blob: e0945b1c5a4e82df5ce7821c33a453f94131830f [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Anton Korobeynikovc6c98af2007-04-29 18:02:48 +000027 <li><a href="#aliasstructure">Aliases</a>
Reid Spencerca86e162006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000029 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000030 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000031 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000032 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000033 </ol>
34 </li>
Chris Lattner00950542001-06-06 20:29:01 +000035 <li><a href="#typesystem">Type System</a>
36 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000038 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000039 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000040 <li><a href="#t_floating">Floating Point Types</a></li>
41 <li><a href="#t_void">Void Type</a></li>
42 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000043 </ol>
44 </li>
Chris Lattner00950542001-06-06 20:29:01 +000045 <li><a href="#t_derived">Derived Types</a>
46 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000047 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000048 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000049 <li><a href="#t_function">Function Type</a></li>
50 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000051 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000052 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000053 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000054 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000055 </ol>
56 </li>
57 </ol>
58 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000059 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000060 <ol>
61 <li><a href="#simpleconstants">Simple Constants</a>
62 <li><a href="#aggregateconstants">Aggregate Constants</a>
63 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
64 <li><a href="#undefvalues">Undefined Values</a>
65 <li><a href="#constantexprs">Constant Expressions</a>
66 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000067 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000068 <li><a href="#othervalues">Other Values</a>
69 <ol>
70 <li><a href="#inlineasm">Inline Assembler Expressions</a>
71 </ol>
72 </li>
Chris Lattner00950542001-06-06 20:29:01 +000073 <li><a href="#instref">Instruction Reference</a>
74 <ol>
75 <li><a href="#terminators">Terminator Instructions</a>
76 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000077 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
78 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000079 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
80 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000082 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000083 </ol>
84 </li>
Chris Lattner00950542001-06-06 20:29:01 +000085 <li><a href="#binaryops">Binary Operations</a>
86 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000087 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
88 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
89 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000090 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
91 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
92 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000093 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
94 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
95 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000096 </ol>
97 </li>
Chris Lattner00950542001-06-06 20:29:01 +000098 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
99 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000100 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
101 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
102 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000103 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000104 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000105 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000106 </ol>
107 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000108 <li><a href="#vectorops">Vector Operations</a>
109 <ol>
110 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
111 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
112 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000113 </ol>
114 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000115 <li><a href="#aggregateops">Aggregate Operations</a>
116 <ol>
117 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
118 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
119 </ol>
120 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000121 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000122 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000123 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
124 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
125 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000126 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
127 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
128 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000129 </ol>
130 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000131 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000132 <ol>
133 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
134 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000138 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
140 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
141 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000142 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
143 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000144 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000145 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000146 <li><a href="#otherops">Other Operations</a>
147 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000148 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
149 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000150 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
151 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000152 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000153 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000154 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000155 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Devang Patelc3fc6df2008-03-10 20:49:15 +0000156 <li><a href="#i_getresult">'<tt>getresult</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000157 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000158 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000159 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000160 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000161 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000162 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000163 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
164 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000165 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
167 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000168 </ol>
169 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000170 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
171 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000172 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
174 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000175 </ol>
176 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000177 <li><a href="#int_codegen">Code Generator Intrinsics</a>
178 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000179 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
181 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
182 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
183 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
184 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
185 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000186 </ol>
187 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000188 <li><a href="#int_libc">Standard C Library Intrinsics</a>
189 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000190 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000195 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000198 </ol>
199 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000200 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000201 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000202 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000203 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
205 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000206 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000208 </ol>
209 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000210 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000211 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000212 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000213 <ol>
214 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000215 </ol>
216 </li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000217 <li><a href="#int_atomics">Atomic intrinsics</a>
218 <ol>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000219 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
Mon P Wang28873102008-06-25 08:15:39 +0000220 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000221 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Mon P Wang28873102008-06-25 08:15:39 +0000222 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
223 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
224 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
225 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
226 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
227 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
228 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
229 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
230 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
231 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000232 </ol>
233 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000234 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000235 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000236 <li><a href="#int_var_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000237 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000238 <li><a href="#int_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000239 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000240 <li><a href="#int_trap">
241 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000242 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000243 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000244 </ol>
245 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000246</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000247
248<div class="doc_author">
249 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
250 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000251</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000252
Chris Lattner00950542001-06-06 20:29:01 +0000253<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000254<div class="doc_section"> <a name="abstract">Abstract </a></div>
255<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000256
Misha Brukman9d0919f2003-11-08 01:05:38 +0000257<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000258<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000259LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000260type safety, low-level operations, flexibility, and the capability of
261representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000262representation used throughout all phases of the LLVM compilation
263strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000264</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000265
Chris Lattner00950542001-06-06 20:29:01 +0000266<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000267<div class="doc_section"> <a name="introduction">Introduction</a> </div>
268<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000269
Misha Brukman9d0919f2003-11-08 01:05:38 +0000270<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
Chris Lattner261efe92003-11-25 01:02:51 +0000272<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000273different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000274representation (suitable for fast loading by a Just-In-Time compiler),
275and as a human readable assembly language representation. This allows
276LLVM to provide a powerful intermediate representation for efficient
277compiler transformations and analysis, while providing a natural means
278to debug and visualize the transformations. The three different forms
279of LLVM are all equivalent. This document describes the human readable
280representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000281
John Criswellc1f786c2005-05-13 22:25:59 +0000282<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000283while being expressive, typed, and extensible at the same time. It
284aims to be a "universal IR" of sorts, by being at a low enough level
285that high-level ideas may be cleanly mapped to it (similar to how
286microprocessors are "universal IR's", allowing many source languages to
287be mapped to them). By providing type information, LLVM can be used as
288the target of optimizations: for example, through pointer analysis, it
289can be proven that a C automatic variable is never accessed outside of
290the current function... allowing it to be promoted to a simple SSA
291value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000292
Misha Brukman9d0919f2003-11-08 01:05:38 +0000293</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000294
Chris Lattner00950542001-06-06 20:29:01 +0000295<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000296<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000297
Misha Brukman9d0919f2003-11-08 01:05:38 +0000298<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000299
Chris Lattner261efe92003-11-25 01:02:51 +0000300<p>It is important to note that this document describes 'well formed'
301LLVM assembly language. There is a difference between what the parser
302accepts and what is considered 'well formed'. For example, the
303following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000304
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000305<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000306<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000307%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000308</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000309</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000310
Chris Lattner261efe92003-11-25 01:02:51 +0000311<p>...because the definition of <tt>%x</tt> does not dominate all of
312its uses. The LLVM infrastructure provides a verification pass that may
313be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000314automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000315the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000316by the verifier pass indicate bugs in transformation passes or input to
317the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000318</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000319
Chris Lattnercc689392007-10-03 17:34:29 +0000320<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000321
Chris Lattner00950542001-06-06 20:29:01 +0000322<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000323<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000324<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000325
Misha Brukman9d0919f2003-11-08 01:05:38 +0000326<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000327
Reid Spencer2c452282007-08-07 14:34:28 +0000328 <p>LLVM identifiers come in two basic types: global and local. Global
329 identifiers (functions, global variables) begin with the @ character. Local
330 identifiers (register names, types) begin with the % character. Additionally,
331 there are three different formats for identifiers, for different purposes:
Chris Lattnerd7923912004-05-23 21:06:01 +0000332
Chris Lattner00950542001-06-06 20:29:01 +0000333<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000334 <li>Named values are represented as a string of characters with their prefix.
335 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
336 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000337 Identifiers which require other characters in their names can be surrounded
Reid Spencer2c452282007-08-07 14:34:28 +0000338 with quotes. In this way, anything except a <tt>&quot;</tt> character can
339 be used in a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000340
Reid Spencer2c452282007-08-07 14:34:28 +0000341 <li>Unnamed values are represented as an unsigned numeric value with their
342 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000343
Reid Spencercc16dc32004-12-09 18:02:53 +0000344 <li>Constants, which are described in a <a href="#constants">section about
345 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000346</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000347
Reid Spencer2c452282007-08-07 14:34:28 +0000348<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000349don't need to worry about name clashes with reserved words, and the set of
350reserved words may be expanded in the future without penalty. Additionally,
351unnamed identifiers allow a compiler to quickly come up with a temporary
352variable without having to avoid symbol table conflicts.</p>
353
Chris Lattner261efe92003-11-25 01:02:51 +0000354<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000355languages. There are keywords for different opcodes
356('<tt><a href="#i_add">add</a></tt>',
357 '<tt><a href="#i_bitcast">bitcast</a></tt>',
358 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000359href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000360and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000361none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000362
363<p>Here is an example of LLVM code to multiply the integer variable
364'<tt>%X</tt>' by 8:</p>
365
Misha Brukman9d0919f2003-11-08 01:05:38 +0000366<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000367
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000368<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000369<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000370%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000371</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000372</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000373
Misha Brukman9d0919f2003-11-08 01:05:38 +0000374<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000375
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000376<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000377<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000378%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000379</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000380</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000381
Misha Brukman9d0919f2003-11-08 01:05:38 +0000382<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000383
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000384<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000385<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000386<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
387<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
388%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000389</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000390</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000391
Chris Lattner261efe92003-11-25 01:02:51 +0000392<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
393important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000394
Chris Lattner00950542001-06-06 20:29:01 +0000395<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000396
397 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
398 line.</li>
399
400 <li>Unnamed temporaries are created when the result of a computation is not
401 assigned to a named value.</li>
402
Misha Brukman9d0919f2003-11-08 01:05:38 +0000403 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000404
Misha Brukman9d0919f2003-11-08 01:05:38 +0000405</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000406
John Criswelle4c57cc2005-05-12 16:52:32 +0000407<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000408demonstrating instructions, we will follow an instruction with a comment that
409defines the type and name of value produced. Comments are shown in italic
410text.</p>
411
Misha Brukman9d0919f2003-11-08 01:05:38 +0000412</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000413
414<!-- *********************************************************************** -->
415<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
416<!-- *********************************************************************** -->
417
418<!-- ======================================================================= -->
419<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
420</div>
421
422<div class="doc_text">
423
424<p>LLVM programs are composed of "Module"s, each of which is a
425translation unit of the input programs. Each module consists of
426functions, global variables, and symbol table entries. Modules may be
427combined together with the LLVM linker, which merges function (and
428global variable) definitions, resolves forward declarations, and merges
429symbol table entries. Here is an example of the "hello world" module:</p>
430
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000431<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000432<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000433<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
434 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000435
436<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000437<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000438
439<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000440define i32 @main() { <i>; i32()* </i>
Reid Spencerca86e162006-12-31 07:07:53 +0000441 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000442 %cast210 = <a
Chris Lattner6c0955b2007-06-12 17:01:15 +0000443 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000444
445 <i>; Call puts function to write out the string to stdout...</i>
446 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000447 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000448 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000449 href="#i_ret">ret</a> i32 0<br>}<br>
450</pre>
451</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000452
453<p>This example is made up of a <a href="#globalvars">global variable</a>
454named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
455function, and a <a href="#functionstructure">function definition</a>
456for "<tt>main</tt>".</p>
457
Chris Lattnere5d947b2004-12-09 16:36:40 +0000458<p>In general, a module is made up of a list of global values,
459where both functions and global variables are global values. Global values are
460represented by a pointer to a memory location (in this case, a pointer to an
461array of char, and a pointer to a function), and have one of the following <a
462href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000463
Chris Lattnere5d947b2004-12-09 16:36:40 +0000464</div>
465
466<!-- ======================================================================= -->
467<div class="doc_subsection">
468 <a name="linkage">Linkage Types</a>
469</div>
470
471<div class="doc_text">
472
473<p>
474All Global Variables and Functions have one of the following types of linkage:
475</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000476
477<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000478
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000479 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000480
481 <dd>Global values with internal linkage are only directly accessible by
482 objects in the current module. In particular, linking code into a module with
483 an internal global value may cause the internal to be renamed as necessary to
484 avoid collisions. Because the symbol is internal to the module, all
485 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000486 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000487 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000488
Chris Lattnerfa730212004-12-09 16:11:40 +0000489 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000490
Chris Lattner4887bd82007-01-14 06:51:48 +0000491 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
492 the same name when linkage occurs. This is typically used to implement
493 inline functions, templates, or other code which must be generated in each
494 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
495 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000496 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000497
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000498 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
499
500 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
501 linkage, except that unreferenced <tt>common</tt> globals may not be
502 discarded. This is used for globals that may be emitted in multiple
503 translation units, but that are not guaranteed to be emitted into every
504 translation unit that uses them. One example of this is tentative
505 definitions in C, such as "<tt>int X;</tt>" at global scope.
506 </dd>
507
Chris Lattnerfa730212004-12-09 16:11:40 +0000508 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000509
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000510 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
511 that some targets may choose to emit different assembly sequences for them
512 for target-dependent reasons. This is used for globals that are declared
513 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000514 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000515
Chris Lattnerfa730212004-12-09 16:11:40 +0000516 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000517
518 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
519 pointer to array type. When two global variables with appending linkage are
520 linked together, the two global arrays are appended together. This is the
521 LLVM, typesafe, equivalent of having the system linker append together
522 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000523 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000524
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000525 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000526 <dd>The semantics of this linkage follow the ELF object file model: the
527 symbol is weak until linked, if not linked, the symbol becomes null instead
528 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000529 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000530
Chris Lattnerfa730212004-12-09 16:11:40 +0000531 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000532
533 <dd>If none of the above identifiers are used, the global is externally
534 visible, meaning that it participates in linkage and can be used to resolve
535 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000536 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000537</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000538
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000539 <p>
540 The next two types of linkage are targeted for Microsoft Windows platform
541 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000542 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000543 </p>
544
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000545 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000546 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
547
548 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
549 or variable via a global pointer to a pointer that is set up by the DLL
550 exporting the symbol. On Microsoft Windows targets, the pointer name is
551 formed by combining <code>_imp__</code> and the function or variable name.
552 </dd>
553
554 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
555
556 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
557 pointer to a pointer in a DLL, so that it can be referenced with the
558 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
559 name is formed by combining <code>_imp__</code> and the function or variable
560 name.
561 </dd>
562
Chris Lattnerfa730212004-12-09 16:11:40 +0000563</dl>
564
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000565<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000566variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
567variable and was linked with this one, one of the two would be renamed,
568preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
569external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000570outside of the current module.</p>
571<p>It is illegal for a function <i>declaration</i>
572to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000573or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000574<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
575linkages.
Chris Lattnerfa730212004-12-09 16:11:40 +0000576</div>
577
578<!-- ======================================================================= -->
579<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000580 <a name="callingconv">Calling Conventions</a>
581</div>
582
583<div class="doc_text">
584
585<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
586and <a href="#i_invoke">invokes</a> can all have an optional calling convention
587specified for the call. The calling convention of any pair of dynamic
588caller/callee must match, or the behavior of the program is undefined. The
589following calling conventions are supported by LLVM, and more may be added in
590the future:</p>
591
592<dl>
593 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
594
595 <dd>This calling convention (the default if no other calling convention is
596 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000597 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000598 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000599 </dd>
600
601 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
602
603 <dd>This calling convention attempts to make calls as fast as possible
604 (e.g. by passing things in registers). This calling convention allows the
605 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000606 without having to conform to an externally specified ABI (Application Binary
607 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000608 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
609 supported. This calling convention does not support varargs and requires the
610 prototype of all callees to exactly match the prototype of the function
611 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000612 </dd>
613
614 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
615
616 <dd>This calling convention attempts to make code in the caller as efficient
617 as possible under the assumption that the call is not commonly executed. As
618 such, these calls often preserve all registers so that the call does not break
619 any live ranges in the caller side. This calling convention does not support
620 varargs and requires the prototype of all callees to exactly match the
621 prototype of the function definition.
622 </dd>
623
Chris Lattnercfe6b372005-05-07 01:46:40 +0000624 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000625
626 <dd>Any calling convention may be specified by number, allowing
627 target-specific calling conventions to be used. Target specific calling
628 conventions start at 64.
629 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000630</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000631
632<p>More calling conventions can be added/defined on an as-needed basis, to
633support pascal conventions or any other well-known target-independent
634convention.</p>
635
636</div>
637
638<!-- ======================================================================= -->
639<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000640 <a name="visibility">Visibility Styles</a>
641</div>
642
643<div class="doc_text">
644
645<p>
646All Global Variables and Functions have one of the following visibility styles:
647</p>
648
649<dl>
650 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
651
Chris Lattnerd3eda892008-08-05 18:29:16 +0000652 <dd>On targets that use the ELF object file format, default visibility means
653 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000654 modules and, in shared libraries, means that the declared entity may be
655 overridden. On Darwin, default visibility means that the declaration is
656 visible to other modules. Default visibility corresponds to "external
657 linkage" in the language.
658 </dd>
659
660 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
661
662 <dd>Two declarations of an object with hidden visibility refer to the same
663 object if they are in the same shared object. Usually, hidden visibility
664 indicates that the symbol will not be placed into the dynamic symbol table,
665 so no other module (executable or shared library) can reference it
666 directly.
667 </dd>
668
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000669 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
670
671 <dd>On ELF, protected visibility indicates that the symbol will be placed in
672 the dynamic symbol table, but that references within the defining module will
673 bind to the local symbol. That is, the symbol cannot be overridden by another
674 module.
675 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000676</dl>
677
678</div>
679
680<!-- ======================================================================= -->
681<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000682 <a name="globalvars">Global Variables</a>
683</div>
684
685<div class="doc_text">
686
Chris Lattner3689a342005-02-12 19:30:21 +0000687<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000688instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000689an explicit section to be placed in, and may have an optional explicit alignment
690specified. A variable may be defined as "thread_local", which means that it
691will not be shared by threads (each thread will have a separated copy of the
692variable). A variable may be defined as a global "constant," which indicates
693that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000694optimization, allowing the global data to be placed in the read-only section of
695an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000696cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000697
698<p>
699LLVM explicitly allows <em>declarations</em> of global variables to be marked
700constant, even if the final definition of the global is not. This capability
701can be used to enable slightly better optimization of the program, but requires
702the language definition to guarantee that optimizations based on the
703'constantness' are valid for the translation units that do not include the
704definition.
705</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000706
707<p>As SSA values, global variables define pointer values that are in
708scope (i.e. they dominate) all basic blocks in the program. Global
709variables always define a pointer to their "content" type because they
710describe a region of memory, and all memory objects in LLVM are
711accessed through pointers.</p>
712
Christopher Lamb284d9922007-12-11 09:31:00 +0000713<p>A global variable may be declared to reside in a target-specifc numbered
714address space. For targets that support them, address spaces may affect how
715optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000716the variable. The default address space is zero. The address space qualifier
717must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000718
Chris Lattner88f6c462005-11-12 00:45:07 +0000719<p>LLVM allows an explicit section to be specified for globals. If the target
720supports it, it will emit globals to the section specified.</p>
721
Chris Lattner2cbdc452005-11-06 08:02:57 +0000722<p>An explicit alignment may be specified for a global. If not present, or if
723the alignment is set to zero, the alignment of the global is set by the target
724to whatever it feels convenient. If an explicit alignment is specified, the
725global is forced to have at least that much alignment. All alignments must be
726a power of 2.</p>
727
Christopher Lamb284d9922007-12-11 09:31:00 +0000728<p>For example, the following defines a global in a numbered address space with
729an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000730
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000731<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000732<pre>
Christopher Lamb284d9922007-12-11 09:31:00 +0000733@G = constant float 1.0 addrspace(5), section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000734</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000735</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000736
Chris Lattnerfa730212004-12-09 16:11:40 +0000737</div>
738
739
740<!-- ======================================================================= -->
741<div class="doc_subsection">
742 <a name="functionstructure">Functions</a>
743</div>
744
745<div class="doc_text">
746
Reid Spencerca86e162006-12-31 07:07:53 +0000747<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
748an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000749<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000750<a href="#callingconv">calling convention</a>, a return type, an optional
751<a href="#paramattrs">parameter attribute</a> for the return type, a function
752name, a (possibly empty) argument list (each with optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000753<a href="#paramattrs">parameter attributes</a>), an optional section, an
Devang Patelf8b94812008-09-04 23:05:13 +0000754optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000755an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000756
757LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
758optional <a href="#linkage">linkage type</a>, an optional
759<a href="#visibility">visibility style</a>, an optional
760<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000761<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000762name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000763<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000764
Chris Lattnerd3eda892008-08-05 18:29:16 +0000765<p>A function definition contains a list of basic blocks, forming the CFG
766(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000767the function. Each basic block may optionally start with a label (giving the
768basic block a symbol table entry), contains a list of instructions, and ends
769with a <a href="#terminators">terminator</a> instruction (such as a branch or
770function return).</p>
771
Chris Lattner4a3c9012007-06-08 16:52:14 +0000772<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000773executed on entrance to the function, and it is not allowed to have predecessor
774basic blocks (i.e. there can not be any branches to the entry block of a
775function). Because the block can have no predecessors, it also cannot have any
776<a href="#i_phi">PHI nodes</a>.</p>
777
Chris Lattner88f6c462005-11-12 00:45:07 +0000778<p>LLVM allows an explicit section to be specified for functions. If the target
779supports it, it will emit functions to the section specified.</p>
780
Chris Lattner2cbdc452005-11-06 08:02:57 +0000781<p>An explicit alignment may be specified for a function. If not present, or if
782the alignment is set to zero, the alignment of the function is set by the target
783to whatever it feels convenient. If an explicit alignment is specified, the
784function is forced to have at least that much alignment. All alignments must be
785a power of 2.</p>
786
Chris Lattnerfa730212004-12-09 16:11:40 +0000787</div>
788
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000789
790<!-- ======================================================================= -->
791<div class="doc_subsection">
792 <a name="aliasstructure">Aliases</a>
793</div>
794<div class="doc_text">
795 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000796 function, global variable, another alias or bitcast of global value). Aliases
797 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000798 optional <a href="#visibility">visibility style</a>.</p>
799
800 <h5>Syntax:</h5>
801
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000802<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000803<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000804@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000805</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000806</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000807
808</div>
809
810
811
Chris Lattner4e9aba72006-01-23 23:23:47 +0000812<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000813<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
814<div class="doc_text">
815 <p>The return type and each parameter of a function type may have a set of
816 <i>parameter attributes</i> associated with them. Parameter attributes are
817 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000818 a function. Parameter attributes are considered to be part of the function,
819 not of the function type, so functions with different parameter attributes
820 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000821
Reid Spencer950e9f82007-01-15 18:27:39 +0000822 <p>Parameter attributes are simple keywords that follow the type specified. If
823 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000824 example:</p>
825
826<div class="doc_code">
827<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000828declare i32 @printf(i8* noalias , ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000829declare i32 @atoi(i8 zeroext)
830declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000831</pre>
832</div>
833
Duncan Sandsdc024672007-11-27 13:23:08 +0000834 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
835 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000836
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000837 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000838 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000839 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000840 <dd>This indicates to the code generator that the parameter or return value
841 should be zero-extended to a 32-bit value by the caller (for a parameter)
842 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000843
Reid Spencer9445e9a2007-07-19 23:13:04 +0000844 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000845 <dd>This indicates to the code generator that the parameter or return value
846 should be sign-extended to a 32-bit value by the caller (for a parameter)
847 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000848
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000849 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000850 <dd>This indicates that this parameter or return value should be treated
851 in a special target-dependent fashion during while emitting code for a
852 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000853 to memory, though some targets use it to distinguish between two different
854 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000855
856 <dt><tt>byval</tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000857 <dd>This indicates that the pointer parameter should really be passed by
858 value to the function. The attribute implies that a hidden copy of the
859 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000860 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000861 pointer arguments. It is generally used to pass structs and arrays by
Chris Lattner66d922c2008-10-04 18:33:34 +0000862 value, but is also valid on pointers to scalars.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000863
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000864 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000865 <dd>This indicates that the pointer parameter specifies the address of a
866 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000867 This pointer must be guaranteed by the caller to be valid: loads and stores
868 to the structure may be assumed by the callee to not to trap. This may only
869 be applied to the first parameter.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000870
Zhou Shengfebca342007-06-05 05:28:26 +0000871 <dt><tt>noalias</tt></dt>
Owen Anderson117bbd32008-02-18 04:09:01 +0000872 <dd>This indicates that the parameter does not alias any global or any other
873 parameter. The caller is responsible for ensuring that this is the case,
874 usually by placing the value in a stack allocation.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000875
Duncan Sands50f19f52007-07-27 19:57:41 +0000876 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000877 <dd>This indicates that the pointer parameter can be excised using the
Duncan Sands50f19f52007-07-27 19:57:41 +0000878 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000879 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000880
Reid Spencerca86e162006-12-31 07:07:53 +0000881</div>
882
883<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000884<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000885 <a name="gc">Garbage Collector Names</a>
886</div>
887
888<div class="doc_text">
889<p>Each function may specify a garbage collector name, which is simply a
890string.</p>
891
892<div class="doc_code"><pre
893>define void @f() gc "name" { ...</pre></div>
894
895<p>The compiler declares the supported values of <i>name</i>. Specifying a
896collector which will cause the compiler to alter its output in order to support
897the named garbage collection algorithm.</p>
898</div>
899
900<!-- ======================================================================= -->
901<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000902 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +0000903</div>
904
905<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000906
907<p>Function attributes are set to communicate additional information about
908 a function. Function attributes are considered to be part of the function,
909 not of the function type, so functions with different parameter attributes
910 can have the same function type.</p>
911
912 <p>Function attributes are simple keywords that follow the type specified. If
913 multiple attributes are needed, they are space separated. For
914 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +0000915
916<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000917<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000918define void @f() noinline { ... }
919define void @f() alwaysinline { ... }
920define void @f() alwaysinline optsize { ... }
921define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000922</pre>
Devang Patelf8b94812008-09-04 23:05:13 +0000923</div>
924
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000925<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000926<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000927<dd>This attribute indicates that the inliner should attempt to inline this
928function into callers whenever possible, ignoring any active inlining size
929threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000930
Devang Patel2c9c3e72008-09-26 23:51:19 +0000931<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000932<dd>This attribute indicates that the inliner should never inline this function
933in any situation. This attribute may not be used together with
934<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000935
Devang Patel2c9c3e72008-09-26 23:51:19 +0000936<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +0000937<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +0000938make choices that keep the code size of this function low, and otherwise do
939optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000940
Devang Patel2c9c3e72008-09-26 23:51:19 +0000941<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000942<dd>This function attribute indicates that the function never returns normally.
943This produces undefined behavior at runtime if the function ever does
944dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000945
946<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000947<dd>This function attribute indicates that the function never returns with an
948unwind or exceptional control flow. If the function does unwind, its runtime
949behavior is undefined.</dd>
950
951<dt><tt>readnone</tt></dt>
952<dd>This attribute indicates that the function computes its result (or its
953thrown exception) based strictly on its arguments. It does not read any global
954mutable state (e.g. memory, control registers, etc) visible to caller functions.
955Furthermore, <tt>readnone</tt> functions never change any state visible to their
956caller.
Devang Patel2c9c3e72008-09-26 23:51:19 +0000957
958<dt><tt>readonly</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000959<dd>This function attribute indicates that the function has no side-effects on
960the calling function, but that it depends on state (memory state, control
961register state, etc) that may be set in the caller. A readonly function always
962returns the same value (or throws the same exception) whenever it is called with
963a particular set of arguments and global state.</dd>
964
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000965</dl>
966
Devang Patelf8b94812008-09-04 23:05:13 +0000967</div>
968
969<!-- ======================================================================= -->
970<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000971 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000972</div>
973
974<div class="doc_text">
975<p>
976Modules may contain "module-level inline asm" blocks, which corresponds to the
977GCC "file scope inline asm" blocks. These blocks are internally concatenated by
978LLVM and treated as a single unit, but may be separated in the .ll file if
979desired. The syntax is very simple:
980</p>
981
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000982<div class="doc_code">
983<pre>
984module asm "inline asm code goes here"
985module asm "more can go here"
986</pre>
987</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000988
989<p>The strings can contain any character by escaping non-printable characters.
990 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
991 for the number.
992</p>
993
994<p>
995 The inline asm code is simply printed to the machine code .s file when
996 assembly code is generated.
997</p>
998</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000999
Reid Spencerde151942007-02-19 23:54:10 +00001000<!-- ======================================================================= -->
1001<div class="doc_subsection">
1002 <a name="datalayout">Data Layout</a>
1003</div>
1004
1005<div class="doc_text">
1006<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001007data is to be laid out in memory. The syntax for the data layout is simply:</p>
1008<pre> target datalayout = "<i>layout specification</i>"</pre>
1009<p>The <i>layout specification</i> consists of a list of specifications
1010separated by the minus sign character ('-'). Each specification starts with a
1011letter and may include other information after the letter to define some
1012aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001013<dl>
1014 <dt><tt>E</tt></dt>
1015 <dd>Specifies that the target lays out data in big-endian form. That is, the
1016 bits with the most significance have the lowest address location.</dd>
1017 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001018 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001019 the bits with the least significance have the lowest address location.</dd>
1020 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1021 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1022 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1023 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1024 too.</dd>
1025 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1026 <dd>This specifies the alignment for an integer type of a given bit
1027 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1028 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1029 <dd>This specifies the alignment for a vector type of a given bit
1030 <i>size</i>.</dd>
1031 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1032 <dd>This specifies the alignment for a floating point type of a given bit
1033 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1034 (double).</dd>
1035 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1036 <dd>This specifies the alignment for an aggregate type of a given bit
1037 <i>size</i>.</dd>
1038</dl>
1039<p>When constructing the data layout for a given target, LLVM starts with a
1040default set of specifications which are then (possibly) overriden by the
1041specifications in the <tt>datalayout</tt> keyword. The default specifications
1042are given in this list:</p>
1043<ul>
1044 <li><tt>E</tt> - big endian</li>
1045 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1046 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1047 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1048 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1049 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001050 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001051 alignment of 64-bits</li>
1052 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1053 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1054 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1055 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1056 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1057</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001058<p>When LLVM is determining the alignment for a given type, it uses the
Reid Spencerde151942007-02-19 23:54:10 +00001059following rules:
1060<ol>
1061 <li>If the type sought is an exact match for one of the specifications, that
1062 specification is used.</li>
1063 <li>If no match is found, and the type sought is an integer type, then the
1064 smallest integer type that is larger than the bitwidth of the sought type is
1065 used. If none of the specifications are larger than the bitwidth then the the
1066 largest integer type is used. For example, given the default specifications
1067 above, the i7 type will use the alignment of i8 (next largest) while both
1068 i65 and i256 will use the alignment of i64 (largest specified).</li>
1069 <li>If no match is found, and the type sought is a vector type, then the
1070 largest vector type that is smaller than the sought vector type will be used
1071 as a fall back. This happens because <128 x double> can be implemented in
1072 terms of 64 <2 x double>, for example.</li>
1073</ol>
1074</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001075
Chris Lattner00950542001-06-06 20:29:01 +00001076<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001077<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1078<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001079
Misha Brukman9d0919f2003-11-08 01:05:38 +00001080<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001081
Misha Brukman9d0919f2003-11-08 01:05:38 +00001082<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001083intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001084optimizations to be performed on the intermediate representation directly,
1085without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001086extra analyses on the side before the transformation. A strong type
1087system makes it easier to read the generated code and enables novel
1088analyses and transformations that are not feasible to perform on normal
1089three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001090
1091</div>
1092
Chris Lattner00950542001-06-06 20:29:01 +00001093<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001094<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001095Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001096<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001097<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001098classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001099
1100<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001101 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001102 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001103 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001104 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001105 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001106 </tr>
1107 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001108 <td><a href="#t_floating">floating point</a></td>
1109 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001110 </tr>
1111 <tr>
1112 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001113 <td><a href="#t_integer">integer</a>,
1114 <a href="#t_floating">floating point</a>,
1115 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001116 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001117 <a href="#t_struct">structure</a>,
1118 <a href="#t_array">array</a>,
Dan Gohmanade5faa2008-05-23 22:50:26 +00001119 <a href="#t_label">label</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001120 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001121 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001122 <tr>
1123 <td><a href="#t_primitive">primitive</a></td>
1124 <td><a href="#t_label">label</a>,
1125 <a href="#t_void">void</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001126 <a href="#t_floating">floating point</a>.</td>
1127 </tr>
1128 <tr>
1129 <td><a href="#t_derived">derived</a></td>
1130 <td><a href="#t_integer">integer</a>,
1131 <a href="#t_array">array</a>,
1132 <a href="#t_function">function</a>,
1133 <a href="#t_pointer">pointer</a>,
1134 <a href="#t_struct">structure</a>,
1135 <a href="#t_pstruct">packed structure</a>,
1136 <a href="#t_vector">vector</a>,
1137 <a href="#t_opaque">opaque</a>.
1138 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001139 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001140</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001141
Chris Lattner261efe92003-11-25 01:02:51 +00001142<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1143most important. Values of these types are the only ones which can be
1144produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001145instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001146</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001147
Chris Lattner00950542001-06-06 20:29:01 +00001148<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001149<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001150
Chris Lattner4f69f462008-01-04 04:32:38 +00001151<div class="doc_text">
1152<p>The primitive types are the fundamental building blocks of the LLVM
1153system.</p>
1154
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001155</div>
1156
Chris Lattner4f69f462008-01-04 04:32:38 +00001157<!-- _______________________________________________________________________ -->
1158<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1159
1160<div class="doc_text">
1161 <table>
1162 <tbody>
1163 <tr><th>Type</th><th>Description</th></tr>
1164 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1165 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1166 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1167 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1168 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1169 </tbody>
1170 </table>
1171</div>
1172
1173<!-- _______________________________________________________________________ -->
1174<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1175
1176<div class="doc_text">
1177<h5>Overview:</h5>
1178<p>The void type does not represent any value and has no size.</p>
1179
1180<h5>Syntax:</h5>
1181
1182<pre>
1183 void
1184</pre>
1185</div>
1186
1187<!-- _______________________________________________________________________ -->
1188<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1189
1190<div class="doc_text">
1191<h5>Overview:</h5>
1192<p>The label type represents code labels.</p>
1193
1194<h5>Syntax:</h5>
1195
1196<pre>
1197 label
1198</pre>
1199</div>
1200
1201
1202<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001203<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001204
Misha Brukman9d0919f2003-11-08 01:05:38 +00001205<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001206
Chris Lattner261efe92003-11-25 01:02:51 +00001207<p>The real power in LLVM comes from the derived types in the system.
1208This is what allows a programmer to represent arrays, functions,
1209pointers, and other useful types. Note that these derived types may be
1210recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001211
Misha Brukman9d0919f2003-11-08 01:05:38 +00001212</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001213
Chris Lattner00950542001-06-06 20:29:01 +00001214<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001215<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1216
1217<div class="doc_text">
1218
1219<h5>Overview:</h5>
1220<p>The integer type is a very simple derived type that simply specifies an
1221arbitrary bit width for the integer type desired. Any bit width from 1 bit to
12222^23-1 (about 8 million) can be specified.</p>
1223
1224<h5>Syntax:</h5>
1225
1226<pre>
1227 iN
1228</pre>
1229
1230<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1231value.</p>
1232
1233<h5>Examples:</h5>
1234<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001235 <tbody>
1236 <tr>
1237 <td><tt>i1</tt></td>
1238 <td>a single-bit integer.</td>
1239 </tr><tr>
1240 <td><tt>i32</tt></td>
1241 <td>a 32-bit integer.</td>
1242 </tr><tr>
1243 <td><tt>i1942652</tt></td>
1244 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001245 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001246 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001247</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001248</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001249
1250<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001251<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001252
Misha Brukman9d0919f2003-11-08 01:05:38 +00001253<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001254
Chris Lattner00950542001-06-06 20:29:01 +00001255<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001256
Misha Brukman9d0919f2003-11-08 01:05:38 +00001257<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001258sequentially in memory. The array type requires a size (number of
1259elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001260
Chris Lattner7faa8832002-04-14 06:13:44 +00001261<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001262
1263<pre>
1264 [&lt;# elements&gt; x &lt;elementtype&gt;]
1265</pre>
1266
John Criswelle4c57cc2005-05-12 16:52:32 +00001267<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001268be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001269
Chris Lattner7faa8832002-04-14 06:13:44 +00001270<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001271<table class="layout">
1272 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001273 <td class="left"><tt>[40 x i32]</tt></td>
1274 <td class="left">Array of 40 32-bit integer values.</td>
1275 </tr>
1276 <tr class="layout">
1277 <td class="left"><tt>[41 x i32]</tt></td>
1278 <td class="left">Array of 41 32-bit integer values.</td>
1279 </tr>
1280 <tr class="layout">
1281 <td class="left"><tt>[4 x i8]</tt></td>
1282 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001283 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001284</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001285<p>Here are some examples of multidimensional arrays:</p>
1286<table class="layout">
1287 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001288 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1289 <td class="left">3x4 array of 32-bit integer values.</td>
1290 </tr>
1291 <tr class="layout">
1292 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1293 <td class="left">12x10 array of single precision floating point values.</td>
1294 </tr>
1295 <tr class="layout">
1296 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1297 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001298 </tr>
1299</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001300
John Criswell0ec250c2005-10-24 16:17:18 +00001301<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1302length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001303LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1304As a special case, however, zero length arrays are recognized to be variable
1305length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001306type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001307
Misha Brukman9d0919f2003-11-08 01:05:38 +00001308</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001309
Chris Lattner00950542001-06-06 20:29:01 +00001310<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001311<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001312<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001313
Chris Lattner00950542001-06-06 20:29:01 +00001314<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001315
Chris Lattner261efe92003-11-25 01:02:51 +00001316<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001317consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001318return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001319If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001320class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001321
Chris Lattner00950542001-06-06 20:29:01 +00001322<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001323
1324<pre>
1325 &lt;returntype list&gt; (&lt;parameter list&gt;)
1326</pre>
1327
John Criswell0ec250c2005-10-24 16:17:18 +00001328<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001329specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001330which indicates that the function takes a variable number of arguments.
1331Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001332 href="#int_varargs">variable argument handling intrinsic</a> functions.
1333'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1334<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001335
Chris Lattner00950542001-06-06 20:29:01 +00001336<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001337<table class="layout">
1338 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001339 <td class="left"><tt>i32 (i32)</tt></td>
1340 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001341 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001342 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001343 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001344 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001345 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1346 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001347 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001348 <tt>float</tt>.
1349 </td>
1350 </tr><tr class="layout">
1351 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1352 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001353 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001354 which returns an integer. This is the signature for <tt>printf</tt> in
1355 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001356 </td>
Devang Patela582f402008-03-24 05:35:41 +00001357 </tr><tr class="layout">
1358 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel3a5bff82008-03-24 18:10:52 +00001359 <td class="left">A function taking an <tt>i32></tt>, returning two
1360 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001361 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001362 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001363</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001364
Misha Brukman9d0919f2003-11-08 01:05:38 +00001365</div>
Chris Lattner00950542001-06-06 20:29:01 +00001366<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001367<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001368<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001369<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001370<p>The structure type is used to represent a collection of data members
1371together in memory. The packing of the field types is defined to match
1372the ABI of the underlying processor. The elements of a structure may
1373be any type that has a size.</p>
1374<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1375and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1376field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1377instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001378<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001379<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001380<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001381<table class="layout">
1382 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001383 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1384 <td class="left">A triple of three <tt>i32</tt> values</td>
1385 </tr><tr class="layout">
1386 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1387 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1388 second element is a <a href="#t_pointer">pointer</a> to a
1389 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1390 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001391 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001392</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001393</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001394
Chris Lattner00950542001-06-06 20:29:01 +00001395<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001396<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1397</div>
1398<div class="doc_text">
1399<h5>Overview:</h5>
1400<p>The packed structure type is used to represent a collection of data members
1401together in memory. There is no padding between fields. Further, the alignment
1402of a packed structure is 1 byte. The elements of a packed structure may
1403be any type that has a size.</p>
1404<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1405and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1406field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1407instruction.</p>
1408<h5>Syntax:</h5>
1409<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1410<h5>Examples:</h5>
1411<table class="layout">
1412 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001413 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1414 <td class="left">A triple of three <tt>i32</tt> values</td>
1415 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001416 <td class="left">
1417<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001418 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1419 second element is a <a href="#t_pointer">pointer</a> to a
1420 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1421 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001422 </tr>
1423</table>
1424</div>
1425
1426<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001427<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001428<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001429<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001430<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001431reference to another object, which must live in memory. Pointer types may have
1432an optional address space attribute defining the target-specific numbered
1433address space where the pointed-to object resides. The default address space is
1434zero.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001435<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001436<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001437<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001438<table class="layout">
1439 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001440 <td class="left"><tt>[4x i32]*</tt></td>
1441 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1442 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1443 </tr>
1444 <tr class="layout">
1445 <td class="left"><tt>i32 (i32 *) *</tt></td>
1446 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001447 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001448 <tt>i32</tt>.</td>
1449 </tr>
1450 <tr class="layout">
1451 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1452 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1453 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001454 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001455</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001456</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001457
Chris Lattnera58561b2004-08-12 19:12:28 +00001458<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001459<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001460<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001461
Chris Lattnera58561b2004-08-12 19:12:28 +00001462<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001463
Reid Spencer485bad12007-02-15 03:07:05 +00001464<p>A vector type is a simple derived type that represents a vector
1465of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001466are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001467A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001468elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001469of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001470considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001471
Chris Lattnera58561b2004-08-12 19:12:28 +00001472<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001473
1474<pre>
1475 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1476</pre>
1477
John Criswellc1f786c2005-05-13 22:25:59 +00001478<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001479be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001480
Chris Lattnera58561b2004-08-12 19:12:28 +00001481<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001482
Reid Spencerd3f876c2004-11-01 08:19:36 +00001483<table class="layout">
1484 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001485 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1486 <td class="left">Vector of 4 32-bit integer values.</td>
1487 </tr>
1488 <tr class="layout">
1489 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1490 <td class="left">Vector of 8 32-bit floating-point values.</td>
1491 </tr>
1492 <tr class="layout">
1493 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1494 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001495 </tr>
1496</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001497</div>
1498
Chris Lattner69c11bb2005-04-25 17:34:15 +00001499<!-- _______________________________________________________________________ -->
1500<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1501<div class="doc_text">
1502
1503<h5>Overview:</h5>
1504
1505<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001506corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001507In LLVM, opaque types can eventually be resolved to any type (not just a
1508structure type).</p>
1509
1510<h5>Syntax:</h5>
1511
1512<pre>
1513 opaque
1514</pre>
1515
1516<h5>Examples:</h5>
1517
1518<table class="layout">
1519 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001520 <td class="left"><tt>opaque</tt></td>
1521 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001522 </tr>
1523</table>
1524</div>
1525
1526
Chris Lattnerc3f59762004-12-09 17:30:23 +00001527<!-- *********************************************************************** -->
1528<div class="doc_section"> <a name="constants">Constants</a> </div>
1529<!-- *********************************************************************** -->
1530
1531<div class="doc_text">
1532
1533<p>LLVM has several different basic types of constants. This section describes
1534them all and their syntax.</p>
1535
1536</div>
1537
1538<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001539<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001540
1541<div class="doc_text">
1542
1543<dl>
1544 <dt><b>Boolean constants</b></dt>
1545
1546 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001547 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001548 </dd>
1549
1550 <dt><b>Integer constants</b></dt>
1551
Reid Spencercc16dc32004-12-09 18:02:53 +00001552 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001553 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001554 integer types.
1555 </dd>
1556
1557 <dt><b>Floating point constants</b></dt>
1558
1559 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1560 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001561 notation (see below). The assembler requires the exact decimal value of
1562 a floating-point constant. For example, the assembler accepts 1.25 but
1563 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1564 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001565
1566 <dt><b>Null pointer constants</b></dt>
1567
John Criswell9e2485c2004-12-10 15:51:16 +00001568 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001569 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1570
1571</dl>
1572
John Criswell9e2485c2004-12-10 15:51:16 +00001573<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001574of floating point constants. For example, the form '<tt>double
15750x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
15764.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001577(and the only time that they are generated by the disassembler) is when a
1578floating point constant must be emitted but it cannot be represented as a
1579decimal floating point number. For example, NaN's, infinities, and other
1580special values are represented in their IEEE hexadecimal format so that
1581assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001582
1583</div>
1584
1585<!-- ======================================================================= -->
1586<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1587</div>
1588
1589<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001590<p>Aggregate constants arise from aggregation of simple constants
1591and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001592
1593<dl>
1594 <dt><b>Structure constants</b></dt>
1595
1596 <dd>Structure constants are represented with notation similar to structure
1597 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001598 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1599 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001600 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001601 types of elements must match those specified by the type.
1602 </dd>
1603
1604 <dt><b>Array constants</b></dt>
1605
1606 <dd>Array constants are represented with notation similar to array type
1607 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001608 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001609 constants must have <a href="#t_array">array type</a>, and the number and
1610 types of elements must match those specified by the type.
1611 </dd>
1612
Reid Spencer485bad12007-02-15 03:07:05 +00001613 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001614
Reid Spencer485bad12007-02-15 03:07:05 +00001615 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001616 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001617 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001618 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001619 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001620 match those specified by the type.
1621 </dd>
1622
1623 <dt><b>Zero initialization</b></dt>
1624
1625 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1626 value to zero of <em>any</em> type, including scalar and aggregate types.
1627 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001628 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001629 initializers.
1630 </dd>
1631</dl>
1632
1633</div>
1634
1635<!-- ======================================================================= -->
1636<div class="doc_subsection">
1637 <a name="globalconstants">Global Variable and Function Addresses</a>
1638</div>
1639
1640<div class="doc_text">
1641
1642<p>The addresses of <a href="#globalvars">global variables</a> and <a
1643href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001644constants. These constants are explicitly referenced when the <a
1645href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001646href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1647file:</p>
1648
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001649<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001650<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001651@X = global i32 17
1652@Y = global i32 42
1653@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001654</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001655</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001656
1657</div>
1658
1659<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001660<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001661<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001662 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001663 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001664 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001665
Reid Spencer2dc45b82004-12-09 18:13:12 +00001666 <p>Undefined values indicate to the compiler that the program is well defined
1667 no matter what value is used, giving the compiler more freedom to optimize.
1668 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001669</div>
1670
1671<!-- ======================================================================= -->
1672<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1673</div>
1674
1675<div class="doc_text">
1676
1677<p>Constant expressions are used to allow expressions involving other constants
1678to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001679href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001680that does not have side effects (e.g. load and call are not supported). The
1681following is the syntax for constant expressions:</p>
1682
1683<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001684 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1685 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001686 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001687
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001688 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1689 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001690 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001691
1692 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1693 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001694 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001695
1696 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1697 <dd>Truncate a floating point constant to another floating point type. The
1698 size of CST must be larger than the size of TYPE. Both types must be
1699 floating point.</dd>
1700
1701 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1702 <dd>Floating point extend a constant to another type. The size of CST must be
1703 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1704
Reid Spencer1539a1c2007-07-31 14:40:14 +00001705 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001706 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001707 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1708 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1709 of the same number of elements. If the value won't fit in the integer type,
1710 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001711
Reid Spencerd4448792006-11-09 23:03:26 +00001712 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001713 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001714 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1715 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1716 of the same number of elements. If the value won't fit in the integer type,
1717 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001718
Reid Spencerd4448792006-11-09 23:03:26 +00001719 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001720 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001721 constant. TYPE must be a scalar or vector floating point type. CST must be of
1722 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1723 of the same number of elements. If the value won't fit in the floating point
1724 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001725
Reid Spencerd4448792006-11-09 23:03:26 +00001726 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001727 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001728 constant. TYPE must be a scalar or vector floating point type. CST must be of
1729 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1730 of the same number of elements. If the value won't fit in the floating point
1731 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001732
Reid Spencer5c0ef472006-11-11 23:08:07 +00001733 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1734 <dd>Convert a pointer typed constant to the corresponding integer constant
1735 TYPE must be an integer type. CST must be of pointer type. The CST value is
1736 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1737
1738 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1739 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1740 pointer type. CST must be of integer type. The CST value is zero extended,
1741 truncated, or unchanged to make it fit in a pointer size. This one is
1742 <i>really</i> dangerous!</dd>
1743
1744 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001745 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1746 identical (same number of bits). The conversion is done as if the CST value
1747 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001748 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001749 vector types to any other type, as long as they have the same bit width. For
Dan Gohman500233a2008-09-08 16:45:59 +00001750 pointers it is only valid to cast to another pointer type. It is not valid
1751 to bitcast to or from an aggregate type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001752 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001753
1754 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1755
1756 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1757 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1758 instruction, the index list may have zero or more indexes, which are required
1759 to make sense for the type of "CSTPTR".</dd>
1760
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001761 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1762
1763 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001764 constants.</dd>
1765
1766 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1767 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1768
1769 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1770 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001771
Nate Begemanac80ade2008-05-12 19:01:56 +00001772 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1773 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1774
1775 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1776 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1777
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001778 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1779
1780 <dd>Perform the <a href="#i_extractelement">extractelement
1781 operation</a> on constants.
1782
Robert Bocchino05ccd702006-01-15 20:48:27 +00001783 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1784
1785 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001786 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001787
Chris Lattnerc1989542006-04-08 00:13:41 +00001788
1789 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1790
1791 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001792 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001793
Chris Lattnerc3f59762004-12-09 17:30:23 +00001794 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1795
Reid Spencer2dc45b82004-12-09 18:13:12 +00001796 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1797 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001798 binary</a> operations. The constraints on operands are the same as those for
1799 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001800 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001801</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001802</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001803
Chris Lattner00950542001-06-06 20:29:01 +00001804<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001805<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1806<!-- *********************************************************************** -->
1807
1808<!-- ======================================================================= -->
1809<div class="doc_subsection">
1810<a name="inlineasm">Inline Assembler Expressions</a>
1811</div>
1812
1813<div class="doc_text">
1814
1815<p>
1816LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1817Module-Level Inline Assembly</a>) through the use of a special value. This
1818value represents the inline assembler as a string (containing the instructions
1819to emit), a list of operand constraints (stored as a string), and a flag that
1820indicates whether or not the inline asm expression has side effects. An example
1821inline assembler expression is:
1822</p>
1823
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001824<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001825<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001826i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001827</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001828</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001829
1830<p>
1831Inline assembler expressions may <b>only</b> be used as the callee operand of
1832a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1833</p>
1834
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001835<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001836<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001837%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001838</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001839</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001840
1841<p>
1842Inline asms with side effects not visible in the constraint list must be marked
1843as having side effects. This is done through the use of the
1844'<tt>sideeffect</tt>' keyword, like so:
1845</p>
1846
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001847<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001848<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001849call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001850</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001851</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001852
1853<p>TODO: The format of the asm and constraints string still need to be
1854documented here. Constraints on what can be done (e.g. duplication, moving, etc
1855need to be documented).
1856</p>
1857
1858</div>
1859
1860<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001861<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1862<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001863
Misha Brukman9d0919f2003-11-08 01:05:38 +00001864<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001865
Chris Lattner261efe92003-11-25 01:02:51 +00001866<p>The LLVM instruction set consists of several different
1867classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001868instructions</a>, <a href="#binaryops">binary instructions</a>,
1869<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001870 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1871instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001872
Misha Brukman9d0919f2003-11-08 01:05:38 +00001873</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001874
Chris Lattner00950542001-06-06 20:29:01 +00001875<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001876<div class="doc_subsection"> <a name="terminators">Terminator
1877Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001878
Misha Brukman9d0919f2003-11-08 01:05:38 +00001879<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001880
Chris Lattner261efe92003-11-25 01:02:51 +00001881<p>As mentioned <a href="#functionstructure">previously</a>, every
1882basic block in a program ends with a "Terminator" instruction, which
1883indicates which block should be executed after the current block is
1884finished. These terminator instructions typically yield a '<tt>void</tt>'
1885value: they produce control flow, not values (the one exception being
1886the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001887<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001888 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1889instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001890the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1891 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1892 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001893
Misha Brukman9d0919f2003-11-08 01:05:38 +00001894</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001895
Chris Lattner00950542001-06-06 20:29:01 +00001896<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001897<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1898Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001899<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001900<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001901<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001902 ret void <i>; Return from void function</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001903 ret &lt;type&gt; &lt;value&gt;, &lt;type&gt; &lt;value&gt; <i>; Return two values from a non-void function </i>
Chris Lattner00950542001-06-06 20:29:01 +00001904</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001905
Chris Lattner00950542001-06-06 20:29:01 +00001906<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001907
Chris Lattner261efe92003-11-25 01:02:51 +00001908<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
John Criswellc1f786c2005-05-13 22:25:59 +00001909value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001910<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001911returns value(s) and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00001912control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001913
Chris Lattner00950542001-06-06 20:29:01 +00001914<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001915
1916<p>The '<tt>ret</tt>' instruction may return zero, one or multiple values.
1917The type of each return value must be a '<a href="#t_firstclass">first
1918class</a>' type. Note that a function is not <a href="#wellformed">well
1919formed</a> if there exists a '<tt>ret</tt>' instruction inside of the
1920function that returns values that do not match the return type of the
1921function.</p>
1922
Chris Lattner00950542001-06-06 20:29:01 +00001923<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001924
Chris Lattner261efe92003-11-25 01:02:51 +00001925<p>When the '<tt>ret</tt>' instruction is executed, control flow
1926returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001927 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001928the instruction after the call. If the caller was an "<a
1929 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001930at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001931returns a value, that value shall set the call or invoke instruction's
Devang Patelc3fc6df2008-03-10 20:49:15 +00001932return value. If the instruction returns multiple values then these
Devang Patel0dbb4a12008-03-11 05:51:59 +00001933values can only be accessed through a '<a href="#i_getresult"><tt>getresult</tt>
1934</a>' instruction.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001935
Chris Lattner00950542001-06-06 20:29:01 +00001936<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001937
1938<pre>
1939 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001940 ret void <i>; Return from a void function</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001941 ret i32 4, i8 2 <i>; Return two values 4 and 2 </i>
Chris Lattner00950542001-06-06 20:29:01 +00001942</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001943</div>
Chris Lattner00950542001-06-06 20:29:01 +00001944<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001945<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001946<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001947<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001948<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001949</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001950<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001951<p>The '<tt>br</tt>' instruction is used to cause control flow to
1952transfer to a different basic block in the current function. There are
1953two forms of this instruction, corresponding to a conditional branch
1954and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001955<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001956<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00001957single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00001958unconditional form of the '<tt>br</tt>' instruction takes a single
1959'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001960<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001961<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001962argument is evaluated. If the value is <tt>true</tt>, control flows
1963to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1964control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001965<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001966<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00001967 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001968</div>
Chris Lattner00950542001-06-06 20:29:01 +00001969<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001970<div class="doc_subsubsection">
1971 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1972</div>
1973
Misha Brukman9d0919f2003-11-08 01:05:38 +00001974<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001975<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001976
1977<pre>
1978 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1979</pre>
1980
Chris Lattner00950542001-06-06 20:29:01 +00001981<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001982
1983<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1984several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001985instruction, allowing a branch to occur to one of many possible
1986destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001987
1988
Chris Lattner00950542001-06-06 20:29:01 +00001989<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001990
1991<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1992comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1993an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1994table is not allowed to contain duplicate constant entries.</p>
1995
Chris Lattner00950542001-06-06 20:29:01 +00001996<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001997
Chris Lattner261efe92003-11-25 01:02:51 +00001998<p>The <tt>switch</tt> instruction specifies a table of values and
1999destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002000table is searched for the given value. If the value is found, control flow is
2001transfered to the corresponding destination; otherwise, control flow is
2002transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002003
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002004<h5>Implementation:</h5>
2005
2006<p>Depending on properties of the target machine and the particular
2007<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002008ways. For example, it could be generated as a series of chained conditional
2009branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002010
2011<h5>Example:</h5>
2012
2013<pre>
2014 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002015 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00002016 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002017
2018 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002019 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002020
2021 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002022 switch i32 %val, label %otherwise [ i32 0, label %onzero
2023 i32 1, label %onone
2024 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002025</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002026</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002027
Chris Lattner00950542001-06-06 20:29:01 +00002028<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002029<div class="doc_subsubsection">
2030 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2031</div>
2032
Misha Brukman9d0919f2003-11-08 01:05:38 +00002033<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002034
Chris Lattner00950542001-06-06 20:29:01 +00002035<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002036
2037<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002038 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00002039 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002040</pre>
2041
Chris Lattner6536cfe2002-05-06 22:08:29 +00002042<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002043
2044<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2045function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002046'<tt>normal</tt>' label or the
2047'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002048"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2049"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002050href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Devang Patelc3fc6df2008-03-10 20:49:15 +00002051continued at the dynamically nearest "exception" label. If the callee function
Devang Patel0dbb4a12008-03-11 05:51:59 +00002052returns multiple values then individual return values are only accessible through
2053a '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002054
Chris Lattner00950542001-06-06 20:29:01 +00002055<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002056
Misha Brukman9d0919f2003-11-08 01:05:38 +00002057<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002058
Chris Lattner00950542001-06-06 20:29:01 +00002059<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002060 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002061 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002062 convention</a> the call should use. If none is specified, the call defaults
2063 to using C calling conventions.
2064 </li>
2065 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2066 function value being invoked. In most cases, this is a direct function
2067 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2068 an arbitrary pointer to function value.
2069 </li>
2070
2071 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2072 function to be invoked. </li>
2073
2074 <li>'<tt>function args</tt>': argument list whose types match the function
2075 signature argument types. If the function signature indicates the function
2076 accepts a variable number of arguments, the extra arguments can be
2077 specified. </li>
2078
2079 <li>'<tt>normal label</tt>': the label reached when the called function
2080 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2081
2082 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2083 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2084
Chris Lattner00950542001-06-06 20:29:01 +00002085</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002086
Chris Lattner00950542001-06-06 20:29:01 +00002087<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002088
Misha Brukman9d0919f2003-11-08 01:05:38 +00002089<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002090href="#i_call">call</a></tt>' instruction in most regards. The primary
2091difference is that it establishes an association with a label, which is used by
2092the runtime library to unwind the stack.</p>
2093
2094<p>This instruction is used in languages with destructors to ensure that proper
2095cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2096exception. Additionally, this is important for implementation of
2097'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2098
Chris Lattner00950542001-06-06 20:29:01 +00002099<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002100<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002101 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002102 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002103 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002104 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002105</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002106</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002107
2108
Chris Lattner27f71f22003-09-03 00:41:47 +00002109<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002110
Chris Lattner261efe92003-11-25 01:02:51 +00002111<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2112Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002113
Misha Brukman9d0919f2003-11-08 01:05:38 +00002114<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002115
Chris Lattner27f71f22003-09-03 00:41:47 +00002116<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002117<pre>
2118 unwind
2119</pre>
2120
Chris Lattner27f71f22003-09-03 00:41:47 +00002121<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002122
2123<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2124at the first callee in the dynamic call stack which used an <a
2125href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2126primarily used to implement exception handling.</p>
2127
Chris Lattner27f71f22003-09-03 00:41:47 +00002128<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002129
Chris Lattner72ed2002008-04-19 21:01:16 +00002130<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002131immediately halt. The dynamic call stack is then searched for the first <a
2132href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2133execution continues at the "exceptional" destination block specified by the
2134<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2135dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002136</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002137
2138<!-- _______________________________________________________________________ -->
2139
2140<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2141Instruction</a> </div>
2142
2143<div class="doc_text">
2144
2145<h5>Syntax:</h5>
2146<pre>
2147 unreachable
2148</pre>
2149
2150<h5>Overview:</h5>
2151
2152<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2153instruction is used to inform the optimizer that a particular portion of the
2154code is not reachable. This can be used to indicate that the code after a
2155no-return function cannot be reached, and other facts.</p>
2156
2157<h5>Semantics:</h5>
2158
2159<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2160</div>
2161
2162
2163
Chris Lattner00950542001-06-06 20:29:01 +00002164<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002165<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002166<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002167<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002168program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002169produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002170multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002171The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002172<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002173</div>
Chris Lattner00950542001-06-06 20:29:01 +00002174<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002175<div class="doc_subsubsection">
2176 <a name="i_add">'<tt>add</tt>' Instruction</a>
2177</div>
2178
Misha Brukman9d0919f2003-11-08 01:05:38 +00002179<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002180
Chris Lattner00950542001-06-06 20:29:01 +00002181<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002182
2183<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002184 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002185</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002186
Chris Lattner00950542001-06-06 20:29:01 +00002187<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002188
Misha Brukman9d0919f2003-11-08 01:05:38 +00002189<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002190
Chris Lattner00950542001-06-06 20:29:01 +00002191<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002192
2193<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2194 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2195 <a href="#t_vector">vector</a> values. Both arguments must have identical
2196 types.</p>
2197
Chris Lattner00950542001-06-06 20:29:01 +00002198<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002199
Misha Brukman9d0919f2003-11-08 01:05:38 +00002200<p>The value produced is the integer or floating point sum of the two
2201operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002202
Chris Lattner5ec89832008-01-28 00:36:27 +00002203<p>If an integer sum has unsigned overflow, the result returned is the
2204mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2205the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002206
Chris Lattner5ec89832008-01-28 00:36:27 +00002207<p>Because LLVM integers use a two's complement representation, this
2208instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002209
Chris Lattner00950542001-06-06 20:29:01 +00002210<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002211
2212<pre>
2213 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002214</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002215</div>
Chris Lattner00950542001-06-06 20:29:01 +00002216<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002217<div class="doc_subsubsection">
2218 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2219</div>
2220
Misha Brukman9d0919f2003-11-08 01:05:38 +00002221<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002222
Chris Lattner00950542001-06-06 20:29:01 +00002223<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002224
2225<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002226 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002227</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002228
Chris Lattner00950542001-06-06 20:29:01 +00002229<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002230
Misha Brukman9d0919f2003-11-08 01:05:38 +00002231<p>The '<tt>sub</tt>' instruction returns the difference of its two
2232operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002233
2234<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2235'<tt>neg</tt>' instruction present in most other intermediate
2236representations.</p>
2237
Chris Lattner00950542001-06-06 20:29:01 +00002238<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002239
2240<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2241 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2242 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2243 types.</p>
2244
Chris Lattner00950542001-06-06 20:29:01 +00002245<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002246
Chris Lattner261efe92003-11-25 01:02:51 +00002247<p>The value produced is the integer or floating point difference of
2248the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002249
Chris Lattner5ec89832008-01-28 00:36:27 +00002250<p>If an integer difference has unsigned overflow, the result returned is the
2251mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2252the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002253
Chris Lattner5ec89832008-01-28 00:36:27 +00002254<p>Because LLVM integers use a two's complement representation, this
2255instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002256
Chris Lattner00950542001-06-06 20:29:01 +00002257<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002258<pre>
2259 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002260 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002261</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002262</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002263
Chris Lattner00950542001-06-06 20:29:01 +00002264<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002265<div class="doc_subsubsection">
2266 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2267</div>
2268
Misha Brukman9d0919f2003-11-08 01:05:38 +00002269<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002270
Chris Lattner00950542001-06-06 20:29:01 +00002271<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002272<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002273</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002274<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002275<p>The '<tt>mul</tt>' instruction returns the product of its two
2276operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002277
Chris Lattner00950542001-06-06 20:29:01 +00002278<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002279
2280<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2281href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2282or <a href="#t_vector">vector</a> values. Both arguments must have identical
2283types.</p>
2284
Chris Lattner00950542001-06-06 20:29:01 +00002285<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002286
Chris Lattner261efe92003-11-25 01:02:51 +00002287<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002288two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002289
Chris Lattner5ec89832008-01-28 00:36:27 +00002290<p>If the result of an integer multiplication has unsigned overflow,
2291the result returned is the mathematical result modulo
22922<sup>n</sup>, where n is the bit width of the result.</p>
2293<p>Because LLVM integers use a two's complement representation, and the
2294result is the same width as the operands, this instruction returns the
2295correct result for both signed and unsigned integers. If a full product
2296(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2297should be sign-extended or zero-extended as appropriate to the
2298width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002299<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002300<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002301</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002302</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002303
Chris Lattner00950542001-06-06 20:29:01 +00002304<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002305<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2306</a></div>
2307<div class="doc_text">
2308<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002309<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002310</pre>
2311<h5>Overview:</h5>
2312<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2313operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002314
Reid Spencer1628cec2006-10-26 06:15:43 +00002315<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002316
Reid Spencer1628cec2006-10-26 06:15:43 +00002317<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002318<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2319values. Both arguments must have identical types.</p>
2320
Reid Spencer1628cec2006-10-26 06:15:43 +00002321<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002322
Chris Lattner5ec89832008-01-28 00:36:27 +00002323<p>The value produced is the unsigned integer quotient of the two operands.</p>
2324<p>Note that unsigned integer division and signed integer division are distinct
2325operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2326<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002327<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002328<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002329</pre>
2330</div>
2331<!-- _______________________________________________________________________ -->
2332<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2333</a> </div>
2334<div class="doc_text">
2335<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002336<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002337 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002338</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002339
Reid Spencer1628cec2006-10-26 06:15:43 +00002340<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002341
Reid Spencer1628cec2006-10-26 06:15:43 +00002342<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2343operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002344
Reid Spencer1628cec2006-10-26 06:15:43 +00002345<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002346
2347<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2348<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2349values. Both arguments must have identical types.</p>
2350
Reid Spencer1628cec2006-10-26 06:15:43 +00002351<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002352<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002353<p>Note that signed integer division and unsigned integer division are distinct
2354operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2355<p>Division by zero leads to undefined behavior. Overflow also leads to
2356undefined behavior; this is a rare case, but can occur, for example,
2357by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002358<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002359<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002360</pre>
2361</div>
2362<!-- _______________________________________________________________________ -->
2363<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002364Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002365<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002366<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002367<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002368 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002369</pre>
2370<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002371
Reid Spencer1628cec2006-10-26 06:15:43 +00002372<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002373operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002374
Chris Lattner261efe92003-11-25 01:02:51 +00002375<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002376
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002377<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002378<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2379of floating point values. Both arguments must have identical types.</p>
2380
Chris Lattner261efe92003-11-25 01:02:51 +00002381<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002382
Reid Spencer1628cec2006-10-26 06:15:43 +00002383<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002384
Chris Lattner261efe92003-11-25 01:02:51 +00002385<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002386
2387<pre>
2388 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002389</pre>
2390</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002391
Chris Lattner261efe92003-11-25 01:02:51 +00002392<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002393<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2394</div>
2395<div class="doc_text">
2396<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002397<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002398</pre>
2399<h5>Overview:</h5>
2400<p>The '<tt>urem</tt>' instruction returns the remainder from the
2401unsigned division of its two arguments.</p>
2402<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002403<p>The two arguments to the '<tt>urem</tt>' instruction must be
2404<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2405values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002406<h5>Semantics:</h5>
2407<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002408This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002409<p>Note that unsigned integer remainder and signed integer remainder are
2410distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2411<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002412<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002413<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002414</pre>
2415
2416</div>
2417<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002418<div class="doc_subsubsection">
2419 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2420</div>
2421
Chris Lattner261efe92003-11-25 01:02:51 +00002422<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002423
Chris Lattner261efe92003-11-25 01:02:51 +00002424<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002425
2426<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002427 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002428</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002429
Chris Lattner261efe92003-11-25 01:02:51 +00002430<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002431
Reid Spencer0a783f72006-11-02 01:53:59 +00002432<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002433signed division of its two operands. This instruction can also take
2434<a href="#t_vector">vector</a> versions of the values in which case
2435the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002436
Chris Lattner261efe92003-11-25 01:02:51 +00002437<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002438
Reid Spencer0a783f72006-11-02 01:53:59 +00002439<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002440<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2441values. Both arguments must have identical types.</p>
2442
Chris Lattner261efe92003-11-25 01:02:51 +00002443<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002444
Reid Spencer0a783f72006-11-02 01:53:59 +00002445<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002446has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2447operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002448a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002449 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002450Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002451please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002452Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002453<p>Note that signed integer remainder and unsigned integer remainder are
2454distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2455<p>Taking the remainder of a division by zero leads to undefined behavior.
2456Overflow also leads to undefined behavior; this is a rare case, but can occur,
2457for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2458(The remainder doesn't actually overflow, but this rule lets srem be
2459implemented using instructions that return both the result of the division
2460and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002461<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002462<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002463</pre>
2464
2465</div>
2466<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002467<div class="doc_subsubsection">
2468 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2469
Reid Spencer0a783f72006-11-02 01:53:59 +00002470<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002471
Reid Spencer0a783f72006-11-02 01:53:59 +00002472<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002473<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002474</pre>
2475<h5>Overview:</h5>
2476<p>The '<tt>frem</tt>' instruction returns the remainder from the
2477division of its two operands.</p>
2478<h5>Arguments:</h5>
2479<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002480<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2481of floating point values. Both arguments must have identical types.</p>
2482
Reid Spencer0a783f72006-11-02 01:53:59 +00002483<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002484
Chris Lattnera73afe02008-04-01 18:45:27 +00002485<p>This instruction returns the <i>remainder</i> of a division.
2486The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002487
Reid Spencer0a783f72006-11-02 01:53:59 +00002488<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002489
2490<pre>
2491 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002492</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002493</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002494
Reid Spencer8e11bf82007-02-02 13:57:07 +00002495<!-- ======================================================================= -->
2496<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2497Operations</a> </div>
2498<div class="doc_text">
2499<p>Bitwise binary operators are used to do various forms of
2500bit-twiddling in a program. They are generally very efficient
2501instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002502instructions. They require two operands of the same type, execute an operation on them,
2503and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002504</div>
2505
Reid Spencer569f2fa2007-01-31 21:39:12 +00002506<!-- _______________________________________________________________________ -->
2507<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2508Instruction</a> </div>
2509<div class="doc_text">
2510<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002511<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002512</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002513
Reid Spencer569f2fa2007-01-31 21:39:12 +00002514<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002515
Reid Spencer569f2fa2007-01-31 21:39:12 +00002516<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2517the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002518
Reid Spencer569f2fa2007-01-31 21:39:12 +00002519<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002520
Reid Spencer569f2fa2007-01-31 21:39:12 +00002521<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002522 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002523type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002524
Reid Spencer569f2fa2007-01-31 21:39:12 +00002525<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002526
Gabor Greiffb224a22008-08-07 21:46:00 +00002527<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2528where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
2529equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002530
Reid Spencer569f2fa2007-01-31 21:39:12 +00002531<h5>Example:</h5><pre>
2532 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2533 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2534 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002535 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002536</pre>
2537</div>
2538<!-- _______________________________________________________________________ -->
2539<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2540Instruction</a> </div>
2541<div class="doc_text">
2542<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002543<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002544</pre>
2545
2546<h5>Overview:</h5>
2547<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002548operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002549
2550<h5>Arguments:</h5>
2551<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002552<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002553type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002554
2555<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002556
Reid Spencer569f2fa2007-01-31 21:39:12 +00002557<p>This instruction always performs a logical shift right operation. The most
2558significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002559shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
2560the number of bits in <tt>op1</tt>, the result is undefined.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002561
2562<h5>Example:</h5>
2563<pre>
2564 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2565 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2566 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2567 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002568 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002569</pre>
2570</div>
2571
Reid Spencer8e11bf82007-02-02 13:57:07 +00002572<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002573<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2574Instruction</a> </div>
2575<div class="doc_text">
2576
2577<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002578<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002579</pre>
2580
2581<h5>Overview:</h5>
2582<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002583operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002584
2585<h5>Arguments:</h5>
2586<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002587<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002588type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002589
2590<h5>Semantics:</h5>
2591<p>This instruction always performs an arithmetic shift right operation,
2592The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00002593of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
2594larger than the number of bits in <tt>op1</tt>, the result is undefined.
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002595</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002596
2597<h5>Example:</h5>
2598<pre>
2599 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2600 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2601 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2602 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002603 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002604</pre>
2605</div>
2606
Chris Lattner00950542001-06-06 20:29:01 +00002607<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002608<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2609Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002610
Misha Brukman9d0919f2003-11-08 01:05:38 +00002611<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002612
Chris Lattner00950542001-06-06 20:29:01 +00002613<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002614
2615<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002616 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002617</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002618
Chris Lattner00950542001-06-06 20:29:01 +00002619<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002620
Chris Lattner261efe92003-11-25 01:02:51 +00002621<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2622its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002623
Chris Lattner00950542001-06-06 20:29:01 +00002624<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002625
2626<p>The two arguments to the '<tt>and</tt>' instruction must be
2627<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2628values. Both arguments must have identical types.</p>
2629
Chris Lattner00950542001-06-06 20:29:01 +00002630<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002631<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002632<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002633<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002634<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002635 <tbody>
2636 <tr>
2637 <td>In0</td>
2638 <td>In1</td>
2639 <td>Out</td>
2640 </tr>
2641 <tr>
2642 <td>0</td>
2643 <td>0</td>
2644 <td>0</td>
2645 </tr>
2646 <tr>
2647 <td>0</td>
2648 <td>1</td>
2649 <td>0</td>
2650 </tr>
2651 <tr>
2652 <td>1</td>
2653 <td>0</td>
2654 <td>0</td>
2655 </tr>
2656 <tr>
2657 <td>1</td>
2658 <td>1</td>
2659 <td>1</td>
2660 </tr>
2661 </tbody>
2662</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002663</div>
Chris Lattner00950542001-06-06 20:29:01 +00002664<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002665<pre>
2666 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002667 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2668 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002669</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002670</div>
Chris Lattner00950542001-06-06 20:29:01 +00002671<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002672<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002673<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002674<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002675<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002676</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002677<h5>Overview:</h5>
2678<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2679or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002680<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002681
2682<p>The two arguments to the '<tt>or</tt>' instruction must be
2683<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2684values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002685<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002686<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002687<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002688<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002689<table border="1" cellspacing="0" cellpadding="4">
2690 <tbody>
2691 <tr>
2692 <td>In0</td>
2693 <td>In1</td>
2694 <td>Out</td>
2695 </tr>
2696 <tr>
2697 <td>0</td>
2698 <td>0</td>
2699 <td>0</td>
2700 </tr>
2701 <tr>
2702 <td>0</td>
2703 <td>1</td>
2704 <td>1</td>
2705 </tr>
2706 <tr>
2707 <td>1</td>
2708 <td>0</td>
2709 <td>1</td>
2710 </tr>
2711 <tr>
2712 <td>1</td>
2713 <td>1</td>
2714 <td>1</td>
2715 </tr>
2716 </tbody>
2717</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002718</div>
Chris Lattner00950542001-06-06 20:29:01 +00002719<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002720<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2721 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2722 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002723</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002724</div>
Chris Lattner00950542001-06-06 20:29:01 +00002725<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002726<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2727Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002728<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002729<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002730<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002731</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002732<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002733<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2734or of its two operands. The <tt>xor</tt> is used to implement the
2735"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002736<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002737<p>The two arguments to the '<tt>xor</tt>' instruction must be
2738<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2739values. Both arguments must have identical types.</p>
2740
Chris Lattner00950542001-06-06 20:29:01 +00002741<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002742
Misha Brukman9d0919f2003-11-08 01:05:38 +00002743<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002744<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002745<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002746<table border="1" cellspacing="0" cellpadding="4">
2747 <tbody>
2748 <tr>
2749 <td>In0</td>
2750 <td>In1</td>
2751 <td>Out</td>
2752 </tr>
2753 <tr>
2754 <td>0</td>
2755 <td>0</td>
2756 <td>0</td>
2757 </tr>
2758 <tr>
2759 <td>0</td>
2760 <td>1</td>
2761 <td>1</td>
2762 </tr>
2763 <tr>
2764 <td>1</td>
2765 <td>0</td>
2766 <td>1</td>
2767 </tr>
2768 <tr>
2769 <td>1</td>
2770 <td>1</td>
2771 <td>0</td>
2772 </tr>
2773 </tbody>
2774</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002775</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002776<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002777<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002778<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2779 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2780 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2781 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002782</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002783</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002784
Chris Lattner00950542001-06-06 20:29:01 +00002785<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002786<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002787 <a name="vectorops">Vector Operations</a>
2788</div>
2789
2790<div class="doc_text">
2791
2792<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002793target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002794vector-specific operations needed to process vectors effectively. While LLVM
2795does directly support these vector operations, many sophisticated algorithms
2796will want to use target-specific intrinsics to take full advantage of a specific
2797target.</p>
2798
2799</div>
2800
2801<!-- _______________________________________________________________________ -->
2802<div class="doc_subsubsection">
2803 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2804</div>
2805
2806<div class="doc_text">
2807
2808<h5>Syntax:</h5>
2809
2810<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002811 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002812</pre>
2813
2814<h5>Overview:</h5>
2815
2816<p>
2817The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002818element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002819</p>
2820
2821
2822<h5>Arguments:</h5>
2823
2824<p>
2825The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002826value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002827an index indicating the position from which to extract the element.
2828The index may be a variable.</p>
2829
2830<h5>Semantics:</h5>
2831
2832<p>
2833The result is a scalar of the same type as the element type of
2834<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2835<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2836results are undefined.
2837</p>
2838
2839<h5>Example:</h5>
2840
2841<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002842 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002843</pre>
2844</div>
2845
2846
2847<!-- _______________________________________________________________________ -->
2848<div class="doc_subsubsection">
2849 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2850</div>
2851
2852<div class="doc_text">
2853
2854<h5>Syntax:</h5>
2855
2856<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00002857 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002858</pre>
2859
2860<h5>Overview:</h5>
2861
2862<p>
2863The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002864element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002865</p>
2866
2867
2868<h5>Arguments:</h5>
2869
2870<p>
2871The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002872value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002873scalar value whose type must equal the element type of the first
2874operand. The third operand is an index indicating the position at
2875which to insert the value. The index may be a variable.</p>
2876
2877<h5>Semantics:</h5>
2878
2879<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002880The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002881element values are those of <tt>val</tt> except at position
2882<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2883exceeds the length of <tt>val</tt>, the results are undefined.
2884</p>
2885
2886<h5>Example:</h5>
2887
2888<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002889 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002890</pre>
2891</div>
2892
2893<!-- _______________________________________________________________________ -->
2894<div class="doc_subsubsection">
2895 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2896</div>
2897
2898<div class="doc_text">
2899
2900<h5>Syntax:</h5>
2901
2902<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002903 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002904</pre>
2905
2906<h5>Overview:</h5>
2907
2908<p>
2909The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2910from two input vectors, returning a vector of the same type.
2911</p>
2912
2913<h5>Arguments:</h5>
2914
2915<p>
2916The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2917with types that match each other and types that match the result of the
2918instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerca86e162006-12-31 07:07:53 +00002919of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattner3df241e2006-04-08 23:07:04 +00002920</p>
2921
2922<p>
2923The shuffle mask operand is required to be a constant vector with either
2924constant integer or undef values.
2925</p>
2926
2927<h5>Semantics:</h5>
2928
2929<p>
2930The elements of the two input vectors are numbered from left to right across
2931both of the vectors. The shuffle mask operand specifies, for each element of
2932the result vector, which element of the two input registers the result element
2933gets. The element selector may be undef (meaning "don't care") and the second
2934operand may be undef if performing a shuffle from only one vector.
2935</p>
2936
2937<h5>Example:</h5>
2938
2939<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002940 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002941 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002942 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2943 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattner3df241e2006-04-08 23:07:04 +00002944</pre>
2945</div>
2946
Tanya Lattner09474292006-04-14 19:24:33 +00002947
Chris Lattner3df241e2006-04-08 23:07:04 +00002948<!-- ======================================================================= -->
2949<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00002950 <a name="aggregateops">Aggregate Operations</a>
2951</div>
2952
2953<div class="doc_text">
2954
2955<p>LLVM supports several instructions for working with aggregate values.
2956</p>
2957
2958</div>
2959
2960<!-- _______________________________________________________________________ -->
2961<div class="doc_subsubsection">
2962 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
2963</div>
2964
2965<div class="doc_text">
2966
2967<h5>Syntax:</h5>
2968
2969<pre>
2970 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
2971</pre>
2972
2973<h5>Overview:</h5>
2974
2975<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002976The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
2977or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002978</p>
2979
2980
2981<h5>Arguments:</h5>
2982
2983<p>
2984The first operand of an '<tt>extractvalue</tt>' instruction is a
2985value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002986type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00002987in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00002988'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2989</p>
2990
2991<h5>Semantics:</h5>
2992
2993<p>
2994The result is the value at the position in the aggregate specified by
2995the index operands.
2996</p>
2997
2998<h5>Example:</h5>
2999
3000<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003001 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003002</pre>
3003</div>
3004
3005
3006<!-- _______________________________________________________________________ -->
3007<div class="doc_subsubsection">
3008 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3009</div>
3010
3011<div class="doc_text">
3012
3013<h5>Syntax:</h5>
3014
3015<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003016 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003017</pre>
3018
3019<h5>Overview:</h5>
3020
3021<p>
3022The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003023into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003024</p>
3025
3026
3027<h5>Arguments:</h5>
3028
3029<p>
3030The first operand of an '<tt>insertvalue</tt>' instruction is a
3031value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3032The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003033The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003034indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003035indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003036'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3037The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003038by the indices.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003039
3040<h5>Semantics:</h5>
3041
3042<p>
3043The result is an aggregate of the same type as <tt>val</tt>. Its
3044value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003045specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003046</p>
3047
3048<h5>Example:</h5>
3049
3050<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003051 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003052</pre>
3053</div>
3054
3055
3056<!-- ======================================================================= -->
3057<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003058 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003059</div>
3060
Misha Brukman9d0919f2003-11-08 01:05:38 +00003061<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003062
Chris Lattner261efe92003-11-25 01:02:51 +00003063<p>A key design point of an SSA-based representation is how it
3064represents memory. In LLVM, no memory locations are in SSA form, which
3065makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003066allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003067
Misha Brukman9d0919f2003-11-08 01:05:38 +00003068</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003069
Chris Lattner00950542001-06-06 20:29:01 +00003070<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003071<div class="doc_subsubsection">
3072 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3073</div>
3074
Misha Brukman9d0919f2003-11-08 01:05:38 +00003075<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003076
Chris Lattner00950542001-06-06 20:29:01 +00003077<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003078
3079<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003080 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003081</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003082
Chris Lattner00950542001-06-06 20:29:01 +00003083<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003084
Chris Lattner261efe92003-11-25 01:02:51 +00003085<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003086heap and returns a pointer to it. The object is always allocated in the generic
3087address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003088
Chris Lattner00950542001-06-06 20:29:01 +00003089<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003090
3091<p>The '<tt>malloc</tt>' instruction allocates
3092<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003093bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003094appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003095number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003096If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003097be aligned to at least that boundary. If not specified, or if zero, the target can
3098choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003099
Misha Brukman9d0919f2003-11-08 01:05:38 +00003100<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003101
Chris Lattner00950542001-06-06 20:29:01 +00003102<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003103
Chris Lattner261efe92003-11-25 01:02:51 +00003104<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattner72ed2002008-04-19 21:01:16 +00003105a pointer is returned. The result of a zero byte allocattion is undefined. The
3106result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003107
Chris Lattner2cbdc452005-11-06 08:02:57 +00003108<h5>Example:</h5>
3109
3110<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003111 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003112
Bill Wendlingaac388b2007-05-29 09:42:13 +00003113 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3114 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3115 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3116 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3117 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003118</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003119</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003120
Chris Lattner00950542001-06-06 20:29:01 +00003121<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003122<div class="doc_subsubsection">
3123 <a name="i_free">'<tt>free</tt>' Instruction</a>
3124</div>
3125
Misha Brukman9d0919f2003-11-08 01:05:38 +00003126<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003127
Chris Lattner00950542001-06-06 20:29:01 +00003128<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003129
3130<pre>
3131 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003132</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003133
Chris Lattner00950542001-06-06 20:29:01 +00003134<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003135
Chris Lattner261efe92003-11-25 01:02:51 +00003136<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003137memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003138
Chris Lattner00950542001-06-06 20:29:01 +00003139<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003140
Chris Lattner261efe92003-11-25 01:02:51 +00003141<p>'<tt>value</tt>' shall be a pointer value that points to a value
3142that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3143instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003144
Chris Lattner00950542001-06-06 20:29:01 +00003145<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003146
John Criswell9e2485c2004-12-10 15:51:16 +00003147<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003148after this instruction executes. If the pointer is null, the operation
3149is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003150
Chris Lattner00950542001-06-06 20:29:01 +00003151<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003152
3153<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003154 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3155 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003156</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003157</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003158
Chris Lattner00950542001-06-06 20:29:01 +00003159<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003160<div class="doc_subsubsection">
3161 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3162</div>
3163
Misha Brukman9d0919f2003-11-08 01:05:38 +00003164<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003165
Chris Lattner00950542001-06-06 20:29:01 +00003166<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003167
3168<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003169 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003170</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003171
Chris Lattner00950542001-06-06 20:29:01 +00003172<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003173
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003174<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3175currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003176returns to its caller. The object is always allocated in the generic address
3177space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003178
Chris Lattner00950542001-06-06 20:29:01 +00003179<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003180
John Criswell9e2485c2004-12-10 15:51:16 +00003181<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003182bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003183appropriate type to the program. If "NumElements" is specified, it is the
3184number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003185If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003186to be aligned to at least that boundary. If not specified, or if zero, the target
3187can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003188
Misha Brukman9d0919f2003-11-08 01:05:38 +00003189<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003190
Chris Lattner00950542001-06-06 20:29:01 +00003191<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003192
Chris Lattner72ed2002008-04-19 21:01:16 +00003193<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3194there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003195memory is automatically released when the function returns. The '<tt>alloca</tt>'
3196instruction is commonly used to represent automatic variables that must
3197have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003198 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003199instructions), the memory is reclaimed. Allocating zero bytes
3200is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003201
Chris Lattner00950542001-06-06 20:29:01 +00003202<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003203
3204<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003205 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003206 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3207 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003208 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003209</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003210</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003211
Chris Lattner00950542001-06-06 20:29:01 +00003212<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003213<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3214Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003215<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003216<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003217<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003218<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003219<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003220<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003221<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003222address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003223 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003224marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003225the number or order of execution of this <tt>load</tt> with other
3226volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3227instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003228<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003229The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003230(that is, the alignment of the memory address). A value of 0 or an
3231omitted "align" argument means that the operation has the preferential
3232alignment for the target. It is the responsibility of the code emitter
3233to ensure that the alignment information is correct. Overestimating
3234the alignment results in an undefined behavior. Underestimating the
3235alignment may produce less efficient code. An alignment of 1 is always
3236safe.
3237</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003238<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003239<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003240<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003241<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003242 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003243 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3244 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003245</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003246</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003247<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003248<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3249Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003250<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003251<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003252<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3253 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003254</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003255<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003256<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003257<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003258<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003259to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003260operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3261of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003262operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003263optimizer is not allowed to modify the number or order of execution of
3264this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3265 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003266<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003267The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003268(that is, the alignment of the memory address). A value of 0 or an
3269omitted "align" argument means that the operation has the preferential
3270alignment for the target. It is the responsibility of the code emitter
3271to ensure that the alignment information is correct. Overestimating
3272the alignment results in an undefined behavior. Underestimating the
3273alignment may produce less efficient code. An alignment of 1 is always
3274safe.
3275</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003276<h5>Semantics:</h5>
3277<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3278at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003279<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003280<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003281 store i32 3, i32* %ptr <i>; yields {void}</i>
3282 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003283</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003284</div>
3285
Chris Lattner2b7d3202002-05-06 03:03:22 +00003286<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003287<div class="doc_subsubsection">
3288 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3289</div>
3290
Misha Brukman9d0919f2003-11-08 01:05:38 +00003291<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003292<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003293<pre>
3294 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
3295</pre>
3296
Chris Lattner7faa8832002-04-14 06:13:44 +00003297<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003298
3299<p>
3300The '<tt>getelementptr</tt>' instruction is used to get the address of a
3301subelement of an aggregate data structure.</p>
3302
Chris Lattner7faa8832002-04-14 06:13:44 +00003303<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003304
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003305<p>This instruction takes a list of integer operands that indicate what
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003306elements of the aggregate object to index to. The actual types of the arguments
3307provided depend on the type of the first pointer argument. The
3308'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00003309levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerca86e162006-12-31 07:07:53 +00003310structure, only <tt>i32</tt> integer constants are allowed. When indexing
Chris Lattner05d67092008-04-24 05:59:56 +00003311into an array or pointer, only integers of 32 or 64 bits are allowed; 32-bit
3312values will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003313
Chris Lattner261efe92003-11-25 01:02:51 +00003314<p>For example, let's consider a C code fragment and how it gets
3315compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003316
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003317<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003318<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003319struct RT {
3320 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003321 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003322 char C;
3323};
3324struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003325 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003326 double Y;
3327 struct RT Z;
3328};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003329
Chris Lattnercabc8462007-05-29 15:43:56 +00003330int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003331 return &amp;s[1].Z.B[5][13];
3332}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003333</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003334</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003335
Misha Brukman9d0919f2003-11-08 01:05:38 +00003336<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003337
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003338<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003339<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003340%RT = type { i8 , [10 x [20 x i32]], i8 }
3341%ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003342
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003343define i32* %foo(%ST* %s) {
3344entry:
3345 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3346 ret i32* %reg
3347}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003348</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003349</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003350
Chris Lattner7faa8832002-04-14 06:13:44 +00003351<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003352
3353<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00003354on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003355and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencer42ddd842006-12-03 16:53:48 +00003356<a href="#t_integer">integer</a> type but the value will always be sign extended
Chris Lattner4316dec2008-04-02 00:38:26 +00003357to 64-bits. <a href="#t_struct">Structure</a> and <a href="#t_pstruct">packed
3358structure</a> types require <tt>i32</tt> <b>constants</b>.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003359
Misha Brukman9d0919f2003-11-08 01:05:38 +00003360<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003361type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003362}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003363the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3364i8 }</tt>' type, another structure. The third index indexes into the second
3365element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003366array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003367'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3368to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003369
Chris Lattner261efe92003-11-25 01:02:51 +00003370<p>Note that it is perfectly legal to index partially through a
3371structure, returning a pointer to an inner element. Because of this,
3372the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003373
3374<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003375 define i32* %foo(%ST* %s) {
3376 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003377 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3378 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003379 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3380 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3381 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003382 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003383</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003384
3385<p>Note that it is undefined to access an array out of bounds: array and
3386pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003387The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003388defined to be accessible as variable length arrays, which requires access
3389beyond the zero'th element.</p>
3390
Chris Lattner884a9702006-08-15 00:45:58 +00003391<p>The getelementptr instruction is often confusing. For some more insight
3392into how it works, see <a href="GetElementPtr.html">the getelementptr
3393FAQ</a>.</p>
3394
Chris Lattner7faa8832002-04-14 06:13:44 +00003395<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003396
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003397<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003398 <i>; yields [12 x i8]*:aptr</i>
3399 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003400</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003401</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003402
Chris Lattner00950542001-06-06 20:29:01 +00003403<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003404<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003405</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003406<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003407<p>The instructions in this category are the conversion instructions (casting)
3408which all take a single operand and a type. They perform various bit conversions
3409on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003410</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003411
Chris Lattner6536cfe2002-05-06 22:08:29 +00003412<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003413<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003414 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3415</div>
3416<div class="doc_text">
3417
3418<h5>Syntax:</h5>
3419<pre>
3420 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3421</pre>
3422
3423<h5>Overview:</h5>
3424<p>
3425The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3426</p>
3427
3428<h5>Arguments:</h5>
3429<p>
3430The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3431be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003432and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003433type. The bit size of <tt>value</tt> must be larger than the bit size of
3434<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003435
3436<h5>Semantics:</h5>
3437<p>
3438The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003439and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3440larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3441It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003442
3443<h5>Example:</h5>
3444<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003445 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003446 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3447 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003448</pre>
3449</div>
3450
3451<!-- _______________________________________________________________________ -->
3452<div class="doc_subsubsection">
3453 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3454</div>
3455<div class="doc_text">
3456
3457<h5>Syntax:</h5>
3458<pre>
3459 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3460</pre>
3461
3462<h5>Overview:</h5>
3463<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3464<tt>ty2</tt>.</p>
3465
3466
3467<h5>Arguments:</h5>
3468<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003469<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3470also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003471<tt>value</tt> must be smaller than the bit size of the destination type,
3472<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003473
3474<h5>Semantics:</h5>
3475<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003476bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003477
Reid Spencerb5929522007-01-12 15:46:11 +00003478<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003479
3480<h5>Example:</h5>
3481<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003482 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003483 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003484</pre>
3485</div>
3486
3487<!-- _______________________________________________________________________ -->
3488<div class="doc_subsubsection">
3489 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3490</div>
3491<div class="doc_text">
3492
3493<h5>Syntax:</h5>
3494<pre>
3495 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3496</pre>
3497
3498<h5>Overview:</h5>
3499<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3500
3501<h5>Arguments:</h5>
3502<p>
3503The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003504<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3505also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003506<tt>value</tt> must be smaller than the bit size of the destination type,
3507<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003508
3509<h5>Semantics:</h5>
3510<p>
3511The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3512bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003513the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003514
Reid Spencerc78f3372007-01-12 03:35:51 +00003515<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003516
3517<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003518<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003519 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003520 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003521</pre>
3522</div>
3523
3524<!-- _______________________________________________________________________ -->
3525<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003526 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3527</div>
3528
3529<div class="doc_text">
3530
3531<h5>Syntax:</h5>
3532
3533<pre>
3534 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3535</pre>
3536
3537<h5>Overview:</h5>
3538<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3539<tt>ty2</tt>.</p>
3540
3541
3542<h5>Arguments:</h5>
3543<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3544 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3545cast it to. The size of <tt>value</tt> must be larger than the size of
3546<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3547<i>no-op cast</i>.</p>
3548
3549<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003550<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3551<a href="#t_floating">floating point</a> type to a smaller
3552<a href="#t_floating">floating point</a> type. If the value cannot fit within
3553the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003554
3555<h5>Example:</h5>
3556<pre>
3557 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3558 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3559</pre>
3560</div>
3561
3562<!-- _______________________________________________________________________ -->
3563<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003564 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3565</div>
3566<div class="doc_text">
3567
3568<h5>Syntax:</h5>
3569<pre>
3570 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3571</pre>
3572
3573<h5>Overview:</h5>
3574<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3575floating point value.</p>
3576
3577<h5>Arguments:</h5>
3578<p>The '<tt>fpext</tt>' instruction takes a
3579<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003580and a <a href="#t_floating">floating point</a> type to cast it to. The source
3581type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003582
3583<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003584<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003585<a href="#t_floating">floating point</a> type to a larger
3586<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003587used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003588<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003589
3590<h5>Example:</h5>
3591<pre>
3592 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3593 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3594</pre>
3595</div>
3596
3597<!-- _______________________________________________________________________ -->
3598<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003599 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003600</div>
3601<div class="doc_text">
3602
3603<h5>Syntax:</h5>
3604<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003605 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003606</pre>
3607
3608<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003609<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003610unsigned integer equivalent of type <tt>ty2</tt>.
3611</p>
3612
3613<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003614<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003615scalar or vector <a href="#t_floating">floating point</a> value, and a type
3616to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3617type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3618vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003619
3620<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003621<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003622<a href="#t_floating">floating point</a> operand into the nearest (rounding
3623towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3624the results are undefined.</p>
3625
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003626<h5>Example:</h5>
3627<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003628 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003629 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003630 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003631</pre>
3632</div>
3633
3634<!-- _______________________________________________________________________ -->
3635<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003636 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003637</div>
3638<div class="doc_text">
3639
3640<h5>Syntax:</h5>
3641<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003642 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003643</pre>
3644
3645<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003646<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003647<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003648</p>
3649
Chris Lattner6536cfe2002-05-06 22:08:29 +00003650<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003651<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003652scalar or vector <a href="#t_floating">floating point</a> value, and a type
3653to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3654type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3655vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003656
Chris Lattner6536cfe2002-05-06 22:08:29 +00003657<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003658<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003659<a href="#t_floating">floating point</a> operand into the nearest (rounding
3660towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3661the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003662
Chris Lattner33ba0d92001-07-09 00:26:23 +00003663<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003664<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003665 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003666 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003667 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003668</pre>
3669</div>
3670
3671<!-- _______________________________________________________________________ -->
3672<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003673 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003674</div>
3675<div class="doc_text">
3676
3677<h5>Syntax:</h5>
3678<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003679 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003680</pre>
3681
3682<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003683<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003684integer and converts that value to the <tt>ty2</tt> type.</p>
3685
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003686<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003687<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3688scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3689to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3690type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3691floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003692
3693<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003694<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003695integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003696the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003697
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003698<h5>Example:</h5>
3699<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003700 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003701 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003702</pre>
3703</div>
3704
3705<!-- _______________________________________________________________________ -->
3706<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003707 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003708</div>
3709<div class="doc_text">
3710
3711<h5>Syntax:</h5>
3712<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003713 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003714</pre>
3715
3716<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003717<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003718integer and converts that value to the <tt>ty2</tt> type.</p>
3719
3720<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003721<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3722scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3723to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3724type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3725floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003726
3727<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003728<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003729integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003730the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003731
3732<h5>Example:</h5>
3733<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003734 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003735 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003736</pre>
3737</div>
3738
3739<!-- _______________________________________________________________________ -->
3740<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003741 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3742</div>
3743<div class="doc_text">
3744
3745<h5>Syntax:</h5>
3746<pre>
3747 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3748</pre>
3749
3750<h5>Overview:</h5>
3751<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3752the integer type <tt>ty2</tt>.</p>
3753
3754<h5>Arguments:</h5>
3755<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003756must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Reid Spencer72679252006-11-11 21:00:47 +00003757<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3758
3759<h5>Semantics:</h5>
3760<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3761<tt>ty2</tt> by interpreting the pointer value as an integer and either
3762truncating or zero extending that value to the size of the integer type. If
3763<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3764<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003765are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3766change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003767
3768<h5>Example:</h5>
3769<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003770 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3771 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003772</pre>
3773</div>
3774
3775<!-- _______________________________________________________________________ -->
3776<div class="doc_subsubsection">
3777 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3778</div>
3779<div class="doc_text">
3780
3781<h5>Syntax:</h5>
3782<pre>
3783 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3784</pre>
3785
3786<h5>Overview:</h5>
3787<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3788a pointer type, <tt>ty2</tt>.</p>
3789
3790<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003791<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003792value to cast, and a type to cast it to, which must be a
Anton Korobeynikov7f705592007-01-12 19:20:47 +00003793<a href="#t_pointer">pointer</a> type.
Reid Spencer72679252006-11-11 21:00:47 +00003794
3795<h5>Semantics:</h5>
3796<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3797<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3798the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3799size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3800the size of a pointer then a zero extension is done. If they are the same size,
3801nothing is done (<i>no-op cast</i>).</p>
3802
3803<h5>Example:</h5>
3804<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003805 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3806 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3807 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003808</pre>
3809</div>
3810
3811<!-- _______________________________________________________________________ -->
3812<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003813 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003814</div>
3815<div class="doc_text">
3816
3817<h5>Syntax:</h5>
3818<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003819 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003820</pre>
3821
3822<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003823
Reid Spencer5c0ef472006-11-11 23:08:07 +00003824<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003825<tt>ty2</tt> without changing any bits.</p>
3826
3827<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003828
Reid Spencer5c0ef472006-11-11 23:08:07 +00003829<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00003830a non-aggregate first class value, and a type to cast it to, which must also be
3831a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
3832<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003833and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00003834type is a pointer, the destination type must also be a pointer. This
3835instruction supports bitwise conversion of vectors to integers and to vectors
3836of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003837
3838<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003839<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003840<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3841this conversion. The conversion is done as if the <tt>value</tt> had been
3842stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3843converted to other pointer types with this instruction. To convert pointers to
3844other types, use the <a href="#i_inttoptr">inttoptr</a> or
3845<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003846
3847<h5>Example:</h5>
3848<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003849 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003850 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3851 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003852</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003853</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003854
Reid Spencer2fd21e62006-11-08 01:18:52 +00003855<!-- ======================================================================= -->
3856<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3857<div class="doc_text">
3858<p>The instructions in this category are the "miscellaneous"
3859instructions, which defy better classification.</p>
3860</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003861
3862<!-- _______________________________________________________________________ -->
3863<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3864</div>
3865<div class="doc_text">
3866<h5>Syntax:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003867<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003868</pre>
3869<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003870<p>The '<tt>icmp</tt>' instruction returns a boolean value or
3871a vector of boolean values based on comparison
3872of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003873<h5>Arguments:</h5>
3874<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003875the condition code indicating the kind of comparison to perform. It is not
3876a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003877<ol>
3878 <li><tt>eq</tt>: equal</li>
3879 <li><tt>ne</tt>: not equal </li>
3880 <li><tt>ugt</tt>: unsigned greater than</li>
3881 <li><tt>uge</tt>: unsigned greater or equal</li>
3882 <li><tt>ult</tt>: unsigned less than</li>
3883 <li><tt>ule</tt>: unsigned less or equal</li>
3884 <li><tt>sgt</tt>: signed greater than</li>
3885 <li><tt>sge</tt>: signed greater or equal</li>
3886 <li><tt>slt</tt>: signed less than</li>
3887 <li><tt>sle</tt>: signed less or equal</li>
3888</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003889<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00003890<a href="#t_pointer">pointer</a>
3891or integer <a href="#t_vector">vector</a> typed.
3892They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003893<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003894<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00003895the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00003896yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003897<ol>
3898 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3899 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3900 </li>
3901 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3902 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3903 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003904 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003905 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003906 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003907 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003908 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003909 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003910 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003911 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003912 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003913 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003914 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003915 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003916 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003917 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003918 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003919</ol>
3920<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00003921values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003922<p>If the operands are integer vectors, then they are compared
3923element by element. The result is an <tt>i1</tt> vector with
3924the same number of elements as the values being compared.
3925Otherwise, the result is an <tt>i1</tt>.
3926</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003927
3928<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003929<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3930 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3931 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3932 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3933 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3934 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003935</pre>
3936</div>
3937
3938<!-- _______________________________________________________________________ -->
3939<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3940</div>
3941<div class="doc_text">
3942<h5>Syntax:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003943<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003944</pre>
3945<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003946<p>The '<tt>fcmp</tt>' instruction returns a boolean value
3947or vector of boolean values based on comparison
3948of its operands.
3949<p>
3950If the operands are floating point scalars, then the result
3951type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
3952</p>
3953<p>If the operands are floating point vectors, then the result type
3954is a vector of boolean with the same number of elements as the
3955operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003956<h5>Arguments:</h5>
3957<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003958the condition code indicating the kind of comparison to perform. It is not
3959a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003960<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00003961 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003962 <li><tt>oeq</tt>: ordered and equal</li>
3963 <li><tt>ogt</tt>: ordered and greater than </li>
3964 <li><tt>oge</tt>: ordered and greater than or equal</li>
3965 <li><tt>olt</tt>: ordered and less than </li>
3966 <li><tt>ole</tt>: ordered and less than or equal</li>
3967 <li><tt>one</tt>: ordered and not equal</li>
3968 <li><tt>ord</tt>: ordered (no nans)</li>
3969 <li><tt>ueq</tt>: unordered or equal</li>
3970 <li><tt>ugt</tt>: unordered or greater than </li>
3971 <li><tt>uge</tt>: unordered or greater than or equal</li>
3972 <li><tt>ult</tt>: unordered or less than </li>
3973 <li><tt>ule</tt>: unordered or less than or equal</li>
3974 <li><tt>une</tt>: unordered or not equal</li>
3975 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003976 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003977</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003978<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00003979<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003980<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
3981either a <a href="#t_floating">floating point</a> type
3982or a <a href="#t_vector">vector</a> of floating point type.
3983They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003984<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003985<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003986according to the condition code given as <tt>cond</tt>.
3987If the operands are vectors, then the vectors are compared
3988element by element.
3989Each comparison performed
3990always yields an <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003991<ol>
3992 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003993 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003994 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003995 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003996 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003997 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003998 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003999 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004000 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004001 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004002 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004003 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004004 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004005 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4006 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004007 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004008 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004009 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004010 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004011 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004012 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004013 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004014 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004015 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004016 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004017 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004018 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004019 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4020</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004021
4022<h5>Example:</h5>
4023<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004024 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4025 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4026 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004027</pre>
4028</div>
4029
Reid Spencer2fd21e62006-11-08 01:18:52 +00004030<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004031<div class="doc_subsubsection">
4032 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4033</div>
4034<div class="doc_text">
4035<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004036<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004037</pre>
4038<h5>Overview:</h5>
4039<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4040element-wise comparison of its two integer vector operands.</p>
4041<h5>Arguments:</h5>
4042<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4043the condition code indicating the kind of comparison to perform. It is not
4044a value, just a keyword. The possible condition code are:
4045<ol>
4046 <li><tt>eq</tt>: equal</li>
4047 <li><tt>ne</tt>: not equal </li>
4048 <li><tt>ugt</tt>: unsigned greater than</li>
4049 <li><tt>uge</tt>: unsigned greater or equal</li>
4050 <li><tt>ult</tt>: unsigned less than</li>
4051 <li><tt>ule</tt>: unsigned less or equal</li>
4052 <li><tt>sgt</tt>: signed greater than</li>
4053 <li><tt>sge</tt>: signed greater or equal</li>
4054 <li><tt>slt</tt>: signed less than</li>
4055 <li><tt>sle</tt>: signed less or equal</li>
4056</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004057<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004058<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4059<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004060<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004061according to the condition code given as <tt>cond</tt>. The comparison yields a
4062<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4063identical type as the values being compared. The most significant bit in each
4064element is 1 if the element-wise comparison evaluates to true, and is 0
4065otherwise. All other bits of the result are undefined. The condition codes
4066are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
4067instruction</a>.
4068
4069<h5>Example:</h5>
4070<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004071 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4072 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004073</pre>
4074</div>
4075
4076<!-- _______________________________________________________________________ -->
4077<div class="doc_subsubsection">
4078 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4079</div>
4080<div class="doc_text">
4081<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004082<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004083<h5>Overview:</h5>
4084<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4085element-wise comparison of its two floating point vector operands. The output
4086elements have the same width as the input elements.</p>
4087<h5>Arguments:</h5>
4088<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4089the condition code indicating the kind of comparison to perform. It is not
4090a value, just a keyword. The possible condition code are:
4091<ol>
4092 <li><tt>false</tt>: no comparison, always returns false</li>
4093 <li><tt>oeq</tt>: ordered and equal</li>
4094 <li><tt>ogt</tt>: ordered and greater than </li>
4095 <li><tt>oge</tt>: ordered and greater than or equal</li>
4096 <li><tt>olt</tt>: ordered and less than </li>
4097 <li><tt>ole</tt>: ordered and less than or equal</li>
4098 <li><tt>one</tt>: ordered and not equal</li>
4099 <li><tt>ord</tt>: ordered (no nans)</li>
4100 <li><tt>ueq</tt>: unordered or equal</li>
4101 <li><tt>ugt</tt>: unordered or greater than </li>
4102 <li><tt>uge</tt>: unordered or greater than or equal</li>
4103 <li><tt>ult</tt>: unordered or less than </li>
4104 <li><tt>ule</tt>: unordered or less than or equal</li>
4105 <li><tt>une</tt>: unordered or not equal</li>
4106 <li><tt>uno</tt>: unordered (either nans)</li>
4107 <li><tt>true</tt>: no comparison, always returns true</li>
4108</ol>
4109<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4110<a href="#t_floating">floating point</a> typed. They must also be identical
4111types.</p>
4112<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004113<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004114according to the condition code given as <tt>cond</tt>. The comparison yields a
4115<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4116an identical number of elements as the values being compared, and each element
4117having identical with to the width of the floating point elements. The most
4118significant bit in each element is 1 if the element-wise comparison evaluates to
4119true, and is 0 otherwise. All other bits of the result are undefined. The
4120condition codes are evaluated identically to the
4121<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.
4122
4123<h5>Example:</h5>
4124<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004125 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4126 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt; <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004127</pre>
4128</div>
4129
4130<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004131<div class="doc_subsubsection">
4132 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4133</div>
4134
Reid Spencer2fd21e62006-11-08 01:18:52 +00004135<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004136
Reid Spencer2fd21e62006-11-08 01:18:52 +00004137<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004138
Reid Spencer2fd21e62006-11-08 01:18:52 +00004139<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4140<h5>Overview:</h5>
4141<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4142the SSA graph representing the function.</p>
4143<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004144
Jeff Cohenb627eab2007-04-29 01:07:00 +00004145<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004146field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4147as arguments, with one pair for each predecessor basic block of the
4148current block. Only values of <a href="#t_firstclass">first class</a>
4149type may be used as the value arguments to the PHI node. Only labels
4150may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004151
Reid Spencer2fd21e62006-11-08 01:18:52 +00004152<p>There must be no non-phi instructions between the start of a basic
4153block and the PHI instructions: i.e. PHI instructions must be first in
4154a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004155
Reid Spencer2fd21e62006-11-08 01:18:52 +00004156<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004157
Jeff Cohenb627eab2007-04-29 01:07:00 +00004158<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4159specified by the pair corresponding to the predecessor basic block that executed
4160just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004161
Reid Spencer2fd21e62006-11-08 01:18:52 +00004162<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004163<pre>
4164Loop: ; Infinite loop that counts from 0 on up...
4165 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4166 %nextindvar = add i32 %indvar, 1
4167 br label %Loop
4168</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004169</div>
4170
Chris Lattnercc37aae2004-03-12 05:50:16 +00004171<!-- _______________________________________________________________________ -->
4172<div class="doc_subsubsection">
4173 <a name="i_select">'<tt>select</tt>' Instruction</a>
4174</div>
4175
4176<div class="doc_text">
4177
4178<h5>Syntax:</h5>
4179
4180<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004181 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4182
4183 <i>selty</i> is either i1 or {&lt;N x i1&gt}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004184</pre>
4185
4186<h5>Overview:</h5>
4187
4188<p>
4189The '<tt>select</tt>' instruction is used to choose one value based on a
4190condition, without branching.
4191</p>
4192
4193
4194<h5>Arguments:</h5>
4195
4196<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004197The '<tt>select</tt>' instruction requires an 'i1' value or
4198a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004199condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004200type. If the val1/val2 are vectors and
4201the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004202individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004203</p>
4204
4205<h5>Semantics:</h5>
4206
4207<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004208If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004209value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004210</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004211<p>
4212If the condition is a vector of i1, then the value arguments must
4213be vectors of the same size, and the selection is done element
4214by element.
4215</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004216
4217<h5>Example:</h5>
4218
4219<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004220 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004221</pre>
4222</div>
4223
Robert Bocchino05ccd702006-01-15 20:48:27 +00004224
4225<!-- _______________________________________________________________________ -->
4226<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004227 <a name="i_call">'<tt>call</tt>' Instruction</a>
4228</div>
4229
Misha Brukman9d0919f2003-11-08 01:05:38 +00004230<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004231
Chris Lattner00950542001-06-06 20:29:01 +00004232<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004233<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004234 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00004235</pre>
4236
Chris Lattner00950542001-06-06 20:29:01 +00004237<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004238
Misha Brukman9d0919f2003-11-08 01:05:38 +00004239<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004240
Chris Lattner00950542001-06-06 20:29:01 +00004241<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004242
Misha Brukman9d0919f2003-11-08 01:05:38 +00004243<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004244
Chris Lattner6536cfe2002-05-06 22:08:29 +00004245<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004246 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004247 <p>The optional "tail" marker indicates whether the callee function accesses
4248 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004249 function call is eligible for tail call optimization. Note that calls may
4250 be marked "tail" even if they do not occur before a <a
4251 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00004252 </li>
4253 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004254 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004255 convention</a> the call should use. If none is specified, the call defaults
4256 to using C calling conventions.
4257 </li>
4258 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004259 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4260 the type of the return value. Functions that return no value are marked
4261 <tt><a href="#t_void">void</a></tt>.</p>
4262 </li>
4263 <li>
4264 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4265 value being invoked. The argument types must match the types implied by
4266 this signature. This type can be omitted if the function is not varargs
4267 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004268 </li>
4269 <li>
4270 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4271 be invoked. In most cases, this is a direct function invocation, but
4272 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004273 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004274 </li>
4275 <li>
4276 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004277 function signature argument types. All arguments must be of
4278 <a href="#t_firstclass">first class</a> type. If the function signature
4279 indicates the function accepts a variable number of arguments, the extra
4280 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004281 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004282</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004283
Chris Lattner00950542001-06-06 20:29:01 +00004284<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004285
Chris Lattner261efe92003-11-25 01:02:51 +00004286<p>The '<tt>call</tt>' instruction is used to cause control flow to
4287transfer to a specified function, with its incoming arguments bound to
4288the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4289instruction in the called function, control flow continues with the
4290instruction after the function call, and the return value of the
Chris Lattner772fccf2008-03-21 17:24:17 +00004291function is bound to the result argument. If the callee returns multiple
4292values then the return values of the function are only accessible through
4293the '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004294
Chris Lattner00950542001-06-06 20:29:01 +00004295<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004296
4297<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004298 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004299 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4300 %X = tail call i32 @foo() <i>; yields i32</i>
4301 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4302 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004303
4304 %struct.A = type { i32, i8 }
Chris Lattner772fccf2008-03-21 17:24:17 +00004305 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
4306 %gr = getresult %struct.A %r, 0 <i>; yields i32</i>
4307 %gr1 = getresult %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004308</pre>
4309
Misha Brukman9d0919f2003-11-08 01:05:38 +00004310</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004311
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004312<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004313<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004314 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004315</div>
4316
Misha Brukman9d0919f2003-11-08 01:05:38 +00004317<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004318
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004319<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004320
4321<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004322 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004323</pre>
4324
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004325<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004326
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004327<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004328the "variable argument" area of a function call. It is used to implement the
4329<tt>va_arg</tt> macro in C.</p>
4330
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004331<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004332
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004333<p>This instruction takes a <tt>va_list*</tt> value and the type of
4334the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004335increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004336actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004337
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004338<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004339
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004340<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4341type from the specified <tt>va_list</tt> and causes the
4342<tt>va_list</tt> to point to the next argument. For more information,
4343see the variable argument handling <a href="#int_varargs">Intrinsic
4344Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004345
4346<p>It is legal for this instruction to be called in a function which does not
4347take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004348function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004349
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004350<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004351href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004352argument.</p>
4353
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004354<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004355
4356<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4357
Misha Brukman9d0919f2003-11-08 01:05:38 +00004358</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004359
Devang Patelc3fc6df2008-03-10 20:49:15 +00004360<!-- _______________________________________________________________________ -->
4361<div class="doc_subsubsection">
4362 <a name="i_getresult">'<tt>getresult</tt>' Instruction</a>
4363</div>
4364
4365<div class="doc_text">
4366
4367<h5>Syntax:</h5>
4368<pre>
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004369 &lt;resultval&gt; = getresult &lt;type&gt; &lt;retval&gt;, &lt;index&gt;
Devang Patelc3fc6df2008-03-10 20:49:15 +00004370</pre>
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004371
Devang Patelc3fc6df2008-03-10 20:49:15 +00004372<h5>Overview:</h5>
4373
4374<p> The '<tt>getresult</tt>' instruction is used to extract individual values
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004375from a '<tt><a href="#i_call">call</a></tt>'
4376or '<tt><a href="#i_invoke">invoke</a></tt>' instruction that returns multiple
4377results.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004378
4379<h5>Arguments:</h5>
4380
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004381<p>The '<tt>getresult</tt>' instruction takes a call or invoke value as its
Chris Lattner1c406d72008-04-23 04:06:52 +00004382first argument, or an undef value. The value must have <a
4383href="#t_struct">structure type</a>. The second argument is a constant
4384unsigned index value which must be in range for the number of values returned
4385by the call.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004386
4387<h5>Semantics:</h5>
4388
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004389<p>The '<tt>getresult</tt>' instruction extracts the element identified by
4390'<tt>index</tt>' from the aggregate value.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004391
4392<h5>Example:</h5>
4393
4394<pre>
4395 %struct.A = type { i32, i8 }
4396
4397 %r = call %struct.A @foo()
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004398 %gr = getresult %struct.A %r, 0 <i>; yields i32:%gr</i>
4399 %gr1 = getresult %struct.A %r, 1 <i>; yields i8:%gr1</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004400 add i32 %gr, 42
4401 add i8 %gr1, 41
4402</pre>
4403
4404</div>
4405
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004406<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004407<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4408<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004409
Misha Brukman9d0919f2003-11-08 01:05:38 +00004410<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004411
4412<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004413well known names and semantics and are required to follow certain restrictions.
4414Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004415language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004416adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004417
John Criswellfc6b8952005-05-16 16:17:45 +00004418<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004419prefix is reserved in LLVM for intrinsic names; thus, function names may not
4420begin with this prefix. Intrinsic functions must always be external functions:
4421you cannot define the body of intrinsic functions. Intrinsic functions may
4422only be used in call or invoke instructions: it is illegal to take the address
4423of an intrinsic function. Additionally, because intrinsic functions are part
4424of the LLVM language, it is required if any are added that they be documented
4425here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004426
Chandler Carruth69940402007-08-04 01:51:18 +00004427<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4428a family of functions that perform the same operation but on different data
4429types. Because LLVM can represent over 8 million different integer types,
4430overloading is used commonly to allow an intrinsic function to operate on any
4431integer type. One or more of the argument types or the result type can be
4432overloaded to accept any integer type. Argument types may also be defined as
4433exactly matching a previous argument's type or the result type. This allows an
4434intrinsic function which accepts multiple arguments, but needs all of them to
4435be of the same type, to only be overloaded with respect to a single argument or
4436the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004437
Chandler Carruth69940402007-08-04 01:51:18 +00004438<p>Overloaded intrinsics will have the names of its overloaded argument types
4439encoded into its function name, each preceded by a period. Only those types
4440which are overloaded result in a name suffix. Arguments whose type is matched
4441against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4442take an integer of any width and returns an integer of exactly the same integer
4443width. This leads to a family of functions such as
4444<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4445Only one type, the return type, is overloaded, and only one type suffix is
4446required. Because the argument's type is matched against the return type, it
4447does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004448
4449<p>To learn how to add an intrinsic function, please see the
4450<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004451</p>
4452
Misha Brukman9d0919f2003-11-08 01:05:38 +00004453</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004454
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004455<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004456<div class="doc_subsection">
4457 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4458</div>
4459
Misha Brukman9d0919f2003-11-08 01:05:38 +00004460<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004461
Misha Brukman9d0919f2003-11-08 01:05:38 +00004462<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004463 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004464intrinsic functions. These functions are related to the similarly
4465named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004466
Chris Lattner261efe92003-11-25 01:02:51 +00004467<p>All of these functions operate on arguments that use a
4468target-specific value type "<tt>va_list</tt>". The LLVM assembly
4469language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004470transformations should be prepared to handle these functions regardless of
4471the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004472
Chris Lattner374ab302006-05-15 17:26:46 +00004473<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004474instruction and the variable argument handling intrinsic functions are
4475used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004476
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004477<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004478<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004479define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004480 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004481 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004482 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004483 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004484
4485 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004486 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004487
4488 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004489 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004490 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004491 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004492 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004493
4494 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004495 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004496 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004497}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004498
4499declare void @llvm.va_start(i8*)
4500declare void @llvm.va_copy(i8*, i8*)
4501declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004502</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004503</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004504
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004505</div>
4506
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004507<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004508<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004509 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004510</div>
4511
4512
Misha Brukman9d0919f2003-11-08 01:05:38 +00004513<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004514<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004515<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004516<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004517<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
4518<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4519href="#i_va_arg">va_arg</a></tt>.</p>
4520
4521<h5>Arguments:</h5>
4522
4523<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4524
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004525<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004526
4527<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4528macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004529<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004530<tt>va_arg</tt> will produce the first variable argument passed to the function.
4531Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004532last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004533
Misha Brukman9d0919f2003-11-08 01:05:38 +00004534</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004535
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004536<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004537<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004538 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004539</div>
4540
Misha Brukman9d0919f2003-11-08 01:05:38 +00004541<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004542<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004543<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004544<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004545
Jeff Cohenb627eab2007-04-29 01:07:00 +00004546<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004547which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004548or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004549
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004550<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004551
Jeff Cohenb627eab2007-04-29 01:07:00 +00004552<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004553
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004554<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004555
Misha Brukman9d0919f2003-11-08 01:05:38 +00004556<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004557macro available in C. In a target-dependent way, it destroys the
4558<tt>va_list</tt> element to which the argument points. Calls to <a
4559href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4560<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4561<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004562
Misha Brukman9d0919f2003-11-08 01:05:38 +00004563</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004564
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004565<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004566<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004567 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004568</div>
4569
Misha Brukman9d0919f2003-11-08 01:05:38 +00004570<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004571
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004572<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004573
4574<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004575 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004576</pre>
4577
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004578<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004579
Jeff Cohenb627eab2007-04-29 01:07:00 +00004580<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4581from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004582
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004583<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004584
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004585<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004586The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004587
Chris Lattnerd7923912004-05-23 21:06:01 +00004588
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004589<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004590
Jeff Cohenb627eab2007-04-29 01:07:00 +00004591<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4592macro available in C. In a target-dependent way, it copies the source
4593<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4594intrinsic is necessary because the <tt><a href="#int_va_start">
4595llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4596example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004597
Misha Brukman9d0919f2003-11-08 01:05:38 +00004598</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004599
Chris Lattner33aec9e2004-02-12 17:01:32 +00004600<!-- ======================================================================= -->
4601<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004602 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4603</div>
4604
4605<div class="doc_text">
4606
4607<p>
4608LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004609Collection</a> (GC) requires the implementation and generation of these
4610intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004611These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004612stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004613href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004614Front-ends for type-safe garbage collected languages should generate these
4615intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4616href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4617</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004618
4619<p>The garbage collection intrinsics only operate on objects in the generic
4620 address space (address space zero).</p>
4621
Chris Lattnerd7923912004-05-23 21:06:01 +00004622</div>
4623
4624<!-- _______________________________________________________________________ -->
4625<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004626 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004627</div>
4628
4629<div class="doc_text">
4630
4631<h5>Syntax:</h5>
4632
4633<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004634 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004635</pre>
4636
4637<h5>Overview:</h5>
4638
John Criswell9e2485c2004-12-10 15:51:16 +00004639<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004640the code generator, and allows some metadata to be associated with it.</p>
4641
4642<h5>Arguments:</h5>
4643
4644<p>The first argument specifies the address of a stack object that contains the
4645root pointer. The second pointer (which must be either a constant or a global
4646value address) contains the meta-data to be associated with the root.</p>
4647
4648<h5>Semantics:</h5>
4649
Chris Lattner05d67092008-04-24 05:59:56 +00004650<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004651location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004652the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4653intrinsic may only be used in a function which <a href="#gc">specifies a GC
4654algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004655
4656</div>
4657
4658
4659<!-- _______________________________________________________________________ -->
4660<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004661 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004662</div>
4663
4664<div class="doc_text">
4665
4666<h5>Syntax:</h5>
4667
4668<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004669 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004670</pre>
4671
4672<h5>Overview:</h5>
4673
4674<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4675locations, allowing garbage collector implementations that require read
4676barriers.</p>
4677
4678<h5>Arguments:</h5>
4679
Chris Lattner80626e92006-03-14 20:02:51 +00004680<p>The second argument is the address to read from, which should be an address
4681allocated from the garbage collector. The first object is a pointer to the
4682start of the referenced object, if needed by the language runtime (otherwise
4683null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004684
4685<h5>Semantics:</h5>
4686
4687<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4688instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004689garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4690may only be used in a function which <a href="#gc">specifies a GC
4691algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004692
4693</div>
4694
4695
4696<!-- _______________________________________________________________________ -->
4697<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004698 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004699</div>
4700
4701<div class="doc_text">
4702
4703<h5>Syntax:</h5>
4704
4705<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004706 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004707</pre>
4708
4709<h5>Overview:</h5>
4710
4711<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4712locations, allowing garbage collector implementations that require write
4713barriers (such as generational or reference counting collectors).</p>
4714
4715<h5>Arguments:</h5>
4716
Chris Lattner80626e92006-03-14 20:02:51 +00004717<p>The first argument is the reference to store, the second is the start of the
4718object to store it to, and the third is the address of the field of Obj to
4719store to. If the runtime does not require a pointer to the object, Obj may be
4720null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004721
4722<h5>Semantics:</h5>
4723
4724<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4725instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004726garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4727may only be used in a function which <a href="#gc">specifies a GC
4728algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004729
4730</div>
4731
4732
4733
4734<!-- ======================================================================= -->
4735<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004736 <a name="int_codegen">Code Generator Intrinsics</a>
4737</div>
4738
4739<div class="doc_text">
4740<p>
4741These intrinsics are provided by LLVM to expose special features that may only
4742be implemented with code generator support.
4743</p>
4744
4745</div>
4746
4747<!-- _______________________________________________________________________ -->
4748<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004749 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004750</div>
4751
4752<div class="doc_text">
4753
4754<h5>Syntax:</h5>
4755<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004756 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004757</pre>
4758
4759<h5>Overview:</h5>
4760
4761<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004762The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4763target-specific value indicating the return address of the current function
4764or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004765</p>
4766
4767<h5>Arguments:</h5>
4768
4769<p>
4770The argument to this intrinsic indicates which function to return the address
4771for. Zero indicates the calling function, one indicates its caller, etc. The
4772argument is <b>required</b> to be a constant integer value.
4773</p>
4774
4775<h5>Semantics:</h5>
4776
4777<p>
4778The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4779the return address of the specified call frame, or zero if it cannot be
4780identified. The value returned by this intrinsic is likely to be incorrect or 0
4781for arguments other than zero, so it should only be used for debugging purposes.
4782</p>
4783
4784<p>
4785Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004786aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004787source-language caller.
4788</p>
4789</div>
4790
4791
4792<!-- _______________________________________________________________________ -->
4793<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004794 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004795</div>
4796
4797<div class="doc_text">
4798
4799<h5>Syntax:</h5>
4800<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004801 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004802</pre>
4803
4804<h5>Overview:</h5>
4805
4806<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004807The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4808target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004809</p>
4810
4811<h5>Arguments:</h5>
4812
4813<p>
4814The argument to this intrinsic indicates which function to return the frame
4815pointer for. Zero indicates the calling function, one indicates its caller,
4816etc. The argument is <b>required</b> to be a constant integer value.
4817</p>
4818
4819<h5>Semantics:</h5>
4820
4821<p>
4822The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4823the frame address of the specified call frame, or zero if it cannot be
4824identified. The value returned by this intrinsic is likely to be incorrect or 0
4825for arguments other than zero, so it should only be used for debugging purposes.
4826</p>
4827
4828<p>
4829Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004830aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004831source-language caller.
4832</p>
4833</div>
4834
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004835<!-- _______________________________________________________________________ -->
4836<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004837 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004838</div>
4839
4840<div class="doc_text">
4841
4842<h5>Syntax:</h5>
4843<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004844 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004845</pre>
4846
4847<h5>Overview:</h5>
4848
4849<p>
4850The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004851the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004852<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4853features like scoped automatic variable sized arrays in C99.
4854</p>
4855
4856<h5>Semantics:</h5>
4857
4858<p>
4859This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004860href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004861<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4862<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4863state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4864practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4865that were allocated after the <tt>llvm.stacksave</tt> was executed.
4866</p>
4867
4868</div>
4869
4870<!-- _______________________________________________________________________ -->
4871<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004872 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004873</div>
4874
4875<div class="doc_text">
4876
4877<h5>Syntax:</h5>
4878<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004879 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004880</pre>
4881
4882<h5>Overview:</h5>
4883
4884<p>
4885The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4886the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004887href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004888useful for implementing language features like scoped automatic variable sized
4889arrays in C99.
4890</p>
4891
4892<h5>Semantics:</h5>
4893
4894<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004895See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004896</p>
4897
4898</div>
4899
4900
4901<!-- _______________________________________________________________________ -->
4902<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004903 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004904</div>
4905
4906<div class="doc_text">
4907
4908<h5>Syntax:</h5>
4909<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004910 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004911</pre>
4912
4913<h5>Overview:</h5>
4914
4915
4916<p>
4917The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004918a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4919no
4920effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004921characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004922</p>
4923
4924<h5>Arguments:</h5>
4925
4926<p>
4927<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4928determining if the fetch should be for a read (0) or write (1), and
4929<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004930locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004931<tt>locality</tt> arguments must be constant integers.
4932</p>
4933
4934<h5>Semantics:</h5>
4935
4936<p>
4937This intrinsic does not modify the behavior of the program. In particular,
4938prefetches cannot trap and do not produce a value. On targets that support this
4939intrinsic, the prefetch can provide hints to the processor cache for better
4940performance.
4941</p>
4942
4943</div>
4944
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004945<!-- _______________________________________________________________________ -->
4946<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004947 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004948</div>
4949
4950<div class="doc_text">
4951
4952<h5>Syntax:</h5>
4953<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004954 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004955</pre>
4956
4957<h5>Overview:</h5>
4958
4959
4960<p>
John Criswellfc6b8952005-05-16 16:17:45 +00004961The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00004962(PC) in a region of
4963code to simulators and other tools. The method is target specific, but it is
4964expected that the marker will use exported symbols to transmit the PC of the
4965marker.
4966The marker makes no guarantees that it will remain with any specific instruction
4967after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00004968optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00004969correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004970</p>
4971
4972<h5>Arguments:</h5>
4973
4974<p>
4975<tt>id</tt> is a numerical id identifying the marker.
4976</p>
4977
4978<h5>Semantics:</h5>
4979
4980<p>
4981This intrinsic does not modify the behavior of the program. Backends that do not
4982support this intrinisic may ignore it.
4983</p>
4984
4985</div>
4986
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004987<!-- _______________________________________________________________________ -->
4988<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004989 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004990</div>
4991
4992<div class="doc_text">
4993
4994<h5>Syntax:</h5>
4995<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004996 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004997</pre>
4998
4999<h5>Overview:</h5>
5000
5001
5002<p>
5003The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5004counter register (or similar low latency, high accuracy clocks) on those targets
5005that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5006As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5007should only be used for small timings.
5008</p>
5009
5010<h5>Semantics:</h5>
5011
5012<p>
5013When directly supported, reading the cycle counter should not modify any memory.
5014Implementations are allowed to either return a application specific value or a
5015system wide value. On backends without support, this is lowered to a constant 0.
5016</p>
5017
5018</div>
5019
Chris Lattner10610642004-02-14 04:08:35 +00005020<!-- ======================================================================= -->
5021<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005022 <a name="int_libc">Standard C Library Intrinsics</a>
5023</div>
5024
5025<div class="doc_text">
5026<p>
Chris Lattner10610642004-02-14 04:08:35 +00005027LLVM provides intrinsics for a few important standard C library functions.
5028These intrinsics allow source-language front-ends to pass information about the
5029alignment of the pointer arguments to the code generator, providing opportunity
5030for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005031</p>
5032
5033</div>
5034
5035<!-- _______________________________________________________________________ -->
5036<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005037 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005038</div>
5039
5040<div class="doc_text">
5041
5042<h5>Syntax:</h5>
5043<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005044 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005045 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005046 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005047 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005048</pre>
5049
5050<h5>Overview:</h5>
5051
5052<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005053The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005054location to the destination location.
5055</p>
5056
5057<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005058Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5059intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005060</p>
5061
5062<h5>Arguments:</h5>
5063
5064<p>
5065The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005066the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005067specifying the number of bytes to copy, and the fourth argument is the alignment
5068of the source and destination locations.
5069</p>
5070
Chris Lattner3301ced2004-02-12 21:18:15 +00005071<p>
5072If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005073the caller guarantees that both the source and destination pointers are aligned
5074to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005075</p>
5076
Chris Lattner33aec9e2004-02-12 17:01:32 +00005077<h5>Semantics:</h5>
5078
5079<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005080The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005081location to the destination location, which are not allowed to overlap. It
5082copies "len" bytes of memory over. If the argument is known to be aligned to
5083some boundary, this can be specified as the fourth argument, otherwise it should
5084be set to 0 or 1.
5085</p>
5086</div>
5087
5088
Chris Lattner0eb51b42004-02-12 18:10:10 +00005089<!-- _______________________________________________________________________ -->
5090<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005091 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005092</div>
5093
5094<div class="doc_text">
5095
5096<h5>Syntax:</h5>
5097<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005098 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005099 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005100 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005101 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005102</pre>
5103
5104<h5>Overview:</h5>
5105
5106<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005107The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5108location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005109'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005110</p>
5111
5112<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005113Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5114intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005115</p>
5116
5117<h5>Arguments:</h5>
5118
5119<p>
5120The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005121the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005122specifying the number of bytes to copy, and the fourth argument is the alignment
5123of the source and destination locations.
5124</p>
5125
Chris Lattner3301ced2004-02-12 21:18:15 +00005126<p>
5127If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005128the caller guarantees that the source and destination pointers are aligned to
5129that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005130</p>
5131
Chris Lattner0eb51b42004-02-12 18:10:10 +00005132<h5>Semantics:</h5>
5133
5134<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005135The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005136location to the destination location, which may overlap. It
5137copies "len" bytes of memory over. If the argument is known to be aligned to
5138some boundary, this can be specified as the fourth argument, otherwise it should
5139be set to 0 or 1.
5140</p>
5141</div>
5142
Chris Lattner8ff75902004-01-06 05:31:32 +00005143
Chris Lattner10610642004-02-14 04:08:35 +00005144<!-- _______________________________________________________________________ -->
5145<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005146 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005147</div>
5148
5149<div class="doc_text">
5150
5151<h5>Syntax:</h5>
5152<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005153 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005154 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005155 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005156 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005157</pre>
5158
5159<h5>Overview:</h5>
5160
5161<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005162The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005163byte value.
5164</p>
5165
5166<p>
5167Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5168does not return a value, and takes an extra alignment argument.
5169</p>
5170
5171<h5>Arguments:</h5>
5172
5173<p>
5174The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005175byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005176argument specifying the number of bytes to fill, and the fourth argument is the
5177known alignment of destination location.
5178</p>
5179
5180<p>
5181If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005182the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005183</p>
5184
5185<h5>Semantics:</h5>
5186
5187<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005188The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5189the
Chris Lattner10610642004-02-14 04:08:35 +00005190destination location. If the argument is known to be aligned to some boundary,
5191this can be specified as the fourth argument, otherwise it should be set to 0 or
51921.
5193</p>
5194</div>
5195
5196
Chris Lattner32006282004-06-11 02:28:03 +00005197<!-- _______________________________________________________________________ -->
5198<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005199 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005200</div>
5201
5202<div class="doc_text">
5203
5204<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005205<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005206floating point or vector of floating point type. Not all targets support all
5207types however.
Chris Lattnera4d74142005-07-21 01:29:16 +00005208<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005209 declare float @llvm.sqrt.f32(float %Val)
5210 declare double @llvm.sqrt.f64(double %Val)
5211 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5212 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5213 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005214</pre>
5215
5216<h5>Overview:</h5>
5217
5218<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005219The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005220returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005221<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005222negative numbers other than -0.0 (which allows for better optimization, because
5223there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5224defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005225</p>
5226
5227<h5>Arguments:</h5>
5228
5229<p>
5230The argument and return value are floating point numbers of the same type.
5231</p>
5232
5233<h5>Semantics:</h5>
5234
5235<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005236This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005237floating point number.
5238</p>
5239</div>
5240
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005241<!-- _______________________________________________________________________ -->
5242<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005243 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005244</div>
5245
5246<div class="doc_text">
5247
5248<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005249<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005250floating point or vector of floating point type. Not all targets support all
5251types however.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005252<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005253 declare float @llvm.powi.f32(float %Val, i32 %power)
5254 declare double @llvm.powi.f64(double %Val, i32 %power)
5255 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5256 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5257 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005258</pre>
5259
5260<h5>Overview:</h5>
5261
5262<p>
5263The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5264specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005265multiplications is not defined. When a vector of floating point type is
5266used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005267</p>
5268
5269<h5>Arguments:</h5>
5270
5271<p>
5272The second argument is an integer power, and the first is a value to raise to
5273that power.
5274</p>
5275
5276<h5>Semantics:</h5>
5277
5278<p>
5279This function returns the first value raised to the second power with an
5280unspecified sequence of rounding operations.</p>
5281</div>
5282
Dan Gohman91c284c2007-10-15 20:30:11 +00005283<!-- _______________________________________________________________________ -->
5284<div class="doc_subsubsection">
5285 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5286</div>
5287
5288<div class="doc_text">
5289
5290<h5>Syntax:</h5>
5291<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5292floating point or vector of floating point type. Not all targets support all
5293types however.
5294<pre>
5295 declare float @llvm.sin.f32(float %Val)
5296 declare double @llvm.sin.f64(double %Val)
5297 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5298 declare fp128 @llvm.sin.f128(fp128 %Val)
5299 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5300</pre>
5301
5302<h5>Overview:</h5>
5303
5304<p>
5305The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5306</p>
5307
5308<h5>Arguments:</h5>
5309
5310<p>
5311The argument and return value are floating point numbers of the same type.
5312</p>
5313
5314<h5>Semantics:</h5>
5315
5316<p>
5317This function returns the sine of the specified operand, returning the
5318same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005319conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005320</div>
5321
5322<!-- _______________________________________________________________________ -->
5323<div class="doc_subsubsection">
5324 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5325</div>
5326
5327<div class="doc_text">
5328
5329<h5>Syntax:</h5>
5330<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5331floating point or vector of floating point type. Not all targets support all
5332types however.
5333<pre>
5334 declare float @llvm.cos.f32(float %Val)
5335 declare double @llvm.cos.f64(double %Val)
5336 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5337 declare fp128 @llvm.cos.f128(fp128 %Val)
5338 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5339</pre>
5340
5341<h5>Overview:</h5>
5342
5343<p>
5344The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5345</p>
5346
5347<h5>Arguments:</h5>
5348
5349<p>
5350The argument and return value are floating point numbers of the same type.
5351</p>
5352
5353<h5>Semantics:</h5>
5354
5355<p>
5356This function returns the cosine of the specified operand, returning the
5357same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005358conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005359</div>
5360
5361<!-- _______________________________________________________________________ -->
5362<div class="doc_subsubsection">
5363 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5364</div>
5365
5366<div class="doc_text">
5367
5368<h5>Syntax:</h5>
5369<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5370floating point or vector of floating point type. Not all targets support all
5371types however.
5372<pre>
5373 declare float @llvm.pow.f32(float %Val, float %Power)
5374 declare double @llvm.pow.f64(double %Val, double %Power)
5375 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5376 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5377 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5378</pre>
5379
5380<h5>Overview:</h5>
5381
5382<p>
5383The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5384specified (positive or negative) power.
5385</p>
5386
5387<h5>Arguments:</h5>
5388
5389<p>
5390The second argument is a floating point power, and the first is a value to
5391raise to that power.
5392</p>
5393
5394<h5>Semantics:</h5>
5395
5396<p>
5397This function returns the first value raised to the second power,
5398returning the
5399same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005400conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005401</div>
5402
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005403
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005404<!-- ======================================================================= -->
5405<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005406 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005407</div>
5408
5409<div class="doc_text">
5410<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005411LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005412These allow efficient code generation for some algorithms.
5413</p>
5414
5415</div>
5416
5417<!-- _______________________________________________________________________ -->
5418<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005419 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005420</div>
5421
5422<div class="doc_text">
5423
5424<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005425<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carruth69940402007-08-04 01:51:18 +00005426type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Nate Begeman7e36c472006-01-13 23:26:38 +00005427<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005428 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5429 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5430 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005431</pre>
5432
5433<h5>Overview:</h5>
5434
5435<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005436The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005437values with an even number of bytes (positive multiple of 16 bits). These are
5438useful for performing operations on data that is not in the target's native
5439byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005440</p>
5441
5442<h5>Semantics:</h5>
5443
5444<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005445The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005446and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5447intrinsic returns an i32 value that has the four bytes of the input i32
5448swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005449i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5450<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005451additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005452</p>
5453
5454</div>
5455
5456<!-- _______________________________________________________________________ -->
5457<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005458 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005459</div>
5460
5461<div class="doc_text">
5462
5463<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005464<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5465width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005466<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005467 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5468 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005469 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005470 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5471 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005472</pre>
5473
5474<h5>Overview:</h5>
5475
5476<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005477The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5478value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005479</p>
5480
5481<h5>Arguments:</h5>
5482
5483<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005484The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005485integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005486</p>
5487
5488<h5>Semantics:</h5>
5489
5490<p>
5491The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5492</p>
5493</div>
5494
5495<!-- _______________________________________________________________________ -->
5496<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005497 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005498</div>
5499
5500<div class="doc_text">
5501
5502<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005503<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5504integer bit width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005505<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005506 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5507 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005508 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005509 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5510 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005511</pre>
5512
5513<h5>Overview:</h5>
5514
5515<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005516The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5517leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005518</p>
5519
5520<h5>Arguments:</h5>
5521
5522<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005523The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005524integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005525</p>
5526
5527<h5>Semantics:</h5>
5528
5529<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005530The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5531in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005532of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005533</p>
5534</div>
Chris Lattner32006282004-06-11 02:28:03 +00005535
5536
Chris Lattnereff29ab2005-05-15 19:39:26 +00005537
5538<!-- _______________________________________________________________________ -->
5539<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005540 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005541</div>
5542
5543<div class="doc_text">
5544
5545<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005546<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5547integer bit width. Not all targets support all bit widths however.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005548<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005549 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5550 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005551 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005552 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5553 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005554</pre>
5555
5556<h5>Overview:</h5>
5557
5558<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005559The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5560trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005561</p>
5562
5563<h5>Arguments:</h5>
5564
5565<p>
5566The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005567integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005568</p>
5569
5570<h5>Semantics:</h5>
5571
5572<p>
5573The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5574in a variable. If the src == 0 then the result is the size in bits of the type
5575of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5576</p>
5577</div>
5578
Reid Spencer497d93e2007-04-01 08:27:01 +00005579<!-- _______________________________________________________________________ -->
5580<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005581 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005582</div>
5583
5584<div class="doc_text">
5585
5586<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005587<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005588on any integer bit width.
5589<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005590 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5591 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005592</pre>
5593
5594<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005595<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005596range of bits from an integer value and returns them in the same bit width as
5597the original value.</p>
5598
5599<h5>Arguments:</h5>
5600<p>The first argument, <tt>%val</tt> and the result may be integer types of
5601any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005602arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005603
5604<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005605<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005606of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5607<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5608operates in forward mode.</p>
5609<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5610right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005611only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5612<ol>
5613 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5614 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5615 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5616 to determine the number of bits to retain.</li>
5617 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5618 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5619</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005620<p>In reverse mode, a similar computation is made except that the bits are
5621returned in the reverse order. So, for example, if <tt>X</tt> has the value
5622<tt>i16 0x0ACF (101011001111)</tt> and we apply
5623<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5624<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005625</div>
5626
Reid Spencerf86037f2007-04-11 23:23:49 +00005627<div class="doc_subsubsection">
5628 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5629</div>
5630
5631<div class="doc_text">
5632
5633<h5>Syntax:</h5>
5634<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5635on any integer bit width.
5636<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005637 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5638 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005639</pre>
5640
5641<h5>Overview:</h5>
5642<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5643of bits in an integer value with another integer value. It returns the integer
5644with the replaced bits.</p>
5645
5646<h5>Arguments:</h5>
5647<p>The first argument, <tt>%val</tt> and the result may be integer types of
5648any bit width but they must have the same bit width. <tt>%val</tt> is the value
5649whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5650integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5651type since they specify only a bit index.</p>
5652
5653<h5>Semantics:</h5>
5654<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5655of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5656<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5657operates in forward mode.</p>
5658<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5659truncating it down to the size of the replacement area or zero extending it
5660up to that size.</p>
5661<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5662are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5663in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5664to the <tt>%hi</tt>th bit.
Reid Spencerc6749c42007-05-14 16:50:20 +00005665<p>In reverse mode, a similar computation is made except that the bits are
5666reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5667<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
Reid Spencerf86037f2007-04-11 23:23:49 +00005668<h5>Examples:</h5>
5669<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005670 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005671 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5672 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5673 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005674 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005675</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00005676</div>
5677
Chris Lattner8ff75902004-01-06 05:31:32 +00005678<!-- ======================================================================= -->
5679<div class="doc_subsection">
5680 <a name="int_debugger">Debugger Intrinsics</a>
5681</div>
5682
5683<div class="doc_text">
5684<p>
5685The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5686are described in the <a
5687href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5688Debugging</a> document.
5689</p>
5690</div>
5691
5692
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005693<!-- ======================================================================= -->
5694<div class="doc_subsection">
5695 <a name="int_eh">Exception Handling Intrinsics</a>
5696</div>
5697
5698<div class="doc_text">
5699<p> The LLVM exception handling intrinsics (which all start with
5700<tt>llvm.eh.</tt> prefix), are described in the <a
5701href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5702Handling</a> document. </p>
5703</div>
5704
Tanya Lattner6d806e92007-06-15 20:50:54 +00005705<!-- ======================================================================= -->
5706<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005707 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005708</div>
5709
5710<div class="doc_text">
5711<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005712 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005713 the <tt>nest</tt> attribute, from a function. The result is a callable
5714 function pointer lacking the nest parameter - the caller does not need
5715 to provide a value for it. Instead, the value to use is stored in
5716 advance in a "trampoline", a block of memory usually allocated
5717 on the stack, which also contains code to splice the nest value into the
5718 argument list. This is used to implement the GCC nested function address
5719 extension.
5720</p>
5721<p>
5722 For example, if the function is
5723 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00005724 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005725<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005726 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5727 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5728 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5729 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005730</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00005731 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5732 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005733</div>
5734
5735<!-- _______________________________________________________________________ -->
5736<div class="doc_subsubsection">
5737 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5738</div>
5739<div class="doc_text">
5740<h5>Syntax:</h5>
5741<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005742declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005743</pre>
5744<h5>Overview:</h5>
5745<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005746 This fills the memory pointed to by <tt>tramp</tt> with code
5747 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005748</p>
5749<h5>Arguments:</h5>
5750<p>
5751 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5752 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5753 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005754 intrinsic. Note that the size and the alignment are target-specific - LLVM
5755 currently provides no portable way of determining them, so a front-end that
5756 generates this intrinsic needs to have some target-specific knowledge.
5757 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005758</p>
5759<h5>Semantics:</h5>
5760<p>
5761 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005762 dependent code, turning it into a function. A pointer to this function is
5763 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005764 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005765 before being called. The new function's signature is the same as that of
5766 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5767 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5768 of pointer type. Calling the new function is equivalent to calling
5769 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5770 missing <tt>nest</tt> argument. If, after calling
5771 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5772 modified, then the effect of any later call to the returned function pointer is
5773 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005774</p>
5775</div>
5776
5777<!-- ======================================================================= -->
5778<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005779 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5780</div>
5781
5782<div class="doc_text">
5783<p>
5784 These intrinsic functions expand the "universal IR" of LLVM to represent
5785 hardware constructs for atomic operations and memory synchronization. This
5786 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00005787 is aimed at a low enough level to allow any programming models or APIs
5788 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005789 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5790 hardware behavior. Just as hardware provides a "universal IR" for source
5791 languages, it also provides a starting point for developing a "universal"
5792 atomic operation and synchronization IR.
5793</p>
5794<p>
5795 These do <em>not</em> form an API such as high-level threading libraries,
5796 software transaction memory systems, atomic primitives, and intrinsic
5797 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5798 application libraries. The hardware interface provided by LLVM should allow
5799 a clean implementation of all of these APIs and parallel programming models.
5800 No one model or paradigm should be selected above others unless the hardware
5801 itself ubiquitously does so.
5802
5803</p>
5804</div>
5805
5806<!-- _______________________________________________________________________ -->
5807<div class="doc_subsubsection">
5808 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5809</div>
5810<div class="doc_text">
5811<h5>Syntax:</h5>
5812<pre>
5813declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5814i1 &lt;device&gt; )
5815
5816</pre>
5817<h5>Overview:</h5>
5818<p>
5819 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5820 specific pairs of memory access types.
5821</p>
5822<h5>Arguments:</h5>
5823<p>
5824 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5825 The first four arguments enables a specific barrier as listed below. The fith
5826 argument specifies that the barrier applies to io or device or uncached memory.
5827
5828</p>
5829 <ul>
5830 <li><tt>ll</tt>: load-load barrier</li>
5831 <li><tt>ls</tt>: load-store barrier</li>
5832 <li><tt>sl</tt>: store-load barrier</li>
5833 <li><tt>ss</tt>: store-store barrier</li>
5834 <li><tt>device</tt>: barrier applies to device and uncached memory also.
5835 </ul>
5836<h5>Semantics:</h5>
5837<p>
5838 This intrinsic causes the system to enforce some ordering constraints upon
5839 the loads and stores of the program. This barrier does not indicate
5840 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5841 which they occur. For any of the specified pairs of load and store operations
5842 (f.ex. load-load, or store-load), all of the first operations preceding the
5843 barrier will complete before any of the second operations succeeding the
5844 barrier begin. Specifically the semantics for each pairing is as follows:
5845</p>
5846 <ul>
5847 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5848 after the barrier begins.</li>
5849
5850 <li><tt>ls</tt>: All loads before the barrier must complete before any
5851 store after the barrier begins.</li>
5852 <li><tt>ss</tt>: All stores before the barrier must complete before any
5853 store after the barrier begins.</li>
5854 <li><tt>sl</tt>: All stores before the barrier must complete before any
5855 load after the barrier begins.</li>
5856 </ul>
5857<p>
5858 These semantics are applied with a logical "and" behavior when more than one
5859 is enabled in a single memory barrier intrinsic.
5860</p>
5861<p>
5862 Backends may implement stronger barriers than those requested when they do not
5863 support as fine grained a barrier as requested. Some architectures do not
5864 need all types of barriers and on such architectures, these become noops.
5865</p>
5866<h5>Example:</h5>
5867<pre>
5868%ptr = malloc i32
5869 store i32 4, %ptr
5870
5871%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5872 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5873 <i>; guarantee the above finishes</i>
5874 store i32 8, %ptr <i>; before this begins</i>
5875</pre>
5876</div>
5877
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005878<!-- _______________________________________________________________________ -->
5879<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00005880 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005881</div>
5882<div class="doc_text">
5883<h5>Syntax:</h5>
5884<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00005885 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5886 any integer bit width and for different address spaces. Not all targets
5887 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005888
5889<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005890declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5891declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5892declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5893declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005894
5895</pre>
5896<h5>Overview:</h5>
5897<p>
5898 This loads a value in memory and compares it to a given value. If they are
5899 equal, it stores a new value into the memory.
5900</p>
5901<h5>Arguments:</h5>
5902<p>
Mon P Wang28873102008-06-25 08:15:39 +00005903 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005904 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5905 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5906 this integer type. While any bit width integer may be used, targets may only
5907 lower representations they support in hardware.
5908
5909</p>
5910<h5>Semantics:</h5>
5911<p>
5912 This entire intrinsic must be executed atomically. It first loads the value
5913 in memory pointed to by <tt>ptr</tt> and compares it with the value
5914 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5915 loaded value is yielded in all cases. This provides the equivalent of an
5916 atomic compare-and-swap operation within the SSA framework.
5917</p>
5918<h5>Examples:</h5>
5919
5920<pre>
5921%ptr = malloc i32
5922 store i32 4, %ptr
5923
5924%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00005925%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005926 <i>; yields {i32}:result1 = 4</i>
5927%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5928%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5929
5930%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00005931%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005932 <i>; yields {i32}:result2 = 8</i>
5933%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5934
5935%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5936</pre>
5937</div>
5938
5939<!-- _______________________________________________________________________ -->
5940<div class="doc_subsubsection">
5941 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5942</div>
5943<div class="doc_text">
5944<h5>Syntax:</h5>
5945
5946<p>
5947 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5948 integer bit width. Not all targets support all bit widths however.</p>
5949<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005950declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5951declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5952declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5953declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005954
5955</pre>
5956<h5>Overview:</h5>
5957<p>
5958 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5959 the value from memory. It then stores the value in <tt>val</tt> in the memory
5960 at <tt>ptr</tt>.
5961</p>
5962<h5>Arguments:</h5>
5963
5964<p>
Mon P Wang28873102008-06-25 08:15:39 +00005965 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005966 <tt>val</tt> argument and the result must be integers of the same bit width.
5967 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5968 integer type. The targets may only lower integer representations they
5969 support.
5970</p>
5971<h5>Semantics:</h5>
5972<p>
5973 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5974 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5975 equivalent of an atomic swap operation within the SSA framework.
5976
5977</p>
5978<h5>Examples:</h5>
5979<pre>
5980%ptr = malloc i32
5981 store i32 4, %ptr
5982
5983%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00005984%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005985 <i>; yields {i32}:result1 = 4</i>
5986%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5987%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5988
5989%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00005990%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005991 <i>; yields {i32}:result2 = 8</i>
5992
5993%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
5994%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
5995</pre>
5996</div>
5997
5998<!-- _______________________________________________________________________ -->
5999<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006000 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006001
6002</div>
6003<div class="doc_text">
6004<h5>Syntax:</h5>
6005<p>
Mon P Wang28873102008-06-25 08:15:39 +00006006 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006007 integer bit width. Not all targets support all bit widths however.</p>
6008<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006009declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6010declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6011declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6012declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006013
6014</pre>
6015<h5>Overview:</h5>
6016<p>
6017 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6018 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6019</p>
6020<h5>Arguments:</h5>
6021<p>
6022
6023 The intrinsic takes two arguments, the first a pointer to an integer value
6024 and the second an integer value. The result is also an integer value. These
6025 integer types can have any bit width, but they must all have the same bit
6026 width. The targets may only lower integer representations they support.
6027</p>
6028<h5>Semantics:</h5>
6029<p>
6030 This intrinsic does a series of operations atomically. It first loads the
6031 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6032 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6033</p>
6034
6035<h5>Examples:</h5>
6036<pre>
6037%ptr = malloc i32
6038 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006039%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006040 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006041%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006042 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006043%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006044 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006045%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006046</pre>
6047</div>
6048
Mon P Wang28873102008-06-25 08:15:39 +00006049<!-- _______________________________________________________________________ -->
6050<div class="doc_subsubsection">
6051 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6052
6053</div>
6054<div class="doc_text">
6055<h5>Syntax:</h5>
6056<p>
6057 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006058 any integer bit width and for different address spaces. Not all targets
6059 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006060<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006061declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6062declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6063declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6064declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006065
6066</pre>
6067<h5>Overview:</h5>
6068<p>
6069 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6070 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6071</p>
6072<h5>Arguments:</h5>
6073<p>
6074
6075 The intrinsic takes two arguments, the first a pointer to an integer value
6076 and the second an integer value. The result is also an integer value. These
6077 integer types can have any bit width, but they must all have the same bit
6078 width. The targets may only lower integer representations they support.
6079</p>
6080<h5>Semantics:</h5>
6081<p>
6082 This intrinsic does a series of operations atomically. It first loads the
6083 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6084 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6085</p>
6086
6087<h5>Examples:</h5>
6088<pre>
6089%ptr = malloc i32
6090 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006091%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006092 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006093%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006094 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006095%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006096 <i>; yields {i32}:result3 = 2</i>
6097%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6098</pre>
6099</div>
6100
6101<!-- _______________________________________________________________________ -->
6102<div class="doc_subsubsection">
6103 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6104 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6105 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6106 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6107
6108</div>
6109<div class="doc_text">
6110<h5>Syntax:</h5>
6111<p>
6112 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6113 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006114 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6115 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006116<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006117declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6118declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6119declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6120declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006121
6122</pre>
6123
6124<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006125declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6126declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6127declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6128declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006129
6130</pre>
6131
6132<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006133declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6134declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6135declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6136declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006137
6138</pre>
6139
6140<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006141declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6142declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6143declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6144declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006145
6146</pre>
6147<h5>Overview:</h5>
6148<p>
6149 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6150 the value stored in memory at <tt>ptr</tt>. It yields the original value
6151 at <tt>ptr</tt>.
6152</p>
6153<h5>Arguments:</h5>
6154<p>
6155
6156 These intrinsics take two arguments, the first a pointer to an integer value
6157 and the second an integer value. The result is also an integer value. These
6158 integer types can have any bit width, but they must all have the same bit
6159 width. The targets may only lower integer representations they support.
6160</p>
6161<h5>Semantics:</h5>
6162<p>
6163 These intrinsics does a series of operations atomically. They first load the
6164 value stored at <tt>ptr</tt>. They then do the bitwise operation
6165 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6166 value stored at <tt>ptr</tt>.
6167</p>
6168
6169<h5>Examples:</h5>
6170<pre>
6171%ptr = malloc i32
6172 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006173%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006174 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006175%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006176 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006177%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006178 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006179%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006180 <i>; yields {i32}:result3 = FF</i>
6181%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6182</pre>
6183</div>
6184
6185
6186<!-- _______________________________________________________________________ -->
6187<div class="doc_subsubsection">
6188 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6189 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6190 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6191 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6192
6193</div>
6194<div class="doc_text">
6195<h5>Syntax:</h5>
6196<p>
6197 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6198 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006199 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6200 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006201 support all bit widths however.</p>
6202<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006203declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6204declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6205declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6206declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006207
6208</pre>
6209
6210<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006211declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6212declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6213declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6214declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006215
6216</pre>
6217
6218<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006219declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6220declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6221declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6222declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006223
6224</pre>
6225
6226<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006227declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6228declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6229declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6230declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006231
6232</pre>
6233<h5>Overview:</h5>
6234<p>
6235 These intrinsics takes the signed or unsigned minimum or maximum of
6236 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6237 original value at <tt>ptr</tt>.
6238</p>
6239<h5>Arguments:</h5>
6240<p>
6241
6242 These intrinsics take two arguments, the first a pointer to an integer value
6243 and the second an integer value. The result is also an integer value. These
6244 integer types can have any bit width, but they must all have the same bit
6245 width. The targets may only lower integer representations they support.
6246</p>
6247<h5>Semantics:</h5>
6248<p>
6249 These intrinsics does a series of operations atomically. They first load the
6250 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6251 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6252 the original value stored at <tt>ptr</tt>.
6253</p>
6254
6255<h5>Examples:</h5>
6256<pre>
6257%ptr = malloc i32
6258 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006259%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006260 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006261%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006262 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006263%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006264 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006265%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006266 <i>; yields {i32}:result3 = 8</i>
6267%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6268</pre>
6269</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006270
6271<!-- ======================================================================= -->
6272<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006273 <a name="int_general">General Intrinsics</a>
6274</div>
6275
6276<div class="doc_text">
6277<p> This class of intrinsics is designed to be generic and has
6278no specific purpose. </p>
6279</div>
6280
6281<!-- _______________________________________________________________________ -->
6282<div class="doc_subsubsection">
6283 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6284</div>
6285
6286<div class="doc_text">
6287
6288<h5>Syntax:</h5>
6289<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006290 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006291</pre>
6292
6293<h5>Overview:</h5>
6294
6295<p>
6296The '<tt>llvm.var.annotation</tt>' intrinsic
6297</p>
6298
6299<h5>Arguments:</h5>
6300
6301<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006302The first argument is a pointer to a value, the second is a pointer to a
6303global string, the third is a pointer to a global string which is the source
6304file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006305</p>
6306
6307<h5>Semantics:</h5>
6308
6309<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006310This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006311This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006312annotations. These have no other defined use, they are ignored by code
6313generation and optimization.
6314</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006315</div>
6316
Tanya Lattnerb6367882007-09-21 22:59:12 +00006317<!-- _______________________________________________________________________ -->
6318<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006319 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006320</div>
6321
6322<div class="doc_text">
6323
6324<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006325<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6326any integer bit width.
6327</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006328<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006329 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6330 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6331 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6332 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6333 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006334</pre>
6335
6336<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006337
6338<p>
6339The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006340</p>
6341
6342<h5>Arguments:</h5>
6343
6344<p>
6345The first argument is an integer value (result of some expression),
6346the second is a pointer to a global string, the third is a pointer to a global
6347string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006348It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006349</p>
6350
6351<h5>Semantics:</h5>
6352
6353<p>
6354This intrinsic allows annotations to be put on arbitrary expressions
6355with arbitrary strings. This can be useful for special purpose optimizations
6356that want to look for these annotations. These have no other defined use, they
6357are ignored by code generation and optimization.
6358</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006359
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006360<!-- _______________________________________________________________________ -->
6361<div class="doc_subsubsection">
6362 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6363</div>
6364
6365<div class="doc_text">
6366
6367<h5>Syntax:</h5>
6368<pre>
6369 declare void @llvm.trap()
6370</pre>
6371
6372<h5>Overview:</h5>
6373
6374<p>
6375The '<tt>llvm.trap</tt>' intrinsic
6376</p>
6377
6378<h5>Arguments:</h5>
6379
6380<p>
6381None
6382</p>
6383
6384<h5>Semantics:</h5>
6385
6386<p>
6387This intrinsics is lowered to the target dependent trap instruction. If the
6388target does not have a trap instruction, this intrinsic will be lowered to the
6389call of the abort() function.
6390</p>
6391</div>
6392
Chris Lattner00950542001-06-06 20:29:01 +00006393<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00006394<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006395<address>
6396 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6397 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6398 <a href="http://validator.w3.org/check/referer"><img
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006399 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006400
6401 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00006402 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006403 Last modified: $Date$
6404</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006405
Misha Brukman9d0919f2003-11-08 01:05:38 +00006406</body>
6407</html>