blob: 0fb2052202751a9cd0cc9df8913e51b090d93474 [file] [log] [blame]
Chris Lattner1e60a912003-12-20 01:22:19 +00001//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswell856ba762003-10-21 15:17:13 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswell856ba762003-10-21 15:17:13 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
Chris Lattner3501fea2003-01-14 22:00:31 +000017#include "llvm/Target/TargetInstrInfo.h"
Nicolas Geoffray52e724a2008-04-16 20:10:13 +000018#include "X86.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "X86RegisterInfo.h"
Dan Gohmand68a0762009-01-05 17:59:02 +000020#include "llvm/ADT/DenseMap.h"
Dan Gohman6f0d0242008-02-10 18:45:23 +000021#include "llvm/Target/TargetRegisterInfo.h"
Chris Lattner72614082002-10-25 22:55:53 +000022
Brian Gaeked0fde302003-11-11 22:41:34 +000023namespace llvm {
Evan Cheng25ab6902006-09-08 06:48:29 +000024 class X86RegisterInfo;
Evan Chengaa3c1412006-05-30 21:45:53 +000025 class X86TargetMachine;
Brian Gaeked0fde302003-11-11 22:41:34 +000026
Chris Lattner7fbe9722006-10-20 17:42:20 +000027namespace X86 {
28 // X86 specific condition code. These correspond to X86_*_COND in
29 // X86InstrInfo.td. They must be kept in synch.
30 enum CondCode {
31 COND_A = 0,
32 COND_AE = 1,
33 COND_B = 2,
34 COND_BE = 3,
35 COND_E = 4,
36 COND_G = 5,
37 COND_GE = 6,
38 COND_L = 7,
39 COND_LE = 8,
40 COND_NE = 9,
41 COND_NO = 10,
42 COND_NP = 11,
43 COND_NS = 12,
Dan Gohman653456c2009-01-07 00:15:08 +000044 COND_O = 13,
45 COND_P = 14,
46 COND_S = 15,
Dan Gohman279c22e2008-10-21 03:29:32 +000047
48 // Artificial condition codes. These are used by AnalyzeBranch
49 // to indicate a block terminated with two conditional branches to
50 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
51 // which can't be represented on x86 with a single condition. These
52 // are never used in MachineInstrs.
53 COND_NE_OR_P,
54 COND_NP_OR_E,
55
Chris Lattner7fbe9722006-10-20 17:42:20 +000056 COND_INVALID
57 };
Christopher Lamb6634e262008-03-13 05:47:01 +000058
Chris Lattner7fbe9722006-10-20 17:42:20 +000059 // Turn condition code into conditional branch opcode.
60 unsigned GetCondBranchFromCond(CondCode CC);
Chris Lattner9cd68752006-10-21 05:52:40 +000061
62 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63 /// e.g. turning COND_E to COND_NE.
64 CondCode GetOppositeBranchCondition(X86::CondCode CC);
65
Chris Lattner7fbe9722006-10-20 17:42:20 +000066}
67
Chris Lattner9d177402002-10-30 01:09:34 +000068/// X86II - This namespace holds all of the target specific flags that
69/// instruction info tracks.
70///
71namespace X86II {
Chris Lattner3b6b36d2009-07-10 06:29:59 +000072 /// Target Operand Flag enum.
73 enum TOF {
Chris Lattner6aab9cf2002-11-18 05:37:11 +000074 //===------------------------------------------------------------------===//
Chris Lattnerac5e8872009-06-25 17:38:33 +000075 // X86 Specific MachineOperand flags.
76
77 MO_NO_FLAG = 0,
78
79 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
80 /// relocation of:
Chris Lattner55e7c822009-06-26 00:43:52 +000081 /// SYMBOL_LABEL + [. - PICBASELABEL]
Chris Lattnerac5e8872009-06-25 17:38:33 +000082 MO_GOT_ABSOLUTE_ADDRESS = 1,
83
Chris Lattner55e7c822009-06-26 00:43:52 +000084 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
85 /// immediate should get the value of the symbol minus the PIC base label:
86 /// SYMBOL_LABEL - PICBASELABEL
87 MO_PIC_BASE_OFFSET = 2,
88
Chris Lattnerb903bed2009-06-26 21:20:29 +000089 /// MO_GOT - On a symbol operand this indicates that the immediate is the
90 /// offset to the GOT entry for the symbol name from the base of the GOT.
91 ///
92 /// See the X86-64 ELF ABI supplement for more details.
93 /// SYMBOL_LABEL @GOT
94 MO_GOT = 3,
Chris Lattner55e7c822009-06-26 00:43:52 +000095
Chris Lattnerb903bed2009-06-26 21:20:29 +000096 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
97 /// the offset to the location of the symbol name from the base of the GOT.
98 ///
99 /// See the X86-64 ELF ABI supplement for more details.
100 /// SYMBOL_LABEL @GOTOFF
101 MO_GOTOFF = 4,
102
103 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
104 /// offset to the GOT entry for the symbol name from the current code
105 /// location.
106 ///
107 /// See the X86-64 ELF ABI supplement for more details.
108 /// SYMBOL_LABEL @GOTPCREL
109 MO_GOTPCREL = 5,
110
111 /// MO_PLT - On a symbol operand this indicates that the immediate is
112 /// offset to the PLT entry of symbol name from the current code location.
113 ///
114 /// See the X86-64 ELF ABI supplement for more details.
115 /// SYMBOL_LABEL @PLT
116 MO_PLT = 6,
117
118 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
119 /// some TLS offset.
120 ///
121 /// See 'ELF Handling for Thread-Local Storage' for more details.
122 /// SYMBOL_LABEL @TLSGD
123 MO_TLSGD = 7,
124
125 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
126 /// some TLS offset.
127 ///
128 /// See 'ELF Handling for Thread-Local Storage' for more details.
129 /// SYMBOL_LABEL @GOTTPOFF
130 MO_GOTTPOFF = 8,
131
132 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
133 /// some TLS offset.
134 ///
135 /// See 'ELF Handling for Thread-Local Storage' for more details.
136 /// SYMBOL_LABEL @INDNTPOFF
137 MO_INDNTPOFF = 9,
138
139 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
140 /// some TLS offset.
141 ///
142 /// See 'ELF Handling for Thread-Local Storage' for more details.
143 /// SYMBOL_LABEL @TPOFF
144 MO_TPOFF = 10,
145
146 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
147 /// some TLS offset.
148 ///
149 /// See 'ELF Handling for Thread-Local Storage' for more details.
150 /// SYMBOL_LABEL @NTPOFF
151 MO_NTPOFF = 11,
Chris Lattnerac5e8872009-06-25 17:38:33 +0000152
Chris Lattner4aa21aa2009-07-09 00:58:53 +0000153 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
154 /// reference is actually to the "__imp_FOO" symbol. This is used for
155 /// dllimport linkage on windows.
156 MO_DLLIMPORT = 12,
157
Chris Lattner74e726e2009-07-09 05:27:35 +0000158 /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
159 /// reference is actually to the "FOO$stub" symbol. This is used for calls
160 /// and jumps to external functions on Tiger and before.
161 MO_DARWIN_STUB = 13,
162
Chris Lattner75cdf272009-07-09 06:59:17 +0000163 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
164 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
165 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
166 MO_DARWIN_NONLAZY = 14,
167
168 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
169 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
170 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
171 MO_DARWIN_NONLAZY_PIC_BASE = 15,
172
173 /// MO_DARWIN_HIDDEN_NONLAZY - On a symbol operand "FOO", this indicates
174 /// that the reference is actually to the "FOO$non_lazy_ptr" symbol, which
175 /// is a non-PIC-base-relative reference to a hidden dyld lazy pointer stub.
176 MO_DARWIN_HIDDEN_NONLAZY = 16,
177
178 /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
179 /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
180 /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
181 /// stub.
Chris Lattner281bada2009-07-10 06:06:17 +0000182 MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE = 17
Chris Lattner281bada2009-07-10 06:06:17 +0000183 };
184}
185
Chris Lattner3b6b36d2009-07-10 06:29:59 +0000186/// isGlobalStubReference - Return true if the specified TargetFlag operand is
Chris Lattner281bada2009-07-10 06:06:17 +0000187/// a reference to a stub for a global, not the global itself.
Chris Lattner3b6b36d2009-07-10 06:29:59 +0000188inline static bool isGlobalStubReference(unsigned char TargetFlag) {
189 switch (TargetFlag) {
Chris Lattner281bada2009-07-10 06:06:17 +0000190 case X86II::MO_DLLIMPORT: // dllimport stub.
191 case X86II::MO_GOTPCREL: // rip-relative GOT reference.
192 case X86II::MO_GOT: // normal GOT reference.
193 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
194 case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
195 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
196 case X86II::MO_DARWIN_HIDDEN_NONLAZY: // Hidden $non_lazy_ptr ref.
197 return true;
198 default:
199 return false;
200 }
201}
Chris Lattner7478ab82009-07-10 07:33:30 +0000202
203/// isGlobalRelativeToPICBase - Return true if the specified global value
204/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
205/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
206inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
207 switch (TargetFlag) {
208 case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
209 case X86II::MO_GOT: // isPICStyleGOT: other global.
210 case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
211 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
212 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
213 return true;
214 default:
215 return false;
216 }
217}
Chris Lattner281bada2009-07-10 06:06:17 +0000218
219/// X86II - This namespace holds all of the target specific flags that
220/// instruction info tracks.
221///
222namespace X86II {
223 enum {
Chris Lattnerac5e8872009-06-25 17:38:33 +0000224 //===------------------------------------------------------------------===//
225 // Instruction encodings. These are the standard/most common forms for X86
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000226 // instructions.
227 //
228
Chris Lattner4c299f52002-12-25 05:09:59 +0000229 // PseudoFrm - This represents an instruction that is a pseudo instruction
230 // or one that has not been implemented yet. It is illegal to code generate
231 // it, but tolerated for intermediate implementation stages.
232 Pseudo = 0,
233
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000234 /// Raw - This form is for instructions that don't have any operands, so
235 /// they are just a fixed opcode value, like 'leave'.
Chris Lattner4c299f52002-12-25 05:09:59 +0000236 RawFrm = 1,
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000237
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000238 /// AddRegFrm - This form is used for instructions like 'push r32' that have
239 /// their one register operand added to their opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +0000240 AddRegFrm = 2,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000241
242 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
243 /// to specify a destination, which in this case is a register.
244 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000245 MRMDestReg = 3,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000246
247 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
248 /// to specify a destination, which in this case is memory.
249 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000250 MRMDestMem = 4,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000251
252 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
253 /// to specify a source, which in this case is a register.
254 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000255 MRMSrcReg = 5,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000256
257 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
258 /// to specify a source, which in this case is memory.
259 ///
Chris Lattner4c299f52002-12-25 05:09:59 +0000260 MRMSrcMem = 6,
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000261
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000262 /// MRM[0-7][rm] - These forms are used to represent instructions that use
Chris Lattner85b39f22002-11-21 17:08:49 +0000263 /// a Mod/RM byte, and use the middle field to hold extended opcode
264 /// information. In the intel manual these are represented as /0, /1, ...
265 ///
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000266
Chris Lattner85b39f22002-11-21 17:08:49 +0000267 // First, instructions that operate on a register r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000268 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
269 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +0000270
271 // Next, instructions that operate on a memory r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000272 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
273 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +0000274
Evan Cheng3c55c542006-02-01 06:13:50 +0000275 // MRMInitReg - This form is used for instructions whose source and
276 // destinations are the same register.
277 MRMInitReg = 32,
278
279 FormMask = 63,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000280
281 //===------------------------------------------------------------------===//
282 // Actual flags...
283
Chris Lattner11e53e32002-11-21 01:32:55 +0000284 // OpSize - Set if this instruction requires an operand size prefix (0x66),
285 // which most often indicates that the instruction operates on 16 bit data
286 // instead of 32 bit data.
Evan Cheng3c55c542006-02-01 06:13:50 +0000287 OpSize = 1 << 6,
Brian Gaeke86764d72002-12-05 08:30:40 +0000288
Evan Cheng25ab6902006-09-08 06:48:29 +0000289 // AsSize - Set if this instruction requires an operand size prefix (0x67),
290 // which most often indicates that the instruction address 16 bit address
291 // instead of 32 bit address (or 32 bit address in 64 bit mode).
292 AdSize = 1 << 7,
293
294 //===------------------------------------------------------------------===//
Chris Lattner4c299f52002-12-25 05:09:59 +0000295 // Op0Mask - There are several prefix bytes that are used to form two byte
Chris Lattner915e5e52004-02-12 17:53:22 +0000296 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
297 // used to obtain the setting of this field. If no bits in this field is
298 // set, there is no prefix byte for obtaining a multibyte opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +0000299 //
Evan Cheng25ab6902006-09-08 06:48:29 +0000300 Op0Shift = 8,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000301 Op0Mask = 0xF << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000302
303 // TB - TwoByte - Set if this instruction has a two byte opcode, which
304 // starts with a 0x0F byte before the real opcode.
Chris Lattner2959b6e2003-08-06 15:32:20 +0000305 TB = 1 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000306
Chris Lattner915e5e52004-02-12 17:53:22 +0000307 // REP - The 0xF3 prefix byte indicating repetition of the following
308 // instruction.
309 REP = 2 << Op0Shift,
310
Chris Lattner4c299f52002-12-25 05:09:59 +0000311 // D8-DF - These escape opcodes are used by the floating point unit. These
312 // values must remain sequential.
Chris Lattner915e5e52004-02-12 17:53:22 +0000313 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
314 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
315 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
316 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
Jeff Cohen9eb59ec2005-07-27 05:53:44 +0000317
Nate Begemanf63be7d2005-07-06 18:59:04 +0000318 // XS, XD - These prefix codes are for single and double precision scalar
319 // floating point operations performed in the SSE registers.
Bill Wendlingbb1ee052007-04-10 22:10:25 +0000320 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
321
322 // T8, TA - Prefix after the 0x0F prefix.
323 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000324
Chris Lattner0c514f42003-01-13 00:49:24 +0000325 //===------------------------------------------------------------------===//
Evan Cheng25ab6902006-09-08 06:48:29 +0000326 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
327 // They are used to specify GPRs and SSE registers, 64-bit operand size,
328 // etc. We only cares about REX.W and REX.R bits and only the former is
329 // statically determined.
330 //
331 REXShift = 12,
332 REX_W = 1 << REXShift,
333
334 //===------------------------------------------------------------------===//
335 // This three-bit field describes the size of an immediate operand. Zero is
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000336 // unused so that we can tell if we forgot to set a value.
Evan Cheng25ab6902006-09-08 06:48:29 +0000337 ImmShift = 13,
338 ImmMask = 7 << ImmShift,
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000339 Imm8 = 1 << ImmShift,
340 Imm16 = 2 << ImmShift,
341 Imm32 = 3 << ImmShift,
Evan Cheng25ab6902006-09-08 06:48:29 +0000342 Imm64 = 4 << ImmShift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000343
Chris Lattner0c514f42003-01-13 00:49:24 +0000344 //===------------------------------------------------------------------===//
345 // FP Instruction Classification... Zero is non-fp instruction.
346
Chris Lattner2959b6e2003-08-06 15:32:20 +0000347 // FPTypeMask - Mask for all of the FP types...
Evan Cheng25ab6902006-09-08 06:48:29 +0000348 FPTypeShift = 16,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000349 FPTypeMask = 7 << FPTypeShift,
350
Chris Lattner79b13732004-01-30 22:24:18 +0000351 // NotFP - The default, set for instructions that do not use FP registers.
352 NotFP = 0 << FPTypeShift,
353
Chris Lattner0c514f42003-01-13 00:49:24 +0000354 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
Chris Lattner2959b6e2003-08-06 15:32:20 +0000355 ZeroArgFP = 1 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000356
357 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
Chris Lattner2959b6e2003-08-06 15:32:20 +0000358 OneArgFP = 2 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000359
360 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
361 // result back to ST(0). For example, fcos, fsqrt, etc.
362 //
Chris Lattner2959b6e2003-08-06 15:32:20 +0000363 OneArgFPRW = 3 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000364
365 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
366 // explicit argument, storing the result to either ST(0) or the implicit
367 // argument. For example: fadd, fsub, fmul, etc...
Chris Lattner2959b6e2003-08-06 15:32:20 +0000368 TwoArgFP = 4 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000369
Chris Lattnerab8decc2004-06-11 04:41:24 +0000370 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
371 // explicit argument, but have no destination. Example: fucom, fucomi, ...
372 CompareFP = 5 << FPTypeShift,
373
Chris Lattner1c54a852004-03-31 22:02:13 +0000374 // CondMovFP - "2 operand" floating point conditional move instructions.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000375 CondMovFP = 6 << FPTypeShift,
Chris Lattner1c54a852004-03-31 22:02:13 +0000376
Chris Lattner0c514f42003-01-13 00:49:24 +0000377 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000378 SpecialFP = 7 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000379
Andrew Lenharthea7da502008-03-01 13:37:02 +0000380 // Lock prefix
381 LOCKShift = 19,
382 LOCK = 1 << LOCKShift,
383
Anton Korobeynikovef93cec2008-10-11 19:09:15 +0000384 // Segment override prefixes. Currently we just need ability to address
385 // stuff in gs and fs segments.
386 SegOvrShift = 20,
387 SegOvrMask = 3 << SegOvrShift,
388 FS = 1 << SegOvrShift,
389 GS = 2 << SegOvrShift,
390
391 // Bits 22 -> 23 are unused
Evan Cheng25ab6902006-09-08 06:48:29 +0000392 OpcodeShift = 24,
Chris Lattnerd74ea2b2006-05-24 17:04:05 +0000393 OpcodeMask = 0xFF << OpcodeShift
Chris Lattner9d177402002-10-30 01:09:34 +0000394 };
395}
396
Rafael Espindola094fad32009-04-08 21:14:34 +0000397const int X86AddrNumOperands = 5;
Rafael Espindolada945e32009-03-28 18:55:31 +0000398
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000399inline static bool isScale(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000400 return MO.isImm() &&
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000401 (MO.getImm() == 1 || MO.getImm() == 2 ||
402 MO.getImm() == 4 || MO.getImm() == 8);
403}
404
Rafael Espindola094fad32009-04-08 21:14:34 +0000405inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
Dan Gohmand735b802008-10-03 15:45:36 +0000406 if (MI->getOperand(Op).isFI()) return true;
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000407 return Op+4 <= MI->getNumOperands() &&
Dan Gohmand735b802008-10-03 15:45:36 +0000408 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
409 MI->getOperand(Op+2).isReg() &&
410 (MI->getOperand(Op+3).isImm() ||
411 MI->getOperand(Op+3).isGlobal() ||
412 MI->getOperand(Op+3).isCPI() ||
413 MI->getOperand(Op+3).isJTI());
Anton Korobeynikov1c4b5ea2008-06-28 11:07:54 +0000414}
415
Rafael Espindola094fad32009-04-08 21:14:34 +0000416inline static bool isMem(const MachineInstr *MI, unsigned Op) {
417 if (MI->getOperand(Op).isFI()) return true;
418 return Op+5 <= MI->getNumOperands() &&
419 MI->getOperand(Op+4).isReg() &&
420 isLeaMem(MI, Op);
421}
422
Chris Lattner64105522008-01-01 01:03:04 +0000423class X86InstrInfo : public TargetInstrInfoImpl {
Evan Chengaa3c1412006-05-30 21:45:53 +0000424 X86TargetMachine &TM;
Chris Lattner72614082002-10-25 22:55:53 +0000425 const X86RegisterInfo RI;
Owen Anderson43dbe052008-01-07 01:35:02 +0000426
427 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
428 /// RegOp2MemOpTable2 - Load / store folding opcode maps.
429 ///
Evan Chengf9b36f02009-07-15 06:10:07 +0000430 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
431 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
432 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
433 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
Owen Anderson43dbe052008-01-07 01:35:02 +0000434
435 /// MemOp2RegOpTable - Load / store unfolding opcode map.
436 ///
437 DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
438
Chris Lattner72614082002-10-25 22:55:53 +0000439public:
Dan Gohman950a4c42008-03-25 22:06:05 +0000440 explicit X86InstrInfo(X86TargetMachine &tm);
Chris Lattner72614082002-10-25 22:55:53 +0000441
Chris Lattner3501fea2003-01-14 22:00:31 +0000442 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
Chris Lattner72614082002-10-25 22:55:53 +0000443 /// such, whenever a client has an instance of instruction info, it should
444 /// always be able to get register info as well (through this method).
445 ///
Dan Gohmanc9f5f3f2008-05-14 01:58:56 +0000446 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
Chris Lattner72614082002-10-25 22:55:53 +0000447
Evan Cheng04ee5a12009-01-20 19:12:24 +0000448 /// Return true if the instruction is a register to register move and return
449 /// the source and dest operands and their sub-register indices by reference.
450 virtual bool isMoveInstr(const MachineInstr &MI,
451 unsigned &SrcReg, unsigned &DstReg,
452 unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
453
Dan Gohmancbad42c2008-11-18 19:49:32 +0000454 unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
455 unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
Evan Chengca1267c2008-03-31 20:40:39 +0000456
Bill Wendling9f8fea32008-05-12 20:54:26 +0000457 bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
Evan Chengca1267c2008-03-31 20:40:39 +0000458 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
Evan Cheng37844532009-07-16 09:20:10 +0000459 unsigned DestReg, unsigned SubIdx,
460 const MachineInstr *Orig) const;
Evan Chengca1267c2008-03-31 20:40:39 +0000461
Dan Gohmancbad42c2008-11-18 19:49:32 +0000462 bool isInvariantLoad(const MachineInstr *MI) const;
Bill Wendling627c00b2007-12-17 23:07:56 +0000463
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000464 /// convertToThreeAddress - This method must be implemented by targets that
465 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
466 /// may be able to convert a two-address instruction into a true
467 /// three-address instruction on demand. This allows the X86 target (for
468 /// example) to convert ADD and SHL instructions into LEA instructions if they
469 /// would require register copies due to two-addressness.
470 ///
471 /// This method returns a null pointer if the transformation cannot be
472 /// performed, otherwise it returns the new instruction.
473 ///
Evan Chengba59a1e2006-12-01 21:52:58 +0000474 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
475 MachineBasicBlock::iterator &MBBI,
Owen Andersonf660c172008-07-02 23:41:07 +0000476 LiveVariables *LV) const;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000477
Chris Lattner41e431b2005-01-19 07:11:01 +0000478 /// commuteInstruction - We have a few instructions that must be hacked on to
479 /// commute them.
480 ///
Evan Cheng58dcb0e2008-06-16 07:33:11 +0000481 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
Chris Lattner41e431b2005-01-19 07:11:01 +0000482
Chris Lattner7fbe9722006-10-20 17:42:20 +0000483 // Branch analysis.
Dale Johannesen318093b2007-06-14 22:03:45 +0000484 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
Chris Lattner7fbe9722006-10-20 17:42:20 +0000485 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
486 MachineBasicBlock *&FBB,
Evan Chengdc54d312009-02-09 07:14:22 +0000487 SmallVectorImpl<MachineOperand> &Cond,
488 bool AllowModify) const;
Evan Cheng6ae36262007-05-18 00:18:17 +0000489 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
490 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
491 MachineBasicBlock *FBB,
Owen Anderson44eb65c2008-08-14 22:49:33 +0000492 const SmallVectorImpl<MachineOperand> &Cond) const;
Owen Anderson940f83e2008-08-26 18:03:31 +0000493 virtual bool copyRegToReg(MachineBasicBlock &MBB,
Owen Andersond10fd972007-12-31 06:32:00 +0000494 MachineBasicBlock::iterator MI,
495 unsigned DestReg, unsigned SrcReg,
496 const TargetRegisterClass *DestRC,
497 const TargetRegisterClass *SrcRC) const;
Owen Andersonf6372aa2008-01-01 21:11:32 +0000498 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
499 MachineBasicBlock::iterator MI,
500 unsigned SrcReg, bool isKill, int FrameIndex,
501 const TargetRegisterClass *RC) const;
502
503 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
504 SmallVectorImpl<MachineOperand> &Addr,
505 const TargetRegisterClass *RC,
506 SmallVectorImpl<MachineInstr*> &NewMIs) const;
507
508 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
509 MachineBasicBlock::iterator MI,
510 unsigned DestReg, int FrameIndex,
511 const TargetRegisterClass *RC) const;
512
513 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
514 SmallVectorImpl<MachineOperand> &Addr,
515 const TargetRegisterClass *RC,
516 SmallVectorImpl<MachineInstr*> &NewMIs) const;
Owen Andersond94b6a12008-01-04 23:57:37 +0000517
518 virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
519 MachineBasicBlock::iterator MI,
520 const std::vector<CalleeSavedInfo> &CSI) const;
521
522 virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
523 MachineBasicBlock::iterator MI,
524 const std::vector<CalleeSavedInfo> &CSI) const;
525
Owen Anderson43dbe052008-01-07 01:35:02 +0000526 /// foldMemoryOperand - If this target supports it, fold a load or store of
527 /// the specified stack slot into the specified machine instruction for the
528 /// specified operand(s). If this is possible, the target should perform the
529 /// folding and return true, otherwise it should return false. If it folds
530 /// the instruction, it is likely that the MachineInstruction the iterator
531 /// references has been changed.
Dan Gohmanc54baa22008-12-03 18:43:12 +0000532 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
533 MachineInstr* MI,
534 const SmallVectorImpl<unsigned> &Ops,
535 int FrameIndex) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000536
537 /// foldMemoryOperand - Same as the previous version except it allows folding
538 /// of any load and store from / to any address, not just from a specific
539 /// stack slot.
Dan Gohmanc54baa22008-12-03 18:43:12 +0000540 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
541 MachineInstr* MI,
542 const SmallVectorImpl<unsigned> &Ops,
543 MachineInstr* LoadMI) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000544
545 /// canFoldMemoryOperand - Returns true if the specified load / store is
546 /// folding is possible.
Dan Gohman8e8b8a22008-10-16 01:49:15 +0000547 virtual bool canFoldMemoryOperand(const MachineInstr*,
548 const SmallVectorImpl<unsigned> &) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000549
550 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
551 /// a store or a load and a store into two or more instruction. If this is
552 /// possible, returns true as well as the new instructions by reference.
553 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
554 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
555 SmallVectorImpl<MachineInstr*> &NewMIs) const;
556
557 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
558 SmallVectorImpl<SDNode*> &NewNodes) const;
559
560 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
561 /// instruction after load / store are unfolded from an instruction of the
562 /// specified opcode. It returns zero if the specified unfolding is not
563 /// possible.
564 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
565 bool UnfoldLoad, bool UnfoldStore) const;
566
Dan Gohman8e8b8a22008-10-16 01:49:15 +0000567 virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
Owen Anderson44eb65c2008-08-14 22:49:33 +0000568 virtual
569 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
Chris Lattner41e431b2005-01-19 07:11:01 +0000570
Evan Cheng4350eb82009-02-06 17:17:30 +0000571 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
572 /// instruction that defines the specified register class.
573 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
Evan Cheng23066282008-10-27 07:14:50 +0000574
Chris Lattnerf21dfcd2002-11-18 06:56:24 +0000575 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
Duncan Sandsee465742007-08-29 19:01:20 +0000576 // specified machine instruction.
Chris Lattnerf21dfcd2002-11-18 06:56:24 +0000577 //
Chris Lattner749c6f62008-01-07 07:27:27 +0000578 unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
Evan Cheng19f2ffc2006-12-05 04:01:03 +0000579 return TID->TSFlags >> X86II::OpcodeShift;
Chris Lattner4d18d5c2003-08-03 21:56:22 +0000580 }
Chris Lattnercc8cd0c2008-01-07 02:48:55 +0000581 unsigned char getBaseOpcodeFor(unsigned Opcode) const {
Duncan Sandsee465742007-08-29 19:01:20 +0000582 return getBaseOpcodeFor(&get(Opcode));
583 }
Nicolas Geoffray52e724a2008-04-16 20:10:13 +0000584
585 static bool isX86_64NonExtLowByteReg(unsigned reg) {
586 return (reg == X86::SPL || reg == X86::BPL ||
587 reg == X86::SIL || reg == X86::DIL);
588 }
589
590 static unsigned sizeOfImm(const TargetInstrDesc *Desc);
Nicolas Geoffray52e724a2008-04-16 20:10:13 +0000591 static bool isX86_64ExtendedReg(const MachineOperand &MO);
592 static unsigned determineREX(const MachineInstr &MI);
593
594 /// GetInstSize - Returns the size of the specified MachineInstr.
595 ///
596 virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
Owen Anderson43dbe052008-01-07 01:35:02 +0000597
Dan Gohman57c3dac2008-09-30 00:58:23 +0000598 /// getGlobalBaseReg - Return a virtual register initialized with the
599 /// the global base register value. Output instructions required to
600 /// initialize the register in the function entry block, if necessary.
Dan Gohman8b746962008-09-23 18:22:58 +0000601 ///
Dan Gohman57c3dac2008-09-30 00:58:23 +0000602 unsigned getGlobalBaseReg(MachineFunction *MF) const;
Dan Gohman8b746962008-09-23 18:22:58 +0000603
Owen Anderson43dbe052008-01-07 01:35:02 +0000604private:
Dan Gohmanc54baa22008-12-03 18:43:12 +0000605 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
Evan Chengf9b36f02009-07-15 06:10:07 +0000606 MachineInstr* MI,
607 unsigned OpNum,
608 const SmallVectorImpl<MachineOperand> &MOs,
609 unsigned Alignment) const;
Chris Lattner72614082002-10-25 22:55:53 +0000610};
611
Brian Gaeked0fde302003-11-11 22:41:34 +0000612} // End llvm namespace
613
Chris Lattner72614082002-10-25 22:55:53 +0000614#endif