a 32-bit division of
4097-2147483648 by -1. (The remainder doesn't actually overflow, but this
4098rule lets srem be implemented using instructions that return both the
4099result of the division and the remainder.)
4100
4101Example:
4102""""""""
4103
4104.. code-block:: llvm
4105
4106 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4107
4108.. _i_frem:
4109
4110'``frem``' Instruction
4111^^^^^^^^^^^^^^^^^^^^^^
4112
4113Syntax:
4114"""""""
4115
4116::
4117
4118 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4119
4120Overview:
4121"""""""""
4122
4123The '``frem``' instruction returns the remainder from the division of
4124its two operands.
4125
4126Arguments:
4127""""""""""
4128
4129The two arguments to the '``frem``' instruction must be :ref:`floating
4130point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4131Both arguments must have identical types.
4132
4133Semantics:
4134""""""""""
4135
4136This instruction returns the *remainder* of a division. The remainder
4137has the same sign as the dividend. This instruction can also take any
4138number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4139to enable otherwise unsafe floating point optimizations:
4140
4141Example:
4142""""""""
4143
4144.. code-block:: llvm
4145
4146 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4147
4148.. _bitwiseops:
4149
4150Bitwise Binary Operations
4151-------------------------
4152
4153Bitwise binary operators are used to do various forms of bit-twiddling
4154in a program. They are generally very efficient instructions and can
4155commonly be strength reduced from other instructions. They require two
4156operands of the same type, execute an operation on them, and produce a
4157single value. The resulting value is the same type as its operands.
4158
4159'``shl``' Instruction
4160^^^^^^^^^^^^^^^^^^^^^
4161
4162Syntax:
4163"""""""
4164
4165::
4166
4167 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4168 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4169 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4170 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4171
4172Overview:
4173"""""""""
4174
4175The '``shl``' instruction returns the first operand shifted to the left
4176a specified number of bits.
4177
4178Arguments:
4179""""""""""
4180
4181Both arguments to the '``shl``' instruction must be the same
4182:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4183'``op2``' is treated as an unsigned value.
4184
4185Semantics:
4186""""""""""
4187
4188The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4189where ``n`` is the width of the result. If ``op2`` is (statically or
4190dynamically) negative or equal to or larger than the number of bits in
4191``op1``, the result is undefined. If the arguments are vectors, each
4192vector element of ``op1`` is shifted by the corresponding shift amount
4193in ``op2``.
4194
4195If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4196value <poisonvalues>` if it shifts out any non-zero bits. If the
4197``nsw`` keyword is present, then the shift produces a :ref:`poison
4198value <poisonvalues>` if it shifts out any bits that disagree with the
4199resultant sign bit. As such, NUW/NSW have the same semantics as they
4200would if the shift were expressed as a mul instruction with the same
4201nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4202
4203Example:
4204""""""""
4205
4206.. code-block:: llvm
4207
4208 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4209 <result> = shl i32 4, 2 ; yields {i32}: 16
4210 <result> = shl i32 1, 10 ; yields {i32}: 1024
4211 <result> = shl i32 1, 32 ; undefined
4212 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4213
4214'``lshr``' Instruction
4215^^^^^^^^^^^^^^^^^^^^^^
4216
4217Syntax:
4218"""""""
4219
4220::
4221
4222 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4223 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4224
4225Overview:
4226"""""""""
4227
4228The '``lshr``' instruction (logical shift right) returns the first
4229operand shifted to the right a specified number of bits with zero fill.
4230
4231Arguments:
4232""""""""""
4233
4234Both arguments to the '``lshr``' instruction must be the same
4235:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4236'``op2``' is treated as an unsigned value.
4237
4238Semantics:
4239""""""""""
4240
4241This instruction always performs a logical shift right operation. The
4242most significant bits of the result will be filled with zero bits after
4243the shift. If ``op2`` is (statically or dynamically) equal to or larger
4244than the number of bits in ``op1``, the result is undefined. If the
4245arguments are vectors, each vector element of ``op1`` is shifted by the
4246corresponding shift amount in ``op2``.
4247
4248If the ``exact`` keyword is present, the result value of the ``lshr`` is
4249a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4250non-zero.
4251
4252Example:
4253""""""""
4254
4255.. code-block:: llvm
4256
4257 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4258 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4259 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004260 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004261 <result> = lshr i32 1, 32 ; undefined
4262 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4263
4264'``ashr``' Instruction
4265^^^^^^^^^^^^^^^^^^^^^^
4266
4267Syntax:
4268"""""""
4269
4270::
4271
4272 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4273 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4274
4275Overview:
4276"""""""""
4277
4278The '``ashr``' instruction (arithmetic shift right) returns the first
4279operand shifted to the right a specified number of bits with sign
4280extension.
4281
4282Arguments:
4283""""""""""
4284
4285Both arguments to the '``ashr``' instruction must be the same
4286:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4287'``op2``' is treated as an unsigned value.
4288
4289Semantics:
4290""""""""""
4291
4292This instruction always performs an arithmetic shift right operation,
4293The most significant bits of the result will be filled with the sign bit
4294of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4295than the number of bits in ``op1``, the result is undefined. If the
4296arguments are vectors, each vector element of ``op1`` is shifted by the
4297corresponding shift amount in ``op2``.
4298
4299If the ``exact`` keyword is present, the result value of the ``ashr`` is
4300a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4301non-zero.
4302
4303Example:
4304""""""""
4305
4306.. code-block:: llvm
4307
4308 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4309 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4310 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4311 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4312 <result> = ashr i32 1, 32 ; undefined
4313 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4314
4315'``and``' Instruction
4316^^^^^^^^^^^^^^^^^^^^^
4317
4318Syntax:
4319"""""""
4320
4321::
4322
4323 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4324
4325Overview:
4326"""""""""
4327
4328The '``and``' instruction returns the bitwise logical and of its two
4329operands.
4330
4331Arguments:
4332""""""""""
4333
4334The two arguments to the '``and``' instruction must be
4335:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4336arguments must have identical types.
4337
4338Semantics:
4339""""""""""
4340
4341The truth table used for the '``and``' instruction is:
4342
4343+-----+-----+-----+
4344| In0 | In1 | Out |
4345+-----+-----+-----+
4346| 0 | 0 | 0 |
4347+-----+-----+-----+
4348| 0 | 1 | 0 |
4349+-----+-----+-----+
4350| 1 | 0 | 0 |
4351+-----+-----+-----+
4352| 1 | 1 | 1 |
4353+-----+-----+-----+
4354
4355Example:
4356""""""""
4357
4358.. code-block:: llvm
4359
4360 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4361 <result> = and i32 15, 40 ; yields {i32}:result = 8
4362 <result> = and i32 4, 8 ; yields {i32}:result = 0
4363
4364'``or``' Instruction
4365^^^^^^^^^^^^^^^^^^^^
4366
4367Syntax:
4368"""""""
4369
4370::
4371
4372 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4373
4374Overview:
4375"""""""""
4376
4377The '``or``' instruction returns the bitwise logical inclusive or of its
4378two operands.
4379
4380Arguments:
4381""""""""""
4382
4383The two arguments to the '``or``' instruction must be
4384:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4385arguments must have identical types.
4386
4387Semantics:
4388""""""""""
4389
4390The truth table used for the '``or``' instruction is:
4391
4392+-----+-----+-----+
4393| In0 | In1 | Out |
4394+-----+-----+-----+
4395| 0 | 0 | 0 |
4396+-----+-----+-----+
4397| 0 | 1 | 1 |
4398+-----+-----+-----+
4399| 1 | 0 | 1 |
4400+-----+-----+-----+
4401| 1 | 1 | 1 |
4402+-----+-----+-----+
4403
4404Example:
4405""""""""
4406
4407::
4408
4409 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4410 <result> = or i32 15, 40 ; yields {i32}:result = 47
4411 <result> = or i32 4, 8 ; yields {i32}:result = 12
4412
4413'``xor``' Instruction
4414^^^^^^^^^^^^^^^^^^^^^
4415
4416Syntax:
4417"""""""
4418
4419::
4420
4421 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4422
4423Overview:
4424"""""""""
4425
4426The '``xor``' instruction returns the bitwise logical exclusive or of
4427its two operands. The ``xor`` is used to implement the "one's
4428complement" operation, which is the "~" operator in C.
4429
4430Arguments:
4431""""""""""
4432
4433The two arguments to the '``xor``' instruction must be
4434:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4435arguments must have identical types.
4436
4437Semantics:
4438""""""""""
4439
4440The truth table used for the '``xor``' instruction is:
4441
4442+-----+-----+-----+
4443| In0 | In1 | Out |
4444+-----+-----+-----+
4445| 0 | 0 | 0 |
4446+-----+-----+-----+
4447| 0 | 1 | 1 |
4448+-----+-----+-----+
4449| 1 | 0 | 1 |
4450+-----+-----+-----+
4451| 1 | 1 | 0 |
4452+-----+-----+-----+
4453
4454Example:
4455""""""""
4456
4457.. code-block:: llvm
4458
4459 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4460 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4461 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4462 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4463
4464Vector Operations
4465-----------------
4466
4467LLVM supports several instructions to represent vector operations in a
4468target-independent manner. These instructions cover the element-access
4469and vector-specific operations needed to process vectors effectively.
4470While LLVM does directly support these vector operations, many
4471sophisticated algorithms will want to use target-specific intrinsics to
4472take full advantage of a specific target.
4473
4474.. _i_extractelement:
4475
4476'``extractelement``' Instruction
4477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4478
4479Syntax:
4480"""""""
4481
4482::
4483
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004484 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004485
4486Overview:
4487"""""""""
4488
4489The '``extractelement``' instruction extracts a single scalar element
4490from a vector at a specified index.
4491
4492Arguments:
4493""""""""""
4494
4495The first operand of an '``extractelement``' instruction is a value of
4496:ref:`vector <t_vector>` type. The second operand is an index indicating
4497the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004498variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004499
4500Semantics:
4501""""""""""
4502
4503The result is a scalar of the same type as the element type of ``val``.
4504Its value is the value at position ``idx`` of ``val``. If ``idx``
4505exceeds the length of ``val``, the results are undefined.
4506
4507Example:
4508""""""""
4509
4510.. code-block:: llvm
4511
4512 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4513
4514.. _i_insertelement:
4515
4516'``insertelement``' Instruction
4517^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4518
4519Syntax:
4520"""""""
4521
4522::
4523
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004524 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004525
4526Overview:
4527"""""""""
4528
4529The '``insertelement``' instruction inserts a scalar element into a
4530vector at a specified index.
4531
4532Arguments:
4533""""""""""
4534
4535The first operand of an '``insertelement``' instruction is a value of
4536:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4537type must equal the element type of the first operand. The third operand
4538is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004539index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004540
4541Semantics:
4542""""""""""
4543
4544The result is a vector of the same type as ``val``. Its element values
4545are those of ``val`` except at position ``idx``, where it gets the value
4546``elt``. If ``idx`` exceeds the length of ``val``, the results are
4547undefined.
4548
4549Example:
4550""""""""
4551
4552.. code-block:: llvm
4553
4554 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4555
4556.. _i_shufflevector:
4557
4558'``shufflevector``' Instruction
4559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4560
4561Syntax:
4562"""""""
4563
4564::
4565
4566 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4567
4568Overview:
4569"""""""""
4570
4571The '``shufflevector``' instruction constructs a permutation of elements
4572from two input vectors, returning a vector with the same element type as
4573the input and length that is the same as the shuffle mask.
4574
4575Arguments:
4576""""""""""
4577
4578The first two operands of a '``shufflevector``' instruction are vectors
4579with the same type. The third argument is a shuffle mask whose element
4580type is always 'i32'. The result of the instruction is a vector whose
4581length is the same as the shuffle mask and whose element type is the
4582same as the element type of the first two operands.
4583
4584The shuffle mask operand is required to be a constant vector with either
4585constant integer or undef values.
4586
4587Semantics:
4588""""""""""
4589
4590The elements of the two input vectors are numbered from left to right
4591across both of the vectors. The shuffle mask operand specifies, for each
4592element of the result vector, which element of the two input vectors the
4593result element gets. The element selector may be undef (meaning "don't
4594care") and the second operand may be undef if performing a shuffle from
4595only one vector.
4596
4597Example:
4598""""""""
4599
4600.. code-block:: llvm
4601
4602 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4603 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4604 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4605 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4606 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4607 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4608 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4609 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4610
4611Aggregate Operations
4612--------------------
4613
4614LLVM supports several instructions for working with
4615:ref:`aggregate <t_aggregate>` values.
4616
4617.. _i_extractvalue:
4618
4619'``extractvalue``' Instruction
4620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4621
4622Syntax:
4623"""""""
4624
4625::
4626
4627 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4628
4629Overview:
4630"""""""""
4631
4632The '``extractvalue``' instruction extracts the value of a member field
4633from an :ref:`aggregate <t_aggregate>` value.
4634
4635Arguments:
4636""""""""""
4637
4638The first operand of an '``extractvalue``' instruction is a value of
4639:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4640constant indices to specify which value to extract in a similar manner
4641as indices in a '``getelementptr``' instruction.
4642
4643The major differences to ``getelementptr`` indexing are:
4644
4645- Since the value being indexed is not a pointer, the first index is
4646 omitted and assumed to be zero.
4647- At least one index must be specified.
4648- Not only struct indices but also array indices must be in bounds.
4649
4650Semantics:
4651""""""""""
4652
4653The result is the value at the position in the aggregate specified by
4654the index operands.
4655
4656Example:
4657""""""""
4658
4659.. code-block:: llvm
4660
4661 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4662
4663.. _i_insertvalue:
4664
4665'``insertvalue``' Instruction
4666^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4667
4668Syntax:
4669"""""""
4670
4671::
4672
4673 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4674
4675Overview:
4676"""""""""
4677
4678The '``insertvalue``' instruction inserts a value into a member field in
4679an :ref:`aggregate <t_aggregate>` value.
4680
4681Arguments:
4682""""""""""
4683
4684The first operand of an '``insertvalue``' instruction is a value of
4685:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4686a first-class value to insert. The following operands are constant
4687indices indicating the position at which to insert the value in a
4688similar manner as indices in a '``extractvalue``' instruction. The value
4689to insert must have the same type as the value identified by the
4690indices.
4691
4692Semantics:
4693""""""""""
4694
4695The result is an aggregate of the same type as ``val``. Its value is
4696that of ``val`` except that the value at the position specified by the
4697indices is that of ``elt``.
4698
4699Example:
4700""""""""
4701
4702.. code-block:: llvm
4703
4704 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4705 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4706 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4707
4708.. _memoryops:
4709
4710Memory Access and Addressing Operations
4711---------------------------------------
4712
4713A key design point of an SSA-based representation is how it represents
4714memory. In LLVM, no memory locations are in SSA form, which makes things
4715very simple. This section describes how to read, write, and allocate
4716memory in LLVM.
4717
4718.. _i_alloca:
4719
4720'``alloca``' Instruction
4721^^^^^^^^^^^^^^^^^^^^^^^^
4722
4723Syntax:
4724"""""""
4725
4726::
4727
David Majnemerc4ab61c2014-03-09 06:41:58 +00004728 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields {type*}:result
Sean Silvab084af42012-12-07 10:36:55 +00004729
4730Overview:
4731"""""""""
4732
4733The '``alloca``' instruction allocates memory on the stack frame of the
4734currently executing function, to be automatically released when this
4735function returns to its caller. The object is always allocated in the
4736generic address space (address space zero).
4737
4738Arguments:
4739""""""""""
4740
4741The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4742bytes of memory on the runtime stack, returning a pointer of the
4743appropriate type to the program. If "NumElements" is specified, it is
4744the number of elements allocated, otherwise "NumElements" is defaulted
4745to be one. If a constant alignment is specified, the value result of the
4746allocation is guaranteed to be aligned to at least that boundary. If not
4747specified, or if zero, the target can choose to align the allocation on
4748any convenient boundary compatible with the type.
4749
4750'``type``' may be any sized type.
4751
4752Semantics:
4753""""""""""
4754
4755Memory is allocated; a pointer is returned. The operation is undefined
4756if there is insufficient stack space for the allocation. '``alloca``'d
4757memory is automatically released when the function returns. The
4758'``alloca``' instruction is commonly used to represent automatic
4759variables that must have an address available. When the function returns
4760(either with the ``ret`` or ``resume`` instructions), the memory is
4761reclaimed. Allocating zero bytes is legal, but the result is undefined.
4762The order in which memory is allocated (ie., which way the stack grows)
4763is not specified.
4764
4765Example:
4766""""""""
4767
4768.. code-block:: llvm
4769
4770 %ptr = alloca i32 ; yields {i32*}:ptr
4771 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4772 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4773 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4774
4775.. _i_load:
4776
4777'``load``' Instruction
4778^^^^^^^^^^^^^^^^^^^^^^
4779
4780Syntax:
4781"""""""
4782
4783::
4784
4785 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4786 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4787 !<index> = !{ i32 1 }
4788
4789Overview:
4790"""""""""
4791
4792The '``load``' instruction is used to read from memory.
4793
4794Arguments:
4795""""""""""
4796
Eli Bendersky239a78b2013-04-17 20:17:08 +00004797The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004798from which to load. The pointer must point to a :ref:`first
4799class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4800then the optimizer is not allowed to modify the number or order of
4801execution of this ``load`` with other :ref:`volatile
4802operations <volatile>`.
4803
4804If the ``load`` is marked as ``atomic``, it takes an extra
4805:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4806``release`` and ``acq_rel`` orderings are not valid on ``load``
4807instructions. Atomic loads produce :ref:`defined <memmodel>` results
4808when they may see multiple atomic stores. The type of the pointee must
4809be an integer type whose bit width is a power of two greater than or
4810equal to eight and less than or equal to a target-specific size limit.
4811``align`` must be explicitly specified on atomic loads, and the load has
4812undefined behavior if the alignment is not set to a value which is at
4813least the size in bytes of the pointee. ``!nontemporal`` does not have
4814any defined semantics for atomic loads.
4815
4816The optional constant ``align`` argument specifies the alignment of the
4817operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004818or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004819alignment for the target. It is the responsibility of the code emitter
4820to ensure that the alignment information is correct. Overestimating the
4821alignment results in undefined behavior. Underestimating the alignment
4822may produce less efficient code. An alignment of 1 is always safe.
4823
4824The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004825metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004826``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004827metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004828that this load is not expected to be reused in the cache. The code
4829generator may select special instructions to save cache bandwidth, such
4830as the ``MOVNT`` instruction on x86.
4831
4832The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004833metadata name ``<index>`` corresponding to a metadata node with no
4834entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004835instruction tells the optimizer and code generator that this load
4836address points to memory which does not change value during program
4837execution. The optimizer may then move this load around, for example, by
4838hoisting it out of loops using loop invariant code motion.
4839
4840Semantics:
4841""""""""""
4842
4843The location of memory pointed to is loaded. If the value being loaded
4844is of scalar type then the number of bytes read does not exceed the
4845minimum number of bytes needed to hold all bits of the type. For
4846example, loading an ``i24`` reads at most three bytes. When loading a
4847value of a type like ``i20`` with a size that is not an integral number
4848of bytes, the result is undefined if the value was not originally
4849written using a store of the same type.
4850
4851Examples:
4852"""""""""
4853
4854.. code-block:: llvm
4855
4856 %ptr = alloca i32 ; yields {i32*}:ptr
4857 store i32 3, i32* %ptr ; yields {void}
4858 %val = load i32* %ptr ; yields {i32}:val = i32 3
4859
4860.. _i_store:
4861
4862'``store``' Instruction
4863^^^^^^^^^^^^^^^^^^^^^^^
4864
4865Syntax:
4866"""""""
4867
4868::
4869
4870 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4871 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4872
4873Overview:
4874"""""""""
4875
4876The '``store``' instruction is used to write to memory.
4877
4878Arguments:
4879""""""""""
4880
Eli Benderskyca380842013-04-17 17:17:20 +00004881There are two arguments to the ``store`` instruction: a value to store
4882and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004883operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004884the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004885then the optimizer is not allowed to modify the number or order of
4886execution of this ``store`` with other :ref:`volatile
4887operations <volatile>`.
4888
4889If the ``store`` is marked as ``atomic``, it takes an extra
4890:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4891``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4892instructions. Atomic loads produce :ref:`defined <memmodel>` results
4893when they may see multiple atomic stores. The type of the pointee must
4894be an integer type whose bit width is a power of two greater than or
4895equal to eight and less than or equal to a target-specific size limit.
4896``align`` must be explicitly specified on atomic stores, and the store
4897has undefined behavior if the alignment is not set to a value which is
4898at least the size in bytes of the pointee. ``!nontemporal`` does not
4899have any defined semantics for atomic stores.
4900
Eli Benderskyca380842013-04-17 17:17:20 +00004901The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004902operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004903or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004904alignment for the target. It is the responsibility of the code emitter
4905to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004906alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004907alignment may produce less efficient code. An alignment of 1 is always
4908safe.
4909
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004910The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004911name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004912value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004913tells the optimizer and code generator that this load is not expected to
4914be reused in the cache. The code generator may select special
4915instructions to save cache bandwidth, such as the MOVNT instruction on
4916x86.
4917
4918Semantics:
4919""""""""""
4920
Eli Benderskyca380842013-04-17 17:17:20 +00004921The contents of memory are updated to contain ``<value>`` at the
4922location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004923of scalar type then the number of bytes written does not exceed the
4924minimum number of bytes needed to hold all bits of the type. For
4925example, storing an ``i24`` writes at most three bytes. When writing a
4926value of a type like ``i20`` with a size that is not an integral number
4927of bytes, it is unspecified what happens to the extra bits that do not
4928belong to the type, but they will typically be overwritten.
4929
4930Example:
4931""""""""
4932
4933.. code-block:: llvm
4934
4935 %ptr = alloca i32 ; yields {i32*}:ptr
4936 store i32 3, i32* %ptr ; yields {void}
4937 %val = load i32* %ptr ; yields {i32}:val = i32 3
4938
4939.. _i_fence:
4940
4941'``fence``' Instruction
4942^^^^^^^^^^^^^^^^^^^^^^^
4943
4944Syntax:
4945"""""""
4946
4947::
4948
4949 fence [singlethread] <ordering> ; yields {void}
4950
4951Overview:
4952"""""""""
4953
4954The '``fence``' instruction is used to introduce happens-before edges
4955between operations.
4956
4957Arguments:
4958""""""""""
4959
4960'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4961defines what *synchronizes-with* edges they add. They can only be given
4962``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4963
4964Semantics:
4965""""""""""
4966
4967A fence A which has (at least) ``release`` ordering semantics
4968*synchronizes with* a fence B with (at least) ``acquire`` ordering
4969semantics if and only if there exist atomic operations X and Y, both
4970operating on some atomic object M, such that A is sequenced before X, X
4971modifies M (either directly or through some side effect of a sequence
4972headed by X), Y is sequenced before B, and Y observes M. This provides a
4973*happens-before* dependency between A and B. Rather than an explicit
4974``fence``, one (but not both) of the atomic operations X or Y might
4975provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4976still *synchronize-with* the explicit ``fence`` and establish the
4977*happens-before* edge.
4978
4979A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4980``acquire`` and ``release`` semantics specified above, participates in
4981the global program order of other ``seq_cst`` operations and/or fences.
4982
4983The optional ":ref:`singlethread <singlethread>`" argument specifies
4984that the fence only synchronizes with other fences in the same thread.
4985(This is useful for interacting with signal handlers.)
4986
4987Example:
4988""""""""
4989
4990.. code-block:: llvm
4991
4992 fence acquire ; yields {void}
4993 fence singlethread seq_cst ; yields {void}
4994
4995.. _i_cmpxchg:
4996
4997'``cmpxchg``' Instruction
4998^^^^^^^^^^^^^^^^^^^^^^^^^
4999
5000Syntax:
5001"""""""
5002
5003::
5004
Tim Northovere94a5182014-03-11 10:48:52 +00005005 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields {ty}
Sean Silvab084af42012-12-07 10:36:55 +00005006
5007Overview:
5008"""""""""
5009
5010The '``cmpxchg``' instruction is used to atomically modify memory. It
5011loads a value in memory and compares it to a given value. If they are
5012equal, it stores a new value into the memory.
5013
5014Arguments:
5015""""""""""
5016
5017There are three arguments to the '``cmpxchg``' instruction: an address
5018to operate on, a value to compare to the value currently be at that
5019address, and a new value to place at that address if the compared values
5020are equal. The type of '<cmp>' must be an integer type whose bit width
5021is a power of two greater than or equal to eight and less than or equal
5022to a target-specific size limit. '<cmp>' and '<new>' must have the same
5023type, and the type of '<pointer>' must be a pointer to that type. If the
5024``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5025to modify the number or order of execution of this ``cmpxchg`` with
5026other :ref:`volatile operations <volatile>`.
5027
Tim Northovere94a5182014-03-11 10:48:52 +00005028The success and failure :ref:`ordering <ordering>` arguments specify how this
5029``cmpxchg`` synchronizes with other atomic operations. The both ordering
5030parameters must be at least ``monotonic``, the ordering constraint on failure
5031must be no stronger than that on success, and the failure ordering cannot be
5032either ``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005033
5034The optional "``singlethread``" argument declares that the ``cmpxchg``
5035is only atomic with respect to code (usually signal handlers) running in
5036the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5037respect to all other code in the system.
5038
5039The pointer passed into cmpxchg must have alignment greater than or
5040equal to the size in memory of the operand.
5041
5042Semantics:
5043""""""""""
5044
5045The contents of memory at the location specified by the '``<pointer>``'
5046operand is read and compared to '``<cmp>``'; if the read value is the
5047equal, '``<new>``' is written. The original value at the location is
5048returned.
5049
Tim Northovere94a5182014-03-11 10:48:52 +00005050A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5051identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5052load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005053
5054Example:
5055""""""""
5056
5057.. code-block:: llvm
5058
5059 entry:
5060 %orig = atomic load i32* %ptr unordered ; yields {i32}
5061 br label %loop
5062
5063 loop:
5064 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5065 %squared = mul i32 %cmp, %cmp
Tim Northovere94a5182014-03-11 10:48:52 +00005066 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields {i32}
Sean Silvab084af42012-12-07 10:36:55 +00005067 %success = icmp eq i32 %cmp, %old
5068 br i1 %success, label %done, label %loop
5069
5070 done:
5071 ...
5072
5073.. _i_atomicrmw:
5074
5075'``atomicrmw``' Instruction
5076^^^^^^^^^^^^^^^^^^^^^^^^^^^
5077
5078Syntax:
5079"""""""
5080
5081::
5082
5083 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5084
5085Overview:
5086"""""""""
5087
5088The '``atomicrmw``' instruction is used to atomically modify memory.
5089
5090Arguments:
5091""""""""""
5092
5093There are three arguments to the '``atomicrmw``' instruction: an
5094operation to apply, an address whose value to modify, an argument to the
5095operation. The operation must be one of the following keywords:
5096
5097- xchg
5098- add
5099- sub
5100- and
5101- nand
5102- or
5103- xor
5104- max
5105- min
5106- umax
5107- umin
5108
5109The type of '<value>' must be an integer type whose bit width is a power
5110of two greater than or equal to eight and less than or equal to a
5111target-specific size limit. The type of the '``<pointer>``' operand must
5112be a pointer to that type. If the ``atomicrmw`` is marked as
5113``volatile``, then the optimizer is not allowed to modify the number or
5114order of execution of this ``atomicrmw`` with other :ref:`volatile
5115operations <volatile>`.
5116
5117Semantics:
5118""""""""""
5119
5120The contents of memory at the location specified by the '``<pointer>``'
5121operand are atomically read, modified, and written back. The original
5122value at the location is returned. The modification is specified by the
5123operation argument:
5124
5125- xchg: ``*ptr = val``
5126- add: ``*ptr = *ptr + val``
5127- sub: ``*ptr = *ptr - val``
5128- and: ``*ptr = *ptr & val``
5129- nand: ``*ptr = ~(*ptr & val)``
5130- or: ``*ptr = *ptr | val``
5131- xor: ``*ptr = *ptr ^ val``
5132- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5133- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5134- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5135 comparison)
5136- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5137 comparison)
5138
5139Example:
5140""""""""
5141
5142.. code-block:: llvm
5143
5144 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5145
5146.. _i_getelementptr:
5147
5148'``getelementptr``' Instruction
5149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5150
5151Syntax:
5152"""""""
5153
5154::
5155
5156 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5157 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5158 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5159
5160Overview:
5161"""""""""
5162
5163The '``getelementptr``' instruction is used to get the address of a
5164subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5165address calculation only and does not access memory.
5166
5167Arguments:
5168""""""""""
5169
5170The first argument is always a pointer or a vector of pointers, and
5171forms the basis of the calculation. The remaining arguments are indices
5172that indicate which of the elements of the aggregate object are indexed.
5173The interpretation of each index is dependent on the type being indexed
5174into. The first index always indexes the pointer value given as the
5175first argument, the second index indexes a value of the type pointed to
5176(not necessarily the value directly pointed to, since the first index
5177can be non-zero), etc. The first type indexed into must be a pointer
5178value, subsequent types can be arrays, vectors, and structs. Note that
5179subsequent types being indexed into can never be pointers, since that
5180would require loading the pointer before continuing calculation.
5181
5182The type of each index argument depends on the type it is indexing into.
5183When indexing into a (optionally packed) structure, only ``i32`` integer
5184**constants** are allowed (when using a vector of indices they must all
5185be the **same** ``i32`` integer constant). When indexing into an array,
5186pointer or vector, integers of any width are allowed, and they are not
5187required to be constant. These integers are treated as signed values
5188where relevant.
5189
5190For example, let's consider a C code fragment and how it gets compiled
5191to LLVM:
5192
5193.. code-block:: c
5194
5195 struct RT {
5196 char A;
5197 int B[10][20];
5198 char C;
5199 };
5200 struct ST {
5201 int X;
5202 double Y;
5203 struct RT Z;
5204 };
5205
5206 int *foo(struct ST *s) {
5207 return &s[1].Z.B[5][13];
5208 }
5209
5210The LLVM code generated by Clang is:
5211
5212.. code-block:: llvm
5213
5214 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5215 %struct.ST = type { i32, double, %struct.RT }
5216
5217 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5218 entry:
5219 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5220 ret i32* %arrayidx
5221 }
5222
5223Semantics:
5224""""""""""
5225
5226In the example above, the first index is indexing into the
5227'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5228= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5229indexes into the third element of the structure, yielding a
5230'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5231structure. The third index indexes into the second element of the
5232structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5233dimensions of the array are subscripted into, yielding an '``i32``'
5234type. The '``getelementptr``' instruction returns a pointer to this
5235element, thus computing a value of '``i32*``' type.
5236
5237Note that it is perfectly legal to index partially through a structure,
5238returning a pointer to an inner element. Because of this, the LLVM code
5239for the given testcase is equivalent to:
5240
5241.. code-block:: llvm
5242
5243 define i32* @foo(%struct.ST* %s) {
5244 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5245 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5246 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5247 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5248 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5249 ret i32* %t5
5250 }
5251
5252If the ``inbounds`` keyword is present, the result value of the
5253``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5254pointer is not an *in bounds* address of an allocated object, or if any
5255of the addresses that would be formed by successive addition of the
5256offsets implied by the indices to the base address with infinitely
5257precise signed arithmetic are not an *in bounds* address of that
5258allocated object. The *in bounds* addresses for an allocated object are
5259all the addresses that point into the object, plus the address one byte
5260past the end. In cases where the base is a vector of pointers the
5261``inbounds`` keyword applies to each of the computations element-wise.
5262
5263If the ``inbounds`` keyword is not present, the offsets are added to the
5264base address with silently-wrapping two's complement arithmetic. If the
5265offsets have a different width from the pointer, they are sign-extended
5266or truncated to the width of the pointer. The result value of the
5267``getelementptr`` may be outside the object pointed to by the base
5268pointer. The result value may not necessarily be used to access memory
5269though, even if it happens to point into allocated storage. See the
5270:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5271information.
5272
5273The getelementptr instruction is often confusing. For some more insight
5274into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5275
5276Example:
5277""""""""
5278
5279.. code-block:: llvm
5280
5281 ; yields [12 x i8]*:aptr
5282 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5283 ; yields i8*:vptr
5284 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5285 ; yields i8*:eptr
5286 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5287 ; yields i32*:iptr
5288 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5289
5290In cases where the pointer argument is a vector of pointers, each index
5291must be a vector with the same number of elements. For example:
5292
5293.. code-block:: llvm
5294
5295 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5296
5297Conversion Operations
5298---------------------
5299
5300The instructions in this category are the conversion instructions
5301(casting) which all take a single operand and a type. They perform
5302various bit conversions on the operand.
5303
5304'``trunc .. to``' Instruction
5305^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5306
5307Syntax:
5308"""""""
5309
5310::
5311
5312 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5313
5314Overview:
5315"""""""""
5316
5317The '``trunc``' instruction truncates its operand to the type ``ty2``.
5318
5319Arguments:
5320""""""""""
5321
5322The '``trunc``' instruction takes a value to trunc, and a type to trunc
5323it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5324of the same number of integers. The bit size of the ``value`` must be
5325larger than the bit size of the destination type, ``ty2``. Equal sized
5326types are not allowed.
5327
5328Semantics:
5329""""""""""
5330
5331The '``trunc``' instruction truncates the high order bits in ``value``
5332and converts the remaining bits to ``ty2``. Since the source size must
5333be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5334It will always truncate bits.
5335
5336Example:
5337""""""""
5338
5339.. code-block:: llvm
5340
5341 %X = trunc i32 257 to i8 ; yields i8:1
5342 %Y = trunc i32 123 to i1 ; yields i1:true
5343 %Z = trunc i32 122 to i1 ; yields i1:false
5344 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5345
5346'``zext .. to``' Instruction
5347^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5348
5349Syntax:
5350"""""""
5351
5352::
5353
5354 <result> = zext <ty> <value> to <ty2> ; yields ty2
5355
5356Overview:
5357"""""""""
5358
5359The '``zext``' instruction zero extends its operand to type ``ty2``.
5360
5361Arguments:
5362""""""""""
5363
5364The '``zext``' instruction takes a value to cast, and a type to cast it
5365to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5366the same number of integers. The bit size of the ``value`` must be
5367smaller than the bit size of the destination type, ``ty2``.
5368
5369Semantics:
5370""""""""""
5371
5372The ``zext`` fills the high order bits of the ``value`` with zero bits
5373until it reaches the size of the destination type, ``ty2``.
5374
5375When zero extending from i1, the result will always be either 0 or 1.
5376
5377Example:
5378""""""""
5379
5380.. code-block:: llvm
5381
5382 %X = zext i32 257 to i64 ; yields i64:257
5383 %Y = zext i1 true to i32 ; yields i32:1
5384 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5385
5386'``sext .. to``' Instruction
5387^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5388
5389Syntax:
5390"""""""
5391
5392::
5393
5394 <result> = sext <ty> <value> to <ty2> ; yields ty2
5395
5396Overview:
5397"""""""""
5398
5399The '``sext``' sign extends ``value`` to the type ``ty2``.
5400
5401Arguments:
5402""""""""""
5403
5404The '``sext``' instruction takes a value to cast, and a type to cast it
5405to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5406the same number of integers. The bit size of the ``value`` must be
5407smaller than the bit size of the destination type, ``ty2``.
5408
5409Semantics:
5410""""""""""
5411
5412The '``sext``' instruction performs a sign extension by copying the sign
5413bit (highest order bit) of the ``value`` until it reaches the bit size
5414of the type ``ty2``.
5415
5416When sign extending from i1, the extension always results in -1 or 0.
5417
5418Example:
5419""""""""
5420
5421.. code-block:: llvm
5422
5423 %X = sext i8 -1 to i16 ; yields i16 :65535
5424 %Y = sext i1 true to i32 ; yields i32:-1
5425 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5426
5427'``fptrunc .. to``' Instruction
5428^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5429
5430Syntax:
5431"""""""
5432
5433::
5434
5435 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5436
5437Overview:
5438"""""""""
5439
5440The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5441
5442Arguments:
5443""""""""""
5444
5445The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5446value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5447The size of ``value`` must be larger than the size of ``ty2``. This
5448implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5449
5450Semantics:
5451""""""""""
5452
5453The '``fptrunc``' instruction truncates a ``value`` from a larger
5454:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5455point <t_floating>` type. If the value cannot fit within the
5456destination type, ``ty2``, then the results are undefined.
5457
5458Example:
5459""""""""
5460
5461.. code-block:: llvm
5462
5463 %X = fptrunc double 123.0 to float ; yields float:123.0
5464 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5465
5466'``fpext .. to``' Instruction
5467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5468
5469Syntax:
5470"""""""
5471
5472::
5473
5474 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5475
5476Overview:
5477"""""""""
5478
5479The '``fpext``' extends a floating point ``value`` to a larger floating
5480point value.
5481
5482Arguments:
5483""""""""""
5484
5485The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5486``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5487to. The source type must be smaller than the destination type.
5488
5489Semantics:
5490""""""""""
5491
5492The '``fpext``' instruction extends the ``value`` from a smaller
5493:ref:`floating point <t_floating>` type to a larger :ref:`floating
5494point <t_floating>` type. The ``fpext`` cannot be used to make a
5495*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5496*no-op cast* for a floating point cast.
5497
5498Example:
5499""""""""
5500
5501.. code-block:: llvm
5502
5503 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5504 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5505
5506'``fptoui .. to``' Instruction
5507^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5508
5509Syntax:
5510"""""""
5511
5512::
5513
5514 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5515
5516Overview:
5517"""""""""
5518
5519The '``fptoui``' converts a floating point ``value`` to its unsigned
5520integer equivalent of type ``ty2``.
5521
5522Arguments:
5523""""""""""
5524
5525The '``fptoui``' instruction takes a value to cast, which must be a
5526scalar or vector :ref:`floating point <t_floating>` value, and a type to
5527cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5528``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5529type with the same number of elements as ``ty``
5530
5531Semantics:
5532""""""""""
5533
5534The '``fptoui``' instruction converts its :ref:`floating
5535point <t_floating>` operand into the nearest (rounding towards zero)
5536unsigned integer value. If the value cannot fit in ``ty2``, the results
5537are undefined.
5538
5539Example:
5540""""""""
5541
5542.. code-block:: llvm
5543
5544 %X = fptoui double 123.0 to i32 ; yields i32:123
5545 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5546 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5547
5548'``fptosi .. to``' Instruction
5549^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5550
5551Syntax:
5552"""""""
5553
5554::
5555
5556 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5557
5558Overview:
5559"""""""""
5560
5561The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5562``value`` to type ``ty2``.
5563
5564Arguments:
5565""""""""""
5566
5567The '``fptosi``' instruction takes a value to cast, which must be a
5568scalar or vector :ref:`floating point <t_floating>` value, and a type to
5569cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5570``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5571type with the same number of elements as ``ty``
5572
5573Semantics:
5574""""""""""
5575
5576The '``fptosi``' instruction converts its :ref:`floating
5577point <t_floating>` operand into the nearest (rounding towards zero)
5578signed integer value. If the value cannot fit in ``ty2``, the results
5579are undefined.
5580
5581Example:
5582""""""""
5583
5584.. code-block:: llvm
5585
5586 %X = fptosi double -123.0 to i32 ; yields i32:-123
5587 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5588 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5589
5590'``uitofp .. to``' Instruction
5591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5592
5593Syntax:
5594"""""""
5595
5596::
5597
5598 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5599
5600Overview:
5601"""""""""
5602
5603The '``uitofp``' instruction regards ``value`` as an unsigned integer
5604and converts that value to the ``ty2`` type.
5605
5606Arguments:
5607""""""""""
5608
5609The '``uitofp``' instruction takes a value to cast, which must be a
5610scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5611``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5612``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5613type with the same number of elements as ``ty``
5614
5615Semantics:
5616""""""""""
5617
5618The '``uitofp``' instruction interprets its operand as an unsigned
5619integer quantity and converts it to the corresponding floating point
5620value. If the value cannot fit in the floating point value, the results
5621are undefined.
5622
5623Example:
5624""""""""
5625
5626.. code-block:: llvm
5627
5628 %X = uitofp i32 257 to float ; yields float:257.0
5629 %Y = uitofp i8 -1 to double ; yields double:255.0
5630
5631'``sitofp .. to``' Instruction
5632^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5633
5634Syntax:
5635"""""""
5636
5637::
5638
5639 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5640
5641Overview:
5642"""""""""
5643
5644The '``sitofp``' instruction regards ``value`` as a signed integer and
5645converts that value to the ``ty2`` type.
5646
5647Arguments:
5648""""""""""
5649
5650The '``sitofp``' instruction takes a value to cast, which must be a
5651scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5652``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5653``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5654type with the same number of elements as ``ty``
5655
5656Semantics:
5657""""""""""
5658
5659The '``sitofp``' instruction interprets its operand as a signed integer
5660quantity and converts it to the corresponding floating point value. If
5661the value cannot fit in the floating point value, the results are
5662undefined.
5663
5664Example:
5665""""""""
5666
5667.. code-block:: llvm
5668
5669 %X = sitofp i32 257 to float ; yields float:257.0
5670 %Y = sitofp i8 -1 to double ; yields double:-1.0
5671
5672.. _i_ptrtoint:
5673
5674'``ptrtoint .. to``' Instruction
5675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5676
5677Syntax:
5678"""""""
5679
5680::
5681
5682 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5683
5684Overview:
5685"""""""""
5686
5687The '``ptrtoint``' instruction converts the pointer or a vector of
5688pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5689
5690Arguments:
5691""""""""""
5692
5693The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5694a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5695type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5696a vector of integers type.
5697
5698Semantics:
5699""""""""""
5700
5701The '``ptrtoint``' instruction converts ``value`` to integer type
5702``ty2`` by interpreting the pointer value as an integer and either
5703truncating or zero extending that value to the size of the integer type.
5704If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5705``value`` is larger than ``ty2`` then a truncation is done. If they are
5706the same size, then nothing is done (*no-op cast*) other than a type
5707change.
5708
5709Example:
5710""""""""
5711
5712.. code-block:: llvm
5713
5714 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5715 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5716 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5717
5718.. _i_inttoptr:
5719
5720'``inttoptr .. to``' Instruction
5721^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5722
5723Syntax:
5724"""""""
5725
5726::
5727
5728 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5729
5730Overview:
5731"""""""""
5732
5733The '``inttoptr``' instruction converts an integer ``value`` to a
5734pointer type, ``ty2``.
5735
5736Arguments:
5737""""""""""
5738
5739The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5740cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5741type.
5742
5743Semantics:
5744""""""""""
5745
5746The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5747applying either a zero extension or a truncation depending on the size
5748of the integer ``value``. If ``value`` is larger than the size of a
5749pointer then a truncation is done. If ``value`` is smaller than the size
5750of a pointer then a zero extension is done. If they are the same size,
5751nothing is done (*no-op cast*).
5752
5753Example:
5754""""""""
5755
5756.. code-block:: llvm
5757
5758 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5759 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5760 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5761 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5762
5763.. _i_bitcast:
5764
5765'``bitcast .. to``' Instruction
5766^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5767
5768Syntax:
5769"""""""
5770
5771::
5772
5773 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5774
5775Overview:
5776"""""""""
5777
5778The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5779changing any bits.
5780
5781Arguments:
5782""""""""""
5783
5784The '``bitcast``' instruction takes a value to cast, which must be a
5785non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005786also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5787bit sizes of ``value`` and the destination type, ``ty2``, must be
5788identical. If the source type is a pointer, the destination type must
5789also be a pointer of the same size. This instruction supports bitwise
5790conversion of vectors to integers and to vectors of other types (as
5791long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005792
5793Semantics:
5794""""""""""
5795
Matt Arsenault24b49c42013-07-31 17:49:08 +00005796The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5797is always a *no-op cast* because no bits change with this
5798conversion. The conversion is done as if the ``value`` had been stored
5799to memory and read back as type ``ty2``. Pointer (or vector of
5800pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005801pointers) types with the same address space through this instruction.
5802To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5803or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005804
5805Example:
5806""""""""
5807
5808.. code-block:: llvm
5809
5810 %X = bitcast i8 255 to i8 ; yields i8 :-1
5811 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5812 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5813 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5814
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005815.. _i_addrspacecast:
5816
5817'``addrspacecast .. to``' Instruction
5818^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5819
5820Syntax:
5821"""""""
5822
5823::
5824
5825 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5826
5827Overview:
5828"""""""""
5829
5830The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5831address space ``n`` to type ``pty2`` in address space ``m``.
5832
5833Arguments:
5834""""""""""
5835
5836The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5837to cast and a pointer type to cast it to, which must have a different
5838address space.
5839
5840Semantics:
5841""""""""""
5842
5843The '``addrspacecast``' instruction converts the pointer value
5844``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005845value modification, depending on the target and the address space
5846pair. Pointer conversions within the same address space must be
5847performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005848conversion is legal then both result and operand refer to the same memory
5849location.
5850
5851Example:
5852""""""""
5853
5854.. code-block:: llvm
5855
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005856 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5857 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5858 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005859
Sean Silvab084af42012-12-07 10:36:55 +00005860.. _otherops:
5861
5862Other Operations
5863----------------
5864
5865The instructions in this category are the "miscellaneous" instructions,
5866which defy better classification.
5867
5868.. _i_icmp:
5869
5870'``icmp``' Instruction
5871^^^^^^^^^^^^^^^^^^^^^^
5872
5873Syntax:
5874"""""""
5875
5876::
5877
5878 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5879
5880Overview:
5881"""""""""
5882
5883The '``icmp``' instruction returns a boolean value or a vector of
5884boolean values based on comparison of its two integer, integer vector,
5885pointer, or pointer vector operands.
5886
5887Arguments:
5888""""""""""
5889
5890The '``icmp``' instruction takes three operands. The first operand is
5891the condition code indicating the kind of comparison to perform. It is
5892not a value, just a keyword. The possible condition code are:
5893
5894#. ``eq``: equal
5895#. ``ne``: not equal
5896#. ``ugt``: unsigned greater than
5897#. ``uge``: unsigned greater or equal
5898#. ``ult``: unsigned less than
5899#. ``ule``: unsigned less or equal
5900#. ``sgt``: signed greater than
5901#. ``sge``: signed greater or equal
5902#. ``slt``: signed less than
5903#. ``sle``: signed less or equal
5904
5905The remaining two arguments must be :ref:`integer <t_integer>` or
5906:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5907must also be identical types.
5908
5909Semantics:
5910""""""""""
5911
5912The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5913code given as ``cond``. The comparison performed always yields either an
5914:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5915
5916#. ``eq``: yields ``true`` if the operands are equal, ``false``
5917 otherwise. No sign interpretation is necessary or performed.
5918#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5919 otherwise. No sign interpretation is necessary or performed.
5920#. ``ugt``: interprets the operands as unsigned values and yields
5921 ``true`` if ``op1`` is greater than ``op2``.
5922#. ``uge``: interprets the operands as unsigned values and yields
5923 ``true`` if ``op1`` is greater than or equal to ``op2``.
5924#. ``ult``: interprets the operands as unsigned values and yields
5925 ``true`` if ``op1`` is less than ``op2``.
5926#. ``ule``: interprets the operands as unsigned values and yields
5927 ``true`` if ``op1`` is less than or equal to ``op2``.
5928#. ``sgt``: interprets the operands as signed values and yields ``true``
5929 if ``op1`` is greater than ``op2``.
5930#. ``sge``: interprets the operands as signed values and yields ``true``
5931 if ``op1`` is greater than or equal to ``op2``.
5932#. ``slt``: interprets the operands as signed values and yields ``true``
5933 if ``op1`` is less than ``op2``.
5934#. ``sle``: interprets the operands as signed values and yields ``true``
5935 if ``op1`` is less than or equal to ``op2``.
5936
5937If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5938are compared as if they were integers.
5939
5940If the operands are integer vectors, then they are compared element by
5941element. The result is an ``i1`` vector with the same number of elements
5942as the values being compared. Otherwise, the result is an ``i1``.
5943
5944Example:
5945""""""""
5946
5947.. code-block:: llvm
5948
5949 <result> = icmp eq i32 4, 5 ; yields: result=false
5950 <result> = icmp ne float* %X, %X ; yields: result=false
5951 <result> = icmp ult i16 4, 5 ; yields: result=true
5952 <result> = icmp sgt i16 4, 5 ; yields: result=false
5953 <result> = icmp ule i16 -4, 5 ; yields: result=false
5954 <result> = icmp sge i16 4, 5 ; yields: result=false
5955
5956Note that the code generator does not yet support vector types with the
5957``icmp`` instruction.
5958
5959.. _i_fcmp:
5960
5961'``fcmp``' Instruction
5962^^^^^^^^^^^^^^^^^^^^^^
5963
5964Syntax:
5965"""""""
5966
5967::
5968
5969 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5970
5971Overview:
5972"""""""""
5973
5974The '``fcmp``' instruction returns a boolean value or vector of boolean
5975values based on comparison of its operands.
5976
5977If the operands are floating point scalars, then the result type is a
5978boolean (:ref:`i1 <t_integer>`).
5979
5980If the operands are floating point vectors, then the result type is a
5981vector of boolean with the same number of elements as the operands being
5982compared.
5983
5984Arguments:
5985""""""""""
5986
5987The '``fcmp``' instruction takes three operands. The first operand is
5988the condition code indicating the kind of comparison to perform. It is
5989not a value, just a keyword. The possible condition code are:
5990
5991#. ``false``: no comparison, always returns false
5992#. ``oeq``: ordered and equal
5993#. ``ogt``: ordered and greater than
5994#. ``oge``: ordered and greater than or equal
5995#. ``olt``: ordered and less than
5996#. ``ole``: ordered and less than or equal
5997#. ``one``: ordered and not equal
5998#. ``ord``: ordered (no nans)
5999#. ``ueq``: unordered or equal
6000#. ``ugt``: unordered or greater than
6001#. ``uge``: unordered or greater than or equal
6002#. ``ult``: unordered or less than
6003#. ``ule``: unordered or less than or equal
6004#. ``une``: unordered or not equal
6005#. ``uno``: unordered (either nans)
6006#. ``true``: no comparison, always returns true
6007
6008*Ordered* means that neither operand is a QNAN while *unordered* means
6009that either operand may be a QNAN.
6010
6011Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6012point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6013type. They must have identical types.
6014
6015Semantics:
6016""""""""""
6017
6018The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6019condition code given as ``cond``. If the operands are vectors, then the
6020vectors are compared element by element. Each comparison performed
6021always yields an :ref:`i1 <t_integer>` result, as follows:
6022
6023#. ``false``: always yields ``false``, regardless of operands.
6024#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6025 is equal to ``op2``.
6026#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6027 is greater than ``op2``.
6028#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6029 is greater than or equal to ``op2``.
6030#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6031 is less than ``op2``.
6032#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6033 is less than or equal to ``op2``.
6034#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6035 is not equal to ``op2``.
6036#. ``ord``: yields ``true`` if both operands are not a QNAN.
6037#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6038 equal to ``op2``.
6039#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6040 greater than ``op2``.
6041#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6042 greater than or equal to ``op2``.
6043#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6044 less than ``op2``.
6045#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6046 less than or equal to ``op2``.
6047#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6048 not equal to ``op2``.
6049#. ``uno``: yields ``true`` if either operand is a QNAN.
6050#. ``true``: always yields ``true``, regardless of operands.
6051
6052Example:
6053""""""""
6054
6055.. code-block:: llvm
6056
6057 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6058 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6059 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6060 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6061
6062Note that the code generator does not yet support vector types with the
6063``fcmp`` instruction.
6064
6065.. _i_phi:
6066
6067'``phi``' Instruction
6068^^^^^^^^^^^^^^^^^^^^^
6069
6070Syntax:
6071"""""""
6072
6073::
6074
6075 <result> = phi <ty> [ <val0>, <label0>], ...
6076
6077Overview:
6078"""""""""
6079
6080The '``phi``' instruction is used to implement the φ node in the SSA
6081graph representing the function.
6082
6083Arguments:
6084""""""""""
6085
6086The type of the incoming values is specified with the first type field.
6087After this, the '``phi``' instruction takes a list of pairs as
6088arguments, with one pair for each predecessor basic block of the current
6089block. Only values of :ref:`first class <t_firstclass>` type may be used as
6090the value arguments to the PHI node. Only labels may be used as the
6091label arguments.
6092
6093There must be no non-phi instructions between the start of a basic block
6094and the PHI instructions: i.e. PHI instructions must be first in a basic
6095block.
6096
6097For the purposes of the SSA form, the use of each incoming value is
6098deemed to occur on the edge from the corresponding predecessor block to
6099the current block (but after any definition of an '``invoke``'
6100instruction's return value on the same edge).
6101
6102Semantics:
6103""""""""""
6104
6105At runtime, the '``phi``' instruction logically takes on the value
6106specified by the pair corresponding to the predecessor basic block that
6107executed just prior to the current block.
6108
6109Example:
6110""""""""
6111
6112.. code-block:: llvm
6113
6114 Loop: ; Infinite loop that counts from 0 on up...
6115 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6116 %nextindvar = add i32 %indvar, 1
6117 br label %Loop
6118
6119.. _i_select:
6120
6121'``select``' Instruction
6122^^^^^^^^^^^^^^^^^^^^^^^^
6123
6124Syntax:
6125"""""""
6126
6127::
6128
6129 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6130
6131 selty is either i1 or {<N x i1>}
6132
6133Overview:
6134"""""""""
6135
6136The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006137condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006138
6139Arguments:
6140""""""""""
6141
6142The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6143values indicating the condition, and two values of the same :ref:`first
6144class <t_firstclass>` type. If the val1/val2 are vectors and the
6145condition is a scalar, then entire vectors are selected, not individual
6146elements.
6147
6148Semantics:
6149""""""""""
6150
6151If the condition is an i1 and it evaluates to 1, the instruction returns
6152the first value argument; otherwise, it returns the second value
6153argument.
6154
6155If the condition is a vector of i1, then the value arguments must be
6156vectors of the same size, and the selection is done element by element.
6157
6158Example:
6159""""""""
6160
6161.. code-block:: llvm
6162
6163 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6164
6165.. _i_call:
6166
6167'``call``' Instruction
6168^^^^^^^^^^^^^^^^^^^^^^
6169
6170Syntax:
6171"""""""
6172
6173::
6174
Reid Kleckner5772b772014-04-24 20:14:34 +00006175 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006176
6177Overview:
6178"""""""""
6179
6180The '``call``' instruction represents a simple function call.
6181
6182Arguments:
6183""""""""""
6184
6185This instruction requires several arguments:
6186
Reid Kleckner5772b772014-04-24 20:14:34 +00006187#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6188 should perform tail call optimization. The ``tail`` marker is a hint that
6189 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6190 means that the call must be tail call optimized in order for the program to
6191 be correct. The ``musttail`` marker provides these guarantees:
6192
6193 #. The call will not cause unbounded stack growth if it is part of a
6194 recursive cycle in the call graph.
6195 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6196 forwarded in place.
6197
6198 Both markers imply that the callee does not access allocas or varargs from
6199 the caller. Calls marked ``musttail`` must obey the following additional
6200 rules:
6201
6202 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6203 or a pointer bitcast followed by a ret instruction.
6204 - The ret instruction must return the (possibly bitcasted) value
6205 produced by the call or void.
6206 - The caller and callee prototypes must match. Pointer types of
6207 parameters or return types may differ in pointee type, but not
6208 in address space.
6209 - The calling conventions of the caller and callee must match.
6210 - All ABI-impacting function attributes, such as sret, byval, inreg,
6211 returned, and inalloca, must match.
6212
6213 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6214 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006215
6216 - Caller and callee both have the calling convention ``fastcc``.
6217 - The call is in tail position (ret immediately follows call and ret
6218 uses value of call or is void).
6219 - Option ``-tailcallopt`` is enabled, or
6220 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6221 - `Platform specific constraints are
6222 met. <CodeGenerator.html#tailcallopt>`_
6223
6224#. The optional "cconv" marker indicates which :ref:`calling
6225 convention <callingconv>` the call should use. If none is
6226 specified, the call defaults to using C calling conventions. The
6227 calling convention of the call must match the calling convention of
6228 the target function, or else the behavior is undefined.
6229#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6230 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6231 are valid here.
6232#. '``ty``': the type of the call instruction itself which is also the
6233 type of the return value. Functions that return no value are marked
6234 ``void``.
6235#. '``fnty``': shall be the signature of the pointer to function value
6236 being invoked. The argument types must match the types implied by
6237 this signature. This type can be omitted if the function is not
6238 varargs and if the function type does not return a pointer to a
6239 function.
6240#. '``fnptrval``': An LLVM value containing a pointer to a function to
6241 be invoked. In most cases, this is a direct function invocation, but
6242 indirect ``call``'s are just as possible, calling an arbitrary pointer
6243 to function value.
6244#. '``function args``': argument list whose types match the function
6245 signature argument types and parameter attributes. All arguments must
6246 be of :ref:`first class <t_firstclass>` type. If the function signature
6247 indicates the function accepts a variable number of arguments, the
6248 extra arguments can be specified.
6249#. The optional :ref:`function attributes <fnattrs>` list. Only
6250 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6251 attributes are valid here.
6252
6253Semantics:
6254""""""""""
6255
6256The '``call``' instruction is used to cause control flow to transfer to
6257a specified function, with its incoming arguments bound to the specified
6258values. Upon a '``ret``' instruction in the called function, control
6259flow continues with the instruction after the function call, and the
6260return value of the function is bound to the result argument.
6261
6262Example:
6263""""""""
6264
6265.. code-block:: llvm
6266
6267 %retval = call i32 @test(i32 %argc)
6268 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6269 %X = tail call i32 @foo() ; yields i32
6270 %Y = tail call fastcc i32 @foo() ; yields i32
6271 call void %foo(i8 97 signext)
6272
6273 %struct.A = type { i32, i8 }
6274 %r = call %struct.A @foo() ; yields { 32, i8 }
6275 %gr = extractvalue %struct.A %r, 0 ; yields i32
6276 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6277 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6278 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6279
6280llvm treats calls to some functions with names and arguments that match
6281the standard C99 library as being the C99 library functions, and may
6282perform optimizations or generate code for them under that assumption.
6283This is something we'd like to change in the future to provide better
6284support for freestanding environments and non-C-based languages.
6285
6286.. _i_va_arg:
6287
6288'``va_arg``' Instruction
6289^^^^^^^^^^^^^^^^^^^^^^^^
6290
6291Syntax:
6292"""""""
6293
6294::
6295
6296 <resultval> = va_arg <va_list*> <arglist>, <argty>
6297
6298Overview:
6299"""""""""
6300
6301The '``va_arg``' instruction is used to access arguments passed through
6302the "variable argument" area of a function call. It is used to implement
6303the ``va_arg`` macro in C.
6304
6305Arguments:
6306""""""""""
6307
6308This instruction takes a ``va_list*`` value and the type of the
6309argument. It returns a value of the specified argument type and
6310increments the ``va_list`` to point to the next argument. The actual
6311type of ``va_list`` is target specific.
6312
6313Semantics:
6314""""""""""
6315
6316The '``va_arg``' instruction loads an argument of the specified type
6317from the specified ``va_list`` and causes the ``va_list`` to point to
6318the next argument. For more information, see the variable argument
6319handling :ref:`Intrinsic Functions <int_varargs>`.
6320
6321It is legal for this instruction to be called in a function which does
6322not take a variable number of arguments, for example, the ``vfprintf``
6323function.
6324
6325``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6326function <intrinsics>` because it takes a type as an argument.
6327
6328Example:
6329""""""""
6330
6331See the :ref:`variable argument processing <int_varargs>` section.
6332
6333Note that the code generator does not yet fully support va\_arg on many
6334targets. Also, it does not currently support va\_arg with aggregate
6335types on any target.
6336
6337.. _i_landingpad:
6338
6339'``landingpad``' Instruction
6340^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6341
6342Syntax:
6343"""""""
6344
6345::
6346
6347 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6348 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6349
6350 <clause> := catch <type> <value>
6351 <clause> := filter <array constant type> <array constant>
6352
6353Overview:
6354"""""""""
6355
6356The '``landingpad``' instruction is used by `LLVM's exception handling
6357system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006358is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006359code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6360defines values supplied by the personality function (``pers_fn``) upon
6361re-entry to the function. The ``resultval`` has the type ``resultty``.
6362
6363Arguments:
6364""""""""""
6365
6366This instruction takes a ``pers_fn`` value. This is the personality
6367function associated with the unwinding mechanism. The optional
6368``cleanup`` flag indicates that the landing pad block is a cleanup.
6369
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006370A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006371contains the global variable representing the "type" that may be caught
6372or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6373clause takes an array constant as its argument. Use
6374"``[0 x i8**] undef``" for a filter which cannot throw. The
6375'``landingpad``' instruction must contain *at least* one ``clause`` or
6376the ``cleanup`` flag.
6377
6378Semantics:
6379""""""""""
6380
6381The '``landingpad``' instruction defines the values which are set by the
6382personality function (``pers_fn``) upon re-entry to the function, and
6383therefore the "result type" of the ``landingpad`` instruction. As with
6384calling conventions, how the personality function results are
6385represented in LLVM IR is target specific.
6386
6387The clauses are applied in order from top to bottom. If two
6388``landingpad`` instructions are merged together through inlining, the
6389clauses from the calling function are appended to the list of clauses.
6390When the call stack is being unwound due to an exception being thrown,
6391the exception is compared against each ``clause`` in turn. If it doesn't
6392match any of the clauses, and the ``cleanup`` flag is not set, then
6393unwinding continues further up the call stack.
6394
6395The ``landingpad`` instruction has several restrictions:
6396
6397- A landing pad block is a basic block which is the unwind destination
6398 of an '``invoke``' instruction.
6399- A landing pad block must have a '``landingpad``' instruction as its
6400 first non-PHI instruction.
6401- There can be only one '``landingpad``' instruction within the landing
6402 pad block.
6403- A basic block that is not a landing pad block may not include a
6404 '``landingpad``' instruction.
6405- All '``landingpad``' instructions in a function must have the same
6406 personality function.
6407
6408Example:
6409""""""""
6410
6411.. code-block:: llvm
6412
6413 ;; A landing pad which can catch an integer.
6414 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6415 catch i8** @_ZTIi
6416 ;; A landing pad that is a cleanup.
6417 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6418 cleanup
6419 ;; A landing pad which can catch an integer and can only throw a double.
6420 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6421 catch i8** @_ZTIi
6422 filter [1 x i8**] [@_ZTId]
6423
6424.. _intrinsics:
6425
6426Intrinsic Functions
6427===================
6428
6429LLVM supports the notion of an "intrinsic function". These functions
6430have well known names and semantics and are required to follow certain
6431restrictions. Overall, these intrinsics represent an extension mechanism
6432for the LLVM language that does not require changing all of the
6433transformations in LLVM when adding to the language (or the bitcode
6434reader/writer, the parser, etc...).
6435
6436Intrinsic function names must all start with an "``llvm.``" prefix. This
6437prefix is reserved in LLVM for intrinsic names; thus, function names may
6438not begin with this prefix. Intrinsic functions must always be external
6439functions: you cannot define the body of intrinsic functions. Intrinsic
6440functions may only be used in call or invoke instructions: it is illegal
6441to take the address of an intrinsic function. Additionally, because
6442intrinsic functions are part of the LLVM language, it is required if any
6443are added that they be documented here.
6444
6445Some intrinsic functions can be overloaded, i.e., the intrinsic
6446represents a family of functions that perform the same operation but on
6447different data types. Because LLVM can represent over 8 million
6448different integer types, overloading is used commonly to allow an
6449intrinsic function to operate on any integer type. One or more of the
6450argument types or the result type can be overloaded to accept any
6451integer type. Argument types may also be defined as exactly matching a
6452previous argument's type or the result type. This allows an intrinsic
6453function which accepts multiple arguments, but needs all of them to be
6454of the same type, to only be overloaded with respect to a single
6455argument or the result.
6456
6457Overloaded intrinsics will have the names of its overloaded argument
6458types encoded into its function name, each preceded by a period. Only
6459those types which are overloaded result in a name suffix. Arguments
6460whose type is matched against another type do not. For example, the
6461``llvm.ctpop`` function can take an integer of any width and returns an
6462integer of exactly the same integer width. This leads to a family of
6463functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6464``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6465overloaded, and only one type suffix is required. Because the argument's
6466type is matched against the return type, it does not require its own
6467name suffix.
6468
6469To learn how to add an intrinsic function, please see the `Extending
6470LLVM Guide <ExtendingLLVM.html>`_.
6471
6472.. _int_varargs:
6473
6474Variable Argument Handling Intrinsics
6475-------------------------------------
6476
6477Variable argument support is defined in LLVM with the
6478:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6479functions. These functions are related to the similarly named macros
6480defined in the ``<stdarg.h>`` header file.
6481
6482All of these functions operate on arguments that use a target-specific
6483value type "``va_list``". The LLVM assembly language reference manual
6484does not define what this type is, so all transformations should be
6485prepared to handle these functions regardless of the type used.
6486
6487This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6488variable argument handling intrinsic functions are used.
6489
6490.. code-block:: llvm
6491
6492 define i32 @test(i32 %X, ...) {
6493 ; Initialize variable argument processing
6494 %ap = alloca i8*
6495 %ap2 = bitcast i8** %ap to i8*
6496 call void @llvm.va_start(i8* %ap2)
6497
6498 ; Read a single integer argument
6499 %tmp = va_arg i8** %ap, i32
6500
6501 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6502 %aq = alloca i8*
6503 %aq2 = bitcast i8** %aq to i8*
6504 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6505 call void @llvm.va_end(i8* %aq2)
6506
6507 ; Stop processing of arguments.
6508 call void @llvm.va_end(i8* %ap2)
6509 ret i32 %tmp
6510 }
6511
6512 declare void @llvm.va_start(i8*)
6513 declare void @llvm.va_copy(i8*, i8*)
6514 declare void @llvm.va_end(i8*)
6515
6516.. _int_va_start:
6517
6518'``llvm.va_start``' Intrinsic
6519^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6520
6521Syntax:
6522"""""""
6523
6524::
6525
Nick Lewycky04f6de02013-09-11 22:04:52 +00006526 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006527
6528Overview:
6529"""""""""
6530
6531The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6532subsequent use by ``va_arg``.
6533
6534Arguments:
6535""""""""""
6536
6537The argument is a pointer to a ``va_list`` element to initialize.
6538
6539Semantics:
6540""""""""""
6541
6542The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6543available in C. In a target-dependent way, it initializes the
6544``va_list`` element to which the argument points, so that the next call
6545to ``va_arg`` will produce the first variable argument passed to the
6546function. Unlike the C ``va_start`` macro, this intrinsic does not need
6547to know the last argument of the function as the compiler can figure
6548that out.
6549
6550'``llvm.va_end``' Intrinsic
6551^^^^^^^^^^^^^^^^^^^^^^^^^^^
6552
6553Syntax:
6554"""""""
6555
6556::
6557
6558 declare void @llvm.va_end(i8* <arglist>)
6559
6560Overview:
6561"""""""""
6562
6563The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6564initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6565
6566Arguments:
6567""""""""""
6568
6569The argument is a pointer to a ``va_list`` to destroy.
6570
6571Semantics:
6572""""""""""
6573
6574The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6575available in C. In a target-dependent way, it destroys the ``va_list``
6576element to which the argument points. Calls to
6577:ref:`llvm.va_start <int_va_start>` and
6578:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6579``llvm.va_end``.
6580
6581.. _int_va_copy:
6582
6583'``llvm.va_copy``' Intrinsic
6584^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6585
6586Syntax:
6587"""""""
6588
6589::
6590
6591 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6592
6593Overview:
6594"""""""""
6595
6596The '``llvm.va_copy``' intrinsic copies the current argument position
6597from the source argument list to the destination argument list.
6598
6599Arguments:
6600""""""""""
6601
6602The first argument is a pointer to a ``va_list`` element to initialize.
6603The second argument is a pointer to a ``va_list`` element to copy from.
6604
6605Semantics:
6606""""""""""
6607
6608The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6609available in C. In a target-dependent way, it copies the source
6610``va_list`` element into the destination ``va_list`` element. This
6611intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6612arbitrarily complex and require, for example, memory allocation.
6613
6614Accurate Garbage Collection Intrinsics
6615--------------------------------------
6616
6617LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6618(GC) requires the implementation and generation of these intrinsics.
6619These intrinsics allow identification of :ref:`GC roots on the
6620stack <int_gcroot>`, as well as garbage collector implementations that
6621require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6622Front-ends for type-safe garbage collected languages should generate
6623these intrinsics to make use of the LLVM garbage collectors. For more
6624details, see `Accurate Garbage Collection with
6625LLVM <GarbageCollection.html>`_.
6626
6627The garbage collection intrinsics only operate on objects in the generic
6628address space (address space zero).
6629
6630.. _int_gcroot:
6631
6632'``llvm.gcroot``' Intrinsic
6633^^^^^^^^^^^^^^^^^^^^^^^^^^^
6634
6635Syntax:
6636"""""""
6637
6638::
6639
6640 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6641
6642Overview:
6643"""""""""
6644
6645The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6646the code generator, and allows some metadata to be associated with it.
6647
6648Arguments:
6649""""""""""
6650
6651The first argument specifies the address of a stack object that contains
6652the root pointer. The second pointer (which must be either a constant or
6653a global value address) contains the meta-data to be associated with the
6654root.
6655
6656Semantics:
6657""""""""""
6658
6659At runtime, a call to this intrinsic stores a null pointer into the
6660"ptrloc" location. At compile-time, the code generator generates
6661information to allow the runtime to find the pointer at GC safe points.
6662The '``llvm.gcroot``' intrinsic may only be used in a function which
6663:ref:`specifies a GC algorithm <gc>`.
6664
6665.. _int_gcread:
6666
6667'``llvm.gcread``' Intrinsic
6668^^^^^^^^^^^^^^^^^^^^^^^^^^^
6669
6670Syntax:
6671"""""""
6672
6673::
6674
6675 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6676
6677Overview:
6678"""""""""
6679
6680The '``llvm.gcread``' intrinsic identifies reads of references from heap
6681locations, allowing garbage collector implementations that require read
6682barriers.
6683
6684Arguments:
6685""""""""""
6686
6687The second argument is the address to read from, which should be an
6688address allocated from the garbage collector. The first object is a
6689pointer to the start of the referenced object, if needed by the language
6690runtime (otherwise null).
6691
6692Semantics:
6693""""""""""
6694
6695The '``llvm.gcread``' intrinsic has the same semantics as a load
6696instruction, but may be replaced with substantially more complex code by
6697the garbage collector runtime, as needed. The '``llvm.gcread``'
6698intrinsic may only be used in a function which :ref:`specifies a GC
6699algorithm <gc>`.
6700
6701.. _int_gcwrite:
6702
6703'``llvm.gcwrite``' Intrinsic
6704^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6705
6706Syntax:
6707"""""""
6708
6709::
6710
6711 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6712
6713Overview:
6714"""""""""
6715
6716The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6717locations, allowing garbage collector implementations that require write
6718barriers (such as generational or reference counting collectors).
6719
6720Arguments:
6721""""""""""
6722
6723The first argument is the reference to store, the second is the start of
6724the object to store it to, and the third is the address of the field of
6725Obj to store to. If the runtime does not require a pointer to the
6726object, Obj may be null.
6727
6728Semantics:
6729""""""""""
6730
6731The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6732instruction, but may be replaced with substantially more complex code by
6733the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6734intrinsic may only be used in a function which :ref:`specifies a GC
6735algorithm <gc>`.
6736
6737Code Generator Intrinsics
6738-------------------------
6739
6740These intrinsics are provided by LLVM to expose special features that
6741may only be implemented with code generator support.
6742
6743'``llvm.returnaddress``' Intrinsic
6744^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6745
6746Syntax:
6747"""""""
6748
6749::
6750
6751 declare i8 *@llvm.returnaddress(i32 <level>)
6752
6753Overview:
6754"""""""""
6755
6756The '``llvm.returnaddress``' intrinsic attempts to compute a
6757target-specific value indicating the return address of the current
6758function or one of its callers.
6759
6760Arguments:
6761""""""""""
6762
6763The argument to this intrinsic indicates which function to return the
6764address for. Zero indicates the calling function, one indicates its
6765caller, etc. The argument is **required** to be a constant integer
6766value.
6767
6768Semantics:
6769""""""""""
6770
6771The '``llvm.returnaddress``' intrinsic either returns a pointer
6772indicating the return address of the specified call frame, or zero if it
6773cannot be identified. The value returned by this intrinsic is likely to
6774be incorrect or 0 for arguments other than zero, so it should only be
6775used for debugging purposes.
6776
6777Note that calling this intrinsic does not prevent function inlining or
6778other aggressive transformations, so the value returned may not be that
6779of the obvious source-language caller.
6780
6781'``llvm.frameaddress``' Intrinsic
6782^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6783
6784Syntax:
6785"""""""
6786
6787::
6788
6789 declare i8* @llvm.frameaddress(i32 <level>)
6790
6791Overview:
6792"""""""""
6793
6794The '``llvm.frameaddress``' intrinsic attempts to return the
6795target-specific frame pointer value for the specified stack frame.
6796
6797Arguments:
6798""""""""""
6799
6800The argument to this intrinsic indicates which function to return the
6801frame pointer for. Zero indicates the calling function, one indicates
6802its caller, etc. The argument is **required** to be a constant integer
6803value.
6804
6805Semantics:
6806""""""""""
6807
6808The '``llvm.frameaddress``' intrinsic either returns a pointer
6809indicating the frame address of the specified call frame, or zero if it
6810cannot be identified. The value returned by this intrinsic is likely to
6811be incorrect or 0 for arguments other than zero, so it should only be
6812used for debugging purposes.
6813
6814Note that calling this intrinsic does not prevent function inlining or
6815other aggressive transformations, so the value returned may not be that
6816of the obvious source-language caller.
6817
Renato Golinc7aea402014-05-06 16:51:25 +00006818.. _int_read_register:
6819.. _int_write_register:
6820
6821'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
6822^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6823
6824Syntax:
6825"""""""
6826
6827::
6828
6829 declare i32 @llvm.read_register.i32(metadata)
6830 declare i64 @llvm.read_register.i64(metadata)
6831 declare void @llvm.write_register.i32(metadata, i32 @value)
6832 declare void @llvm.write_register.i64(metadata, i64 @value)
6833 !0 = metadata !{metadata !"sp\00"}
6834
6835Overview:
6836"""""""""
6837
6838The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
6839provides access to the named register. The register must be valid on
6840the architecture being compiled to. The type needs to be compatible
6841with the register being read.
6842
6843Semantics:
6844""""""""""
6845
6846The '``llvm.read_register``' intrinsic returns the current value of the
6847register, where possible. The '``llvm.write_register``' intrinsic sets
6848the current value of the register, where possible.
6849
6850This is useful to implement named register global variables that need
6851to always be mapped to a specific register, as is common practice on
6852bare-metal programs including OS kernels.
6853
6854The compiler doesn't check for register availability or use of the used
6855register in surrounding code, including inline assembly. Because of that,
6856allocatable registers are not supported.
6857
6858Warning: So far it only works with the stack pointer on selected
Hal Finkel0d8db462014-05-11 19:29:11 +00006859architectures (ARM, ARM64, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00006860work is needed to support other registers and even more so, allocatable
6861registers.
6862
Sean Silvab084af42012-12-07 10:36:55 +00006863.. _int_stacksave:
6864
6865'``llvm.stacksave``' Intrinsic
6866^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6867
6868Syntax:
6869"""""""
6870
6871::
6872
6873 declare i8* @llvm.stacksave()
6874
6875Overview:
6876"""""""""
6877
6878The '``llvm.stacksave``' intrinsic is used to remember the current state
6879of the function stack, for use with
6880:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6881implementing language features like scoped automatic variable sized
6882arrays in C99.
6883
6884Semantics:
6885""""""""""
6886
6887This intrinsic returns a opaque pointer value that can be passed to
6888:ref:`llvm.stackrestore <int_stackrestore>`. When an
6889``llvm.stackrestore`` intrinsic is executed with a value saved from
6890``llvm.stacksave``, it effectively restores the state of the stack to
6891the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6892practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6893were allocated after the ``llvm.stacksave`` was executed.
6894
6895.. _int_stackrestore:
6896
6897'``llvm.stackrestore``' Intrinsic
6898^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6899
6900Syntax:
6901"""""""
6902
6903::
6904
6905 declare void @llvm.stackrestore(i8* %ptr)
6906
6907Overview:
6908"""""""""
6909
6910The '``llvm.stackrestore``' intrinsic is used to restore the state of
6911the function stack to the state it was in when the corresponding
6912:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6913useful for implementing language features like scoped automatic variable
6914sized arrays in C99.
6915
6916Semantics:
6917""""""""""
6918
6919See the description for :ref:`llvm.stacksave <int_stacksave>`.
6920
6921'``llvm.prefetch``' Intrinsic
6922^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6923
6924Syntax:
6925"""""""
6926
6927::
6928
6929 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6930
6931Overview:
6932"""""""""
6933
6934The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6935insert a prefetch instruction if supported; otherwise, it is a noop.
6936Prefetches have no effect on the behavior of the program but can change
6937its performance characteristics.
6938
6939Arguments:
6940""""""""""
6941
6942``address`` is the address to be prefetched, ``rw`` is the specifier
6943determining if the fetch should be for a read (0) or write (1), and
6944``locality`` is a temporal locality specifier ranging from (0) - no
6945locality, to (3) - extremely local keep in cache. The ``cache type``
6946specifies whether the prefetch is performed on the data (1) or
6947instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6948arguments must be constant integers.
6949
6950Semantics:
6951""""""""""
6952
6953This intrinsic does not modify the behavior of the program. In
6954particular, prefetches cannot trap and do not produce a value. On
6955targets that support this intrinsic, the prefetch can provide hints to
6956the processor cache for better performance.
6957
6958'``llvm.pcmarker``' Intrinsic
6959^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6960
6961Syntax:
6962"""""""
6963
6964::
6965
6966 declare void @llvm.pcmarker(i32 <id>)
6967
6968Overview:
6969"""""""""
6970
6971The '``llvm.pcmarker``' intrinsic is a method to export a Program
6972Counter (PC) in a region of code to simulators and other tools. The
6973method is target specific, but it is expected that the marker will use
6974exported symbols to transmit the PC of the marker. The marker makes no
6975guarantees that it will remain with any specific instruction after
6976optimizations. It is possible that the presence of a marker will inhibit
6977optimizations. The intended use is to be inserted after optimizations to
6978allow correlations of simulation runs.
6979
6980Arguments:
6981""""""""""
6982
6983``id`` is a numerical id identifying the marker.
6984
6985Semantics:
6986""""""""""
6987
6988This intrinsic does not modify the behavior of the program. Backends
6989that do not support this intrinsic may ignore it.
6990
6991'``llvm.readcyclecounter``' Intrinsic
6992^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6993
6994Syntax:
6995"""""""
6996
6997::
6998
6999 declare i64 @llvm.readcyclecounter()
7000
7001Overview:
7002"""""""""
7003
7004The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7005counter register (or similar low latency, high accuracy clocks) on those
7006targets that support it. On X86, it should map to RDTSC. On Alpha, it
7007should map to RPCC. As the backing counters overflow quickly (on the
7008order of 9 seconds on alpha), this should only be used for small
7009timings.
7010
7011Semantics:
7012""""""""""
7013
7014When directly supported, reading the cycle counter should not modify any
7015memory. Implementations are allowed to either return a application
7016specific value or a system wide value. On backends without support, this
7017is lowered to a constant 0.
7018
Tim Northoverbc933082013-05-23 19:11:20 +00007019Note that runtime support may be conditional on the privilege-level code is
7020running at and the host platform.
7021
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007022'``llvm.clear_cache``' Intrinsic
7023^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7024
7025Syntax:
7026"""""""
7027
7028::
7029
7030 declare void @llvm.clear_cache(i8*, i8*)
7031
7032Overview:
7033"""""""""
7034
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007035The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7036in the specified range to the execution unit of the processor. On
7037targets with non-unified instruction and data cache, the implementation
7038flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007039
7040Semantics:
7041""""""""""
7042
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007043On platforms with coherent instruction and data caches (e.g. x86), this
7044intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007045cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007046instructions or a system call, if cache flushing requires special
7047privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007048
Sean Silvad02bf3e2014-04-07 22:29:53 +00007049The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007050time library.
Renato Golin93010e62014-03-26 14:01:32 +00007051
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007052This instrinsic does *not* empty the instruction pipeline. Modifications
7053of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007054
Sean Silvab084af42012-12-07 10:36:55 +00007055Standard C Library Intrinsics
7056-----------------------------
7057
7058LLVM provides intrinsics for a few important standard C library
7059functions. These intrinsics allow source-language front-ends to pass
7060information about the alignment of the pointer arguments to the code
7061generator, providing opportunity for more efficient code generation.
7062
7063.. _int_memcpy:
7064
7065'``llvm.memcpy``' Intrinsic
7066^^^^^^^^^^^^^^^^^^^^^^^^^^^
7067
7068Syntax:
7069"""""""
7070
7071This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7072integer bit width and for different address spaces. Not all targets
7073support all bit widths however.
7074
7075::
7076
7077 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7078 i32 <len>, i32 <align>, i1 <isvolatile>)
7079 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7080 i64 <len>, i32 <align>, i1 <isvolatile>)
7081
7082Overview:
7083"""""""""
7084
7085The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7086source location to the destination location.
7087
7088Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7089intrinsics do not return a value, takes extra alignment/isvolatile
7090arguments and the pointers can be in specified address spaces.
7091
7092Arguments:
7093""""""""""
7094
7095The first argument is a pointer to the destination, the second is a
7096pointer to the source. The third argument is an integer argument
7097specifying the number of bytes to copy, the fourth argument is the
7098alignment of the source and destination locations, and the fifth is a
7099boolean indicating a volatile access.
7100
7101If the call to this intrinsic has an alignment value that is not 0 or 1,
7102then the caller guarantees that both the source and destination pointers
7103are aligned to that boundary.
7104
7105If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7106a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7107very cleanly specified and it is unwise to depend on it.
7108
7109Semantics:
7110""""""""""
7111
7112The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7113source location to the destination location, which are not allowed to
7114overlap. It copies "len" bytes of memory over. If the argument is known
7115to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007116argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007117
7118'``llvm.memmove``' Intrinsic
7119^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7120
7121Syntax:
7122"""""""
7123
7124This is an overloaded intrinsic. You can use llvm.memmove on any integer
7125bit width and for different address space. Not all targets support all
7126bit widths however.
7127
7128::
7129
7130 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7131 i32 <len>, i32 <align>, i1 <isvolatile>)
7132 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7133 i64 <len>, i32 <align>, i1 <isvolatile>)
7134
7135Overview:
7136"""""""""
7137
7138The '``llvm.memmove.*``' intrinsics move a block of memory from the
7139source location to the destination location. It is similar to the
7140'``llvm.memcpy``' intrinsic but allows the two memory locations to
7141overlap.
7142
7143Note that, unlike the standard libc function, the ``llvm.memmove.*``
7144intrinsics do not return a value, takes extra alignment/isvolatile
7145arguments and the pointers can be in specified address spaces.
7146
7147Arguments:
7148""""""""""
7149
7150The first argument is a pointer to the destination, the second is a
7151pointer to the source. The third argument is an integer argument
7152specifying the number of bytes to copy, the fourth argument is the
7153alignment of the source and destination locations, and the fifth is a
7154boolean indicating a volatile access.
7155
7156If the call to this intrinsic has an alignment value that is not 0 or 1,
7157then the caller guarantees that the source and destination pointers are
7158aligned to that boundary.
7159
7160If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7161is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7162not very cleanly specified and it is unwise to depend on it.
7163
7164Semantics:
7165""""""""""
7166
7167The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7168source location to the destination location, which may overlap. It
7169copies "len" bytes of memory over. If the argument is known to be
7170aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007171otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007172
7173'``llvm.memset.*``' Intrinsics
7174^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7175
7176Syntax:
7177"""""""
7178
7179This is an overloaded intrinsic. You can use llvm.memset on any integer
7180bit width and for different address spaces. However, not all targets
7181support all bit widths.
7182
7183::
7184
7185 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7186 i32 <len>, i32 <align>, i1 <isvolatile>)
7187 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7188 i64 <len>, i32 <align>, i1 <isvolatile>)
7189
7190Overview:
7191"""""""""
7192
7193The '``llvm.memset.*``' intrinsics fill a block of memory with a
7194particular byte value.
7195
7196Note that, unlike the standard libc function, the ``llvm.memset``
7197intrinsic does not return a value and takes extra alignment/volatile
7198arguments. Also, the destination can be in an arbitrary address space.
7199
7200Arguments:
7201""""""""""
7202
7203The first argument is a pointer to the destination to fill, the second
7204is the byte value with which to fill it, the third argument is an
7205integer argument specifying the number of bytes to fill, and the fourth
7206argument is the known alignment of the destination location.
7207
7208If the call to this intrinsic has an alignment value that is not 0 or 1,
7209then the caller guarantees that the destination pointer is aligned to
7210that boundary.
7211
7212If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7213a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7214very cleanly specified and it is unwise to depend on it.
7215
7216Semantics:
7217""""""""""
7218
7219The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7220at the destination location. If the argument is known to be aligned to
7221some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007222it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007223
7224'``llvm.sqrt.*``' Intrinsic
7225^^^^^^^^^^^^^^^^^^^^^^^^^^^
7226
7227Syntax:
7228"""""""
7229
7230This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7231floating point or vector of floating point type. Not all targets support
7232all types however.
7233
7234::
7235
7236 declare float @llvm.sqrt.f32(float %Val)
7237 declare double @llvm.sqrt.f64(double %Val)
7238 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7239 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7240 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7241
7242Overview:
7243"""""""""
7244
7245The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7246returning the same value as the libm '``sqrt``' functions would. Unlike
7247``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7248negative numbers other than -0.0 (which allows for better optimization,
7249because there is no need to worry about errno being set).
7250``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7251
7252Arguments:
7253""""""""""
7254
7255The argument and return value are floating point numbers of the same
7256type.
7257
7258Semantics:
7259""""""""""
7260
7261This function returns the sqrt of the specified operand if it is a
7262nonnegative floating point number.
7263
7264'``llvm.powi.*``' Intrinsic
7265^^^^^^^^^^^^^^^^^^^^^^^^^^^
7266
7267Syntax:
7268"""""""
7269
7270This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7271floating point or vector of floating point type. Not all targets support
7272all types however.
7273
7274::
7275
7276 declare float @llvm.powi.f32(float %Val, i32 %power)
7277 declare double @llvm.powi.f64(double %Val, i32 %power)
7278 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7279 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7280 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7281
7282Overview:
7283"""""""""
7284
7285The '``llvm.powi.*``' intrinsics return the first operand raised to the
7286specified (positive or negative) power. The order of evaluation of
7287multiplications is not defined. When a vector of floating point type is
7288used, the second argument remains a scalar integer value.
7289
7290Arguments:
7291""""""""""
7292
7293The second argument is an integer power, and the first is a value to
7294raise to that power.
7295
7296Semantics:
7297""""""""""
7298
7299This function returns the first value raised to the second power with an
7300unspecified sequence of rounding operations.
7301
7302'``llvm.sin.*``' Intrinsic
7303^^^^^^^^^^^^^^^^^^^^^^^^^^
7304
7305Syntax:
7306"""""""
7307
7308This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7309floating point or vector of floating point type. Not all targets support
7310all types however.
7311
7312::
7313
7314 declare float @llvm.sin.f32(float %Val)
7315 declare double @llvm.sin.f64(double %Val)
7316 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7317 declare fp128 @llvm.sin.f128(fp128 %Val)
7318 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7319
7320Overview:
7321"""""""""
7322
7323The '``llvm.sin.*``' intrinsics return the sine of the operand.
7324
7325Arguments:
7326""""""""""
7327
7328The argument and return value are floating point numbers of the same
7329type.
7330
7331Semantics:
7332""""""""""
7333
7334This function returns the sine of the specified operand, returning the
7335same values as the libm ``sin`` functions would, and handles error
7336conditions in the same way.
7337
7338'``llvm.cos.*``' Intrinsic
7339^^^^^^^^^^^^^^^^^^^^^^^^^^
7340
7341Syntax:
7342"""""""
7343
7344This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7345floating point or vector of floating point type. Not all targets support
7346all types however.
7347
7348::
7349
7350 declare float @llvm.cos.f32(float %Val)
7351 declare double @llvm.cos.f64(double %Val)
7352 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7353 declare fp128 @llvm.cos.f128(fp128 %Val)
7354 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7355
7356Overview:
7357"""""""""
7358
7359The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7360
7361Arguments:
7362""""""""""
7363
7364The argument and return value are floating point numbers of the same
7365type.
7366
7367Semantics:
7368""""""""""
7369
7370This function returns the cosine of the specified operand, returning the
7371same values as the libm ``cos`` functions would, and handles error
7372conditions in the same way.
7373
7374'``llvm.pow.*``' Intrinsic
7375^^^^^^^^^^^^^^^^^^^^^^^^^^
7376
7377Syntax:
7378"""""""
7379
7380This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7381floating point or vector of floating point type. Not all targets support
7382all types however.
7383
7384::
7385
7386 declare float @llvm.pow.f32(float %Val, float %Power)
7387 declare double @llvm.pow.f64(double %Val, double %Power)
7388 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7389 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7390 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7391
7392Overview:
7393"""""""""
7394
7395The '``llvm.pow.*``' intrinsics return the first operand raised to the
7396specified (positive or negative) power.
7397
7398Arguments:
7399""""""""""
7400
7401The second argument is a floating point power, and the first is a value
7402to raise to that power.
7403
7404Semantics:
7405""""""""""
7406
7407This function returns the first value raised to the second power,
7408returning the same values as the libm ``pow`` functions would, and
7409handles error conditions in the same way.
7410
7411'``llvm.exp.*``' Intrinsic
7412^^^^^^^^^^^^^^^^^^^^^^^^^^
7413
7414Syntax:
7415"""""""
7416
7417This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7418floating point or vector of floating point type. Not all targets support
7419all types however.
7420
7421::
7422
7423 declare float @llvm.exp.f32(float %Val)
7424 declare double @llvm.exp.f64(double %Val)
7425 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7426 declare fp128 @llvm.exp.f128(fp128 %Val)
7427 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7428
7429Overview:
7430"""""""""
7431
7432The '``llvm.exp.*``' intrinsics perform the exp function.
7433
7434Arguments:
7435""""""""""
7436
7437The argument and return value are floating point numbers of the same
7438type.
7439
7440Semantics:
7441""""""""""
7442
7443This function returns the same values as the libm ``exp`` functions
7444would, and handles error conditions in the same way.
7445
7446'``llvm.exp2.*``' Intrinsic
7447^^^^^^^^^^^^^^^^^^^^^^^^^^^
7448
7449Syntax:
7450"""""""
7451
7452This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7453floating point or vector of floating point type. Not all targets support
7454all types however.
7455
7456::
7457
7458 declare float @llvm.exp2.f32(float %Val)
7459 declare double @llvm.exp2.f64(double %Val)
7460 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7461 declare fp128 @llvm.exp2.f128(fp128 %Val)
7462 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7463
7464Overview:
7465"""""""""
7466
7467The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7468
7469Arguments:
7470""""""""""
7471
7472The argument and return value are floating point numbers of the same
7473type.
7474
7475Semantics:
7476""""""""""
7477
7478This function returns the same values as the libm ``exp2`` functions
7479would, and handles error conditions in the same way.
7480
7481'``llvm.log.*``' Intrinsic
7482^^^^^^^^^^^^^^^^^^^^^^^^^^
7483
7484Syntax:
7485"""""""
7486
7487This is an overloaded intrinsic. You can use ``llvm.log`` on any
7488floating point or vector of floating point type. Not all targets support
7489all types however.
7490
7491::
7492
7493 declare float @llvm.log.f32(float %Val)
7494 declare double @llvm.log.f64(double %Val)
7495 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7496 declare fp128 @llvm.log.f128(fp128 %Val)
7497 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7498
7499Overview:
7500"""""""""
7501
7502The '``llvm.log.*``' intrinsics perform the log function.
7503
7504Arguments:
7505""""""""""
7506
7507The argument and return value are floating point numbers of the same
7508type.
7509
7510Semantics:
7511""""""""""
7512
7513This function returns the same values as the libm ``log`` functions
7514would, and handles error conditions in the same way.
7515
7516'``llvm.log10.*``' Intrinsic
7517^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7518
7519Syntax:
7520"""""""
7521
7522This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7523floating point or vector of floating point type. Not all targets support
7524all types however.
7525
7526::
7527
7528 declare float @llvm.log10.f32(float %Val)
7529 declare double @llvm.log10.f64(double %Val)
7530 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7531 declare fp128 @llvm.log10.f128(fp128 %Val)
7532 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7533
7534Overview:
7535"""""""""
7536
7537The '``llvm.log10.*``' intrinsics perform the log10 function.
7538
7539Arguments:
7540""""""""""
7541
7542The argument and return value are floating point numbers of the same
7543type.
7544
7545Semantics:
7546""""""""""
7547
7548This function returns the same values as the libm ``log10`` functions
7549would, and handles error conditions in the same way.
7550
7551'``llvm.log2.*``' Intrinsic
7552^^^^^^^^^^^^^^^^^^^^^^^^^^^
7553
7554Syntax:
7555"""""""
7556
7557This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7558floating point or vector of floating point type. Not all targets support
7559all types however.
7560
7561::
7562
7563 declare float @llvm.log2.f32(float %Val)
7564 declare double @llvm.log2.f64(double %Val)
7565 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7566 declare fp128 @llvm.log2.f128(fp128 %Val)
7567 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7568
7569Overview:
7570"""""""""
7571
7572The '``llvm.log2.*``' intrinsics perform the log2 function.
7573
7574Arguments:
7575""""""""""
7576
7577The argument and return value are floating point numbers of the same
7578type.
7579
7580Semantics:
7581""""""""""
7582
7583This function returns the same values as the libm ``log2`` functions
7584would, and handles error conditions in the same way.
7585
7586'``llvm.fma.*``' Intrinsic
7587^^^^^^^^^^^^^^^^^^^^^^^^^^
7588
7589Syntax:
7590"""""""
7591
7592This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7593floating point or vector of floating point type. Not all targets support
7594all types however.
7595
7596::
7597
7598 declare float @llvm.fma.f32(float %a, float %b, float %c)
7599 declare double @llvm.fma.f64(double %a, double %b, double %c)
7600 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7601 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7602 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7603
7604Overview:
7605"""""""""
7606
7607The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7608operation.
7609
7610Arguments:
7611""""""""""
7612
7613The argument and return value are floating point numbers of the same
7614type.
7615
7616Semantics:
7617""""""""""
7618
7619This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007620would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007621
7622'``llvm.fabs.*``' Intrinsic
7623^^^^^^^^^^^^^^^^^^^^^^^^^^^
7624
7625Syntax:
7626"""""""
7627
7628This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7629floating point or vector of floating point type. Not all targets support
7630all types however.
7631
7632::
7633
7634 declare float @llvm.fabs.f32(float %Val)
7635 declare double @llvm.fabs.f64(double %Val)
7636 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7637 declare fp128 @llvm.fabs.f128(fp128 %Val)
7638 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7639
7640Overview:
7641"""""""""
7642
7643The '``llvm.fabs.*``' intrinsics return the absolute value of the
7644operand.
7645
7646Arguments:
7647""""""""""
7648
7649The argument and return value are floating point numbers of the same
7650type.
7651
7652Semantics:
7653""""""""""
7654
7655This function returns the same values as the libm ``fabs`` functions
7656would, and handles error conditions in the same way.
7657
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007658'``llvm.copysign.*``' Intrinsic
7659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7660
7661Syntax:
7662"""""""
7663
7664This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7665floating point or vector of floating point type. Not all targets support
7666all types however.
7667
7668::
7669
7670 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7671 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7672 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7673 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7674 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7675
7676Overview:
7677"""""""""
7678
7679The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7680first operand and the sign of the second operand.
7681
7682Arguments:
7683""""""""""
7684
7685The arguments and return value are floating point numbers of the same
7686type.
7687
7688Semantics:
7689""""""""""
7690
7691This function returns the same values as the libm ``copysign``
7692functions would, and handles error conditions in the same way.
7693
Sean Silvab084af42012-12-07 10:36:55 +00007694'``llvm.floor.*``' Intrinsic
7695^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7696
7697Syntax:
7698"""""""
7699
7700This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7701floating point or vector of floating point type. Not all targets support
7702all types however.
7703
7704::
7705
7706 declare float @llvm.floor.f32(float %Val)
7707 declare double @llvm.floor.f64(double %Val)
7708 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7709 declare fp128 @llvm.floor.f128(fp128 %Val)
7710 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7711
7712Overview:
7713"""""""""
7714
7715The '``llvm.floor.*``' intrinsics return the floor of the operand.
7716
7717Arguments:
7718""""""""""
7719
7720The argument and return value are floating point numbers of the same
7721type.
7722
7723Semantics:
7724""""""""""
7725
7726This function returns the same values as the libm ``floor`` functions
7727would, and handles error conditions in the same way.
7728
7729'``llvm.ceil.*``' Intrinsic
7730^^^^^^^^^^^^^^^^^^^^^^^^^^^
7731
7732Syntax:
7733"""""""
7734
7735This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7736floating point or vector of floating point type. Not all targets support
7737all types however.
7738
7739::
7740
7741 declare float @llvm.ceil.f32(float %Val)
7742 declare double @llvm.ceil.f64(double %Val)
7743 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7744 declare fp128 @llvm.ceil.f128(fp128 %Val)
7745 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7746
7747Overview:
7748"""""""""
7749
7750The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7751
7752Arguments:
7753""""""""""
7754
7755The argument and return value are floating point numbers of the same
7756type.
7757
7758Semantics:
7759""""""""""
7760
7761This function returns the same values as the libm ``ceil`` functions
7762would, and handles error conditions in the same way.
7763
7764'``llvm.trunc.*``' Intrinsic
7765^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7766
7767Syntax:
7768"""""""
7769
7770This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7771floating point or vector of floating point type. Not all targets support
7772all types however.
7773
7774::
7775
7776 declare float @llvm.trunc.f32(float %Val)
7777 declare double @llvm.trunc.f64(double %Val)
7778 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7779 declare fp128 @llvm.trunc.f128(fp128 %Val)
7780 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7781
7782Overview:
7783"""""""""
7784
7785The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7786nearest integer not larger in magnitude than the operand.
7787
7788Arguments:
7789""""""""""
7790
7791The argument and return value are floating point numbers of the same
7792type.
7793
7794Semantics:
7795""""""""""
7796
7797This function returns the same values as the libm ``trunc`` functions
7798would, and handles error conditions in the same way.
7799
7800'``llvm.rint.*``' Intrinsic
7801^^^^^^^^^^^^^^^^^^^^^^^^^^^
7802
7803Syntax:
7804"""""""
7805
7806This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7807floating point or vector of floating point type. Not all targets support
7808all types however.
7809
7810::
7811
7812 declare float @llvm.rint.f32(float %Val)
7813 declare double @llvm.rint.f64(double %Val)
7814 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7815 declare fp128 @llvm.rint.f128(fp128 %Val)
7816 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7817
7818Overview:
7819"""""""""
7820
7821The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7822nearest integer. It may raise an inexact floating-point exception if the
7823operand isn't an integer.
7824
7825Arguments:
7826""""""""""
7827
7828The argument and return value are floating point numbers of the same
7829type.
7830
7831Semantics:
7832""""""""""
7833
7834This function returns the same values as the libm ``rint`` functions
7835would, and handles error conditions in the same way.
7836
7837'``llvm.nearbyint.*``' Intrinsic
7838^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7839
7840Syntax:
7841"""""""
7842
7843This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7844floating point or vector of floating point type. Not all targets support
7845all types however.
7846
7847::
7848
7849 declare float @llvm.nearbyint.f32(float %Val)
7850 declare double @llvm.nearbyint.f64(double %Val)
7851 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7852 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7853 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7854
7855Overview:
7856"""""""""
7857
7858The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7859nearest integer.
7860
7861Arguments:
7862""""""""""
7863
7864The argument and return value are floating point numbers of the same
7865type.
7866
7867Semantics:
7868""""""""""
7869
7870This function returns the same values as the libm ``nearbyint``
7871functions would, and handles error conditions in the same way.
7872
Hal Finkel171817e2013-08-07 22:49:12 +00007873'``llvm.round.*``' Intrinsic
7874^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7875
7876Syntax:
7877"""""""
7878
7879This is an overloaded intrinsic. You can use ``llvm.round`` on any
7880floating point or vector of floating point type. Not all targets support
7881all types however.
7882
7883::
7884
7885 declare float @llvm.round.f32(float %Val)
7886 declare double @llvm.round.f64(double %Val)
7887 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7888 declare fp128 @llvm.round.f128(fp128 %Val)
7889 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7890
7891Overview:
7892"""""""""
7893
7894The '``llvm.round.*``' intrinsics returns the operand rounded to the
7895nearest integer.
7896
7897Arguments:
7898""""""""""
7899
7900The argument and return value are floating point numbers of the same
7901type.
7902
7903Semantics:
7904""""""""""
7905
7906This function returns the same values as the libm ``round``
7907functions would, and handles error conditions in the same way.
7908
Sean Silvab084af42012-12-07 10:36:55 +00007909Bit Manipulation Intrinsics
7910---------------------------
7911
7912LLVM provides intrinsics for a few important bit manipulation
7913operations. These allow efficient code generation for some algorithms.
7914
7915'``llvm.bswap.*``' Intrinsics
7916^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7917
7918Syntax:
7919"""""""
7920
7921This is an overloaded intrinsic function. You can use bswap on any
7922integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7923
7924::
7925
7926 declare i16 @llvm.bswap.i16(i16 <id>)
7927 declare i32 @llvm.bswap.i32(i32 <id>)
7928 declare i64 @llvm.bswap.i64(i64 <id>)
7929
7930Overview:
7931"""""""""
7932
7933The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7934values with an even number of bytes (positive multiple of 16 bits).
7935These are useful for performing operations on data that is not in the
7936target's native byte order.
7937
7938Semantics:
7939""""""""""
7940
7941The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7942and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7943intrinsic returns an i32 value that has the four bytes of the input i32
7944swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7945returned i32 will have its bytes in 3, 2, 1, 0 order. The
7946``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7947concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7948respectively).
7949
7950'``llvm.ctpop.*``' Intrinsic
7951^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7952
7953Syntax:
7954"""""""
7955
7956This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7957bit width, or on any vector with integer elements. Not all targets
7958support all bit widths or vector types, however.
7959
7960::
7961
7962 declare i8 @llvm.ctpop.i8(i8 <src>)
7963 declare i16 @llvm.ctpop.i16(i16 <src>)
7964 declare i32 @llvm.ctpop.i32(i32 <src>)
7965 declare i64 @llvm.ctpop.i64(i64 <src>)
7966 declare i256 @llvm.ctpop.i256(i256 <src>)
7967 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7968
7969Overview:
7970"""""""""
7971
7972The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7973in a value.
7974
7975Arguments:
7976""""""""""
7977
7978The only argument is the value to be counted. The argument may be of any
7979integer type, or a vector with integer elements. The return type must
7980match the argument type.
7981
7982Semantics:
7983""""""""""
7984
7985The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7986each element of a vector.
7987
7988'``llvm.ctlz.*``' Intrinsic
7989^^^^^^^^^^^^^^^^^^^^^^^^^^^
7990
7991Syntax:
7992"""""""
7993
7994This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7995integer bit width, or any vector whose elements are integers. Not all
7996targets support all bit widths or vector types, however.
7997
7998::
7999
8000 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8001 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8002 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8003 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8004 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8005 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8006
8007Overview:
8008"""""""""
8009
8010The '``llvm.ctlz``' family of intrinsic functions counts the number of
8011leading zeros in a variable.
8012
8013Arguments:
8014""""""""""
8015
8016The first argument is the value to be counted. This argument may be of
8017any integer type, or a vectory with integer element type. The return
8018type must match the first argument type.
8019
8020The second argument must be a constant and is a flag to indicate whether
8021the intrinsic should ensure that a zero as the first argument produces a
8022defined result. Historically some architectures did not provide a
8023defined result for zero values as efficiently, and many algorithms are
8024now predicated on avoiding zero-value inputs.
8025
8026Semantics:
8027""""""""""
8028
8029The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8030zeros in a variable, or within each element of the vector. If
8031``src == 0`` then the result is the size in bits of the type of ``src``
8032if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8033``llvm.ctlz(i32 2) = 30``.
8034
8035'``llvm.cttz.*``' Intrinsic
8036^^^^^^^^^^^^^^^^^^^^^^^^^^^
8037
8038Syntax:
8039"""""""
8040
8041This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8042integer bit width, or any vector of integer elements. Not all targets
8043support all bit widths or vector types, however.
8044
8045::
8046
8047 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8048 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8049 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8050 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8051 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8052 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8053
8054Overview:
8055"""""""""
8056
8057The '``llvm.cttz``' family of intrinsic functions counts the number of
8058trailing zeros.
8059
8060Arguments:
8061""""""""""
8062
8063The first argument is the value to be counted. This argument may be of
8064any integer type, or a vectory with integer element type. The return
8065type must match the first argument type.
8066
8067The second argument must be a constant and is a flag to indicate whether
8068the intrinsic should ensure that a zero as the first argument produces a
8069defined result. Historically some architectures did not provide a
8070defined result for zero values as efficiently, and many algorithms are
8071now predicated on avoiding zero-value inputs.
8072
8073Semantics:
8074""""""""""
8075
8076The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8077zeros in a variable, or within each element of a vector. If ``src == 0``
8078then the result is the size in bits of the type of ``src`` if
8079``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8080``llvm.cttz(2) = 1``.
8081
8082Arithmetic with Overflow Intrinsics
8083-----------------------------------
8084
8085LLVM provides intrinsics for some arithmetic with overflow operations.
8086
8087'``llvm.sadd.with.overflow.*``' Intrinsics
8088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8089
8090Syntax:
8091"""""""
8092
8093This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8094on any integer bit width.
8095
8096::
8097
8098 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8099 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8100 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8101
8102Overview:
8103"""""""""
8104
8105The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8106a signed addition of the two arguments, and indicate whether an overflow
8107occurred during the signed summation.
8108
8109Arguments:
8110""""""""""
8111
8112The arguments (%a and %b) and the first element of the result structure
8113may be of integer types of any bit width, but they must have the same
8114bit width. The second element of the result structure must be of type
8115``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8116addition.
8117
8118Semantics:
8119""""""""""
8120
8121The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008122a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008123first element of which is the signed summation, and the second element
8124of which is a bit specifying if the signed summation resulted in an
8125overflow.
8126
8127Examples:
8128"""""""""
8129
8130.. code-block:: llvm
8131
8132 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8133 %sum = extractvalue {i32, i1} %res, 0
8134 %obit = extractvalue {i32, i1} %res, 1
8135 br i1 %obit, label %overflow, label %normal
8136
8137'``llvm.uadd.with.overflow.*``' Intrinsics
8138^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8139
8140Syntax:
8141"""""""
8142
8143This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8144on any integer bit width.
8145
8146::
8147
8148 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8149 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8150 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8151
8152Overview:
8153"""""""""
8154
8155The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8156an unsigned addition of the two arguments, and indicate whether a carry
8157occurred during the unsigned summation.
8158
8159Arguments:
8160""""""""""
8161
8162The arguments (%a and %b) and the first element of the result structure
8163may be of integer types of any bit width, but they must have the same
8164bit width. The second element of the result structure must be of type
8165``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8166addition.
8167
8168Semantics:
8169""""""""""
8170
8171The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008172an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008173first element of which is the sum, and the second element of which is a
8174bit specifying if the unsigned summation resulted in a carry.
8175
8176Examples:
8177"""""""""
8178
8179.. code-block:: llvm
8180
8181 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8182 %sum = extractvalue {i32, i1} %res, 0
8183 %obit = extractvalue {i32, i1} %res, 1
8184 br i1 %obit, label %carry, label %normal
8185
8186'``llvm.ssub.with.overflow.*``' Intrinsics
8187^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8188
8189Syntax:
8190"""""""
8191
8192This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8193on any integer bit width.
8194
8195::
8196
8197 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8198 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8199 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8200
8201Overview:
8202"""""""""
8203
8204The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8205a signed subtraction of the two arguments, and indicate whether an
8206overflow occurred during the signed subtraction.
8207
8208Arguments:
8209""""""""""
8210
8211The arguments (%a and %b) and the first element of the result structure
8212may be of integer types of any bit width, but they must have the same
8213bit width. The second element of the result structure must be of type
8214``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8215subtraction.
8216
8217Semantics:
8218""""""""""
8219
8220The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008221a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008222first element of which is the subtraction, and the second element of
8223which is a bit specifying if the signed subtraction resulted in an
8224overflow.
8225
8226Examples:
8227"""""""""
8228
8229.. code-block:: llvm
8230
8231 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8232 %sum = extractvalue {i32, i1} %res, 0
8233 %obit = extractvalue {i32, i1} %res, 1
8234 br i1 %obit, label %overflow, label %normal
8235
8236'``llvm.usub.with.overflow.*``' Intrinsics
8237^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8238
8239Syntax:
8240"""""""
8241
8242This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8243on any integer bit width.
8244
8245::
8246
8247 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8248 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8249 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8250
8251Overview:
8252"""""""""
8253
8254The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8255an unsigned subtraction of the two arguments, and indicate whether an
8256overflow occurred during the unsigned subtraction.
8257
8258Arguments:
8259""""""""""
8260
8261The arguments (%a and %b) and the first element of the result structure
8262may be of integer types of any bit width, but they must have the same
8263bit width. The second element of the result structure must be of type
8264``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8265subtraction.
8266
8267Semantics:
8268""""""""""
8269
8270The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008271an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008272the first element of which is the subtraction, and the second element of
8273which is a bit specifying if the unsigned subtraction resulted in an
8274overflow.
8275
8276Examples:
8277"""""""""
8278
8279.. code-block:: llvm
8280
8281 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8282 %sum = extractvalue {i32, i1} %res, 0
8283 %obit = extractvalue {i32, i1} %res, 1
8284 br i1 %obit, label %overflow, label %normal
8285
8286'``llvm.smul.with.overflow.*``' Intrinsics
8287^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8288
8289Syntax:
8290"""""""
8291
8292This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8293on any integer bit width.
8294
8295::
8296
8297 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8298 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8299 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8300
8301Overview:
8302"""""""""
8303
8304The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8305a signed multiplication of the two arguments, and indicate whether an
8306overflow occurred during the signed multiplication.
8307
8308Arguments:
8309""""""""""
8310
8311The arguments (%a and %b) and the first element of the result structure
8312may be of integer types of any bit width, but they must have the same
8313bit width. The second element of the result structure must be of type
8314``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8315multiplication.
8316
8317Semantics:
8318""""""""""
8319
8320The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008321a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008322the first element of which is the multiplication, and the second element
8323of which is a bit specifying if the signed multiplication resulted in an
8324overflow.
8325
8326Examples:
8327"""""""""
8328
8329.. code-block:: llvm
8330
8331 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8332 %sum = extractvalue {i32, i1} %res, 0
8333 %obit = extractvalue {i32, i1} %res, 1
8334 br i1 %obit, label %overflow, label %normal
8335
8336'``llvm.umul.with.overflow.*``' Intrinsics
8337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8338
8339Syntax:
8340"""""""
8341
8342This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8343on any integer bit width.
8344
8345::
8346
8347 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8348 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8349 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8350
8351Overview:
8352"""""""""
8353
8354The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8355a unsigned multiplication of the two arguments, and indicate whether an
8356overflow occurred during the unsigned multiplication.
8357
8358Arguments:
8359""""""""""
8360
8361The arguments (%a and %b) and the first element of the result structure
8362may be of integer types of any bit width, but they must have the same
8363bit width. The second element of the result structure must be of type
8364``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8365multiplication.
8366
8367Semantics:
8368""""""""""
8369
8370The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008371an unsigned multiplication of the two arguments. They return a structure ---
8372the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008373element of which is a bit specifying if the unsigned multiplication
8374resulted in an overflow.
8375
8376Examples:
8377"""""""""
8378
8379.. code-block:: llvm
8380
8381 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8382 %sum = extractvalue {i32, i1} %res, 0
8383 %obit = extractvalue {i32, i1} %res, 1
8384 br i1 %obit, label %overflow, label %normal
8385
8386Specialised Arithmetic Intrinsics
8387---------------------------------
8388
8389'``llvm.fmuladd.*``' Intrinsic
8390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8391
8392Syntax:
8393"""""""
8394
8395::
8396
8397 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8398 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8399
8400Overview:
8401"""""""""
8402
8403The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008404expressions that can be fused if the code generator determines that (a) the
8405target instruction set has support for a fused operation, and (b) that the
8406fused operation is more efficient than the equivalent, separate pair of mul
8407and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008408
8409Arguments:
8410""""""""""
8411
8412The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8413multiplicands, a and b, and an addend c.
8414
8415Semantics:
8416""""""""""
8417
8418The expression:
8419
8420::
8421
8422 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8423
8424is equivalent to the expression a \* b + c, except that rounding will
8425not be performed between the multiplication and addition steps if the
8426code generator fuses the operations. Fusion is not guaranteed, even if
8427the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008428corresponding llvm.fma.\* intrinsic function should be used
8429instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008430
8431Examples:
8432"""""""""
8433
8434.. code-block:: llvm
8435
8436 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8437
8438Half Precision Floating Point Intrinsics
8439----------------------------------------
8440
8441For most target platforms, half precision floating point is a
8442storage-only format. This means that it is a dense encoding (in memory)
8443but does not support computation in the format.
8444
8445This means that code must first load the half-precision floating point
8446value as an i16, then convert it to float with
8447:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8448then be performed on the float value (including extending to double
8449etc). To store the value back to memory, it is first converted to float
8450if needed, then converted to i16 with
8451:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8452i16 value.
8453
8454.. _int_convert_to_fp16:
8455
8456'``llvm.convert.to.fp16``' Intrinsic
8457^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8458
8459Syntax:
8460"""""""
8461
8462::
8463
8464 declare i16 @llvm.convert.to.fp16(f32 %a)
8465
8466Overview:
8467"""""""""
8468
8469The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8470from single precision floating point format to half precision floating
8471point format.
8472
8473Arguments:
8474""""""""""
8475
8476The intrinsic function contains single argument - the value to be
8477converted.
8478
8479Semantics:
8480""""""""""
8481
8482The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8483from single precision floating point format to half precision floating
8484point format. The return value is an ``i16`` which contains the
8485converted number.
8486
8487Examples:
8488"""""""""
8489
8490.. code-block:: llvm
8491
8492 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8493 store i16 %res, i16* @x, align 2
8494
8495.. _int_convert_from_fp16:
8496
8497'``llvm.convert.from.fp16``' Intrinsic
8498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8499
8500Syntax:
8501"""""""
8502
8503::
8504
8505 declare f32 @llvm.convert.from.fp16(i16 %a)
8506
8507Overview:
8508"""""""""
8509
8510The '``llvm.convert.from.fp16``' intrinsic function performs a
8511conversion from half precision floating point format to single precision
8512floating point format.
8513
8514Arguments:
8515""""""""""
8516
8517The intrinsic function contains single argument - the value to be
8518converted.
8519
8520Semantics:
8521""""""""""
8522
8523The '``llvm.convert.from.fp16``' intrinsic function performs a
8524conversion from half single precision floating point format to single
8525precision floating point format. The input half-float value is
8526represented by an ``i16`` value.
8527
8528Examples:
8529"""""""""
8530
8531.. code-block:: llvm
8532
8533 %a = load i16* @x, align 2
8534 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8535
8536Debugger Intrinsics
8537-------------------
8538
8539The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8540prefix), are described in the `LLVM Source Level
8541Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8542document.
8543
8544Exception Handling Intrinsics
8545-----------------------------
8546
8547The LLVM exception handling intrinsics (which all start with
8548``llvm.eh.`` prefix), are described in the `LLVM Exception
8549Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8550
8551.. _int_trampoline:
8552
8553Trampoline Intrinsics
8554---------------------
8555
8556These intrinsics make it possible to excise one parameter, marked with
8557the :ref:`nest <nest>` attribute, from a function. The result is a
8558callable function pointer lacking the nest parameter - the caller does
8559not need to provide a value for it. Instead, the value to use is stored
8560in advance in a "trampoline", a block of memory usually allocated on the
8561stack, which also contains code to splice the nest value into the
8562argument list. This is used to implement the GCC nested function address
8563extension.
8564
8565For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8566then the resulting function pointer has signature ``i32 (i32, i32)*``.
8567It can be created as follows:
8568
8569.. code-block:: llvm
8570
8571 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8572 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8573 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8574 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8575 %fp = bitcast i8* %p to i32 (i32, i32)*
8576
8577The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8578``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8579
8580.. _int_it:
8581
8582'``llvm.init.trampoline``' Intrinsic
8583^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8584
8585Syntax:
8586"""""""
8587
8588::
8589
8590 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8591
8592Overview:
8593"""""""""
8594
8595This fills the memory pointed to by ``tramp`` with executable code,
8596turning it into a trampoline.
8597
8598Arguments:
8599""""""""""
8600
8601The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8602pointers. The ``tramp`` argument must point to a sufficiently large and
8603sufficiently aligned block of memory; this memory is written to by the
8604intrinsic. Note that the size and the alignment are target-specific -
8605LLVM currently provides no portable way of determining them, so a
8606front-end that generates this intrinsic needs to have some
8607target-specific knowledge. The ``func`` argument must hold a function
8608bitcast to an ``i8*``.
8609
8610Semantics:
8611""""""""""
8612
8613The block of memory pointed to by ``tramp`` is filled with target
8614dependent code, turning it into a function. Then ``tramp`` needs to be
8615passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8616be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8617function's signature is the same as that of ``func`` with any arguments
8618marked with the ``nest`` attribute removed. At most one such ``nest``
8619argument is allowed, and it must be of pointer type. Calling the new
8620function is equivalent to calling ``func`` with the same argument list,
8621but with ``nval`` used for the missing ``nest`` argument. If, after
8622calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8623modified, then the effect of any later call to the returned function
8624pointer is undefined.
8625
8626.. _int_at:
8627
8628'``llvm.adjust.trampoline``' Intrinsic
8629^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8630
8631Syntax:
8632"""""""
8633
8634::
8635
8636 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8637
8638Overview:
8639"""""""""
8640
8641This performs any required machine-specific adjustment to the address of
8642a trampoline (passed as ``tramp``).
8643
8644Arguments:
8645""""""""""
8646
8647``tramp`` must point to a block of memory which already has trampoline
8648code filled in by a previous call to
8649:ref:`llvm.init.trampoline <int_it>`.
8650
8651Semantics:
8652""""""""""
8653
8654On some architectures the address of the code to be executed needs to be
8655different to the address where the trampoline is actually stored. This
8656intrinsic returns the executable address corresponding to ``tramp``
8657after performing the required machine specific adjustments. The pointer
8658returned can then be :ref:`bitcast and executed <int_trampoline>`.
8659
8660Memory Use Markers
8661------------------
8662
8663This class of intrinsics exists to information about the lifetime of
8664memory objects and ranges where variables are immutable.
8665
Reid Klecknera534a382013-12-19 02:14:12 +00008666.. _int_lifestart:
8667
Sean Silvab084af42012-12-07 10:36:55 +00008668'``llvm.lifetime.start``' Intrinsic
8669^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8670
8671Syntax:
8672"""""""
8673
8674::
8675
8676 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8677
8678Overview:
8679"""""""""
8680
8681The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8682object's lifetime.
8683
8684Arguments:
8685""""""""""
8686
8687The first argument is a constant integer representing the size of the
8688object, or -1 if it is variable sized. The second argument is a pointer
8689to the object.
8690
8691Semantics:
8692""""""""""
8693
8694This intrinsic indicates that before this point in the code, the value
8695of the memory pointed to by ``ptr`` is dead. This means that it is known
8696to never be used and has an undefined value. A load from the pointer
8697that precedes this intrinsic can be replaced with ``'undef'``.
8698
Reid Klecknera534a382013-12-19 02:14:12 +00008699.. _int_lifeend:
8700
Sean Silvab084af42012-12-07 10:36:55 +00008701'``llvm.lifetime.end``' Intrinsic
8702^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8703
8704Syntax:
8705"""""""
8706
8707::
8708
8709 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8710
8711Overview:
8712"""""""""
8713
8714The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8715object's lifetime.
8716
8717Arguments:
8718""""""""""
8719
8720The first argument is a constant integer representing the size of the
8721object, or -1 if it is variable sized. The second argument is a pointer
8722to the object.
8723
8724Semantics:
8725""""""""""
8726
8727This intrinsic indicates that after this point in the code, the value of
8728the memory pointed to by ``ptr`` is dead. This means that it is known to
8729never be used and has an undefined value. Any stores into the memory
8730object following this intrinsic may be removed as dead.
8731
8732'``llvm.invariant.start``' Intrinsic
8733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8734
8735Syntax:
8736"""""""
8737
8738::
8739
8740 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8741
8742Overview:
8743"""""""""
8744
8745The '``llvm.invariant.start``' intrinsic specifies that the contents of
8746a memory object will not change.
8747
8748Arguments:
8749""""""""""
8750
8751The first argument is a constant integer representing the size of the
8752object, or -1 if it is variable sized. The second argument is a pointer
8753to the object.
8754
8755Semantics:
8756""""""""""
8757
8758This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8759the return value, the referenced memory location is constant and
8760unchanging.
8761
8762'``llvm.invariant.end``' Intrinsic
8763^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8764
8765Syntax:
8766"""""""
8767
8768::
8769
8770 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8771
8772Overview:
8773"""""""""
8774
8775The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8776memory object are mutable.
8777
8778Arguments:
8779""""""""""
8780
8781The first argument is the matching ``llvm.invariant.start`` intrinsic.
8782The second argument is a constant integer representing the size of the
8783object, or -1 if it is variable sized and the third argument is a
8784pointer to the object.
8785
8786Semantics:
8787""""""""""
8788
8789This intrinsic indicates that the memory is mutable again.
8790
8791General Intrinsics
8792------------------
8793
8794This class of intrinsics is designed to be generic and has no specific
8795purpose.
8796
8797'``llvm.var.annotation``' Intrinsic
8798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8799
8800Syntax:
8801"""""""
8802
8803::
8804
8805 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8806
8807Overview:
8808"""""""""
8809
8810The '``llvm.var.annotation``' intrinsic.
8811
8812Arguments:
8813""""""""""
8814
8815The first argument is a pointer to a value, the second is a pointer to a
8816global string, the third is a pointer to a global string which is the
8817source file name, and the last argument is the line number.
8818
8819Semantics:
8820""""""""""
8821
8822This intrinsic allows annotation of local variables with arbitrary
8823strings. This can be useful for special purpose optimizations that want
8824to look for these annotations. These have no other defined use; they are
8825ignored by code generation and optimization.
8826
Michael Gottesman88d18832013-03-26 00:34:27 +00008827'``llvm.ptr.annotation.*``' Intrinsic
8828^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8829
8830Syntax:
8831"""""""
8832
8833This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8834pointer to an integer of any width. *NOTE* you must specify an address space for
8835the pointer. The identifier for the default address space is the integer
8836'``0``'.
8837
8838::
8839
8840 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8841 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8842 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8843 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8844 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8845
8846Overview:
8847"""""""""
8848
8849The '``llvm.ptr.annotation``' intrinsic.
8850
8851Arguments:
8852""""""""""
8853
8854The first argument is a pointer to an integer value of arbitrary bitwidth
8855(result of some expression), the second is a pointer to a global string, the
8856third is a pointer to a global string which is the source file name, and the
8857last argument is the line number. It returns the value of the first argument.
8858
8859Semantics:
8860""""""""""
8861
8862This intrinsic allows annotation of a pointer to an integer with arbitrary
8863strings. This can be useful for special purpose optimizations that want to look
8864for these annotations. These have no other defined use; they are ignored by code
8865generation and optimization.
8866
Sean Silvab084af42012-12-07 10:36:55 +00008867'``llvm.annotation.*``' Intrinsic
8868^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8869
8870Syntax:
8871"""""""
8872
8873This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8874any integer bit width.
8875
8876::
8877
8878 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8879 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8880 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8881 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8882 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8883
8884Overview:
8885"""""""""
8886
8887The '``llvm.annotation``' intrinsic.
8888
8889Arguments:
8890""""""""""
8891
8892The first argument is an integer value (result of some expression), the
8893second is a pointer to a global string, the third is a pointer to a
8894global string which is the source file name, and the last argument is
8895the line number. It returns the value of the first argument.
8896
8897Semantics:
8898""""""""""
8899
8900This intrinsic allows annotations to be put on arbitrary expressions
8901with arbitrary strings. This can be useful for special purpose
8902optimizations that want to look for these annotations. These have no
8903other defined use; they are ignored by code generation and optimization.
8904
8905'``llvm.trap``' Intrinsic
8906^^^^^^^^^^^^^^^^^^^^^^^^^
8907
8908Syntax:
8909"""""""
8910
8911::
8912
8913 declare void @llvm.trap() noreturn nounwind
8914
8915Overview:
8916"""""""""
8917
8918The '``llvm.trap``' intrinsic.
8919
8920Arguments:
8921""""""""""
8922
8923None.
8924
8925Semantics:
8926""""""""""
8927
8928This intrinsic is lowered to the target dependent trap instruction. If
8929the target does not have a trap instruction, this intrinsic will be
8930lowered to a call of the ``abort()`` function.
8931
8932'``llvm.debugtrap``' Intrinsic
8933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8934
8935Syntax:
8936"""""""
8937
8938::
8939
8940 declare void @llvm.debugtrap() nounwind
8941
8942Overview:
8943"""""""""
8944
8945The '``llvm.debugtrap``' intrinsic.
8946
8947Arguments:
8948""""""""""
8949
8950None.
8951
8952Semantics:
8953""""""""""
8954
8955This intrinsic is lowered to code which is intended to cause an
8956execution trap with the intention of requesting the attention of a
8957debugger.
8958
8959'``llvm.stackprotector``' Intrinsic
8960^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8961
8962Syntax:
8963"""""""
8964
8965::
8966
8967 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8968
8969Overview:
8970"""""""""
8971
8972The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8973onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8974is placed on the stack before local variables.
8975
8976Arguments:
8977""""""""""
8978
8979The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8980The first argument is the value loaded from the stack guard
8981``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8982enough space to hold the value of the guard.
8983
8984Semantics:
8985""""""""""
8986
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008987This intrinsic causes the prologue/epilogue inserter to force the position of
8988the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8989to ensure that if a local variable on the stack is overwritten, it will destroy
8990the value of the guard. When the function exits, the guard on the stack is
8991checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8992different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8993calling the ``__stack_chk_fail()`` function.
8994
8995'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008996^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008997
8998Syntax:
8999"""""""
9000
9001::
9002
9003 declare void @llvm.stackprotectorcheck(i8** <guard>)
9004
9005Overview:
9006"""""""""
9007
9008The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009009created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009010``__stack_chk_fail()`` function.
9011
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009012Arguments:
9013""""""""""
9014
9015The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9016the variable ``@__stack_chk_guard``.
9017
9018Semantics:
9019""""""""""
9020
9021This intrinsic is provided to perform the stack protector check by comparing
9022``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9023values do not match call the ``__stack_chk_fail()`` function.
9024
9025The reason to provide this as an IR level intrinsic instead of implementing it
9026via other IR operations is that in order to perform this operation at the IR
9027level without an intrinsic, one would need to create additional basic blocks to
9028handle the success/failure cases. This makes it difficult to stop the stack
9029protector check from disrupting sibling tail calls in Codegen. With this
9030intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009031codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009032
Sean Silvab084af42012-12-07 10:36:55 +00009033'``llvm.objectsize``' Intrinsic
9034^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9035
9036Syntax:
9037"""""""
9038
9039::
9040
9041 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9042 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9043
9044Overview:
9045"""""""""
9046
9047The ``llvm.objectsize`` intrinsic is designed to provide information to
9048the optimizers to determine at compile time whether a) an operation
9049(like memcpy) will overflow a buffer that corresponds to an object, or
9050b) that a runtime check for overflow isn't necessary. An object in this
9051context means an allocation of a specific class, structure, array, or
9052other object.
9053
9054Arguments:
9055""""""""""
9056
9057The ``llvm.objectsize`` intrinsic takes two arguments. The first
9058argument is a pointer to or into the ``object``. The second argument is
9059a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9060or -1 (if false) when the object size is unknown. The second argument
9061only accepts constants.
9062
9063Semantics:
9064""""""""""
9065
9066The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9067the size of the object concerned. If the size cannot be determined at
9068compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9069on the ``min`` argument).
9070
9071'``llvm.expect``' Intrinsic
9072^^^^^^^^^^^^^^^^^^^^^^^^^^^
9073
9074Syntax:
9075"""""""
9076
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009077This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9078integer bit width.
9079
Sean Silvab084af42012-12-07 10:36:55 +00009080::
9081
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009082 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009083 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9084 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9085
9086Overview:
9087"""""""""
9088
9089The ``llvm.expect`` intrinsic provides information about expected (the
9090most probable) value of ``val``, which can be used by optimizers.
9091
9092Arguments:
9093""""""""""
9094
9095The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9096a value. The second argument is an expected value, this needs to be a
9097constant value, variables are not allowed.
9098
9099Semantics:
9100""""""""""
9101
9102This intrinsic is lowered to the ``val``.
9103
9104'``llvm.donothing``' Intrinsic
9105^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9106
9107Syntax:
9108"""""""
9109
9110::
9111
9112 declare void @llvm.donothing() nounwind readnone
9113
9114Overview:
9115"""""""""
9116
9117The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9118only intrinsic that can be called with an invoke instruction.
9119
9120Arguments:
9121""""""""""
9122
9123None.
9124
9125Semantics:
9126""""""""""
9127
9128This intrinsic does nothing, and it's removed by optimizers and ignored
9129by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009130
9131Stack Map Intrinsics
9132--------------------
9133
9134LLVM provides experimental intrinsics to support runtime patching
9135mechanisms commonly desired in dynamic language JITs. These intrinsics
9136are described in :doc:`StackMaps`.