blob: 54b606d037af5c38fe4c6e60aaa3db959622deb8 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000443A symbol with ``internal`` or ``private`` linkage must have ``default``
444visibility.
445
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000446.. _namedtypes:
447
Nico Rieck7157bb72014-01-14 15:22:47 +0000448DLL Storage Classes
449-------------------
450
451All Global Variables, Functions and Aliases can have one of the following
452DLL storage class:
453
454``dllimport``
455 "``dllimport``" causes the compiler to reference a function or variable via
456 a global pointer to a pointer that is set up by the DLL exporting the
457 symbol. On Microsoft Windows targets, the pointer name is formed by
458 combining ``__imp_`` and the function or variable name.
459``dllexport``
460 "``dllexport``" causes the compiler to provide a global pointer to a pointer
461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
462 Microsoft Windows targets, the pointer name is formed by combining
463 ``__imp_`` and the function or variable name. Since this storage class
464 exists for defining a dll interface, the compiler, assembler and linker know
465 it is externally referenced and must refrain from deleting the symbol.
466
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000467Structure Types
468---------------
Sean Silvab084af42012-12-07 10:36:55 +0000469
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000470LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
471types <t_struct>`. Literal types are uniqued structurally, but identified types
472are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
473to forward declare a type which is not yet available.
474
475An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000476
477.. code-block:: llvm
478
479 %mytype = type { %mytype*, i32 }
480
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000481Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
482literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000483
484.. _globalvars:
485
486Global Variables
487----------------
488
489Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000490instead of run-time.
491
492Global variables definitions must be initialized, may have an explicit section
493to be placed in, and may have an optional explicit alignment specified.
494
495Global variables in other translation units can also be declared, in which
496case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000497
498A variable may be defined as ``thread_local``, which means that it will
499not be shared by threads (each thread will have a separated copy of the
500variable). Not all targets support thread-local variables. Optionally, a
501TLS model may be specified:
502
503``localdynamic``
504 For variables that are only used within the current shared library.
505``initialexec``
506 For variables in modules that will not be loaded dynamically.
507``localexec``
508 For variables defined in the executable and only used within it.
509
510The models correspond to the ELF TLS models; see `ELF Handling For
511Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
512more information on under which circumstances the different models may
513be used. The target may choose a different TLS model if the specified
514model is not supported, or if a better choice of model can be made.
515
Michael Gottesman006039c2013-01-31 05:48:48 +0000516A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000517the contents of the variable will **never** be modified (enabling better
518optimization, allowing the global data to be placed in the read-only
519section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000520initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000521variable.
522
523LLVM explicitly allows *declarations* of global variables to be marked
524constant, even if the final definition of the global is not. This
525capability can be used to enable slightly better optimization of the
526program, but requires the language definition to guarantee that
527optimizations based on the 'constantness' are valid for the translation
528units that do not include the definition.
529
530As SSA values, global variables define pointer values that are in scope
531(i.e. they dominate) all basic blocks in the program. Global variables
532always define a pointer to their "content" type because they describe a
533region of memory, and all memory objects in LLVM are accessed through
534pointers.
535
536Global variables can be marked with ``unnamed_addr`` which indicates
537that the address is not significant, only the content. Constants marked
538like this can be merged with other constants if they have the same
539initializer. Note that a constant with significant address *can* be
540merged with a ``unnamed_addr`` constant, the result being a constant
541whose address is significant.
542
543A global variable may be declared to reside in a target-specific
544numbered address space. For targets that support them, address spaces
545may affect how optimizations are performed and/or what target
546instructions are used to access the variable. The default address space
547is zero. The address space qualifier must precede any other attributes.
548
549LLVM allows an explicit section to be specified for globals. If the
550target supports it, it will emit globals to the section specified.
551
Michael Gottesmane743a302013-02-04 03:22:00 +0000552By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000553variables defined within the module are not modified from their
554initial values before the start of the global initializer. This is
555true even for variables potentially accessible from outside the
556module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000557``@llvm.used`` or dllexported variables. This assumption may be suppressed
558by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000559
Sean Silvab084af42012-12-07 10:36:55 +0000560An explicit alignment may be specified for a global, which must be a
561power of 2. If not present, or if the alignment is set to zero, the
562alignment of the global is set by the target to whatever it feels
563convenient. If an explicit alignment is specified, the global is forced
564to have exactly that alignment. Targets and optimizers are not allowed
565to over-align the global if the global has an assigned section. In this
566case, the extra alignment could be observable: for example, code could
567assume that the globals are densely packed in their section and try to
568iterate over them as an array, alignment padding would break this
569iteration.
570
Nico Rieck7157bb72014-01-14 15:22:47 +0000571Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
572
573Syntax::
574
575 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
576 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
577 <global | constant> <Type>
578 [, section "name"] [, align <Alignment>]
579
Sean Silvab084af42012-12-07 10:36:55 +0000580For example, the following defines a global in a numbered address space
581with an initializer, section, and alignment:
582
583.. code-block:: llvm
584
585 @G = addrspace(5) constant float 1.0, section "foo", align 4
586
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000587The following example just declares a global variable
588
589.. code-block:: llvm
590
591 @G = external global i32
592
Sean Silvab084af42012-12-07 10:36:55 +0000593The following example defines a thread-local global with the
594``initialexec`` TLS model:
595
596.. code-block:: llvm
597
598 @G = thread_local(initialexec) global i32 0, align 4
599
600.. _functionstructure:
601
602Functions
603---------
604
605LLVM function definitions consist of the "``define``" keyword, an
606optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000607style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
608an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000609an optional ``unnamed_addr`` attribute, a return type, an optional
610:ref:`parameter attribute <paramattrs>` for the return type, a function
611name, a (possibly empty) argument list (each with optional :ref:`parameter
612attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
613an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000614collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
615curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000616
617LLVM function declarations consist of the "``declare``" keyword, an
618optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000619style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
620an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000621an optional ``unnamed_addr`` attribute, a return type, an optional
622:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000623name, a possibly empty list of arguments, an optional alignment, an optional
624:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000625
Bill Wendling6822ecb2013-10-27 05:09:12 +0000626A function definition contains a list of basic blocks, forming the CFG (Control
627Flow Graph) for the function. Each basic block may optionally start with a label
628(giving the basic block a symbol table entry), contains a list of instructions,
629and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
630function return). If an explicit label is not provided, a block is assigned an
631implicit numbered label, using the next value from the same counter as used for
632unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
633entry block does not have an explicit label, it will be assigned label "%0",
634then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000635
636The first basic block in a function is special in two ways: it is
637immediately executed on entrance to the function, and it is not allowed
638to have predecessor basic blocks (i.e. there can not be any branches to
639the entry block of a function). Because the block can have no
640predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
641
642LLVM allows an explicit section to be specified for functions. If the
643target supports it, it will emit functions to the section specified.
644
645An explicit alignment may be specified for a function. If not present,
646or if the alignment is set to zero, the alignment of the function is set
647by the target to whatever it feels convenient. If an explicit alignment
648is specified, the function is forced to have at least that much
649alignment. All alignments must be a power of 2.
650
651If the ``unnamed_addr`` attribute is given, the address is know to not
652be significant and two identical functions can be merged.
653
654Syntax::
655
Nico Rieck7157bb72014-01-14 15:22:47 +0000656 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000657 [cconv] [ret attrs]
658 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola84c76ae2014-03-07 04:28:28 +0000659 [unnamed_addr] [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000660 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000661
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000662.. _langref_aliases:
663
Sean Silvab084af42012-12-07 10:36:55 +0000664Aliases
665-------
666
667Aliases act as "second name" for the aliasee value (which can be either
668function, global variable, another alias or bitcast of global value).
Nico Rieck7157bb72014-01-14 15:22:47 +0000669Aliases may have an optional :ref:`linkage type <linkage>`, an optional
670:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
671<dllstorageclass>`.
Sean Silvab084af42012-12-07 10:36:55 +0000672
673Syntax::
674
Nico Rieck7157bb72014-01-14 15:22:47 +0000675 @<Name> = [Visibility] [DLLStorageClass] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000676
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000677The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000678``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000679might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000680alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000681
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000682Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
683the aliasee.
684
685The aliasee must be a definition.
686
Rafael Espindola24a669d2014-03-27 15:26:56 +0000687Aliases are not allowed to point to aliases with linkages that can be
688overridden. Since they are only a second name, the possibility of the
689intermediate alias being overridden cannot be represented in an object file.
690
Sean Silvab084af42012-12-07 10:36:55 +0000691.. _namedmetadatastructure:
692
693Named Metadata
694--------------
695
696Named metadata is a collection of metadata. :ref:`Metadata
697nodes <metadata>` (but not metadata strings) are the only valid
698operands for a named metadata.
699
700Syntax::
701
702 ; Some unnamed metadata nodes, which are referenced by the named metadata.
703 !0 = metadata !{metadata !"zero"}
704 !1 = metadata !{metadata !"one"}
705 !2 = metadata !{metadata !"two"}
706 ; A named metadata.
707 !name = !{!0, !1, !2}
708
709.. _paramattrs:
710
711Parameter Attributes
712--------------------
713
714The return type and each parameter of a function type may have a set of
715*parameter attributes* associated with them. Parameter attributes are
716used to communicate additional information about the result or
717parameters of a function. Parameter attributes are considered to be part
718of the function, not of the function type, so functions with different
719parameter attributes can have the same function type.
720
721Parameter attributes are simple keywords that follow the type specified.
722If multiple parameter attributes are needed, they are space separated.
723For example:
724
725.. code-block:: llvm
726
727 declare i32 @printf(i8* noalias nocapture, ...)
728 declare i32 @atoi(i8 zeroext)
729 declare signext i8 @returns_signed_char()
730
731Note that any attributes for the function result (``nounwind``,
732``readonly``) come immediately after the argument list.
733
734Currently, only the following parameter attributes are defined:
735
736``zeroext``
737 This indicates to the code generator that the parameter or return
738 value should be zero-extended to the extent required by the target's
739 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
740 the caller (for a parameter) or the callee (for a return value).
741``signext``
742 This indicates to the code generator that the parameter or return
743 value should be sign-extended to the extent required by the target's
744 ABI (which is usually 32-bits) by the caller (for a parameter) or
745 the callee (for a return value).
746``inreg``
747 This indicates that this parameter or return value should be treated
748 in a special target-dependent fashion during while emitting code for
749 a function call or return (usually, by putting it in a register as
750 opposed to memory, though some targets use it to distinguish between
751 two different kinds of registers). Use of this attribute is
752 target-specific.
753``byval``
754 This indicates that the pointer parameter should really be passed by
755 value to the function. The attribute implies that a hidden copy of
756 the pointee is made between the caller and the callee, so the callee
757 is unable to modify the value in the caller. This attribute is only
758 valid on LLVM pointer arguments. It is generally used to pass
759 structs and arrays by value, but is also valid on pointers to
760 scalars. The copy is considered to belong to the caller not the
761 callee (for example, ``readonly`` functions should not write to
762 ``byval`` parameters). This is not a valid attribute for return
763 values.
764
765 The byval attribute also supports specifying an alignment with the
766 align attribute. It indicates the alignment of the stack slot to
767 form and the known alignment of the pointer specified to the call
768 site. If the alignment is not specified, then the code generator
769 makes a target-specific assumption.
770
Reid Klecknera534a382013-12-19 02:14:12 +0000771.. _attr_inalloca:
772
773``inalloca``
774
Reid Kleckner60d3a832014-01-16 22:59:24 +0000775 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000776 address of outgoing stack arguments. An ``inalloca`` argument must
777 be a pointer to stack memory produced by an ``alloca`` instruction.
778 The alloca, or argument allocation, must also be tagged with the
779 inalloca keyword. Only the past argument may have the ``inalloca``
780 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000781
Reid Kleckner436c42e2014-01-17 23:58:17 +0000782 An argument allocation may be used by a call at most once because
783 the call may deallocate it. The ``inalloca`` attribute cannot be
784 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000785 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
786 ``inalloca`` attribute also disables LLVM's implicit lowering of
787 large aggregate return values, which means that frontend authors
788 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000789
Reid Kleckner60d3a832014-01-16 22:59:24 +0000790 When the call site is reached, the argument allocation must have
791 been the most recent stack allocation that is still live, or the
792 results are undefined. It is possible to allocate additional stack
793 space after an argument allocation and before its call site, but it
794 must be cleared off with :ref:`llvm.stackrestore
795 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000796
797 See :doc:`InAlloca` for more information on how to use this
798 attribute.
799
Sean Silvab084af42012-12-07 10:36:55 +0000800``sret``
801 This indicates that the pointer parameter specifies the address of a
802 structure that is the return value of the function in the source
803 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000804 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000805 not to trap and to be properly aligned. This may only be applied to
806 the first parameter. This is not a valid attribute for return
807 values.
Sean Silva1703e702014-04-08 21:06:22 +0000808
809.. _noalias:
810
Sean Silvab084af42012-12-07 10:36:55 +0000811``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000812 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000813 the argument or return value do not alias pointer values which are
814 not *based* on it, ignoring certain "irrelevant" dependencies. For a
815 call to the parent function, dependencies between memory references
816 from before or after the call and from those during the call are
817 "irrelevant" to the ``noalias`` keyword for the arguments and return
818 value used in that call. The caller shares the responsibility with
819 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000820 details, please see the discussion of the NoAlias response in :ref:`alias
821 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000822
823 Note that this definition of ``noalias`` is intentionally similar
824 to the definition of ``restrict`` in C99 for function arguments,
825 though it is slightly weaker.
826
827 For function return values, C99's ``restrict`` is not meaningful,
828 while LLVM's ``noalias`` is.
829``nocapture``
830 This indicates that the callee does not make any copies of the
831 pointer that outlive the callee itself. This is not a valid
832 attribute for return values.
833
834.. _nest:
835
836``nest``
837 This indicates that the pointer parameter can be excised using the
838 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000839 attribute for return values and can only be applied to one parameter.
840
841``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000842 This indicates that the function always returns the argument as its return
843 value. This is an optimization hint to the code generator when generating
844 the caller, allowing tail call optimization and omission of register saves
845 and restores in some cases; it is not checked or enforced when generating
846 the callee. The parameter and the function return type must be valid
847 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
848 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000849
850.. _gc:
851
852Garbage Collector Names
853-----------------------
854
855Each function may specify a garbage collector name, which is simply a
856string:
857
858.. code-block:: llvm
859
860 define void @f() gc "name" { ... }
861
862The compiler declares the supported values of *name*. Specifying a
863collector which will cause the compiler to alter its output in order to
864support the named garbage collection algorithm.
865
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000866.. _prefixdata:
867
868Prefix Data
869-----------
870
871Prefix data is data associated with a function which the code generator
872will emit immediately before the function body. The purpose of this feature
873is to allow frontends to associate language-specific runtime metadata with
874specific functions and make it available through the function pointer while
875still allowing the function pointer to be called. To access the data for a
876given function, a program may bitcast the function pointer to a pointer to
877the constant's type. This implies that the IR symbol points to the start
878of the prefix data.
879
880To maintain the semantics of ordinary function calls, the prefix data must
881have a particular format. Specifically, it must begin with a sequence of
882bytes which decode to a sequence of machine instructions, valid for the
883module's target, which transfer control to the point immediately succeeding
884the prefix data, without performing any other visible action. This allows
885the inliner and other passes to reason about the semantics of the function
886definition without needing to reason about the prefix data. Obviously this
887makes the format of the prefix data highly target dependent.
888
Peter Collingbourne213358a2013-09-23 20:14:21 +0000889Prefix data is laid out as if it were an initializer for a global variable
890of the prefix data's type. No padding is automatically placed between the
891prefix data and the function body. If padding is required, it must be part
892of the prefix data.
893
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000894A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
895which encodes the ``nop`` instruction:
896
897.. code-block:: llvm
898
899 define void @f() prefix i8 144 { ... }
900
901Generally prefix data can be formed by encoding a relative branch instruction
902which skips the metadata, as in this example of valid prefix data for the
903x86_64 architecture, where the first two bytes encode ``jmp .+10``:
904
905.. code-block:: llvm
906
907 %0 = type <{ i8, i8, i8* }>
908
909 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
910
911A function may have prefix data but no body. This has similar semantics
912to the ``available_externally`` linkage in that the data may be used by the
913optimizers but will not be emitted in the object file.
914
Bill Wendling63b88192013-02-06 06:52:58 +0000915.. _attrgrp:
916
917Attribute Groups
918----------------
919
920Attribute groups are groups of attributes that are referenced by objects within
921the IR. They are important for keeping ``.ll`` files readable, because a lot of
922functions will use the same set of attributes. In the degenerative case of a
923``.ll`` file that corresponds to a single ``.c`` file, the single attribute
924group will capture the important command line flags used to build that file.
925
926An attribute group is a module-level object. To use an attribute group, an
927object references the attribute group's ID (e.g. ``#37``). An object may refer
928to more than one attribute group. In that situation, the attributes from the
929different groups are merged.
930
931Here is an example of attribute groups for a function that should always be
932inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
933
934.. code-block:: llvm
935
936 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000937 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000938
939 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000940 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000941
942 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
943 define void @f() #0 #1 { ... }
944
Sean Silvab084af42012-12-07 10:36:55 +0000945.. _fnattrs:
946
947Function Attributes
948-------------------
949
950Function attributes are set to communicate additional information about
951a function. Function attributes are considered to be part of the
952function, not of the function type, so functions with different function
953attributes can have the same function type.
954
955Function attributes are simple keywords that follow the type specified.
956If multiple attributes are needed, they are space separated. For
957example:
958
959.. code-block:: llvm
960
961 define void @f() noinline { ... }
962 define void @f() alwaysinline { ... }
963 define void @f() alwaysinline optsize { ... }
964 define void @f() optsize { ... }
965
Sean Silvab084af42012-12-07 10:36:55 +0000966``alignstack(<n>)``
967 This attribute indicates that, when emitting the prologue and
968 epilogue, the backend should forcibly align the stack pointer.
969 Specify the desired alignment, which must be a power of two, in
970 parentheses.
971``alwaysinline``
972 This attribute indicates that the inliner should attempt to inline
973 this function into callers whenever possible, ignoring any active
974 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000975``builtin``
976 This indicates that the callee function at a call site should be
977 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000978 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000979 direct calls to functions which are declared with the ``nobuiltin``
980 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000981``cold``
982 This attribute indicates that this function is rarely called. When
983 computing edge weights, basic blocks post-dominated by a cold
984 function call are also considered to be cold; and, thus, given low
985 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000986``inlinehint``
987 This attribute indicates that the source code contained a hint that
988 inlining this function is desirable (such as the "inline" keyword in
989 C/C++). It is just a hint; it imposes no requirements on the
990 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000991``minsize``
992 This attribute suggests that optimization passes and code generator
993 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000994 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000995 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +0000996``naked``
997 This attribute disables prologue / epilogue emission for the
998 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +0000999``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001000 This indicates that the callee function at a call site is not recognized as
1001 a built-in function. LLVM will retain the original call and not replace it
1002 with equivalent code based on the semantics of the built-in function, unless
1003 the call site uses the ``builtin`` attribute. This is valid at call sites
1004 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001005``noduplicate``
1006 This attribute indicates that calls to the function cannot be
1007 duplicated. A call to a ``noduplicate`` function may be moved
1008 within its parent function, but may not be duplicated within
1009 its parent function.
1010
1011 A function containing a ``noduplicate`` call may still
1012 be an inlining candidate, provided that the call is not
1013 duplicated by inlining. That implies that the function has
1014 internal linkage and only has one call site, so the original
1015 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001016``noimplicitfloat``
1017 This attributes disables implicit floating point instructions.
1018``noinline``
1019 This attribute indicates that the inliner should never inline this
1020 function in any situation. This attribute may not be used together
1021 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001022``nonlazybind``
1023 This attribute suppresses lazy symbol binding for the function. This
1024 may make calls to the function faster, at the cost of extra program
1025 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001026``noredzone``
1027 This attribute indicates that the code generator should not use a
1028 red zone, even if the target-specific ABI normally permits it.
1029``noreturn``
1030 This function attribute indicates that the function never returns
1031 normally. This produces undefined behavior at runtime if the
1032 function ever does dynamically return.
1033``nounwind``
1034 This function attribute indicates that the function never returns
1035 with an unwind or exceptional control flow. If the function does
1036 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001037``optnone``
1038 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001039 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001040 exception of interprocedural optimization passes.
1041 This attribute cannot be used together with the ``alwaysinline``
1042 attribute; this attribute is also incompatible
1043 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001044
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001045 This attribute requires the ``noinline`` attribute to be specified on
1046 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001047 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001048 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001049``optsize``
1050 This attribute suggests that optimization passes and code generator
1051 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001052 and otherwise do optimizations specifically to reduce code size as
1053 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001054``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001055 On a function, this attribute indicates that the function computes its
1056 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001057 without dereferencing any pointer arguments or otherwise accessing
1058 any mutable state (e.g. memory, control registers, etc) visible to
1059 caller functions. It does not write through any pointer arguments
1060 (including ``byval`` arguments) and never changes any state visible
1061 to callers. This means that it cannot unwind exceptions by calling
1062 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001063
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001064 On an argument, this attribute indicates that the function does not
1065 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001066 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001067``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001068 On a function, this attribute indicates that the function does not write
1069 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001070 modify any state (e.g. memory, control registers, etc) visible to
1071 caller functions. It may dereference pointer arguments and read
1072 state that may be set in the caller. A readonly function always
1073 returns the same value (or unwinds an exception identically) when
1074 called with the same set of arguments and global state. It cannot
1075 unwind an exception by calling the ``C++`` exception throwing
1076 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001077
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001078 On an argument, this attribute indicates that the function does not write
1079 through this pointer argument, even though it may write to the memory that
1080 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001081``returns_twice``
1082 This attribute indicates that this function can return twice. The C
1083 ``setjmp`` is an example of such a function. The compiler disables
1084 some optimizations (like tail calls) in the caller of these
1085 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001086``sanitize_address``
1087 This attribute indicates that AddressSanitizer checks
1088 (dynamic address safety analysis) are enabled for this function.
1089``sanitize_memory``
1090 This attribute indicates that MemorySanitizer checks (dynamic detection
1091 of accesses to uninitialized memory) are enabled for this function.
1092``sanitize_thread``
1093 This attribute indicates that ThreadSanitizer checks
1094 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001095``ssp``
1096 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001097 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001098 placed on the stack before the local variables that's checked upon
1099 return from the function to see if it has been overwritten. A
1100 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001101 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001102
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001103 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1104 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1105 - Calls to alloca() with variable sizes or constant sizes greater than
1106 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001107
Josh Magee24c7f062014-02-01 01:36:16 +00001108 Variables that are identified as requiring a protector will be arranged
1109 on the stack such that they are adjacent to the stack protector guard.
1110
Sean Silvab084af42012-12-07 10:36:55 +00001111 If a function that has an ``ssp`` attribute is inlined into a
1112 function that doesn't have an ``ssp`` attribute, then the resulting
1113 function will have an ``ssp`` attribute.
1114``sspreq``
1115 This attribute indicates that the function should *always* emit a
1116 stack smashing protector. This overrides the ``ssp`` function
1117 attribute.
1118
Josh Magee24c7f062014-02-01 01:36:16 +00001119 Variables that are identified as requiring a protector will be arranged
1120 on the stack such that they are adjacent to the stack protector guard.
1121 The specific layout rules are:
1122
1123 #. Large arrays and structures containing large arrays
1124 (``>= ssp-buffer-size``) are closest to the stack protector.
1125 #. Small arrays and structures containing small arrays
1126 (``< ssp-buffer-size``) are 2nd closest to the protector.
1127 #. Variables that have had their address taken are 3rd closest to the
1128 protector.
1129
Sean Silvab084af42012-12-07 10:36:55 +00001130 If a function that has an ``sspreq`` attribute is inlined into a
1131 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001132 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1133 an ``sspreq`` attribute.
1134``sspstrong``
1135 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001136 protector. This attribute causes a strong heuristic to be used when
1137 determining if a function needs stack protectors. The strong heuristic
1138 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001139
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001140 - Arrays of any size and type
1141 - Aggregates containing an array of any size and type.
1142 - Calls to alloca().
1143 - Local variables that have had their address taken.
1144
Josh Magee24c7f062014-02-01 01:36:16 +00001145 Variables that are identified as requiring a protector will be arranged
1146 on the stack such that they are adjacent to the stack protector guard.
1147 The specific layout rules are:
1148
1149 #. Large arrays and structures containing large arrays
1150 (``>= ssp-buffer-size``) are closest to the stack protector.
1151 #. Small arrays and structures containing small arrays
1152 (``< ssp-buffer-size``) are 2nd closest to the protector.
1153 #. Variables that have had their address taken are 3rd closest to the
1154 protector.
1155
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001156 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001157
1158 If a function that has an ``sspstrong`` attribute is inlined into a
1159 function that doesn't have an ``sspstrong`` attribute, then the
1160 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001161``uwtable``
1162 This attribute indicates that the ABI being targeted requires that
1163 an unwind table entry be produce for this function even if we can
1164 show that no exceptions passes by it. This is normally the case for
1165 the ELF x86-64 abi, but it can be disabled for some compilation
1166 units.
Sean Silvab084af42012-12-07 10:36:55 +00001167
1168.. _moduleasm:
1169
1170Module-Level Inline Assembly
1171----------------------------
1172
1173Modules may contain "module-level inline asm" blocks, which corresponds
1174to the GCC "file scope inline asm" blocks. These blocks are internally
1175concatenated by LLVM and treated as a single unit, but may be separated
1176in the ``.ll`` file if desired. The syntax is very simple:
1177
1178.. code-block:: llvm
1179
1180 module asm "inline asm code goes here"
1181 module asm "more can go here"
1182
1183The strings can contain any character by escaping non-printable
1184characters. The escape sequence used is simply "\\xx" where "xx" is the
1185two digit hex code for the number.
1186
1187The inline asm code is simply printed to the machine code .s file when
1188assembly code is generated.
1189
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001190.. _langref_datalayout:
1191
Sean Silvab084af42012-12-07 10:36:55 +00001192Data Layout
1193-----------
1194
1195A module may specify a target specific data layout string that specifies
1196how data is to be laid out in memory. The syntax for the data layout is
1197simply:
1198
1199.. code-block:: llvm
1200
1201 target datalayout = "layout specification"
1202
1203The *layout specification* consists of a list of specifications
1204separated by the minus sign character ('-'). Each specification starts
1205with a letter and may include other information after the letter to
1206define some aspect of the data layout. The specifications accepted are
1207as follows:
1208
1209``E``
1210 Specifies that the target lays out data in big-endian form. That is,
1211 the bits with the most significance have the lowest address
1212 location.
1213``e``
1214 Specifies that the target lays out data in little-endian form. That
1215 is, the bits with the least significance have the lowest address
1216 location.
1217``S<size>``
1218 Specifies the natural alignment of the stack in bits. Alignment
1219 promotion of stack variables is limited to the natural stack
1220 alignment to avoid dynamic stack realignment. The stack alignment
1221 must be a multiple of 8-bits. If omitted, the natural stack
1222 alignment defaults to "unspecified", which does not prevent any
1223 alignment promotions.
1224``p[n]:<size>:<abi>:<pref>``
1225 This specifies the *size* of a pointer and its ``<abi>`` and
1226 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001227 bits. The address space, ``n`` is optional, and if not specified,
1228 denotes the default address space 0. The value of ``n`` must be
1229 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001230``i<size>:<abi>:<pref>``
1231 This specifies the alignment for an integer type of a given bit
1232 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1233``v<size>:<abi>:<pref>``
1234 This specifies the alignment for a vector type of a given bit
1235 ``<size>``.
1236``f<size>:<abi>:<pref>``
1237 This specifies the alignment for a floating point type of a given bit
1238 ``<size>``. Only values of ``<size>`` that are supported by the target
1239 will work. 32 (float) and 64 (double) are supported on all targets; 80
1240 or 128 (different flavors of long double) are also supported on some
1241 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001242``a:<abi>:<pref>``
1243 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001244``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001245 If present, specifies that llvm names are mangled in the output. The
1246 options are
1247
1248 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1249 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1250 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1251 symbols get a ``_`` prefix.
1252 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1253 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001254``n<size1>:<size2>:<size3>...``
1255 This specifies a set of native integer widths for the target CPU in
1256 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1257 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1258 this set are considered to support most general arithmetic operations
1259 efficiently.
1260
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001261On every specification that takes a ``<abi>:<pref>``, specifying the
1262``<pref>`` alignment is optional. If omitted, the preceding ``:``
1263should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1264
Sean Silvab084af42012-12-07 10:36:55 +00001265When constructing the data layout for a given target, LLVM starts with a
1266default set of specifications which are then (possibly) overridden by
1267the specifications in the ``datalayout`` keyword. The default
1268specifications are given in this list:
1269
1270- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001271- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1272- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1273 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001274- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001275- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1276- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1277- ``i16:16:16`` - i16 is 16-bit aligned
1278- ``i32:32:32`` - i32 is 32-bit aligned
1279- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1280 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001281- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001282- ``f32:32:32`` - float is 32-bit aligned
1283- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001284- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001285- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1286- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001287- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001288
1289When LLVM is determining the alignment for a given type, it uses the
1290following rules:
1291
1292#. If the type sought is an exact match for one of the specifications,
1293 that specification is used.
1294#. If no match is found, and the type sought is an integer type, then
1295 the smallest integer type that is larger than the bitwidth of the
1296 sought type is used. If none of the specifications are larger than
1297 the bitwidth then the largest integer type is used. For example,
1298 given the default specifications above, the i7 type will use the
1299 alignment of i8 (next largest) while both i65 and i256 will use the
1300 alignment of i64 (largest specified).
1301#. If no match is found, and the type sought is a vector type, then the
1302 largest vector type that is smaller than the sought vector type will
1303 be used as a fall back. This happens because <128 x double> can be
1304 implemented in terms of 64 <2 x double>, for example.
1305
1306The function of the data layout string may not be what you expect.
1307Notably, this is not a specification from the frontend of what alignment
1308the code generator should use.
1309
1310Instead, if specified, the target data layout is required to match what
1311the ultimate *code generator* expects. This string is used by the
1312mid-level optimizers to improve code, and this only works if it matches
1313what the ultimate code generator uses. If you would like to generate IR
1314that does not embed this target-specific detail into the IR, then you
1315don't have to specify the string. This will disable some optimizations
1316that require precise layout information, but this also prevents those
1317optimizations from introducing target specificity into the IR.
1318
Bill Wendling5cc90842013-10-18 23:41:25 +00001319.. _langref_triple:
1320
1321Target Triple
1322-------------
1323
1324A module may specify a target triple string that describes the target
1325host. The syntax for the target triple is simply:
1326
1327.. code-block:: llvm
1328
1329 target triple = "x86_64-apple-macosx10.7.0"
1330
1331The *target triple* string consists of a series of identifiers delimited
1332by the minus sign character ('-'). The canonical forms are:
1333
1334::
1335
1336 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1337 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1338
1339This information is passed along to the backend so that it generates
1340code for the proper architecture. It's possible to override this on the
1341command line with the ``-mtriple`` command line option.
1342
Sean Silvab084af42012-12-07 10:36:55 +00001343.. _pointeraliasing:
1344
1345Pointer Aliasing Rules
1346----------------------
1347
1348Any memory access must be done through a pointer value associated with
1349an address range of the memory access, otherwise the behavior is
1350undefined. Pointer values are associated with address ranges according
1351to the following rules:
1352
1353- A pointer value is associated with the addresses associated with any
1354 value it is *based* on.
1355- An address of a global variable is associated with the address range
1356 of the variable's storage.
1357- The result value of an allocation instruction is associated with the
1358 address range of the allocated storage.
1359- A null pointer in the default address-space is associated with no
1360 address.
1361- An integer constant other than zero or a pointer value returned from
1362 a function not defined within LLVM may be associated with address
1363 ranges allocated through mechanisms other than those provided by
1364 LLVM. Such ranges shall not overlap with any ranges of addresses
1365 allocated by mechanisms provided by LLVM.
1366
1367A pointer value is *based* on another pointer value according to the
1368following rules:
1369
1370- A pointer value formed from a ``getelementptr`` operation is *based*
1371 on the first operand of the ``getelementptr``.
1372- The result value of a ``bitcast`` is *based* on the operand of the
1373 ``bitcast``.
1374- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1375 values that contribute (directly or indirectly) to the computation of
1376 the pointer's value.
1377- The "*based* on" relationship is transitive.
1378
1379Note that this definition of *"based"* is intentionally similar to the
1380definition of *"based"* in C99, though it is slightly weaker.
1381
1382LLVM IR does not associate types with memory. The result type of a
1383``load`` merely indicates the size and alignment of the memory from
1384which to load, as well as the interpretation of the value. The first
1385operand type of a ``store`` similarly only indicates the size and
1386alignment of the store.
1387
1388Consequently, type-based alias analysis, aka TBAA, aka
1389``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1390:ref:`Metadata <metadata>` may be used to encode additional information
1391which specialized optimization passes may use to implement type-based
1392alias analysis.
1393
1394.. _volatile:
1395
1396Volatile Memory Accesses
1397------------------------
1398
1399Certain memory accesses, such as :ref:`load <i_load>`'s,
1400:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1401marked ``volatile``. The optimizers must not change the number of
1402volatile operations or change their order of execution relative to other
1403volatile operations. The optimizers *may* change the order of volatile
1404operations relative to non-volatile operations. This is not Java's
1405"volatile" and has no cross-thread synchronization behavior.
1406
Andrew Trick89fc5a62013-01-30 21:19:35 +00001407IR-level volatile loads and stores cannot safely be optimized into
1408llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1409flagged volatile. Likewise, the backend should never split or merge
1410target-legal volatile load/store instructions.
1411
Andrew Trick7e6f9282013-01-31 00:49:39 +00001412.. admonition:: Rationale
1413
1414 Platforms may rely on volatile loads and stores of natively supported
1415 data width to be executed as single instruction. For example, in C
1416 this holds for an l-value of volatile primitive type with native
1417 hardware support, but not necessarily for aggregate types. The
1418 frontend upholds these expectations, which are intentionally
1419 unspecified in the IR. The rules above ensure that IR transformation
1420 do not violate the frontend's contract with the language.
1421
Sean Silvab084af42012-12-07 10:36:55 +00001422.. _memmodel:
1423
1424Memory Model for Concurrent Operations
1425--------------------------------------
1426
1427The LLVM IR does not define any way to start parallel threads of
1428execution or to register signal handlers. Nonetheless, there are
1429platform-specific ways to create them, and we define LLVM IR's behavior
1430in their presence. This model is inspired by the C++0x memory model.
1431
1432For a more informal introduction to this model, see the :doc:`Atomics`.
1433
1434We define a *happens-before* partial order as the least partial order
1435that
1436
1437- Is a superset of single-thread program order, and
1438- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1439 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1440 techniques, like pthread locks, thread creation, thread joining,
1441 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1442 Constraints <ordering>`).
1443
1444Note that program order does not introduce *happens-before* edges
1445between a thread and signals executing inside that thread.
1446
1447Every (defined) read operation (load instructions, memcpy, atomic
1448loads/read-modify-writes, etc.) R reads a series of bytes written by
1449(defined) write operations (store instructions, atomic
1450stores/read-modify-writes, memcpy, etc.). For the purposes of this
1451section, initialized globals are considered to have a write of the
1452initializer which is atomic and happens before any other read or write
1453of the memory in question. For each byte of a read R, R\ :sub:`byte`
1454may see any write to the same byte, except:
1455
1456- If write\ :sub:`1` happens before write\ :sub:`2`, and
1457 write\ :sub:`2` happens before R\ :sub:`byte`, then
1458 R\ :sub:`byte` does not see write\ :sub:`1`.
1459- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1460 R\ :sub:`byte` does not see write\ :sub:`3`.
1461
1462Given that definition, R\ :sub:`byte` is defined as follows:
1463
1464- If R is volatile, the result is target-dependent. (Volatile is
1465 supposed to give guarantees which can support ``sig_atomic_t`` in
1466 C/C++, and may be used for accesses to addresses which do not behave
1467 like normal memory. It does not generally provide cross-thread
1468 synchronization.)
1469- Otherwise, if there is no write to the same byte that happens before
1470 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1471- Otherwise, if R\ :sub:`byte` may see exactly one write,
1472 R\ :sub:`byte` returns the value written by that write.
1473- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1474 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1475 Memory Ordering Constraints <ordering>` section for additional
1476 constraints on how the choice is made.
1477- Otherwise R\ :sub:`byte` returns ``undef``.
1478
1479R returns the value composed of the series of bytes it read. This
1480implies that some bytes within the value may be ``undef`` **without**
1481the entire value being ``undef``. Note that this only defines the
1482semantics of the operation; it doesn't mean that targets will emit more
1483than one instruction to read the series of bytes.
1484
1485Note that in cases where none of the atomic intrinsics are used, this
1486model places only one restriction on IR transformations on top of what
1487is required for single-threaded execution: introducing a store to a byte
1488which might not otherwise be stored is not allowed in general.
1489(Specifically, in the case where another thread might write to and read
1490from an address, introducing a store can change a load that may see
1491exactly one write into a load that may see multiple writes.)
1492
1493.. _ordering:
1494
1495Atomic Memory Ordering Constraints
1496----------------------------------
1497
1498Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1499:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1500:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001501ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001502the same address they *synchronize with*. These semantics are borrowed
1503from Java and C++0x, but are somewhat more colloquial. If these
1504descriptions aren't precise enough, check those specs (see spec
1505references in the :doc:`atomics guide <Atomics>`).
1506:ref:`fence <i_fence>` instructions treat these orderings somewhat
1507differently since they don't take an address. See that instruction's
1508documentation for details.
1509
1510For a simpler introduction to the ordering constraints, see the
1511:doc:`Atomics`.
1512
1513``unordered``
1514 The set of values that can be read is governed by the happens-before
1515 partial order. A value cannot be read unless some operation wrote
1516 it. This is intended to provide a guarantee strong enough to model
1517 Java's non-volatile shared variables. This ordering cannot be
1518 specified for read-modify-write operations; it is not strong enough
1519 to make them atomic in any interesting way.
1520``monotonic``
1521 In addition to the guarantees of ``unordered``, there is a single
1522 total order for modifications by ``monotonic`` operations on each
1523 address. All modification orders must be compatible with the
1524 happens-before order. There is no guarantee that the modification
1525 orders can be combined to a global total order for the whole program
1526 (and this often will not be possible). The read in an atomic
1527 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1528 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1529 order immediately before the value it writes. If one atomic read
1530 happens before another atomic read of the same address, the later
1531 read must see the same value or a later value in the address's
1532 modification order. This disallows reordering of ``monotonic`` (or
1533 stronger) operations on the same address. If an address is written
1534 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1535 read that address repeatedly, the other threads must eventually see
1536 the write. This corresponds to the C++0x/C1x
1537 ``memory_order_relaxed``.
1538``acquire``
1539 In addition to the guarantees of ``monotonic``, a
1540 *synchronizes-with* edge may be formed with a ``release`` operation.
1541 This is intended to model C++'s ``memory_order_acquire``.
1542``release``
1543 In addition to the guarantees of ``monotonic``, if this operation
1544 writes a value which is subsequently read by an ``acquire``
1545 operation, it *synchronizes-with* that operation. (This isn't a
1546 complete description; see the C++0x definition of a release
1547 sequence.) This corresponds to the C++0x/C1x
1548 ``memory_order_release``.
1549``acq_rel`` (acquire+release)
1550 Acts as both an ``acquire`` and ``release`` operation on its
1551 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1552``seq_cst`` (sequentially consistent)
1553 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1554 operation which only reads, ``release`` for an operation which only
1555 writes), there is a global total order on all
1556 sequentially-consistent operations on all addresses, which is
1557 consistent with the *happens-before* partial order and with the
1558 modification orders of all the affected addresses. Each
1559 sequentially-consistent read sees the last preceding write to the
1560 same address in this global order. This corresponds to the C++0x/C1x
1561 ``memory_order_seq_cst`` and Java volatile.
1562
1563.. _singlethread:
1564
1565If an atomic operation is marked ``singlethread``, it only *synchronizes
1566with* or participates in modification and seq\_cst total orderings with
1567other operations running in the same thread (for example, in signal
1568handlers).
1569
1570.. _fastmath:
1571
1572Fast-Math Flags
1573---------------
1574
1575LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1576:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1577:ref:`frem <i_frem>`) have the following flags that can set to enable
1578otherwise unsafe floating point operations
1579
1580``nnan``
1581 No NaNs - Allow optimizations to assume the arguments and result are not
1582 NaN. Such optimizations are required to retain defined behavior over
1583 NaNs, but the value of the result is undefined.
1584
1585``ninf``
1586 No Infs - Allow optimizations to assume the arguments and result are not
1587 +/-Inf. Such optimizations are required to retain defined behavior over
1588 +/-Inf, but the value of the result is undefined.
1589
1590``nsz``
1591 No Signed Zeros - Allow optimizations to treat the sign of a zero
1592 argument or result as insignificant.
1593
1594``arcp``
1595 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1596 argument rather than perform division.
1597
1598``fast``
1599 Fast - Allow algebraically equivalent transformations that may
1600 dramatically change results in floating point (e.g. reassociate). This
1601 flag implies all the others.
1602
1603.. _typesystem:
1604
1605Type System
1606===========
1607
1608The LLVM type system is one of the most important features of the
1609intermediate representation. Being typed enables a number of
1610optimizations to be performed on the intermediate representation
1611directly, without having to do extra analyses on the side before the
1612transformation. A strong type system makes it easier to read the
1613generated code and enables novel analyses and transformations that are
1614not feasible to perform on normal three address code representations.
1615
Rafael Espindola08013342013-12-07 19:34:20 +00001616.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001617
Rafael Espindola08013342013-12-07 19:34:20 +00001618Void Type
1619---------
Sean Silvab084af42012-12-07 10:36:55 +00001620
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001621:Overview:
1622
Rafael Espindola08013342013-12-07 19:34:20 +00001623
1624The void type does not represent any value and has no size.
1625
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001626:Syntax:
1627
Rafael Espindola08013342013-12-07 19:34:20 +00001628
1629::
1630
1631 void
Sean Silvab084af42012-12-07 10:36:55 +00001632
1633
Rafael Espindola08013342013-12-07 19:34:20 +00001634.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001635
Rafael Espindola08013342013-12-07 19:34:20 +00001636Function Type
1637-------------
Sean Silvab084af42012-12-07 10:36:55 +00001638
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001639:Overview:
1640
Sean Silvab084af42012-12-07 10:36:55 +00001641
Rafael Espindola08013342013-12-07 19:34:20 +00001642The function type can be thought of as a function signature. It consists of a
1643return type and a list of formal parameter types. The return type of a function
1644type is a void type or first class type --- except for :ref:`label <t_label>`
1645and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001646
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001647:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001648
Rafael Espindola08013342013-12-07 19:34:20 +00001649::
Sean Silvab084af42012-12-07 10:36:55 +00001650
Rafael Espindola08013342013-12-07 19:34:20 +00001651 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001652
Rafael Espindola08013342013-12-07 19:34:20 +00001653...where '``<parameter list>``' is a comma-separated list of type
1654specifiers. Optionally, the parameter list may include a type ``...``, which
1655indicates that the function takes a variable number of arguments. Variable
1656argument functions can access their arguments with the :ref:`variable argument
1657handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1658except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001659
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001660:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001661
Rafael Espindola08013342013-12-07 19:34:20 +00001662+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1663| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1664+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1665| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1666+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1667| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1668+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1669| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1670+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1671
1672.. _t_firstclass:
1673
1674First Class Types
1675-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001676
1677The :ref:`first class <t_firstclass>` types are perhaps the most important.
1678Values of these types are the only ones which can be produced by
1679instructions.
1680
Rafael Espindola08013342013-12-07 19:34:20 +00001681.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001682
Rafael Espindola08013342013-12-07 19:34:20 +00001683Single Value Types
1684^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001685
Rafael Espindola08013342013-12-07 19:34:20 +00001686These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001687
1688.. _t_integer:
1689
1690Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001691""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001692
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001693:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001694
1695The integer type is a very simple type that simply specifies an
1696arbitrary bit width for the integer type desired. Any bit width from 1
1697bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1698
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001699:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001700
1701::
1702
1703 iN
1704
1705The number of bits the integer will occupy is specified by the ``N``
1706value.
1707
1708Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001709*********
Sean Silvab084af42012-12-07 10:36:55 +00001710
1711+----------------+------------------------------------------------+
1712| ``i1`` | a single-bit integer. |
1713+----------------+------------------------------------------------+
1714| ``i32`` | a 32-bit integer. |
1715+----------------+------------------------------------------------+
1716| ``i1942652`` | a really big integer of over 1 million bits. |
1717+----------------+------------------------------------------------+
1718
1719.. _t_floating:
1720
1721Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001722""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001723
1724.. list-table::
1725 :header-rows: 1
1726
1727 * - Type
1728 - Description
1729
1730 * - ``half``
1731 - 16-bit floating point value
1732
1733 * - ``float``
1734 - 32-bit floating point value
1735
1736 * - ``double``
1737 - 64-bit floating point value
1738
1739 * - ``fp128``
1740 - 128-bit floating point value (112-bit mantissa)
1741
1742 * - ``x86_fp80``
1743 - 80-bit floating point value (X87)
1744
1745 * - ``ppc_fp128``
1746 - 128-bit floating point value (two 64-bits)
1747
Reid Kleckner9a16d082014-03-05 02:41:37 +00001748X86_mmx Type
1749""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001750
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001751:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001752
Reid Kleckner9a16d082014-03-05 02:41:37 +00001753The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001754machine. The operations allowed on it are quite limited: parameters and
1755return values, load and store, and bitcast. User-specified MMX
1756instructions are represented as intrinsic or asm calls with arguments
1757and/or results of this type. There are no arrays, vectors or constants
1758of this type.
1759
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001760:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001761
1762::
1763
Reid Kleckner9a16d082014-03-05 02:41:37 +00001764 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001765
Sean Silvab084af42012-12-07 10:36:55 +00001766
Rafael Espindola08013342013-12-07 19:34:20 +00001767.. _t_pointer:
1768
1769Pointer Type
1770""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001771
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001772:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001773
Rafael Espindola08013342013-12-07 19:34:20 +00001774The pointer type is used to specify memory locations. Pointers are
1775commonly used to reference objects in memory.
1776
1777Pointer types may have an optional address space attribute defining the
1778numbered address space where the pointed-to object resides. The default
1779address space is number zero. The semantics of non-zero address spaces
1780are target-specific.
1781
1782Note that LLVM does not permit pointers to void (``void*``) nor does it
1783permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001784
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001785:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001786
1787::
1788
Rafael Espindola08013342013-12-07 19:34:20 +00001789 <type> *
1790
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001791:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001792
1793+-------------------------+--------------------------------------------------------------------------------------------------------------+
1794| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1795+-------------------------+--------------------------------------------------------------------------------------------------------------+
1796| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1797+-------------------------+--------------------------------------------------------------------------------------------------------------+
1798| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1799+-------------------------+--------------------------------------------------------------------------------------------------------------+
1800
1801.. _t_vector:
1802
1803Vector Type
1804"""""""""""
1805
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001806:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001807
1808A vector type is a simple derived type that represents a vector of
1809elements. Vector types are used when multiple primitive data are
1810operated in parallel using a single instruction (SIMD). A vector type
1811requires a size (number of elements) and an underlying primitive data
1812type. Vector types are considered :ref:`first class <t_firstclass>`.
1813
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001814:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001815
1816::
1817
1818 < <# elements> x <elementtype> >
1819
1820The number of elements is a constant integer value larger than 0;
1821elementtype may be any integer or floating point type, or a pointer to
1822these types. Vectors of size zero are not allowed.
1823
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001824:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001825
1826+-------------------+--------------------------------------------------+
1827| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1828+-------------------+--------------------------------------------------+
1829| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1830+-------------------+--------------------------------------------------+
1831| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1832+-------------------+--------------------------------------------------+
1833| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1834+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001835
1836.. _t_label:
1837
1838Label Type
1839^^^^^^^^^^
1840
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001841:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001842
1843The label type represents code labels.
1844
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001845:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001846
1847::
1848
1849 label
1850
1851.. _t_metadata:
1852
1853Metadata Type
1854^^^^^^^^^^^^^
1855
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001856:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001857
1858The metadata type represents embedded metadata. No derived types may be
1859created from metadata except for :ref:`function <t_function>` arguments.
1860
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001861:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001862
1863::
1864
1865 metadata
1866
Sean Silvab084af42012-12-07 10:36:55 +00001867.. _t_aggregate:
1868
1869Aggregate Types
1870^^^^^^^^^^^^^^^
1871
1872Aggregate Types are a subset of derived types that can contain multiple
1873member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1874aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1875aggregate types.
1876
1877.. _t_array:
1878
1879Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001880""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001881
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001882:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001883
1884The array type is a very simple derived type that arranges elements
1885sequentially in memory. The array type requires a size (number of
1886elements) and an underlying data type.
1887
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001888:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001889
1890::
1891
1892 [<# elements> x <elementtype>]
1893
1894The number of elements is a constant integer value; ``elementtype`` may
1895be any type with a size.
1896
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001897:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001898
1899+------------------+--------------------------------------+
1900| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1901+------------------+--------------------------------------+
1902| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1903+------------------+--------------------------------------+
1904| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1905+------------------+--------------------------------------+
1906
1907Here are some examples of multidimensional arrays:
1908
1909+-----------------------------+----------------------------------------------------------+
1910| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1911+-----------------------------+----------------------------------------------------------+
1912| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1913+-----------------------------+----------------------------------------------------------+
1914| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1915+-----------------------------+----------------------------------------------------------+
1916
1917There is no restriction on indexing beyond the end of the array implied
1918by a static type (though there are restrictions on indexing beyond the
1919bounds of an allocated object in some cases). This means that
1920single-dimension 'variable sized array' addressing can be implemented in
1921LLVM with a zero length array type. An implementation of 'pascal style
1922arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1923example.
1924
Sean Silvab084af42012-12-07 10:36:55 +00001925.. _t_struct:
1926
1927Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001928""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001929
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001930:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001931
1932The structure type is used to represent a collection of data members
1933together in memory. The elements of a structure may be any type that has
1934a size.
1935
1936Structures in memory are accessed using '``load``' and '``store``' by
1937getting a pointer to a field with the '``getelementptr``' instruction.
1938Structures in registers are accessed using the '``extractvalue``' and
1939'``insertvalue``' instructions.
1940
1941Structures may optionally be "packed" structures, which indicate that
1942the alignment of the struct is one byte, and that there is no padding
1943between the elements. In non-packed structs, padding between field types
1944is inserted as defined by the DataLayout string in the module, which is
1945required to match what the underlying code generator expects.
1946
1947Structures can either be "literal" or "identified". A literal structure
1948is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1949identified types are always defined at the top level with a name.
1950Literal types are uniqued by their contents and can never be recursive
1951or opaque since there is no way to write one. Identified types can be
1952recursive, can be opaqued, and are never uniqued.
1953
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001954:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001955
1956::
1957
1958 %T1 = type { <type list> } ; Identified normal struct type
1959 %T2 = type <{ <type list> }> ; Identified packed struct type
1960
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001961:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001962
1963+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1964| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1965+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001966| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001967+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1968| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1969+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1970
1971.. _t_opaque:
1972
1973Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001974""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001975
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001976:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001977
1978Opaque structure types are used to represent named structure types that
1979do not have a body specified. This corresponds (for example) to the C
1980notion of a forward declared structure.
1981
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001982:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001983
1984::
1985
1986 %X = type opaque
1987 %52 = type opaque
1988
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001989:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001990
1991+--------------+-------------------+
1992| ``opaque`` | An opaque type. |
1993+--------------+-------------------+
1994
Sean Silva1703e702014-04-08 21:06:22 +00001995.. _constants:
1996
Sean Silvab084af42012-12-07 10:36:55 +00001997Constants
1998=========
1999
2000LLVM has several different basic types of constants. This section
2001describes them all and their syntax.
2002
2003Simple Constants
2004----------------
2005
2006**Boolean constants**
2007 The two strings '``true``' and '``false``' are both valid constants
2008 of the ``i1`` type.
2009**Integer constants**
2010 Standard integers (such as '4') are constants of the
2011 :ref:`integer <t_integer>` type. Negative numbers may be used with
2012 integer types.
2013**Floating point constants**
2014 Floating point constants use standard decimal notation (e.g.
2015 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2016 hexadecimal notation (see below). The assembler requires the exact
2017 decimal value of a floating-point constant. For example, the
2018 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2019 decimal in binary. Floating point constants must have a :ref:`floating
2020 point <t_floating>` type.
2021**Null pointer constants**
2022 The identifier '``null``' is recognized as a null pointer constant
2023 and must be of :ref:`pointer type <t_pointer>`.
2024
2025The one non-intuitive notation for constants is the hexadecimal form of
2026floating point constants. For example, the form
2027'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2028than) '``double 4.5e+15``'. The only time hexadecimal floating point
2029constants are required (and the only time that they are generated by the
2030disassembler) is when a floating point constant must be emitted but it
2031cannot be represented as a decimal floating point number in a reasonable
2032number of digits. For example, NaN's, infinities, and other special
2033values are represented in their IEEE hexadecimal format so that assembly
2034and disassembly do not cause any bits to change in the constants.
2035
2036When using the hexadecimal form, constants of types half, float, and
2037double are represented using the 16-digit form shown above (which
2038matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002039must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002040precision, respectively. Hexadecimal format is always used for long
2041double, and there are three forms of long double. The 80-bit format used
2042by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2043128-bit format used by PowerPC (two adjacent doubles) is represented by
2044``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002045represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2046will only work if they match the long double format on your target.
2047The IEEE 16-bit format (half precision) is represented by ``0xH``
2048followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2049(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002050
Reid Kleckner9a16d082014-03-05 02:41:37 +00002051There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002052
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002053.. _complexconstants:
2054
Sean Silvab084af42012-12-07 10:36:55 +00002055Complex Constants
2056-----------------
2057
2058Complex constants are a (potentially recursive) combination of simple
2059constants and smaller complex constants.
2060
2061**Structure constants**
2062 Structure constants are represented with notation similar to
2063 structure type definitions (a comma separated list of elements,
2064 surrounded by braces (``{}``)). For example:
2065 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2066 "``@G = external global i32``". Structure constants must have
2067 :ref:`structure type <t_struct>`, and the number and types of elements
2068 must match those specified by the type.
2069**Array constants**
2070 Array constants are represented with notation similar to array type
2071 definitions (a comma separated list of elements, surrounded by
2072 square brackets (``[]``)). For example:
2073 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2074 :ref:`array type <t_array>`, and the number and types of elements must
2075 match those specified by the type.
2076**Vector constants**
2077 Vector constants are represented with notation similar to vector
2078 type definitions (a comma separated list of elements, surrounded by
2079 less-than/greater-than's (``<>``)). For example:
2080 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2081 must have :ref:`vector type <t_vector>`, and the number and types of
2082 elements must match those specified by the type.
2083**Zero initialization**
2084 The string '``zeroinitializer``' can be used to zero initialize a
2085 value to zero of *any* type, including scalar and
2086 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2087 having to print large zero initializers (e.g. for large arrays) and
2088 is always exactly equivalent to using explicit zero initializers.
2089**Metadata node**
2090 A metadata node is a structure-like constant with :ref:`metadata
2091 type <t_metadata>`. For example:
2092 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2093 constants that are meant to be interpreted as part of the
2094 instruction stream, metadata is a place to attach additional
2095 information such as debug info.
2096
2097Global Variable and Function Addresses
2098--------------------------------------
2099
2100The addresses of :ref:`global variables <globalvars>` and
2101:ref:`functions <functionstructure>` are always implicitly valid
2102(link-time) constants. These constants are explicitly referenced when
2103the :ref:`identifier for the global <identifiers>` is used and always have
2104:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2105file:
2106
2107.. code-block:: llvm
2108
2109 @X = global i32 17
2110 @Y = global i32 42
2111 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2112
2113.. _undefvalues:
2114
2115Undefined Values
2116----------------
2117
2118The string '``undef``' can be used anywhere a constant is expected, and
2119indicates that the user of the value may receive an unspecified
2120bit-pattern. Undefined values may be of any type (other than '``label``'
2121or '``void``') and be used anywhere a constant is permitted.
2122
2123Undefined values are useful because they indicate to the compiler that
2124the program is well defined no matter what value is used. This gives the
2125compiler more freedom to optimize. Here are some examples of
2126(potentially surprising) transformations that are valid (in pseudo IR):
2127
2128.. code-block:: llvm
2129
2130 %A = add %X, undef
2131 %B = sub %X, undef
2132 %C = xor %X, undef
2133 Safe:
2134 %A = undef
2135 %B = undef
2136 %C = undef
2137
2138This is safe because all of the output bits are affected by the undef
2139bits. Any output bit can have a zero or one depending on the input bits.
2140
2141.. code-block:: llvm
2142
2143 %A = or %X, undef
2144 %B = and %X, undef
2145 Safe:
2146 %A = -1
2147 %B = 0
2148 Unsafe:
2149 %A = undef
2150 %B = undef
2151
2152These logical operations have bits that are not always affected by the
2153input. For example, if ``%X`` has a zero bit, then the output of the
2154'``and``' operation will always be a zero for that bit, no matter what
2155the corresponding bit from the '``undef``' is. As such, it is unsafe to
2156optimize or assume that the result of the '``and``' is '``undef``'.
2157However, it is safe to assume that all bits of the '``undef``' could be
21580, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2159all the bits of the '``undef``' operand to the '``or``' could be set,
2160allowing the '``or``' to be folded to -1.
2161
2162.. code-block:: llvm
2163
2164 %A = select undef, %X, %Y
2165 %B = select undef, 42, %Y
2166 %C = select %X, %Y, undef
2167 Safe:
2168 %A = %X (or %Y)
2169 %B = 42 (or %Y)
2170 %C = %Y
2171 Unsafe:
2172 %A = undef
2173 %B = undef
2174 %C = undef
2175
2176This set of examples shows that undefined '``select``' (and conditional
2177branch) conditions can go *either way*, but they have to come from one
2178of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2179both known to have a clear low bit, then ``%A`` would have to have a
2180cleared low bit. However, in the ``%C`` example, the optimizer is
2181allowed to assume that the '``undef``' operand could be the same as
2182``%Y``, allowing the whole '``select``' to be eliminated.
2183
2184.. code-block:: llvm
2185
2186 %A = xor undef, undef
2187
2188 %B = undef
2189 %C = xor %B, %B
2190
2191 %D = undef
2192 %E = icmp lt %D, 4
2193 %F = icmp gte %D, 4
2194
2195 Safe:
2196 %A = undef
2197 %B = undef
2198 %C = undef
2199 %D = undef
2200 %E = undef
2201 %F = undef
2202
2203This example points out that two '``undef``' operands are not
2204necessarily the same. This can be surprising to people (and also matches
2205C semantics) where they assume that "``X^X``" is always zero, even if
2206``X`` is undefined. This isn't true for a number of reasons, but the
2207short answer is that an '``undef``' "variable" can arbitrarily change
2208its value over its "live range". This is true because the variable
2209doesn't actually *have a live range*. Instead, the value is logically
2210read from arbitrary registers that happen to be around when needed, so
2211the value is not necessarily consistent over time. In fact, ``%A`` and
2212``%C`` need to have the same semantics or the core LLVM "replace all
2213uses with" concept would not hold.
2214
2215.. code-block:: llvm
2216
2217 %A = fdiv undef, %X
2218 %B = fdiv %X, undef
2219 Safe:
2220 %A = undef
2221 b: unreachable
2222
2223These examples show the crucial difference between an *undefined value*
2224and *undefined behavior*. An undefined value (like '``undef``') is
2225allowed to have an arbitrary bit-pattern. This means that the ``%A``
2226operation can be constant folded to '``undef``', because the '``undef``'
2227could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2228However, in the second example, we can make a more aggressive
2229assumption: because the ``undef`` is allowed to be an arbitrary value,
2230we are allowed to assume that it could be zero. Since a divide by zero
2231has *undefined behavior*, we are allowed to assume that the operation
2232does not execute at all. This allows us to delete the divide and all
2233code after it. Because the undefined operation "can't happen", the
2234optimizer can assume that it occurs in dead code.
2235
2236.. code-block:: llvm
2237
2238 a: store undef -> %X
2239 b: store %X -> undef
2240 Safe:
2241 a: <deleted>
2242 b: unreachable
2243
2244These examples reiterate the ``fdiv`` example: a store *of* an undefined
2245value can be assumed to not have any effect; we can assume that the
2246value is overwritten with bits that happen to match what was already
2247there. However, a store *to* an undefined location could clobber
2248arbitrary memory, therefore, it has undefined behavior.
2249
2250.. _poisonvalues:
2251
2252Poison Values
2253-------------
2254
2255Poison values are similar to :ref:`undef values <undefvalues>`, however
2256they also represent the fact that an instruction or constant expression
2257which cannot evoke side effects has nevertheless detected a condition
2258which results in undefined behavior.
2259
2260There is currently no way of representing a poison value in the IR; they
2261only exist when produced by operations such as :ref:`add <i_add>` with
2262the ``nsw`` flag.
2263
2264Poison value behavior is defined in terms of value *dependence*:
2265
2266- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2267- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2268 their dynamic predecessor basic block.
2269- Function arguments depend on the corresponding actual argument values
2270 in the dynamic callers of their functions.
2271- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2272 instructions that dynamically transfer control back to them.
2273- :ref:`Invoke <i_invoke>` instructions depend on the
2274 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2275 call instructions that dynamically transfer control back to them.
2276- Non-volatile loads and stores depend on the most recent stores to all
2277 of the referenced memory addresses, following the order in the IR
2278 (including loads and stores implied by intrinsics such as
2279 :ref:`@llvm.memcpy <int_memcpy>`.)
2280- An instruction with externally visible side effects depends on the
2281 most recent preceding instruction with externally visible side
2282 effects, following the order in the IR. (This includes :ref:`volatile
2283 operations <volatile>`.)
2284- An instruction *control-depends* on a :ref:`terminator
2285 instruction <terminators>` if the terminator instruction has
2286 multiple successors and the instruction is always executed when
2287 control transfers to one of the successors, and may not be executed
2288 when control is transferred to another.
2289- Additionally, an instruction also *control-depends* on a terminator
2290 instruction if the set of instructions it otherwise depends on would
2291 be different if the terminator had transferred control to a different
2292 successor.
2293- Dependence is transitive.
2294
2295Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2296with the additional affect that any instruction which has a *dependence*
2297on a poison value has undefined behavior.
2298
2299Here are some examples:
2300
2301.. code-block:: llvm
2302
2303 entry:
2304 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2305 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2306 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2307 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2308
2309 store i32 %poison, i32* @g ; Poison value stored to memory.
2310 %poison2 = load i32* @g ; Poison value loaded back from memory.
2311
2312 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2313
2314 %narrowaddr = bitcast i32* @g to i16*
2315 %wideaddr = bitcast i32* @g to i64*
2316 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2317 %poison4 = load i64* %wideaddr ; Returns a poison value.
2318
2319 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2320 br i1 %cmp, label %true, label %end ; Branch to either destination.
2321
2322 true:
2323 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2324 ; it has undefined behavior.
2325 br label %end
2326
2327 end:
2328 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2329 ; Both edges into this PHI are
2330 ; control-dependent on %cmp, so this
2331 ; always results in a poison value.
2332
2333 store volatile i32 0, i32* @g ; This would depend on the store in %true
2334 ; if %cmp is true, or the store in %entry
2335 ; otherwise, so this is undefined behavior.
2336
2337 br i1 %cmp, label %second_true, label %second_end
2338 ; The same branch again, but this time the
2339 ; true block doesn't have side effects.
2340
2341 second_true:
2342 ; No side effects!
2343 ret void
2344
2345 second_end:
2346 store volatile i32 0, i32* @g ; This time, the instruction always depends
2347 ; on the store in %end. Also, it is
2348 ; control-equivalent to %end, so this is
2349 ; well-defined (ignoring earlier undefined
2350 ; behavior in this example).
2351
2352.. _blockaddress:
2353
2354Addresses of Basic Blocks
2355-------------------------
2356
2357``blockaddress(@function, %block)``
2358
2359The '``blockaddress``' constant computes the address of the specified
2360basic block in the specified function, and always has an ``i8*`` type.
2361Taking the address of the entry block is illegal.
2362
2363This value only has defined behavior when used as an operand to the
2364':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2365against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002366undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002367no label is equal to the null pointer. This may be passed around as an
2368opaque pointer sized value as long as the bits are not inspected. This
2369allows ``ptrtoint`` and arithmetic to be performed on these values so
2370long as the original value is reconstituted before the ``indirectbr``
2371instruction.
2372
2373Finally, some targets may provide defined semantics when using the value
2374as the operand to an inline assembly, but that is target specific.
2375
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002376.. _constantexprs:
2377
Sean Silvab084af42012-12-07 10:36:55 +00002378Constant Expressions
2379--------------------
2380
2381Constant expressions are used to allow expressions involving other
2382constants to be used as constants. Constant expressions may be of any
2383:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2384that does not have side effects (e.g. load and call are not supported).
2385The following is the syntax for constant expressions:
2386
2387``trunc (CST to TYPE)``
2388 Truncate a constant to another type. The bit size of CST must be
2389 larger than the bit size of TYPE. Both types must be integers.
2390``zext (CST to TYPE)``
2391 Zero extend a constant to another type. The bit size of CST must be
2392 smaller than the bit size of TYPE. Both types must be integers.
2393``sext (CST to TYPE)``
2394 Sign extend a constant to another type. The bit size of CST must be
2395 smaller than the bit size of TYPE. Both types must be integers.
2396``fptrunc (CST to TYPE)``
2397 Truncate a floating point constant to another floating point type.
2398 The size of CST must be larger than the size of TYPE. Both types
2399 must be floating point.
2400``fpext (CST to TYPE)``
2401 Floating point extend a constant to another type. The size of CST
2402 must be smaller or equal to the size of TYPE. Both types must be
2403 floating point.
2404``fptoui (CST to TYPE)``
2405 Convert a floating point constant to the corresponding unsigned
2406 integer constant. TYPE must be a scalar or vector integer type. CST
2407 must be of scalar or vector floating point type. Both CST and TYPE
2408 must be scalars, or vectors of the same number of elements. If the
2409 value won't fit in the integer type, the results are undefined.
2410``fptosi (CST to TYPE)``
2411 Convert a floating point constant to the corresponding signed
2412 integer constant. TYPE must be a scalar or vector integer type. CST
2413 must be of scalar or vector floating point type. Both CST and TYPE
2414 must be scalars, or vectors of the same number of elements. If the
2415 value won't fit in the integer type, the results are undefined.
2416``uitofp (CST to TYPE)``
2417 Convert an unsigned integer constant to the corresponding floating
2418 point constant. TYPE must be a scalar or vector floating point type.
2419 CST must be of scalar or vector integer type. Both CST and TYPE must
2420 be scalars, or vectors of the same number of elements. If the value
2421 won't fit in the floating point type, the results are undefined.
2422``sitofp (CST to TYPE)``
2423 Convert a signed integer constant to the corresponding floating
2424 point constant. TYPE must be a scalar or vector floating point type.
2425 CST must be of scalar or vector integer type. Both CST and TYPE must
2426 be scalars, or vectors of the same number of elements. If the value
2427 won't fit in the floating point type, the results are undefined.
2428``ptrtoint (CST to TYPE)``
2429 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002430 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002431 pointer type. The ``CST`` value is zero extended, truncated, or
2432 unchanged to make it fit in ``TYPE``.
2433``inttoptr (CST to TYPE)``
2434 Convert an integer constant to a pointer constant. TYPE must be a
2435 pointer type. CST must be of integer type. The CST value is zero
2436 extended, truncated, or unchanged to make it fit in a pointer size.
2437 This one is *really* dangerous!
2438``bitcast (CST to TYPE)``
2439 Convert a constant, CST, to another TYPE. The constraints of the
2440 operands are the same as those for the :ref:`bitcast
2441 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002442``addrspacecast (CST to TYPE)``
2443 Convert a constant pointer or constant vector of pointer, CST, to another
2444 TYPE in a different address space. The constraints of the operands are the
2445 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002446``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2447 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2448 constants. As with the :ref:`getelementptr <i_getelementptr>`
2449 instruction, the index list may have zero or more indexes, which are
2450 required to make sense for the type of "CSTPTR".
2451``select (COND, VAL1, VAL2)``
2452 Perform the :ref:`select operation <i_select>` on constants.
2453``icmp COND (VAL1, VAL2)``
2454 Performs the :ref:`icmp operation <i_icmp>` on constants.
2455``fcmp COND (VAL1, VAL2)``
2456 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2457``extractelement (VAL, IDX)``
2458 Perform the :ref:`extractelement operation <i_extractelement>` on
2459 constants.
2460``insertelement (VAL, ELT, IDX)``
2461 Perform the :ref:`insertelement operation <i_insertelement>` on
2462 constants.
2463``shufflevector (VEC1, VEC2, IDXMASK)``
2464 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2465 constants.
2466``extractvalue (VAL, IDX0, IDX1, ...)``
2467 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2468 constants. The index list is interpreted in a similar manner as
2469 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2470 least one index value must be specified.
2471``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2472 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2473 The index list is interpreted in a similar manner as indices in a
2474 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2475 value must be specified.
2476``OPCODE (LHS, RHS)``
2477 Perform the specified operation of the LHS and RHS constants. OPCODE
2478 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2479 binary <bitwiseops>` operations. The constraints on operands are
2480 the same as those for the corresponding instruction (e.g. no bitwise
2481 operations on floating point values are allowed).
2482
2483Other Values
2484============
2485
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002486.. _inlineasmexprs:
2487
Sean Silvab084af42012-12-07 10:36:55 +00002488Inline Assembler Expressions
2489----------------------------
2490
2491LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2492Inline Assembly <moduleasm>`) through the use of a special value. This
2493value represents the inline assembler as a string (containing the
2494instructions to emit), a list of operand constraints (stored as a
2495string), a flag that indicates whether or not the inline asm expression
2496has side effects, and a flag indicating whether the function containing
2497the asm needs to align its stack conservatively. An example inline
2498assembler expression is:
2499
2500.. code-block:: llvm
2501
2502 i32 (i32) asm "bswap $0", "=r,r"
2503
2504Inline assembler expressions may **only** be used as the callee operand
2505of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2506Thus, typically we have:
2507
2508.. code-block:: llvm
2509
2510 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2511
2512Inline asms with side effects not visible in the constraint list must be
2513marked as having side effects. This is done through the use of the
2514'``sideeffect``' keyword, like so:
2515
2516.. code-block:: llvm
2517
2518 call void asm sideeffect "eieio", ""()
2519
2520In some cases inline asms will contain code that will not work unless
2521the stack is aligned in some way, such as calls or SSE instructions on
2522x86, yet will not contain code that does that alignment within the asm.
2523The compiler should make conservative assumptions about what the asm
2524might contain and should generate its usual stack alignment code in the
2525prologue if the '``alignstack``' keyword is present:
2526
2527.. code-block:: llvm
2528
2529 call void asm alignstack "eieio", ""()
2530
2531Inline asms also support using non-standard assembly dialects. The
2532assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2533the inline asm is using the Intel dialect. Currently, ATT and Intel are
2534the only supported dialects. An example is:
2535
2536.. code-block:: llvm
2537
2538 call void asm inteldialect "eieio", ""()
2539
2540If multiple keywords appear the '``sideeffect``' keyword must come
2541first, the '``alignstack``' keyword second and the '``inteldialect``'
2542keyword last.
2543
2544Inline Asm Metadata
2545^^^^^^^^^^^^^^^^^^^
2546
2547The call instructions that wrap inline asm nodes may have a
2548"``!srcloc``" MDNode attached to it that contains a list of constant
2549integers. If present, the code generator will use the integer as the
2550location cookie value when report errors through the ``LLVMContext``
2551error reporting mechanisms. This allows a front-end to correlate backend
2552errors that occur with inline asm back to the source code that produced
2553it. For example:
2554
2555.. code-block:: llvm
2556
2557 call void asm sideeffect "something bad", ""(), !srcloc !42
2558 ...
2559 !42 = !{ i32 1234567 }
2560
2561It is up to the front-end to make sense of the magic numbers it places
2562in the IR. If the MDNode contains multiple constants, the code generator
2563will use the one that corresponds to the line of the asm that the error
2564occurs on.
2565
2566.. _metadata:
2567
2568Metadata Nodes and Metadata Strings
2569-----------------------------------
2570
2571LLVM IR allows metadata to be attached to instructions in the program
2572that can convey extra information about the code to the optimizers and
2573code generator. One example application of metadata is source-level
2574debug information. There are two metadata primitives: strings and nodes.
2575All metadata has the ``metadata`` type and is identified in syntax by a
2576preceding exclamation point ('``!``').
2577
2578A metadata string is a string surrounded by double quotes. It can
2579contain any character by escaping non-printable characters with
2580"``\xx``" where "``xx``" is the two digit hex code. For example:
2581"``!"test\00"``".
2582
2583Metadata nodes are represented with notation similar to structure
2584constants (a comma separated list of elements, surrounded by braces and
2585preceded by an exclamation point). Metadata nodes can have any values as
2586their operand. For example:
2587
2588.. code-block:: llvm
2589
2590 !{ metadata !"test\00", i32 10}
2591
2592A :ref:`named metadata <namedmetadatastructure>` is a collection of
2593metadata nodes, which can be looked up in the module symbol table. For
2594example:
2595
2596.. code-block:: llvm
2597
2598 !foo = metadata !{!4, !3}
2599
2600Metadata can be used as function arguments. Here ``llvm.dbg.value``
2601function is using two metadata arguments:
2602
2603.. code-block:: llvm
2604
2605 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2606
2607Metadata can be attached with an instruction. Here metadata ``!21`` is
2608attached to the ``add`` instruction using the ``!dbg`` identifier:
2609
2610.. code-block:: llvm
2611
2612 %indvar.next = add i64 %indvar, 1, !dbg !21
2613
2614More information about specific metadata nodes recognized by the
2615optimizers and code generator is found below.
2616
2617'``tbaa``' Metadata
2618^^^^^^^^^^^^^^^^^^^
2619
2620In LLVM IR, memory does not have types, so LLVM's own type system is not
2621suitable for doing TBAA. Instead, metadata is added to the IR to
2622describe a type system of a higher level language. This can be used to
2623implement typical C/C++ TBAA, but it can also be used to implement
2624custom alias analysis behavior for other languages.
2625
2626The current metadata format is very simple. TBAA metadata nodes have up
2627to three fields, e.g.:
2628
2629.. code-block:: llvm
2630
2631 !0 = metadata !{ metadata !"an example type tree" }
2632 !1 = metadata !{ metadata !"int", metadata !0 }
2633 !2 = metadata !{ metadata !"float", metadata !0 }
2634 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2635
2636The first field is an identity field. It can be any value, usually a
2637metadata string, which uniquely identifies the type. The most important
2638name in the tree is the name of the root node. Two trees with different
2639root node names are entirely disjoint, even if they have leaves with
2640common names.
2641
2642The second field identifies the type's parent node in the tree, or is
2643null or omitted for a root node. A type is considered to alias all of
2644its descendants and all of its ancestors in the tree. Also, a type is
2645considered to alias all types in other trees, so that bitcode produced
2646from multiple front-ends is handled conservatively.
2647
2648If the third field is present, it's an integer which if equal to 1
2649indicates that the type is "constant" (meaning
2650``pointsToConstantMemory`` should return true; see `other useful
2651AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2652
2653'``tbaa.struct``' Metadata
2654^^^^^^^^^^^^^^^^^^^^^^^^^^
2655
2656The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2657aggregate assignment operations in C and similar languages, however it
2658is defined to copy a contiguous region of memory, which is more than
2659strictly necessary for aggregate types which contain holes due to
2660padding. Also, it doesn't contain any TBAA information about the fields
2661of the aggregate.
2662
2663``!tbaa.struct`` metadata can describe which memory subregions in a
2664memcpy are padding and what the TBAA tags of the struct are.
2665
2666The current metadata format is very simple. ``!tbaa.struct`` metadata
2667nodes are a list of operands which are in conceptual groups of three.
2668For each group of three, the first operand gives the byte offset of a
2669field in bytes, the second gives its size in bytes, and the third gives
2670its tbaa tag. e.g.:
2671
2672.. code-block:: llvm
2673
2674 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2675
2676This describes a struct with two fields. The first is at offset 0 bytes
2677with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2678and has size 4 bytes and has tbaa tag !2.
2679
2680Note that the fields need not be contiguous. In this example, there is a
26814 byte gap between the two fields. This gap represents padding which
2682does not carry useful data and need not be preserved.
2683
2684'``fpmath``' Metadata
2685^^^^^^^^^^^^^^^^^^^^^
2686
2687``fpmath`` metadata may be attached to any instruction of floating point
2688type. It can be used to express the maximum acceptable error in the
2689result of that instruction, in ULPs, thus potentially allowing the
2690compiler to use a more efficient but less accurate method of computing
2691it. ULP is defined as follows:
2692
2693 If ``x`` is a real number that lies between two finite consecutive
2694 floating-point numbers ``a`` and ``b``, without being equal to one
2695 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2696 distance between the two non-equal finite floating-point numbers
2697 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2698
2699The metadata node shall consist of a single positive floating point
2700number representing the maximum relative error, for example:
2701
2702.. code-block:: llvm
2703
2704 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2705
2706'``range``' Metadata
2707^^^^^^^^^^^^^^^^^^^^
2708
2709``range`` metadata may be attached only to loads of integer types. It
2710expresses the possible ranges the loaded value is in. The ranges are
2711represented with a flattened list of integers. The loaded value is known
2712to be in the union of the ranges defined by each consecutive pair. Each
2713pair has the following properties:
2714
2715- The type must match the type loaded by the instruction.
2716- The pair ``a,b`` represents the range ``[a,b)``.
2717- Both ``a`` and ``b`` are constants.
2718- The range is allowed to wrap.
2719- The range should not represent the full or empty set. That is,
2720 ``a!=b``.
2721
2722In addition, the pairs must be in signed order of the lower bound and
2723they must be non-contiguous.
2724
2725Examples:
2726
2727.. code-block:: llvm
2728
2729 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2730 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2731 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2732 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2733 ...
2734 !0 = metadata !{ i8 0, i8 2 }
2735 !1 = metadata !{ i8 255, i8 2 }
2736 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2737 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2738
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002739'``llvm.loop``'
2740^^^^^^^^^^^^^^^
2741
2742It is sometimes useful to attach information to loop constructs. Currently,
2743loop metadata is implemented as metadata attached to the branch instruction
2744in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002745guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002746specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002747
2748The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002749itself to avoid merging it with any other identifier metadata, e.g.,
2750during module linkage or function inlining. That is, each loop should refer
2751to their own identification metadata even if they reside in separate functions.
2752The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002753constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002754
2755.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002756
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002757 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002758 !1 = metadata !{ metadata !1 }
2759
Paul Redmond5fdf8362013-05-28 20:00:34 +00002760The loop identifier metadata can be used to specify additional per-loop
2761metadata. Any operands after the first operand can be treated as user-defined
2762metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2763by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002764
Paul Redmond5fdf8362013-05-28 20:00:34 +00002765.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002766
Paul Redmond5fdf8362013-05-28 20:00:34 +00002767 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2768 ...
2769 !0 = metadata !{ metadata !0, metadata !1 }
2770 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002771
2772'``llvm.mem``'
2773^^^^^^^^^^^^^^^
2774
2775Metadata types used to annotate memory accesses with information helpful
2776for optimizations are prefixed with ``llvm.mem``.
2777
2778'``llvm.mem.parallel_loop_access``' Metadata
2779^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2780
2781For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002782the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002783also all of the memory accessing instructions in the loop body need to be
2784marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2785is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002786the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002787converted to sequential loops due to optimization passes that are unaware of
2788the parallel semantics and that insert new memory instructions to the loop
2789body.
2790
2791Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002792both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002793metadata types that refer to the same loop identifier metadata.
2794
2795.. code-block:: llvm
2796
2797 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002798 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002799 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002800 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002801 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002802 ...
2803 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002804
2805 for.end:
2806 ...
2807 !0 = metadata !{ metadata !0 }
2808
2809It is also possible to have nested parallel loops. In that case the
2810memory accesses refer to a list of loop identifier metadata nodes instead of
2811the loop identifier metadata node directly:
2812
2813.. code-block:: llvm
2814
2815 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002816 ...
2817 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
2818 ...
2819 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002820
2821 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002822 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002823 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002824 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002825 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002826 ...
2827 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002828
2829 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002830 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002831 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00002832 ...
2833 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002834
2835 outer.for.end: ; preds = %for.body
2836 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002837 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2838 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2839 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002840
Paul Redmond5fdf8362013-05-28 20:00:34 +00002841'``llvm.vectorizer``'
2842^^^^^^^^^^^^^^^^^^^^^
2843
2844Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2845vectorization parameters such as vectorization factor and unroll factor.
2846
2847``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2848loop identification metadata.
2849
2850'``llvm.vectorizer.unroll``' Metadata
2851^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2852
2853This metadata instructs the loop vectorizer to unroll the specified
2854loop exactly ``N`` times.
2855
2856The first operand is the string ``llvm.vectorizer.unroll`` and the second
2857operand is an integer specifying the unroll factor. For example:
2858
2859.. code-block:: llvm
2860
2861 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2862
2863Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2864loop.
2865
2866If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2867determined automatically.
2868
2869'``llvm.vectorizer.width``' Metadata
2870^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2871
Paul Redmondeccbb322013-05-30 17:22:46 +00002872This metadata sets the target width of the vectorizer to ``N``. Without
2873this metadata, the vectorizer will choose a width automatically.
2874Regardless of this metadata, the vectorizer will only vectorize loops if
2875it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002876
2877The first operand is the string ``llvm.vectorizer.width`` and the second
2878operand is an integer specifying the width. For example:
2879
2880.. code-block:: llvm
2881
2882 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2883
2884Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2885loop.
2886
2887If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2888automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002889
Sean Silvab084af42012-12-07 10:36:55 +00002890Module Flags Metadata
2891=====================
2892
2893Information about the module as a whole is difficult to convey to LLVM's
2894subsystems. The LLVM IR isn't sufficient to transmit this information.
2895The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002896this. These flags are in the form of key / value pairs --- much like a
2897dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002898look it up.
2899
2900The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2901Each triplet has the following form:
2902
2903- The first element is a *behavior* flag, which specifies the behavior
2904 when two (or more) modules are merged together, and it encounters two
2905 (or more) metadata with the same ID. The supported behaviors are
2906 described below.
2907- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002908 metadata. Each module may only have one flag entry for each unique ID (not
2909 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002910- The third element is the value of the flag.
2911
2912When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002913``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2914each unique metadata ID string, there will be exactly one entry in the merged
2915modules ``llvm.module.flags`` metadata table, and the value for that entry will
2916be determined by the merge behavior flag, as described below. The only exception
2917is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002918
2919The following behaviors are supported:
2920
2921.. list-table::
2922 :header-rows: 1
2923 :widths: 10 90
2924
2925 * - Value
2926 - Behavior
2927
2928 * - 1
2929 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002930 Emits an error if two values disagree, otherwise the resulting value
2931 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002932
2933 * - 2
2934 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002935 Emits a warning if two values disagree. The result value will be the
2936 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002937
2938 * - 3
2939 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002940 Adds a requirement that another module flag be present and have a
2941 specified value after linking is performed. The value must be a
2942 metadata pair, where the first element of the pair is the ID of the
2943 module flag to be restricted, and the second element of the pair is
2944 the value the module flag should be restricted to. This behavior can
2945 be used to restrict the allowable results (via triggering of an
2946 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002947
2948 * - 4
2949 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002950 Uses the specified value, regardless of the behavior or value of the
2951 other module. If both modules specify **Override**, but the values
2952 differ, an error will be emitted.
2953
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002954 * - 5
2955 - **Append**
2956 Appends the two values, which are required to be metadata nodes.
2957
2958 * - 6
2959 - **AppendUnique**
2960 Appends the two values, which are required to be metadata
2961 nodes. However, duplicate entries in the second list are dropped
2962 during the append operation.
2963
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002964It is an error for a particular unique flag ID to have multiple behaviors,
2965except in the case of **Require** (which adds restrictions on another metadata
2966value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002967
2968An example of module flags:
2969
2970.. code-block:: llvm
2971
2972 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2973 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2974 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2975 !3 = metadata !{ i32 3, metadata !"qux",
2976 metadata !{
2977 metadata !"foo", i32 1
2978 }
2979 }
2980 !llvm.module.flags = !{ !0, !1, !2, !3 }
2981
2982- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2983 if two or more ``!"foo"`` flags are seen is to emit an error if their
2984 values are not equal.
2985
2986- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2987 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002988 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002989
2990- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2991 behavior if two or more ``!"qux"`` flags are seen is to emit a
2992 warning if their values are not equal.
2993
2994- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2995
2996 ::
2997
2998 metadata !{ metadata !"foo", i32 1 }
2999
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003000 The behavior is to emit an error if the ``llvm.module.flags`` does not
3001 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3002 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003003
3004Objective-C Garbage Collection Module Flags Metadata
3005----------------------------------------------------
3006
3007On the Mach-O platform, Objective-C stores metadata about garbage
3008collection in a special section called "image info". The metadata
3009consists of a version number and a bitmask specifying what types of
3010garbage collection are supported (if any) by the file. If two or more
3011modules are linked together their garbage collection metadata needs to
3012be merged rather than appended together.
3013
3014The Objective-C garbage collection module flags metadata consists of the
3015following key-value pairs:
3016
3017.. list-table::
3018 :header-rows: 1
3019 :widths: 30 70
3020
3021 * - Key
3022 - Value
3023
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003024 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003025 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003026
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003027 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003028 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003029 always 0.
3030
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003031 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003032 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003033 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3034 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3035 Objective-C ABI version 2.
3036
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003037 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003038 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003039 not. Valid values are 0, for no garbage collection, and 2, for garbage
3040 collection supported.
3041
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003042 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003043 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003044 If present, its value must be 6. This flag requires that the
3045 ``Objective-C Garbage Collection`` flag have the value 2.
3046
3047Some important flag interactions:
3048
3049- If a module with ``Objective-C Garbage Collection`` set to 0 is
3050 merged with a module with ``Objective-C Garbage Collection`` set to
3051 2, then the resulting module has the
3052 ``Objective-C Garbage Collection`` flag set to 0.
3053- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3054 merged with a module with ``Objective-C GC Only`` set to 6.
3055
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003056Automatic Linker Flags Module Flags Metadata
3057--------------------------------------------
3058
3059Some targets support embedding flags to the linker inside individual object
3060files. Typically this is used in conjunction with language extensions which
3061allow source files to explicitly declare the libraries they depend on, and have
3062these automatically be transmitted to the linker via object files.
3063
3064These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003065using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003066to be ``AppendUnique``, and the value for the key is expected to be a metadata
3067node which should be a list of other metadata nodes, each of which should be a
3068list of metadata strings defining linker options.
3069
3070For example, the following metadata section specifies two separate sets of
3071linker options, presumably to link against ``libz`` and the ``Cocoa``
3072framework::
3073
Michael Liaoa7699082013-03-06 18:24:34 +00003074 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003075 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003076 metadata !{ metadata !"-lz" },
3077 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003078 !llvm.module.flags = !{ !0 }
3079
3080The metadata encoding as lists of lists of options, as opposed to a collapsed
3081list of options, is chosen so that the IR encoding can use multiple option
3082strings to specify e.g., a single library, while still having that specifier be
3083preserved as an atomic element that can be recognized by a target specific
3084assembly writer or object file emitter.
3085
3086Each individual option is required to be either a valid option for the target's
3087linker, or an option that is reserved by the target specific assembly writer or
3088object file emitter. No other aspect of these options is defined by the IR.
3089
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003090.. _intrinsicglobalvariables:
3091
Sean Silvab084af42012-12-07 10:36:55 +00003092Intrinsic Global Variables
3093==========================
3094
3095LLVM has a number of "magic" global variables that contain data that
3096affect code generation or other IR semantics. These are documented here.
3097All globals of this sort should have a section specified as
3098"``llvm.metadata``". This section and all globals that start with
3099"``llvm.``" are reserved for use by LLVM.
3100
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003101.. _gv_llvmused:
3102
Sean Silvab084af42012-12-07 10:36:55 +00003103The '``llvm.used``' Global Variable
3104-----------------------------------
3105
Rafael Espindola74f2e462013-04-22 14:58:02 +00003106The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003107:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003108pointers to named global variables, functions and aliases which may optionally
3109have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003110use of it is:
3111
3112.. code-block:: llvm
3113
3114 @X = global i8 4
3115 @Y = global i32 123
3116
3117 @llvm.used = appending global [2 x i8*] [
3118 i8* @X,
3119 i8* bitcast (i32* @Y to i8*)
3120 ], section "llvm.metadata"
3121
Rafael Espindola74f2e462013-04-22 14:58:02 +00003122If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3123and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003124symbol that it cannot see (which is why they have to be named). For example, if
3125a variable has internal linkage and no references other than that from the
3126``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3127references from inline asms and other things the compiler cannot "see", and
3128corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003129
3130On some targets, the code generator must emit a directive to the
3131assembler or object file to prevent the assembler and linker from
3132molesting the symbol.
3133
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003134.. _gv_llvmcompilerused:
3135
Sean Silvab084af42012-12-07 10:36:55 +00003136The '``llvm.compiler.used``' Global Variable
3137--------------------------------------------
3138
3139The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3140directive, except that it only prevents the compiler from touching the
3141symbol. On targets that support it, this allows an intelligent linker to
3142optimize references to the symbol without being impeded as it would be
3143by ``@llvm.used``.
3144
3145This is a rare construct that should only be used in rare circumstances,
3146and should not be exposed to source languages.
3147
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003148.. _gv_llvmglobalctors:
3149
Sean Silvab084af42012-12-07 10:36:55 +00003150The '``llvm.global_ctors``' Global Variable
3151-------------------------------------------
3152
3153.. code-block:: llvm
3154
3155 %0 = type { i32, void ()* }
3156 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3157
3158The ``@llvm.global_ctors`` array contains a list of constructor
3159functions and associated priorities. The functions referenced by this
3160array will be called in ascending order of priority (i.e. lowest first)
3161when the module is loaded. The order of functions with the same priority
3162is not defined.
3163
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003164.. _llvmglobaldtors:
3165
Sean Silvab084af42012-12-07 10:36:55 +00003166The '``llvm.global_dtors``' Global Variable
3167-------------------------------------------
3168
3169.. code-block:: llvm
3170
3171 %0 = type { i32, void ()* }
3172 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3173
3174The ``@llvm.global_dtors`` array contains a list of destructor functions
3175and associated priorities. The functions referenced by this array will
3176be called in descending order of priority (i.e. highest first) when the
3177module is loaded. The order of functions with the same priority is not
3178defined.
3179
3180Instruction Reference
3181=====================
3182
3183The LLVM instruction set consists of several different classifications
3184of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3185instructions <binaryops>`, :ref:`bitwise binary
3186instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3187:ref:`other instructions <otherops>`.
3188
3189.. _terminators:
3190
3191Terminator Instructions
3192-----------------------
3193
3194As mentioned :ref:`previously <functionstructure>`, every basic block in a
3195program ends with a "Terminator" instruction, which indicates which
3196block should be executed after the current block is finished. These
3197terminator instructions typically yield a '``void``' value: they produce
3198control flow, not values (the one exception being the
3199':ref:`invoke <i_invoke>`' instruction).
3200
3201The terminator instructions are: ':ref:`ret <i_ret>`',
3202':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3203':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3204':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3205
3206.. _i_ret:
3207
3208'``ret``' Instruction
3209^^^^^^^^^^^^^^^^^^^^^
3210
3211Syntax:
3212"""""""
3213
3214::
3215
3216 ret <type> <value> ; Return a value from a non-void function
3217 ret void ; Return from void function
3218
3219Overview:
3220"""""""""
3221
3222The '``ret``' instruction is used to return control flow (and optionally
3223a value) from a function back to the caller.
3224
3225There are two forms of the '``ret``' instruction: one that returns a
3226value and then causes control flow, and one that just causes control
3227flow to occur.
3228
3229Arguments:
3230""""""""""
3231
3232The '``ret``' instruction optionally accepts a single argument, the
3233return value. The type of the return value must be a ':ref:`first
3234class <t_firstclass>`' type.
3235
3236A function is not :ref:`well formed <wellformed>` if it it has a non-void
3237return type and contains a '``ret``' instruction with no return value or
3238a return value with a type that does not match its type, or if it has a
3239void return type and contains a '``ret``' instruction with a return
3240value.
3241
3242Semantics:
3243""""""""""
3244
3245When the '``ret``' instruction is executed, control flow returns back to
3246the calling function's context. If the caller is a
3247":ref:`call <i_call>`" instruction, execution continues at the
3248instruction after the call. If the caller was an
3249":ref:`invoke <i_invoke>`" instruction, execution continues at the
3250beginning of the "normal" destination block. If the instruction returns
3251a value, that value shall set the call or invoke instruction's return
3252value.
3253
3254Example:
3255""""""""
3256
3257.. code-block:: llvm
3258
3259 ret i32 5 ; Return an integer value of 5
3260 ret void ; Return from a void function
3261 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3262
3263.. _i_br:
3264
3265'``br``' Instruction
3266^^^^^^^^^^^^^^^^^^^^
3267
3268Syntax:
3269"""""""
3270
3271::
3272
3273 br i1 <cond>, label <iftrue>, label <iffalse>
3274 br label <dest> ; Unconditional branch
3275
3276Overview:
3277"""""""""
3278
3279The '``br``' instruction is used to cause control flow to transfer to a
3280different basic block in the current function. There are two forms of
3281this instruction, corresponding to a conditional branch and an
3282unconditional branch.
3283
3284Arguments:
3285""""""""""
3286
3287The conditional branch form of the '``br``' instruction takes a single
3288'``i1``' value and two '``label``' values. The unconditional form of the
3289'``br``' instruction takes a single '``label``' value as a target.
3290
3291Semantics:
3292""""""""""
3293
3294Upon execution of a conditional '``br``' instruction, the '``i1``'
3295argument is evaluated. If the value is ``true``, control flows to the
3296'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3297to the '``iffalse``' ``label`` argument.
3298
3299Example:
3300""""""""
3301
3302.. code-block:: llvm
3303
3304 Test:
3305 %cond = icmp eq i32 %a, %b
3306 br i1 %cond, label %IfEqual, label %IfUnequal
3307 IfEqual:
3308 ret i32 1
3309 IfUnequal:
3310 ret i32 0
3311
3312.. _i_switch:
3313
3314'``switch``' Instruction
3315^^^^^^^^^^^^^^^^^^^^^^^^
3316
3317Syntax:
3318"""""""
3319
3320::
3321
3322 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3323
3324Overview:
3325"""""""""
3326
3327The '``switch``' instruction is used to transfer control flow to one of
3328several different places. It is a generalization of the '``br``'
3329instruction, allowing a branch to occur to one of many possible
3330destinations.
3331
3332Arguments:
3333""""""""""
3334
3335The '``switch``' instruction uses three parameters: an integer
3336comparison value '``value``', a default '``label``' destination, and an
3337array of pairs of comparison value constants and '``label``'s. The table
3338is not allowed to contain duplicate constant entries.
3339
3340Semantics:
3341""""""""""
3342
3343The ``switch`` instruction specifies a table of values and destinations.
3344When the '``switch``' instruction is executed, this table is searched
3345for the given value. If the value is found, control flow is transferred
3346to the corresponding destination; otherwise, control flow is transferred
3347to the default destination.
3348
3349Implementation:
3350"""""""""""""""
3351
3352Depending on properties of the target machine and the particular
3353``switch`` instruction, this instruction may be code generated in
3354different ways. For example, it could be generated as a series of
3355chained conditional branches or with a lookup table.
3356
3357Example:
3358""""""""
3359
3360.. code-block:: llvm
3361
3362 ; Emulate a conditional br instruction
3363 %Val = zext i1 %value to i32
3364 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3365
3366 ; Emulate an unconditional br instruction
3367 switch i32 0, label %dest [ ]
3368
3369 ; Implement a jump table:
3370 switch i32 %val, label %otherwise [ i32 0, label %onzero
3371 i32 1, label %onone
3372 i32 2, label %ontwo ]
3373
3374.. _i_indirectbr:
3375
3376'``indirectbr``' Instruction
3377^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3378
3379Syntax:
3380"""""""
3381
3382::
3383
3384 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3385
3386Overview:
3387"""""""""
3388
3389The '``indirectbr``' instruction implements an indirect branch to a
3390label within the current function, whose address is specified by
3391"``address``". Address must be derived from a
3392:ref:`blockaddress <blockaddress>` constant.
3393
3394Arguments:
3395""""""""""
3396
3397The '``address``' argument is the address of the label to jump to. The
3398rest of the arguments indicate the full set of possible destinations
3399that the address may point to. Blocks are allowed to occur multiple
3400times in the destination list, though this isn't particularly useful.
3401
3402This destination list is required so that dataflow analysis has an
3403accurate understanding of the CFG.
3404
3405Semantics:
3406""""""""""
3407
3408Control transfers to the block specified in the address argument. All
3409possible destination blocks must be listed in the label list, otherwise
3410this instruction has undefined behavior. This implies that jumps to
3411labels defined in other functions have undefined behavior as well.
3412
3413Implementation:
3414"""""""""""""""
3415
3416This is typically implemented with a jump through a register.
3417
3418Example:
3419""""""""
3420
3421.. code-block:: llvm
3422
3423 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3424
3425.. _i_invoke:
3426
3427'``invoke``' Instruction
3428^^^^^^^^^^^^^^^^^^^^^^^^
3429
3430Syntax:
3431"""""""
3432
3433::
3434
3435 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3436 to label <normal label> unwind label <exception label>
3437
3438Overview:
3439"""""""""
3440
3441The '``invoke``' instruction causes control to transfer to a specified
3442function, with the possibility of control flow transfer to either the
3443'``normal``' label or the '``exception``' label. If the callee function
3444returns with the "``ret``" instruction, control flow will return to the
3445"normal" label. If the callee (or any indirect callees) returns via the
3446":ref:`resume <i_resume>`" instruction or other exception handling
3447mechanism, control is interrupted and continued at the dynamically
3448nearest "exception" label.
3449
3450The '``exception``' label is a `landing
3451pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3452'``exception``' label is required to have the
3453":ref:`landingpad <i_landingpad>`" instruction, which contains the
3454information about the behavior of the program after unwinding happens,
3455as its first non-PHI instruction. The restrictions on the
3456"``landingpad``" instruction's tightly couples it to the "``invoke``"
3457instruction, so that the important information contained within the
3458"``landingpad``" instruction can't be lost through normal code motion.
3459
3460Arguments:
3461""""""""""
3462
3463This instruction requires several arguments:
3464
3465#. The optional "cconv" marker indicates which :ref:`calling
3466 convention <callingconv>` the call should use. If none is
3467 specified, the call defaults to using C calling conventions.
3468#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3469 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3470 are valid here.
3471#. '``ptr to function ty``': shall be the signature of the pointer to
3472 function value being invoked. In most cases, this is a direct
3473 function invocation, but indirect ``invoke``'s are just as possible,
3474 branching off an arbitrary pointer to function value.
3475#. '``function ptr val``': An LLVM value containing a pointer to a
3476 function to be invoked.
3477#. '``function args``': argument list whose types match the function
3478 signature argument types and parameter attributes. All arguments must
3479 be of :ref:`first class <t_firstclass>` type. If the function signature
3480 indicates the function accepts a variable number of arguments, the
3481 extra arguments can be specified.
3482#. '``normal label``': the label reached when the called function
3483 executes a '``ret``' instruction.
3484#. '``exception label``': the label reached when a callee returns via
3485 the :ref:`resume <i_resume>` instruction or other exception handling
3486 mechanism.
3487#. The optional :ref:`function attributes <fnattrs>` list. Only
3488 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3489 attributes are valid here.
3490
3491Semantics:
3492""""""""""
3493
3494This instruction is designed to operate as a standard '``call``'
3495instruction in most regards. The primary difference is that it
3496establishes an association with a label, which is used by the runtime
3497library to unwind the stack.
3498
3499This instruction is used in languages with destructors to ensure that
3500proper cleanup is performed in the case of either a ``longjmp`` or a
3501thrown exception. Additionally, this is important for implementation of
3502'``catch``' clauses in high-level languages that support them.
3503
3504For the purposes of the SSA form, the definition of the value returned
3505by the '``invoke``' instruction is deemed to occur on the edge from the
3506current block to the "normal" label. If the callee unwinds then no
3507return value is available.
3508
3509Example:
3510""""""""
3511
3512.. code-block:: llvm
3513
3514 %retval = invoke i32 @Test(i32 15) to label %Continue
3515 unwind label %TestCleanup ; {i32}:retval set
3516 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3517 unwind label %TestCleanup ; {i32}:retval set
3518
3519.. _i_resume:
3520
3521'``resume``' Instruction
3522^^^^^^^^^^^^^^^^^^^^^^^^
3523
3524Syntax:
3525"""""""
3526
3527::
3528
3529 resume <type> <value>
3530
3531Overview:
3532"""""""""
3533
3534The '``resume``' instruction is a terminator instruction that has no
3535successors.
3536
3537Arguments:
3538""""""""""
3539
3540The '``resume``' instruction requires one argument, which must have the
3541same type as the result of any '``landingpad``' instruction in the same
3542function.
3543
3544Semantics:
3545""""""""""
3546
3547The '``resume``' instruction resumes propagation of an existing
3548(in-flight) exception whose unwinding was interrupted with a
3549:ref:`landingpad <i_landingpad>` instruction.
3550
3551Example:
3552""""""""
3553
3554.. code-block:: llvm
3555
3556 resume { i8*, i32 } %exn
3557
3558.. _i_unreachable:
3559
3560'``unreachable``' Instruction
3561^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3562
3563Syntax:
3564"""""""
3565
3566::
3567
3568 unreachable
3569
3570Overview:
3571"""""""""
3572
3573The '``unreachable``' instruction has no defined semantics. This
3574instruction is used to inform the optimizer that a particular portion of
3575the code is not reachable. This can be used to indicate that the code
3576after a no-return function cannot be reached, and other facts.
3577
3578Semantics:
3579""""""""""
3580
3581The '``unreachable``' instruction has no defined semantics.
3582
3583.. _binaryops:
3584
3585Binary Operations
3586-----------------
3587
3588Binary operators are used to do most of the computation in a program.
3589They require two operands of the same type, execute an operation on
3590them, and produce a single value. The operands might represent multiple
3591data, as is the case with the :ref:`vector <t_vector>` data type. The
3592result value has the same type as its operands.
3593
3594There are several different binary operators:
3595
3596.. _i_add:
3597
3598'``add``' Instruction
3599^^^^^^^^^^^^^^^^^^^^^
3600
3601Syntax:
3602"""""""
3603
3604::
3605
3606 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3607 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3608 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3609 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3610
3611Overview:
3612"""""""""
3613
3614The '``add``' instruction returns the sum of its two operands.
3615
3616Arguments:
3617""""""""""
3618
3619The two arguments to the '``add``' instruction must be
3620:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3621arguments must have identical types.
3622
3623Semantics:
3624""""""""""
3625
3626The value produced is the integer sum of the two operands.
3627
3628If the sum has unsigned overflow, the result returned is the
3629mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3630the result.
3631
3632Because LLVM integers use a two's complement representation, this
3633instruction is appropriate for both signed and unsigned integers.
3634
3635``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3636respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3637result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3638unsigned and/or signed overflow, respectively, occurs.
3639
3640Example:
3641""""""""
3642
3643.. code-block:: llvm
3644
3645 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3646
3647.. _i_fadd:
3648
3649'``fadd``' Instruction
3650^^^^^^^^^^^^^^^^^^^^^^
3651
3652Syntax:
3653"""""""
3654
3655::
3656
3657 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3658
3659Overview:
3660"""""""""
3661
3662The '``fadd``' instruction returns the sum of its two operands.
3663
3664Arguments:
3665""""""""""
3666
3667The two arguments to the '``fadd``' instruction must be :ref:`floating
3668point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3669Both arguments must have identical types.
3670
3671Semantics:
3672""""""""""
3673
3674The value produced is the floating point sum of the two operands. This
3675instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3676which are optimization hints to enable otherwise unsafe floating point
3677optimizations:
3678
3679Example:
3680""""""""
3681
3682.. code-block:: llvm
3683
3684 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3685
3686'``sub``' Instruction
3687^^^^^^^^^^^^^^^^^^^^^
3688
3689Syntax:
3690"""""""
3691
3692::
3693
3694 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3695 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3696 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3697 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3698
3699Overview:
3700"""""""""
3701
3702The '``sub``' instruction returns the difference of its two operands.
3703
3704Note that the '``sub``' instruction is used to represent the '``neg``'
3705instruction present in most other intermediate representations.
3706
3707Arguments:
3708""""""""""
3709
3710The two arguments to the '``sub``' instruction must be
3711:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3712arguments must have identical types.
3713
3714Semantics:
3715""""""""""
3716
3717The value produced is the integer difference of the two operands.
3718
3719If the difference has unsigned overflow, the result returned is the
3720mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3721the result.
3722
3723Because LLVM integers use a two's complement representation, this
3724instruction is appropriate for both signed and unsigned integers.
3725
3726``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3727respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3728result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3729unsigned and/or signed overflow, respectively, occurs.
3730
3731Example:
3732""""""""
3733
3734.. code-block:: llvm
3735
3736 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3737 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3738
3739.. _i_fsub:
3740
3741'``fsub``' Instruction
3742^^^^^^^^^^^^^^^^^^^^^^
3743
3744Syntax:
3745"""""""
3746
3747::
3748
3749 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3750
3751Overview:
3752"""""""""
3753
3754The '``fsub``' instruction returns the difference of its two operands.
3755
3756Note that the '``fsub``' instruction is used to represent the '``fneg``'
3757instruction present in most other intermediate representations.
3758
3759Arguments:
3760""""""""""
3761
3762The two arguments to the '``fsub``' instruction must be :ref:`floating
3763point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3764Both arguments must have identical types.
3765
3766Semantics:
3767""""""""""
3768
3769The value produced is the floating point difference of the two operands.
3770This instruction can also take any number of :ref:`fast-math
3771flags <fastmath>`, which are optimization hints to enable otherwise
3772unsafe floating point optimizations:
3773
3774Example:
3775""""""""
3776
3777.. code-block:: llvm
3778
3779 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3780 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3781
3782'``mul``' Instruction
3783^^^^^^^^^^^^^^^^^^^^^
3784
3785Syntax:
3786"""""""
3787
3788::
3789
3790 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3791 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3792 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3793 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3794
3795Overview:
3796"""""""""
3797
3798The '``mul``' instruction returns the product of its two operands.
3799
3800Arguments:
3801""""""""""
3802
3803The two arguments to the '``mul``' instruction must be
3804:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3805arguments must have identical types.
3806
3807Semantics:
3808""""""""""
3809
3810The value produced is the integer product of the two operands.
3811
3812If the result of the multiplication has unsigned overflow, the result
3813returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3814bit width of the result.
3815
3816Because LLVM integers use a two's complement representation, and the
3817result is the same width as the operands, this instruction returns the
3818correct result for both signed and unsigned integers. If a full product
3819(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3820sign-extended or zero-extended as appropriate to the width of the full
3821product.
3822
3823``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3824respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3825result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3826unsigned and/or signed overflow, respectively, occurs.
3827
3828Example:
3829""""""""
3830
3831.. code-block:: llvm
3832
3833 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3834
3835.. _i_fmul:
3836
3837'``fmul``' Instruction
3838^^^^^^^^^^^^^^^^^^^^^^
3839
3840Syntax:
3841"""""""
3842
3843::
3844
3845 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3846
3847Overview:
3848"""""""""
3849
3850The '``fmul``' instruction returns the product of its two operands.
3851
3852Arguments:
3853""""""""""
3854
3855The two arguments to the '``fmul``' instruction must be :ref:`floating
3856point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3857Both arguments must have identical types.
3858
3859Semantics:
3860""""""""""
3861
3862The value produced is the floating point product of the two operands.
3863This instruction can also take any number of :ref:`fast-math
3864flags <fastmath>`, which are optimization hints to enable otherwise
3865unsafe floating point optimizations:
3866
3867Example:
3868""""""""
3869
3870.. code-block:: llvm
3871
3872 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3873
3874'``udiv``' Instruction
3875^^^^^^^^^^^^^^^^^^^^^^
3876
3877Syntax:
3878"""""""
3879
3880::
3881
3882 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3883 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3884
3885Overview:
3886"""""""""
3887
3888The '``udiv``' instruction returns the quotient of its two operands.
3889
3890Arguments:
3891""""""""""
3892
3893The two arguments to the '``udiv``' instruction must be
3894:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3895arguments must have identical types.
3896
3897Semantics:
3898""""""""""
3899
3900The value produced is the unsigned integer quotient of the two operands.
3901
3902Note that unsigned integer division and signed integer division are
3903distinct operations; for signed integer division, use '``sdiv``'.
3904
3905Division by zero leads to undefined behavior.
3906
3907If the ``exact`` keyword is present, the result value of the ``udiv`` is
3908a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3909such, "((a udiv exact b) mul b) == a").
3910
3911Example:
3912""""""""
3913
3914.. code-block:: llvm
3915
3916 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3917
3918'``sdiv``' Instruction
3919^^^^^^^^^^^^^^^^^^^^^^
3920
3921Syntax:
3922"""""""
3923
3924::
3925
3926 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3927 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3928
3929Overview:
3930"""""""""
3931
3932The '``sdiv``' instruction returns the quotient of its two operands.
3933
3934Arguments:
3935""""""""""
3936
3937The two arguments to the '``sdiv``' instruction must be
3938:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3939arguments must have identical types.
3940
3941Semantics:
3942""""""""""
3943
3944The value produced is the signed integer quotient of the two operands
3945rounded towards zero.
3946
3947Note that signed integer division and unsigned integer division are
3948distinct operations; for unsigned integer division, use '``udiv``'.
3949
3950Division by zero leads to undefined behavior. Overflow also leads to
3951undefined behavior; this is a rare case, but can occur, for example, by
3952doing a 32-bit division of -2147483648 by -1.
3953
3954If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3955a :ref:`poison value <poisonvalues>` if the result would be rounded.
3956
3957Example:
3958""""""""
3959
3960.. code-block:: llvm
3961
3962 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3963
3964.. _i_fdiv:
3965
3966'``fdiv``' Instruction
3967^^^^^^^^^^^^^^^^^^^^^^
3968
3969Syntax:
3970"""""""
3971
3972::
3973
3974 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3975
3976Overview:
3977"""""""""
3978
3979The '``fdiv``' instruction returns the quotient of its two operands.
3980
3981Arguments:
3982""""""""""
3983
3984The two arguments to the '``fdiv``' instruction must be :ref:`floating
3985point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3986Both arguments must have identical types.
3987
3988Semantics:
3989""""""""""
3990
3991The value produced is the floating point quotient of the two operands.
3992This instruction can also take any number of :ref:`fast-math
3993flags <fastmath>`, which are optimization hints to enable otherwise
3994unsafe floating point optimizations:
3995
3996Example:
3997""""""""
3998
3999.. code-block:: llvm
4000
4001 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
4002
4003'``urem``' Instruction
4004^^^^^^^^^^^^^^^^^^^^^^
4005
4006Syntax:
4007"""""""
4008
4009::
4010
4011 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
4012
4013Overview:
4014"""""""""
4015
4016The '``urem``' instruction returns the remainder from the unsigned
4017division of its two arguments.
4018
4019Arguments:
4020""""""""""
4021
4022The two arguments to the '``urem``' instruction must be
4023:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4024arguments must have identical types.
4025
4026Semantics:
4027""""""""""
4028
4029This instruction returns the unsigned integer *remainder* of a division.
4030This instruction always performs an unsigned division to get the
4031remainder.
4032
4033Note that unsigned integer remainder and signed integer remainder are
4034distinct operations; for signed integer remainder, use '``srem``'.
4035
4036Taking the remainder of a division by zero leads to undefined behavior.
4037
4038Example:
4039""""""""
4040
4041.. code-block:: llvm
4042
4043 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4044
4045'``srem``' Instruction
4046^^^^^^^^^^^^^^^^^^^^^^
4047
4048Syntax:
4049"""""""
4050
4051::
4052
4053 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4054
4055Overview:
4056"""""""""
4057
4058The '``srem``' instruction returns the remainder from the signed
4059division of its two operands. This instruction can also take
4060:ref:`vector <t_vector>` versions of the values in which case the elements
4061must be integers.
4062
4063Arguments:
4064""""""""""
4065
4066The two arguments to the '``srem``' instruction must be
4067:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4068arguments must have identical types.
4069
4070Semantics:
4071""""""""""
4072
4073This instruction returns the *remainder* of a division (where the result
4074is either zero or has the same sign as the dividend, ``op1``), not the
4075*modulo* operator (where the result is either zero or has the same sign
4076as the divisor, ``op2``) of a value. For more information about the
4077difference, see `The Math
4078Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4079table of how this is implemented in various languages, please see
4080`Wikipedia: modulo
4081operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4082
4083Note that signed integer remainder and unsigned integer remainder are
4084distinct operations; for unsigned integer remainder, use '``urem``'.
4085
4086Taking the remainder of a division by zero leads to undefined behavior.
4087Overflow also leads to undefined behavior; this is a rare case, but can
4088occur, for example, by taking the remainder of a 32-bit division of
4089-2147483648 by -1. (The remainder doesn't actually overflow, but this
4090rule lets srem be implemented using instructions that return both the
4091result of the division and the remainder.)
4092
4093Example:
4094""""""""
4095
4096.. code-block:: llvm
4097
4098 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4099
4100.. _i_frem:
4101
4102'``frem``' Instruction
4103^^^^^^^^^^^^^^^^^^^^^^
4104
4105Syntax:
4106"""""""
4107
4108::
4109
4110 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4111
4112Overview:
4113"""""""""
4114
4115The '``frem``' instruction returns the remainder from the division of
4116its two operands.
4117
4118Arguments:
4119""""""""""
4120
4121The two arguments to the '``frem``' instruction must be :ref:`floating
4122point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4123Both arguments must have identical types.
4124
4125Semantics:
4126""""""""""
4127
4128This instruction returns the *remainder* of a division. The remainder
4129has the same sign as the dividend. This instruction can also take any
4130number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4131to enable otherwise unsafe floating point optimizations:
4132
4133Example:
4134""""""""
4135
4136.. code-block:: llvm
4137
4138 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4139
4140.. _bitwiseops:
4141
4142Bitwise Binary Operations
4143-------------------------
4144
4145Bitwise binary operators are used to do various forms of bit-twiddling
4146in a program. They are generally very efficient instructions and can
4147commonly be strength reduced from other instructions. They require two
4148operands of the same type, execute an operation on them, and produce a
4149single value. The resulting value is the same type as its operands.
4150
4151'``shl``' Instruction
4152^^^^^^^^^^^^^^^^^^^^^
4153
4154Syntax:
4155"""""""
4156
4157::
4158
4159 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4160 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4161 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4162 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4163
4164Overview:
4165"""""""""
4166
4167The '``shl``' instruction returns the first operand shifted to the left
4168a specified number of bits.
4169
4170Arguments:
4171""""""""""
4172
4173Both arguments to the '``shl``' instruction must be the same
4174:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4175'``op2``' is treated as an unsigned value.
4176
4177Semantics:
4178""""""""""
4179
4180The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4181where ``n`` is the width of the result. If ``op2`` is (statically or
4182dynamically) negative or equal to or larger than the number of bits in
4183``op1``, the result is undefined. If the arguments are vectors, each
4184vector element of ``op1`` is shifted by the corresponding shift amount
4185in ``op2``.
4186
4187If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4188value <poisonvalues>` if it shifts out any non-zero bits. If the
4189``nsw`` keyword is present, then the shift produces a :ref:`poison
4190value <poisonvalues>` if it shifts out any bits that disagree with the
4191resultant sign bit. As such, NUW/NSW have the same semantics as they
4192would if the shift were expressed as a mul instruction with the same
4193nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4194
4195Example:
4196""""""""
4197
4198.. code-block:: llvm
4199
4200 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4201 <result> = shl i32 4, 2 ; yields {i32}: 16
4202 <result> = shl i32 1, 10 ; yields {i32}: 1024
4203 <result> = shl i32 1, 32 ; undefined
4204 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4205
4206'``lshr``' Instruction
4207^^^^^^^^^^^^^^^^^^^^^^
4208
4209Syntax:
4210"""""""
4211
4212::
4213
4214 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4215 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4216
4217Overview:
4218"""""""""
4219
4220The '``lshr``' instruction (logical shift right) returns the first
4221operand shifted to the right a specified number of bits with zero fill.
4222
4223Arguments:
4224""""""""""
4225
4226Both arguments to the '``lshr``' instruction must be the same
4227:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4228'``op2``' is treated as an unsigned value.
4229
4230Semantics:
4231""""""""""
4232
4233This instruction always performs a logical shift right operation. The
4234most significant bits of the result will be filled with zero bits after
4235the shift. If ``op2`` is (statically or dynamically) equal to or larger
4236than the number of bits in ``op1``, the result is undefined. If the
4237arguments are vectors, each vector element of ``op1`` is shifted by the
4238corresponding shift amount in ``op2``.
4239
4240If the ``exact`` keyword is present, the result value of the ``lshr`` is
4241a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4242non-zero.
4243
4244Example:
4245""""""""
4246
4247.. code-block:: llvm
4248
4249 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4250 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4251 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004252 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004253 <result> = lshr i32 1, 32 ; undefined
4254 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4255
4256'``ashr``' Instruction
4257^^^^^^^^^^^^^^^^^^^^^^
4258
4259Syntax:
4260"""""""
4261
4262::
4263
4264 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4265 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4266
4267Overview:
4268"""""""""
4269
4270The '``ashr``' instruction (arithmetic shift right) returns the first
4271operand shifted to the right a specified number of bits with sign
4272extension.
4273
4274Arguments:
4275""""""""""
4276
4277Both arguments to the '``ashr``' instruction must be the same
4278:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4279'``op2``' is treated as an unsigned value.
4280
4281Semantics:
4282""""""""""
4283
4284This instruction always performs an arithmetic shift right operation,
4285The most significant bits of the result will be filled with the sign bit
4286of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4287than the number of bits in ``op1``, the result is undefined. If the
4288arguments are vectors, each vector element of ``op1`` is shifted by the
4289corresponding shift amount in ``op2``.
4290
4291If the ``exact`` keyword is present, the result value of the ``ashr`` is
4292a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4293non-zero.
4294
4295Example:
4296""""""""
4297
4298.. code-block:: llvm
4299
4300 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4301 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4302 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4303 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4304 <result> = ashr i32 1, 32 ; undefined
4305 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4306
4307'``and``' Instruction
4308^^^^^^^^^^^^^^^^^^^^^
4309
4310Syntax:
4311"""""""
4312
4313::
4314
4315 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4316
4317Overview:
4318"""""""""
4319
4320The '``and``' instruction returns the bitwise logical and of its two
4321operands.
4322
4323Arguments:
4324""""""""""
4325
4326The two arguments to the '``and``' instruction must be
4327:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4328arguments must have identical types.
4329
4330Semantics:
4331""""""""""
4332
4333The truth table used for the '``and``' instruction is:
4334
4335+-----+-----+-----+
4336| In0 | In1 | Out |
4337+-----+-----+-----+
4338| 0 | 0 | 0 |
4339+-----+-----+-----+
4340| 0 | 1 | 0 |
4341+-----+-----+-----+
4342| 1 | 0 | 0 |
4343+-----+-----+-----+
4344| 1 | 1 | 1 |
4345+-----+-----+-----+
4346
4347Example:
4348""""""""
4349
4350.. code-block:: llvm
4351
4352 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4353 <result> = and i32 15, 40 ; yields {i32}:result = 8
4354 <result> = and i32 4, 8 ; yields {i32}:result = 0
4355
4356'``or``' Instruction
4357^^^^^^^^^^^^^^^^^^^^
4358
4359Syntax:
4360"""""""
4361
4362::
4363
4364 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4365
4366Overview:
4367"""""""""
4368
4369The '``or``' instruction returns the bitwise logical inclusive or of its
4370two operands.
4371
4372Arguments:
4373""""""""""
4374
4375The two arguments to the '``or``' instruction must be
4376:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4377arguments must have identical types.
4378
4379Semantics:
4380""""""""""
4381
4382The truth table used for the '``or``' instruction is:
4383
4384+-----+-----+-----+
4385| In0 | In1 | Out |
4386+-----+-----+-----+
4387| 0 | 0 | 0 |
4388+-----+-----+-----+
4389| 0 | 1 | 1 |
4390+-----+-----+-----+
4391| 1 | 0 | 1 |
4392+-----+-----+-----+
4393| 1 | 1 | 1 |
4394+-----+-----+-----+
4395
4396Example:
4397""""""""
4398
4399::
4400
4401 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4402 <result> = or i32 15, 40 ; yields {i32}:result = 47
4403 <result> = or i32 4, 8 ; yields {i32}:result = 12
4404
4405'``xor``' Instruction
4406^^^^^^^^^^^^^^^^^^^^^
4407
4408Syntax:
4409"""""""
4410
4411::
4412
4413 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4414
4415Overview:
4416"""""""""
4417
4418The '``xor``' instruction returns the bitwise logical exclusive or of
4419its two operands. The ``xor`` is used to implement the "one's
4420complement" operation, which is the "~" operator in C.
4421
4422Arguments:
4423""""""""""
4424
4425The two arguments to the '``xor``' instruction must be
4426:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4427arguments must have identical types.
4428
4429Semantics:
4430""""""""""
4431
4432The truth table used for the '``xor``' instruction is:
4433
4434+-----+-----+-----+
4435| In0 | In1 | Out |
4436+-----+-----+-----+
4437| 0 | 0 | 0 |
4438+-----+-----+-----+
4439| 0 | 1 | 1 |
4440+-----+-----+-----+
4441| 1 | 0 | 1 |
4442+-----+-----+-----+
4443| 1 | 1 | 0 |
4444+-----+-----+-----+
4445
4446Example:
4447""""""""
4448
4449.. code-block:: llvm
4450
4451 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4452 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4453 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4454 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4455
4456Vector Operations
4457-----------------
4458
4459LLVM supports several instructions to represent vector operations in a
4460target-independent manner. These instructions cover the element-access
4461and vector-specific operations needed to process vectors effectively.
4462While LLVM does directly support these vector operations, many
4463sophisticated algorithms will want to use target-specific intrinsics to
4464take full advantage of a specific target.
4465
4466.. _i_extractelement:
4467
4468'``extractelement``' Instruction
4469^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4470
4471Syntax:
4472"""""""
4473
4474::
4475
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004476 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004477
4478Overview:
4479"""""""""
4480
4481The '``extractelement``' instruction extracts a single scalar element
4482from a vector at a specified index.
4483
4484Arguments:
4485""""""""""
4486
4487The first operand of an '``extractelement``' instruction is a value of
4488:ref:`vector <t_vector>` type. The second operand is an index indicating
4489the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004490variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004491
4492Semantics:
4493""""""""""
4494
4495The result is a scalar of the same type as the element type of ``val``.
4496Its value is the value at position ``idx`` of ``val``. If ``idx``
4497exceeds the length of ``val``, the results are undefined.
4498
4499Example:
4500""""""""
4501
4502.. code-block:: llvm
4503
4504 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4505
4506.. _i_insertelement:
4507
4508'``insertelement``' Instruction
4509^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4510
4511Syntax:
4512"""""""
4513
4514::
4515
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004516 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004517
4518Overview:
4519"""""""""
4520
4521The '``insertelement``' instruction inserts a scalar element into a
4522vector at a specified index.
4523
4524Arguments:
4525""""""""""
4526
4527The first operand of an '``insertelement``' instruction is a value of
4528:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4529type must equal the element type of the first operand. The third operand
4530is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004531index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004532
4533Semantics:
4534""""""""""
4535
4536The result is a vector of the same type as ``val``. Its element values
4537are those of ``val`` except at position ``idx``, where it gets the value
4538``elt``. If ``idx`` exceeds the length of ``val``, the results are
4539undefined.
4540
4541Example:
4542""""""""
4543
4544.. code-block:: llvm
4545
4546 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4547
4548.. _i_shufflevector:
4549
4550'``shufflevector``' Instruction
4551^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4552
4553Syntax:
4554"""""""
4555
4556::
4557
4558 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4559
4560Overview:
4561"""""""""
4562
4563The '``shufflevector``' instruction constructs a permutation of elements
4564from two input vectors, returning a vector with the same element type as
4565the input and length that is the same as the shuffle mask.
4566
4567Arguments:
4568""""""""""
4569
4570The first two operands of a '``shufflevector``' instruction are vectors
4571with the same type. The third argument is a shuffle mask whose element
4572type is always 'i32'. The result of the instruction is a vector whose
4573length is the same as the shuffle mask and whose element type is the
4574same as the element type of the first two operands.
4575
4576The shuffle mask operand is required to be a constant vector with either
4577constant integer or undef values.
4578
4579Semantics:
4580""""""""""
4581
4582The elements of the two input vectors are numbered from left to right
4583across both of the vectors. The shuffle mask operand specifies, for each
4584element of the result vector, which element of the two input vectors the
4585result element gets. The element selector may be undef (meaning "don't
4586care") and the second operand may be undef if performing a shuffle from
4587only one vector.
4588
4589Example:
4590""""""""
4591
4592.. code-block:: llvm
4593
4594 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4595 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4596 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4597 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4598 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4599 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4600 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4601 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4602
4603Aggregate Operations
4604--------------------
4605
4606LLVM supports several instructions for working with
4607:ref:`aggregate <t_aggregate>` values.
4608
4609.. _i_extractvalue:
4610
4611'``extractvalue``' Instruction
4612^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4613
4614Syntax:
4615"""""""
4616
4617::
4618
4619 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4620
4621Overview:
4622"""""""""
4623
4624The '``extractvalue``' instruction extracts the value of a member field
4625from an :ref:`aggregate <t_aggregate>` value.
4626
4627Arguments:
4628""""""""""
4629
4630The first operand of an '``extractvalue``' instruction is a value of
4631:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4632constant indices to specify which value to extract in a similar manner
4633as indices in a '``getelementptr``' instruction.
4634
4635The major differences to ``getelementptr`` indexing are:
4636
4637- Since the value being indexed is not a pointer, the first index is
4638 omitted and assumed to be zero.
4639- At least one index must be specified.
4640- Not only struct indices but also array indices must be in bounds.
4641
4642Semantics:
4643""""""""""
4644
4645The result is the value at the position in the aggregate specified by
4646the index operands.
4647
4648Example:
4649""""""""
4650
4651.. code-block:: llvm
4652
4653 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4654
4655.. _i_insertvalue:
4656
4657'``insertvalue``' Instruction
4658^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4659
4660Syntax:
4661"""""""
4662
4663::
4664
4665 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4666
4667Overview:
4668"""""""""
4669
4670The '``insertvalue``' instruction inserts a value into a member field in
4671an :ref:`aggregate <t_aggregate>` value.
4672
4673Arguments:
4674""""""""""
4675
4676The first operand of an '``insertvalue``' instruction is a value of
4677:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4678a first-class value to insert. The following operands are constant
4679indices indicating the position at which to insert the value in a
4680similar manner as indices in a '``extractvalue``' instruction. The value
4681to insert must have the same type as the value identified by the
4682indices.
4683
4684Semantics:
4685""""""""""
4686
4687The result is an aggregate of the same type as ``val``. Its value is
4688that of ``val`` except that the value at the position specified by the
4689indices is that of ``elt``.
4690
4691Example:
4692""""""""
4693
4694.. code-block:: llvm
4695
4696 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4697 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4698 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4699
4700.. _memoryops:
4701
4702Memory Access and Addressing Operations
4703---------------------------------------
4704
4705A key design point of an SSA-based representation is how it represents
4706memory. In LLVM, no memory locations are in SSA form, which makes things
4707very simple. This section describes how to read, write, and allocate
4708memory in LLVM.
4709
4710.. _i_alloca:
4711
4712'``alloca``' Instruction
4713^^^^^^^^^^^^^^^^^^^^^^^^
4714
4715Syntax:
4716"""""""
4717
4718::
4719
David Majnemerc4ab61c2014-03-09 06:41:58 +00004720 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields {type*}:result
Sean Silvab084af42012-12-07 10:36:55 +00004721
4722Overview:
4723"""""""""
4724
4725The '``alloca``' instruction allocates memory on the stack frame of the
4726currently executing function, to be automatically released when this
4727function returns to its caller. The object is always allocated in the
4728generic address space (address space zero).
4729
4730Arguments:
4731""""""""""
4732
4733The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4734bytes of memory on the runtime stack, returning a pointer of the
4735appropriate type to the program. If "NumElements" is specified, it is
4736the number of elements allocated, otherwise "NumElements" is defaulted
4737to be one. If a constant alignment is specified, the value result of the
4738allocation is guaranteed to be aligned to at least that boundary. If not
4739specified, or if zero, the target can choose to align the allocation on
4740any convenient boundary compatible with the type.
4741
4742'``type``' may be any sized type.
4743
4744Semantics:
4745""""""""""
4746
4747Memory is allocated; a pointer is returned. The operation is undefined
4748if there is insufficient stack space for the allocation. '``alloca``'d
4749memory is automatically released when the function returns. The
4750'``alloca``' instruction is commonly used to represent automatic
4751variables that must have an address available. When the function returns
4752(either with the ``ret`` or ``resume`` instructions), the memory is
4753reclaimed. Allocating zero bytes is legal, but the result is undefined.
4754The order in which memory is allocated (ie., which way the stack grows)
4755is not specified.
4756
4757Example:
4758""""""""
4759
4760.. code-block:: llvm
4761
4762 %ptr = alloca i32 ; yields {i32*}:ptr
4763 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4764 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4765 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4766
4767.. _i_load:
4768
4769'``load``' Instruction
4770^^^^^^^^^^^^^^^^^^^^^^
4771
4772Syntax:
4773"""""""
4774
4775::
4776
4777 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4778 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4779 !<index> = !{ i32 1 }
4780
4781Overview:
4782"""""""""
4783
4784The '``load``' instruction is used to read from memory.
4785
4786Arguments:
4787""""""""""
4788
Eli Bendersky239a78b2013-04-17 20:17:08 +00004789The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004790from which to load. The pointer must point to a :ref:`first
4791class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4792then the optimizer is not allowed to modify the number or order of
4793execution of this ``load`` with other :ref:`volatile
4794operations <volatile>`.
4795
4796If the ``load`` is marked as ``atomic``, it takes an extra
4797:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4798``release`` and ``acq_rel`` orderings are not valid on ``load``
4799instructions. Atomic loads produce :ref:`defined <memmodel>` results
4800when they may see multiple atomic stores. The type of the pointee must
4801be an integer type whose bit width is a power of two greater than or
4802equal to eight and less than or equal to a target-specific size limit.
4803``align`` must be explicitly specified on atomic loads, and the load has
4804undefined behavior if the alignment is not set to a value which is at
4805least the size in bytes of the pointee. ``!nontemporal`` does not have
4806any defined semantics for atomic loads.
4807
4808The optional constant ``align`` argument specifies the alignment of the
4809operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004810or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004811alignment for the target. It is the responsibility of the code emitter
4812to ensure that the alignment information is correct. Overestimating the
4813alignment results in undefined behavior. Underestimating the alignment
4814may produce less efficient code. An alignment of 1 is always safe.
4815
4816The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004817metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004818``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004819metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004820that this load is not expected to be reused in the cache. The code
4821generator may select special instructions to save cache bandwidth, such
4822as the ``MOVNT`` instruction on x86.
4823
4824The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004825metadata name ``<index>`` corresponding to a metadata node with no
4826entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004827instruction tells the optimizer and code generator that this load
4828address points to memory which does not change value during program
4829execution. The optimizer may then move this load around, for example, by
4830hoisting it out of loops using loop invariant code motion.
4831
4832Semantics:
4833""""""""""
4834
4835The location of memory pointed to is loaded. If the value being loaded
4836is of scalar type then the number of bytes read does not exceed the
4837minimum number of bytes needed to hold all bits of the type. For
4838example, loading an ``i24`` reads at most three bytes. When loading a
4839value of a type like ``i20`` with a size that is not an integral number
4840of bytes, the result is undefined if the value was not originally
4841written using a store of the same type.
4842
4843Examples:
4844"""""""""
4845
4846.. code-block:: llvm
4847
4848 %ptr = alloca i32 ; yields {i32*}:ptr
4849 store i32 3, i32* %ptr ; yields {void}
4850 %val = load i32* %ptr ; yields {i32}:val = i32 3
4851
4852.. _i_store:
4853
4854'``store``' Instruction
4855^^^^^^^^^^^^^^^^^^^^^^^
4856
4857Syntax:
4858"""""""
4859
4860::
4861
4862 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4863 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4864
4865Overview:
4866"""""""""
4867
4868The '``store``' instruction is used to write to memory.
4869
4870Arguments:
4871""""""""""
4872
Eli Benderskyca380842013-04-17 17:17:20 +00004873There are two arguments to the ``store`` instruction: a value to store
4874and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004875operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004876the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004877then the optimizer is not allowed to modify the number or order of
4878execution of this ``store`` with other :ref:`volatile
4879operations <volatile>`.
4880
4881If the ``store`` is marked as ``atomic``, it takes an extra
4882:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4883``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4884instructions. Atomic loads produce :ref:`defined <memmodel>` results
4885when they may see multiple atomic stores. The type of the pointee must
4886be an integer type whose bit width is a power of two greater than or
4887equal to eight and less than or equal to a target-specific size limit.
4888``align`` must be explicitly specified on atomic stores, and the store
4889has undefined behavior if the alignment is not set to a value which is
4890at least the size in bytes of the pointee. ``!nontemporal`` does not
4891have any defined semantics for atomic stores.
4892
Eli Benderskyca380842013-04-17 17:17:20 +00004893The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004894operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004895or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004896alignment for the target. It is the responsibility of the code emitter
4897to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004898alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004899alignment may produce less efficient code. An alignment of 1 is always
4900safe.
4901
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004902The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004903name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004904value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004905tells the optimizer and code generator that this load is not expected to
4906be reused in the cache. The code generator may select special
4907instructions to save cache bandwidth, such as the MOVNT instruction on
4908x86.
4909
4910Semantics:
4911""""""""""
4912
Eli Benderskyca380842013-04-17 17:17:20 +00004913The contents of memory are updated to contain ``<value>`` at the
4914location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004915of scalar type then the number of bytes written does not exceed the
4916minimum number of bytes needed to hold all bits of the type. For
4917example, storing an ``i24`` writes at most three bytes. When writing a
4918value of a type like ``i20`` with a size that is not an integral number
4919of bytes, it is unspecified what happens to the extra bits that do not
4920belong to the type, but they will typically be overwritten.
4921
4922Example:
4923""""""""
4924
4925.. code-block:: llvm
4926
4927 %ptr = alloca i32 ; yields {i32*}:ptr
4928 store i32 3, i32* %ptr ; yields {void}
4929 %val = load i32* %ptr ; yields {i32}:val = i32 3
4930
4931.. _i_fence:
4932
4933'``fence``' Instruction
4934^^^^^^^^^^^^^^^^^^^^^^^
4935
4936Syntax:
4937"""""""
4938
4939::
4940
4941 fence [singlethread] <ordering> ; yields {void}
4942
4943Overview:
4944"""""""""
4945
4946The '``fence``' instruction is used to introduce happens-before edges
4947between operations.
4948
4949Arguments:
4950""""""""""
4951
4952'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4953defines what *synchronizes-with* edges they add. They can only be given
4954``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4955
4956Semantics:
4957""""""""""
4958
4959A fence A which has (at least) ``release`` ordering semantics
4960*synchronizes with* a fence B with (at least) ``acquire`` ordering
4961semantics if and only if there exist atomic operations X and Y, both
4962operating on some atomic object M, such that A is sequenced before X, X
4963modifies M (either directly or through some side effect of a sequence
4964headed by X), Y is sequenced before B, and Y observes M. This provides a
4965*happens-before* dependency between A and B. Rather than an explicit
4966``fence``, one (but not both) of the atomic operations X or Y might
4967provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4968still *synchronize-with* the explicit ``fence`` and establish the
4969*happens-before* edge.
4970
4971A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4972``acquire`` and ``release`` semantics specified above, participates in
4973the global program order of other ``seq_cst`` operations and/or fences.
4974
4975The optional ":ref:`singlethread <singlethread>`" argument specifies
4976that the fence only synchronizes with other fences in the same thread.
4977(This is useful for interacting with signal handlers.)
4978
4979Example:
4980""""""""
4981
4982.. code-block:: llvm
4983
4984 fence acquire ; yields {void}
4985 fence singlethread seq_cst ; yields {void}
4986
4987.. _i_cmpxchg:
4988
4989'``cmpxchg``' Instruction
4990^^^^^^^^^^^^^^^^^^^^^^^^^
4991
4992Syntax:
4993"""""""
4994
4995::
4996
Tim Northovere94a5182014-03-11 10:48:52 +00004997 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields {ty}
Sean Silvab084af42012-12-07 10:36:55 +00004998
4999Overview:
5000"""""""""
5001
5002The '``cmpxchg``' instruction is used to atomically modify memory. It
5003loads a value in memory and compares it to a given value. If they are
5004equal, it stores a new value into the memory.
5005
5006Arguments:
5007""""""""""
5008
5009There are three arguments to the '``cmpxchg``' instruction: an address
5010to operate on, a value to compare to the value currently be at that
5011address, and a new value to place at that address if the compared values
5012are equal. The type of '<cmp>' must be an integer type whose bit width
5013is a power of two greater than or equal to eight and less than or equal
5014to a target-specific size limit. '<cmp>' and '<new>' must have the same
5015type, and the type of '<pointer>' must be a pointer to that type. If the
5016``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5017to modify the number or order of execution of this ``cmpxchg`` with
5018other :ref:`volatile operations <volatile>`.
5019
Tim Northovere94a5182014-03-11 10:48:52 +00005020The success and failure :ref:`ordering <ordering>` arguments specify how this
5021``cmpxchg`` synchronizes with other atomic operations. The both ordering
5022parameters must be at least ``monotonic``, the ordering constraint on failure
5023must be no stronger than that on success, and the failure ordering cannot be
5024either ``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005025
5026The optional "``singlethread``" argument declares that the ``cmpxchg``
5027is only atomic with respect to code (usually signal handlers) running in
5028the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5029respect to all other code in the system.
5030
5031The pointer passed into cmpxchg must have alignment greater than or
5032equal to the size in memory of the operand.
5033
5034Semantics:
5035""""""""""
5036
5037The contents of memory at the location specified by the '``<pointer>``'
5038operand is read and compared to '``<cmp>``'; if the read value is the
5039equal, '``<new>``' is written. The original value at the location is
5040returned.
5041
Tim Northovere94a5182014-03-11 10:48:52 +00005042A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5043identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5044load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005045
5046Example:
5047""""""""
5048
5049.. code-block:: llvm
5050
5051 entry:
5052 %orig = atomic load i32* %ptr unordered ; yields {i32}
5053 br label %loop
5054
5055 loop:
5056 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5057 %squared = mul i32 %cmp, %cmp
Tim Northovere94a5182014-03-11 10:48:52 +00005058 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields {i32}
Sean Silvab084af42012-12-07 10:36:55 +00005059 %success = icmp eq i32 %cmp, %old
5060 br i1 %success, label %done, label %loop
5061
5062 done:
5063 ...
5064
5065.. _i_atomicrmw:
5066
5067'``atomicrmw``' Instruction
5068^^^^^^^^^^^^^^^^^^^^^^^^^^^
5069
5070Syntax:
5071"""""""
5072
5073::
5074
5075 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5076
5077Overview:
5078"""""""""
5079
5080The '``atomicrmw``' instruction is used to atomically modify memory.
5081
5082Arguments:
5083""""""""""
5084
5085There are three arguments to the '``atomicrmw``' instruction: an
5086operation to apply, an address whose value to modify, an argument to the
5087operation. The operation must be one of the following keywords:
5088
5089- xchg
5090- add
5091- sub
5092- and
5093- nand
5094- or
5095- xor
5096- max
5097- min
5098- umax
5099- umin
5100
5101The type of '<value>' must be an integer type whose bit width is a power
5102of two greater than or equal to eight and less than or equal to a
5103target-specific size limit. The type of the '``<pointer>``' operand must
5104be a pointer to that type. If the ``atomicrmw`` is marked as
5105``volatile``, then the optimizer is not allowed to modify the number or
5106order of execution of this ``atomicrmw`` with other :ref:`volatile
5107operations <volatile>`.
5108
5109Semantics:
5110""""""""""
5111
5112The contents of memory at the location specified by the '``<pointer>``'
5113operand are atomically read, modified, and written back. The original
5114value at the location is returned. The modification is specified by the
5115operation argument:
5116
5117- xchg: ``*ptr = val``
5118- add: ``*ptr = *ptr + val``
5119- sub: ``*ptr = *ptr - val``
5120- and: ``*ptr = *ptr & val``
5121- nand: ``*ptr = ~(*ptr & val)``
5122- or: ``*ptr = *ptr | val``
5123- xor: ``*ptr = *ptr ^ val``
5124- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5125- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5126- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5127 comparison)
5128- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5129 comparison)
5130
5131Example:
5132""""""""
5133
5134.. code-block:: llvm
5135
5136 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5137
5138.. _i_getelementptr:
5139
5140'``getelementptr``' Instruction
5141^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5142
5143Syntax:
5144"""""""
5145
5146::
5147
5148 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5149 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5150 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5151
5152Overview:
5153"""""""""
5154
5155The '``getelementptr``' instruction is used to get the address of a
5156subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5157address calculation only and does not access memory.
5158
5159Arguments:
5160""""""""""
5161
5162The first argument is always a pointer or a vector of pointers, and
5163forms the basis of the calculation. The remaining arguments are indices
5164that indicate which of the elements of the aggregate object are indexed.
5165The interpretation of each index is dependent on the type being indexed
5166into. The first index always indexes the pointer value given as the
5167first argument, the second index indexes a value of the type pointed to
5168(not necessarily the value directly pointed to, since the first index
5169can be non-zero), etc. The first type indexed into must be a pointer
5170value, subsequent types can be arrays, vectors, and structs. Note that
5171subsequent types being indexed into can never be pointers, since that
5172would require loading the pointer before continuing calculation.
5173
5174The type of each index argument depends on the type it is indexing into.
5175When indexing into a (optionally packed) structure, only ``i32`` integer
5176**constants** are allowed (when using a vector of indices they must all
5177be the **same** ``i32`` integer constant). When indexing into an array,
5178pointer or vector, integers of any width are allowed, and they are not
5179required to be constant. These integers are treated as signed values
5180where relevant.
5181
5182For example, let's consider a C code fragment and how it gets compiled
5183to LLVM:
5184
5185.. code-block:: c
5186
5187 struct RT {
5188 char A;
5189 int B[10][20];
5190 char C;
5191 };
5192 struct ST {
5193 int X;
5194 double Y;
5195 struct RT Z;
5196 };
5197
5198 int *foo(struct ST *s) {
5199 return &s[1].Z.B[5][13];
5200 }
5201
5202The LLVM code generated by Clang is:
5203
5204.. code-block:: llvm
5205
5206 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5207 %struct.ST = type { i32, double, %struct.RT }
5208
5209 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5210 entry:
5211 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5212 ret i32* %arrayidx
5213 }
5214
5215Semantics:
5216""""""""""
5217
5218In the example above, the first index is indexing into the
5219'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5220= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5221indexes into the third element of the structure, yielding a
5222'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5223structure. The third index indexes into the second element of the
5224structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5225dimensions of the array are subscripted into, yielding an '``i32``'
5226type. The '``getelementptr``' instruction returns a pointer to this
5227element, thus computing a value of '``i32*``' type.
5228
5229Note that it is perfectly legal to index partially through a structure,
5230returning a pointer to an inner element. Because of this, the LLVM code
5231for the given testcase is equivalent to:
5232
5233.. code-block:: llvm
5234
5235 define i32* @foo(%struct.ST* %s) {
5236 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5237 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5238 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5239 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5240 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5241 ret i32* %t5
5242 }
5243
5244If the ``inbounds`` keyword is present, the result value of the
5245``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5246pointer is not an *in bounds* address of an allocated object, or if any
5247of the addresses that would be formed by successive addition of the
5248offsets implied by the indices to the base address with infinitely
5249precise signed arithmetic are not an *in bounds* address of that
5250allocated object. The *in bounds* addresses for an allocated object are
5251all the addresses that point into the object, plus the address one byte
5252past the end. In cases where the base is a vector of pointers the
5253``inbounds`` keyword applies to each of the computations element-wise.
5254
5255If the ``inbounds`` keyword is not present, the offsets are added to the
5256base address with silently-wrapping two's complement arithmetic. If the
5257offsets have a different width from the pointer, they are sign-extended
5258or truncated to the width of the pointer. The result value of the
5259``getelementptr`` may be outside the object pointed to by the base
5260pointer. The result value may not necessarily be used to access memory
5261though, even if it happens to point into allocated storage. See the
5262:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5263information.
5264
5265The getelementptr instruction is often confusing. For some more insight
5266into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5267
5268Example:
5269""""""""
5270
5271.. code-block:: llvm
5272
5273 ; yields [12 x i8]*:aptr
5274 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5275 ; yields i8*:vptr
5276 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5277 ; yields i8*:eptr
5278 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5279 ; yields i32*:iptr
5280 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5281
5282In cases where the pointer argument is a vector of pointers, each index
5283must be a vector with the same number of elements. For example:
5284
5285.. code-block:: llvm
5286
5287 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5288
5289Conversion Operations
5290---------------------
5291
5292The instructions in this category are the conversion instructions
5293(casting) which all take a single operand and a type. They perform
5294various bit conversions on the operand.
5295
5296'``trunc .. to``' Instruction
5297^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5298
5299Syntax:
5300"""""""
5301
5302::
5303
5304 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5305
5306Overview:
5307"""""""""
5308
5309The '``trunc``' instruction truncates its operand to the type ``ty2``.
5310
5311Arguments:
5312""""""""""
5313
5314The '``trunc``' instruction takes a value to trunc, and a type to trunc
5315it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5316of the same number of integers. The bit size of the ``value`` must be
5317larger than the bit size of the destination type, ``ty2``. Equal sized
5318types are not allowed.
5319
5320Semantics:
5321""""""""""
5322
5323The '``trunc``' instruction truncates the high order bits in ``value``
5324and converts the remaining bits to ``ty2``. Since the source size must
5325be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5326It will always truncate bits.
5327
5328Example:
5329""""""""
5330
5331.. code-block:: llvm
5332
5333 %X = trunc i32 257 to i8 ; yields i8:1
5334 %Y = trunc i32 123 to i1 ; yields i1:true
5335 %Z = trunc i32 122 to i1 ; yields i1:false
5336 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5337
5338'``zext .. to``' Instruction
5339^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5340
5341Syntax:
5342"""""""
5343
5344::
5345
5346 <result> = zext <ty> <value> to <ty2> ; yields ty2
5347
5348Overview:
5349"""""""""
5350
5351The '``zext``' instruction zero extends its operand to type ``ty2``.
5352
5353Arguments:
5354""""""""""
5355
5356The '``zext``' instruction takes a value to cast, and a type to cast it
5357to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5358the same number of integers. The bit size of the ``value`` must be
5359smaller than the bit size of the destination type, ``ty2``.
5360
5361Semantics:
5362""""""""""
5363
5364The ``zext`` fills the high order bits of the ``value`` with zero bits
5365until it reaches the size of the destination type, ``ty2``.
5366
5367When zero extending from i1, the result will always be either 0 or 1.
5368
5369Example:
5370""""""""
5371
5372.. code-block:: llvm
5373
5374 %X = zext i32 257 to i64 ; yields i64:257
5375 %Y = zext i1 true to i32 ; yields i32:1
5376 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5377
5378'``sext .. to``' Instruction
5379^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5380
5381Syntax:
5382"""""""
5383
5384::
5385
5386 <result> = sext <ty> <value> to <ty2> ; yields ty2
5387
5388Overview:
5389"""""""""
5390
5391The '``sext``' sign extends ``value`` to the type ``ty2``.
5392
5393Arguments:
5394""""""""""
5395
5396The '``sext``' instruction takes a value to cast, and a type to cast it
5397to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5398the same number of integers. The bit size of the ``value`` must be
5399smaller than the bit size of the destination type, ``ty2``.
5400
5401Semantics:
5402""""""""""
5403
5404The '``sext``' instruction performs a sign extension by copying the sign
5405bit (highest order bit) of the ``value`` until it reaches the bit size
5406of the type ``ty2``.
5407
5408When sign extending from i1, the extension always results in -1 or 0.
5409
5410Example:
5411""""""""
5412
5413.. code-block:: llvm
5414
5415 %X = sext i8 -1 to i16 ; yields i16 :65535
5416 %Y = sext i1 true to i32 ; yields i32:-1
5417 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5418
5419'``fptrunc .. to``' Instruction
5420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5421
5422Syntax:
5423"""""""
5424
5425::
5426
5427 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5428
5429Overview:
5430"""""""""
5431
5432The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5433
5434Arguments:
5435""""""""""
5436
5437The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5438value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5439The size of ``value`` must be larger than the size of ``ty2``. This
5440implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5441
5442Semantics:
5443""""""""""
5444
5445The '``fptrunc``' instruction truncates a ``value`` from a larger
5446:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5447point <t_floating>` type. If the value cannot fit within the
5448destination type, ``ty2``, then the results are undefined.
5449
5450Example:
5451""""""""
5452
5453.. code-block:: llvm
5454
5455 %X = fptrunc double 123.0 to float ; yields float:123.0
5456 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5457
5458'``fpext .. to``' Instruction
5459^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5460
5461Syntax:
5462"""""""
5463
5464::
5465
5466 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5467
5468Overview:
5469"""""""""
5470
5471The '``fpext``' extends a floating point ``value`` to a larger floating
5472point value.
5473
5474Arguments:
5475""""""""""
5476
5477The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5478``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5479to. The source type must be smaller than the destination type.
5480
5481Semantics:
5482""""""""""
5483
5484The '``fpext``' instruction extends the ``value`` from a smaller
5485:ref:`floating point <t_floating>` type to a larger :ref:`floating
5486point <t_floating>` type. The ``fpext`` cannot be used to make a
5487*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5488*no-op cast* for a floating point cast.
5489
5490Example:
5491""""""""
5492
5493.. code-block:: llvm
5494
5495 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5496 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5497
5498'``fptoui .. to``' Instruction
5499^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5500
5501Syntax:
5502"""""""
5503
5504::
5505
5506 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5507
5508Overview:
5509"""""""""
5510
5511The '``fptoui``' converts a floating point ``value`` to its unsigned
5512integer equivalent of type ``ty2``.
5513
5514Arguments:
5515""""""""""
5516
5517The '``fptoui``' instruction takes a value to cast, which must be a
5518scalar or vector :ref:`floating point <t_floating>` value, and a type to
5519cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5520``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5521type with the same number of elements as ``ty``
5522
5523Semantics:
5524""""""""""
5525
5526The '``fptoui``' instruction converts its :ref:`floating
5527point <t_floating>` operand into the nearest (rounding towards zero)
5528unsigned integer value. If the value cannot fit in ``ty2``, the results
5529are undefined.
5530
5531Example:
5532""""""""
5533
5534.. code-block:: llvm
5535
5536 %X = fptoui double 123.0 to i32 ; yields i32:123
5537 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5538 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5539
5540'``fptosi .. to``' Instruction
5541^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5542
5543Syntax:
5544"""""""
5545
5546::
5547
5548 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5549
5550Overview:
5551"""""""""
5552
5553The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5554``value`` to type ``ty2``.
5555
5556Arguments:
5557""""""""""
5558
5559The '``fptosi``' instruction takes a value to cast, which must be a
5560scalar or vector :ref:`floating point <t_floating>` value, and a type to
5561cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5562``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5563type with the same number of elements as ``ty``
5564
5565Semantics:
5566""""""""""
5567
5568The '``fptosi``' instruction converts its :ref:`floating
5569point <t_floating>` operand into the nearest (rounding towards zero)
5570signed integer value. If the value cannot fit in ``ty2``, the results
5571are undefined.
5572
5573Example:
5574""""""""
5575
5576.. code-block:: llvm
5577
5578 %X = fptosi double -123.0 to i32 ; yields i32:-123
5579 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5580 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5581
5582'``uitofp .. to``' Instruction
5583^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5584
5585Syntax:
5586"""""""
5587
5588::
5589
5590 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5591
5592Overview:
5593"""""""""
5594
5595The '``uitofp``' instruction regards ``value`` as an unsigned integer
5596and converts that value to the ``ty2`` type.
5597
5598Arguments:
5599""""""""""
5600
5601The '``uitofp``' instruction takes a value to cast, which must be a
5602scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5603``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5604``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5605type with the same number of elements as ``ty``
5606
5607Semantics:
5608""""""""""
5609
5610The '``uitofp``' instruction interprets its operand as an unsigned
5611integer quantity and converts it to the corresponding floating point
5612value. If the value cannot fit in the floating point value, the results
5613are undefined.
5614
5615Example:
5616""""""""
5617
5618.. code-block:: llvm
5619
5620 %X = uitofp i32 257 to float ; yields float:257.0
5621 %Y = uitofp i8 -1 to double ; yields double:255.0
5622
5623'``sitofp .. to``' Instruction
5624^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5625
5626Syntax:
5627"""""""
5628
5629::
5630
5631 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5632
5633Overview:
5634"""""""""
5635
5636The '``sitofp``' instruction regards ``value`` as a signed integer and
5637converts that value to the ``ty2`` type.
5638
5639Arguments:
5640""""""""""
5641
5642The '``sitofp``' instruction takes a value to cast, which must be a
5643scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5644``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5645``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5646type with the same number of elements as ``ty``
5647
5648Semantics:
5649""""""""""
5650
5651The '``sitofp``' instruction interprets its operand as a signed integer
5652quantity and converts it to the corresponding floating point value. If
5653the value cannot fit in the floating point value, the results are
5654undefined.
5655
5656Example:
5657""""""""
5658
5659.. code-block:: llvm
5660
5661 %X = sitofp i32 257 to float ; yields float:257.0
5662 %Y = sitofp i8 -1 to double ; yields double:-1.0
5663
5664.. _i_ptrtoint:
5665
5666'``ptrtoint .. to``' Instruction
5667^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5668
5669Syntax:
5670"""""""
5671
5672::
5673
5674 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5675
5676Overview:
5677"""""""""
5678
5679The '``ptrtoint``' instruction converts the pointer or a vector of
5680pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5681
5682Arguments:
5683""""""""""
5684
5685The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5686a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5687type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5688a vector of integers type.
5689
5690Semantics:
5691""""""""""
5692
5693The '``ptrtoint``' instruction converts ``value`` to integer type
5694``ty2`` by interpreting the pointer value as an integer and either
5695truncating or zero extending that value to the size of the integer type.
5696If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5697``value`` is larger than ``ty2`` then a truncation is done. If they are
5698the same size, then nothing is done (*no-op cast*) other than a type
5699change.
5700
5701Example:
5702""""""""
5703
5704.. code-block:: llvm
5705
5706 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5707 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5708 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5709
5710.. _i_inttoptr:
5711
5712'``inttoptr .. to``' Instruction
5713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5714
5715Syntax:
5716"""""""
5717
5718::
5719
5720 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5721
5722Overview:
5723"""""""""
5724
5725The '``inttoptr``' instruction converts an integer ``value`` to a
5726pointer type, ``ty2``.
5727
5728Arguments:
5729""""""""""
5730
5731The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5732cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5733type.
5734
5735Semantics:
5736""""""""""
5737
5738The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5739applying either a zero extension or a truncation depending on the size
5740of the integer ``value``. If ``value`` is larger than the size of a
5741pointer then a truncation is done. If ``value`` is smaller than the size
5742of a pointer then a zero extension is done. If they are the same size,
5743nothing is done (*no-op cast*).
5744
5745Example:
5746""""""""
5747
5748.. code-block:: llvm
5749
5750 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5751 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5752 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5753 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5754
5755.. _i_bitcast:
5756
5757'``bitcast .. to``' Instruction
5758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5759
5760Syntax:
5761"""""""
5762
5763::
5764
5765 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5766
5767Overview:
5768"""""""""
5769
5770The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5771changing any bits.
5772
5773Arguments:
5774""""""""""
5775
5776The '``bitcast``' instruction takes a value to cast, which must be a
5777non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005778also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5779bit sizes of ``value`` and the destination type, ``ty2``, must be
5780identical. If the source type is a pointer, the destination type must
5781also be a pointer of the same size. This instruction supports bitwise
5782conversion of vectors to integers and to vectors of other types (as
5783long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005784
5785Semantics:
5786""""""""""
5787
Matt Arsenault24b49c42013-07-31 17:49:08 +00005788The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5789is always a *no-op cast* because no bits change with this
5790conversion. The conversion is done as if the ``value`` had been stored
5791to memory and read back as type ``ty2``. Pointer (or vector of
5792pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005793pointers) types with the same address space through this instruction.
5794To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5795or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005796
5797Example:
5798""""""""
5799
5800.. code-block:: llvm
5801
5802 %X = bitcast i8 255 to i8 ; yields i8 :-1
5803 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5804 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5805 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5806
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005807.. _i_addrspacecast:
5808
5809'``addrspacecast .. to``' Instruction
5810^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5811
5812Syntax:
5813"""""""
5814
5815::
5816
5817 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5818
5819Overview:
5820"""""""""
5821
5822The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5823address space ``n`` to type ``pty2`` in address space ``m``.
5824
5825Arguments:
5826""""""""""
5827
5828The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5829to cast and a pointer type to cast it to, which must have a different
5830address space.
5831
5832Semantics:
5833""""""""""
5834
5835The '``addrspacecast``' instruction converts the pointer value
5836``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005837value modification, depending on the target and the address space
5838pair. Pointer conversions within the same address space must be
5839performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005840conversion is legal then both result and operand refer to the same memory
5841location.
5842
5843Example:
5844""""""""
5845
5846.. code-block:: llvm
5847
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005848 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5849 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5850 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005851
Sean Silvab084af42012-12-07 10:36:55 +00005852.. _otherops:
5853
5854Other Operations
5855----------------
5856
5857The instructions in this category are the "miscellaneous" instructions,
5858which defy better classification.
5859
5860.. _i_icmp:
5861
5862'``icmp``' Instruction
5863^^^^^^^^^^^^^^^^^^^^^^
5864
5865Syntax:
5866"""""""
5867
5868::
5869
5870 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5871
5872Overview:
5873"""""""""
5874
5875The '``icmp``' instruction returns a boolean value or a vector of
5876boolean values based on comparison of its two integer, integer vector,
5877pointer, or pointer vector operands.
5878
5879Arguments:
5880""""""""""
5881
5882The '``icmp``' instruction takes three operands. The first operand is
5883the condition code indicating the kind of comparison to perform. It is
5884not a value, just a keyword. The possible condition code are:
5885
5886#. ``eq``: equal
5887#. ``ne``: not equal
5888#. ``ugt``: unsigned greater than
5889#. ``uge``: unsigned greater or equal
5890#. ``ult``: unsigned less than
5891#. ``ule``: unsigned less or equal
5892#. ``sgt``: signed greater than
5893#. ``sge``: signed greater or equal
5894#. ``slt``: signed less than
5895#. ``sle``: signed less or equal
5896
5897The remaining two arguments must be :ref:`integer <t_integer>` or
5898:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5899must also be identical types.
5900
5901Semantics:
5902""""""""""
5903
5904The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5905code given as ``cond``. The comparison performed always yields either an
5906:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5907
5908#. ``eq``: yields ``true`` if the operands are equal, ``false``
5909 otherwise. No sign interpretation is necessary or performed.
5910#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5911 otherwise. No sign interpretation is necessary or performed.
5912#. ``ugt``: interprets the operands as unsigned values and yields
5913 ``true`` if ``op1`` is greater than ``op2``.
5914#. ``uge``: interprets the operands as unsigned values and yields
5915 ``true`` if ``op1`` is greater than or equal to ``op2``.
5916#. ``ult``: interprets the operands as unsigned values and yields
5917 ``true`` if ``op1`` is less than ``op2``.
5918#. ``ule``: interprets the operands as unsigned values and yields
5919 ``true`` if ``op1`` is less than or equal to ``op2``.
5920#. ``sgt``: interprets the operands as signed values and yields ``true``
5921 if ``op1`` is greater than ``op2``.
5922#. ``sge``: interprets the operands as signed values and yields ``true``
5923 if ``op1`` is greater than or equal to ``op2``.
5924#. ``slt``: interprets the operands as signed values and yields ``true``
5925 if ``op1`` is less than ``op2``.
5926#. ``sle``: interprets the operands as signed values and yields ``true``
5927 if ``op1`` is less than or equal to ``op2``.
5928
5929If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5930are compared as if they were integers.
5931
5932If the operands are integer vectors, then they are compared element by
5933element. The result is an ``i1`` vector with the same number of elements
5934as the values being compared. Otherwise, the result is an ``i1``.
5935
5936Example:
5937""""""""
5938
5939.. code-block:: llvm
5940
5941 <result> = icmp eq i32 4, 5 ; yields: result=false
5942 <result> = icmp ne float* %X, %X ; yields: result=false
5943 <result> = icmp ult i16 4, 5 ; yields: result=true
5944 <result> = icmp sgt i16 4, 5 ; yields: result=false
5945 <result> = icmp ule i16 -4, 5 ; yields: result=false
5946 <result> = icmp sge i16 4, 5 ; yields: result=false
5947
5948Note that the code generator does not yet support vector types with the
5949``icmp`` instruction.
5950
5951.. _i_fcmp:
5952
5953'``fcmp``' Instruction
5954^^^^^^^^^^^^^^^^^^^^^^
5955
5956Syntax:
5957"""""""
5958
5959::
5960
5961 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5962
5963Overview:
5964"""""""""
5965
5966The '``fcmp``' instruction returns a boolean value or vector of boolean
5967values based on comparison of its operands.
5968
5969If the operands are floating point scalars, then the result type is a
5970boolean (:ref:`i1 <t_integer>`).
5971
5972If the operands are floating point vectors, then the result type is a
5973vector of boolean with the same number of elements as the operands being
5974compared.
5975
5976Arguments:
5977""""""""""
5978
5979The '``fcmp``' instruction takes three operands. The first operand is
5980the condition code indicating the kind of comparison to perform. It is
5981not a value, just a keyword. The possible condition code are:
5982
5983#. ``false``: no comparison, always returns false
5984#. ``oeq``: ordered and equal
5985#. ``ogt``: ordered and greater than
5986#. ``oge``: ordered and greater than or equal
5987#. ``olt``: ordered and less than
5988#. ``ole``: ordered and less than or equal
5989#. ``one``: ordered and not equal
5990#. ``ord``: ordered (no nans)
5991#. ``ueq``: unordered or equal
5992#. ``ugt``: unordered or greater than
5993#. ``uge``: unordered or greater than or equal
5994#. ``ult``: unordered or less than
5995#. ``ule``: unordered or less than or equal
5996#. ``une``: unordered or not equal
5997#. ``uno``: unordered (either nans)
5998#. ``true``: no comparison, always returns true
5999
6000*Ordered* means that neither operand is a QNAN while *unordered* means
6001that either operand may be a QNAN.
6002
6003Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6004point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6005type. They must have identical types.
6006
6007Semantics:
6008""""""""""
6009
6010The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6011condition code given as ``cond``. If the operands are vectors, then the
6012vectors are compared element by element. Each comparison performed
6013always yields an :ref:`i1 <t_integer>` result, as follows:
6014
6015#. ``false``: always yields ``false``, regardless of operands.
6016#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6017 is equal to ``op2``.
6018#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6019 is greater than ``op2``.
6020#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6021 is greater than or equal to ``op2``.
6022#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6023 is less than ``op2``.
6024#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6025 is less than or equal to ``op2``.
6026#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6027 is not equal to ``op2``.
6028#. ``ord``: yields ``true`` if both operands are not a QNAN.
6029#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6030 equal to ``op2``.
6031#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6032 greater than ``op2``.
6033#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6034 greater than or equal to ``op2``.
6035#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6036 less than ``op2``.
6037#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6038 less than or equal to ``op2``.
6039#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6040 not equal to ``op2``.
6041#. ``uno``: yields ``true`` if either operand is a QNAN.
6042#. ``true``: always yields ``true``, regardless of operands.
6043
6044Example:
6045""""""""
6046
6047.. code-block:: llvm
6048
6049 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6050 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6051 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6052 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6053
6054Note that the code generator does not yet support vector types with the
6055``fcmp`` instruction.
6056
6057.. _i_phi:
6058
6059'``phi``' Instruction
6060^^^^^^^^^^^^^^^^^^^^^
6061
6062Syntax:
6063"""""""
6064
6065::
6066
6067 <result> = phi <ty> [ <val0>, <label0>], ...
6068
6069Overview:
6070"""""""""
6071
6072The '``phi``' instruction is used to implement the φ node in the SSA
6073graph representing the function.
6074
6075Arguments:
6076""""""""""
6077
6078The type of the incoming values is specified with the first type field.
6079After this, the '``phi``' instruction takes a list of pairs as
6080arguments, with one pair for each predecessor basic block of the current
6081block. Only values of :ref:`first class <t_firstclass>` type may be used as
6082the value arguments to the PHI node. Only labels may be used as the
6083label arguments.
6084
6085There must be no non-phi instructions between the start of a basic block
6086and the PHI instructions: i.e. PHI instructions must be first in a basic
6087block.
6088
6089For the purposes of the SSA form, the use of each incoming value is
6090deemed to occur on the edge from the corresponding predecessor block to
6091the current block (but after any definition of an '``invoke``'
6092instruction's return value on the same edge).
6093
6094Semantics:
6095""""""""""
6096
6097At runtime, the '``phi``' instruction logically takes on the value
6098specified by the pair corresponding to the predecessor basic block that
6099executed just prior to the current block.
6100
6101Example:
6102""""""""
6103
6104.. code-block:: llvm
6105
6106 Loop: ; Infinite loop that counts from 0 on up...
6107 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6108 %nextindvar = add i32 %indvar, 1
6109 br label %Loop
6110
6111.. _i_select:
6112
6113'``select``' Instruction
6114^^^^^^^^^^^^^^^^^^^^^^^^
6115
6116Syntax:
6117"""""""
6118
6119::
6120
6121 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6122
6123 selty is either i1 or {<N x i1>}
6124
6125Overview:
6126"""""""""
6127
6128The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006129condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006130
6131Arguments:
6132""""""""""
6133
6134The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6135values indicating the condition, and two values of the same :ref:`first
6136class <t_firstclass>` type. If the val1/val2 are vectors and the
6137condition is a scalar, then entire vectors are selected, not individual
6138elements.
6139
6140Semantics:
6141""""""""""
6142
6143If the condition is an i1 and it evaluates to 1, the instruction returns
6144the first value argument; otherwise, it returns the second value
6145argument.
6146
6147If the condition is a vector of i1, then the value arguments must be
6148vectors of the same size, and the selection is done element by element.
6149
6150Example:
6151""""""""
6152
6153.. code-block:: llvm
6154
6155 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6156
6157.. _i_call:
6158
6159'``call``' Instruction
6160^^^^^^^^^^^^^^^^^^^^^^
6161
6162Syntax:
6163"""""""
6164
6165::
6166
Reid Kleckner5772b772014-04-24 20:14:34 +00006167 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006168
6169Overview:
6170"""""""""
6171
6172The '``call``' instruction represents a simple function call.
6173
6174Arguments:
6175""""""""""
6176
6177This instruction requires several arguments:
6178
Reid Kleckner5772b772014-04-24 20:14:34 +00006179#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6180 should perform tail call optimization. The ``tail`` marker is a hint that
6181 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6182 means that the call must be tail call optimized in order for the program to
6183 be correct. The ``musttail`` marker provides these guarantees:
6184
6185 #. The call will not cause unbounded stack growth if it is part of a
6186 recursive cycle in the call graph.
6187 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6188 forwarded in place.
6189
6190 Both markers imply that the callee does not access allocas or varargs from
6191 the caller. Calls marked ``musttail`` must obey the following additional
6192 rules:
6193
6194 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6195 or a pointer bitcast followed by a ret instruction.
6196 - The ret instruction must return the (possibly bitcasted) value
6197 produced by the call or void.
6198 - The caller and callee prototypes must match. Pointer types of
6199 parameters or return types may differ in pointee type, but not
6200 in address space.
6201 - The calling conventions of the caller and callee must match.
6202 - All ABI-impacting function attributes, such as sret, byval, inreg,
6203 returned, and inalloca, must match.
6204
6205 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6206 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006207
6208 - Caller and callee both have the calling convention ``fastcc``.
6209 - The call is in tail position (ret immediately follows call and ret
6210 uses value of call or is void).
6211 - Option ``-tailcallopt`` is enabled, or
6212 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6213 - `Platform specific constraints are
6214 met. <CodeGenerator.html#tailcallopt>`_
6215
6216#. The optional "cconv" marker indicates which :ref:`calling
6217 convention <callingconv>` the call should use. If none is
6218 specified, the call defaults to using C calling conventions. The
6219 calling convention of the call must match the calling convention of
6220 the target function, or else the behavior is undefined.
6221#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6222 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6223 are valid here.
6224#. '``ty``': the type of the call instruction itself which is also the
6225 type of the return value. Functions that return no value are marked
6226 ``void``.
6227#. '``fnty``': shall be the signature of the pointer to function value
6228 being invoked. The argument types must match the types implied by
6229 this signature. This type can be omitted if the function is not
6230 varargs and if the function type does not return a pointer to a
6231 function.
6232#. '``fnptrval``': An LLVM value containing a pointer to a function to
6233 be invoked. In most cases, this is a direct function invocation, but
6234 indirect ``call``'s are just as possible, calling an arbitrary pointer
6235 to function value.
6236#. '``function args``': argument list whose types match the function
6237 signature argument types and parameter attributes. All arguments must
6238 be of :ref:`first class <t_firstclass>` type. If the function signature
6239 indicates the function accepts a variable number of arguments, the
6240 extra arguments can be specified.
6241#. The optional :ref:`function attributes <fnattrs>` list. Only
6242 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6243 attributes are valid here.
6244
6245Semantics:
6246""""""""""
6247
6248The '``call``' instruction is used to cause control flow to transfer to
6249a specified function, with its incoming arguments bound to the specified
6250values. Upon a '``ret``' instruction in the called function, control
6251flow continues with the instruction after the function call, and the
6252return value of the function is bound to the result argument.
6253
6254Example:
6255""""""""
6256
6257.. code-block:: llvm
6258
6259 %retval = call i32 @test(i32 %argc)
6260 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6261 %X = tail call i32 @foo() ; yields i32
6262 %Y = tail call fastcc i32 @foo() ; yields i32
6263 call void %foo(i8 97 signext)
6264
6265 %struct.A = type { i32, i8 }
6266 %r = call %struct.A @foo() ; yields { 32, i8 }
6267 %gr = extractvalue %struct.A %r, 0 ; yields i32
6268 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6269 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6270 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6271
6272llvm treats calls to some functions with names and arguments that match
6273the standard C99 library as being the C99 library functions, and may
6274perform optimizations or generate code for them under that assumption.
6275This is something we'd like to change in the future to provide better
6276support for freestanding environments and non-C-based languages.
6277
6278.. _i_va_arg:
6279
6280'``va_arg``' Instruction
6281^^^^^^^^^^^^^^^^^^^^^^^^
6282
6283Syntax:
6284"""""""
6285
6286::
6287
6288 <resultval> = va_arg <va_list*> <arglist>, <argty>
6289
6290Overview:
6291"""""""""
6292
6293The '``va_arg``' instruction is used to access arguments passed through
6294the "variable argument" area of a function call. It is used to implement
6295the ``va_arg`` macro in C.
6296
6297Arguments:
6298""""""""""
6299
6300This instruction takes a ``va_list*`` value and the type of the
6301argument. It returns a value of the specified argument type and
6302increments the ``va_list`` to point to the next argument. The actual
6303type of ``va_list`` is target specific.
6304
6305Semantics:
6306""""""""""
6307
6308The '``va_arg``' instruction loads an argument of the specified type
6309from the specified ``va_list`` and causes the ``va_list`` to point to
6310the next argument. For more information, see the variable argument
6311handling :ref:`Intrinsic Functions <int_varargs>`.
6312
6313It is legal for this instruction to be called in a function which does
6314not take a variable number of arguments, for example, the ``vfprintf``
6315function.
6316
6317``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6318function <intrinsics>` because it takes a type as an argument.
6319
6320Example:
6321""""""""
6322
6323See the :ref:`variable argument processing <int_varargs>` section.
6324
6325Note that the code generator does not yet fully support va\_arg on many
6326targets. Also, it does not currently support va\_arg with aggregate
6327types on any target.
6328
6329.. _i_landingpad:
6330
6331'``landingpad``' Instruction
6332^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6333
6334Syntax:
6335"""""""
6336
6337::
6338
6339 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6340 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6341
6342 <clause> := catch <type> <value>
6343 <clause> := filter <array constant type> <array constant>
6344
6345Overview:
6346"""""""""
6347
6348The '``landingpad``' instruction is used by `LLVM's exception handling
6349system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006350is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006351code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6352defines values supplied by the personality function (``pers_fn``) upon
6353re-entry to the function. The ``resultval`` has the type ``resultty``.
6354
6355Arguments:
6356""""""""""
6357
6358This instruction takes a ``pers_fn`` value. This is the personality
6359function associated with the unwinding mechanism. The optional
6360``cleanup`` flag indicates that the landing pad block is a cleanup.
6361
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006362A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006363contains the global variable representing the "type" that may be caught
6364or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6365clause takes an array constant as its argument. Use
6366"``[0 x i8**] undef``" for a filter which cannot throw. The
6367'``landingpad``' instruction must contain *at least* one ``clause`` or
6368the ``cleanup`` flag.
6369
6370Semantics:
6371""""""""""
6372
6373The '``landingpad``' instruction defines the values which are set by the
6374personality function (``pers_fn``) upon re-entry to the function, and
6375therefore the "result type" of the ``landingpad`` instruction. As with
6376calling conventions, how the personality function results are
6377represented in LLVM IR is target specific.
6378
6379The clauses are applied in order from top to bottom. If two
6380``landingpad`` instructions are merged together through inlining, the
6381clauses from the calling function are appended to the list of clauses.
6382When the call stack is being unwound due to an exception being thrown,
6383the exception is compared against each ``clause`` in turn. If it doesn't
6384match any of the clauses, and the ``cleanup`` flag is not set, then
6385unwinding continues further up the call stack.
6386
6387The ``landingpad`` instruction has several restrictions:
6388
6389- A landing pad block is a basic block which is the unwind destination
6390 of an '``invoke``' instruction.
6391- A landing pad block must have a '``landingpad``' instruction as its
6392 first non-PHI instruction.
6393- There can be only one '``landingpad``' instruction within the landing
6394 pad block.
6395- A basic block that is not a landing pad block may not include a
6396 '``landingpad``' instruction.
6397- All '``landingpad``' instructions in a function must have the same
6398 personality function.
6399
6400Example:
6401""""""""
6402
6403.. code-block:: llvm
6404
6405 ;; A landing pad which can catch an integer.
6406 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6407 catch i8** @_ZTIi
6408 ;; A landing pad that is a cleanup.
6409 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6410 cleanup
6411 ;; A landing pad which can catch an integer and can only throw a double.
6412 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6413 catch i8** @_ZTIi
6414 filter [1 x i8**] [@_ZTId]
6415
6416.. _intrinsics:
6417
6418Intrinsic Functions
6419===================
6420
6421LLVM supports the notion of an "intrinsic function". These functions
6422have well known names and semantics and are required to follow certain
6423restrictions. Overall, these intrinsics represent an extension mechanism
6424for the LLVM language that does not require changing all of the
6425transformations in LLVM when adding to the language (or the bitcode
6426reader/writer, the parser, etc...).
6427
6428Intrinsic function names must all start with an "``llvm.``" prefix. This
6429prefix is reserved in LLVM for intrinsic names; thus, function names may
6430not begin with this prefix. Intrinsic functions must always be external
6431functions: you cannot define the body of intrinsic functions. Intrinsic
6432functions may only be used in call or invoke instructions: it is illegal
6433to take the address of an intrinsic function. Additionally, because
6434intrinsic functions are part of the LLVM language, it is required if any
6435are added that they be documented here.
6436
6437Some intrinsic functions can be overloaded, i.e., the intrinsic
6438represents a family of functions that perform the same operation but on
6439different data types. Because LLVM can represent over 8 million
6440different integer types, overloading is used commonly to allow an
6441intrinsic function to operate on any integer type. One or more of the
6442argument types or the result type can be overloaded to accept any
6443integer type. Argument types may also be defined as exactly matching a
6444previous argument's type or the result type. This allows an intrinsic
6445function which accepts multiple arguments, but needs all of them to be
6446of the same type, to only be overloaded with respect to a single
6447argument or the result.
6448
6449Overloaded intrinsics will have the names of its overloaded argument
6450types encoded into its function name, each preceded by a period. Only
6451those types which are overloaded result in a name suffix. Arguments
6452whose type is matched against another type do not. For example, the
6453``llvm.ctpop`` function can take an integer of any width and returns an
6454integer of exactly the same integer width. This leads to a family of
6455functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6456``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6457overloaded, and only one type suffix is required. Because the argument's
6458type is matched against the return type, it does not require its own
6459name suffix.
6460
6461To learn how to add an intrinsic function, please see the `Extending
6462LLVM Guide <ExtendingLLVM.html>`_.
6463
6464.. _int_varargs:
6465
6466Variable Argument Handling Intrinsics
6467-------------------------------------
6468
6469Variable argument support is defined in LLVM with the
6470:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6471functions. These functions are related to the similarly named macros
6472defined in the ``<stdarg.h>`` header file.
6473
6474All of these functions operate on arguments that use a target-specific
6475value type "``va_list``". The LLVM assembly language reference manual
6476does not define what this type is, so all transformations should be
6477prepared to handle these functions regardless of the type used.
6478
6479This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6480variable argument handling intrinsic functions are used.
6481
6482.. code-block:: llvm
6483
6484 define i32 @test(i32 %X, ...) {
6485 ; Initialize variable argument processing
6486 %ap = alloca i8*
6487 %ap2 = bitcast i8** %ap to i8*
6488 call void @llvm.va_start(i8* %ap2)
6489
6490 ; Read a single integer argument
6491 %tmp = va_arg i8** %ap, i32
6492
6493 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6494 %aq = alloca i8*
6495 %aq2 = bitcast i8** %aq to i8*
6496 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6497 call void @llvm.va_end(i8* %aq2)
6498
6499 ; Stop processing of arguments.
6500 call void @llvm.va_end(i8* %ap2)
6501 ret i32 %tmp
6502 }
6503
6504 declare void @llvm.va_start(i8*)
6505 declare void @llvm.va_copy(i8*, i8*)
6506 declare void @llvm.va_end(i8*)
6507
6508.. _int_va_start:
6509
6510'``llvm.va_start``' Intrinsic
6511^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6512
6513Syntax:
6514"""""""
6515
6516::
6517
Nick Lewycky04f6de02013-09-11 22:04:52 +00006518 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006519
6520Overview:
6521"""""""""
6522
6523The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6524subsequent use by ``va_arg``.
6525
6526Arguments:
6527""""""""""
6528
6529The argument is a pointer to a ``va_list`` element to initialize.
6530
6531Semantics:
6532""""""""""
6533
6534The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6535available in C. In a target-dependent way, it initializes the
6536``va_list`` element to which the argument points, so that the next call
6537to ``va_arg`` will produce the first variable argument passed to the
6538function. Unlike the C ``va_start`` macro, this intrinsic does not need
6539to know the last argument of the function as the compiler can figure
6540that out.
6541
6542'``llvm.va_end``' Intrinsic
6543^^^^^^^^^^^^^^^^^^^^^^^^^^^
6544
6545Syntax:
6546"""""""
6547
6548::
6549
6550 declare void @llvm.va_end(i8* <arglist>)
6551
6552Overview:
6553"""""""""
6554
6555The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6556initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6557
6558Arguments:
6559""""""""""
6560
6561The argument is a pointer to a ``va_list`` to destroy.
6562
6563Semantics:
6564""""""""""
6565
6566The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6567available in C. In a target-dependent way, it destroys the ``va_list``
6568element to which the argument points. Calls to
6569:ref:`llvm.va_start <int_va_start>` and
6570:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6571``llvm.va_end``.
6572
6573.. _int_va_copy:
6574
6575'``llvm.va_copy``' Intrinsic
6576^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6577
6578Syntax:
6579"""""""
6580
6581::
6582
6583 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6584
6585Overview:
6586"""""""""
6587
6588The '``llvm.va_copy``' intrinsic copies the current argument position
6589from the source argument list to the destination argument list.
6590
6591Arguments:
6592""""""""""
6593
6594The first argument is a pointer to a ``va_list`` element to initialize.
6595The second argument is a pointer to a ``va_list`` element to copy from.
6596
6597Semantics:
6598""""""""""
6599
6600The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6601available in C. In a target-dependent way, it copies the source
6602``va_list`` element into the destination ``va_list`` element. This
6603intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6604arbitrarily complex and require, for example, memory allocation.
6605
6606Accurate Garbage Collection Intrinsics
6607--------------------------------------
6608
6609LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6610(GC) requires the implementation and generation of these intrinsics.
6611These intrinsics allow identification of :ref:`GC roots on the
6612stack <int_gcroot>`, as well as garbage collector implementations that
6613require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6614Front-ends for type-safe garbage collected languages should generate
6615these intrinsics to make use of the LLVM garbage collectors. For more
6616details, see `Accurate Garbage Collection with
6617LLVM <GarbageCollection.html>`_.
6618
6619The garbage collection intrinsics only operate on objects in the generic
6620address space (address space zero).
6621
6622.. _int_gcroot:
6623
6624'``llvm.gcroot``' Intrinsic
6625^^^^^^^^^^^^^^^^^^^^^^^^^^^
6626
6627Syntax:
6628"""""""
6629
6630::
6631
6632 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6633
6634Overview:
6635"""""""""
6636
6637The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6638the code generator, and allows some metadata to be associated with it.
6639
6640Arguments:
6641""""""""""
6642
6643The first argument specifies the address of a stack object that contains
6644the root pointer. The second pointer (which must be either a constant or
6645a global value address) contains the meta-data to be associated with the
6646root.
6647
6648Semantics:
6649""""""""""
6650
6651At runtime, a call to this intrinsic stores a null pointer into the
6652"ptrloc" location. At compile-time, the code generator generates
6653information to allow the runtime to find the pointer at GC safe points.
6654The '``llvm.gcroot``' intrinsic may only be used in a function which
6655:ref:`specifies a GC algorithm <gc>`.
6656
6657.. _int_gcread:
6658
6659'``llvm.gcread``' Intrinsic
6660^^^^^^^^^^^^^^^^^^^^^^^^^^^
6661
6662Syntax:
6663"""""""
6664
6665::
6666
6667 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6668
6669Overview:
6670"""""""""
6671
6672The '``llvm.gcread``' intrinsic identifies reads of references from heap
6673locations, allowing garbage collector implementations that require read
6674barriers.
6675
6676Arguments:
6677""""""""""
6678
6679The second argument is the address to read from, which should be an
6680address allocated from the garbage collector. The first object is a
6681pointer to the start of the referenced object, if needed by the language
6682runtime (otherwise null).
6683
6684Semantics:
6685""""""""""
6686
6687The '``llvm.gcread``' intrinsic has the same semantics as a load
6688instruction, but may be replaced with substantially more complex code by
6689the garbage collector runtime, as needed. The '``llvm.gcread``'
6690intrinsic may only be used in a function which :ref:`specifies a GC
6691algorithm <gc>`.
6692
6693.. _int_gcwrite:
6694
6695'``llvm.gcwrite``' Intrinsic
6696^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6697
6698Syntax:
6699"""""""
6700
6701::
6702
6703 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6704
6705Overview:
6706"""""""""
6707
6708The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6709locations, allowing garbage collector implementations that require write
6710barriers (such as generational or reference counting collectors).
6711
6712Arguments:
6713""""""""""
6714
6715The first argument is the reference to store, the second is the start of
6716the object to store it to, and the third is the address of the field of
6717Obj to store to. If the runtime does not require a pointer to the
6718object, Obj may be null.
6719
6720Semantics:
6721""""""""""
6722
6723The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6724instruction, but may be replaced with substantially more complex code by
6725the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6726intrinsic may only be used in a function which :ref:`specifies a GC
6727algorithm <gc>`.
6728
6729Code Generator Intrinsics
6730-------------------------
6731
6732These intrinsics are provided by LLVM to expose special features that
6733may only be implemented with code generator support.
6734
6735'``llvm.returnaddress``' Intrinsic
6736^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6737
6738Syntax:
6739"""""""
6740
6741::
6742
6743 declare i8 *@llvm.returnaddress(i32 <level>)
6744
6745Overview:
6746"""""""""
6747
6748The '``llvm.returnaddress``' intrinsic attempts to compute a
6749target-specific value indicating the return address of the current
6750function or one of its callers.
6751
6752Arguments:
6753""""""""""
6754
6755The argument to this intrinsic indicates which function to return the
6756address for. Zero indicates the calling function, one indicates its
6757caller, etc. The argument is **required** to be a constant integer
6758value.
6759
6760Semantics:
6761""""""""""
6762
6763The '``llvm.returnaddress``' intrinsic either returns a pointer
6764indicating the return address of the specified call frame, or zero if it
6765cannot be identified. The value returned by this intrinsic is likely to
6766be incorrect or 0 for arguments other than zero, so it should only be
6767used for debugging purposes.
6768
6769Note that calling this intrinsic does not prevent function inlining or
6770other aggressive transformations, so the value returned may not be that
6771of the obvious source-language caller.
6772
6773'``llvm.frameaddress``' Intrinsic
6774^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6775
6776Syntax:
6777"""""""
6778
6779::
6780
6781 declare i8* @llvm.frameaddress(i32 <level>)
6782
6783Overview:
6784"""""""""
6785
6786The '``llvm.frameaddress``' intrinsic attempts to return the
6787target-specific frame pointer value for the specified stack frame.
6788
6789Arguments:
6790""""""""""
6791
6792The argument to this intrinsic indicates which function to return the
6793frame pointer for. Zero indicates the calling function, one indicates
6794its caller, etc. The argument is **required** to be a constant integer
6795value.
6796
6797Semantics:
6798""""""""""
6799
6800The '``llvm.frameaddress``' intrinsic either returns a pointer
6801indicating the frame address of the specified call frame, or zero if it
6802cannot be identified. The value returned by this intrinsic is likely to
6803be incorrect or 0 for arguments other than zero, so it should only be
6804used for debugging purposes.
6805
6806Note that calling this intrinsic does not prevent function inlining or
6807other aggressive transformations, so the value returned may not be that
6808of the obvious source-language caller.
6809
Renato Golinc7aea402014-05-06 16:51:25 +00006810.. _int_read_register:
6811.. _int_write_register:
6812
6813'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
6814^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6815
6816Syntax:
6817"""""""
6818
6819::
6820
6821 declare i32 @llvm.read_register.i32(metadata)
6822 declare i64 @llvm.read_register.i64(metadata)
6823 declare void @llvm.write_register.i32(metadata, i32 @value)
6824 declare void @llvm.write_register.i64(metadata, i64 @value)
6825 !0 = metadata !{metadata !"sp\00"}
6826
6827Overview:
6828"""""""""
6829
6830The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
6831provides access to the named register. The register must be valid on
6832the architecture being compiled to. The type needs to be compatible
6833with the register being read.
6834
6835Semantics:
6836""""""""""
6837
6838The '``llvm.read_register``' intrinsic returns the current value of the
6839register, where possible. The '``llvm.write_register``' intrinsic sets
6840the current value of the register, where possible.
6841
6842This is useful to implement named register global variables that need
6843to always be mapped to a specific register, as is common practice on
6844bare-metal programs including OS kernels.
6845
6846The compiler doesn't check for register availability or use of the used
6847register in surrounding code, including inline assembly. Because of that,
6848allocatable registers are not supported.
6849
6850Warning: So far it only works with the stack pointer on selected
Hal Finkel0d8db462014-05-11 19:29:11 +00006851architectures (ARM, ARM64, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00006852work is needed to support other registers and even more so, allocatable
6853registers.
6854
Sean Silvab084af42012-12-07 10:36:55 +00006855.. _int_stacksave:
6856
6857'``llvm.stacksave``' Intrinsic
6858^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6859
6860Syntax:
6861"""""""
6862
6863::
6864
6865 declare i8* @llvm.stacksave()
6866
6867Overview:
6868"""""""""
6869
6870The '``llvm.stacksave``' intrinsic is used to remember the current state
6871of the function stack, for use with
6872:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6873implementing language features like scoped automatic variable sized
6874arrays in C99.
6875
6876Semantics:
6877""""""""""
6878
6879This intrinsic returns a opaque pointer value that can be passed to
6880:ref:`llvm.stackrestore <int_stackrestore>`. When an
6881``llvm.stackrestore`` intrinsic is executed with a value saved from
6882``llvm.stacksave``, it effectively restores the state of the stack to
6883the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6884practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6885were allocated after the ``llvm.stacksave`` was executed.
6886
6887.. _int_stackrestore:
6888
6889'``llvm.stackrestore``' Intrinsic
6890^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6891
6892Syntax:
6893"""""""
6894
6895::
6896
6897 declare void @llvm.stackrestore(i8* %ptr)
6898
6899Overview:
6900"""""""""
6901
6902The '``llvm.stackrestore``' intrinsic is used to restore the state of
6903the function stack to the state it was in when the corresponding
6904:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6905useful for implementing language features like scoped automatic variable
6906sized arrays in C99.
6907
6908Semantics:
6909""""""""""
6910
6911See the description for :ref:`llvm.stacksave <int_stacksave>`.
6912
6913'``llvm.prefetch``' Intrinsic
6914^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6915
6916Syntax:
6917"""""""
6918
6919::
6920
6921 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6922
6923Overview:
6924"""""""""
6925
6926The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6927insert a prefetch instruction if supported; otherwise, it is a noop.
6928Prefetches have no effect on the behavior of the program but can change
6929its performance characteristics.
6930
6931Arguments:
6932""""""""""
6933
6934``address`` is the address to be prefetched, ``rw`` is the specifier
6935determining if the fetch should be for a read (0) or write (1), and
6936``locality`` is a temporal locality specifier ranging from (0) - no
6937locality, to (3) - extremely local keep in cache. The ``cache type``
6938specifies whether the prefetch is performed on the data (1) or
6939instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6940arguments must be constant integers.
6941
6942Semantics:
6943""""""""""
6944
6945This intrinsic does not modify the behavior of the program. In
6946particular, prefetches cannot trap and do not produce a value. On
6947targets that support this intrinsic, the prefetch can provide hints to
6948the processor cache for better performance.
6949
6950'``llvm.pcmarker``' Intrinsic
6951^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6952
6953Syntax:
6954"""""""
6955
6956::
6957
6958 declare void @llvm.pcmarker(i32 <id>)
6959
6960Overview:
6961"""""""""
6962
6963The '``llvm.pcmarker``' intrinsic is a method to export a Program
6964Counter (PC) in a region of code to simulators and other tools. The
6965method is target specific, but it is expected that the marker will use
6966exported symbols to transmit the PC of the marker. The marker makes no
6967guarantees that it will remain with any specific instruction after
6968optimizations. It is possible that the presence of a marker will inhibit
6969optimizations. The intended use is to be inserted after optimizations to
6970allow correlations of simulation runs.
6971
6972Arguments:
6973""""""""""
6974
6975``id`` is a numerical id identifying the marker.
6976
6977Semantics:
6978""""""""""
6979
6980This intrinsic does not modify the behavior of the program. Backends
6981that do not support this intrinsic may ignore it.
6982
6983'``llvm.readcyclecounter``' Intrinsic
6984^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6985
6986Syntax:
6987"""""""
6988
6989::
6990
6991 declare i64 @llvm.readcyclecounter()
6992
6993Overview:
6994"""""""""
6995
6996The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6997counter register (or similar low latency, high accuracy clocks) on those
6998targets that support it. On X86, it should map to RDTSC. On Alpha, it
6999should map to RPCC. As the backing counters overflow quickly (on the
7000order of 9 seconds on alpha), this should only be used for small
7001timings.
7002
7003Semantics:
7004""""""""""
7005
7006When directly supported, reading the cycle counter should not modify any
7007memory. Implementations are allowed to either return a application
7008specific value or a system wide value. On backends without support, this
7009is lowered to a constant 0.
7010
Tim Northoverbc933082013-05-23 19:11:20 +00007011Note that runtime support may be conditional on the privilege-level code is
7012running at and the host platform.
7013
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007014'``llvm.clear_cache``' Intrinsic
7015^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7016
7017Syntax:
7018"""""""
7019
7020::
7021
7022 declare void @llvm.clear_cache(i8*, i8*)
7023
7024Overview:
7025"""""""""
7026
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007027The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7028in the specified range to the execution unit of the processor. On
7029targets with non-unified instruction and data cache, the implementation
7030flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007031
7032Semantics:
7033""""""""""
7034
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007035On platforms with coherent instruction and data caches (e.g. x86), this
7036intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007037cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007038instructions or a system call, if cache flushing requires special
7039privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007040
Sean Silvad02bf3e2014-04-07 22:29:53 +00007041The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007042time library.
Renato Golin93010e62014-03-26 14:01:32 +00007043
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007044This instrinsic does *not* empty the instruction pipeline. Modifications
7045of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007046
Sean Silvab084af42012-12-07 10:36:55 +00007047Standard C Library Intrinsics
7048-----------------------------
7049
7050LLVM provides intrinsics for a few important standard C library
7051functions. These intrinsics allow source-language front-ends to pass
7052information about the alignment of the pointer arguments to the code
7053generator, providing opportunity for more efficient code generation.
7054
7055.. _int_memcpy:
7056
7057'``llvm.memcpy``' Intrinsic
7058^^^^^^^^^^^^^^^^^^^^^^^^^^^
7059
7060Syntax:
7061"""""""
7062
7063This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7064integer bit width and for different address spaces. Not all targets
7065support all bit widths however.
7066
7067::
7068
7069 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7070 i32 <len>, i32 <align>, i1 <isvolatile>)
7071 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7072 i64 <len>, i32 <align>, i1 <isvolatile>)
7073
7074Overview:
7075"""""""""
7076
7077The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7078source location to the destination location.
7079
7080Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7081intrinsics do not return a value, takes extra alignment/isvolatile
7082arguments and the pointers can be in specified address spaces.
7083
7084Arguments:
7085""""""""""
7086
7087The first argument is a pointer to the destination, the second is a
7088pointer to the source. The third argument is an integer argument
7089specifying the number of bytes to copy, the fourth argument is the
7090alignment of the source and destination locations, and the fifth is a
7091boolean indicating a volatile access.
7092
7093If the call to this intrinsic has an alignment value that is not 0 or 1,
7094then the caller guarantees that both the source and destination pointers
7095are aligned to that boundary.
7096
7097If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7098a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7099very cleanly specified and it is unwise to depend on it.
7100
7101Semantics:
7102""""""""""
7103
7104The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7105source location to the destination location, which are not allowed to
7106overlap. It copies "len" bytes of memory over. If the argument is known
7107to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007108argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007109
7110'``llvm.memmove``' Intrinsic
7111^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7112
7113Syntax:
7114"""""""
7115
7116This is an overloaded intrinsic. You can use llvm.memmove on any integer
7117bit width and for different address space. Not all targets support all
7118bit widths however.
7119
7120::
7121
7122 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7123 i32 <len>, i32 <align>, i1 <isvolatile>)
7124 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7125 i64 <len>, i32 <align>, i1 <isvolatile>)
7126
7127Overview:
7128"""""""""
7129
7130The '``llvm.memmove.*``' intrinsics move a block of memory from the
7131source location to the destination location. It is similar to the
7132'``llvm.memcpy``' intrinsic but allows the two memory locations to
7133overlap.
7134
7135Note that, unlike the standard libc function, the ``llvm.memmove.*``
7136intrinsics do not return a value, takes extra alignment/isvolatile
7137arguments and the pointers can be in specified address spaces.
7138
7139Arguments:
7140""""""""""
7141
7142The first argument is a pointer to the destination, the second is a
7143pointer to the source. The third argument is an integer argument
7144specifying the number of bytes to copy, the fourth argument is the
7145alignment of the source and destination locations, and the fifth is a
7146boolean indicating a volatile access.
7147
7148If the call to this intrinsic has an alignment value that is not 0 or 1,
7149then the caller guarantees that the source and destination pointers are
7150aligned to that boundary.
7151
7152If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7153is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7154not very cleanly specified and it is unwise to depend on it.
7155
7156Semantics:
7157""""""""""
7158
7159The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7160source location to the destination location, which may overlap. It
7161copies "len" bytes of memory over. If the argument is known to be
7162aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007163otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007164
7165'``llvm.memset.*``' Intrinsics
7166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7167
7168Syntax:
7169"""""""
7170
7171This is an overloaded intrinsic. You can use llvm.memset on any integer
7172bit width and for different address spaces. However, not all targets
7173support all bit widths.
7174
7175::
7176
7177 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7178 i32 <len>, i32 <align>, i1 <isvolatile>)
7179 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7180 i64 <len>, i32 <align>, i1 <isvolatile>)
7181
7182Overview:
7183"""""""""
7184
7185The '``llvm.memset.*``' intrinsics fill a block of memory with a
7186particular byte value.
7187
7188Note that, unlike the standard libc function, the ``llvm.memset``
7189intrinsic does not return a value and takes extra alignment/volatile
7190arguments. Also, the destination can be in an arbitrary address space.
7191
7192Arguments:
7193""""""""""
7194
7195The first argument is a pointer to the destination to fill, the second
7196is the byte value with which to fill it, the third argument is an
7197integer argument specifying the number of bytes to fill, and the fourth
7198argument is the known alignment of the destination location.
7199
7200If the call to this intrinsic has an alignment value that is not 0 or 1,
7201then the caller guarantees that the destination pointer is aligned to
7202that boundary.
7203
7204If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7205a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7206very cleanly specified and it is unwise to depend on it.
7207
7208Semantics:
7209""""""""""
7210
7211The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7212at the destination location. If the argument is known to be aligned to
7213some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007214it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007215
7216'``llvm.sqrt.*``' Intrinsic
7217^^^^^^^^^^^^^^^^^^^^^^^^^^^
7218
7219Syntax:
7220"""""""
7221
7222This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7223floating point or vector of floating point type. Not all targets support
7224all types however.
7225
7226::
7227
7228 declare float @llvm.sqrt.f32(float %Val)
7229 declare double @llvm.sqrt.f64(double %Val)
7230 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7231 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7232 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7233
7234Overview:
7235"""""""""
7236
7237The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7238returning the same value as the libm '``sqrt``' functions would. Unlike
7239``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7240negative numbers other than -0.0 (which allows for better optimization,
7241because there is no need to worry about errno being set).
7242``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7243
7244Arguments:
7245""""""""""
7246
7247The argument and return value are floating point numbers of the same
7248type.
7249
7250Semantics:
7251""""""""""
7252
7253This function returns the sqrt of the specified operand if it is a
7254nonnegative floating point number.
7255
7256'``llvm.powi.*``' Intrinsic
7257^^^^^^^^^^^^^^^^^^^^^^^^^^^
7258
7259Syntax:
7260"""""""
7261
7262This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7263floating point or vector of floating point type. Not all targets support
7264all types however.
7265
7266::
7267
7268 declare float @llvm.powi.f32(float %Val, i32 %power)
7269 declare double @llvm.powi.f64(double %Val, i32 %power)
7270 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7271 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7272 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7273
7274Overview:
7275"""""""""
7276
7277The '``llvm.powi.*``' intrinsics return the first operand raised to the
7278specified (positive or negative) power. The order of evaluation of
7279multiplications is not defined. When a vector of floating point type is
7280used, the second argument remains a scalar integer value.
7281
7282Arguments:
7283""""""""""
7284
7285The second argument is an integer power, and the first is a value to
7286raise to that power.
7287
7288Semantics:
7289""""""""""
7290
7291This function returns the first value raised to the second power with an
7292unspecified sequence of rounding operations.
7293
7294'``llvm.sin.*``' Intrinsic
7295^^^^^^^^^^^^^^^^^^^^^^^^^^
7296
7297Syntax:
7298"""""""
7299
7300This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7301floating point or vector of floating point type. Not all targets support
7302all types however.
7303
7304::
7305
7306 declare float @llvm.sin.f32(float %Val)
7307 declare double @llvm.sin.f64(double %Val)
7308 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7309 declare fp128 @llvm.sin.f128(fp128 %Val)
7310 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7311
7312Overview:
7313"""""""""
7314
7315The '``llvm.sin.*``' intrinsics return the sine of the operand.
7316
7317Arguments:
7318""""""""""
7319
7320The argument and return value are floating point numbers of the same
7321type.
7322
7323Semantics:
7324""""""""""
7325
7326This function returns the sine of the specified operand, returning the
7327same values as the libm ``sin`` functions would, and handles error
7328conditions in the same way.
7329
7330'``llvm.cos.*``' Intrinsic
7331^^^^^^^^^^^^^^^^^^^^^^^^^^
7332
7333Syntax:
7334"""""""
7335
7336This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7337floating point or vector of floating point type. Not all targets support
7338all types however.
7339
7340::
7341
7342 declare float @llvm.cos.f32(float %Val)
7343 declare double @llvm.cos.f64(double %Val)
7344 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7345 declare fp128 @llvm.cos.f128(fp128 %Val)
7346 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7347
7348Overview:
7349"""""""""
7350
7351The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7352
7353Arguments:
7354""""""""""
7355
7356The argument and return value are floating point numbers of the same
7357type.
7358
7359Semantics:
7360""""""""""
7361
7362This function returns the cosine of the specified operand, returning the
7363same values as the libm ``cos`` functions would, and handles error
7364conditions in the same way.
7365
7366'``llvm.pow.*``' Intrinsic
7367^^^^^^^^^^^^^^^^^^^^^^^^^^
7368
7369Syntax:
7370"""""""
7371
7372This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7373floating point or vector of floating point type. Not all targets support
7374all types however.
7375
7376::
7377
7378 declare float @llvm.pow.f32(float %Val, float %Power)
7379 declare double @llvm.pow.f64(double %Val, double %Power)
7380 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7381 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7382 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7383
7384Overview:
7385"""""""""
7386
7387The '``llvm.pow.*``' intrinsics return the first operand raised to the
7388specified (positive or negative) power.
7389
7390Arguments:
7391""""""""""
7392
7393The second argument is a floating point power, and the first is a value
7394to raise to that power.
7395
7396Semantics:
7397""""""""""
7398
7399This function returns the first value raised to the second power,
7400returning the same values as the libm ``pow`` functions would, and
7401handles error conditions in the same way.
7402
7403'``llvm.exp.*``' Intrinsic
7404^^^^^^^^^^^^^^^^^^^^^^^^^^
7405
7406Syntax:
7407"""""""
7408
7409This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7410floating point or vector of floating point type. Not all targets support
7411all types however.
7412
7413::
7414
7415 declare float @llvm.exp.f32(float %Val)
7416 declare double @llvm.exp.f64(double %Val)
7417 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7418 declare fp128 @llvm.exp.f128(fp128 %Val)
7419 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7420
7421Overview:
7422"""""""""
7423
7424The '``llvm.exp.*``' intrinsics perform the exp function.
7425
7426Arguments:
7427""""""""""
7428
7429The argument and return value are floating point numbers of the same
7430type.
7431
7432Semantics:
7433""""""""""
7434
7435This function returns the same values as the libm ``exp`` functions
7436would, and handles error conditions in the same way.
7437
7438'``llvm.exp2.*``' Intrinsic
7439^^^^^^^^^^^^^^^^^^^^^^^^^^^
7440
7441Syntax:
7442"""""""
7443
7444This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7445floating point or vector of floating point type. Not all targets support
7446all types however.
7447
7448::
7449
7450 declare float @llvm.exp2.f32(float %Val)
7451 declare double @llvm.exp2.f64(double %Val)
7452 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7453 declare fp128 @llvm.exp2.f128(fp128 %Val)
7454 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7455
7456Overview:
7457"""""""""
7458
7459The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7460
7461Arguments:
7462""""""""""
7463
7464The argument and return value are floating point numbers of the same
7465type.
7466
7467Semantics:
7468""""""""""
7469
7470This function returns the same values as the libm ``exp2`` functions
7471would, and handles error conditions in the same way.
7472
7473'``llvm.log.*``' Intrinsic
7474^^^^^^^^^^^^^^^^^^^^^^^^^^
7475
7476Syntax:
7477"""""""
7478
7479This is an overloaded intrinsic. You can use ``llvm.log`` on any
7480floating point or vector of floating point type. Not all targets support
7481all types however.
7482
7483::
7484
7485 declare float @llvm.log.f32(float %Val)
7486 declare double @llvm.log.f64(double %Val)
7487 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7488 declare fp128 @llvm.log.f128(fp128 %Val)
7489 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7490
7491Overview:
7492"""""""""
7493
7494The '``llvm.log.*``' intrinsics perform the log function.
7495
7496Arguments:
7497""""""""""
7498
7499The argument and return value are floating point numbers of the same
7500type.
7501
7502Semantics:
7503""""""""""
7504
7505This function returns the same values as the libm ``log`` functions
7506would, and handles error conditions in the same way.
7507
7508'``llvm.log10.*``' Intrinsic
7509^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7510
7511Syntax:
7512"""""""
7513
7514This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7515floating point or vector of floating point type. Not all targets support
7516all types however.
7517
7518::
7519
7520 declare float @llvm.log10.f32(float %Val)
7521 declare double @llvm.log10.f64(double %Val)
7522 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7523 declare fp128 @llvm.log10.f128(fp128 %Val)
7524 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7525
7526Overview:
7527"""""""""
7528
7529The '``llvm.log10.*``' intrinsics perform the log10 function.
7530
7531Arguments:
7532""""""""""
7533
7534The argument and return value are floating point numbers of the same
7535type.
7536
7537Semantics:
7538""""""""""
7539
7540This function returns the same values as the libm ``log10`` functions
7541would, and handles error conditions in the same way.
7542
7543'``llvm.log2.*``' Intrinsic
7544^^^^^^^^^^^^^^^^^^^^^^^^^^^
7545
7546Syntax:
7547"""""""
7548
7549This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7550floating point or vector of floating point type. Not all targets support
7551all types however.
7552
7553::
7554
7555 declare float @llvm.log2.f32(float %Val)
7556 declare double @llvm.log2.f64(double %Val)
7557 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7558 declare fp128 @llvm.log2.f128(fp128 %Val)
7559 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7560
7561Overview:
7562"""""""""
7563
7564The '``llvm.log2.*``' intrinsics perform the log2 function.
7565
7566Arguments:
7567""""""""""
7568
7569The argument and return value are floating point numbers of the same
7570type.
7571
7572Semantics:
7573""""""""""
7574
7575This function returns the same values as the libm ``log2`` functions
7576would, and handles error conditions in the same way.
7577
7578'``llvm.fma.*``' Intrinsic
7579^^^^^^^^^^^^^^^^^^^^^^^^^^
7580
7581Syntax:
7582"""""""
7583
7584This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7585floating point or vector of floating point type. Not all targets support
7586all types however.
7587
7588::
7589
7590 declare float @llvm.fma.f32(float %a, float %b, float %c)
7591 declare double @llvm.fma.f64(double %a, double %b, double %c)
7592 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7593 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7594 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7595
7596Overview:
7597"""""""""
7598
7599The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7600operation.
7601
7602Arguments:
7603""""""""""
7604
7605The argument and return value are floating point numbers of the same
7606type.
7607
7608Semantics:
7609""""""""""
7610
7611This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007612would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007613
7614'``llvm.fabs.*``' Intrinsic
7615^^^^^^^^^^^^^^^^^^^^^^^^^^^
7616
7617Syntax:
7618"""""""
7619
7620This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7621floating point or vector of floating point type. Not all targets support
7622all types however.
7623
7624::
7625
7626 declare float @llvm.fabs.f32(float %Val)
7627 declare double @llvm.fabs.f64(double %Val)
7628 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7629 declare fp128 @llvm.fabs.f128(fp128 %Val)
7630 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7631
7632Overview:
7633"""""""""
7634
7635The '``llvm.fabs.*``' intrinsics return the absolute value of the
7636operand.
7637
7638Arguments:
7639""""""""""
7640
7641The argument and return value are floating point numbers of the same
7642type.
7643
7644Semantics:
7645""""""""""
7646
7647This function returns the same values as the libm ``fabs`` functions
7648would, and handles error conditions in the same way.
7649
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007650'``llvm.copysign.*``' Intrinsic
7651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7652
7653Syntax:
7654"""""""
7655
7656This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7657floating point or vector of floating point type. Not all targets support
7658all types however.
7659
7660::
7661
7662 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7663 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7664 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7665 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7666 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7667
7668Overview:
7669"""""""""
7670
7671The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7672first operand and the sign of the second operand.
7673
7674Arguments:
7675""""""""""
7676
7677The arguments and return value are floating point numbers of the same
7678type.
7679
7680Semantics:
7681""""""""""
7682
7683This function returns the same values as the libm ``copysign``
7684functions would, and handles error conditions in the same way.
7685
Sean Silvab084af42012-12-07 10:36:55 +00007686'``llvm.floor.*``' Intrinsic
7687^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7688
7689Syntax:
7690"""""""
7691
7692This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7693floating point or vector of floating point type. Not all targets support
7694all types however.
7695
7696::
7697
7698 declare float @llvm.floor.f32(float %Val)
7699 declare double @llvm.floor.f64(double %Val)
7700 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7701 declare fp128 @llvm.floor.f128(fp128 %Val)
7702 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7703
7704Overview:
7705"""""""""
7706
7707The '``llvm.floor.*``' intrinsics return the floor of the operand.
7708
7709Arguments:
7710""""""""""
7711
7712The argument and return value are floating point numbers of the same
7713type.
7714
7715Semantics:
7716""""""""""
7717
7718This function returns the same values as the libm ``floor`` functions
7719would, and handles error conditions in the same way.
7720
7721'``llvm.ceil.*``' Intrinsic
7722^^^^^^^^^^^^^^^^^^^^^^^^^^^
7723
7724Syntax:
7725"""""""
7726
7727This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7728floating point or vector of floating point type. Not all targets support
7729all types however.
7730
7731::
7732
7733 declare float @llvm.ceil.f32(float %Val)
7734 declare double @llvm.ceil.f64(double %Val)
7735 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7736 declare fp128 @llvm.ceil.f128(fp128 %Val)
7737 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7738
7739Overview:
7740"""""""""
7741
7742The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7743
7744Arguments:
7745""""""""""
7746
7747The argument and return value are floating point numbers of the same
7748type.
7749
7750Semantics:
7751""""""""""
7752
7753This function returns the same values as the libm ``ceil`` functions
7754would, and handles error conditions in the same way.
7755
7756'``llvm.trunc.*``' Intrinsic
7757^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7758
7759Syntax:
7760"""""""
7761
7762This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7763floating point or vector of floating point type. Not all targets support
7764all types however.
7765
7766::
7767
7768 declare float @llvm.trunc.f32(float %Val)
7769 declare double @llvm.trunc.f64(double %Val)
7770 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7771 declare fp128 @llvm.trunc.f128(fp128 %Val)
7772 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7773
7774Overview:
7775"""""""""
7776
7777The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7778nearest integer not larger in magnitude than the operand.
7779
7780Arguments:
7781""""""""""
7782
7783The argument and return value are floating point numbers of the same
7784type.
7785
7786Semantics:
7787""""""""""
7788
7789This function returns the same values as the libm ``trunc`` functions
7790would, and handles error conditions in the same way.
7791
7792'``llvm.rint.*``' Intrinsic
7793^^^^^^^^^^^^^^^^^^^^^^^^^^^
7794
7795Syntax:
7796"""""""
7797
7798This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7799floating point or vector of floating point type. Not all targets support
7800all types however.
7801
7802::
7803
7804 declare float @llvm.rint.f32(float %Val)
7805 declare double @llvm.rint.f64(double %Val)
7806 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7807 declare fp128 @llvm.rint.f128(fp128 %Val)
7808 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7809
7810Overview:
7811"""""""""
7812
7813The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7814nearest integer. It may raise an inexact floating-point exception if the
7815operand isn't an integer.
7816
7817Arguments:
7818""""""""""
7819
7820The argument and return value are floating point numbers of the same
7821type.
7822
7823Semantics:
7824""""""""""
7825
7826This function returns the same values as the libm ``rint`` functions
7827would, and handles error conditions in the same way.
7828
7829'``llvm.nearbyint.*``' Intrinsic
7830^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7831
7832Syntax:
7833"""""""
7834
7835This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7836floating point or vector of floating point type. Not all targets support
7837all types however.
7838
7839::
7840
7841 declare float @llvm.nearbyint.f32(float %Val)
7842 declare double @llvm.nearbyint.f64(double %Val)
7843 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7844 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7845 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7846
7847Overview:
7848"""""""""
7849
7850The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7851nearest integer.
7852
7853Arguments:
7854""""""""""
7855
7856The argument and return value are floating point numbers of the same
7857type.
7858
7859Semantics:
7860""""""""""
7861
7862This function returns the same values as the libm ``nearbyint``
7863functions would, and handles error conditions in the same way.
7864
Hal Finkel171817e2013-08-07 22:49:12 +00007865'``llvm.round.*``' Intrinsic
7866^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7867
7868Syntax:
7869"""""""
7870
7871This is an overloaded intrinsic. You can use ``llvm.round`` on any
7872floating point or vector of floating point type. Not all targets support
7873all types however.
7874
7875::
7876
7877 declare float @llvm.round.f32(float %Val)
7878 declare double @llvm.round.f64(double %Val)
7879 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7880 declare fp128 @llvm.round.f128(fp128 %Val)
7881 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7882
7883Overview:
7884"""""""""
7885
7886The '``llvm.round.*``' intrinsics returns the operand rounded to the
7887nearest integer.
7888
7889Arguments:
7890""""""""""
7891
7892The argument and return value are floating point numbers of the same
7893type.
7894
7895Semantics:
7896""""""""""
7897
7898This function returns the same values as the libm ``round``
7899functions would, and handles error conditions in the same way.
7900
Sean Silvab084af42012-12-07 10:36:55 +00007901Bit Manipulation Intrinsics
7902---------------------------
7903
7904LLVM provides intrinsics for a few important bit manipulation
7905operations. These allow efficient code generation for some algorithms.
7906
7907'``llvm.bswap.*``' Intrinsics
7908^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7909
7910Syntax:
7911"""""""
7912
7913This is an overloaded intrinsic function. You can use bswap on any
7914integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7915
7916::
7917
7918 declare i16 @llvm.bswap.i16(i16 <id>)
7919 declare i32 @llvm.bswap.i32(i32 <id>)
7920 declare i64 @llvm.bswap.i64(i64 <id>)
7921
7922Overview:
7923"""""""""
7924
7925The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7926values with an even number of bytes (positive multiple of 16 bits).
7927These are useful for performing operations on data that is not in the
7928target's native byte order.
7929
7930Semantics:
7931""""""""""
7932
7933The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7934and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7935intrinsic returns an i32 value that has the four bytes of the input i32
7936swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7937returned i32 will have its bytes in 3, 2, 1, 0 order. The
7938``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7939concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7940respectively).
7941
7942'``llvm.ctpop.*``' Intrinsic
7943^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7944
7945Syntax:
7946"""""""
7947
7948This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7949bit width, or on any vector with integer elements. Not all targets
7950support all bit widths or vector types, however.
7951
7952::
7953
7954 declare i8 @llvm.ctpop.i8(i8 <src>)
7955 declare i16 @llvm.ctpop.i16(i16 <src>)
7956 declare i32 @llvm.ctpop.i32(i32 <src>)
7957 declare i64 @llvm.ctpop.i64(i64 <src>)
7958 declare i256 @llvm.ctpop.i256(i256 <src>)
7959 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7960
7961Overview:
7962"""""""""
7963
7964The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7965in a value.
7966
7967Arguments:
7968""""""""""
7969
7970The only argument is the value to be counted. The argument may be of any
7971integer type, or a vector with integer elements. The return type must
7972match the argument type.
7973
7974Semantics:
7975""""""""""
7976
7977The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7978each element of a vector.
7979
7980'``llvm.ctlz.*``' Intrinsic
7981^^^^^^^^^^^^^^^^^^^^^^^^^^^
7982
7983Syntax:
7984"""""""
7985
7986This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7987integer bit width, or any vector whose elements are integers. Not all
7988targets support all bit widths or vector types, however.
7989
7990::
7991
7992 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7993 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7994 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7995 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7996 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7997 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7998
7999Overview:
8000"""""""""
8001
8002The '``llvm.ctlz``' family of intrinsic functions counts the number of
8003leading zeros in a variable.
8004
8005Arguments:
8006""""""""""
8007
8008The first argument is the value to be counted. This argument may be of
8009any integer type, or a vectory with integer element type. The return
8010type must match the first argument type.
8011
8012The second argument must be a constant and is a flag to indicate whether
8013the intrinsic should ensure that a zero as the first argument produces a
8014defined result. Historically some architectures did not provide a
8015defined result for zero values as efficiently, and many algorithms are
8016now predicated on avoiding zero-value inputs.
8017
8018Semantics:
8019""""""""""
8020
8021The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8022zeros in a variable, or within each element of the vector. If
8023``src == 0`` then the result is the size in bits of the type of ``src``
8024if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8025``llvm.ctlz(i32 2) = 30``.
8026
8027'``llvm.cttz.*``' Intrinsic
8028^^^^^^^^^^^^^^^^^^^^^^^^^^^
8029
8030Syntax:
8031"""""""
8032
8033This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8034integer bit width, or any vector of integer elements. Not all targets
8035support all bit widths or vector types, however.
8036
8037::
8038
8039 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8040 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8041 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8042 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8043 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8044 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8045
8046Overview:
8047"""""""""
8048
8049The '``llvm.cttz``' family of intrinsic functions counts the number of
8050trailing zeros.
8051
8052Arguments:
8053""""""""""
8054
8055The first argument is the value to be counted. This argument may be of
8056any integer type, or a vectory with integer element type. The return
8057type must match the first argument type.
8058
8059The second argument must be a constant and is a flag to indicate whether
8060the intrinsic should ensure that a zero as the first argument produces a
8061defined result. Historically some architectures did not provide a
8062defined result for zero values as efficiently, and many algorithms are
8063now predicated on avoiding zero-value inputs.
8064
8065Semantics:
8066""""""""""
8067
8068The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8069zeros in a variable, or within each element of a vector. If ``src == 0``
8070then the result is the size in bits of the type of ``src`` if
8071``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8072``llvm.cttz(2) = 1``.
8073
8074Arithmetic with Overflow Intrinsics
8075-----------------------------------
8076
8077LLVM provides intrinsics for some arithmetic with overflow operations.
8078
8079'``llvm.sadd.with.overflow.*``' Intrinsics
8080^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8081
8082Syntax:
8083"""""""
8084
8085This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8086on any integer bit width.
8087
8088::
8089
8090 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8091 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8092 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8093
8094Overview:
8095"""""""""
8096
8097The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8098a signed addition of the two arguments, and indicate whether an overflow
8099occurred during the signed summation.
8100
8101Arguments:
8102""""""""""
8103
8104The arguments (%a and %b) and the first element of the result structure
8105may be of integer types of any bit width, but they must have the same
8106bit width. The second element of the result structure must be of type
8107``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8108addition.
8109
8110Semantics:
8111""""""""""
8112
8113The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008114a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008115first element of which is the signed summation, and the second element
8116of which is a bit specifying if the signed summation resulted in an
8117overflow.
8118
8119Examples:
8120"""""""""
8121
8122.. code-block:: llvm
8123
8124 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8125 %sum = extractvalue {i32, i1} %res, 0
8126 %obit = extractvalue {i32, i1} %res, 1
8127 br i1 %obit, label %overflow, label %normal
8128
8129'``llvm.uadd.with.overflow.*``' Intrinsics
8130^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8131
8132Syntax:
8133"""""""
8134
8135This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8136on any integer bit width.
8137
8138::
8139
8140 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8141 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8142 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8143
8144Overview:
8145"""""""""
8146
8147The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8148an unsigned addition of the two arguments, and indicate whether a carry
8149occurred during the unsigned summation.
8150
8151Arguments:
8152""""""""""
8153
8154The arguments (%a and %b) and the first element of the result structure
8155may be of integer types of any bit width, but they must have the same
8156bit width. The second element of the result structure must be of type
8157``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8158addition.
8159
8160Semantics:
8161""""""""""
8162
8163The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008164an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008165first element of which is the sum, and the second element of which is a
8166bit specifying if the unsigned summation resulted in a carry.
8167
8168Examples:
8169"""""""""
8170
8171.. code-block:: llvm
8172
8173 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8174 %sum = extractvalue {i32, i1} %res, 0
8175 %obit = extractvalue {i32, i1} %res, 1
8176 br i1 %obit, label %carry, label %normal
8177
8178'``llvm.ssub.with.overflow.*``' Intrinsics
8179^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8180
8181Syntax:
8182"""""""
8183
8184This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8185on any integer bit width.
8186
8187::
8188
8189 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8190 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8191 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8192
8193Overview:
8194"""""""""
8195
8196The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8197a signed subtraction of the two arguments, and indicate whether an
8198overflow occurred during the signed subtraction.
8199
8200Arguments:
8201""""""""""
8202
8203The arguments (%a and %b) and the first element of the result structure
8204may be of integer types of any bit width, but they must have the same
8205bit width. The second element of the result structure must be of type
8206``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8207subtraction.
8208
8209Semantics:
8210""""""""""
8211
8212The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008213a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008214first element of which is the subtraction, and the second element of
8215which is a bit specifying if the signed subtraction resulted in an
8216overflow.
8217
8218Examples:
8219"""""""""
8220
8221.. code-block:: llvm
8222
8223 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8224 %sum = extractvalue {i32, i1} %res, 0
8225 %obit = extractvalue {i32, i1} %res, 1
8226 br i1 %obit, label %overflow, label %normal
8227
8228'``llvm.usub.with.overflow.*``' Intrinsics
8229^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8230
8231Syntax:
8232"""""""
8233
8234This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8235on any integer bit width.
8236
8237::
8238
8239 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8240 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8241 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8242
8243Overview:
8244"""""""""
8245
8246The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8247an unsigned subtraction of the two arguments, and indicate whether an
8248overflow occurred during the unsigned subtraction.
8249
8250Arguments:
8251""""""""""
8252
8253The arguments (%a and %b) and the first element of the result structure
8254may be of integer types of any bit width, but they must have the same
8255bit width. The second element of the result structure must be of type
8256``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8257subtraction.
8258
8259Semantics:
8260""""""""""
8261
8262The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008263an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008264the first element of which is the subtraction, and the second element of
8265which is a bit specifying if the unsigned subtraction resulted in an
8266overflow.
8267
8268Examples:
8269"""""""""
8270
8271.. code-block:: llvm
8272
8273 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8274 %sum = extractvalue {i32, i1} %res, 0
8275 %obit = extractvalue {i32, i1} %res, 1
8276 br i1 %obit, label %overflow, label %normal
8277
8278'``llvm.smul.with.overflow.*``' Intrinsics
8279^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8280
8281Syntax:
8282"""""""
8283
8284This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8285on any integer bit width.
8286
8287::
8288
8289 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8290 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8291 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8292
8293Overview:
8294"""""""""
8295
8296The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8297a signed multiplication of the two arguments, and indicate whether an
8298overflow occurred during the signed multiplication.
8299
8300Arguments:
8301""""""""""
8302
8303The arguments (%a and %b) and the first element of the result structure
8304may be of integer types of any bit width, but they must have the same
8305bit width. The second element of the result structure must be of type
8306``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8307multiplication.
8308
8309Semantics:
8310""""""""""
8311
8312The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008313a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008314the first element of which is the multiplication, and the second element
8315of which is a bit specifying if the signed multiplication resulted in an
8316overflow.
8317
8318Examples:
8319"""""""""
8320
8321.. code-block:: llvm
8322
8323 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8324 %sum = extractvalue {i32, i1} %res, 0
8325 %obit = extractvalue {i32, i1} %res, 1
8326 br i1 %obit, label %overflow, label %normal
8327
8328'``llvm.umul.with.overflow.*``' Intrinsics
8329^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8330
8331Syntax:
8332"""""""
8333
8334This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8335on any integer bit width.
8336
8337::
8338
8339 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8340 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8341 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8342
8343Overview:
8344"""""""""
8345
8346The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8347a unsigned multiplication of the two arguments, and indicate whether an
8348overflow occurred during the unsigned multiplication.
8349
8350Arguments:
8351""""""""""
8352
8353The arguments (%a and %b) and the first element of the result structure
8354may be of integer types of any bit width, but they must have the same
8355bit width. The second element of the result structure must be of type
8356``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8357multiplication.
8358
8359Semantics:
8360""""""""""
8361
8362The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008363an unsigned multiplication of the two arguments. They return a structure ---
8364the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008365element of which is a bit specifying if the unsigned multiplication
8366resulted in an overflow.
8367
8368Examples:
8369"""""""""
8370
8371.. code-block:: llvm
8372
8373 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8374 %sum = extractvalue {i32, i1} %res, 0
8375 %obit = extractvalue {i32, i1} %res, 1
8376 br i1 %obit, label %overflow, label %normal
8377
8378Specialised Arithmetic Intrinsics
8379---------------------------------
8380
8381'``llvm.fmuladd.*``' Intrinsic
8382^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8383
8384Syntax:
8385"""""""
8386
8387::
8388
8389 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8390 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8391
8392Overview:
8393"""""""""
8394
8395The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008396expressions that can be fused if the code generator determines that (a) the
8397target instruction set has support for a fused operation, and (b) that the
8398fused operation is more efficient than the equivalent, separate pair of mul
8399and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008400
8401Arguments:
8402""""""""""
8403
8404The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8405multiplicands, a and b, and an addend c.
8406
8407Semantics:
8408""""""""""
8409
8410The expression:
8411
8412::
8413
8414 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8415
8416is equivalent to the expression a \* b + c, except that rounding will
8417not be performed between the multiplication and addition steps if the
8418code generator fuses the operations. Fusion is not guaranteed, even if
8419the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008420corresponding llvm.fma.\* intrinsic function should be used
8421instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008422
8423Examples:
8424"""""""""
8425
8426.. code-block:: llvm
8427
8428 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8429
8430Half Precision Floating Point Intrinsics
8431----------------------------------------
8432
8433For most target platforms, half precision floating point is a
8434storage-only format. This means that it is a dense encoding (in memory)
8435but does not support computation in the format.
8436
8437This means that code must first load the half-precision floating point
8438value as an i16, then convert it to float with
8439:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8440then be performed on the float value (including extending to double
8441etc). To store the value back to memory, it is first converted to float
8442if needed, then converted to i16 with
8443:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8444i16 value.
8445
8446.. _int_convert_to_fp16:
8447
8448'``llvm.convert.to.fp16``' Intrinsic
8449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8450
8451Syntax:
8452"""""""
8453
8454::
8455
8456 declare i16 @llvm.convert.to.fp16(f32 %a)
8457
8458Overview:
8459"""""""""
8460
8461The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8462from single precision floating point format to half precision floating
8463point format.
8464
8465Arguments:
8466""""""""""
8467
8468The intrinsic function contains single argument - the value to be
8469converted.
8470
8471Semantics:
8472""""""""""
8473
8474The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8475from single precision floating point format to half precision floating
8476point format. The return value is an ``i16`` which contains the
8477converted number.
8478
8479Examples:
8480"""""""""
8481
8482.. code-block:: llvm
8483
8484 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8485 store i16 %res, i16* @x, align 2
8486
8487.. _int_convert_from_fp16:
8488
8489'``llvm.convert.from.fp16``' Intrinsic
8490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8491
8492Syntax:
8493"""""""
8494
8495::
8496
8497 declare f32 @llvm.convert.from.fp16(i16 %a)
8498
8499Overview:
8500"""""""""
8501
8502The '``llvm.convert.from.fp16``' intrinsic function performs a
8503conversion from half precision floating point format to single precision
8504floating point format.
8505
8506Arguments:
8507""""""""""
8508
8509The intrinsic function contains single argument - the value to be
8510converted.
8511
8512Semantics:
8513""""""""""
8514
8515The '``llvm.convert.from.fp16``' intrinsic function performs a
8516conversion from half single precision floating point format to single
8517precision floating point format. The input half-float value is
8518represented by an ``i16`` value.
8519
8520Examples:
8521"""""""""
8522
8523.. code-block:: llvm
8524
8525 %a = load i16* @x, align 2
8526 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8527
8528Debugger Intrinsics
8529-------------------
8530
8531The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8532prefix), are described in the `LLVM Source Level
8533Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8534document.
8535
8536Exception Handling Intrinsics
8537-----------------------------
8538
8539The LLVM exception handling intrinsics (which all start with
8540``llvm.eh.`` prefix), are described in the `LLVM Exception
8541Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8542
8543.. _int_trampoline:
8544
8545Trampoline Intrinsics
8546---------------------
8547
8548These intrinsics make it possible to excise one parameter, marked with
8549the :ref:`nest <nest>` attribute, from a function. The result is a
8550callable function pointer lacking the nest parameter - the caller does
8551not need to provide a value for it. Instead, the value to use is stored
8552in advance in a "trampoline", a block of memory usually allocated on the
8553stack, which also contains code to splice the nest value into the
8554argument list. This is used to implement the GCC nested function address
8555extension.
8556
8557For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8558then the resulting function pointer has signature ``i32 (i32, i32)*``.
8559It can be created as follows:
8560
8561.. code-block:: llvm
8562
8563 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8564 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8565 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8566 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8567 %fp = bitcast i8* %p to i32 (i32, i32)*
8568
8569The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8570``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8571
8572.. _int_it:
8573
8574'``llvm.init.trampoline``' Intrinsic
8575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8576
8577Syntax:
8578"""""""
8579
8580::
8581
8582 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8583
8584Overview:
8585"""""""""
8586
8587This fills the memory pointed to by ``tramp`` with executable code,
8588turning it into a trampoline.
8589
8590Arguments:
8591""""""""""
8592
8593The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8594pointers. The ``tramp`` argument must point to a sufficiently large and
8595sufficiently aligned block of memory; this memory is written to by the
8596intrinsic. Note that the size and the alignment are target-specific -
8597LLVM currently provides no portable way of determining them, so a
8598front-end that generates this intrinsic needs to have some
8599target-specific knowledge. The ``func`` argument must hold a function
8600bitcast to an ``i8*``.
8601
8602Semantics:
8603""""""""""
8604
8605The block of memory pointed to by ``tramp`` is filled with target
8606dependent code, turning it into a function. Then ``tramp`` needs to be
8607passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8608be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8609function's signature is the same as that of ``func`` with any arguments
8610marked with the ``nest`` attribute removed. At most one such ``nest``
8611argument is allowed, and it must be of pointer type. Calling the new
8612function is equivalent to calling ``func`` with the same argument list,
8613but with ``nval`` used for the missing ``nest`` argument. If, after
8614calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8615modified, then the effect of any later call to the returned function
8616pointer is undefined.
8617
8618.. _int_at:
8619
8620'``llvm.adjust.trampoline``' Intrinsic
8621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8622
8623Syntax:
8624"""""""
8625
8626::
8627
8628 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8629
8630Overview:
8631"""""""""
8632
8633This performs any required machine-specific adjustment to the address of
8634a trampoline (passed as ``tramp``).
8635
8636Arguments:
8637""""""""""
8638
8639``tramp`` must point to a block of memory which already has trampoline
8640code filled in by a previous call to
8641:ref:`llvm.init.trampoline <int_it>`.
8642
8643Semantics:
8644""""""""""
8645
8646On some architectures the address of the code to be executed needs to be
8647different to the address where the trampoline is actually stored. This
8648intrinsic returns the executable address corresponding to ``tramp``
8649after performing the required machine specific adjustments. The pointer
8650returned can then be :ref:`bitcast and executed <int_trampoline>`.
8651
8652Memory Use Markers
8653------------------
8654
8655This class of intrinsics exists to information about the lifetime of
8656memory objects and ranges where variables are immutable.
8657
Reid Klecknera534a382013-12-19 02:14:12 +00008658.. _int_lifestart:
8659
Sean Silvab084af42012-12-07 10:36:55 +00008660'``llvm.lifetime.start``' Intrinsic
8661^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8662
8663Syntax:
8664"""""""
8665
8666::
8667
8668 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8669
8670Overview:
8671"""""""""
8672
8673The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8674object's lifetime.
8675
8676Arguments:
8677""""""""""
8678
8679The first argument is a constant integer representing the size of the
8680object, or -1 if it is variable sized. The second argument is a pointer
8681to the object.
8682
8683Semantics:
8684""""""""""
8685
8686This intrinsic indicates that before this point in the code, the value
8687of the memory pointed to by ``ptr`` is dead. This means that it is known
8688to never be used and has an undefined value. A load from the pointer
8689that precedes this intrinsic can be replaced with ``'undef'``.
8690
Reid Klecknera534a382013-12-19 02:14:12 +00008691.. _int_lifeend:
8692
Sean Silvab084af42012-12-07 10:36:55 +00008693'``llvm.lifetime.end``' Intrinsic
8694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8695
8696Syntax:
8697"""""""
8698
8699::
8700
8701 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8702
8703Overview:
8704"""""""""
8705
8706The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8707object's lifetime.
8708
8709Arguments:
8710""""""""""
8711
8712The first argument is a constant integer representing the size of the
8713object, or -1 if it is variable sized. The second argument is a pointer
8714to the object.
8715
8716Semantics:
8717""""""""""
8718
8719This intrinsic indicates that after this point in the code, the value of
8720the memory pointed to by ``ptr`` is dead. This means that it is known to
8721never be used and has an undefined value. Any stores into the memory
8722object following this intrinsic may be removed as dead.
8723
8724'``llvm.invariant.start``' Intrinsic
8725^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8726
8727Syntax:
8728"""""""
8729
8730::
8731
8732 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8733
8734Overview:
8735"""""""""
8736
8737The '``llvm.invariant.start``' intrinsic specifies that the contents of
8738a memory object will not change.
8739
8740Arguments:
8741""""""""""
8742
8743The first argument is a constant integer representing the size of the
8744object, or -1 if it is variable sized. The second argument is a pointer
8745to the object.
8746
8747Semantics:
8748""""""""""
8749
8750This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8751the return value, the referenced memory location is constant and
8752unchanging.
8753
8754'``llvm.invariant.end``' Intrinsic
8755^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8756
8757Syntax:
8758"""""""
8759
8760::
8761
8762 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8763
8764Overview:
8765"""""""""
8766
8767The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8768memory object are mutable.
8769
8770Arguments:
8771""""""""""
8772
8773The first argument is the matching ``llvm.invariant.start`` intrinsic.
8774The second argument is a constant integer representing the size of the
8775object, or -1 if it is variable sized and the third argument is a
8776pointer to the object.
8777
8778Semantics:
8779""""""""""
8780
8781This intrinsic indicates that the memory is mutable again.
8782
8783General Intrinsics
8784------------------
8785
8786This class of intrinsics is designed to be generic and has no specific
8787purpose.
8788
8789'``llvm.var.annotation``' Intrinsic
8790^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8791
8792Syntax:
8793"""""""
8794
8795::
8796
8797 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8798
8799Overview:
8800"""""""""
8801
8802The '``llvm.var.annotation``' intrinsic.
8803
8804Arguments:
8805""""""""""
8806
8807The first argument is a pointer to a value, the second is a pointer to a
8808global string, the third is a pointer to a global string which is the
8809source file name, and the last argument is the line number.
8810
8811Semantics:
8812""""""""""
8813
8814This intrinsic allows annotation of local variables with arbitrary
8815strings. This can be useful for special purpose optimizations that want
8816to look for these annotations. These have no other defined use; they are
8817ignored by code generation and optimization.
8818
Michael Gottesman88d18832013-03-26 00:34:27 +00008819'``llvm.ptr.annotation.*``' Intrinsic
8820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8821
8822Syntax:
8823"""""""
8824
8825This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8826pointer to an integer of any width. *NOTE* you must specify an address space for
8827the pointer. The identifier for the default address space is the integer
8828'``0``'.
8829
8830::
8831
8832 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8833 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8834 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8835 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8836 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8837
8838Overview:
8839"""""""""
8840
8841The '``llvm.ptr.annotation``' intrinsic.
8842
8843Arguments:
8844""""""""""
8845
8846The first argument is a pointer to an integer value of arbitrary bitwidth
8847(result of some expression), the second is a pointer to a global string, the
8848third is a pointer to a global string which is the source file name, and the
8849last argument is the line number. It returns the value of the first argument.
8850
8851Semantics:
8852""""""""""
8853
8854This intrinsic allows annotation of a pointer to an integer with arbitrary
8855strings. This can be useful for special purpose optimizations that want to look
8856for these annotations. These have no other defined use; they are ignored by code
8857generation and optimization.
8858
Sean Silvab084af42012-12-07 10:36:55 +00008859'``llvm.annotation.*``' Intrinsic
8860^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8861
8862Syntax:
8863"""""""
8864
8865This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8866any integer bit width.
8867
8868::
8869
8870 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8871 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8872 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8873 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8874 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8875
8876Overview:
8877"""""""""
8878
8879The '``llvm.annotation``' intrinsic.
8880
8881Arguments:
8882""""""""""
8883
8884The first argument is an integer value (result of some expression), the
8885second is a pointer to a global string, the third is a pointer to a
8886global string which is the source file name, and the last argument is
8887the line number. It returns the value of the first argument.
8888
8889Semantics:
8890""""""""""
8891
8892This intrinsic allows annotations to be put on arbitrary expressions
8893with arbitrary strings. This can be useful for special purpose
8894optimizations that want to look for these annotations. These have no
8895other defined use; they are ignored by code generation and optimization.
8896
8897'``llvm.trap``' Intrinsic
8898^^^^^^^^^^^^^^^^^^^^^^^^^
8899
8900Syntax:
8901"""""""
8902
8903::
8904
8905 declare void @llvm.trap() noreturn nounwind
8906
8907Overview:
8908"""""""""
8909
8910The '``llvm.trap``' intrinsic.
8911
8912Arguments:
8913""""""""""
8914
8915None.
8916
8917Semantics:
8918""""""""""
8919
8920This intrinsic is lowered to the target dependent trap instruction. If
8921the target does not have a trap instruction, this intrinsic will be
8922lowered to a call of the ``abort()`` function.
8923
8924'``llvm.debugtrap``' Intrinsic
8925^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8926
8927Syntax:
8928"""""""
8929
8930::
8931
8932 declare void @llvm.debugtrap() nounwind
8933
8934Overview:
8935"""""""""
8936
8937The '``llvm.debugtrap``' intrinsic.
8938
8939Arguments:
8940""""""""""
8941
8942None.
8943
8944Semantics:
8945""""""""""
8946
8947This intrinsic is lowered to code which is intended to cause an
8948execution trap with the intention of requesting the attention of a
8949debugger.
8950
8951'``llvm.stackprotector``' Intrinsic
8952^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8953
8954Syntax:
8955"""""""
8956
8957::
8958
8959 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8960
8961Overview:
8962"""""""""
8963
8964The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8965onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8966is placed on the stack before local variables.
8967
8968Arguments:
8969""""""""""
8970
8971The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8972The first argument is the value loaded from the stack guard
8973``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8974enough space to hold the value of the guard.
8975
8976Semantics:
8977""""""""""
8978
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008979This intrinsic causes the prologue/epilogue inserter to force the position of
8980the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8981to ensure that if a local variable on the stack is overwritten, it will destroy
8982the value of the guard. When the function exits, the guard on the stack is
8983checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8984different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8985calling the ``__stack_chk_fail()`` function.
8986
8987'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008988^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008989
8990Syntax:
8991"""""""
8992
8993::
8994
8995 declare void @llvm.stackprotectorcheck(i8** <guard>)
8996
8997Overview:
8998"""""""""
8999
9000The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009001created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009002``__stack_chk_fail()`` function.
9003
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009004Arguments:
9005""""""""""
9006
9007The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9008the variable ``@__stack_chk_guard``.
9009
9010Semantics:
9011""""""""""
9012
9013This intrinsic is provided to perform the stack protector check by comparing
9014``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9015values do not match call the ``__stack_chk_fail()`` function.
9016
9017The reason to provide this as an IR level intrinsic instead of implementing it
9018via other IR operations is that in order to perform this operation at the IR
9019level without an intrinsic, one would need to create additional basic blocks to
9020handle the success/failure cases. This makes it difficult to stop the stack
9021protector check from disrupting sibling tail calls in Codegen. With this
9022intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009023codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009024
Sean Silvab084af42012-12-07 10:36:55 +00009025'``llvm.objectsize``' Intrinsic
9026^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9027
9028Syntax:
9029"""""""
9030
9031::
9032
9033 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9034 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9035
9036Overview:
9037"""""""""
9038
9039The ``llvm.objectsize`` intrinsic is designed to provide information to
9040the optimizers to determine at compile time whether a) an operation
9041(like memcpy) will overflow a buffer that corresponds to an object, or
9042b) that a runtime check for overflow isn't necessary. An object in this
9043context means an allocation of a specific class, structure, array, or
9044other object.
9045
9046Arguments:
9047""""""""""
9048
9049The ``llvm.objectsize`` intrinsic takes two arguments. The first
9050argument is a pointer to or into the ``object``. The second argument is
9051a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9052or -1 (if false) when the object size is unknown. The second argument
9053only accepts constants.
9054
9055Semantics:
9056""""""""""
9057
9058The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9059the size of the object concerned. If the size cannot be determined at
9060compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9061on the ``min`` argument).
9062
9063'``llvm.expect``' Intrinsic
9064^^^^^^^^^^^^^^^^^^^^^^^^^^^
9065
9066Syntax:
9067"""""""
9068
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009069This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9070integer bit width.
9071
Sean Silvab084af42012-12-07 10:36:55 +00009072::
9073
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009074 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009075 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9076 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9077
9078Overview:
9079"""""""""
9080
9081The ``llvm.expect`` intrinsic provides information about expected (the
9082most probable) value of ``val``, which can be used by optimizers.
9083
9084Arguments:
9085""""""""""
9086
9087The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9088a value. The second argument is an expected value, this needs to be a
9089constant value, variables are not allowed.
9090
9091Semantics:
9092""""""""""
9093
9094This intrinsic is lowered to the ``val``.
9095
9096'``llvm.donothing``' Intrinsic
9097^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9098
9099Syntax:
9100"""""""
9101
9102::
9103
9104 declare void @llvm.donothing() nounwind readnone
9105
9106Overview:
9107"""""""""
9108
9109The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9110only intrinsic that can be called with an invoke instruction.
9111
9112Arguments:
9113""""""""""
9114
9115None.
9116
9117Semantics:
9118""""""""""
9119
9120This intrinsic does nothing, and it's removed by optimizers and ignored
9121by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009122
9123Stack Map Intrinsics
9124--------------------
9125
9126LLVM provides experimental intrinsics to support runtime patching
9127mechanisms commonly desired in dynamic language JITs. These intrinsics
9128are described in :doc:`StackMaps`.