blob: 0d4a62c9d80e7ddbff5ecec0179a80a32f094d64 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Sanjoy Dasc88f5d32015-10-28 21:27:14 +000086#include "llvm/IR/PatternMatch.h"
Chris Lattner996795b2006-06-28 23:17:24 +000087#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000088#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000089#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000090#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000091#include "llvm/Support/raw_ostream.h"
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +000092#include "llvm/Support/SaveAndRestore.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000093#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000094using namespace llvm;
95
Chandler Carruthf1221bd2014-04-22 02:48:03 +000096#define DEBUG_TYPE "scalar-evolution"
97
Chris Lattner57ef9422006-12-19 22:30:33 +000098STATISTIC(NumArrayLenItCounts,
99 "Number of trip counts computed with array length");
100STATISTIC(NumTripCountsComputed,
101 "Number of loops with predictable loop counts");
102STATISTIC(NumTripCountsNotComputed,
103 "Number of loops without predictable loop counts");
104STATISTIC(NumBruteForceTripCountsComputed,
105 "Number of loops with trip counts computed by force");
106
Dan Gohmand78c4002008-05-13 00:00:25 +0000107static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000108MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000110 "symbolically execute a constant "
111 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000112 cl::init(100));
113
Benjamin Kramer214935e2012-10-26 17:31:32 +0000114// FIXME: Enable this with XDEBUG when the test suite is clean.
115static cl::opt<bool>
116VerifySCEV("verify-scev",
117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
118
Chris Lattnerd934c702004-04-02 20:23:17 +0000119//===----------------------------------------------------------------------===//
120// SCEV class definitions
121//===----------------------------------------------------------------------===//
122
123//===----------------------------------------------------------------------===//
124// Implementation of the SCEV class.
125//
Dan Gohman3423e722009-06-30 20:13:32 +0000126
Davide Italiano2071f4c2015-10-25 19:55:24 +0000127LLVM_DUMP_METHOD
128void SCEV::dump() const {
129 print(dbgs());
130 dbgs() << '\n';
131}
132
Dan Gohman534749b2010-11-17 22:27:42 +0000133void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000134 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000135 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000137 return;
138 case scTruncate: {
139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
140 const SCEV *Op = Trunc->getOperand();
141 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
142 << *Trunc->getType() << ")";
143 return;
144 }
145 case scZeroExtend: {
146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
147 const SCEV *Op = ZExt->getOperand();
148 OS << "(zext " << *Op->getType() << " " << *Op << " to "
149 << *ZExt->getType() << ")";
150 return;
151 }
152 case scSignExtend: {
153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
154 const SCEV *Op = SExt->getOperand();
155 OS << "(sext " << *Op->getType() << " " << *Op << " to "
156 << *SExt->getType() << ")";
157 return;
158 }
159 case scAddRecExpr: {
160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
161 OS << "{" << *AR->getOperand(0);
162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
163 OS << ",+," << *AR->getOperand(i);
164 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000165 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000166 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000167 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000168 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000169 if (AR->getNoWrapFlags(FlagNW) &&
170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
171 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000173 OS << ">";
174 return;
175 }
176 case scAddExpr:
177 case scMulExpr:
178 case scUMaxExpr:
179 case scSMaxExpr: {
180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000181 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000182 switch (NAry->getSCEVType()) {
183 case scAddExpr: OpStr = " + "; break;
184 case scMulExpr: OpStr = " * "; break;
185 case scUMaxExpr: OpStr = " umax "; break;
186 case scSMaxExpr: OpStr = " smax "; break;
187 }
188 OS << "(";
189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
190 I != E; ++I) {
191 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000192 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000193 OS << OpStr;
194 }
195 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000196 switch (NAry->getSCEVType()) {
197 case scAddExpr:
198 case scMulExpr:
199 if (NAry->getNoWrapFlags(FlagNUW))
200 OS << "<nuw>";
201 if (NAry->getNoWrapFlags(FlagNSW))
202 OS << "<nsw>";
203 }
Dan Gohman534749b2010-11-17 22:27:42 +0000204 return;
205 }
206 case scUDivExpr: {
207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
209 return;
210 }
211 case scUnknown: {
212 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000213 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000214 if (U->isSizeOf(AllocTy)) {
215 OS << "sizeof(" << *AllocTy << ")";
216 return;
217 }
218 if (U->isAlignOf(AllocTy)) {
219 OS << "alignof(" << *AllocTy << ")";
220 return;
221 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000222
Chris Lattner229907c2011-07-18 04:54:35 +0000223 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000224 Constant *FieldNo;
225 if (U->isOffsetOf(CTy, FieldNo)) {
226 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000227 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000228 OS << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Dan Gohman534749b2010-11-17 22:27:42 +0000232 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000233 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000234 return;
235 }
236 case scCouldNotCompute:
237 OS << "***COULDNOTCOMPUTE***";
238 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000239 }
240 llvm_unreachable("Unknown SCEV kind!");
241}
242
Chris Lattner229907c2011-07-18 04:54:35 +0000243Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000244 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000245 case scConstant:
246 return cast<SCEVConstant>(this)->getType();
247 case scTruncate:
248 case scZeroExtend:
249 case scSignExtend:
250 return cast<SCEVCastExpr>(this)->getType();
251 case scAddRecExpr:
252 case scMulExpr:
253 case scUMaxExpr:
254 case scSMaxExpr:
255 return cast<SCEVNAryExpr>(this)->getType();
256 case scAddExpr:
257 return cast<SCEVAddExpr>(this)->getType();
258 case scUDivExpr:
259 return cast<SCEVUDivExpr>(this)->getType();
260 case scUnknown:
261 return cast<SCEVUnknown>(this)->getType();
262 case scCouldNotCompute:
263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000264 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000265 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000266}
267
Dan Gohmanbe928e32008-06-18 16:23:07 +0000268bool SCEV::isZero() const {
269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270 return SC->getValue()->isZero();
271 return false;
272}
273
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000274bool SCEV::isOne() const {
275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
276 return SC->getValue()->isOne();
277 return false;
278}
Chris Lattnerd934c702004-04-02 20:23:17 +0000279
Dan Gohman18a96bb2009-06-24 00:30:26 +0000280bool SCEV::isAllOnesValue() const {
281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
282 return SC->getValue()->isAllOnesValue();
283 return false;
284}
285
Andrew Trick881a7762012-01-07 00:27:31 +0000286/// isNonConstantNegative - Return true if the specified scev is negated, but
287/// not a constant.
288bool SCEV::isNonConstantNegative() const {
289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
290 if (!Mul) return false;
291
292 // If there is a constant factor, it will be first.
293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
294 if (!SC) return false;
295
296 // Return true if the value is negative, this matches things like (-42 * V).
297 return SC->getValue()->getValue().isNegative();
298}
299
Owen Anderson04052ec2009-06-22 21:57:23 +0000300SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000302
Chris Lattnerd934c702004-04-02 20:23:17 +0000303bool SCEVCouldNotCompute::classof(const SCEV *S) {
304 return S->getSCEVType() == scCouldNotCompute;
305}
306
Dan Gohmanaf752342009-07-07 17:06:11 +0000307const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000308 FoldingSetNodeID ID;
309 ID.AddInteger(scConstant);
310 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000311 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000314 UniqueSCEVs.InsertNode(S, IP);
315 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000316}
Chris Lattnerd934c702004-04-02 20:23:17 +0000317
Nick Lewycky31eaca52014-01-27 10:04:03 +0000318const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000319 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000320}
321
Dan Gohmanaf752342009-07-07 17:06:11 +0000322const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000323ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000325 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000326}
327
Dan Gohman24ceda82010-06-18 19:54:20 +0000328SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000329 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000331
Dan Gohman24ceda82010-06-18 19:54:20 +0000332SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000333 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000334 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
336 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000337 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000338}
Chris Lattnerd934c702004-04-02 20:23:17 +0000339
Dan Gohman24ceda82010-06-18 19:54:20 +0000340SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000341 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000342 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
344 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000345 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346}
347
Dan Gohman24ceda82010-06-18 19:54:20 +0000348SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000349 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000350 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
352 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000353 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000354}
355
Dan Gohman7cac9572010-08-02 23:49:30 +0000356void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000357 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000358 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000359
360 // Remove this SCEVUnknown from the uniquing map.
361 SE->UniqueSCEVs.RemoveNode(this);
362
363 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000364 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000365}
366
367void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000368 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000369 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000370
371 // Remove this SCEVUnknown from the uniquing map.
372 SE->UniqueSCEVs.RemoveNode(this);
373
374 // Update this SCEVUnknown to point to the new value. This is needed
375 // because there may still be outstanding SCEVs which still point to
376 // this SCEVUnknown.
377 setValPtr(New);
378}
379
Chris Lattner229907c2011-07-18 04:54:35 +0000380bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000382 if (VCE->getOpcode() == Instruction::PtrToInt)
383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000384 if (CE->getOpcode() == Instruction::GetElementPtr &&
385 CE->getOperand(0)->isNullValue() &&
386 CE->getNumOperands() == 2)
387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
388 if (CI->isOne()) {
389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
390 ->getElementType();
391 return true;
392 }
Dan Gohmancf913832010-01-28 02:15:55 +0000393
394 return false;
395}
396
Chris Lattner229907c2011-07-18 04:54:35 +0000397bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000399 if (VCE->getOpcode() == Instruction::PtrToInt)
400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000401 if (CE->getOpcode() == Instruction::GetElementPtr &&
402 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000403 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000405 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000406 if (!STy->isPacked() &&
407 CE->getNumOperands() == 3 &&
408 CE->getOperand(1)->isNullValue()) {
409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
410 if (CI->isOne() &&
411 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000412 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 AllocTy = STy->getElementType(1);
414 return true;
415 }
416 }
417 }
Dan Gohmancf913832010-01-28 02:15:55 +0000418
419 return false;
420}
421
Chris Lattner229907c2011-07-18 04:54:35 +0000422bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000424 if (VCE->getOpcode() == Instruction::PtrToInt)
425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
426 if (CE->getOpcode() == Instruction::GetElementPtr &&
427 CE->getNumOperands() == 3 &&
428 CE->getOperand(0)->isNullValue() &&
429 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000430 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
432 // Ignore vector types here so that ScalarEvolutionExpander doesn't
433 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000434 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000435 CTy = Ty;
436 FieldNo = CE->getOperand(2);
437 return true;
438 }
439 }
440
441 return false;
442}
443
Chris Lattnereb3e8402004-06-20 06:23:15 +0000444//===----------------------------------------------------------------------===//
445// SCEV Utilities
446//===----------------------------------------------------------------------===//
447
448namespace {
449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
450 /// than the complexity of the RHS. This comparator is used to canonicalize
451 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000452 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000453 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000454 public:
Dan Gohman992db002010-07-23 21:18:55 +0000455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000456
Dan Gohman27065672010-08-27 15:26:01 +0000457 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000458 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000459 return compare(LHS, RHS) < 0;
460 }
461
462 // Return negative, zero, or positive, if LHS is less than, equal to, or
463 // greater than RHS, respectively. A three-way result allows recursive
464 // comparisons to be more efficient.
465 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000466 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
467 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000468 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000469
Dan Gohman9ba542c2009-05-07 14:39:04 +0000470 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
472 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000473 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000474
Dan Gohman24ceda82010-06-18 19:54:20 +0000475 // Aside from the getSCEVType() ordering, the particular ordering
476 // isn't very important except that it's beneficial to be consistent,
477 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000478 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000479 case scUnknown: {
480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000482
483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
484 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000485 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000486
487 // Order pointer values after integer values. This helps SCEVExpander
488 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000489 bool LIsPointer = LV->getType()->isPointerTy(),
490 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000491 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000492 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000493
494 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000495 unsigned LID = LV->getValueID(),
496 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000497 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000498 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000499
500 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000501 if (const Argument *LA = dyn_cast<Argument>(LV)) {
502 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
504 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000505 }
506
Dan Gohman27065672010-08-27 15:26:01 +0000507 // For instructions, compare their loop depth, and their operand
508 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
510 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000511
512 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000513 const BasicBlock *LParent = LInst->getParent(),
514 *RParent = RInst->getParent();
515 if (LParent != RParent) {
516 unsigned LDepth = LI->getLoopDepth(LParent),
517 RDepth = LI->getLoopDepth(RParent);
518 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000519 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000520 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000521
522 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000523 unsigned LNumOps = LInst->getNumOperands(),
524 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000525 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000526 }
527
Dan Gohman27065672010-08-27 15:26:01 +0000528 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000529 }
530
Dan Gohman27065672010-08-27 15:26:01 +0000531 case scConstant: {
532 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000533 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000534
535 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000536 const APInt &LA = LC->getValue()->getValue();
537 const APInt &RA = RC->getValue()->getValue();
538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000539 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000540 return (int)LBitWidth - (int)RBitWidth;
541 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000542 }
543
Dan Gohman27065672010-08-27 15:26:01 +0000544 case scAddRecExpr: {
545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000547
548 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
550 if (LLoop != RLoop) {
551 unsigned LDepth = LLoop->getLoopDepth(),
552 RDepth = RLoop->getLoopDepth();
553 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000554 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000555 }
Dan Gohman27065672010-08-27 15:26:01 +0000556
557 // Addrec complexity grows with operand count.
558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
559 if (LNumOps != RNumOps)
560 return (int)LNumOps - (int)RNumOps;
561
562 // Lexicographically compare.
563 for (unsigned i = 0; i != LNumOps; ++i) {
564 long X = compare(LA->getOperand(i), RA->getOperand(i));
565 if (X != 0)
566 return X;
567 }
568
569 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000570 }
571
Dan Gohman27065672010-08-27 15:26:01 +0000572 case scAddExpr:
573 case scMulExpr:
574 case scSMaxExpr:
575 case scUMaxExpr: {
576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000578
579 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000581 if (LNumOps != RNumOps)
582 return (int)LNumOps - (int)RNumOps;
583
Dan Gohman5ae31022010-07-23 21:20:52 +0000584 for (unsigned i = 0; i != LNumOps; ++i) {
585 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000586 return 1;
587 long X = compare(LC->getOperand(i), RC->getOperand(i));
588 if (X != 0)
589 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000590 }
Dan Gohman27065672010-08-27 15:26:01 +0000591 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000592 }
593
Dan Gohman27065672010-08-27 15:26:01 +0000594 case scUDivExpr: {
595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000597
598 // Lexicographically compare udiv expressions.
599 long X = compare(LC->getLHS(), RC->getLHS());
600 if (X != 0)
601 return X;
602 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000603 }
604
Dan Gohman27065672010-08-27 15:26:01 +0000605 case scTruncate:
606 case scZeroExtend:
607 case scSignExtend: {
608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000610
611 // Compare cast expressions by operand.
612 return compare(LC->getOperand(), RC->getOperand());
613 }
614
Benjamin Kramer987b8502014-02-11 19:02:55 +0000615 case scCouldNotCompute:
616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000617 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000618 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000619 }
620 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000621}
Chris Lattnereb3e8402004-06-20 06:23:15 +0000622
623/// GroupByComplexity - Given a list of SCEV objects, order them by their
624/// complexity, and group objects of the same complexity together by value.
625/// When this routine is finished, we know that any duplicates in the vector are
626/// consecutive and that complexity is monotonically increasing.
627///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000628/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000629/// results from this routine. In other words, we don't want the results of
630/// this to depend on where the addresses of various SCEV objects happened to
631/// land in memory.
632///
Dan Gohmanaf752342009-07-07 17:06:11 +0000633static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000634 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000635 if (Ops.size() < 2) return; // Noop
636 if (Ops.size() == 2) {
637 // This is the common case, which also happens to be trivially simple.
638 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
640 if (SCEVComplexityCompare(LI)(RHS, LHS))
641 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000642 return;
643 }
644
Dan Gohman24ceda82010-06-18 19:54:20 +0000645 // Do the rough sort by complexity.
646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
647
648 // Now that we are sorted by complexity, group elements of the same
649 // complexity. Note that this is, at worst, N^2, but the vector is likely to
650 // be extremely short in practice. Note that we take this approach because we
651 // do not want to depend on the addresses of the objects we are grouping.
652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
653 const SCEV *S = Ops[i];
654 unsigned Complexity = S->getSCEVType();
655
656 // If there are any objects of the same complexity and same value as this
657 // one, group them.
658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
659 if (Ops[j] == S) { // Found a duplicate.
660 // Move it to immediately after i'th element.
661 std::swap(Ops[i+1], Ops[j]);
662 ++i; // no need to rescan it.
663 if (i == e-2) return; // Done!
664 }
665 }
666 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000667}
668
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000669namespace {
670struct FindSCEVSize {
671 int Size;
672 FindSCEVSize() : Size(0) {}
673
674 bool follow(const SCEV *S) {
675 ++Size;
676 // Keep looking at all operands of S.
677 return true;
678 }
679 bool isDone() const {
680 return false;
681 }
682};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000683}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000684
685// Returns the size of the SCEV S.
686static inline int sizeOfSCEV(const SCEV *S) {
687 FindSCEVSize F;
688 SCEVTraversal<FindSCEVSize> ST(F);
689 ST.visitAll(S);
690 return F.Size;
691}
692
693namespace {
694
David Majnemer4e879362014-12-14 09:12:33 +0000695struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000696public:
697 // Computes the Quotient and Remainder of the division of Numerator by
698 // Denominator.
699 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
700 const SCEV *Denominator, const SCEV **Quotient,
701 const SCEV **Remainder) {
702 assert(Numerator && Denominator && "Uninitialized SCEV");
703
David Majnemer4e879362014-12-14 09:12:33 +0000704 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000705
706 // Check for the trivial case here to avoid having to check for it in the
707 // rest of the code.
708 if (Numerator == Denominator) {
709 *Quotient = D.One;
710 *Remainder = D.Zero;
711 return;
712 }
713
714 if (Numerator->isZero()) {
715 *Quotient = D.Zero;
716 *Remainder = D.Zero;
717 return;
718 }
719
Brendon Cahoona57cc8b2015-04-20 16:03:28 +0000720 // A simple case when N/1. The quotient is N.
721 if (Denominator->isOne()) {
722 *Quotient = Numerator;
723 *Remainder = D.Zero;
724 return;
725 }
726
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000727 // Split the Denominator when it is a product.
728 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
729 const SCEV *Q, *R;
730 *Quotient = Numerator;
731 for (const SCEV *Op : T->operands()) {
732 divide(SE, *Quotient, Op, &Q, &R);
733 *Quotient = Q;
734
735 // Bail out when the Numerator is not divisible by one of the terms of
736 // the Denominator.
737 if (!R->isZero()) {
738 *Quotient = D.Zero;
739 *Remainder = Numerator;
740 return;
741 }
742 }
743 *Remainder = D.Zero;
744 return;
745 }
746
747 D.visit(Numerator);
748 *Quotient = D.Quotient;
749 *Remainder = D.Remainder;
750 }
751
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000752 // Except in the trivial case described above, we do not know how to divide
753 // Expr by Denominator for the following functions with empty implementation.
754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
760 void visitUnknown(const SCEVUnknown *Numerator) {}
761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
762
David Majnemer4e879362014-12-14 09:12:33 +0000763 void visitConstant(const SCEVConstant *Numerator) {
764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
765 APInt NumeratorVal = Numerator->getValue()->getValue();
766 APInt DenominatorVal = D->getValue()->getValue();
767 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
768 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
769
770 if (NumeratorBW > DenominatorBW)
771 DenominatorVal = DenominatorVal.sext(NumeratorBW);
772 else if (NumeratorBW < DenominatorBW)
773 NumeratorVal = NumeratorVal.sext(DenominatorBW);
774
775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
778 Quotient = SE.getConstant(QuotientVal);
779 Remainder = SE.getConstant(RemainderVal);
780 return;
781 }
782 }
783
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
785 const SCEV *StartQ, *StartR, *StepQ, *StepR;
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000786 if (!Numerator->isAffine())
787 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
Brendon Cahoonf9751ad2015-04-22 15:06:40 +0000790 // Bail out if the types do not match.
791 Type *Ty = Denominator->getType();
792 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000793 Ty != StepQ->getType() || Ty != StepR->getType())
794 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
796 Numerator->getNoWrapFlags());
797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
798 Numerator->getNoWrapFlags());
799 }
800
801 void visitAddExpr(const SCEVAddExpr *Numerator) {
802 SmallVector<const SCEV *, 2> Qs, Rs;
803 Type *Ty = Denominator->getType();
804
805 for (const SCEV *Op : Numerator->operands()) {
806 const SCEV *Q, *R;
807 divide(SE, Op, Denominator, &Q, &R);
808
809 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000810 if (Ty != Q->getType() || Ty != R->getType())
811 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000812
813 Qs.push_back(Q);
814 Rs.push_back(R);
815 }
816
817 if (Qs.size() == 1) {
818 Quotient = Qs[0];
819 Remainder = Rs[0];
820 return;
821 }
822
823 Quotient = SE.getAddExpr(Qs);
824 Remainder = SE.getAddExpr(Rs);
825 }
826
827 void visitMulExpr(const SCEVMulExpr *Numerator) {
828 SmallVector<const SCEV *, 2> Qs;
829 Type *Ty = Denominator->getType();
830
831 bool FoundDenominatorTerm = false;
832 for (const SCEV *Op : Numerator->operands()) {
833 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000834 if (Ty != Op->getType())
835 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000836
837 if (FoundDenominatorTerm) {
838 Qs.push_back(Op);
839 continue;
840 }
841
842 // Check whether Denominator divides one of the product operands.
843 const SCEV *Q, *R;
844 divide(SE, Op, Denominator, &Q, &R);
845 if (!R->isZero()) {
846 Qs.push_back(Op);
847 continue;
848 }
849
850 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000851 if (Ty != Q->getType())
852 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000853
854 FoundDenominatorTerm = true;
855 Qs.push_back(Q);
856 }
857
858 if (FoundDenominatorTerm) {
859 Remainder = Zero;
860 if (Qs.size() == 1)
861 Quotient = Qs[0];
862 else
863 Quotient = SE.getMulExpr(Qs);
864 return;
865 }
866
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000867 if (!isa<SCEVUnknown>(Denominator))
868 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000869
870 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
871 ValueToValueMap RewriteMap;
872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
873 cast<SCEVConstant>(Zero)->getValue();
874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
875
876 if (Remainder->isZero()) {
877 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
879 cast<SCEVConstant>(One)->getValue();
880 Quotient =
881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
882 return;
883 }
884
885 // Quotient is (Numerator - Remainder) divided by Denominator.
886 const SCEV *Q, *R;
887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000888 // This SCEV does not seem to simplify: fail the division here.
889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
890 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000891 divide(SE, Diff, Denominator, &Q, &R);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000892 if (R != Zero)
893 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000894 Quotient = Q;
895 }
896
897private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
899 const SCEV *Denominator)
900 : SE(S), Denominator(Denominator) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +0000901 Zero = SE.getZero(Denominator->getType());
902 One = SE.getOne(Denominator->getType());
David Majnemer5d2670c2014-11-17 11:27:45 +0000903
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000904 // We generally do not know how to divide Expr by Denominator. We
905 // initialize the division to a "cannot divide" state to simplify the rest
906 // of the code.
907 cannotDivide(Numerator);
908 }
909
910 // Convenience function for giving up on the division. We set the quotient to
911 // be equal to zero and the remainder to be equal to the numerator.
912 void cannotDivide(const SCEV *Numerator) {
David Majnemer5d2670c2014-11-17 11:27:45 +0000913 Quotient = Zero;
914 Remainder = Numerator;
915 }
916
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000917 ScalarEvolution &SE;
918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000919};
920
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000921}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000922
Chris Lattnerd934c702004-04-02 20:23:17 +0000923//===----------------------------------------------------------------------===//
924// Simple SCEV method implementations
925//===----------------------------------------------------------------------===//
926
Eli Friedman61f67622008-08-04 23:49:06 +0000927/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000928/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000929static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000930 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000931 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000932 // Handle the simplest case efficiently.
933 if (K == 1)
934 return SE.getTruncateOrZeroExtend(It, ResultTy);
935
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000936 // We are using the following formula for BC(It, K):
937 //
938 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
939 //
Eli Friedman61f67622008-08-04 23:49:06 +0000940 // Suppose, W is the bitwidth of the return value. We must be prepared for
941 // overflow. Hence, we must assure that the result of our computation is
942 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
943 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000944 //
Eli Friedman61f67622008-08-04 23:49:06 +0000945 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000946 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000947 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
948 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000949 //
Eli Friedman61f67622008-08-04 23:49:06 +0000950 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000951 //
Eli Friedman61f67622008-08-04 23:49:06 +0000952 // This formula is trivially equivalent to the previous formula. However,
953 // this formula can be implemented much more efficiently. The trick is that
954 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
955 // arithmetic. To do exact division in modular arithmetic, all we have
956 // to do is multiply by the inverse. Therefore, this step can be done at
957 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000958 //
Eli Friedman61f67622008-08-04 23:49:06 +0000959 // The next issue is how to safely do the division by 2^T. The way this
960 // is done is by doing the multiplication step at a width of at least W + T
961 // bits. This way, the bottom W+T bits of the product are accurate. Then,
962 // when we perform the division by 2^T (which is equivalent to a right shift
963 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
964 // truncated out after the division by 2^T.
965 //
966 // In comparison to just directly using the first formula, this technique
967 // is much more efficient; using the first formula requires W * K bits,
968 // but this formula less than W + K bits. Also, the first formula requires
969 // a division step, whereas this formula only requires multiplies and shifts.
970 //
971 // It doesn't matter whether the subtraction step is done in the calculation
972 // width or the input iteration count's width; if the subtraction overflows,
973 // the result must be zero anyway. We prefer here to do it in the width of
974 // the induction variable because it helps a lot for certain cases; CodeGen
975 // isn't smart enough to ignore the overflow, which leads to much less
976 // efficient code if the width of the subtraction is wider than the native
977 // register width.
978 //
979 // (It's possible to not widen at all by pulling out factors of 2 before
980 // the multiplication; for example, K=2 can be calculated as
981 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
982 // extra arithmetic, so it's not an obvious win, and it gets
983 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000984
Eli Friedman61f67622008-08-04 23:49:06 +0000985 // Protection from insane SCEVs; this bound is conservative,
986 // but it probably doesn't matter.
987 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000988 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000989
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000990 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000991
Eli Friedman61f67622008-08-04 23:49:06 +0000992 // Calculate K! / 2^T and T; we divide out the factors of two before
993 // multiplying for calculating K! / 2^T to avoid overflow.
994 // Other overflow doesn't matter because we only care about the bottom
995 // W bits of the result.
996 APInt OddFactorial(W, 1);
997 unsigned T = 1;
998 for (unsigned i = 3; i <= K; ++i) {
999 APInt Mult(W, i);
1000 unsigned TwoFactors = Mult.countTrailingZeros();
1001 T += TwoFactors;
1002 Mult = Mult.lshr(TwoFactors);
1003 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001004 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001005
Eli Friedman61f67622008-08-04 23:49:06 +00001006 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001007 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001008
Dan Gohman8b0a4192010-03-01 17:49:51 +00001009 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001010 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001011
1012 // Calculate the multiplicative inverse of K! / 2^T;
1013 // this multiplication factor will perform the exact division by
1014 // K! / 2^T.
1015 APInt Mod = APInt::getSignedMinValue(W+1);
1016 APInt MultiplyFactor = OddFactorial.zext(W+1);
1017 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1018 MultiplyFactor = MultiplyFactor.trunc(W);
1019
1020 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001021 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001022 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001023 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001024 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001025 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001026 Dividend = SE.getMulExpr(Dividend,
1027 SE.getTruncateOrZeroExtend(S, CalculationTy));
1028 }
1029
1030 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001031 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001032
1033 // Truncate the result, and divide by K! / 2^T.
1034
1035 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1036 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001037}
1038
Chris Lattnerd934c702004-04-02 20:23:17 +00001039/// evaluateAtIteration - Return the value of this chain of recurrences at
1040/// the specified iteration number. We can evaluate this recurrence by
1041/// multiplying each element in the chain by the binomial coefficient
1042/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1043///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001044/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001045///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001046/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001047///
Dan Gohmanaf752342009-07-07 17:06:11 +00001048const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001049 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001050 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001051 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001052 // The computation is correct in the face of overflow provided that the
1053 // multiplication is performed _after_ the evaluation of the binomial
1054 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001055 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001056 if (isa<SCEVCouldNotCompute>(Coeff))
1057 return Coeff;
1058
1059 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001060 }
1061 return Result;
1062}
1063
Chris Lattnerd934c702004-04-02 20:23:17 +00001064//===----------------------------------------------------------------------===//
1065// SCEV Expression folder implementations
1066//===----------------------------------------------------------------------===//
1067
Dan Gohmanaf752342009-07-07 17:06:11 +00001068const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001069 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001070 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001071 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001072 assert(isSCEVable(Ty) &&
1073 "This is not a conversion to a SCEVable type!");
1074 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001075
Dan Gohman3a302cb2009-07-13 20:50:19 +00001076 FoldingSetNodeID ID;
1077 ID.AddInteger(scTruncate);
1078 ID.AddPointer(Op);
1079 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001080 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1082
Dan Gohman3423e722009-06-30 20:13:32 +00001083 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001084 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001085 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001086 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001087
Dan Gohman79af8542009-04-22 16:20:48 +00001088 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001089 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001090 return getTruncateExpr(ST->getOperand(), Ty);
1091
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001092 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001093 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001094 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1095
1096 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001097 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001098 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1099
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001100 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
Nick Lewycky2ce28322015-03-20 02:52:23 +00001101 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001102 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1103 SmallVector<const SCEV *, 4> Operands;
1104 bool hasTrunc = false;
1105 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1106 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001107 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1108 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001109 Operands.push_back(S);
1110 }
1111 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001112 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001113 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001114 }
1115
Nick Lewycky5c901f32011-01-19 18:56:00 +00001116 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
Nick Lewyckybe8af482015-03-20 02:25:00 +00001117 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001118 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1119 SmallVector<const SCEV *, 4> Operands;
1120 bool hasTrunc = false;
1121 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1122 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001123 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1124 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5c901f32011-01-19 18:56:00 +00001125 Operands.push_back(S);
1126 }
1127 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001128 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001129 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001130 }
1131
Dan Gohman5a728c92009-06-18 16:24:47 +00001132 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001134 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00001135 for (const SCEV *Op : AddRec->operands())
1136 Operands.push_back(getTruncateExpr(Op, Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001137 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001138 }
1139
Dan Gohman89dd42a2010-06-25 18:47:08 +00001140 // The cast wasn't folded; create an explicit cast node. We can reuse
1141 // the existing insert position since if we get here, we won't have
1142 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001143 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1144 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001145 UniqueSCEVs.InsertNode(S, IP);
1146 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001147}
1148
Sanjoy Das4153f472015-02-18 01:47:07 +00001149// Get the limit of a recurrence such that incrementing by Step cannot cause
1150// signed overflow as long as the value of the recurrence within the
1151// loop does not exceed this limit before incrementing.
1152static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1153 ICmpInst::Predicate *Pred,
1154 ScalarEvolution *SE) {
1155 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1156 if (SE->isKnownPositive(Step)) {
1157 *Pred = ICmpInst::ICMP_SLT;
1158 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1159 SE->getSignedRange(Step).getSignedMax());
1160 }
1161 if (SE->isKnownNegative(Step)) {
1162 *Pred = ICmpInst::ICMP_SGT;
1163 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1164 SE->getSignedRange(Step).getSignedMin());
1165 }
1166 return nullptr;
1167}
1168
1169// Get the limit of a recurrence such that incrementing by Step cannot cause
1170// unsigned overflow as long as the value of the recurrence within the loop does
1171// not exceed this limit before incrementing.
1172static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1173 ICmpInst::Predicate *Pred,
1174 ScalarEvolution *SE) {
1175 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1176 *Pred = ICmpInst::ICMP_ULT;
1177
1178 return SE->getConstant(APInt::getMinValue(BitWidth) -
1179 SE->getUnsignedRange(Step).getUnsignedMax());
1180}
1181
1182namespace {
1183
1184struct ExtendOpTraitsBase {
1185 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1186};
1187
1188// Used to make code generic over signed and unsigned overflow.
1189template <typename ExtendOp> struct ExtendOpTraits {
1190 // Members present:
1191 //
1192 // static const SCEV::NoWrapFlags WrapType;
1193 //
1194 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1195 //
1196 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1197 // ICmpInst::Predicate *Pred,
1198 // ScalarEvolution *SE);
1199};
1200
1201template <>
1202struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1203 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1204
1205 static const GetExtendExprTy GetExtendExpr;
1206
1207 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1208 ICmpInst::Predicate *Pred,
1209 ScalarEvolution *SE) {
1210 return getSignedOverflowLimitForStep(Step, Pred, SE);
1211 }
1212};
1213
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001214const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001215 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1216
1217template <>
1218struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1219 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1220
1221 static const GetExtendExprTy GetExtendExpr;
1222
1223 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1224 ICmpInst::Predicate *Pred,
1225 ScalarEvolution *SE) {
1226 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1227 }
1228};
1229
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001230const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001231 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
Alexander Kornienkof00654e2015-06-23 09:49:53 +00001232}
Sanjoy Das4153f472015-02-18 01:47:07 +00001233
1234// The recurrence AR has been shown to have no signed/unsigned wrap or something
1235// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1236// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1237// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1238// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1239// expression "Step + sext/zext(PreIncAR)" is congruent with
1240// "sext/zext(PostIncAR)"
1241template <typename ExtendOpTy>
1242static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1243 ScalarEvolution *SE) {
1244 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1245 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1246
1247 const Loop *L = AR->getLoop();
1248 const SCEV *Start = AR->getStart();
1249 const SCEV *Step = AR->getStepRecurrence(*SE);
1250
1251 // Check for a simple looking step prior to loop entry.
1252 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1253 if (!SA)
1254 return nullptr;
1255
1256 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1257 // subtraction is expensive. For this purpose, perform a quick and dirty
1258 // difference, by checking for Step in the operand list.
1259 SmallVector<const SCEV *, 4> DiffOps;
1260 for (const SCEV *Op : SA->operands())
1261 if (Op != Step)
1262 DiffOps.push_back(Op);
1263
1264 if (DiffOps.size() == SA->getNumOperands())
1265 return nullptr;
1266
1267 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1268 // `Step`:
1269
1270 // 1. NSW/NUW flags on the step increment.
Sanjoy Das0714e3e2015-10-23 06:33:47 +00001271 auto PreStartFlags =
1272 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1273 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
Sanjoy Das4153f472015-02-18 01:47:07 +00001274 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1275 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1276
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001277 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1278 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001279 //
1280
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001281 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1282 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1283 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001284 return PreStart;
1285
1286 // 2. Direct overflow check on the step operation's expression.
1287 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1288 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1289 const SCEV *OperandExtendedStart =
1290 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1291 (SE->*GetExtendExpr)(Step, WideTy));
1292 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1293 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1294 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1295 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1296 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1297 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1298 }
1299 return PreStart;
1300 }
1301
1302 // 3. Loop precondition.
1303 ICmpInst::Predicate Pred;
1304 const SCEV *OverflowLimit =
1305 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1306
1307 if (OverflowLimit &&
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001308 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
Sanjoy Das4153f472015-02-18 01:47:07 +00001309 return PreStart;
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001310
Sanjoy Das4153f472015-02-18 01:47:07 +00001311 return nullptr;
1312}
1313
1314// Get the normalized zero or sign extended expression for this AddRec's Start.
1315template <typename ExtendOpTy>
1316static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1317 ScalarEvolution *SE) {
1318 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1319
1320 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1321 if (!PreStart)
1322 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1323
1324 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1325 (SE->*GetExtendExpr)(PreStart, Ty));
1326}
1327
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001328// Try to prove away overflow by looking at "nearby" add recurrences. A
1329// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1330// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1331//
1332// Formally:
1333//
1334// {S,+,X} == {S-T,+,X} + T
1335// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1336//
1337// If ({S-T,+,X} + T) does not overflow ... (1)
1338//
1339// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1340//
1341// If {S-T,+,X} does not overflow ... (2)
1342//
1343// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1344// == {Ext(S-T)+Ext(T),+,Ext(X)}
1345//
1346// If (S-T)+T does not overflow ... (3)
1347//
1348// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1349// == {Ext(S),+,Ext(X)} == LHS
1350//
1351// Thus, if (1), (2) and (3) are true for some T, then
1352// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1353//
1354// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1355// does not overflow" restricted to the 0th iteration. Therefore we only need
1356// to check for (1) and (2).
1357//
1358// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1359// is `Delta` (defined below).
1360//
1361template <typename ExtendOpTy>
1362bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1363 const SCEV *Step,
1364 const Loop *L) {
1365 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1366
1367 // We restrict `Start` to a constant to prevent SCEV from spending too much
1368 // time here. It is correct (but more expensive) to continue with a
1369 // non-constant `Start` and do a general SCEV subtraction to compute
1370 // `PreStart` below.
1371 //
1372 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1373 if (!StartC)
1374 return false;
1375
1376 APInt StartAI = StartC->getValue()->getValue();
1377
1378 for (unsigned Delta : {-2, -1, 1, 2}) {
1379 const SCEV *PreStart = getConstant(StartAI - Delta);
1380
Sanjoy Das42801102015-10-23 06:57:21 +00001381 FoldingSetNodeID ID;
1382 ID.AddInteger(scAddRecExpr);
1383 ID.AddPointer(PreStart);
1384 ID.AddPointer(Step);
1385 ID.AddPointer(L);
1386 void *IP = nullptr;
1387 const auto *PreAR =
1388 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1389
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001390 // Give up if we don't already have the add recurrence we need because
1391 // actually constructing an add recurrence is relatively expensive.
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001392 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1393 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1394 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1395 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1396 DeltaS, &Pred, this);
1397 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1398 return true;
1399 }
1400 }
1401
1402 return false;
1403}
1404
Dan Gohmanaf752342009-07-07 17:06:11 +00001405const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001406 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001407 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001408 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001409 assert(isSCEVable(Ty) &&
1410 "This is not a conversion to a SCEVable type!");
1411 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001412
Dan Gohman3423e722009-06-30 20:13:32 +00001413 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1415 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001416 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001417
Dan Gohman79af8542009-04-22 16:20:48 +00001418 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001419 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001420 return getZeroExtendExpr(SZ->getOperand(), Ty);
1421
Dan Gohman74a0ba12009-07-13 20:55:53 +00001422 // Before doing any expensive analysis, check to see if we've already
1423 // computed a SCEV for this Op and Ty.
1424 FoldingSetNodeID ID;
1425 ID.AddInteger(scZeroExtend);
1426 ID.AddPointer(Op);
1427 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001428 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001429 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1430
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001431 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1432 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1433 // It's possible the bits taken off by the truncate were all zero bits. If
1434 // so, we should be able to simplify this further.
1435 const SCEV *X = ST->getOperand();
1436 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001437 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1438 unsigned NewBits = getTypeSizeInBits(Ty);
1439 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001440 CR.zextOrTrunc(NewBits)))
1441 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001442 }
1443
Dan Gohman76466372009-04-27 20:16:15 +00001444 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001445 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001446 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001447 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001448 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001449 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001450 const SCEV *Start = AR->getStart();
1451 const SCEV *Step = AR->getStepRecurrence(*this);
1452 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1453 const Loop *L = AR->getLoop();
1454
Dan Gohman62ef6a72009-07-25 01:22:26 +00001455 // If we have special knowledge that this addrec won't overflow,
1456 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001457 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001458 return getAddRecExpr(
1459 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1460 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001461
Dan Gohman76466372009-04-27 20:16:15 +00001462 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1463 // Note that this serves two purposes: It filters out loops that are
1464 // simply not analyzable, and it covers the case where this code is
1465 // being called from within backedge-taken count analysis, such that
1466 // attempting to ask for the backedge-taken count would likely result
1467 // in infinite recursion. In the later case, the analysis code will
1468 // cope with a conservative value, and it will take care to purge
1469 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001470 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001471 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001472 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001473 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001474
1475 // Check whether the backedge-taken count can be losslessly casted to
1476 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001477 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001478 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001479 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001480 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1481 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001482 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001483 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001484 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001485 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1486 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1487 const SCEV *WideMaxBECount =
1488 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001489 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001490 getAddExpr(WideStart,
1491 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001492 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001493 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001494 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001496 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001497 return getAddRecExpr(
1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1499 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001500 }
Dan Gohman76466372009-04-27 20:16:15 +00001501 // Similar to above, only this time treat the step value as signed.
1502 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001503 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001504 getAddExpr(WideStart,
1505 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001506 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001507 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001508 // Cache knowledge of AR NW, which is propagated to this AddRec.
1509 // Negative step causes unsigned wrap, but it still can't self-wrap.
1510 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001511 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001512 return getAddRecExpr(
1513 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1514 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001515 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001516 }
1517
1518 // If the backedge is guarded by a comparison with the pre-inc value
1519 // the addrec is safe. Also, if the entry is guarded by a comparison
1520 // with the start value and the backedge is guarded by a comparison
1521 // with the post-inc value, the addrec is safe.
1522 if (isKnownPositive(Step)) {
1523 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1524 getUnsignedRange(Step).getUnsignedMax());
1525 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001526 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001527 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001528 AR->getPostIncExpr(*this), N))) {
1529 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1530 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001531 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001532 return getAddRecExpr(
1533 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1534 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001535 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001536 } else if (isKnownNegative(Step)) {
1537 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1538 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001539 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1540 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001541 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001542 AR->getPostIncExpr(*this), N))) {
1543 // Cache knowledge of AR NW, which is propagated to this AddRec.
1544 // Negative step causes unsigned wrap, but it still can't self-wrap.
1545 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1546 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001547 return getAddRecExpr(
1548 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1549 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001550 }
Dan Gohman76466372009-04-27 20:16:15 +00001551 }
1552 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001553
1554 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1555 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1556 return getAddRecExpr(
1557 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1558 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1559 }
Dan Gohman76466372009-04-27 20:16:15 +00001560 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001561
Sanjoy Daseeca9f62015-10-22 19:57:38 +00001562 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1563 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1564 if (SA->getNoWrapFlags(SCEV::FlagNUW)) {
1565 // If the addition does not unsign overflow then we can, by definition,
1566 // commute the zero extension with the addition operation.
1567 SmallVector<const SCEV *, 4> Ops;
1568 for (const auto *Op : SA->operands())
1569 Ops.push_back(getZeroExtendExpr(Op, Ty));
1570 return getAddExpr(Ops, SCEV::FlagNUW);
1571 }
1572 }
1573
Dan Gohman74a0ba12009-07-13 20:55:53 +00001574 // The cast wasn't folded; create an explicit cast node.
1575 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001576 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001577 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1578 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001579 UniqueSCEVs.InsertNode(S, IP);
1580 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001581}
1582
Dan Gohmanaf752342009-07-07 17:06:11 +00001583const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001584 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001585 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001586 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001587 assert(isSCEVable(Ty) &&
1588 "This is not a conversion to a SCEVable type!");
1589 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001590
Dan Gohman3423e722009-06-30 20:13:32 +00001591 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001592 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1593 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001594 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001595
Dan Gohman79af8542009-04-22 16:20:48 +00001596 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001597 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001598 return getSignExtendExpr(SS->getOperand(), Ty);
1599
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001600 // sext(zext(x)) --> zext(x)
1601 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1602 return getZeroExtendExpr(SZ->getOperand(), Ty);
1603
Dan Gohman74a0ba12009-07-13 20:55:53 +00001604 // Before doing any expensive analysis, check to see if we've already
1605 // computed a SCEV for this Op and Ty.
1606 FoldingSetNodeID ID;
1607 ID.AddInteger(scSignExtend);
1608 ID.AddPointer(Op);
1609 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001610 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001611 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1612
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001613 // If the input value is provably positive, build a zext instead.
1614 if (isKnownNonNegative(Op))
1615 return getZeroExtendExpr(Op, Ty);
1616
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001617 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1618 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1619 // It's possible the bits taken off by the truncate were all sign bits. If
1620 // so, we should be able to simplify this further.
1621 const SCEV *X = ST->getOperand();
1622 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001623 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1624 unsigned NewBits = getTypeSizeInBits(Ty);
1625 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001626 CR.sextOrTrunc(NewBits)))
1627 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001628 }
1629
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001630 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001631 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001632 if (SA->getNumOperands() == 2) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001633 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1634 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001635 if (SMul && SC1) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001636 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001637 const APInt &C1 = SC1->getValue()->getValue();
1638 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001639 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001640 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001641 return getAddExpr(getSignExtendExpr(SC1, Ty),
1642 getSignExtendExpr(SMul, Ty));
1643 }
1644 }
1645 }
Sanjoy Dasa060e602015-10-22 19:57:25 +00001646
1647 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1648 if (SA->getNoWrapFlags(SCEV::FlagNSW)) {
1649 // If the addition does not sign overflow then we can, by definition,
1650 // commute the sign extension with the addition operation.
1651 SmallVector<const SCEV *, 4> Ops;
1652 for (const auto *Op : SA->operands())
1653 Ops.push_back(getSignExtendExpr(Op, Ty));
1654 return getAddExpr(Ops, SCEV::FlagNSW);
1655 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001656 }
Dan Gohman76466372009-04-27 20:16:15 +00001657 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001658 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001659 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001660 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001661 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001662 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001663 const SCEV *Start = AR->getStart();
1664 const SCEV *Step = AR->getStepRecurrence(*this);
1665 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1666 const Loop *L = AR->getLoop();
1667
Dan Gohman62ef6a72009-07-25 01:22:26 +00001668 // If we have special knowledge that this addrec won't overflow,
1669 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001670 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001671 return getAddRecExpr(
1672 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1673 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001674
Dan Gohman76466372009-04-27 20:16:15 +00001675 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1676 // Note that this serves two purposes: It filters out loops that are
1677 // simply not analyzable, and it covers the case where this code is
1678 // being called from within backedge-taken count analysis, such that
1679 // attempting to ask for the backedge-taken count would likely result
1680 // in infinite recursion. In the later case, the analysis code will
1681 // cope with a conservative value, and it will take care to purge
1682 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001683 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001684 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001685 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001686 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001687
1688 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001689 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001690 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001691 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001692 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001693 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1694 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001695 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001696 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001697 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001698 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1699 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1700 const SCEV *WideMaxBECount =
1701 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001702 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001703 getAddExpr(WideStart,
1704 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001705 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001706 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001707 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1708 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001709 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001710 return getAddRecExpr(
1711 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1712 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001713 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001714 // Similar to above, only this time treat the step value as unsigned.
1715 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001716 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001717 getAddExpr(WideStart,
1718 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001719 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001720 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001721 // If AR wraps around then
1722 //
1723 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1724 // => SAdd != OperandExtendedAdd
1725 //
1726 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1727 // (SAdd == OperandExtendedAdd => AR is NW)
1728
1729 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1730
Dan Gohman8c129d72009-07-16 17:34:36 +00001731 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001732 return getAddRecExpr(
1733 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1734 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001735 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001736 }
1737
1738 // If the backedge is guarded by a comparison with the pre-inc value
1739 // the addrec is safe. Also, if the entry is guarded by a comparison
1740 // with the start value and the backedge is guarded by a comparison
1741 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001742 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001743 const SCEV *OverflowLimit =
1744 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001745 if (OverflowLimit &&
1746 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1747 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1748 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1749 OverflowLimit)))) {
1750 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1751 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001752 return getAddRecExpr(
1753 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1754 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001755 }
1756 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001757 // If Start and Step are constants, check if we can apply this
1758 // transformation:
1759 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001760 auto *SC1 = dyn_cast<SCEVConstant>(Start);
1761 auto *SC2 = dyn_cast<SCEVConstant>(Step);
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001762 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001763 const APInt &C1 = SC1->getValue()->getValue();
1764 const APInt &C2 = SC2->getValue()->getValue();
1765 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1766 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001767 Start = getSignExtendExpr(Start, Ty);
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001768 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1769 AR->getNoWrapFlags());
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001770 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1771 }
1772 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001773
1774 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1775 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1776 return getAddRecExpr(
1777 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1778 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1779 }
Dan Gohman76466372009-04-27 20:16:15 +00001780 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001781
Dan Gohman74a0ba12009-07-13 20:55:53 +00001782 // The cast wasn't folded; create an explicit cast node.
1783 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001784 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001785 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1786 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001787 UniqueSCEVs.InsertNode(S, IP);
1788 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001789}
1790
Dan Gohman8db2edc2009-06-13 15:56:47 +00001791/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1792/// unspecified bits out to the given type.
1793///
Dan Gohmanaf752342009-07-07 17:06:11 +00001794const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001795 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001796 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1797 "This is not an extending conversion!");
1798 assert(isSCEVable(Ty) &&
1799 "This is not a conversion to a SCEVable type!");
1800 Ty = getEffectiveSCEVType(Ty);
1801
1802 // Sign-extend negative constants.
1803 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1804 if (SC->getValue()->getValue().isNegative())
1805 return getSignExtendExpr(Op, Ty);
1806
1807 // Peel off a truncate cast.
1808 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001809 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001810 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1811 return getAnyExtendExpr(NewOp, Ty);
1812 return getTruncateOrNoop(NewOp, Ty);
1813 }
1814
1815 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001816 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001817 if (!isa<SCEVZeroExtendExpr>(ZExt))
1818 return ZExt;
1819
1820 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001821 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001822 if (!isa<SCEVSignExtendExpr>(SExt))
1823 return SExt;
1824
Dan Gohman51ad99d2010-01-21 02:09:26 +00001825 // Force the cast to be folded into the operands of an addrec.
1826 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1827 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001828 for (const SCEV *Op : AR->operands())
1829 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001830 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001831 }
1832
Dan Gohman8db2edc2009-06-13 15:56:47 +00001833 // If the expression is obviously signed, use the sext cast value.
1834 if (isa<SCEVSMaxExpr>(Op))
1835 return SExt;
1836
1837 // Absent any other information, use the zext cast value.
1838 return ZExt;
1839}
1840
Dan Gohman038d02e2009-06-14 22:58:51 +00001841/// CollectAddOperandsWithScales - Process the given Ops list, which is
1842/// a list of operands to be added under the given scale, update the given
1843/// map. This is a helper function for getAddRecExpr. As an example of
1844/// what it does, given a sequence of operands that would form an add
1845/// expression like this:
1846///
Tobias Grosserba49e422014-03-05 10:37:17 +00001847/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001848///
1849/// where A and B are constants, update the map with these values:
1850///
1851/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1852///
1853/// and add 13 + A*B*29 to AccumulatedConstant.
1854/// This will allow getAddRecExpr to produce this:
1855///
1856/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1857///
1858/// This form often exposes folding opportunities that are hidden in
1859/// the original operand list.
1860///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001861/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001862/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1863/// the common case where no interesting opportunities are present, and
1864/// is also used as a check to avoid infinite recursion.
1865///
1866static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001867CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001868 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001869 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001870 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001871 const APInt &Scale,
1872 ScalarEvolution &SE) {
1873 bool Interesting = false;
1874
Dan Gohman45073042010-06-18 19:12:32 +00001875 // Iterate over the add operands. They are sorted, with constants first.
1876 unsigned i = 0;
1877 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1878 ++i;
1879 // Pull a buried constant out to the outside.
1880 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1881 Interesting = true;
1882 AccumulatedConstant += Scale * C->getValue()->getValue();
1883 }
1884
1885 // Next comes everything else. We're especially interested in multiplies
1886 // here, but they're in the middle, so just visit the rest with one loop.
1887 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001888 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1889 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1890 APInt NewScale =
1891 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1892 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1893 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001894 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001895 Interesting |=
1896 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001897 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001898 NewScale, SE);
1899 } else {
1900 // A multiplication of a constant with some other value. Update
1901 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001902 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1903 const SCEV *Key = SE.getMulExpr(MulOps);
Sanjoy Das7a9f8bb2015-09-17 19:04:09 +00001904 auto Pair = M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001905 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001906 NewOps.push_back(Pair.first->first);
1907 } else {
1908 Pair.first->second += NewScale;
1909 // The map already had an entry for this value, which may indicate
1910 // a folding opportunity.
1911 Interesting = true;
1912 }
1913 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001914 } else {
1915 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001916 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001917 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001918 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001919 NewOps.push_back(Pair.first->first);
1920 } else {
1921 Pair.first->second += Scale;
1922 // The map already had an entry for this value, which may indicate
1923 // a folding opportunity.
1924 Interesting = true;
1925 }
1926 }
1927 }
1928
1929 return Interesting;
1930}
1931
1932namespace {
1933 struct APIntCompare {
1934 bool operator()(const APInt &LHS, const APInt &RHS) const {
1935 return LHS.ult(RHS);
1936 }
1937 };
1938}
1939
Sanjoy Das81401d42015-01-10 23:41:24 +00001940// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1941// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1942// can't-overflow flags for the operation if possible.
1943static SCEV::NoWrapFlags
1944StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1945 const SmallVectorImpl<const SCEV *> &Ops,
Sanjoy Das8f274152015-10-22 19:57:19 +00001946 SCEV::NoWrapFlags Flags) {
Sanjoy Das81401d42015-01-10 23:41:24 +00001947 using namespace std::placeholders;
Sanjoy Das8f274152015-10-22 19:57:19 +00001948 typedef OverflowingBinaryOperator OBO;
Sanjoy Das81401d42015-01-10 23:41:24 +00001949
1950 bool CanAnalyze =
1951 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1952 (void)CanAnalyze;
1953 assert(CanAnalyze && "don't call from other places!");
1954
1955 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1956 SCEV::NoWrapFlags SignOrUnsignWrap =
Sanjoy Das8f274152015-10-22 19:57:19 +00001957 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001958
1959 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1960 auto IsKnownNonNegative =
1961 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
1962
1963 if (SignOrUnsignWrap == SCEV::FlagNSW &&
1964 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
Sanjoy Das8f274152015-10-22 19:57:19 +00001965 Flags =
1966 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001967
Sanjoy Das8f274152015-10-22 19:57:19 +00001968 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1969
1970 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1971 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1972
1973 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
1974 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
1975
1976 const APInt &C = cast<SCEVConstant>(Ops[0])->getValue()->getValue();
1977 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
1978 auto NSWRegion =
1979 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap);
1980 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
1981 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
1982 }
1983 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
1984 auto NUWRegion =
1985 ConstantRange::makeNoWrapRegion(Instruction::Add, C,
1986 OBO::NoUnsignedWrap);
1987 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
1988 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
1989 }
1990 }
1991
1992 return Flags;
Sanjoy Das81401d42015-01-10 23:41:24 +00001993}
1994
Dan Gohman4d5435d2009-05-24 23:45:28 +00001995/// getAddExpr - Get a canonical add expression, or something simpler if
1996/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001997const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001998 SCEV::NoWrapFlags Flags) {
1999 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2000 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002001 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00002002 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002003#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002004 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002005 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00002006 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002007 "SCEVAddExpr operand types don't match!");
2008#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002009
2010 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002011 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002012
Sanjoy Das64895612015-10-09 02:44:45 +00002013 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2014
Chris Lattnerd934c702004-04-02 20:23:17 +00002015 // If there are any constants, fold them together.
2016 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002017 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002018 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00002019 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002020 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002021 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00002022 Ops[0] = getConstant(LHSC->getValue()->getValue() +
2023 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00002024 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002025 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002026 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002027 }
2028
2029 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002030 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002031 Ops.erase(Ops.begin());
2032 --Idx;
2033 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002034
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002035 if (Ops.size() == 1) return Ops[0];
2036 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002037
Dan Gohman15871f22010-08-27 21:39:59 +00002038 // Okay, check to see if the same value occurs in the operand list more than
2039 // once. If so, merge them together into an multiply expression. Since we
2040 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00002041 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00002042 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00002043 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00002044 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00002045 // Scan ahead to count how many equal operands there are.
2046 unsigned Count = 2;
2047 while (i+Count != e && Ops[i+Count] == Ops[i])
2048 ++Count;
2049 // Merge the values into a multiply.
2050 const SCEV *Scale = getConstant(Ty, Count);
2051 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2052 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002053 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002054 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002055 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002056 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002057 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002058 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002059 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002060 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002061
Dan Gohman2e55cc52009-05-08 21:03:19 +00002062 // Check for truncates. If all the operands are truncated from the same
2063 // type, see if factoring out the truncate would permit the result to be
2064 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2065 // if the contents of the resulting outer trunc fold to something simple.
2066 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2067 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002068 Type *DstType = Trunc->getType();
2069 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002070 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002071 bool Ok = true;
2072 // Check all the operands to see if they can be represented in the
2073 // source type of the truncate.
2074 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2075 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2076 if (T->getOperand()->getType() != SrcType) {
2077 Ok = false;
2078 break;
2079 }
2080 LargeOps.push_back(T->getOperand());
2081 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002082 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002083 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002084 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002085 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2086 if (const SCEVTruncateExpr *T =
2087 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2088 if (T->getOperand()->getType() != SrcType) {
2089 Ok = false;
2090 break;
2091 }
2092 LargeMulOps.push_back(T->getOperand());
Sanjoy Das63914592015-10-18 00:29:20 +00002093 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002094 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002095 } else {
2096 Ok = false;
2097 break;
2098 }
2099 }
2100 if (Ok)
2101 LargeOps.push_back(getMulExpr(LargeMulOps));
2102 } else {
2103 Ok = false;
2104 break;
2105 }
2106 }
2107 if (Ok) {
2108 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002109 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002110 // If it folds to something simple, use it. Otherwise, don't.
2111 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2112 return getTruncateExpr(Fold, DstType);
2113 }
2114 }
2115
2116 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002117 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2118 ++Idx;
2119
2120 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002121 if (Idx < Ops.size()) {
2122 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002123 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002124 // If we have an add, expand the add operands onto the end of the operands
2125 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002126 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002127 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002128 DeletedAdd = true;
2129 }
2130
2131 // If we deleted at least one add, we added operands to the end of the list,
2132 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002133 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002134 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002135 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002136 }
2137
2138 // Skip over the add expression until we get to a multiply.
2139 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2140 ++Idx;
2141
Dan Gohman038d02e2009-06-14 22:58:51 +00002142 // Check to see if there are any folding opportunities present with
2143 // operands multiplied by constant values.
2144 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2145 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002146 DenseMap<const SCEV *, APInt> M;
2147 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002148 APInt AccumulatedConstant(BitWidth, 0);
2149 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002150 Ops.data(), Ops.size(),
2151 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00002152 // Some interesting folding opportunity is present, so its worthwhile to
2153 // re-generate the operands list. Group the operands by constant scale,
2154 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002155 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002156 for (const SCEV *NewOp : NewOps)
2157 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
Dan Gohman038d02e2009-06-14 22:58:51 +00002158 // Re-generate the operands list.
2159 Ops.clear();
2160 if (AccumulatedConstant != 0)
2161 Ops.push_back(getConstant(AccumulatedConstant));
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002162 for (auto &MulOp : MulOpLists)
2163 if (MulOp.first != 0)
2164 Ops.push_back(getMulExpr(getConstant(MulOp.first),
2165 getAddExpr(MulOp.second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002166 if (Ops.empty())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002167 return getZero(Ty);
Dan Gohman038d02e2009-06-14 22:58:51 +00002168 if (Ops.size() == 1)
2169 return Ops[0];
2170 return getAddExpr(Ops);
2171 }
2172 }
2173
Chris Lattnerd934c702004-04-02 20:23:17 +00002174 // If we are adding something to a multiply expression, make sure the
2175 // something is not already an operand of the multiply. If so, merge it into
2176 // the multiply.
2177 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002178 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002179 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002180 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002181 if (isa<SCEVConstant>(MulOpSCEV))
2182 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002183 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002184 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002185 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002186 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002187 if (Mul->getNumOperands() != 2) {
2188 // If the multiply has more than two operands, we must get the
2189 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002190 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2191 Mul->op_begin()+MulOp);
2192 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002193 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002194 }
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002195 const SCEV *One = getOne(Ty);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002196 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002197 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002198 if (Ops.size() == 2) return OuterMul;
2199 if (AddOp < Idx) {
2200 Ops.erase(Ops.begin()+AddOp);
2201 Ops.erase(Ops.begin()+Idx-1);
2202 } else {
2203 Ops.erase(Ops.begin()+Idx);
2204 Ops.erase(Ops.begin()+AddOp-1);
2205 }
2206 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002207 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002208 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002209
Chris Lattnerd934c702004-04-02 20:23:17 +00002210 // Check this multiply against other multiplies being added together.
2211 for (unsigned OtherMulIdx = Idx+1;
2212 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2213 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002214 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002215 // If MulOp occurs in OtherMul, we can fold the two multiplies
2216 // together.
2217 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2218 OMulOp != e; ++OMulOp)
2219 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2220 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002221 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002222 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002223 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002224 Mul->op_begin()+MulOp);
2225 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002226 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002227 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002228 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002229 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002230 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002231 OtherMul->op_begin()+OMulOp);
2232 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002233 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002234 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002235 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2236 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002237 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002238 Ops.erase(Ops.begin()+Idx);
2239 Ops.erase(Ops.begin()+OtherMulIdx-1);
2240 Ops.push_back(OuterMul);
2241 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002242 }
2243 }
2244 }
2245 }
2246
2247 // If there are any add recurrences in the operands list, see if any other
2248 // added values are loop invariant. If so, we can fold them into the
2249 // recurrence.
2250 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2251 ++Idx;
2252
2253 // Scan over all recurrences, trying to fold loop invariants into them.
2254 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2255 // Scan all of the other operands to this add and add them to the vector if
2256 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002257 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002258 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002259 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002260 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002261 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002262 LIOps.push_back(Ops[i]);
2263 Ops.erase(Ops.begin()+i);
2264 --i; --e;
2265 }
2266
2267 // If we found some loop invariants, fold them into the recurrence.
2268 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002269 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002270 LIOps.push_back(AddRec->getStart());
2271
Dan Gohmanaf752342009-07-07 17:06:11 +00002272 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002273 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002274 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002275
Dan Gohman16206132010-06-30 07:16:37 +00002276 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002277 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002278 // Always propagate NW.
2279 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002280 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002281
Chris Lattnerd934c702004-04-02 20:23:17 +00002282 // If all of the other operands were loop invariant, we are done.
2283 if (Ops.size() == 1) return NewRec;
2284
Nick Lewyckydb66b822011-09-06 05:08:09 +00002285 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002286 for (unsigned i = 0;; ++i)
2287 if (Ops[i] == AddRec) {
2288 Ops[i] = NewRec;
2289 break;
2290 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002291 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002292 }
2293
2294 // Okay, if there weren't any loop invariants to be folded, check to see if
2295 // there are multiple AddRec's with the same loop induction variable being
2296 // added together. If so, we can fold them.
2297 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002298 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2299 ++OtherIdx)
2300 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2301 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2302 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2303 AddRec->op_end());
2304 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2305 ++OtherIdx)
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002306 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002307 if (OtherAddRec->getLoop() == AddRecLoop) {
2308 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2309 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002310 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002311 AddRecOps.append(OtherAddRec->op_begin()+i,
2312 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002313 break;
2314 }
Dan Gohman028c1812010-08-29 14:53:34 +00002315 AddRecOps[i] = getAddExpr(AddRecOps[i],
2316 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002317 }
2318 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002319 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002320 // Step size has changed, so we cannot guarantee no self-wraparound.
2321 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002322 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002323 }
2324
2325 // Otherwise couldn't fold anything into this recurrence. Move onto the
2326 // next one.
2327 }
2328
2329 // Okay, it looks like we really DO need an add expr. Check to see if we
2330 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002331 FoldingSetNodeID ID;
2332 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002333 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2334 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002335 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002336 SCEVAddExpr *S =
2337 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2338 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002339 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2340 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002341 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2342 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002343 UniqueSCEVs.InsertNode(S, IP);
2344 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002345 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002346 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002347}
2348
Nick Lewycky287682e2011-10-04 06:51:26 +00002349static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2350 uint64_t k = i*j;
2351 if (j > 1 && k / j != i) Overflow = true;
2352 return k;
2353}
2354
2355/// Compute the result of "n choose k", the binomial coefficient. If an
2356/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002357/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002358static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2359 // We use the multiplicative formula:
2360 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2361 // At each iteration, we take the n-th term of the numeral and divide by the
2362 // (k-n)th term of the denominator. This division will always produce an
2363 // integral result, and helps reduce the chance of overflow in the
2364 // intermediate computations. However, we can still overflow even when the
2365 // final result would fit.
2366
2367 if (n == 0 || n == k) return 1;
2368 if (k > n) return 0;
2369
2370 if (k > n/2)
2371 k = n-k;
2372
2373 uint64_t r = 1;
2374 for (uint64_t i = 1; i <= k; ++i) {
2375 r = umul_ov(r, n-(i-1), Overflow);
2376 r /= i;
2377 }
2378 return r;
2379}
2380
Nick Lewycky05044c22014-12-06 00:45:50 +00002381/// Determine if any of the operands in this SCEV are a constant or if
2382/// any of the add or multiply expressions in this SCEV contain a constant.
2383static bool containsConstantSomewhere(const SCEV *StartExpr) {
2384 SmallVector<const SCEV *, 4> Ops;
2385 Ops.push_back(StartExpr);
2386 while (!Ops.empty()) {
2387 const SCEV *CurrentExpr = Ops.pop_back_val();
2388 if (isa<SCEVConstant>(*CurrentExpr))
2389 return true;
2390
2391 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2392 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002393 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002394 }
2395 }
2396 return false;
2397}
2398
Dan Gohman4d5435d2009-05-24 23:45:28 +00002399/// getMulExpr - Get a canonical multiply expression, or something simpler if
2400/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002401const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002402 SCEV::NoWrapFlags Flags) {
2403 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2404 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002405 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002406 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002407#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002408 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002409 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002410 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002411 "SCEVMulExpr operand types don't match!");
2412#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002413
2414 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002415 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002416
Sanjoy Das64895612015-10-09 02:44:45 +00002417 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2418
Chris Lattnerd934c702004-04-02 20:23:17 +00002419 // If there are any constants, fold them together.
2420 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002421 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002422
2423 // C1*(C2+V) -> C1*C2 + C1*V
2424 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002425 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2426 // If any of Add's ops are Adds or Muls with a constant,
2427 // apply this transformation as well.
2428 if (Add->getNumOperands() == 2)
2429 if (containsConstantSomewhere(Add))
2430 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2431 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002432
Chris Lattnerd934c702004-04-02 20:23:17 +00002433 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002434 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002435 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002436 ConstantInt *Fold = ConstantInt::get(getContext(),
2437 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002438 RHSC->getValue()->getValue());
2439 Ops[0] = getConstant(Fold);
2440 Ops.erase(Ops.begin()+1); // Erase the folded element
2441 if (Ops.size() == 1) return Ops[0];
2442 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002443 }
2444
2445 // If we are left with a constant one being multiplied, strip it off.
2446 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2447 Ops.erase(Ops.begin());
2448 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002449 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002450 // If we have a multiply of zero, it will always be zero.
2451 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002452 } else if (Ops[0]->isAllOnesValue()) {
2453 // If we have a mul by -1 of an add, try distributing the -1 among the
2454 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002455 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002456 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2457 SmallVector<const SCEV *, 4> NewOps;
2458 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002459 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2460 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002461 const SCEV *Mul = getMulExpr(Ops[0], *I);
2462 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2463 NewOps.push_back(Mul);
2464 }
2465 if (AnyFolded)
2466 return getAddExpr(NewOps);
Sanjoy Das63914592015-10-18 00:29:20 +00002467 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
Andrew Tricke92dcce2011-03-14 17:38:54 +00002468 // Negation preserves a recurrence's no self-wrap property.
2469 SmallVector<const SCEV *, 4> Operands;
2470 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2471 E = AddRec->op_end(); I != E; ++I) {
2472 Operands.push_back(getMulExpr(Ops[0], *I));
2473 }
2474 return getAddRecExpr(Operands, AddRec->getLoop(),
2475 AddRec->getNoWrapFlags(SCEV::FlagNW));
2476 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002477 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002478 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002479
2480 if (Ops.size() == 1)
2481 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002482 }
2483
2484 // Skip over the add expression until we get to a multiply.
2485 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2486 ++Idx;
2487
Chris Lattnerd934c702004-04-02 20:23:17 +00002488 // If there are mul operands inline them all into this expression.
2489 if (Idx < Ops.size()) {
2490 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002491 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002492 // If we have an mul, expand the mul operands onto the end of the operands
2493 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002494 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002495 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002496 DeletedMul = true;
2497 }
2498
2499 // If we deleted at least one mul, we added operands to the end of the list,
2500 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002501 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002502 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002503 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002504 }
2505
2506 // If there are any add recurrences in the operands list, see if any other
2507 // added values are loop invariant. If so, we can fold them into the
2508 // recurrence.
2509 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2510 ++Idx;
2511
2512 // Scan over all recurrences, trying to fold loop invariants into them.
2513 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2514 // Scan all of the other operands to this mul and add them to the vector if
2515 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002516 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002517 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002518 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002519 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002520 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002521 LIOps.push_back(Ops[i]);
2522 Ops.erase(Ops.begin()+i);
2523 --i; --e;
2524 }
2525
2526 // If we found some loop invariants, fold them into the recurrence.
2527 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002528 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002529 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002530 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002531 const SCEV *Scale = getMulExpr(LIOps);
2532 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2533 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002534
Dan Gohman16206132010-06-30 07:16:37 +00002535 // Build the new addrec. Propagate the NUW and NSW flags if both the
2536 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002537 //
2538 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002539 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002540 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2541 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002542
2543 // If all of the other operands were loop invariant, we are done.
2544 if (Ops.size() == 1) return NewRec;
2545
Nick Lewyckydb66b822011-09-06 05:08:09 +00002546 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002547 for (unsigned i = 0;; ++i)
2548 if (Ops[i] == AddRec) {
2549 Ops[i] = NewRec;
2550 break;
2551 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002552 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002553 }
2554
2555 // Okay, if there weren't any loop invariants to be folded, check to see if
2556 // there are multiple AddRec's with the same loop induction variable being
2557 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002558
2559 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2560 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2561 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2562 // ]]],+,...up to x=2n}.
2563 // Note that the arguments to choose() are always integers with values
2564 // known at compile time, never SCEV objects.
2565 //
2566 // The implementation avoids pointless extra computations when the two
2567 // addrec's are of different length (mathematically, it's equivalent to
2568 // an infinite stream of zeros on the right).
2569 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002570 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002571 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002572 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002573 const SCEVAddRecExpr *OtherAddRec =
2574 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2575 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002576 continue;
2577
Nick Lewycky97756402014-09-01 05:17:15 +00002578 bool Overflow = false;
2579 Type *Ty = AddRec->getType();
2580 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2581 SmallVector<const SCEV*, 7> AddRecOps;
2582 for (int x = 0, xe = AddRec->getNumOperands() +
2583 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002584 const SCEV *Term = getZero(Ty);
Nick Lewycky97756402014-09-01 05:17:15 +00002585 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2586 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2587 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2588 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2589 z < ze && !Overflow; ++z) {
2590 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2591 uint64_t Coeff;
2592 if (LargerThan64Bits)
2593 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2594 else
2595 Coeff = Coeff1*Coeff2;
2596 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2597 const SCEV *Term1 = AddRec->getOperand(y-z);
2598 const SCEV *Term2 = OtherAddRec->getOperand(z);
2599 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002600 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002601 }
Nick Lewycky97756402014-09-01 05:17:15 +00002602 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002603 }
Nick Lewycky97756402014-09-01 05:17:15 +00002604 if (!Overflow) {
2605 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2606 SCEV::FlagAnyWrap);
2607 if (Ops.size() == 2) return NewAddRec;
2608 Ops[Idx] = NewAddRec;
2609 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2610 OpsModified = true;
2611 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2612 if (!AddRec)
2613 break;
2614 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002615 }
Nick Lewycky97756402014-09-01 05:17:15 +00002616 if (OpsModified)
2617 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002618
2619 // Otherwise couldn't fold anything into this recurrence. Move onto the
2620 // next one.
2621 }
2622
2623 // Okay, it looks like we really DO need an mul expr. Check to see if we
2624 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002625 FoldingSetNodeID ID;
2626 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002627 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2628 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002629 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002630 SCEVMulExpr *S =
2631 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2632 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002633 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2634 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002635 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2636 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002637 UniqueSCEVs.InsertNode(S, IP);
2638 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002639 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002640 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002641}
2642
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002643/// getUDivExpr - Get a canonical unsigned division expression, or something
2644/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002645const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2646 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002647 assert(getEffectiveSCEVType(LHS->getType()) ==
2648 getEffectiveSCEVType(RHS->getType()) &&
2649 "SCEVUDivExpr operand types don't match!");
2650
Dan Gohmana30370b2009-05-04 22:02:23 +00002651 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002652 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002653 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002654 // If the denominator is zero, the result of the udiv is undefined. Don't
2655 // try to analyze it, because the resolution chosen here may differ from
2656 // the resolution chosen in other parts of the compiler.
2657 if (!RHSC->getValue()->isZero()) {
2658 // Determine if the division can be folded into the operands of
2659 // its operands.
2660 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002661 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002662 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002663 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002664 // For non-power-of-two values, effectively round the value up to the
2665 // nearest power of two.
2666 if (!RHSC->getValue()->getValue().isPowerOf2())
2667 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002668 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002669 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002670 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2671 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002672 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2673 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2674 const APInt &StepInt = Step->getValue()->getValue();
2675 const APInt &DivInt = RHSC->getValue()->getValue();
2676 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002677 getZeroExtendExpr(AR, ExtTy) ==
2678 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2679 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002680 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002681 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002682 for (const SCEV *Op : AR->operands())
2683 Operands.push_back(getUDivExpr(Op, RHS));
2684 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002685 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002686 /// Get a canonical UDivExpr for a recurrence.
2687 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2688 // We can currently only fold X%N if X is constant.
2689 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2690 if (StartC && !DivInt.urem(StepInt) &&
2691 getZeroExtendExpr(AR, ExtTy) ==
2692 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2693 getZeroExtendExpr(Step, ExtTy),
2694 AR->getLoop(), SCEV::FlagAnyWrap)) {
2695 const APInt &StartInt = StartC->getValue()->getValue();
2696 const APInt &StartRem = StartInt.urem(StepInt);
2697 if (StartRem != 0)
2698 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2699 AR->getLoop(), SCEV::FlagNW);
2700 }
2701 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002702 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2703 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2704 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002705 for (const SCEV *Op : M->operands())
2706 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002707 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2708 // Find an operand that's safely divisible.
2709 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2710 const SCEV *Op = M->getOperand(i);
2711 const SCEV *Div = getUDivExpr(Op, RHSC);
2712 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2713 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2714 M->op_end());
2715 Operands[i] = Div;
2716 return getMulExpr(Operands);
2717 }
2718 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002719 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002720 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002721 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002722 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002723 for (const SCEV *Op : A->operands())
2724 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002725 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2726 Operands.clear();
2727 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2728 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2729 if (isa<SCEVUDivExpr>(Op) ||
2730 getMulExpr(Op, RHS) != A->getOperand(i))
2731 break;
2732 Operands.push_back(Op);
2733 }
2734 if (Operands.size() == A->getNumOperands())
2735 return getAddExpr(Operands);
2736 }
2737 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002738
Dan Gohmanacd700a2010-04-22 01:35:11 +00002739 // Fold if both operands are constant.
2740 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2741 Constant *LHSCV = LHSC->getValue();
2742 Constant *RHSCV = RHSC->getValue();
2743 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2744 RHSCV)));
2745 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002746 }
2747 }
2748
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002749 FoldingSetNodeID ID;
2750 ID.AddInteger(scUDivExpr);
2751 ID.AddPointer(LHS);
2752 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002753 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002754 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002755 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2756 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002757 UniqueSCEVs.InsertNode(S, IP);
2758 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002759}
2760
Nick Lewycky31eaca52014-01-27 10:04:03 +00002761static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2762 APInt A = C1->getValue()->getValue().abs();
2763 APInt B = C2->getValue()->getValue().abs();
2764 uint32_t ABW = A.getBitWidth();
2765 uint32_t BBW = B.getBitWidth();
2766
2767 if (ABW > BBW)
2768 B = B.zext(ABW);
2769 else if (ABW < BBW)
2770 A = A.zext(BBW);
2771
2772 return APIntOps::GreatestCommonDivisor(A, B);
2773}
2774
2775/// getUDivExactExpr - Get a canonical unsigned division expression, or
2776/// something simpler if possible. There is no representation for an exact udiv
2777/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2778/// We can't do this when it's not exact because the udiv may be clearing bits.
2779const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2780 const SCEV *RHS) {
2781 // TODO: we could try to find factors in all sorts of things, but for now we
2782 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2783 // end of this file for inspiration.
2784
2785 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2786 if (!Mul)
2787 return getUDivExpr(LHS, RHS);
2788
2789 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2790 // If the mulexpr multiplies by a constant, then that constant must be the
2791 // first element of the mulexpr.
Sanjoy Das63914592015-10-18 00:29:20 +00002792 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
Nick Lewycky31eaca52014-01-27 10:04:03 +00002793 if (LHSCst == RHSCst) {
2794 SmallVector<const SCEV *, 2> Operands;
2795 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2796 return getMulExpr(Operands);
2797 }
2798
2799 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2800 // that there's a factor provided by one of the other terms. We need to
2801 // check.
2802 APInt Factor = gcd(LHSCst, RHSCst);
2803 if (!Factor.isIntN(1)) {
2804 LHSCst = cast<SCEVConstant>(
2805 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2806 RHSCst = cast<SCEVConstant>(
2807 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2808 SmallVector<const SCEV *, 2> Operands;
2809 Operands.push_back(LHSCst);
2810 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2811 LHS = getMulExpr(Operands);
2812 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002813 Mul = dyn_cast<SCEVMulExpr>(LHS);
2814 if (!Mul)
2815 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002816 }
2817 }
2818 }
2819
2820 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2821 if (Mul->getOperand(i) == RHS) {
2822 SmallVector<const SCEV *, 2> Operands;
2823 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2824 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2825 return getMulExpr(Operands);
2826 }
2827 }
2828
2829 return getUDivExpr(LHS, RHS);
2830}
Chris Lattnerd934c702004-04-02 20:23:17 +00002831
Dan Gohman4d5435d2009-05-24 23:45:28 +00002832/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2833/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002834const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2835 const Loop *L,
2836 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002837 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002838 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002839 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002840 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002841 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002842 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002843 }
2844
2845 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002846 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002847}
2848
Dan Gohman4d5435d2009-05-24 23:45:28 +00002849/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2850/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002851const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002852ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002853 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002854 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002855#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002856 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002857 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002858 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002859 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002860 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002861 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002862 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002863#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002864
Dan Gohmanbe928e32008-06-18 16:23:07 +00002865 if (Operands.back()->isZero()) {
2866 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002867 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002868 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002869
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002870 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2871 // use that information to infer NUW and NSW flags. However, computing a
2872 // BE count requires calling getAddRecExpr, so we may not yet have a
2873 // meaningful BE count at this point (and if we don't, we'd be stuck
2874 // with a SCEVCouldNotCompute as the cached BE count).
2875
Sanjoy Das81401d42015-01-10 23:41:24 +00002876 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002877
Dan Gohman223a5d22008-08-08 18:33:12 +00002878 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002879 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002880 const Loop *NestedLoop = NestedAR->getLoop();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002881 if (L->contains(NestedLoop)
2882 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2883 : (!NestedLoop->contains(L) &&
2884 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002885 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002886 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002887 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002888 // AddRecs require their operands be loop-invariant with respect to their
2889 // loops. Don't perform this transformation if it would break this
2890 // requirement.
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002891 bool AllInvariant =
2892 std::all_of(Operands.begin(), Operands.end(),
2893 [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2894
Dan Gohmancc030b72009-06-26 22:36:20 +00002895 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002896 // Create a recurrence for the outer loop with the same step size.
2897 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002898 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2899 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002900 SCEV::NoWrapFlags OuterFlags =
2901 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002902
2903 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002904 AllInvariant = std::all_of(
2905 NestedOperands.begin(), NestedOperands.end(),
2906 [&](const SCEV *Op) { return isLoopInvariant(Op, NestedLoop); });
2907
Andrew Trick8b55b732011-03-14 16:50:06 +00002908 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002909 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002910 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002911 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2912 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002913 SCEV::NoWrapFlags InnerFlags =
2914 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002915 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2916 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002917 }
2918 // Reset Operands to its original state.
2919 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002920 }
2921 }
2922
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002923 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2924 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002925 FoldingSetNodeID ID;
2926 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002927 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2928 ID.AddPointer(Operands[i]);
2929 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002930 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002931 SCEVAddRecExpr *S =
2932 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2933 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002934 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2935 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002936 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2937 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002938 UniqueSCEVs.InsertNode(S, IP);
2939 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002940 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002941 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002942}
2943
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002944const SCEV *
2945ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2946 const SmallVectorImpl<const SCEV *> &IndexExprs,
2947 bool InBounds) {
2948 // getSCEV(Base)->getType() has the same address space as Base->getType()
2949 // because SCEV::getType() preserves the address space.
2950 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2951 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2952 // instruction to its SCEV, because the Instruction may be guarded by control
2953 // flow and the no-overflow bits may not be valid for the expression in any
Jingyue Wu42f1d672015-07-28 18:22:40 +00002954 // context. This can be fixed similarly to how these flags are handled for
2955 // adds.
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002956 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2957
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002958 const SCEV *TotalOffset = getZero(IntPtrTy);
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002959 // The address space is unimportant. The first thing we do on CurTy is getting
2960 // its element type.
2961 Type *CurTy = PointerType::getUnqual(PointeeType);
2962 for (const SCEV *IndexExpr : IndexExprs) {
2963 // Compute the (potentially symbolic) offset in bytes for this index.
2964 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2965 // For a struct, add the member offset.
2966 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2967 unsigned FieldNo = Index->getZExtValue();
2968 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2969
2970 // Add the field offset to the running total offset.
2971 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2972
2973 // Update CurTy to the type of the field at Index.
2974 CurTy = STy->getTypeAtIndex(Index);
2975 } else {
2976 // Update CurTy to its element type.
2977 CurTy = cast<SequentialType>(CurTy)->getElementType();
2978 // For an array, add the element offset, explicitly scaled.
2979 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2980 // Getelementptr indices are signed.
2981 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2982
2983 // Multiply the index by the element size to compute the element offset.
2984 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2985
2986 // Add the element offset to the running total offset.
2987 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2988 }
2989 }
2990
2991 // Add the total offset from all the GEP indices to the base.
2992 return getAddExpr(BaseExpr, TotalOffset, Wrap);
2993}
2994
Dan Gohmanabd17092009-06-24 14:49:00 +00002995const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2996 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002997 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002998 Ops.push_back(LHS);
2999 Ops.push_back(RHS);
3000 return getSMaxExpr(Ops);
3001}
3002
Dan Gohmanaf752342009-07-07 17:06:11 +00003003const SCEV *
3004ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003005 assert(!Ops.empty() && "Cannot get empty smax!");
3006 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003007#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003008 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003009 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003010 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003011 "SCEVSMaxExpr operand types don't match!");
3012#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003013
3014 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003015 GroupByComplexity(Ops, &LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003016
3017 // If there are any constants, fold them together.
3018 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003019 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003020 ++Idx;
3021 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003022 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003023 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003024 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003025 APIntOps::smax(LHSC->getValue()->getValue(),
3026 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003027 Ops[0] = getConstant(Fold);
3028 Ops.erase(Ops.begin()+1); // Erase the folded element
3029 if (Ops.size() == 1) return Ops[0];
3030 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003031 }
3032
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003033 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003034 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3035 Ops.erase(Ops.begin());
3036 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003037 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3038 // If we have an smax with a constant maximum-int, it will always be
3039 // maximum-int.
3040 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003041 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003042
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003043 if (Ops.size() == 1) return Ops[0];
3044 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003045
3046 // Find the first SMax
3047 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3048 ++Idx;
3049
3050 // Check to see if one of the operands is an SMax. If so, expand its operands
3051 // onto our operand list, and recurse to simplify.
3052 if (Idx < Ops.size()) {
3053 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003054 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003055 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003056 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003057 DeletedSMax = true;
3058 }
3059
3060 if (DeletedSMax)
3061 return getSMaxExpr(Ops);
3062 }
3063
3064 // Okay, check to see if the same value occurs in the operand list twice. If
3065 // so, delete one. Since we sorted the list, these values are required to
3066 // be adjacent.
3067 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003068 // X smax Y smax Y --> X smax Y
3069 // X smax Y --> X, if X is always greater than Y
3070 if (Ops[i] == Ops[i+1] ||
3071 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3072 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3073 --i; --e;
3074 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003075 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3076 --i; --e;
3077 }
3078
3079 if (Ops.size() == 1) return Ops[0];
3080
3081 assert(!Ops.empty() && "Reduced smax down to nothing!");
3082
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003083 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003084 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003085 FoldingSetNodeID ID;
3086 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003087 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3088 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003089 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003090 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003091 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3092 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003093 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3094 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003095 UniqueSCEVs.InsertNode(S, IP);
3096 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003097}
3098
Dan Gohmanabd17092009-06-24 14:49:00 +00003099const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3100 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003101 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003102 Ops.push_back(LHS);
3103 Ops.push_back(RHS);
3104 return getUMaxExpr(Ops);
3105}
3106
Dan Gohmanaf752342009-07-07 17:06:11 +00003107const SCEV *
3108ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003109 assert(!Ops.empty() && "Cannot get empty umax!");
3110 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003111#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003112 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003113 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003114 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003115 "SCEVUMaxExpr operand types don't match!");
3116#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003117
3118 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003119 GroupByComplexity(Ops, &LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003120
3121 // If there are any constants, fold them together.
3122 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003123 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003124 ++Idx;
3125 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003126 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003127 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003128 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003129 APIntOps::umax(LHSC->getValue()->getValue(),
3130 RHSC->getValue()->getValue()));
3131 Ops[0] = getConstant(Fold);
3132 Ops.erase(Ops.begin()+1); // Erase the folded element
3133 if (Ops.size() == 1) return Ops[0];
3134 LHSC = cast<SCEVConstant>(Ops[0]);
3135 }
3136
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003137 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003138 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3139 Ops.erase(Ops.begin());
3140 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003141 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3142 // If we have an umax with a constant maximum-int, it will always be
3143 // maximum-int.
3144 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003145 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003146
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003147 if (Ops.size() == 1) return Ops[0];
3148 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003149
3150 // Find the first UMax
3151 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3152 ++Idx;
3153
3154 // Check to see if one of the operands is a UMax. If so, expand its operands
3155 // onto our operand list, and recurse to simplify.
3156 if (Idx < Ops.size()) {
3157 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003158 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003159 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003160 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003161 DeletedUMax = true;
3162 }
3163
3164 if (DeletedUMax)
3165 return getUMaxExpr(Ops);
3166 }
3167
3168 // Okay, check to see if the same value occurs in the operand list twice. If
3169 // so, delete one. Since we sorted the list, these values are required to
3170 // be adjacent.
3171 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003172 // X umax Y umax Y --> X umax Y
3173 // X umax Y --> X, if X is always greater than Y
3174 if (Ops[i] == Ops[i+1] ||
3175 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3176 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3177 --i; --e;
3178 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003179 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3180 --i; --e;
3181 }
3182
3183 if (Ops.size() == 1) return Ops[0];
3184
3185 assert(!Ops.empty() && "Reduced umax down to nothing!");
3186
3187 // Okay, it looks like we really DO need a umax expr. Check to see if we
3188 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003189 FoldingSetNodeID ID;
3190 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003191 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3192 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003193 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003194 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003195 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3196 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003197 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3198 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003199 UniqueSCEVs.InsertNode(S, IP);
3200 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003201}
3202
Dan Gohmanabd17092009-06-24 14:49:00 +00003203const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3204 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003205 // ~smax(~x, ~y) == smin(x, y).
3206 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3207}
3208
Dan Gohmanabd17092009-06-24 14:49:00 +00003209const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3210 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003211 // ~umax(~x, ~y) == umin(x, y)
3212 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3213}
3214
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003215const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003216 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003217 // constant expression and then folding it back into a ConstantInt.
3218 // This is just a compile-time optimization.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003219 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003220}
3221
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003222const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3223 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003224 unsigned FieldNo) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003225 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003226 // constant expression and then folding it back into a ConstantInt.
3227 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003228 return getConstant(
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003229 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003230}
3231
Dan Gohmanaf752342009-07-07 17:06:11 +00003232const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003233 // Don't attempt to do anything other than create a SCEVUnknown object
3234 // here. createSCEV only calls getUnknown after checking for all other
3235 // interesting possibilities, and any other code that calls getUnknown
3236 // is doing so in order to hide a value from SCEV canonicalization.
3237
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003238 FoldingSetNodeID ID;
3239 ID.AddInteger(scUnknown);
3240 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003241 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003242 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3243 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3244 "Stale SCEVUnknown in uniquing map!");
3245 return S;
3246 }
3247 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3248 FirstUnknown);
3249 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003250 UniqueSCEVs.InsertNode(S, IP);
3251 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003252}
3253
Chris Lattnerd934c702004-04-02 20:23:17 +00003254//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003255// Basic SCEV Analysis and PHI Idiom Recognition Code
3256//
3257
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003258/// isSCEVable - Test if values of the given type are analyzable within
3259/// the SCEV framework. This primarily includes integer types, and it
3260/// can optionally include pointer types if the ScalarEvolution class
3261/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003262bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003263 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003264 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003265}
3266
3267/// getTypeSizeInBits - Return the size in bits of the specified type,
3268/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003269uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003270 assert(isSCEVable(Ty) && "Type is not SCEVable!");
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003271 return getDataLayout().getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003272}
3273
3274/// getEffectiveSCEVType - Return a type with the same bitwidth as
3275/// the given type and which represents how SCEV will treat the given
3276/// type, for which isSCEVable must return true. For pointer types,
3277/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003278Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003279 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3280
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003281 if (Ty->isIntegerTy())
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003282 return Ty;
3283
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003284 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003285 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003286 return getDataLayout().getIntPtrType(Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003287}
Chris Lattnerd934c702004-04-02 20:23:17 +00003288
Dan Gohmanaf752342009-07-07 17:06:11 +00003289const SCEV *ScalarEvolution::getCouldNotCompute() {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003290 return CouldNotCompute.get();
Dan Gohman31efa302009-04-18 17:58:19 +00003291}
3292
Shuxin Yangefc4c012013-07-08 17:33:13 +00003293namespace {
3294 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3295 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3296 // is set iff if find such SCEVUnknown.
3297 //
3298 struct FindInvalidSCEVUnknown {
3299 bool FindOne;
3300 FindInvalidSCEVUnknown() { FindOne = false; }
3301 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003302 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003303 case scConstant:
3304 return false;
3305 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003306 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003307 FindOne = true;
3308 return false;
3309 default:
3310 return true;
3311 }
3312 }
3313 bool isDone() const { return FindOne; }
3314 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +00003315}
Shuxin Yangefc4c012013-07-08 17:33:13 +00003316
3317bool ScalarEvolution::checkValidity(const SCEV *S) const {
3318 FindInvalidSCEVUnknown F;
3319 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3320 ST.visitAll(S);
3321
3322 return !F.FindOne;
3323}
3324
Chris Lattnerd934c702004-04-02 20:23:17 +00003325/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3326/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003327const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003328 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003329
Jingyue Wu42f1d672015-07-28 18:22:40 +00003330 const SCEV *S = getExistingSCEV(V);
3331 if (S == nullptr) {
3332 S = createSCEV(V);
3333 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
3334 }
3335 return S;
3336}
3337
3338const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3339 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3340
Shuxin Yangefc4c012013-07-08 17:33:13 +00003341 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3342 if (I != ValueExprMap.end()) {
3343 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003344 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003345 return S;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003346 ValueExprMap.erase(I);
Shuxin Yangefc4c012013-07-08 17:33:13 +00003347 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003348 return nullptr;
Chris Lattnerd934c702004-04-02 20:23:17 +00003349}
3350
Dan Gohman0a40ad92009-04-16 03:18:22 +00003351/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3352///
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003353const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3354 SCEV::NoWrapFlags Flags) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003355 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003356 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003357 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003358
Chris Lattner229907c2011-07-18 04:54:35 +00003359 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003360 Ty = getEffectiveSCEVType(Ty);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003361 return getMulExpr(
3362 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003363}
3364
3365/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003366const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003367 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003368 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003369 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003370
Chris Lattner229907c2011-07-18 04:54:35 +00003371 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003372 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003373 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003374 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003375 return getMinusSCEV(AllOnes, V);
3376}
3377
Andrew Trick8b55b732011-03-14 16:50:06 +00003378/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003379const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003380 SCEV::NoWrapFlags Flags) {
Dan Gohman46f00a22010-07-20 16:53:00 +00003381 // Fast path: X - X --> 0.
3382 if (LHS == RHS)
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00003383 return getZero(LHS->getType());
Dan Gohman46f00a22010-07-20 16:53:00 +00003384
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003385 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3386 // makes it so that we cannot make much use of NUW.
3387 auto AddFlags = SCEV::FlagAnyWrap;
3388 const bool RHSIsNotMinSigned =
3389 !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3390 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3391 // Let M be the minimum representable signed value. Then (-1)*RHS
3392 // signed-wraps if and only if RHS is M. That can happen even for
3393 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3394 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3395 // (-1)*RHS, we need to prove that RHS != M.
3396 //
3397 // If LHS is non-negative and we know that LHS - RHS does not
3398 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3399 // either by proving that RHS > M or that LHS >= 0.
3400 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3401 AddFlags = SCEV::FlagNSW;
3402 }
3403 }
3404
3405 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3406 // RHS is NSW and LHS >= 0.
3407 //
3408 // The difficulty here is that the NSW flag may have been proven
3409 // relative to a loop that is to be found in a recurrence in LHS and
3410 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3411 // larger scope than intended.
3412 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3413
3414 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003415}
3416
3417/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3418/// input value to the specified type. If the type must be extended, it is zero
3419/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003420const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003421ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3422 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003423 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3424 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003425 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003426 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003427 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003428 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003429 return getTruncateExpr(V, Ty);
3430 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003431}
3432
3433/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3434/// input value to the specified type. If the type must be extended, it is sign
3435/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003436const SCEV *
3437ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003438 Type *Ty) {
3439 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003440 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3441 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003442 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003443 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003444 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003445 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003446 return getTruncateExpr(V, Ty);
3447 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003448}
3449
Dan Gohmane712a2f2009-05-13 03:46:30 +00003450/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3451/// input value to the specified type. If the type must be extended, it is zero
3452/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003453const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003454ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3455 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003456 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3457 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003458 "Cannot noop or zero extend with non-integer arguments!");
3459 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3460 "getNoopOrZeroExtend cannot truncate!");
3461 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3462 return V; // No conversion
3463 return getZeroExtendExpr(V, Ty);
3464}
3465
3466/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3467/// input value to the specified type. If the type must be extended, it is sign
3468/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003469const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003470ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3471 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003472 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3473 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003474 "Cannot noop or sign extend with non-integer arguments!");
3475 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3476 "getNoopOrSignExtend cannot truncate!");
3477 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3478 return V; // No conversion
3479 return getSignExtendExpr(V, Ty);
3480}
3481
Dan Gohman8db2edc2009-06-13 15:56:47 +00003482/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3483/// the input value to the specified type. If the type must be extended,
3484/// it is extended with unspecified bits. The conversion must not be
3485/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003486const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003487ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3488 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003489 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3490 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003491 "Cannot noop or any extend with non-integer arguments!");
3492 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3493 "getNoopOrAnyExtend cannot truncate!");
3494 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3495 return V; // No conversion
3496 return getAnyExtendExpr(V, Ty);
3497}
3498
Dan Gohmane712a2f2009-05-13 03:46:30 +00003499/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3500/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003501const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003502ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3503 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003504 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3505 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003506 "Cannot truncate or noop with non-integer arguments!");
3507 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3508 "getTruncateOrNoop cannot extend!");
3509 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3510 return V; // No conversion
3511 return getTruncateExpr(V, Ty);
3512}
3513
Dan Gohman96212b62009-06-22 00:31:57 +00003514/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3515/// the types using zero-extension, and then perform a umax operation
3516/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003517const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3518 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003519 const SCEV *PromotedLHS = LHS;
3520 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003521
3522 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3523 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3524 else
3525 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3526
3527 return getUMaxExpr(PromotedLHS, PromotedRHS);
3528}
3529
Dan Gohman2bc22302009-06-22 15:03:27 +00003530/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3531/// the types using zero-extension, and then perform a umin operation
3532/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003533const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3534 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003535 const SCEV *PromotedLHS = LHS;
3536 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003537
3538 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3539 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3540 else
3541 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3542
3543 return getUMinExpr(PromotedLHS, PromotedRHS);
3544}
3545
Andrew Trick87716c92011-03-17 23:51:11 +00003546/// getPointerBase - Transitively follow the chain of pointer-type operands
3547/// until reaching a SCEV that does not have a single pointer operand. This
3548/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3549/// but corner cases do exist.
3550const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3551 // A pointer operand may evaluate to a nonpointer expression, such as null.
3552 if (!V->getType()->isPointerTy())
3553 return V;
3554
3555 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3556 return getPointerBase(Cast->getOperand());
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003557 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003558 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003559 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3560 I != E; ++I) {
3561 if ((*I)->getType()->isPointerTy()) {
3562 // Cannot find the base of an expression with multiple pointer operands.
3563 if (PtrOp)
3564 return V;
3565 PtrOp = *I;
3566 }
3567 }
3568 if (!PtrOp)
3569 return V;
3570 return getPointerBase(PtrOp);
3571 }
3572 return V;
3573}
3574
Dan Gohman0b89dff2009-07-25 01:13:03 +00003575/// PushDefUseChildren - Push users of the given Instruction
3576/// onto the given Worklist.
3577static void
3578PushDefUseChildren(Instruction *I,
3579 SmallVectorImpl<Instruction *> &Worklist) {
3580 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003581 for (User *U : I->users())
3582 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003583}
3584
3585/// ForgetSymbolicValue - This looks up computed SCEV values for all
3586/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003587/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003588/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003589void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003590ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003591 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003592 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003593
Dan Gohman0b89dff2009-07-25 01:13:03 +00003594 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003595 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003596 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003597 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003598 if (!Visited.insert(I).second)
3599 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003600
Sanjoy Das63914592015-10-18 00:29:20 +00003601 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003602 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003603 const SCEV *Old = It->second;
3604
Dan Gohman0b89dff2009-07-25 01:13:03 +00003605 // Short-circuit the def-use traversal if the symbolic name
3606 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003607 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003608 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003609
Dan Gohman0b89dff2009-07-25 01:13:03 +00003610 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003611 // structure, it's a PHI that's in the progress of being computed
3612 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3613 // additional loop trip count information isn't going to change anything.
3614 // In the second case, createNodeForPHI will perform the necessary
3615 // updates on its own when it gets to that point. In the third, we do
3616 // want to forget the SCEVUnknown.
3617 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003618 !isa<SCEVUnknown>(Old) ||
3619 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003620 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003621 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003622 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003623 }
3624
3625 PushDefUseChildren(I, Worklist);
3626 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003627}
Chris Lattnerd934c702004-04-02 20:23:17 +00003628
Silviu Barangaf91c8072015-10-30 15:02:28 +00003629class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3630public:
3631 static const SCEV *rewrite(const SCEV *Scev, const Loop *L,
3632 ScalarEvolution &SE) {
3633 SCEVInitRewriter Rewriter(L, SE);
3634 const SCEV *Result = Rewriter.visit(Scev);
3635 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3636 }
3637
3638 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3639 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3640
3641 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3642 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3643 Valid = false;
3644 return Expr;
3645 }
3646
3647 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3648 // Only allow AddRecExprs for this loop.
3649 if (Expr->getLoop() == L)
3650 return Expr->getStart();
3651 Valid = false;
3652 return Expr;
3653 }
3654
3655 bool isValid() { return Valid; }
3656
3657private:
3658 const Loop *L;
3659 bool Valid;
3660};
3661
3662class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3663public:
3664 static const SCEV *rewrite(const SCEV *Scev, const Loop *L,
3665 ScalarEvolution &SE) {
3666 SCEVShiftRewriter Rewriter(L, SE);
3667 const SCEV *Result = Rewriter.visit(Scev);
3668 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3669 }
3670
3671 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3672 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3673
3674 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3675 // Only allow AddRecExprs for this loop.
3676 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3677 Valid = false;
3678 return Expr;
3679 }
3680
3681 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3682 if (Expr->getLoop() == L && Expr->isAffine())
3683 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3684 Valid = false;
3685 return Expr;
3686 }
3687 bool isValid() { return Valid; }
3688
3689private:
3690 const Loop *L;
3691 bool Valid;
3692};
3693
Sanjoy Das55015d22015-10-02 23:09:44 +00003694const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3695 const Loop *L = LI.getLoopFor(PN->getParent());
3696 if (!L || L->getHeader() != PN->getParent())
3697 return nullptr;
3698
3699 // The loop may have multiple entrances or multiple exits; we can analyze
3700 // this phi as an addrec if it has a unique entry value and a unique
3701 // backedge value.
3702 Value *BEValueV = nullptr, *StartValueV = nullptr;
3703 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3704 Value *V = PN->getIncomingValue(i);
3705 if (L->contains(PN->getIncomingBlock(i))) {
3706 if (!BEValueV) {
3707 BEValueV = V;
3708 } else if (BEValueV != V) {
3709 BEValueV = nullptr;
3710 break;
3711 }
3712 } else if (!StartValueV) {
3713 StartValueV = V;
3714 } else if (StartValueV != V) {
3715 StartValueV = nullptr;
3716 break;
3717 }
3718 }
3719 if (BEValueV && StartValueV) {
3720 // While we are analyzing this PHI node, handle its value symbolically.
3721 const SCEV *SymbolicName = getUnknown(PN);
3722 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3723 "PHI node already processed?");
3724 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3725
3726 // Using this symbolic name for the PHI, analyze the value coming around
3727 // the back-edge.
3728 const SCEV *BEValue = getSCEV(BEValueV);
3729
3730 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3731 // has a special value for the first iteration of the loop.
3732
3733 // If the value coming around the backedge is an add with the symbolic
3734 // value we just inserted, then we found a simple induction variable!
3735 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3736 // If there is a single occurrence of the symbolic value, replace it
3737 // with a recurrence.
3738 unsigned FoundIndex = Add->getNumOperands();
3739 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3740 if (Add->getOperand(i) == SymbolicName)
3741 if (FoundIndex == e) {
3742 FoundIndex = i;
Dan Gohman6635bb22010-04-12 07:49:36 +00003743 break;
3744 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003745
3746 if (FoundIndex != Add->getNumOperands()) {
3747 // Create an add with everything but the specified operand.
3748 SmallVector<const SCEV *, 8> Ops;
3749 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3750 if (i != FoundIndex)
3751 Ops.push_back(Add->getOperand(i));
3752 const SCEV *Accum = getAddExpr(Ops);
3753
3754 // This is not a valid addrec if the step amount is varying each
3755 // loop iteration, but is not itself an addrec in this loop.
3756 if (isLoopInvariant(Accum, L) ||
3757 (isa<SCEVAddRecExpr>(Accum) &&
3758 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3759 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3760
3761 // If the increment doesn't overflow, then neither the addrec nor
3762 // the post-increment will overflow.
3763 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3764 if (OBO->getOperand(0) == PN) {
3765 if (OBO->hasNoUnsignedWrap())
3766 Flags = setFlags(Flags, SCEV::FlagNUW);
3767 if (OBO->hasNoSignedWrap())
3768 Flags = setFlags(Flags, SCEV::FlagNSW);
3769 }
3770 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3771 // If the increment is an inbounds GEP, then we know the address
3772 // space cannot be wrapped around. We cannot make any guarantee
3773 // about signed or unsigned overflow because pointers are
3774 // unsigned but we may have a negative index from the base
3775 // pointer. We can guarantee that no unsigned wrap occurs if the
3776 // indices form a positive value.
3777 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3778 Flags = setFlags(Flags, SCEV::FlagNW);
3779
3780 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3781 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3782 Flags = setFlags(Flags, SCEV::FlagNUW);
3783 }
3784
3785 // We cannot transfer nuw and nsw flags from subtraction
3786 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3787 // for instance.
3788 }
3789
3790 const SCEV *StartVal = getSCEV(StartValueV);
3791 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3792
3793 // Since the no-wrap flags are on the increment, they apply to the
3794 // post-incremented value as well.
3795 if (isLoopInvariant(Accum, L))
3796 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
3797
3798 // Okay, for the entire analysis of this edge we assumed the PHI
3799 // to be symbolic. We now need to go back and purge all of the
3800 // entries for the scalars that use the symbolic expression.
3801 ForgetSymbolicName(PN, SymbolicName);
3802 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3803 return PHISCEV;
Dan Gohman6635bb22010-04-12 07:49:36 +00003804 }
3805 }
Silviu Barangaf91c8072015-10-30 15:02:28 +00003806 } else {
Sanjoy Das55015d22015-10-02 23:09:44 +00003807 // Otherwise, this could be a loop like this:
3808 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3809 // In this case, j = {1,+,1} and BEValue is j.
3810 // Because the other in-value of i (0) fits the evolution of BEValue
3811 // i really is an addrec evolution.
Silviu Barangaf91c8072015-10-30 15:02:28 +00003812 //
3813 // We can generalize this saying that i is the shifted value of BEValue
3814 // by one iteration:
3815 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
3816 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
3817 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
3818 if (Shifted != getCouldNotCompute() &&
3819 Start != getCouldNotCompute()) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003820 const SCEV *StartVal = getSCEV(StartValueV);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003821 if (Start == StartVal) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003822 // Okay, for the entire analysis of this edge we assumed the PHI
3823 // to be symbolic. We now need to go back and purge all of the
3824 // entries for the scalars that use the symbolic expression.
3825 ForgetSymbolicName(PN, SymbolicName);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003826 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
3827 return Shifted;
Chris Lattnerd934c702004-04-02 20:23:17 +00003828 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003829 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003830 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003831 }
3832
3833 return nullptr;
3834}
3835
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003836// Checks if the SCEV S is available at BB. S is considered available at BB
3837// if S can be materialized at BB without introducing a fault.
3838static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
3839 BasicBlock *BB) {
3840 struct CheckAvailable {
3841 bool TraversalDone = false;
3842 bool Available = true;
Sanjoy Das55015d22015-10-02 23:09:44 +00003843
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003844 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
3845 BasicBlock *BB = nullptr;
3846 DominatorTree &DT;
Sanjoy Das55015d22015-10-02 23:09:44 +00003847
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003848 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
3849 : L(L), BB(BB), DT(DT) {}
Sanjoy Das55015d22015-10-02 23:09:44 +00003850
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003851 bool setUnavailable() {
3852 TraversalDone = true;
3853 Available = false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003854 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003855 }
3856
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003857 bool follow(const SCEV *S) {
3858 switch (S->getSCEVType()) {
3859 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
3860 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
Sanjoy Dasbb5ffc52015-10-24 05:37:28 +00003861 // These expressions are available if their operand(s) is/are.
3862 return true;
Sanjoy Das55015d22015-10-02 23:09:44 +00003863
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003864 case scAddRecExpr: {
3865 // We allow add recurrences that are on the loop BB is in, or some
3866 // outer loop. This guarantees availability because the value of the
3867 // add recurrence at BB is simply the "current" value of the induction
3868 // variable. We can relax this in the future; for instance an add
3869 // recurrence on a sibling dominating loop is also available at BB.
3870 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
3871 if (L && (ARLoop == L || ARLoop->contains(L)))
Sanjoy Das55015d22015-10-02 23:09:44 +00003872 return true;
3873
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003874 return setUnavailable();
Sanjoy Das55015d22015-10-02 23:09:44 +00003875 }
3876
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003877 case scUnknown: {
3878 // For SCEVUnknown, we check for simple dominance.
3879 const auto *SU = cast<SCEVUnknown>(S);
3880 Value *V = SU->getValue();
Sanjoy Das55015d22015-10-02 23:09:44 +00003881
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003882 if (isa<Argument>(V))
3883 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003884
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003885 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
3886 return false;
3887
3888 return setUnavailable();
3889 }
3890
3891 case scUDivExpr:
3892 case scCouldNotCompute:
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003893 // We do not try to smart about these at all.
3894 return setUnavailable();
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003895 }
3896 llvm_unreachable("switch should be fully covered!");
3897 }
3898
3899 bool isDone() { return TraversalDone; }
Sanjoy Das55015d22015-10-02 23:09:44 +00003900 };
3901
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003902 CheckAvailable CA(L, BB, DT);
3903 SCEVTraversal<CheckAvailable> ST(CA);
3904
3905 ST.visitAll(S);
3906 return CA.Available;
3907}
3908
3909// Try to match a control flow sequence that branches out at BI and merges back
3910// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
3911// match.
3912static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
3913 Value *&C, Value *&LHS, Value *&RHS) {
3914 C = BI->getCondition();
3915
3916 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
3917 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
3918
3919 if (!LeftEdge.isSingleEdge())
3920 return false;
3921
3922 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
3923
3924 Use &LeftUse = Merge->getOperandUse(0);
3925 Use &RightUse = Merge->getOperandUse(1);
3926
3927 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
3928 LHS = LeftUse;
3929 RHS = RightUse;
3930 return true;
3931 }
3932
3933 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
3934 LHS = RightUse;
3935 RHS = LeftUse;
3936 return true;
3937 }
3938
3939 return false;
3940}
3941
3942const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003943 if (PN->getNumIncomingValues() == 2) {
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003944 const Loop *L = LI.getLoopFor(PN->getParent());
3945
Sanjoy Das337d4782015-10-31 23:21:40 +00003946 // We don't want to break LCSSA, even in a SCEV expression tree.
3947 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3948 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
3949 return nullptr;
3950
Sanjoy Das55015d22015-10-02 23:09:44 +00003951 // Try to match
3952 //
3953 // br %cond, label %left, label %right
3954 // left:
3955 // br label %merge
3956 // right:
3957 // br label %merge
3958 // merge:
3959 // V = phi [ %x, %left ], [ %y, %right ]
3960 //
3961 // as "select %cond, %x, %y"
3962
3963 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
3964 assert(IDom && "At least the entry block should dominate PN");
3965
3966 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
3967 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
3968
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003969 if (BI && BI->isConditional() &&
3970 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
3971 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
3972 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
Sanjoy Das55015d22015-10-02 23:09:44 +00003973 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
3974 }
3975
3976 return nullptr;
3977}
3978
3979const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3980 if (const SCEV *S = createAddRecFromPHI(PN))
3981 return S;
3982
3983 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
3984 return S;
Misha Brukman01808ca2005-04-21 21:13:18 +00003985
Dan Gohmana9c205c2010-02-25 06:57:05 +00003986 // If the PHI has a single incoming value, follow that value, unless the
3987 // PHI's incoming blocks are in a different loop, in which case doing so
3988 // risks breaking LCSSA form. Instcombine would normally zap these, but
3989 // it doesn't have DominatorTree information, so it may miss cases.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003990 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003991 if (LI.replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003992 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003993
Chris Lattnerd934c702004-04-02 20:23:17 +00003994 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003995 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003996}
3997
Sanjoy Das55015d22015-10-02 23:09:44 +00003998const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
3999 Value *Cond,
4000 Value *TrueVal,
4001 Value *FalseVal) {
Mehdi Amini044cb342015-10-07 18:14:25 +00004002 // Handle "constant" branch or select. This can occur for instance when a
4003 // loop pass transforms an inner loop and moves on to process the outer loop.
4004 if (auto *CI = dyn_cast<ConstantInt>(Cond))
4005 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4006
Sanjoy Dasd0671342015-10-02 19:39:59 +00004007 // Try to match some simple smax or umax patterns.
4008 auto *ICI = dyn_cast<ICmpInst>(Cond);
4009 if (!ICI)
4010 return getUnknown(I);
4011
4012 Value *LHS = ICI->getOperand(0);
4013 Value *RHS = ICI->getOperand(1);
4014
4015 switch (ICI->getPredicate()) {
4016 case ICmpInst::ICMP_SLT:
4017 case ICmpInst::ICMP_SLE:
4018 std::swap(LHS, RHS);
4019 // fall through
4020 case ICmpInst::ICMP_SGT:
4021 case ICmpInst::ICMP_SGE:
4022 // a >s b ? a+x : b+x -> smax(a, b)+x
4023 // a >s b ? b+x : a+x -> smin(a, b)+x
4024 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4025 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4026 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4027 const SCEV *LA = getSCEV(TrueVal);
4028 const SCEV *RA = getSCEV(FalseVal);
4029 const SCEV *LDiff = getMinusSCEV(LA, LS);
4030 const SCEV *RDiff = getMinusSCEV(RA, RS);
4031 if (LDiff == RDiff)
4032 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4033 LDiff = getMinusSCEV(LA, RS);
4034 RDiff = getMinusSCEV(RA, LS);
4035 if (LDiff == RDiff)
4036 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4037 }
4038 break;
4039 case ICmpInst::ICMP_ULT:
4040 case ICmpInst::ICMP_ULE:
4041 std::swap(LHS, RHS);
4042 // fall through
4043 case ICmpInst::ICMP_UGT:
4044 case ICmpInst::ICMP_UGE:
4045 // a >u b ? a+x : b+x -> umax(a, b)+x
4046 // a >u b ? b+x : a+x -> umin(a, b)+x
4047 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4048 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4049 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4050 const SCEV *LA = getSCEV(TrueVal);
4051 const SCEV *RA = getSCEV(FalseVal);
4052 const SCEV *LDiff = getMinusSCEV(LA, LS);
4053 const SCEV *RDiff = getMinusSCEV(RA, RS);
4054 if (LDiff == RDiff)
4055 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4056 LDiff = getMinusSCEV(LA, RS);
4057 RDiff = getMinusSCEV(RA, LS);
4058 if (LDiff == RDiff)
4059 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4060 }
4061 break;
4062 case ICmpInst::ICMP_NE:
4063 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4064 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4065 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4066 const SCEV *One = getOne(I->getType());
4067 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4068 const SCEV *LA = getSCEV(TrueVal);
4069 const SCEV *RA = getSCEV(FalseVal);
4070 const SCEV *LDiff = getMinusSCEV(LA, LS);
4071 const SCEV *RDiff = getMinusSCEV(RA, One);
4072 if (LDiff == RDiff)
4073 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4074 }
4075 break;
4076 case ICmpInst::ICMP_EQ:
4077 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4078 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4079 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4080 const SCEV *One = getOne(I->getType());
4081 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4082 const SCEV *LA = getSCEV(TrueVal);
4083 const SCEV *RA = getSCEV(FalseVal);
4084 const SCEV *LDiff = getMinusSCEV(LA, One);
4085 const SCEV *RDiff = getMinusSCEV(RA, LS);
4086 if (LDiff == RDiff)
4087 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4088 }
4089 break;
4090 default:
4091 break;
4092 }
4093
4094 return getUnknown(I);
4095}
4096
Dan Gohmanee750d12009-05-08 20:26:55 +00004097/// createNodeForGEP - Expand GEP instructions into add and multiply
4098/// operations. This allows them to be analyzed by regular SCEV code.
4099///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004100const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman2173bd32009-05-08 20:36:47 +00004101 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00004102 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00004103 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00004104 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00004105
Jingyue Wu2982d4d2015-05-18 17:03:25 +00004106 SmallVector<const SCEV *, 4> IndexExprs;
4107 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4108 IndexExprs.push_back(getSCEV(*Index));
4109 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs,
4110 GEP->isInBounds());
Dan Gohmanee750d12009-05-08 20:26:55 +00004111}
4112
Nick Lewycky3783b462007-11-22 07:59:40 +00004113/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4114/// guaranteed to end in (at every loop iteration). It is, at the same time,
4115/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
4116/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004117uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00004118ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00004119 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00004120 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00004121
Dan Gohmana30370b2009-05-04 22:02:23 +00004122 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00004123 return std::min(GetMinTrailingZeros(T->getOperand()),
4124 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00004125
Dan Gohmana30370b2009-05-04 22:02:23 +00004126 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004127 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4128 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4129 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004130 }
4131
Dan Gohmana30370b2009-05-04 22:02:23 +00004132 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004133 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4134 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4135 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004136 }
4137
Dan Gohmana30370b2009-05-04 22:02:23 +00004138 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004139 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004140 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004141 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004142 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004143 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004144 }
4145
Dan Gohmana30370b2009-05-04 22:02:23 +00004146 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004147 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004148 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4149 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00004150 for (unsigned i = 1, e = M->getNumOperands();
4151 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004152 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00004153 BitWidth);
4154 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004155 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004156
Dan Gohmana30370b2009-05-04 22:02:23 +00004157 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004158 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004159 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004160 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004161 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004162 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004163 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004164
Dan Gohmana30370b2009-05-04 22:02:23 +00004165 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004166 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004167 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004168 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004169 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004170 return MinOpRes;
4171 }
4172
Dan Gohmana30370b2009-05-04 22:02:23 +00004173 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004174 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004175 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004176 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004177 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004178 return MinOpRes;
4179 }
4180
Dan Gohmanc702fc02009-06-19 23:29:04 +00004181 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4182 // For a SCEVUnknown, ask ValueTracking.
4183 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00004184 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004185 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4186 nullptr, &DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004187 return Zeros.countTrailingOnes();
4188 }
4189
4190 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00004191 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00004192}
Chris Lattnerd934c702004-04-02 20:23:17 +00004193
Sanjoy Das1f05c512014-10-10 21:22:34 +00004194/// GetRangeFromMetadata - Helper method to assign a range to V from
4195/// metadata present in the IR.
4196static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004197 if (Instruction *I = dyn_cast<Instruction>(V))
4198 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4199 return getConstantRangeFromMetadata(*MD);
Sanjoy Das1f05c512014-10-10 21:22:34 +00004200
4201 return None;
4202}
4203
Sanjoy Das91b54772015-03-09 21:43:43 +00004204/// getRange - Determine the range for a particular SCEV. If SignHint is
4205/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4206/// with a "cleaner" unsigned (resp. signed) representation.
Dan Gohmane65c9172009-07-13 21:35:55 +00004207///
4208ConstantRange
Sanjoy Das91b54772015-03-09 21:43:43 +00004209ScalarEvolution::getRange(const SCEV *S,
4210 ScalarEvolution::RangeSignHint SignHint) {
4211 DenseMap<const SCEV *, ConstantRange> &Cache =
4212 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4213 : SignedRanges;
4214
Dan Gohman761065e2010-11-17 02:44:44 +00004215 // See if we've computed this range already.
Sanjoy Das91b54772015-03-09 21:43:43 +00004216 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4217 if (I != Cache.end())
Dan Gohman761065e2010-11-17 02:44:44 +00004218 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00004219
4220 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das91b54772015-03-09 21:43:43 +00004221 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004222
Dan Gohman85be4332010-01-26 19:19:05 +00004223 unsigned BitWidth = getTypeSizeInBits(S->getType());
4224 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4225
Sanjoy Das91b54772015-03-09 21:43:43 +00004226 // If the value has known zeros, the maximum value will have those known zeros
4227 // as well.
Dan Gohman85be4332010-01-26 19:19:05 +00004228 uint32_t TZ = GetMinTrailingZeros(S);
Sanjoy Das91b54772015-03-09 21:43:43 +00004229 if (TZ != 0) {
4230 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4231 ConservativeResult =
4232 ConstantRange(APInt::getMinValue(BitWidth),
4233 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4234 else
4235 ConservativeResult = ConstantRange(
4236 APInt::getSignedMinValue(BitWidth),
4237 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4238 }
Dan Gohman85be4332010-01-26 19:19:05 +00004239
Dan Gohmane65c9172009-07-13 21:35:55 +00004240 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004241 ConstantRange X = getRange(Add->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004242 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004243 X = X.add(getRange(Add->getOperand(i), SignHint));
4244 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004245 }
4246
4247 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004248 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004249 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004250 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4251 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004252 }
4253
4254 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004255 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004256 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004257 X = X.smax(getRange(SMax->getOperand(i), SignHint));
4258 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004259 }
4260
4261 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004262 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004263 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004264 X = X.umax(getRange(UMax->getOperand(i), SignHint));
4265 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004266 }
4267
4268 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004269 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4270 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4271 return setRange(UDiv, SignHint,
4272 ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004273 }
4274
4275 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004276 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4277 return setRange(ZExt, SignHint,
4278 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004279 }
4280
4281 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004282 ConstantRange X = getRange(SExt->getOperand(), SignHint);
4283 return setRange(SExt, SignHint,
4284 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004285 }
4286
4287 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004288 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4289 return setRange(Trunc, SignHint,
4290 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004291 }
4292
Dan Gohmane65c9172009-07-13 21:35:55 +00004293 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004294 // If there's no unsigned wrap, the value will never be less than its
4295 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00004296 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00004297 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00004298 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00004299 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00004300 ConservativeResult.intersectWith(
4301 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004302
Dan Gohman51ad99d2010-01-21 02:09:26 +00004303 // If there's no signed wrap, and all the operands have the same sign or
4304 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00004305 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004306 bool AllNonNeg = true;
4307 bool AllNonPos = true;
4308 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4309 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4310 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4311 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004312 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00004313 ConservativeResult = ConservativeResult.intersectWith(
4314 ConstantRange(APInt(BitWidth, 0),
4315 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004316 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00004317 ConservativeResult = ConservativeResult.intersectWith(
4318 ConstantRange(APInt::getSignedMinValue(BitWidth),
4319 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004320 }
Dan Gohmane65c9172009-07-13 21:35:55 +00004321
4322 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00004323 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00004324 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00004325 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00004326 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4327 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004328
4329 // Check for overflow. This must be done with ConstantRange arithmetic
4330 // because we could be called from within the ScalarEvolution overflow
4331 // checking code.
4332
Dan Gohmane65c9172009-07-13 21:35:55 +00004333 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
Sanjoy Das91b54772015-03-09 21:43:43 +00004334 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4335 ConstantRange ZExtMaxBECountRange =
4336 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004337
4338 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00004339 const SCEV *Step = AddRec->getStepRecurrence(*this);
Sanjoy Das91b54772015-03-09 21:43:43 +00004340 ConstantRange StepSRange = getSignedRange(Step);
4341 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004342
Sanjoy Das91b54772015-03-09 21:43:43 +00004343 ConstantRange StartURange = getUnsignedRange(Start);
4344 ConstantRange EndURange =
4345 StartURange.add(MaxBECountRange.multiply(StepSRange));
Dan Gohmanf76210e2010-04-12 07:39:33 +00004346
Sanjoy Das91b54772015-03-09 21:43:43 +00004347 // Check for unsigned overflow.
4348 ConstantRange ZExtStartURange =
4349 StartURange.zextOrTrunc(BitWidth * 2 + 1);
4350 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4351 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4352 ZExtEndURange) {
4353 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4354 EndURange.getUnsignedMin());
4355 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4356 EndURange.getUnsignedMax());
4357 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4358 if (!IsFullRange)
4359 ConservativeResult =
4360 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4361 }
Dan Gohmanf76210e2010-04-12 07:39:33 +00004362
Sanjoy Das91b54772015-03-09 21:43:43 +00004363 ConstantRange StartSRange = getSignedRange(Start);
4364 ConstantRange EndSRange =
4365 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4366
4367 // Check for signed overflow. This must be done with ConstantRange
4368 // arithmetic because we could be called from within the ScalarEvolution
4369 // overflow checking code.
4370 ConstantRange SExtStartSRange =
4371 StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4372 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4373 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4374 SExtEndSRange) {
4375 APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4376 EndSRange.getSignedMin());
4377 APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4378 EndSRange.getSignedMax());
4379 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4380 if (!IsFullRange)
4381 ConservativeResult =
4382 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4383 }
Dan Gohmand261d272009-06-24 01:05:09 +00004384 }
Dan Gohmand261d272009-06-24 01:05:09 +00004385 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004386
Sanjoy Das91b54772015-03-09 21:43:43 +00004387 return setRange(AddRec, SignHint, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004388 }
4389
Dan Gohmanc702fc02009-06-19 23:29:04 +00004390 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004391 // Check if the IR explicitly contains !range metadata.
4392 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4393 if (MDRange.hasValue())
4394 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4395
Sanjoy Das91b54772015-03-09 21:43:43 +00004396 // Split here to avoid paying the compile-time cost of calling both
4397 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4398 // if needed.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004399 const DataLayout &DL = getDataLayout();
Sanjoy Das91b54772015-03-09 21:43:43 +00004400 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4401 // For a SCEVUnknown, ask ValueTracking.
4402 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004403 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
Sanjoy Das91b54772015-03-09 21:43:43 +00004404 if (Ones != ~Zeros + 1)
4405 ConservativeResult =
4406 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4407 } else {
4408 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4409 "generalize as needed!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004410 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004411 if (NS > 1)
4412 ConservativeResult = ConservativeResult.intersectWith(
4413 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4414 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
Sanjoy Das91b54772015-03-09 21:43:43 +00004415 }
4416
4417 return setRange(U, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004418 }
4419
Sanjoy Das91b54772015-03-09 21:43:43 +00004420 return setRange(S, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004421}
4422
Jingyue Wu42f1d672015-07-28 18:22:40 +00004423SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004424 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004425 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4426
4427 // Return early if there are no flags to propagate to the SCEV.
4428 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4429 if (BinOp->hasNoUnsignedWrap())
4430 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4431 if (BinOp->hasNoSignedWrap())
4432 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4433 if (Flags == SCEV::FlagAnyWrap) {
4434 return SCEV::FlagAnyWrap;
4435 }
4436
4437 // Here we check that BinOp is in the header of the innermost loop
4438 // containing BinOp, since we only deal with instructions in the loop
4439 // header. The actual loop we need to check later will come from an add
4440 // recurrence, but getting that requires computing the SCEV of the operands,
4441 // which can be expensive. This check we can do cheaply to rule out some
4442 // cases early.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004443 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00004444 if (innermostContainingLoop == nullptr ||
4445 innermostContainingLoop->getHeader() != BinOp->getParent())
4446 return SCEV::FlagAnyWrap;
4447
4448 // Only proceed if we can prove that BinOp does not yield poison.
4449 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4450
4451 // At this point we know that if V is executed, then it does not wrap
4452 // according to at least one of NSW or NUW. If V is not executed, then we do
4453 // not know if the calculation that V represents would wrap. Multiple
4454 // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4455 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4456 // derived from other instructions that map to the same SCEV. We cannot make
4457 // that guarantee for cases where V is not executed. So we need to find the
4458 // loop that V is considered in relation to and prove that V is executed for
4459 // every iteration of that loop. That implies that the value that V
4460 // calculates does not wrap anywhere in the loop, so then we can apply the
4461 // flags to the SCEV.
4462 //
4463 // We check isLoopInvariant to disambiguate in case we are adding two
4464 // recurrences from different loops, so that we know which loop to prove
4465 // that V is executed in.
4466 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4467 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4468 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4469 const int OtherOpIndex = 1 - OpIndex;
4470 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4471 if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4472 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4473 return Flags;
4474 }
4475 }
4476 return SCEV::FlagAnyWrap;
4477}
4478
4479/// createSCEV - We know that there is no SCEV for the specified value. Analyze
4480/// the expression.
Chris Lattnerd934c702004-04-02 20:23:17 +00004481///
Dan Gohmanaf752342009-07-07 17:06:11 +00004482const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004483 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004484 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004485
Dan Gohman05e89732008-06-22 19:56:46 +00004486 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004487 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004488 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004489
4490 // Don't attempt to analyze instructions in blocks that aren't
4491 // reachable. Such instructions don't matter, and they aren't required
4492 // to obey basic rules for definitions dominating uses which this
4493 // analysis depends on.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004494 if (!DT.isReachableFromEntry(I->getParent()))
Dan Gohman69451a02010-03-09 23:46:50 +00004495 return getUnknown(V);
4496 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004497 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004498 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4499 return getConstant(CI);
4500 else if (isa<ConstantPointerNull>(V))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004501 return getZero(V->getType());
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004502 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4503 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004504 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004505 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004506
Dan Gohman80ca01c2009-07-17 20:47:02 +00004507 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004508 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004509 case Instruction::Add: {
4510 // The simple thing to do would be to just call getSCEV on both operands
4511 // and call getAddExpr with the result. However if we're looking at a
4512 // bunch of things all added together, this can be quite inefficient,
4513 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4514 // Instead, gather up all the operands and make a single getAddExpr call.
4515 // LLVM IR canonical form means we need only traverse the left operands.
4516 SmallVector<const SCEV *, 4> AddOps;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004517 for (Value *Op = U;; Op = U->getOperand(0)) {
4518 U = dyn_cast<Operator>(Op);
4519 unsigned Opcode = U ? U->getOpcode() : 0;
4520 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) {
4521 assert(Op != V && "V should be an add");
4522 AddOps.push_back(getSCEV(Op));
Dan Gohman47308d52010-08-31 22:53:17 +00004523 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004524 }
4525
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004526 if (auto *OpSCEV = getExistingSCEV(U)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00004527 AddOps.push_back(OpSCEV);
4528 break;
4529 }
4530
4531 // If a NUW or NSW flag can be applied to the SCEV for this
4532 // addition, then compute the SCEV for this addition by itself
4533 // with a separate call to getAddExpr. We need to do that
4534 // instead of pushing the operands of the addition onto AddOps,
4535 // since the flags are only known to apply to this particular
4536 // addition - they may not apply to other additions that can be
4537 // formed with operands from AddOps.
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004538 const SCEV *RHS = getSCEV(U->getOperand(1));
4539 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4540 if (Flags != SCEV::FlagAnyWrap) {
4541 const SCEV *LHS = getSCEV(U->getOperand(0));
4542 if (Opcode == Instruction::Sub)
4543 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4544 else
4545 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4546 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004547 }
4548
Dan Gohman47308d52010-08-31 22:53:17 +00004549 if (Opcode == Instruction::Sub)
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004550 AddOps.push_back(getNegativeSCEV(RHS));
Dan Gohman47308d52010-08-31 22:53:17 +00004551 else
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004552 AddOps.push_back(RHS);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004553 }
Andrew Trickd25089f2011-11-29 02:16:38 +00004554 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004555 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004556
Dan Gohmane5fb1032010-08-16 16:03:49 +00004557 case Instruction::Mul: {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004558 SmallVector<const SCEV *, 4> MulOps;
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004559 for (Value *Op = U;; Op = U->getOperand(0)) {
4560 U = dyn_cast<Operator>(Op);
4561 if (!U || U->getOpcode() != Instruction::Mul) {
4562 assert(Op != V && "V should be a mul");
4563 MulOps.push_back(getSCEV(Op));
4564 break;
4565 }
4566
4567 if (auto *OpSCEV = getExistingSCEV(U)) {
4568 MulOps.push_back(OpSCEV);
4569 break;
4570 }
4571
4572 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4573 if (Flags != SCEV::FlagAnyWrap) {
4574 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)),
4575 getSCEV(U->getOperand(1)), Flags));
4576 break;
4577 }
4578
Dan Gohmane5fb1032010-08-16 16:03:49 +00004579 MulOps.push_back(getSCEV(U->getOperand(1)));
4580 }
Dan Gohmane5fb1032010-08-16 16:03:49 +00004581 return getMulExpr(MulOps);
4582 }
Dan Gohman05e89732008-06-22 19:56:46 +00004583 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004584 return getUDivExpr(getSCEV(U->getOperand(0)),
4585 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004586 case Instruction::Sub:
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004587 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)),
4588 getNoWrapFlagsFromUB(U));
Dan Gohman0ec05372009-04-21 02:26:00 +00004589 case Instruction::And:
4590 // For an expression like x&255 that merely masks off the high bits,
4591 // use zext(trunc(x)) as the SCEV expression.
4592 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004593 if (CI->isNullValue())
4594 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004595 if (CI->isAllOnesValue())
4596 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004597 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004598
4599 // Instcombine's ShrinkDemandedConstant may strip bits out of
4600 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004601 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004602 // knew about to reconstruct a low-bits mask value.
4603 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004604 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004605 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004606 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004607 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(),
4608 0, &AC, nullptr, &DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004609
Nick Lewycky31eaca52014-01-27 10:04:03 +00004610 APInt EffectiveMask =
4611 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4612 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4613 const SCEV *MulCount = getConstant(
4614 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4615 return getMulExpr(
4616 getZeroExtendExpr(
4617 getTruncateExpr(
4618 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4619 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4620 U->getType()),
4621 MulCount);
4622 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004623 }
4624 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004625
Dan Gohman05e89732008-06-22 19:56:46 +00004626 case Instruction::Or:
4627 // If the RHS of the Or is a constant, we may have something like:
4628 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4629 // optimizations will transparently handle this case.
4630 //
4631 // In order for this transformation to be safe, the LHS must be of the
4632 // form X*(2^n) and the Or constant must be less than 2^n.
4633 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004634 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004635 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004636 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004637 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4638 // Build a plain add SCEV.
4639 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4640 // If the LHS of the add was an addrec and it has no-wrap flags,
4641 // transfer the no-wrap flags, since an or won't introduce a wrap.
4642 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4643 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004644 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4645 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004646 }
4647 return S;
4648 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004649 }
Dan Gohman05e89732008-06-22 19:56:46 +00004650 break;
4651 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004652 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004653 // If the RHS of the xor is a signbit, then this is just an add.
4654 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004655 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004656 return getAddExpr(getSCEV(U->getOperand(0)),
4657 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004658
4659 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004660 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004661 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004662
4663 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4664 // This is a variant of the check for xor with -1, and it handles
4665 // the case where instcombine has trimmed non-demanded bits out
4666 // of an xor with -1.
4667 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4668 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4669 if (BO->getOpcode() == Instruction::And &&
4670 LCI->getValue() == CI->getValue())
4671 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004672 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004673 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004674 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004675 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004676 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4677
Dan Gohman8b0a4192010-03-01 17:49:51 +00004678 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004679 // mask off the high bits. Complement the operand and
4680 // re-apply the zext.
4681 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4682 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4683
4684 // If C is a single bit, it may be in the sign-bit position
4685 // before the zero-extend. In this case, represent the xor
4686 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004687 APInt Trunc = CI->getValue().trunc(Z0TySize);
4688 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004689 Trunc.isSignBit())
4690 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4691 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004692 }
Dan Gohman05e89732008-06-22 19:56:46 +00004693 }
4694 break;
4695
4696 case Instruction::Shl:
4697 // Turn shift left of a constant amount into a multiply.
4698 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004699 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004700
4701 // If the shift count is not less than the bitwidth, the result of
4702 // the shift is undefined. Don't try to analyze it, because the
4703 // resolution chosen here may differ from the resolution chosen in
4704 // other parts of the compiler.
4705 if (SA->getValue().uge(BitWidth))
4706 break;
4707
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004708 // It is currently not resolved how to interpret NSW for left
4709 // shift by BitWidth - 1, so we avoid applying flags in that
4710 // case. Remove this check (or this comment) once the situation
4711 // is resolved. See
4712 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
4713 // and http://reviews.llvm.org/D8890 .
4714 auto Flags = SCEV::FlagAnyWrap;
4715 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U);
4716
Owen Andersonedb4a702009-07-24 23:12:02 +00004717 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004718 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004719 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags);
Dan Gohman05e89732008-06-22 19:56:46 +00004720 }
4721 break;
4722
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004723 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004724 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004725 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004726 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004727
4728 // If the shift count is not less than the bitwidth, the result of
4729 // the shift is undefined. Don't try to analyze it, because the
4730 // resolution chosen here may differ from the resolution chosen in
4731 // other parts of the compiler.
4732 if (SA->getValue().uge(BitWidth))
4733 break;
4734
Owen Andersonedb4a702009-07-24 23:12:02 +00004735 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004736 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004737 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004738 }
4739 break;
4740
Dan Gohman0ec05372009-04-21 02:26:00 +00004741 case Instruction::AShr:
4742 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4743 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004744 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004745 if (L->getOpcode() == Instruction::Shl &&
4746 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004747 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4748
4749 // If the shift count is not less than the bitwidth, the result of
4750 // the shift is undefined. Don't try to analyze it, because the
4751 // resolution chosen here may differ from the resolution chosen in
4752 // other parts of the compiler.
4753 if (CI->getValue().uge(BitWidth))
4754 break;
4755
Dan Gohmandf199482009-04-25 17:05:40 +00004756 uint64_t Amt = BitWidth - CI->getZExtValue();
4757 if (Amt == BitWidth)
4758 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004759 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004760 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004761 IntegerType::get(getContext(),
4762 Amt)),
4763 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004764 }
4765 break;
4766
Dan Gohman05e89732008-06-22 19:56:46 +00004767 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004768 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004769
4770 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004771 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004772
4773 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004774 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004775
4776 case Instruction::BitCast:
4777 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004778 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004779 return getSCEV(U->getOperand(0));
4780 break;
4781
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004782 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4783 // lead to pointer expressions which cannot safely be expanded to GEPs,
4784 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4785 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004786
Dan Gohmanee750d12009-05-08 20:26:55 +00004787 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004788 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004789
Dan Gohman05e89732008-06-22 19:56:46 +00004790 case Instruction::PHI:
4791 return createNodeForPHI(cast<PHINode>(U));
4792
4793 case Instruction::Select:
Sanjoy Dasd0671342015-10-02 19:39:59 +00004794 // U can also be a select constant expr, which let fall through. Since
4795 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
4796 // constant expressions cannot have instructions as operands, we'd have
4797 // returned getUnknown for a select constant expressions anyway.
4798 if (isa<Instruction>(U))
Sanjoy Das55015d22015-10-02 23:09:44 +00004799 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
4800 U->getOperand(1), U->getOperand(2));
Dan Gohman05e89732008-06-22 19:56:46 +00004801
4802 default: // We cannot analyze this expression.
4803 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004804 }
4805
Dan Gohmanc8e23622009-04-21 23:15:49 +00004806 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004807}
4808
4809
4810
4811//===----------------------------------------------------------------------===//
4812// Iteration Count Computation Code
4813//
4814
Chandler Carruth6666c272014-10-11 00:12:11 +00004815unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4816 if (BasicBlock *ExitingBB = L->getExitingBlock())
4817 return getSmallConstantTripCount(L, ExitingBB);
4818
4819 // No trip count information for multiple exits.
4820 return 0;
4821}
4822
Andrew Trick2b6860f2011-08-11 23:36:16 +00004823/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004824/// normal unsigned value. Returns 0 if the trip count is unknown or not
4825/// constant. Will also return 0 if the maximum trip count is very large (>=
4826/// 2^32).
4827///
4828/// This "trip count" assumes that control exits via ExitingBlock. More
4829/// precisely, it is the number of times that control may reach ExitingBlock
4830/// before taking the branch. For loops with multiple exits, it may not be the
4831/// number times that the loop header executes because the loop may exit
4832/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004833unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4834 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004835 assert(ExitingBlock && "Must pass a non-null exiting block!");
4836 assert(L->isLoopExiting(ExitingBlock) &&
4837 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004838 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004839 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004840 if (!ExitCount)
4841 return 0;
4842
4843 ConstantInt *ExitConst = ExitCount->getValue();
4844
4845 // Guard against huge trip counts.
4846 if (ExitConst->getValue().getActiveBits() > 32)
4847 return 0;
4848
4849 // In case of integer overflow, this returns 0, which is correct.
4850 return ((unsigned)ExitConst->getZExtValue()) + 1;
4851}
4852
Chandler Carruth6666c272014-10-11 00:12:11 +00004853unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4854 if (BasicBlock *ExitingBB = L->getExitingBlock())
4855 return getSmallConstantTripMultiple(L, ExitingBB);
4856
4857 // No trip multiple information for multiple exits.
4858 return 0;
4859}
4860
Andrew Trick2b6860f2011-08-11 23:36:16 +00004861/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4862/// trip count of this loop as a normal unsigned value, if possible. This
4863/// means that the actual trip count is always a multiple of the returned
4864/// value (don't forget the trip count could very well be zero as well!).
4865///
4866/// Returns 1 if the trip count is unknown or not guaranteed to be the
4867/// multiple of a constant (which is also the case if the trip count is simply
4868/// constant, use getSmallConstantTripCount for that case), Will also return 1
4869/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004870///
4871/// As explained in the comments for getSmallConstantTripCount, this assumes
4872/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004873unsigned
4874ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4875 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004876 assert(ExitingBlock && "Must pass a non-null exiting block!");
4877 assert(L->isLoopExiting(ExitingBlock) &&
4878 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004879 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004880 if (ExitCount == getCouldNotCompute())
4881 return 1;
4882
4883 // Get the trip count from the BE count by adding 1.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004884 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004885 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4886 // to factor simple cases.
4887 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4888 TCMul = Mul->getOperand(0);
4889
4890 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4891 if (!MulC)
4892 return 1;
4893
4894 ConstantInt *Result = MulC->getValue();
4895
Hal Finkel30bd9342012-10-24 19:46:44 +00004896 // Guard against huge trip counts (this requires checking
4897 // for zero to handle the case where the trip count == -1 and the
4898 // addition wraps).
4899 if (!Result || Result->getValue().getActiveBits() > 32 ||
4900 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004901 return 1;
4902
4903 return (unsigned)Result->getZExtValue();
4904}
4905
Andrew Trick3ca3f982011-07-26 17:19:55 +00004906// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004907// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004908// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004909const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4910 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004911}
4912
Dan Gohman0bddac12009-02-24 18:55:53 +00004913/// getBackedgeTakenCount - If the specified loop has a predictable
4914/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4915/// object. The backedge-taken count is the number of times the loop header
4916/// will be branched to from within the loop. This is one less than the
4917/// trip count of the loop, since it doesn't count the first iteration,
4918/// when the header is branched to from outside the loop.
4919///
4920/// Note that it is not valid to call this method on a loop without a
4921/// loop-invariant backedge-taken count (see
4922/// hasLoopInvariantBackedgeTakenCount).
4923///
Dan Gohmanaf752342009-07-07 17:06:11 +00004924const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004925 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004926}
4927
4928/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4929/// return the least SCEV value that is known never to be less than the
4930/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004931const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004932 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004933}
4934
Dan Gohmandc191042009-07-08 19:23:34 +00004935/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4936/// onto the given Worklist.
4937static void
4938PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4939 BasicBlock *Header = L->getHeader();
4940
4941 // Push all Loop-header PHIs onto the Worklist stack.
4942 for (BasicBlock::iterator I = Header->begin();
4943 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4944 Worklist.push_back(PN);
4945}
4946
Dan Gohman2b8da352009-04-30 20:47:05 +00004947const ScalarEvolution::BackedgeTakenInfo &
4948ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004949 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004950 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004951 // update the value. The temporary CouldNotCompute value tells SCEV
4952 // code elsewhere that it shouldn't attempt to request a new
4953 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004954 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004955 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004956 if (!Pair.second)
4957 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004958
Sanjoy Das413dbbb2015-10-08 18:46:59 +00004959 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
Andrew Trick3ca3f982011-07-26 17:19:55 +00004960 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4961 // must be cleared in this scope.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00004962 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004963
4964 if (Result.getExact(this) != getCouldNotCompute()) {
4965 assert(isLoopInvariant(Result.getExact(this), L) &&
4966 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004967 "Computed backedge-taken count isn't loop invariant for loop!");
4968 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004969 }
4970 else if (Result.getMax(this) == getCouldNotCompute() &&
4971 isa<PHINode>(L->getHeader()->begin())) {
4972 // Only count loops that have phi nodes as not being computable.
4973 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004974 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004975
Chris Lattnera337f5e2011-01-09 02:16:18 +00004976 // Now that we know more about the trip count for this loop, forget any
4977 // existing SCEV values for PHI nodes in this loop since they are only
4978 // conservative estimates made without the benefit of trip count
4979 // information. This is similar to the code in forgetLoop, except that
4980 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004981 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004982 SmallVector<Instruction *, 16> Worklist;
4983 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004984
Chris Lattnera337f5e2011-01-09 02:16:18 +00004985 SmallPtrSet<Instruction *, 8> Visited;
4986 while (!Worklist.empty()) {
4987 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004988 if (!Visited.insert(I).second)
4989 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004990
Chris Lattnera337f5e2011-01-09 02:16:18 +00004991 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004992 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004993 if (It != ValueExprMap.end()) {
4994 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004995
Chris Lattnera337f5e2011-01-09 02:16:18 +00004996 // SCEVUnknown for a PHI either means that it has an unrecognized
4997 // structure, or it's a PHI that's in the progress of being computed
4998 // by createNodeForPHI. In the former case, additional loop trip
4999 // count information isn't going to change anything. In the later
5000 // case, createNodeForPHI will perform the necessary updates on its
5001 // own when it gets to that point.
5002 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5003 forgetMemoizedResults(Old);
5004 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00005005 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00005006 if (PHINode *PN = dyn_cast<PHINode>(I))
5007 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00005008 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00005009
5010 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00005011 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005012 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00005013
5014 // Re-lookup the insert position, since the call to
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005015 // computeBackedgeTakenCount above could result in a
Dan Gohman6acd95b2011-04-25 22:48:29 +00005016 // recusive call to getBackedgeTakenInfo (on a different
5017 // loop), which would invalidate the iterator computed
5018 // earlier.
5019 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00005020}
5021
Dan Gohman880c92a2009-10-31 15:04:55 +00005022/// forgetLoop - This method should be called by the client when it has
5023/// changed a loop in a way that may effect ScalarEvolution's ability to
5024/// compute a trip count, or if the loop is deleted.
5025void ScalarEvolution::forgetLoop(const Loop *L) {
5026 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005027 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
5028 BackedgeTakenCounts.find(L);
5029 if (BTCPos != BackedgeTakenCounts.end()) {
5030 BTCPos->second.clear();
5031 BackedgeTakenCounts.erase(BTCPos);
5032 }
Dan Gohmanf1505722009-05-02 17:43:35 +00005033
Dan Gohman880c92a2009-10-31 15:04:55 +00005034 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00005035 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00005036 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00005037
Dan Gohmandc191042009-07-08 19:23:34 +00005038 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00005039 while (!Worklist.empty()) {
5040 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005041 if (!Visited.insert(I).second)
5042 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00005043
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005044 ValueExprMapType::iterator It =
5045 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005046 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005047 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005048 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00005049 if (PHINode *PN = dyn_cast<PHINode>(I))
5050 ConstantEvolutionLoopExitValue.erase(PN);
5051 }
5052
5053 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00005054 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00005055
5056 // Forget all contained loops too, to avoid dangling entries in the
5057 // ValuesAtScopes map.
5058 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5059 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00005060}
5061
Eric Christopheref6d5932010-07-29 01:25:38 +00005062/// forgetValue - This method should be called by the client when it has
5063/// changed a value in a way that may effect its value, or which may
5064/// disconnect it from a def-use chain linking it to a loop.
5065void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005066 Instruction *I = dyn_cast<Instruction>(V);
5067 if (!I) return;
5068
5069 // Drop information about expressions based on loop-header PHIs.
5070 SmallVector<Instruction *, 16> Worklist;
5071 Worklist.push_back(I);
5072
5073 SmallPtrSet<Instruction *, 8> Visited;
5074 while (!Worklist.empty()) {
5075 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005076 if (!Visited.insert(I).second)
5077 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005078
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005079 ValueExprMapType::iterator It =
5080 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005081 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005082 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005083 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005084 if (PHINode *PN = dyn_cast<PHINode>(I))
5085 ConstantEvolutionLoopExitValue.erase(PN);
5086 }
5087
5088 PushDefUseChildren(I, Worklist);
5089 }
5090}
5091
Andrew Trick3ca3f982011-07-26 17:19:55 +00005092/// getExact - Get the exact loop backedge taken count considering all loop
Sanjoy Das135e5b92015-07-21 20:59:22 +00005093/// exits. A computable result can only be returned for loops with a single
5094/// exit. Returning the minimum taken count among all exits is incorrect
5095/// because one of the loop's exit limit's may have been skipped. HowFarToZero
5096/// assumes that the limit of each loop test is never skipped. This is a valid
5097/// assumption as long as the loop exits via that test. For precise results, it
5098/// is the caller's responsibility to specify the relevant loop exit using
Andrew Trick90c7a102011-11-16 00:52:40 +00005099/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00005100const SCEV *
5101ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
5102 // If any exits were not computable, the loop is not computable.
5103 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5104
Andrew Trick90c7a102011-11-16 00:52:40 +00005105 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00005106 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005107 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5108
Craig Topper9f008862014-04-15 04:59:12 +00005109 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005110 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005111 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005112
5113 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5114
5115 if (!BECount)
5116 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00005117 else if (BECount != ENT->ExactNotTaken)
5118 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005119 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00005120 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005121 return BECount;
5122}
5123
5124/// getExact - Get the exact not taken count for this loop exit.
5125const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00005126ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005127 ScalarEvolution *SE) const {
5128 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005129 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005130
Andrew Trick77c55422011-08-02 04:23:35 +00005131 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005132 return ENT->ExactNotTaken;
5133 }
5134 return SE->getCouldNotCompute();
5135}
5136
5137/// getMax - Get the max backedge taken count for the loop.
5138const SCEV *
5139ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5140 return Max ? Max : SE->getCouldNotCompute();
5141}
5142
Andrew Trick9093e152013-03-26 03:14:53 +00005143bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5144 ScalarEvolution *SE) const {
5145 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5146 return true;
5147
5148 if (!ExitNotTaken.ExitingBlock)
5149 return false;
5150
5151 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005152 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00005153
5154 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
5155 && SE->hasOperand(ENT->ExactNotTaken, S)) {
5156 return true;
5157 }
5158 }
5159 return false;
5160}
5161
Andrew Trick3ca3f982011-07-26 17:19:55 +00005162/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5163/// computable exit into a persistent ExitNotTakenInfo array.
5164ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5165 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
5166 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
5167
5168 if (!Complete)
5169 ExitNotTaken.setIncomplete();
5170
5171 unsigned NumExits = ExitCounts.size();
5172 if (NumExits == 0) return;
5173
Andrew Trick77c55422011-08-02 04:23:35 +00005174 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005175 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
5176 if (NumExits == 1) return;
5177
5178 // Handle the rare case of multiple computable exits.
5179 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
5180
5181 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
5182 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
5183 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00005184 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005185 ENT->ExactNotTaken = ExitCounts[i].second;
5186 }
5187}
5188
5189/// clear - Invalidate this result and free the ExitNotTakenInfo array.
5190void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00005191 ExitNotTaken.ExitingBlock = nullptr;
5192 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005193 delete[] ExitNotTaken.getNextExit();
5194}
5195
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005196/// computeBackedgeTakenCount - Compute the number of times the backedge
Dan Gohman0bddac12009-02-24 18:55:53 +00005197/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00005198ScalarEvolution::BackedgeTakenInfo
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005199ScalarEvolution::computeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00005200 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00005201 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00005202
Andrew Trick839e30b2014-05-23 19:47:13 +00005203 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005204 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005205 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00005206 const SCEV *MustExitMaxBECount = nullptr;
5207 const SCEV *MayExitMaxBECount = nullptr;
5208
5209 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5210 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00005211 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005212 BasicBlock *ExitBB = ExitingBlocks[i];
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005213 ExitLimit EL = computeExitLimit(L, ExitBB);
Andrew Trick839e30b2014-05-23 19:47:13 +00005214
5215 // 1. For each exit that can be computed, add an entry to ExitCounts.
5216 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005217 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00005218 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00005219 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005220 CouldComputeBECount = false;
5221 else
Andrew Trick839e30b2014-05-23 19:47:13 +00005222 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00005223
Andrew Trick839e30b2014-05-23 19:47:13 +00005224 // 2. Derive the loop's MaxBECount from each exit's max number of
5225 // non-exiting iterations. Partition the loop exits into two kinds:
5226 // LoopMustExits and LoopMayExits.
5227 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005228 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5229 // is a LoopMayExit. If any computable LoopMustExit is found, then
5230 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5231 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5232 // considered greater than any computable EL.Max.
5233 if (EL.Max != getCouldNotCompute() && Latch &&
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005234 DT.dominates(ExitBB, Latch)) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005235 if (!MustExitMaxBECount)
5236 MustExitMaxBECount = EL.Max;
5237 else {
5238 MustExitMaxBECount =
5239 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00005240 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005241 } else if (MayExitMaxBECount != getCouldNotCompute()) {
5242 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5243 MayExitMaxBECount = EL.Max;
5244 else {
5245 MayExitMaxBECount =
5246 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5247 }
Andrew Trick90c7a102011-11-16 00:52:40 +00005248 }
Dan Gohman96212b62009-06-22 00:31:57 +00005249 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005250 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5251 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00005252 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005253}
5254
Andrew Trick3ca3f982011-07-26 17:19:55 +00005255ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005256ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00005257
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005258 // Okay, we've chosen an exiting block. See what condition causes us to exit
5259 // at this block and remember the exit block and whether all other targets
Benjamin Kramer5a188542014-02-11 15:44:32 +00005260 // lead to the loop header.
5261 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00005262 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005263 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
5264 SI != SE; ++SI)
5265 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005266 if (Exit) // Multiple exit successors.
5267 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005268 Exit = *SI;
5269 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005270 MustExecuteLoopHeader = false;
5271 }
Dan Gohmance973df2009-06-24 04:48:43 +00005272
Chris Lattner18954852007-01-07 02:24:26 +00005273 // At this point, we know we have a conditional branch that determines whether
5274 // the loop is exited. However, we don't know if the branch is executed each
5275 // time through the loop. If not, then the execution count of the branch will
5276 // not be equal to the trip count of the loop.
5277 //
5278 // Currently we check for this by checking to see if the Exit branch goes to
5279 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00005280 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00005281 // loop header. This is common for un-rotated loops.
5282 //
5283 // If both of those tests fail, walk up the unique predecessor chain to the
5284 // header, stopping if there is an edge that doesn't exit the loop. If the
5285 // header is reached, the execution count of the branch will be equal to the
5286 // trip count of the loop.
5287 //
5288 // More extensive analysis could be done to handle more cases here.
5289 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00005290 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005291 // The simple checks failed, try climbing the unique predecessor chain
5292 // up to the header.
5293 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00005294 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00005295 BasicBlock *Pred = BB->getUniquePredecessor();
5296 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005297 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005298 TerminatorInst *PredTerm = Pred->getTerminator();
Pete Cooperebcd7482015-08-06 20:22:46 +00005299 for (const BasicBlock *PredSucc : PredTerm->successors()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005300 if (PredSucc == BB)
5301 continue;
5302 // If the predecessor has a successor that isn't BB and isn't
5303 // outside the loop, assume the worst.
5304 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005305 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005306 }
5307 if (Pred == L->getHeader()) {
5308 Ok = true;
5309 break;
5310 }
5311 BB = Pred;
5312 }
5313 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005314 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005315 }
5316
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005317 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005318 TerminatorInst *Term = ExitingBlock->getTerminator();
5319 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5320 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5321 // Proceed to the next level to examine the exit condition expression.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005322 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
Benjamin Kramer5a188542014-02-11 15:44:32 +00005323 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005324 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005325 }
5326
5327 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005328 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005329 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005330
5331 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005332}
5333
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005334/// computeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005335/// backedge of the specified loop will execute if its exit condition
5336/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00005337///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005338/// @param ControlsExit is true if ExitCond directly controls the exit
5339/// branch. In this case, we can assume that the loop exits only if the
5340/// condition is true and can infer that failing to meet the condition prior to
5341/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005342ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005343ScalarEvolution::computeExitLimitFromCond(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005344 Value *ExitCond,
5345 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005346 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005347 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00005348 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00005349 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5350 if (BO->getOpcode() == Instruction::And) {
5351 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00005352 bool EitherMayExit = L->contains(TBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005353 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005354 ControlsExit && !EitherMayExit);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005355 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005356 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005357 const SCEV *BECount = getCouldNotCompute();
5358 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005359 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005360 // Both conditions must be true for the loop to continue executing.
5361 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005362 if (EL0.Exact == getCouldNotCompute() ||
5363 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005364 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005365 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005366 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5367 if (EL0.Max == getCouldNotCompute())
5368 MaxBECount = EL1.Max;
5369 else if (EL1.Max == getCouldNotCompute())
5370 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005371 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005372 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005373 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005374 // Both conditions must be true at the same time for the loop to exit.
5375 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005376 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005377 if (EL0.Max == EL1.Max)
5378 MaxBECount = EL0.Max;
5379 if (EL0.Exact == EL1.Exact)
5380 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005381 }
5382
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005383 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005384 }
5385 if (BO->getOpcode() == Instruction::Or) {
5386 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005387 bool EitherMayExit = L->contains(FBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005388 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005389 ControlsExit && !EitherMayExit);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005390 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005391 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005392 const SCEV *BECount = getCouldNotCompute();
5393 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005394 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005395 // Both conditions must be false for the loop to continue executing.
5396 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005397 if (EL0.Exact == getCouldNotCompute() ||
5398 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005399 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005400 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005401 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5402 if (EL0.Max == getCouldNotCompute())
5403 MaxBECount = EL1.Max;
5404 else if (EL1.Max == getCouldNotCompute())
5405 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005406 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005407 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005408 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005409 // Both conditions must be false at the same time for the loop to exit.
5410 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005411 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005412 if (EL0.Max == EL1.Max)
5413 MaxBECount = EL0.Max;
5414 if (EL0.Exact == EL1.Exact)
5415 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005416 }
5417
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005418 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005419 }
5420 }
5421
5422 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005423 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005424 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005425 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005426
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005427 // Check for a constant condition. These are normally stripped out by
5428 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5429 // preserve the CFG and is temporarily leaving constant conditions
5430 // in place.
5431 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5432 if (L->contains(FBB) == !CI->getZExtValue())
5433 // The backedge is always taken.
5434 return getCouldNotCompute();
5435 else
5436 // The backedge is never taken.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00005437 return getZero(CI->getType());
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005438 }
5439
Eli Friedmanebf98b02009-05-09 12:32:42 +00005440 // If it's not an integer or pointer comparison then compute it the hard way.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005441 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005442}
5443
Andrew Trick3ca3f982011-07-26 17:19:55 +00005444ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005445ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005446 ICmpInst *ExitCond,
5447 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005448 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005449 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005450
Reid Spencer266e42b2006-12-23 06:05:41 +00005451 // If the condition was exit on true, convert the condition to exit on false
5452 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005453 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005454 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005455 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005456 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005457
5458 // Handle common loops like: for (X = "string"; *X; ++X)
5459 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5460 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005461 ExitLimit ItCnt =
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005462 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005463 if (ItCnt.hasAnyInfo())
5464 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005465 }
5466
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00005467 ExitLimit ShiftEL = computeShiftCompareExitLimit(
5468 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
5469 if (ShiftEL.hasAnyInfo())
5470 return ShiftEL;
5471
Dan Gohmanaf752342009-07-07 17:06:11 +00005472 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5473 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005474
5475 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005476 LHS = getSCEVAtScope(LHS, L);
5477 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005478
Dan Gohmance973df2009-06-24 04:48:43 +00005479 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005480 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005481 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005482 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005483 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005484 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005485 }
5486
Dan Gohman81585c12010-05-03 16:35:17 +00005487 // Simplify the operands before analyzing them.
5488 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5489
Chris Lattnerd934c702004-04-02 20:23:17 +00005490 // If we have a comparison of a chrec against a constant, try to use value
5491 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005492 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5493 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005494 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005495 // Form the constant range.
5496 ConstantRange CompRange(
5497 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005498
Dan Gohmanaf752342009-07-07 17:06:11 +00005499 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005500 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005501 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005502
Chris Lattnerd934c702004-04-02 20:23:17 +00005503 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005504 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005505 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005506 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005507 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005508 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005509 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005510 case ICmpInst::ICMP_EQ: { // while (X == Y)
5511 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005512 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5513 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005514 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005515 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005516 case ICmpInst::ICMP_SLT:
5517 case ICmpInst::ICMP_ULT: { // while (X < Y)
5518 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005519 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005520 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005521 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005522 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005523 case ICmpInst::ICMP_SGT:
5524 case ICmpInst::ICMP_UGT: { // while (X > Y)
5525 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005526 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005527 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005528 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005529 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005530 default:
Chris Lattner0defaa12004-04-03 00:43:03 +00005531 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005532 }
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005533 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005534}
5535
Benjamin Kramer5a188542014-02-11 15:44:32 +00005536ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005537ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
Benjamin Kramer5a188542014-02-11 15:44:32 +00005538 SwitchInst *Switch,
5539 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005540 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005541 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5542
5543 // Give up if the exit is the default dest of a switch.
5544 if (Switch->getDefaultDest() == ExitingBlock)
5545 return getCouldNotCompute();
5546
5547 assert(L->contains(Switch->getDefaultDest()) &&
5548 "Default case must not exit the loop!");
5549 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5550 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5551
5552 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005553 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005554 if (EL.hasAnyInfo())
5555 return EL;
5556
5557 return getCouldNotCompute();
5558}
5559
Chris Lattnerec901cc2004-10-12 01:49:27 +00005560static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005561EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5562 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005563 const SCEV *InVal = SE.getConstant(C);
5564 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005565 assert(isa<SCEVConstant>(Val) &&
5566 "Evaluation of SCEV at constant didn't fold correctly?");
5567 return cast<SCEVConstant>(Val)->getValue();
5568}
5569
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005570/// computeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005571/// 'icmp op load X, cst', try to see if we can compute the backedge
5572/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005573ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005574ScalarEvolution::computeLoadConstantCompareExitLimit(
Andrew Trick3ca3f982011-07-26 17:19:55 +00005575 LoadInst *LI,
5576 Constant *RHS,
5577 const Loop *L,
5578 ICmpInst::Predicate predicate) {
5579
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005580 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005581
5582 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005583 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005584 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005585 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005586
5587 // Make sure that it is really a constant global we are gepping, with an
5588 // initializer, and make sure the first IDX is really 0.
5589 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005590 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005591 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5592 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005593 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005594
5595 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005596 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005597 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005598 unsigned VarIdxNum = 0;
5599 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5600 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5601 Indexes.push_back(CI);
5602 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005603 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005604 VarIdx = GEP->getOperand(i);
5605 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005606 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005607 }
5608
Andrew Trick7004e4b2012-03-26 22:33:59 +00005609 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5610 if (!VarIdx)
5611 return getCouldNotCompute();
5612
Chris Lattnerec901cc2004-10-12 01:49:27 +00005613 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5614 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005615 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005616 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005617
5618 // We can only recognize very limited forms of loop index expressions, in
5619 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005620 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005621 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005622 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5623 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005624 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005625
5626 unsigned MaxSteps = MaxBruteForceIterations;
5627 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005628 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005629 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005630 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005631
5632 // Form the GEP offset.
5633 Indexes[VarIdxNum] = Val;
5634
Chris Lattnere166a852012-01-24 05:49:24 +00005635 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5636 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005637 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005638
5639 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005640 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005641 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005642 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005643 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005644 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005645 }
5646 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005647 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005648}
5649
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00005650ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
5651 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
5652 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
5653 if (!RHS)
5654 return getCouldNotCompute();
5655
5656 const BasicBlock *Latch = L->getLoopLatch();
5657 if (!Latch)
5658 return getCouldNotCompute();
5659
5660 const BasicBlock *Predecessor = L->getLoopPredecessor();
5661 if (!Predecessor)
5662 return getCouldNotCompute();
5663
5664 // Return true if V is of the form "LHS `shift_op` <positive constant>".
5665 // Return LHS in OutLHS and shift_opt in OutOpCode.
5666 auto MatchPositiveShift =
5667 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
5668
5669 using namespace PatternMatch;
5670
5671 ConstantInt *ShiftAmt;
5672 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5673 OutOpCode = Instruction::LShr;
5674 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5675 OutOpCode = Instruction::AShr;
5676 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5677 OutOpCode = Instruction::Shl;
5678 else
5679 return false;
5680
5681 return ShiftAmt->getValue().isStrictlyPositive();
5682 };
5683
5684 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
5685 //
5686 // loop:
5687 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
5688 // %iv.shifted = lshr i32 %iv, <positive constant>
5689 //
5690 // Return true on a succesful match. Return the corresponding PHI node (%iv
5691 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
5692 auto MatchShiftRecurrence =
5693 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
5694 Optional<Instruction::BinaryOps> PostShiftOpCode;
5695
5696 {
5697 Instruction::BinaryOps OpC;
5698 Value *V;
5699
5700 // If we encounter a shift instruction, "peel off" the shift operation,
5701 // and remember that we did so. Later when we inspect %iv's backedge
5702 // value, we will make sure that the backedge value uses the same
5703 // operation.
5704 //
5705 // Note: the peeled shift operation does not have to be the same
5706 // instruction as the one feeding into the PHI's backedge value. We only
5707 // really care about it being the same *kind* of shift instruction --
5708 // that's all that is required for our later inferences to hold.
5709 if (MatchPositiveShift(LHS, V, OpC)) {
5710 PostShiftOpCode = OpC;
5711 LHS = V;
5712 }
5713 }
5714
5715 PNOut = dyn_cast<PHINode>(LHS);
5716 if (!PNOut || PNOut->getParent() != L->getHeader())
5717 return false;
5718
5719 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
5720 Value *OpLHS;
5721
5722 return
5723 // The backedge value for the PHI node must be a shift by a positive
5724 // amount
5725 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
5726
5727 // of the PHI node itself
5728 OpLHS == PNOut &&
5729
5730 // and the kind of shift should be match the kind of shift we peeled
5731 // off, if any.
5732 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
5733 };
5734
5735 PHINode *PN;
5736 Instruction::BinaryOps OpCode;
5737 if (!MatchShiftRecurrence(LHS, PN, OpCode))
5738 return getCouldNotCompute();
5739
5740 const DataLayout &DL = getDataLayout();
5741
5742 // The key rationale for this optimization is that for some kinds of shift
5743 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
5744 // within a finite number of iterations. If the condition guarding the
5745 // backedge (in the sense that the backedge is taken if the condition is true)
5746 // is false for the value the shift recurrence stabilizes to, then we know
5747 // that the backedge is taken only a finite number of times.
5748
5749 ConstantInt *StableValue = nullptr;
5750 switch (OpCode) {
5751 default:
5752 llvm_unreachable("Impossible case!");
5753
5754 case Instruction::AShr: {
5755 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
5756 // bitwidth(K) iterations.
5757 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
5758 bool KnownZero, KnownOne;
5759 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
5760 Predecessor->getTerminator(), &DT);
5761 auto *Ty = cast<IntegerType>(RHS->getType());
5762 if (KnownZero)
5763 StableValue = ConstantInt::get(Ty, 0);
5764 else if (KnownOne)
5765 StableValue = ConstantInt::get(Ty, -1, true);
5766 else
5767 return getCouldNotCompute();
5768
5769 break;
5770 }
5771 case Instruction::LShr:
5772 case Instruction::Shl:
5773 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
5774 // stabilize to 0 in at most bitwidth(K) iterations.
5775 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
5776 break;
5777 }
5778
5779 auto *Result =
5780 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
5781 assert(Result->getType()->isIntegerTy(1) &&
5782 "Otherwise cannot be an operand to a branch instruction");
5783
5784 if (Result->isZeroValue()) {
5785 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
5786 const SCEV *UpperBound =
5787 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
5788 return ExitLimit(getCouldNotCompute(), UpperBound);
5789 }
5790
5791 return getCouldNotCompute();
5792}
Chris Lattnerec901cc2004-10-12 01:49:27 +00005793
Chris Lattnerdd730472004-04-17 22:58:41 +00005794/// CanConstantFold - Return true if we can constant fold an instruction of the
5795/// specified type, assuming that all operands were constants.
5796static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005797 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005798 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5799 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005800 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005801
Chris Lattnerdd730472004-04-17 22:58:41 +00005802 if (const CallInst *CI = dyn_cast<CallInst>(I))
5803 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005804 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005805 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005806}
5807
Andrew Trick3a86ba72011-10-05 03:25:31 +00005808/// Determine whether this instruction can constant evolve within this loop
5809/// assuming its operands can all constant evolve.
5810static bool canConstantEvolve(Instruction *I, const Loop *L) {
5811 // An instruction outside of the loop can't be derived from a loop PHI.
5812 if (!L->contains(I)) return false;
5813
5814 if (isa<PHINode>(I)) {
David Blaikie19ef0d32015-03-24 16:33:19 +00005815 // We don't currently keep track of the control flow needed to evaluate
5816 // PHIs, so we cannot handle PHIs inside of loops.
5817 return L->getHeader() == I->getParent();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005818 }
5819
5820 // If we won't be able to constant fold this expression even if the operands
5821 // are constants, bail early.
5822 return CanConstantFold(I);
5823}
5824
5825/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5826/// recursing through each instruction operand until reaching a loop header phi.
5827static PHINode *
5828getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005829 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005830
5831 // Otherwise, we can evaluate this instruction if all of its operands are
5832 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005833 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005834 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5835 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5836
5837 if (isa<Constant>(*OpI)) continue;
5838
5839 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005840 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005841
5842 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005843 if (!P)
5844 // If this operand is already visited, reuse the prior result.
5845 // We may have P != PHI if this is the deepest point at which the
5846 // inconsistent paths meet.
5847 P = PHIMap.lookup(OpInst);
5848 if (!P) {
5849 // Recurse and memoize the results, whether a phi is found or not.
5850 // This recursive call invalidates pointers into PHIMap.
5851 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5852 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005853 }
Craig Topper9f008862014-04-15 04:59:12 +00005854 if (!P)
5855 return nullptr; // Not evolving from PHI
5856 if (PHI && PHI != P)
5857 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005858 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005859 }
5860 // This is a expression evolving from a constant PHI!
5861 return PHI;
5862}
5863
Chris Lattnerdd730472004-04-17 22:58:41 +00005864/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5865/// in the loop that V is derived from. We allow arbitrary operations along the
5866/// way, but the operands of an operation must either be constants or a value
5867/// derived from a constant PHI. If this expression does not fit with these
5868/// constraints, return null.
5869static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005870 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005871 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005872
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00005873 if (PHINode *PN = dyn_cast<PHINode>(I))
Andrew Trick3a86ba72011-10-05 03:25:31 +00005874 return PN;
Chris Lattnerdd730472004-04-17 22:58:41 +00005875
Andrew Trick3a86ba72011-10-05 03:25:31 +00005876 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005877 DenseMap<Instruction *, PHINode *> PHIMap;
5878 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005879}
5880
5881/// EvaluateExpression - Given an expression that passes the
5882/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5883/// in the loop has the value PHIVal. If we can't fold this expression for some
5884/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005885static Constant *EvaluateExpression(Value *V, const Loop *L,
5886 DenseMap<Instruction *, Constant *> &Vals,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005887 const DataLayout &DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005888 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005889 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005890 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005891 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005892 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005893
Andrew Trick3a86ba72011-10-05 03:25:31 +00005894 if (Constant *C = Vals.lookup(I)) return C;
5895
Nick Lewyckya6674c72011-10-22 19:58:20 +00005896 // An instruction inside the loop depends on a value outside the loop that we
5897 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005898 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005899
5900 // An unmapped PHI can be due to a branch or another loop inside this loop,
5901 // or due to this not being the initial iteration through a loop where we
5902 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005903 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005904
Dan Gohmanf820bd32010-06-22 13:15:46 +00005905 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005906
5907 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005908 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5909 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005910 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005911 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005912 continue;
5913 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005914 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005915 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005916 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005917 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005918 }
5919
Nick Lewyckya6674c72011-10-22 19:58:20 +00005920 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005921 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005922 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005923 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5924 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005925 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005926 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005927 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005928 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005929}
5930
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00005931
5932// If every incoming value to PN except the one for BB is a specific Constant,
5933// return that, else return nullptr.
5934static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
5935 Constant *IncomingVal = nullptr;
5936
5937 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5938 if (PN->getIncomingBlock(i) == BB)
5939 continue;
5940
5941 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
5942 if (!CurrentVal)
5943 return nullptr;
5944
5945 if (IncomingVal != CurrentVal) {
5946 if (IncomingVal)
5947 return nullptr;
5948 IncomingVal = CurrentVal;
5949 }
5950 }
5951
5952 return IncomingVal;
5953}
5954
Chris Lattnerdd730472004-04-17 22:58:41 +00005955/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5956/// in the header of its containing loop, we know the loop executes a
5957/// constant number of times, and the PHI node is just a recurrence
5958/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005959Constant *
5960ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005961 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005962 const Loop *L) {
Sanjoy Das4493b402015-10-07 17:38:25 +00005963 auto I = ConstantEvolutionLoopExitValue.find(PN);
Chris Lattnerdd730472004-04-17 22:58:41 +00005964 if (I != ConstantEvolutionLoopExitValue.end())
5965 return I->second;
5966
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005967 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005968 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005969
5970 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5971
Andrew Trick3a86ba72011-10-05 03:25:31 +00005972 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005973 BasicBlock *Header = L->getHeader();
5974 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005975
Sanjoy Dasdd709962015-10-08 18:28:36 +00005976 BasicBlock *Latch = L->getLoopLatch();
5977 if (!Latch)
5978 return nullptr;
5979
Sanjoy Das4493b402015-10-07 17:38:25 +00005980 for (auto &I : *Header) {
5981 PHINode *PHI = dyn_cast<PHINode>(&I);
5982 if (!PHI) break;
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00005983 auto *StartCST = getOtherIncomingValue(PHI, Latch);
Craig Topper9f008862014-04-15 04:59:12 +00005984 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005985 CurrentIterVals[PHI] = StartCST;
5986 }
5987 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005988 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005989
Sanjoy Dasdd709962015-10-08 18:28:36 +00005990 Value *BEValue = PN->getIncomingValueForBlock(Latch);
Chris Lattnerdd730472004-04-17 22:58:41 +00005991
5992 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005993 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005994 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005995
Dan Gohman0bddac12009-02-24 18:55:53 +00005996 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005997 unsigned IterationNum = 0;
Sanjoy Das49edd3b2015-10-27 00:52:09 +00005998 const DataLayout &DL = getDataLayout();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005999 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006000 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00006001 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00006002
Nick Lewyckya6674c72011-10-22 19:58:20 +00006003 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00006004 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006005 DenseMap<Instruction *, Constant *> NextIterVals;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006006 Constant *NextPHI =
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006007 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Craig Topper9f008862014-04-15 04:59:12 +00006008 if (!NextPHI)
6009 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00006010 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006011
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006012 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6013
Nick Lewyckya6674c72011-10-22 19:58:20 +00006014 // Also evaluate the other PHI nodes. However, we don't get to stop if we
6015 // cease to be able to evaluate one of them or if they stop evolving,
6016 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006017 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00006018 for (const auto &I : CurrentIterVals) {
6019 PHINode *PHI = dyn_cast<PHINode>(I.first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00006020 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Sanjoy Das4493b402015-10-07 17:38:25 +00006021 PHIsToCompute.emplace_back(PHI, I.second);
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006022 }
6023 // We use two distinct loops because EvaluateExpression may invalidate any
6024 // iterators into CurrentIterVals.
Sanjoy Das4493b402015-10-07 17:38:25 +00006025 for (const auto &I : PHIsToCompute) {
6026 PHINode *PHI = I.first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006027 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006028 if (!NextPHI) { // Not already computed.
Sanjoy Dasdd709962015-10-08 18:28:36 +00006029 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006030 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006031 }
Sanjoy Das4493b402015-10-07 17:38:25 +00006032 if (NextPHI != I.second)
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006033 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006034 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006035
6036 // If all entries in CurrentIterVals == NextIterVals then we can stop
6037 // iterating, the loop can't continue to change.
6038 if (StoppedEvolving)
6039 return RetVal = CurrentIterVals[PN];
6040
Andrew Trick3a86ba72011-10-05 03:25:31 +00006041 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00006042 }
6043}
6044
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006045const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
Nick Lewyckya6674c72011-10-22 19:58:20 +00006046 Value *Cond,
6047 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00006048 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00006049 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00006050
Dan Gohman866971e2010-06-19 14:17:24 +00006051 // If the loop is canonicalized, the PHI will have exactly two entries.
6052 // That's the only form we support here.
6053 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6054
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006055 DenseMap<Instruction *, Constant *> CurrentIterVals;
6056 BasicBlock *Header = L->getHeader();
6057 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6058
Sanjoy Dasdd709962015-10-08 18:28:36 +00006059 BasicBlock *Latch = L->getLoopLatch();
6060 assert(Latch && "Should follow from NumIncomingValues == 2!");
6061
Sanjoy Das4493b402015-10-07 17:38:25 +00006062 for (auto &I : *Header) {
6063 PHINode *PHI = dyn_cast<PHINode>(&I);
6064 if (!PHI)
6065 break;
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006066 auto *StartCST = getOtherIncomingValue(PHI, Latch);
Craig Topper9f008862014-04-15 04:59:12 +00006067 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006068 CurrentIterVals[PHI] = StartCST;
6069 }
6070 if (!CurrentIterVals.count(PN))
6071 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00006072
6073 // Okay, we find a PHI node that defines the trip count of this loop. Execute
6074 // the loop symbolically to determine when the condition gets a value of
6075 // "ExitWhen".
Andrew Trick90c7a102011-11-16 00:52:40 +00006076 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006077 const DataLayout &DL = getDataLayout();
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006078 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Sanjoy Das4493b402015-10-07 17:38:25 +00006079 auto *CondVal = dyn_cast_or_null<ConstantInt>(
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006080 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00006081
Zhou Sheng75b871f2007-01-11 12:24:14 +00006082 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006083 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00006084
Reid Spencer983e3b32007-03-01 07:25:48 +00006085 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00006086 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00006087 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006088 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006089
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006090 // Update all the PHI nodes for the next iteration.
6091 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006092
6093 // Create a list of which PHIs we need to compute. We want to do this before
6094 // calling EvaluateExpression on them because that may invalidate iterators
6095 // into CurrentIterVals.
6096 SmallVector<PHINode *, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00006097 for (const auto &I : CurrentIterVals) {
6098 PHINode *PHI = dyn_cast<PHINode>(I.first);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006099 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006100 PHIsToCompute.push_back(PHI);
6101 }
Sanjoy Das4493b402015-10-07 17:38:25 +00006102 for (PHINode *PHI : PHIsToCompute) {
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006103 Constant *&NextPHI = NextIterVals[PHI];
6104 if (NextPHI) continue; // Already computed!
6105
Sanjoy Dasdd709962015-10-08 18:28:36 +00006106 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006107 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006108 }
6109 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006110 }
6111
6112 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006113 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006114}
6115
Dan Gohman237d9e52009-09-03 15:00:26 +00006116/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006117/// at the specified scope in the program. The L value specifies a loop
6118/// nest to evaluate the expression at, where null is the top-level or a
6119/// specified loop is immediately inside of the loop.
6120///
6121/// This method can be used to compute the exit value for a variable defined
6122/// in a loop by querying what the value will hold in the parent loop.
6123///
Dan Gohman8ca08852009-05-24 23:25:42 +00006124/// In the case that a relevant loop exit value cannot be computed, the
6125/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006126const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006127 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00006128 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
6129 for (unsigned u = 0; u < Values.size(); u++) {
6130 if (Values[u].first == L)
6131 return Values[u].second ? Values[u].second : V;
6132 }
Craig Topper9f008862014-04-15 04:59:12 +00006133 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006134 // Otherwise compute it.
6135 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00006136 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
6137 for (unsigned u = Values2.size(); u > 0; u--) {
6138 if (Values2[u - 1].first == L) {
6139 Values2[u - 1].second = C;
6140 break;
6141 }
6142 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006143 return C;
6144}
6145
Nick Lewyckya6674c72011-10-22 19:58:20 +00006146/// This builds up a Constant using the ConstantExpr interface. That way, we
6147/// will return Constants for objects which aren't represented by a
6148/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6149/// Returns NULL if the SCEV isn't representable as a Constant.
6150static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00006151 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00006152 case scCouldNotCompute:
6153 case scAddRecExpr:
6154 break;
6155 case scConstant:
6156 return cast<SCEVConstant>(V)->getValue();
6157 case scUnknown:
6158 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6159 case scSignExtend: {
6160 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6161 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6162 return ConstantExpr::getSExt(CastOp, SS->getType());
6163 break;
6164 }
6165 case scZeroExtend: {
6166 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6167 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6168 return ConstantExpr::getZExt(CastOp, SZ->getType());
6169 break;
6170 }
6171 case scTruncate: {
6172 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6173 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6174 return ConstantExpr::getTrunc(CastOp, ST->getType());
6175 break;
6176 }
6177 case scAddExpr: {
6178 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6179 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006180 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6181 unsigned AS = PTy->getAddressSpace();
6182 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6183 C = ConstantExpr::getBitCast(C, DestPtrTy);
6184 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00006185 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6186 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006187 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006188
6189 // First pointer!
6190 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006191 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00006192 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006193 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006194 // The offsets have been converted to bytes. We can add bytes to an
6195 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006196 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006197 }
6198
6199 // Don't bother trying to sum two pointers. We probably can't
6200 // statically compute a load that results from it anyway.
6201 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00006202 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006203
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006204 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6205 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00006206 C2 = ConstantExpr::getIntegerCast(
6207 C2, Type::getInt32Ty(C->getContext()), true);
David Blaikie4a2e73b2015-04-02 18:55:32 +00006208 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006209 } else
6210 C = ConstantExpr::getAdd(C, C2);
6211 }
6212 return C;
6213 }
6214 break;
6215 }
6216 case scMulExpr: {
6217 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6218 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6219 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00006220 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006221 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6222 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006223 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006224 C = ConstantExpr::getMul(C, C2);
6225 }
6226 return C;
6227 }
6228 break;
6229 }
6230 case scUDivExpr: {
6231 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6232 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6233 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6234 if (LHS->getType() == RHS->getType())
6235 return ConstantExpr::getUDiv(LHS, RHS);
6236 break;
6237 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00006238 case scSMaxExpr:
6239 case scUMaxExpr:
6240 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006241 }
Craig Topper9f008862014-04-15 04:59:12 +00006242 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006243}
6244
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006245const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006246 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00006247
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006248 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00006249 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00006250 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006251 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006252 const Loop *LI = this->LI[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00006253 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
6254 if (PHINode *PN = dyn_cast<PHINode>(I))
6255 if (PN->getParent() == LI->getHeader()) {
6256 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00006257 // to see if the loop that contains it has a known backedge-taken
6258 // count. If so, we may be able to force computation of the exit
6259 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00006260 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00006261 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00006262 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006263 // Okay, we know how many times the containing loop executes. If
6264 // this is a constant evolving PHI node, get the final value at
6265 // the specified iteration number.
6266 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00006267 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00006268 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00006269 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00006270 }
6271 }
6272
Reid Spencere6328ca2006-12-04 21:33:23 +00006273 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00006274 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00006275 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00006276 // result. This is particularly useful for computing loop exit values.
6277 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006278 SmallVector<Constant *, 4> Operands;
6279 bool MadeImprovement = false;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00006280 for (Value *Op : I->operands()) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006281 if (Constant *C = dyn_cast<Constant>(Op)) {
6282 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006283 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00006284 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006285
6286 // If any of the operands is non-constant and if they are
6287 // non-integer and non-pointer, don't even try to analyze them
6288 // with scev techniques.
6289 if (!isSCEVable(Op->getType()))
6290 return V;
6291
6292 const SCEV *OrigV = getSCEV(Op);
6293 const SCEV *OpV = getSCEVAtScope(OrigV, L);
6294 MadeImprovement |= OrigV != OpV;
6295
Nick Lewyckya6674c72011-10-22 19:58:20 +00006296 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006297 if (!C) return V;
6298 if (C->getType() != Op->getType())
6299 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6300 Op->getType(),
6301 false),
6302 C, Op->getType());
6303 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00006304 }
Dan Gohmance973df2009-06-24 04:48:43 +00006305
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006306 // Check to see if getSCEVAtScope actually made an improvement.
6307 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00006308 Constant *C = nullptr;
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006309 const DataLayout &DL = getDataLayout();
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006310 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006311 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006312 Operands[1], DL, &TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006313 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6314 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00006315 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006316 } else
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006317 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006318 DL, &TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006319 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00006320 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006321 }
Chris Lattnerdd730472004-04-17 22:58:41 +00006322 }
6323 }
6324
6325 // This is some other type of SCEVUnknown, just return it.
6326 return V;
6327 }
6328
Dan Gohmana30370b2009-05-04 22:02:23 +00006329 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006330 // Avoid performing the look-up in the common case where the specified
6331 // expression has no loop-variant portions.
6332 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006333 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006334 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006335 // Okay, at least one of these operands is loop variant but might be
6336 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00006337 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6338 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00006339 NewOps.push_back(OpAtScope);
6340
6341 for (++i; i != e; ++i) {
6342 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006343 NewOps.push_back(OpAtScope);
6344 }
6345 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006346 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006347 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006348 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006349 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006350 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006351 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006352 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00006353 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006354 }
6355 }
6356 // If we got here, all operands are loop invariant.
6357 return Comm;
6358 }
6359
Dan Gohmana30370b2009-05-04 22:02:23 +00006360 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006361 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6362 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00006363 if (LHS == Div->getLHS() && RHS == Div->getRHS())
6364 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00006365 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00006366 }
6367
6368 // If this is a loop recurrence for a loop that does not contain L, then we
6369 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00006370 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006371 // First, attempt to evaluate each operand.
6372 // Avoid performing the look-up in the common case where the specified
6373 // expression has no loop-variant portions.
6374 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6375 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6376 if (OpAtScope == AddRec->getOperand(i))
6377 continue;
6378
6379 // Okay, at least one of these operands is loop variant but might be
6380 // foldable. Build a new instance of the folded commutative expression.
6381 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6382 AddRec->op_begin()+i);
6383 NewOps.push_back(OpAtScope);
6384 for (++i; i != e; ++i)
6385 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6386
Andrew Trick759ba082011-04-27 01:21:25 +00006387 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00006388 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00006389 AddRec->getNoWrapFlags(SCEV::FlagNW));
6390 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00006391 // The addrec may be folded to a nonrecurrence, for example, if the
6392 // induction variable is multiplied by zero after constant folding. Go
6393 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00006394 if (!AddRec)
6395 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006396 break;
6397 }
6398
6399 // If the scope is outside the addrec's loop, evaluate it by using the
6400 // loop exit value of the addrec.
6401 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006402 // To evaluate this recurrence, we need to know how many times the AddRec
6403 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006404 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006405 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00006406
Eli Friedman61f67622008-08-04 23:49:06 +00006407 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006408 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00006409 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006410
Dan Gohman8ca08852009-05-24 23:25:42 +00006411 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00006412 }
6413
Dan Gohmana30370b2009-05-04 22:02:23 +00006414 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006415 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006416 if (Op == Cast->getOperand())
6417 return Cast; // must be loop invariant
6418 return getZeroExtendExpr(Op, Cast->getType());
6419 }
6420
Dan Gohmana30370b2009-05-04 22:02:23 +00006421 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006422 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006423 if (Op == Cast->getOperand())
6424 return Cast; // must be loop invariant
6425 return getSignExtendExpr(Op, Cast->getType());
6426 }
6427
Dan Gohmana30370b2009-05-04 22:02:23 +00006428 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006429 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006430 if (Op == Cast->getOperand())
6431 return Cast; // must be loop invariant
6432 return getTruncateExpr(Op, Cast->getType());
6433 }
6434
Torok Edwinfbcc6632009-07-14 16:55:14 +00006435 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006436}
6437
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006438/// getSCEVAtScope - This is a convenience function which does
6439/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00006440const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00006441 return getSCEVAtScope(getSCEV(V), L);
6442}
6443
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006444/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6445/// following equation:
6446///
6447/// A * X = B (mod N)
6448///
6449/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6450/// A and B isn't important.
6451///
6452/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006453static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006454 ScalarEvolution &SE) {
6455 uint32_t BW = A.getBitWidth();
6456 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6457 assert(A != 0 && "A must be non-zero.");
6458
6459 // 1. D = gcd(A, N)
6460 //
6461 // The gcd of A and N may have only one prime factor: 2. The number of
6462 // trailing zeros in A is its multiplicity
6463 uint32_t Mult2 = A.countTrailingZeros();
6464 // D = 2^Mult2
6465
6466 // 2. Check if B is divisible by D.
6467 //
6468 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6469 // is not less than multiplicity of this prime factor for D.
6470 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00006471 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006472
6473 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6474 // modulo (N / D).
6475 //
6476 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6477 // bit width during computations.
6478 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6479 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00006480 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006481 APInt I = AD.multiplicativeInverse(Mod);
6482
6483 // 4. Compute the minimum unsigned root of the equation:
6484 // I * (B / D) mod (N / D)
6485 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6486
6487 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6488 // bits.
6489 return SE.getConstant(Result.trunc(BW));
6490}
Chris Lattnerd934c702004-04-02 20:23:17 +00006491
6492/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6493/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
6494/// might be the same) or two SCEVCouldNotCompute objects.
6495///
Dan Gohmanaf752342009-07-07 17:06:11 +00006496static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00006497SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006498 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00006499 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6500 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6501 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00006502
Chris Lattnerd934c702004-04-02 20:23:17 +00006503 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00006504 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00006505 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006506 return std::make_pair(CNC, CNC);
6507 }
6508
Reid Spencer983e3b32007-03-01 07:25:48 +00006509 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00006510 const APInt &L = LC->getValue()->getValue();
6511 const APInt &M = MC->getValue()->getValue();
6512 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00006513 APInt Two(BitWidth, 2);
6514 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006515
Dan Gohmance973df2009-06-24 04:48:43 +00006516 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006517 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006518 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006519 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6520 // The B coefficient is M-N/2
6521 APInt B(M);
6522 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006523
Reid Spencer983e3b32007-03-01 07:25:48 +00006524 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006525 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006526
Reid Spencer983e3b32007-03-01 07:25:48 +00006527 // Compute the B^2-4ac term.
6528 APInt SqrtTerm(B);
6529 SqrtTerm *= B;
6530 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006531
Nick Lewyckyfb780832012-08-01 09:14:36 +00006532 if (SqrtTerm.isNegative()) {
6533 // The loop is provably infinite.
6534 const SCEV *CNC = SE.getCouldNotCompute();
6535 return std::make_pair(CNC, CNC);
6536 }
6537
Reid Spencer983e3b32007-03-01 07:25:48 +00006538 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6539 // integer value or else APInt::sqrt() will assert.
6540 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006541
Dan Gohmance973df2009-06-24 04:48:43 +00006542 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006543 // The divisions must be performed as signed divisions.
6544 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006545 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006546 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006547 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00006548 return std::make_pair(CNC, CNC);
6549 }
6550
Owen Anderson47db9412009-07-22 00:24:57 +00006551 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006552
6553 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006554 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006555 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006556 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006557
Dan Gohmance973df2009-06-24 04:48:43 +00006558 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00006559 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00006560 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006561}
6562
6563/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006564/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006565///
6566/// This is only used for loops with a "x != y" exit test. The exit condition is
6567/// now expressed as a single expression, V = x-y. So the exit test is
6568/// effectively V != 0. We know and take advantage of the fact that this
6569/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006570ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006571ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006572 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006573 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006574 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006575 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006576 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006577 }
6578
Dan Gohman48f82222009-05-04 22:30:44 +00006579 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006580 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006581 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006582
Chris Lattnerdff679f2011-01-09 22:39:48 +00006583 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6584 // the quadratic equation to solve it.
6585 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6586 std::pair<const SCEV *,const SCEV *> Roots =
6587 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006588 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6589 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006590 if (R1 && R2) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006591 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006592 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006593 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6594 R1->getValue(),
6595 R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00006596 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00006597 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006598
Chris Lattnerd934c702004-04-02 20:23:17 +00006599 // We can only use this value if the chrec ends up with an exact zero
6600 // value at this index. When solving for "X*X != 5", for example, we
6601 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006602 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006603 if (Val->isZero())
6604 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006605 }
6606 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006607 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006608 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006609
Chris Lattnerdff679f2011-01-09 22:39:48 +00006610 // Otherwise we can only handle this if it is affine.
6611 if (!AddRec->isAffine())
6612 return getCouldNotCompute();
6613
6614 // If this is an affine expression, the execution count of this branch is
6615 // the minimum unsigned root of the following equation:
6616 //
6617 // Start + Step*N = 0 (mod 2^BW)
6618 //
6619 // equivalent to:
6620 //
6621 // Step*N = -Start (mod 2^BW)
6622 //
6623 // where BW is the common bit width of Start and Step.
6624
6625 // Get the initial value for the loop.
6626 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6627 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6628
6629 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006630 //
6631 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6632 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6633 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6634 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006635 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006636 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006637 return getCouldNotCompute();
6638
Andrew Trick8b55b732011-03-14 16:50:06 +00006639 // For positive steps (counting up until unsigned overflow):
6640 // N = -Start/Step (as unsigned)
6641 // For negative steps (counting down to zero):
6642 // N = Start/-Step
6643 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006644 bool CountDown = StepC->getValue()->getValue().isNegative();
6645 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006646
6647 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006648 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6649 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006650 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6651 ConstantRange CR = getUnsignedRange(Start);
6652 const SCEV *MaxBECount;
6653 if (!CountDown && CR.getUnsignedMin().isMinValue())
6654 // When counting up, the worst starting value is 1, not 0.
6655 MaxBECount = CR.getUnsignedMax().isMinValue()
6656 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6657 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6658 else
6659 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6660 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006661 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006662 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006663
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006664 // As a special case, handle the instance where Step is a positive power of
6665 // two. In this case, determining whether Step divides Distance evenly can be
6666 // done by counting and comparing the number of trailing zeros of Step and
6667 // Distance.
6668 if (!CountDown) {
6669 const APInt &StepV = StepC->getValue()->getValue();
6670 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6671 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6672 // case is not handled as this code is guarded by !CountDown.
6673 if (StepV.isPowerOf2() &&
Sanjoy Dasf3132d32015-09-10 05:27:38 +00006674 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
6675 // Here we've constrained the equation to be of the form
6676 //
6677 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
6678 //
6679 // where we're operating on a W bit wide integer domain and k is
6680 // non-negative. The smallest unsigned solution for X is the trip count.
6681 //
6682 // (0) is equivalent to:
6683 //
6684 // 2^(N + k) * Distance' - 2^N * X = L * 2^W
6685 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
6686 // <=> 2^k * Distance' - X = L * 2^(W - N)
6687 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
6688 //
6689 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
6690 // by 2^(W - N).
6691 //
6692 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
6693 //
6694 // E.g. say we're solving
6695 //
6696 // 2 * Val = 2 * X (in i8) ... (3)
6697 //
6698 // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
6699 //
6700 // Note: It is tempting to solve (3) by setting X = Val, but Val is not
6701 // necessarily the smallest unsigned value of X that satisfies (3).
6702 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
6703 // is i8 1, not i8 -127
6704
6705 const auto *ModuloResult = getUDivExactExpr(Distance, Step);
6706
6707 // Since SCEV does not have a URem node, we construct one using a truncate
6708 // and a zero extend.
6709
6710 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
6711 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
6712 auto *WideTy = Distance->getType();
6713
6714 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
6715 }
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006716 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006717
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006718 // If the condition controls loop exit (the loop exits only if the expression
6719 // is true) and the addition is no-wrap we can use unsigned divide to
6720 // compute the backedge count. In this case, the step may not divide the
6721 // distance, but we don't care because if the condition is "missed" the loop
6722 // will have undefined behavior due to wrapping.
6723 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6724 const SCEV *Exact =
6725 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6726 return ExitLimit(Exact, Exact);
6727 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006728
Chris Lattnerdff679f2011-01-09 22:39:48 +00006729 // Then, try to solve the above equation provided that Start is constant.
6730 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6731 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6732 -StartC->getValue()->getValue(),
6733 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006734 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006735}
6736
6737/// HowFarToNonZero - Return the number of times a backedge checking the
6738/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006739/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006740ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006741ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006742 // Loops that look like: while (X == 0) are very strange indeed. We don't
6743 // handle them yet except for the trivial case. This could be expanded in the
6744 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006745
Chris Lattnerd934c702004-04-02 20:23:17 +00006746 // If the value is a constant, check to see if it is known to be non-zero
6747 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006748 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006749 if (!C->getValue()->isNullValue())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00006750 return getZero(C->getType());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006751 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006752 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006753
Chris Lattnerd934c702004-04-02 20:23:17 +00006754 // We could implement others, but I really doubt anyone writes loops like
6755 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006756 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006757}
6758
Dan Gohmanf9081a22008-09-15 22:18:04 +00006759/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6760/// (which may not be an immediate predecessor) which has exactly one
6761/// successor from which BB is reachable, or null if no such block is
6762/// found.
6763///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006764std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006765ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006766 // If the block has a unique predecessor, then there is no path from the
6767 // predecessor to the block that does not go through the direct edge
6768 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006769 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006770 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006771
6772 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006773 // If the header has a unique predecessor outside the loop, it must be
6774 // a block that has exactly one successor that can reach the loop.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006775 if (Loop *L = LI.getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006776 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006777
Dan Gohman4e3c1132010-04-15 16:19:08 +00006778 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006779}
6780
Dan Gohman450f4e02009-06-20 00:35:32 +00006781/// HasSameValue - SCEV structural equivalence is usually sufficient for
6782/// testing whether two expressions are equal, however for the purposes of
6783/// looking for a condition guarding a loop, it can be useful to be a little
6784/// more general, since a front-end may have replicated the controlling
6785/// expression.
6786///
Dan Gohmanaf752342009-07-07 17:06:11 +00006787static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006788 // Quick check to see if they are the same SCEV.
6789 if (A == B) return true;
6790
Sanjoy Dasf1090b62015-09-27 21:09:48 +00006791 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
6792 // Not all instructions that are "identical" compute the same value. For
6793 // instance, two distinct alloca instructions allocating the same type are
6794 // identical and do not read memory; but compute distinct values.
6795 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
6796 };
6797
Dan Gohman450f4e02009-06-20 00:35:32 +00006798 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6799 // two different instructions with the same value. Check for this case.
6800 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6801 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6802 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6803 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Sanjoy Dasf1090b62015-09-27 21:09:48 +00006804 if (ComputesEqualValues(AI, BI))
Dan Gohman450f4e02009-06-20 00:35:32 +00006805 return true;
6806
6807 // Otherwise assume they may have a different value.
6808 return false;
6809}
6810
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006811/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006812/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006813///
6814bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006815 const SCEV *&LHS, const SCEV *&RHS,
6816 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006817 bool Changed = false;
6818
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006819 // If we hit the max recursion limit bail out.
6820 if (Depth >= 3)
6821 return false;
6822
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006823 // Canonicalize a constant to the right side.
6824 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6825 // Check for both operands constant.
6826 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6827 if (ConstantExpr::getICmp(Pred,
6828 LHSC->getValue(),
6829 RHSC->getValue())->isNullValue())
6830 goto trivially_false;
6831 else
6832 goto trivially_true;
6833 }
6834 // Otherwise swap the operands to put the constant on the right.
6835 std::swap(LHS, RHS);
6836 Pred = ICmpInst::getSwappedPredicate(Pred);
6837 Changed = true;
6838 }
6839
6840 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006841 // addrec's loop, put the addrec on the left. Also make a dominance check,
6842 // as both operands could be addrecs loop-invariant in each other's loop.
6843 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6844 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006845 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006846 std::swap(LHS, RHS);
6847 Pred = ICmpInst::getSwappedPredicate(Pred);
6848 Changed = true;
6849 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006850 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006851
6852 // If there's a constant operand, canonicalize comparisons with boundary
6853 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6854 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6855 const APInt &RA = RC->getValue()->getValue();
6856 switch (Pred) {
6857 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6858 case ICmpInst::ICMP_EQ:
6859 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006860 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6861 if (!RA)
6862 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6863 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006864 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6865 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006866 RHS = AE->getOperand(1);
6867 LHS = ME->getOperand(1);
6868 Changed = true;
6869 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006870 break;
6871 case ICmpInst::ICMP_UGE:
6872 if ((RA - 1).isMinValue()) {
6873 Pred = ICmpInst::ICMP_NE;
6874 RHS = getConstant(RA - 1);
6875 Changed = true;
6876 break;
6877 }
6878 if (RA.isMaxValue()) {
6879 Pred = ICmpInst::ICMP_EQ;
6880 Changed = true;
6881 break;
6882 }
6883 if (RA.isMinValue()) goto trivially_true;
6884
6885 Pred = ICmpInst::ICMP_UGT;
6886 RHS = getConstant(RA - 1);
6887 Changed = true;
6888 break;
6889 case ICmpInst::ICMP_ULE:
6890 if ((RA + 1).isMaxValue()) {
6891 Pred = ICmpInst::ICMP_NE;
6892 RHS = getConstant(RA + 1);
6893 Changed = true;
6894 break;
6895 }
6896 if (RA.isMinValue()) {
6897 Pred = ICmpInst::ICMP_EQ;
6898 Changed = true;
6899 break;
6900 }
6901 if (RA.isMaxValue()) goto trivially_true;
6902
6903 Pred = ICmpInst::ICMP_ULT;
6904 RHS = getConstant(RA + 1);
6905 Changed = true;
6906 break;
6907 case ICmpInst::ICMP_SGE:
6908 if ((RA - 1).isMinSignedValue()) {
6909 Pred = ICmpInst::ICMP_NE;
6910 RHS = getConstant(RA - 1);
6911 Changed = true;
6912 break;
6913 }
6914 if (RA.isMaxSignedValue()) {
6915 Pred = ICmpInst::ICMP_EQ;
6916 Changed = true;
6917 break;
6918 }
6919 if (RA.isMinSignedValue()) goto trivially_true;
6920
6921 Pred = ICmpInst::ICMP_SGT;
6922 RHS = getConstant(RA - 1);
6923 Changed = true;
6924 break;
6925 case ICmpInst::ICMP_SLE:
6926 if ((RA + 1).isMaxSignedValue()) {
6927 Pred = ICmpInst::ICMP_NE;
6928 RHS = getConstant(RA + 1);
6929 Changed = true;
6930 break;
6931 }
6932 if (RA.isMinSignedValue()) {
6933 Pred = ICmpInst::ICMP_EQ;
6934 Changed = true;
6935 break;
6936 }
6937 if (RA.isMaxSignedValue()) goto trivially_true;
6938
6939 Pred = ICmpInst::ICMP_SLT;
6940 RHS = getConstant(RA + 1);
6941 Changed = true;
6942 break;
6943 case ICmpInst::ICMP_UGT:
6944 if (RA.isMinValue()) {
6945 Pred = ICmpInst::ICMP_NE;
6946 Changed = true;
6947 break;
6948 }
6949 if ((RA + 1).isMaxValue()) {
6950 Pred = ICmpInst::ICMP_EQ;
6951 RHS = getConstant(RA + 1);
6952 Changed = true;
6953 break;
6954 }
6955 if (RA.isMaxValue()) goto trivially_false;
6956 break;
6957 case ICmpInst::ICMP_ULT:
6958 if (RA.isMaxValue()) {
6959 Pred = ICmpInst::ICMP_NE;
6960 Changed = true;
6961 break;
6962 }
6963 if ((RA - 1).isMinValue()) {
6964 Pred = ICmpInst::ICMP_EQ;
6965 RHS = getConstant(RA - 1);
6966 Changed = true;
6967 break;
6968 }
6969 if (RA.isMinValue()) goto trivially_false;
6970 break;
6971 case ICmpInst::ICMP_SGT:
6972 if (RA.isMinSignedValue()) {
6973 Pred = ICmpInst::ICMP_NE;
6974 Changed = true;
6975 break;
6976 }
6977 if ((RA + 1).isMaxSignedValue()) {
6978 Pred = ICmpInst::ICMP_EQ;
6979 RHS = getConstant(RA + 1);
6980 Changed = true;
6981 break;
6982 }
6983 if (RA.isMaxSignedValue()) goto trivially_false;
6984 break;
6985 case ICmpInst::ICMP_SLT:
6986 if (RA.isMaxSignedValue()) {
6987 Pred = ICmpInst::ICMP_NE;
6988 Changed = true;
6989 break;
6990 }
6991 if ((RA - 1).isMinSignedValue()) {
6992 Pred = ICmpInst::ICMP_EQ;
6993 RHS = getConstant(RA - 1);
6994 Changed = true;
6995 break;
6996 }
6997 if (RA.isMinSignedValue()) goto trivially_false;
6998 break;
6999 }
7000 }
7001
7002 // Check for obvious equality.
7003 if (HasSameValue(LHS, RHS)) {
7004 if (ICmpInst::isTrueWhenEqual(Pred))
7005 goto trivially_true;
7006 if (ICmpInst::isFalseWhenEqual(Pred))
7007 goto trivially_false;
7008 }
7009
Dan Gohman81585c12010-05-03 16:35:17 +00007010 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7011 // adding or subtracting 1 from one of the operands.
7012 switch (Pred) {
7013 case ICmpInst::ICMP_SLE:
7014 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7015 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007016 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007017 Pred = ICmpInst::ICMP_SLT;
7018 Changed = true;
7019 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007020 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007021 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007022 Pred = ICmpInst::ICMP_SLT;
7023 Changed = true;
7024 }
7025 break;
7026 case ICmpInst::ICMP_SGE:
7027 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007028 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007029 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007030 Pred = ICmpInst::ICMP_SGT;
7031 Changed = true;
7032 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7033 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007034 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007035 Pred = ICmpInst::ICMP_SGT;
7036 Changed = true;
7037 }
7038 break;
7039 case ICmpInst::ICMP_ULE:
7040 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007041 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007042 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007043 Pred = ICmpInst::ICMP_ULT;
7044 Changed = true;
7045 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007046 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007047 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007048 Pred = ICmpInst::ICMP_ULT;
7049 Changed = true;
7050 }
7051 break;
7052 case ICmpInst::ICMP_UGE:
7053 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007054 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007055 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007056 Pred = ICmpInst::ICMP_UGT;
7057 Changed = true;
7058 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007059 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007060 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007061 Pred = ICmpInst::ICMP_UGT;
7062 Changed = true;
7063 }
7064 break;
7065 default:
7066 break;
7067 }
7068
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007069 // TODO: More simplifications are possible here.
7070
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007071 // Recursively simplify until we either hit a recursion limit or nothing
7072 // changes.
7073 if (Changed)
7074 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7075
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007076 return Changed;
7077
7078trivially_true:
7079 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00007080 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007081 Pred = ICmpInst::ICMP_EQ;
7082 return true;
7083
7084trivially_false:
7085 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00007086 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007087 Pred = ICmpInst::ICMP_NE;
7088 return true;
7089}
7090
Dan Gohmane65c9172009-07-13 21:35:55 +00007091bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7092 return getSignedRange(S).getSignedMax().isNegative();
7093}
7094
7095bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7096 return getSignedRange(S).getSignedMin().isStrictlyPositive();
7097}
7098
7099bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7100 return !getSignedRange(S).getSignedMin().isNegative();
7101}
7102
7103bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7104 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7105}
7106
7107bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7108 return isKnownNegative(S) || isKnownPositive(S);
7109}
7110
7111bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7112 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00007113 // Canonicalize the inputs first.
7114 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7115
Dan Gohman07591692010-04-11 22:16:48 +00007116 // If LHS or RHS is an addrec, check to see if the condition is true in
7117 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00007118 // If LHS and RHS are both addrec, both conditions must be true in
7119 // every iteration of the loop.
7120 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7121 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7122 bool LeftGuarded = false;
7123 bool RightGuarded = false;
7124 if (LAR) {
7125 const Loop *L = LAR->getLoop();
7126 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7127 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7128 if (!RAR) return true;
7129 LeftGuarded = true;
7130 }
7131 }
7132 if (RAR) {
7133 const Loop *L = RAR->getLoop();
7134 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7135 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7136 if (!LAR) return true;
7137 RightGuarded = true;
7138 }
7139 }
7140 if (LeftGuarded && RightGuarded)
7141 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007142
Sanjoy Das7d910f22015-10-02 18:50:30 +00007143 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7144 return true;
7145
Dan Gohman07591692010-04-11 22:16:48 +00007146 // Otherwise see what can be done with known constant ranges.
7147 return isKnownPredicateWithRanges(Pred, LHS, RHS);
7148}
7149
Sanjoy Das5dab2052015-07-27 21:42:49 +00007150bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7151 ICmpInst::Predicate Pred,
7152 bool &Increasing) {
7153 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7154
7155#ifndef NDEBUG
7156 // Verify an invariant: inverting the predicate should turn a monotonically
7157 // increasing change to a monotonically decreasing one, and vice versa.
7158 bool IncreasingSwapped;
7159 bool ResultSwapped = isMonotonicPredicateImpl(
7160 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7161
7162 assert(Result == ResultSwapped && "should be able to analyze both!");
7163 if (ResultSwapped)
7164 assert(Increasing == !IncreasingSwapped &&
7165 "monotonicity should flip as we flip the predicate");
7166#endif
7167
7168 return Result;
7169}
7170
7171bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7172 ICmpInst::Predicate Pred,
7173 bool &Increasing) {
Sanjoy Das5dab2052015-07-27 21:42:49 +00007174
7175 // A zero step value for LHS means the induction variable is essentially a
7176 // loop invariant value. We don't really depend on the predicate actually
7177 // flipping from false to true (for increasing predicates, and the other way
7178 // around for decreasing predicates), all we care about is that *if* the
7179 // predicate changes then it only changes from false to true.
7180 //
7181 // A zero step value in itself is not very useful, but there may be places
7182 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7183 // as general as possible.
7184
Sanjoy Das366acc12015-08-06 20:43:41 +00007185 switch (Pred) {
7186 default:
7187 return false; // Conservative answer
7188
7189 case ICmpInst::ICMP_UGT:
7190 case ICmpInst::ICMP_UGE:
7191 case ICmpInst::ICMP_ULT:
7192 case ICmpInst::ICMP_ULE:
7193 if (!LHS->getNoWrapFlags(SCEV::FlagNUW))
7194 return false;
7195
7196 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007197 return true;
Sanjoy Das366acc12015-08-06 20:43:41 +00007198
7199 case ICmpInst::ICMP_SGT:
7200 case ICmpInst::ICMP_SGE:
7201 case ICmpInst::ICMP_SLT:
7202 case ICmpInst::ICMP_SLE: {
7203 if (!LHS->getNoWrapFlags(SCEV::FlagNSW))
7204 return false;
7205
7206 const SCEV *Step = LHS->getStepRecurrence(*this);
7207
7208 if (isKnownNonNegative(Step)) {
7209 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7210 return true;
7211 }
7212
7213 if (isKnownNonPositive(Step)) {
7214 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7215 return true;
7216 }
7217
7218 return false;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007219 }
7220
Sanjoy Das5dab2052015-07-27 21:42:49 +00007221 }
7222
Sanjoy Das366acc12015-08-06 20:43:41 +00007223 llvm_unreachable("switch has default clause!");
Sanjoy Das5dab2052015-07-27 21:42:49 +00007224}
7225
7226bool ScalarEvolution::isLoopInvariantPredicate(
7227 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7228 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7229 const SCEV *&InvariantRHS) {
7230
7231 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7232 if (!isLoopInvariant(RHS, L)) {
7233 if (!isLoopInvariant(LHS, L))
7234 return false;
7235
7236 std::swap(LHS, RHS);
7237 Pred = ICmpInst::getSwappedPredicate(Pred);
7238 }
7239
7240 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7241 if (!ArLHS || ArLHS->getLoop() != L)
7242 return false;
7243
7244 bool Increasing;
7245 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7246 return false;
7247
7248 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7249 // true as the loop iterates, and the backedge is control dependent on
7250 // "ArLHS `Pred` RHS" == true then we can reason as follows:
7251 //
7252 // * if the predicate was false in the first iteration then the predicate
7253 // is never evaluated again, since the loop exits without taking the
7254 // backedge.
7255 // * if the predicate was true in the first iteration then it will
7256 // continue to be true for all future iterations since it is
7257 // monotonically increasing.
7258 //
7259 // For both the above possibilities, we can replace the loop varying
7260 // predicate with its value on the first iteration of the loop (which is
7261 // loop invariant).
7262 //
7263 // A similar reasoning applies for a monotonically decreasing predicate, by
7264 // replacing true with false and false with true in the above two bullets.
7265
7266 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7267
7268 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7269 return false;
7270
7271 InvariantPred = Pred;
7272 InvariantLHS = ArLHS->getStart();
7273 InvariantRHS = RHS;
7274 return true;
7275}
7276
Dan Gohman07591692010-04-11 22:16:48 +00007277bool
7278ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
7279 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007280 if (HasSameValue(LHS, RHS))
7281 return ICmpInst::isTrueWhenEqual(Pred);
7282
Dan Gohman07591692010-04-11 22:16:48 +00007283 // This code is split out from isKnownPredicate because it is called from
7284 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00007285 switch (Pred) {
7286 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00007287 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00007288 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00007289 std::swap(LHS, RHS);
7290 case ICmpInst::ICMP_SLT: {
7291 ConstantRange LHSRange = getSignedRange(LHS);
7292 ConstantRange RHSRange = getSignedRange(RHS);
7293 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
7294 return true;
7295 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
7296 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007297 break;
7298 }
7299 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00007300 std::swap(LHS, RHS);
7301 case ICmpInst::ICMP_SLE: {
7302 ConstantRange LHSRange = getSignedRange(LHS);
7303 ConstantRange RHSRange = getSignedRange(RHS);
7304 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
7305 return true;
7306 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
7307 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007308 break;
7309 }
7310 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00007311 std::swap(LHS, RHS);
7312 case ICmpInst::ICMP_ULT: {
7313 ConstantRange LHSRange = getUnsignedRange(LHS);
7314 ConstantRange RHSRange = getUnsignedRange(RHS);
7315 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
7316 return true;
7317 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
7318 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007319 break;
7320 }
7321 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00007322 std::swap(LHS, RHS);
7323 case ICmpInst::ICMP_ULE: {
7324 ConstantRange LHSRange = getUnsignedRange(LHS);
7325 ConstantRange RHSRange = getUnsignedRange(RHS);
7326 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
7327 return true;
7328 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
7329 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007330 break;
7331 }
7332 case ICmpInst::ICMP_NE: {
7333 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
7334 return true;
7335 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
7336 return true;
7337
7338 const SCEV *Diff = getMinusSCEV(LHS, RHS);
7339 if (isKnownNonZero(Diff))
7340 return true;
7341 break;
7342 }
7343 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00007344 // The check at the top of the function catches the case where
7345 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00007346 break;
7347 }
7348 return false;
7349}
7350
Sanjoy Das11231482015-10-22 19:57:29 +00007351bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7352 const SCEV *LHS,
7353 const SCEV *RHS) {
7354
7355 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7356 // Return Y via OutY.
7357 auto MatchBinaryAddToConst =
7358 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7359 SCEV::NoWrapFlags ExpectedFlags) {
7360 const SCEV *NonConstOp, *ConstOp;
7361 SCEV::NoWrapFlags FlagsPresent;
7362
7363 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7364 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7365 return false;
7366
7367 OutY = cast<SCEVConstant>(ConstOp)->getValue()->getValue();
Sanjoy Das52f7b082015-10-23 20:09:57 +00007368 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
Sanjoy Das11231482015-10-22 19:57:29 +00007369 };
7370
7371 APInt C;
7372
7373 switch (Pred) {
7374 default:
7375 break;
7376
7377 case ICmpInst::ICMP_SGE:
7378 std::swap(LHS, RHS);
7379 case ICmpInst::ICMP_SLE:
7380 // X s<= (X + C)<nsw> if C >= 0
7381 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7382 return true;
7383
7384 // (X + C)<nsw> s<= X if C <= 0
7385 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7386 !C.isStrictlyPositive())
7387 return true;
7388
7389 case ICmpInst::ICMP_SGT:
7390 std::swap(LHS, RHS);
7391 case ICmpInst::ICMP_SLT:
7392 // X s< (X + C)<nsw> if C > 0
7393 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7394 C.isStrictlyPositive())
7395 return true;
7396
7397 // (X + C)<nsw> s< X if C < 0
7398 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7399 return true;
7400 }
7401
7402 return false;
7403}
7404
Sanjoy Das7d910f22015-10-02 18:50:30 +00007405bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7406 const SCEV *LHS,
7407 const SCEV *RHS) {
Sanjoy Das10dffcb2015-10-08 03:46:00 +00007408 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
Sanjoy Das7d910f22015-10-02 18:50:30 +00007409 return false;
7410
7411 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7412 // the stack can result in exponential time complexity.
7413 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7414
7415 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7416 //
7417 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7418 // isKnownPredicate. isKnownPredicate is more powerful, but also more
7419 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7420 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
7421 // use isKnownPredicate later if needed.
Alexander Kornienko484e48e32015-11-05 21:07:12 +00007422 return isKnownNonNegative(RHS) &&
7423 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7424 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
Sanjoy Das7d910f22015-10-02 18:50:30 +00007425}
7426
Dan Gohmane65c9172009-07-13 21:35:55 +00007427/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7428/// protected by a conditional between LHS and RHS. This is used to
7429/// to eliminate casts.
7430bool
7431ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7432 ICmpInst::Predicate Pred,
7433 const SCEV *LHS, const SCEV *RHS) {
7434 // Interpret a null as meaning no loop, where there is obviously no guard
7435 // (interprocedural conditions notwithstanding).
7436 if (!L) return true;
7437
Sanjoy Das1f05c512014-10-10 21:22:34 +00007438 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7439
Dan Gohmane65c9172009-07-13 21:35:55 +00007440 BasicBlock *Latch = L->getLoopLatch();
7441 if (!Latch)
7442 return false;
7443
7444 BranchInst *LoopContinuePredicate =
7445 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007446 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7447 isImpliedCond(Pred, LHS, RHS,
7448 LoopContinuePredicate->getCondition(),
7449 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7450 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007451
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007452 // We don't want more than one activation of the following loops on the stack
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007453 // -- that can lead to O(n!) time complexity.
7454 if (WalkingBEDominatingConds)
7455 return false;
7456
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +00007457 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007458
Sanjoy Dasb174f9a2015-09-25 23:53:50 +00007459 // See if we can exploit a trip count to prove the predicate.
7460 const auto &BETakenInfo = getBackedgeTakenInfo(L);
7461 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7462 if (LatchBECount != getCouldNotCompute()) {
7463 // We know that Latch branches back to the loop header exactly
7464 // LatchBECount times. This means the backdege condition at Latch is
7465 // equivalent to "{0,+,1} u< LatchBECount".
7466 Type *Ty = LatchBECount->getType();
7467 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7468 const SCEV *LoopCounter =
7469 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7470 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7471 LatchBECount))
7472 return true;
7473 }
7474
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007475 // Check conditions due to any @llvm.assume intrinsics.
7476 for (auto &AssumeVH : AC.assumptions()) {
7477 if (!AssumeVH)
7478 continue;
7479 auto *CI = cast<CallInst>(AssumeVH);
7480 if (!DT.dominates(CI, Latch->getTerminator()))
7481 continue;
7482
7483 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7484 return true;
7485 }
7486
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007487 // If the loop is not reachable from the entry block, we risk running into an
7488 // infinite loop as we walk up into the dom tree. These loops do not matter
7489 // anyway, so we just return a conservative answer when we see them.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007490 if (!DT.isReachableFromEntry(L->getHeader()))
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007491 return false;
7492
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007493 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7494 DTN != HeaderDTN; DTN = DTN->getIDom()) {
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007495
7496 assert(DTN && "should reach the loop header before reaching the root!");
7497
7498 BasicBlock *BB = DTN->getBlock();
7499 BasicBlock *PBB = BB->getSinglePredecessor();
7500 if (!PBB)
7501 continue;
7502
7503 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7504 if (!ContinuePredicate || !ContinuePredicate->isConditional())
7505 continue;
7506
7507 Value *Condition = ContinuePredicate->getCondition();
7508
7509 // If we have an edge `E` within the loop body that dominates the only
7510 // latch, the condition guarding `E` also guards the backedge. This
7511 // reasoning works only for loops with a single latch.
7512
7513 BasicBlockEdge DominatingEdge(PBB, BB);
7514 if (DominatingEdge.isSingleEdge()) {
7515 // We're constructively (and conservatively) enumerating edges within the
7516 // loop body that dominate the latch. The dominator tree better agree
7517 // with us on this:
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007518 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007519
7520 if (isImpliedCond(Pred, LHS, RHS, Condition,
7521 BB != ContinuePredicate->getSuccessor(0)))
7522 return true;
7523 }
7524 }
7525
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007526 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007527}
7528
Dan Gohmanb50349a2010-04-11 19:27:13 +00007529/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00007530/// by a conditional between LHS and RHS. This is used to help avoid max
7531/// expressions in loop trip counts, and to eliminate casts.
7532bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00007533ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7534 ICmpInst::Predicate Pred,
7535 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00007536 // Interpret a null as meaning no loop, where there is obviously no guard
7537 // (interprocedural conditions notwithstanding).
7538 if (!L) return false;
7539
Sanjoy Das1f05c512014-10-10 21:22:34 +00007540 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7541
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007542 // Starting at the loop predecessor, climb up the predecessor chain, as long
7543 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00007544 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00007545 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00007546 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00007547 Pair.first;
7548 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00007549
7550 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00007551 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00007552 if (!LoopEntryPredicate ||
7553 LoopEntryPredicate->isUnconditional())
7554 continue;
7555
Dan Gohmane18c2d62010-08-10 23:46:30 +00007556 if (isImpliedCond(Pred, LHS, RHS,
7557 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00007558 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00007559 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007560 }
7561
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007562 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007563 for (auto &AssumeVH : AC.assumptions()) {
Chandler Carruth66b31302015-01-04 12:03:27 +00007564 if (!AssumeVH)
7565 continue;
7566 auto *CI = cast<CallInst>(AssumeVH);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007567 if (!DT.dominates(CI, L->getHeader()))
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007568 continue;
7569
7570 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7571 return true;
7572 }
7573
Dan Gohman2a62fd92008-08-12 20:17:31 +00007574 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007575}
7576
Benjamin Kramer039b1042015-10-28 13:54:36 +00007577namespace {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007578/// RAII wrapper to prevent recursive application of isImpliedCond.
7579/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7580/// currently evaluating isImpliedCond.
7581struct MarkPendingLoopPredicate {
7582 Value *Cond;
7583 DenseSet<Value*> &LoopPreds;
7584 bool Pending;
7585
7586 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7587 : Cond(C), LoopPreds(LP) {
7588 Pending = !LoopPreds.insert(Cond).second;
7589 }
7590 ~MarkPendingLoopPredicate() {
7591 if (!Pending)
7592 LoopPreds.erase(Cond);
7593 }
7594};
Benjamin Kramer039b1042015-10-28 13:54:36 +00007595} // end anonymous namespace
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007596
Dan Gohman430f0cc2009-07-21 23:03:19 +00007597/// isImpliedCond - Test whether the condition described by Pred, LHS,
7598/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007599bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007600 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00007601 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007602 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007603 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7604 if (Mark.Pending)
7605 return false;
7606
Dan Gohman8b0a4192010-03-01 17:49:51 +00007607 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007608 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007609 if (BO->getOpcode() == Instruction::And) {
7610 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007611 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7612 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007613 } else if (BO->getOpcode() == Instruction::Or) {
7614 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007615 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7616 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007617 }
7618 }
7619
Dan Gohmane18c2d62010-08-10 23:46:30 +00007620 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007621 if (!ICI) return false;
7622
Andrew Trickfa594032012-11-29 18:35:13 +00007623 // Now that we found a conditional branch that dominates the loop or controls
7624 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00007625 ICmpInst::Predicate FoundPred;
7626 if (Inverse)
7627 FoundPred = ICI->getInversePredicate();
7628 else
7629 FoundPred = ICI->getPredicate();
7630
7631 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7632 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00007633
Sanjoy Dasdf1635d2015-09-25 19:59:52 +00007634 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
7635}
7636
7637bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
7638 const SCEV *RHS,
7639 ICmpInst::Predicate FoundPred,
7640 const SCEV *FoundLHS,
7641 const SCEV *FoundRHS) {
Sanjoy Das14598832015-03-26 17:28:26 +00007642 // Balance the types.
7643 if (getTypeSizeInBits(LHS->getType()) <
7644 getTypeSizeInBits(FoundLHS->getType())) {
7645 if (CmpInst::isSigned(Pred)) {
7646 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7647 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7648 } else {
7649 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7650 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7651 }
7652 } else if (getTypeSizeInBits(LHS->getType()) >
Dan Gohmane65c9172009-07-13 21:35:55 +00007653 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00007654 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007655 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7656 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7657 } else {
7658 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7659 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7660 }
7661 }
7662
Dan Gohman430f0cc2009-07-21 23:03:19 +00007663 // Canonicalize the query to match the way instcombine will have
7664 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00007665 if (SimplifyICmpOperands(Pred, LHS, RHS))
7666 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00007667 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00007668 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7669 if (FoundLHS == FoundRHS)
7670 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00007671
7672 // Check to see if we can make the LHS or RHS match.
7673 if (LHS == FoundRHS || RHS == FoundLHS) {
7674 if (isa<SCEVConstant>(RHS)) {
7675 std::swap(FoundLHS, FoundRHS);
7676 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7677 } else {
7678 std::swap(LHS, RHS);
7679 Pred = ICmpInst::getSwappedPredicate(Pred);
7680 }
7681 }
7682
7683 // Check whether the found predicate is the same as the desired predicate.
7684 if (FoundPred == Pred)
7685 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7686
7687 // Check whether swapping the found predicate makes it the same as the
7688 // desired predicate.
7689 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7690 if (isa<SCEVConstant>(RHS))
7691 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7692 else
7693 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7694 RHS, LHS, FoundLHS, FoundRHS);
7695 }
7696
Sanjoy Das6e78b172015-10-22 19:57:34 +00007697 // Unsigned comparison is the same as signed comparison when both the operands
7698 // are non-negative.
7699 if (CmpInst::isUnsigned(FoundPred) &&
7700 CmpInst::getSignedPredicate(FoundPred) == Pred &&
7701 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
7702 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7703
Sanjoy Dasc5676df2014-11-13 00:00:58 +00007704 // Check if we can make progress by sharpening ranges.
7705 if (FoundPred == ICmpInst::ICMP_NE &&
7706 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7707
7708 const SCEVConstant *C = nullptr;
7709 const SCEV *V = nullptr;
7710
7711 if (isa<SCEVConstant>(FoundLHS)) {
7712 C = cast<SCEVConstant>(FoundLHS);
7713 V = FoundRHS;
7714 } else {
7715 C = cast<SCEVConstant>(FoundRHS);
7716 V = FoundLHS;
7717 }
7718
7719 // The guarding predicate tells us that C != V. If the known range
7720 // of V is [C, t), we can sharpen the range to [C + 1, t). The
7721 // range we consider has to correspond to same signedness as the
7722 // predicate we're interested in folding.
7723
7724 APInt Min = ICmpInst::isSigned(Pred) ?
7725 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7726
7727 if (Min == C->getValue()->getValue()) {
7728 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
7729 // This is true even if (Min + 1) wraps around -- in case of
7730 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
7731
7732 APInt SharperMin = Min + 1;
7733
7734 switch (Pred) {
7735 case ICmpInst::ICMP_SGE:
7736 case ICmpInst::ICMP_UGE:
7737 // We know V `Pred` SharperMin. If this implies LHS `Pred`
7738 // RHS, we're done.
7739 if (isImpliedCondOperands(Pred, LHS, RHS, V,
7740 getConstant(SharperMin)))
7741 return true;
7742
7743 case ICmpInst::ICMP_SGT:
7744 case ICmpInst::ICMP_UGT:
7745 // We know from the range information that (V `Pred` Min ||
7746 // V == Min). We know from the guarding condition that !(V
7747 // == Min). This gives us
7748 //
7749 // V `Pred` Min || V == Min && !(V == Min)
7750 // => V `Pred` Min
7751 //
7752 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
7753
7754 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
7755 return true;
7756
7757 default:
7758 // No change
7759 break;
7760 }
7761 }
7762 }
7763
Dan Gohman430f0cc2009-07-21 23:03:19 +00007764 // Check whether the actual condition is beyond sufficient.
7765 if (FoundPred == ICmpInst::ICMP_EQ)
7766 if (ICmpInst::isTrueWhenEqual(Pred))
7767 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
7768 return true;
7769 if (Pred == ICmpInst::ICMP_NE)
7770 if (!ICmpInst::isTrueWhenEqual(FoundPred))
7771 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
7772 return true;
7773
7774 // Otherwise assume the worst.
7775 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007776}
7777
Sanjoy Das1ed69102015-10-13 02:53:27 +00007778bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
7779 const SCEV *&L, const SCEV *&R,
7780 SCEV::NoWrapFlags &Flags) {
7781 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
7782 if (!AE || AE->getNumOperands() != 2)
7783 return false;
7784
7785 L = AE->getOperand(0);
7786 R = AE->getOperand(1);
7787 Flags = AE->getNoWrapFlags();
7788 return true;
7789}
7790
7791bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
7792 const SCEV *More,
7793 APInt &C) {
Sanjoy Das96709c42015-09-25 23:53:45 +00007794 // We avoid subtracting expressions here because this function is usually
7795 // fairly deep in the call stack (i.e. is called many times).
7796
Sanjoy Das96709c42015-09-25 23:53:45 +00007797 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
7798 const auto *LAR = cast<SCEVAddRecExpr>(Less);
7799 const auto *MAR = cast<SCEVAddRecExpr>(More);
7800
7801 if (LAR->getLoop() != MAR->getLoop())
7802 return false;
7803
7804 // We look at affine expressions only; not for correctness but to keep
7805 // getStepRecurrence cheap.
7806 if (!LAR->isAffine() || !MAR->isAffine())
7807 return false;
7808
Sanjoy Das1ed69102015-10-13 02:53:27 +00007809 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
Sanjoy Das96709c42015-09-25 23:53:45 +00007810 return false;
7811
7812 Less = LAR->getStart();
7813 More = MAR->getStart();
7814
7815 // fall through
7816 }
7817
7818 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
7819 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue();
7820 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue();
7821 C = M - L;
7822 return true;
7823 }
7824
7825 const SCEV *L, *R;
Sanjoy Das1ed69102015-10-13 02:53:27 +00007826 SCEV::NoWrapFlags Flags;
7827 if (splitBinaryAdd(Less, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00007828 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7829 if (R == More) {
7830 C = -(LC->getValue()->getValue());
7831 return true;
7832 }
7833
Sanjoy Das1ed69102015-10-13 02:53:27 +00007834 if (splitBinaryAdd(More, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00007835 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7836 if (R == Less) {
7837 C = LC->getValue()->getValue();
7838 return true;
7839 }
7840
7841 return false;
7842}
7843
7844bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
7845 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
7846 const SCEV *FoundLHS, const SCEV *FoundRHS) {
7847 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
7848 return false;
7849
7850 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7851 if (!AddRecLHS)
7852 return false;
7853
7854 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
7855 if (!AddRecFoundLHS)
7856 return false;
7857
7858 // We'd like to let SCEV reason about control dependencies, so we constrain
7859 // both the inequalities to be about add recurrences on the same loop. This
7860 // way we can use isLoopEntryGuardedByCond later.
7861
7862 const Loop *L = AddRecFoundLHS->getLoop();
7863 if (L != AddRecLHS->getLoop())
7864 return false;
7865
7866 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
7867 //
7868 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
7869 // ... (2)
7870 //
7871 // Informal proof for (2), assuming (1) [*]:
7872 //
7873 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
7874 //
7875 // Then
7876 //
7877 // FoundLHS s< FoundRHS s< INT_MIN - C
7878 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
7879 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
7880 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
7881 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
7882 // <=> FoundLHS + C s< FoundRHS + C
7883 //
7884 // [*]: (1) can be proved by ruling out overflow.
7885 //
7886 // [**]: This can be proved by analyzing all the four possibilities:
7887 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
7888 // (A s>= 0, B s>= 0).
7889 //
7890 // Note:
7891 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
7892 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
7893 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
7894 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
7895 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
7896 // C)".
7897
7898 APInt LDiff, RDiff;
Sanjoy Das1ed69102015-10-13 02:53:27 +00007899 if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
7900 !computeConstantDifference(FoundRHS, RHS, RDiff) ||
Sanjoy Das96709c42015-09-25 23:53:45 +00007901 LDiff != RDiff)
7902 return false;
7903
7904 if (LDiff == 0)
7905 return true;
7906
Sanjoy Das96709c42015-09-25 23:53:45 +00007907 APInt FoundRHSLimit;
7908
7909 if (Pred == CmpInst::ICMP_ULT) {
7910 FoundRHSLimit = -RDiff;
7911 } else {
7912 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
Sanjoy Das4f1c4592015-09-28 21:14:32 +00007913 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
Sanjoy Das96709c42015-09-25 23:53:45 +00007914 }
7915
7916 // Try to prove (1) or (2), as needed.
7917 return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
7918 getConstant(FoundRHSLimit));
7919}
7920
Dan Gohman430f0cc2009-07-21 23:03:19 +00007921/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00007922/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007923/// and FoundRHS is true.
7924bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
7925 const SCEV *LHS, const SCEV *RHS,
7926 const SCEV *FoundLHS,
7927 const SCEV *FoundRHS) {
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007928 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
7929 return true;
7930
Sanjoy Das96709c42015-09-25 23:53:45 +00007931 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
7932 return true;
7933
Dan Gohman430f0cc2009-07-21 23:03:19 +00007934 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7935 FoundLHS, FoundRHS) ||
7936 // ~x < ~y --> x > y
7937 isImpliedCondOperandsHelper(Pred, LHS, RHS,
7938 getNotSCEV(FoundRHS),
7939 getNotSCEV(FoundLHS));
7940}
7941
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007942
7943/// If Expr computes ~A, return A else return nullptr
7944static const SCEV *MatchNotExpr(const SCEV *Expr) {
7945 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
Sanjoy Das16e7ff12015-10-13 23:28:31 +00007946 if (!Add || Add->getNumOperands() != 2 ||
7947 !Add->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007948 return nullptr;
7949
7950 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
Sanjoy Das16e7ff12015-10-13 23:28:31 +00007951 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
7952 !AddRHS->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007953 return nullptr;
7954
7955 return AddRHS->getOperand(1);
7956}
7957
7958
7959/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7960template<typename MaxExprType>
7961static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7962 const SCEV *Candidate) {
7963 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7964 if (!MaxExpr) return false;
7965
7966 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
7967 return It != MaxExpr->op_end();
7968}
7969
7970
7971/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
7972template<typename MaxExprType>
7973static bool IsMinConsistingOf(ScalarEvolution &SE,
7974 const SCEV *MaybeMinExpr,
7975 const SCEV *Candidate) {
7976 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
7977 if (!MaybeMaxExpr)
7978 return false;
7979
7980 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
7981}
7982
Hal Finkela8d205f2015-08-19 01:51:51 +00007983static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
7984 ICmpInst::Predicate Pred,
7985 const SCEV *LHS, const SCEV *RHS) {
7986
7987 // If both sides are affine addrecs for the same loop, with equal
7988 // steps, and we know the recurrences don't wrap, then we only
7989 // need to check the predicate on the starting values.
7990
7991 if (!ICmpInst::isRelational(Pred))
7992 return false;
7993
7994 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7995 if (!LAR)
7996 return false;
7997 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7998 if (!RAR)
7999 return false;
8000 if (LAR->getLoop() != RAR->getLoop())
8001 return false;
8002 if (!LAR->isAffine() || !RAR->isAffine())
8003 return false;
8004
8005 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8006 return false;
8007
Hal Finkelff08a2e2015-08-19 17:26:07 +00008008 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8009 SCEV::FlagNSW : SCEV::FlagNUW;
8010 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
Hal Finkela8d205f2015-08-19 01:51:51 +00008011 return false;
8012
8013 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8014}
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008015
8016/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8017/// expression?
8018static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8019 ICmpInst::Predicate Pred,
8020 const SCEV *LHS, const SCEV *RHS) {
8021 switch (Pred) {
8022 default:
8023 return false;
8024
8025 case ICmpInst::ICMP_SGE:
8026 std::swap(LHS, RHS);
8027 // fall through
8028 case ICmpInst::ICMP_SLE:
8029 return
8030 // min(A, ...) <= A
8031 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8032 // A <= max(A, ...)
8033 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8034
8035 case ICmpInst::ICMP_UGE:
8036 std::swap(LHS, RHS);
8037 // fall through
8038 case ICmpInst::ICMP_ULE:
8039 return
8040 // min(A, ...) <= A
8041 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8042 // A <= max(A, ...)
8043 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8044 }
8045
8046 llvm_unreachable("covered switch fell through?!");
8047}
8048
Dan Gohman430f0cc2009-07-21 23:03:19 +00008049/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00008050/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00008051/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00008052bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00008053ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8054 const SCEV *LHS, const SCEV *RHS,
8055 const SCEV *FoundLHS,
8056 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008057 auto IsKnownPredicateFull =
8058 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8059 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
Sanjoy Das11231482015-10-22 19:57:29 +00008060 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8061 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8062 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008063 };
8064
Dan Gohmane65c9172009-07-13 21:35:55 +00008065 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00008066 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8067 case ICmpInst::ICMP_EQ:
8068 case ICmpInst::ICMP_NE:
8069 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8070 return true;
8071 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00008072 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008073 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008074 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8075 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008076 return true;
8077 break;
8078 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008079 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008080 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8081 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008082 return true;
8083 break;
8084 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008085 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008086 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8087 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008088 return true;
8089 break;
8090 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008091 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008092 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8093 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008094 return true;
8095 break;
8096 }
8097
8098 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008099}
8100
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008101/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
8102/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
8103bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8104 const SCEV *LHS,
8105 const SCEV *RHS,
8106 const SCEV *FoundLHS,
8107 const SCEV *FoundRHS) {
8108 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8109 // The restriction on `FoundRHS` be lifted easily -- it exists only to
8110 // reduce the compile time impact of this optimization.
8111 return false;
8112
8113 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8114 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8115 !isa<SCEVConstant>(AddLHS->getOperand(0)))
8116 return false;
8117
8118 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue();
8119
8120 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8121 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8122 ConstantRange FoundLHSRange =
8123 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8124
8125 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8126 // for `LHS`:
8127 APInt Addend =
8128 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue();
8129 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8130
8131 // We can also compute the range of values for `LHS` that satisfy the
8132 // consequent, "`LHS` `Pred` `RHS`":
8133 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue();
8134 ConstantRange SatisfyingLHSRange =
8135 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8136
8137 // The antecedent implies the consequent if every value of `LHS` that
8138 // satisfies the antecedent also satisfies the consequent.
8139 return SatisfyingLHSRange.contains(LHSRange);
8140}
8141
Johannes Doerfert2683e562015-02-09 12:34:23 +00008142// Verify if an linear IV with positive stride can overflow when in a
8143// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008144// stride and the knowledge of NSW/NUW flags on the recurrence.
8145bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8146 bool IsSigned, bool NoWrap) {
8147 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00008148
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008149 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008150 const SCEV *One = getOne(Stride->getType());
Andrew Trick2afa3252011-03-09 17:29:58 +00008151
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008152 if (IsSigned) {
8153 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8154 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8155 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8156 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00008157
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008158 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8159 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00008160 }
Dan Gohman01048422009-06-21 23:46:38 +00008161
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008162 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8163 APInt MaxValue = APInt::getMaxValue(BitWidth);
8164 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8165 .getUnsignedMax();
8166
8167 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8168 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8169}
8170
Johannes Doerfert2683e562015-02-09 12:34:23 +00008171// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008172// greater-than comparison, knowing the invariant term of the comparison,
8173// the stride and the knowledge of NSW/NUW flags on the recurrence.
8174bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8175 bool IsSigned, bool NoWrap) {
8176 if (NoWrap) return false;
8177
8178 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008179 const SCEV *One = getOne(Stride->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008180
8181 if (IsSigned) {
8182 APInt MinRHS = getSignedRange(RHS).getSignedMin();
8183 APInt MinValue = APInt::getSignedMinValue(BitWidth);
8184 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8185 .getSignedMax();
8186
8187 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8188 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8189 }
8190
8191 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8192 APInt MinValue = APInt::getMinValue(BitWidth);
8193 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8194 .getUnsignedMax();
8195
8196 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8197 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8198}
8199
8200// Compute the backedge taken count knowing the interval difference, the
8201// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00008202const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008203 bool Equality) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008204 const SCEV *One = getOne(Step->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008205 Delta = Equality ? getAddExpr(Delta, Step)
8206 : getAddExpr(Delta, getMinusSCEV(Step, One));
8207 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00008208}
8209
Chris Lattner587a75b2005-08-15 23:33:51 +00008210/// HowManyLessThans - Return the number of times a backedge containing the
8211/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00008212/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00008213///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008214/// @param ControlsExit is true when the LHS < RHS condition directly controls
8215/// the branch (loops exits only if condition is true). In this case, we can use
8216/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00008217ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00008218ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008219 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008220 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008221 // We handle only IV < Invariant
8222 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00008223 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008224
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008225 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00008226
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008227 // Avoid weird loops
8228 if (!IV || IV->getLoop() != L || !IV->isAffine())
8229 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008230
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008231 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008232 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008233
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008234 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008235
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008236 // Avoid negative or zero stride values
8237 if (!isKnownPositive(Stride))
8238 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008239
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008240 // Avoid proven overflow cases: this will ensure that the backedge taken count
8241 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008242 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008243 // behaviors like the case of C language.
8244 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8245 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008246
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008247 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8248 : ICmpInst::ICMP_ULT;
8249 const SCEV *Start = IV->getStart();
8250 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008251 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8252 const SCEV *Diff = getMinusSCEV(RHS, Start);
8253 // If we have NoWrap set, then we can assume that the increment won't
8254 // overflow, in which case if RHS - Start is a constant, we don't need to
8255 // do a max operation since we can just figure it out statically
8256 if (NoWrap && isa<SCEVConstant>(Diff)) {
8257 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
8258 if (D.isNegative())
8259 End = Start;
8260 } else
8261 End = IsSigned ? getSMaxExpr(RHS, Start)
8262 : getUMaxExpr(RHS, Start);
8263 }
Dan Gohman51aaf022010-01-26 04:40:18 +00008264
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008265 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00008266
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008267 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8268 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00008269
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008270 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8271 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00008272
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008273 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8274 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8275 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00008276
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008277 // Although End can be a MAX expression we estimate MaxEnd considering only
8278 // the case End = RHS. This is safe because in the other case (End - Start)
8279 // is zero, leading to a zero maximum backedge taken count.
8280 APInt MaxEnd =
8281 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8282 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8283
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00008284 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008285 if (isa<SCEVConstant>(BECount))
8286 MaxBECount = BECount;
8287 else
8288 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8289 getConstant(MinStride), false);
8290
8291 if (isa<SCEVCouldNotCompute>(MaxBECount))
8292 MaxBECount = BECount;
8293
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008294 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008295}
8296
8297ScalarEvolution::ExitLimit
8298ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8299 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008300 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008301 // We handle only IV > Invariant
8302 if (!isLoopInvariant(RHS, L))
8303 return getCouldNotCompute();
8304
8305 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8306
8307 // Avoid weird loops
8308 if (!IV || IV->getLoop() != L || !IV->isAffine())
8309 return getCouldNotCompute();
8310
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008311 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008312 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8313
8314 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8315
8316 // Avoid negative or zero stride values
8317 if (!isKnownPositive(Stride))
8318 return getCouldNotCompute();
8319
8320 // Avoid proven overflow cases: this will ensure that the backedge taken count
8321 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008322 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008323 // behaviors like the case of C language.
8324 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8325 return getCouldNotCompute();
8326
8327 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8328 : ICmpInst::ICMP_UGT;
8329
8330 const SCEV *Start = IV->getStart();
8331 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008332 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8333 const SCEV *Diff = getMinusSCEV(RHS, Start);
8334 // If we have NoWrap set, then we can assume that the increment won't
8335 // overflow, in which case if RHS - Start is a constant, we don't need to
8336 // do a max operation since we can just figure it out statically
8337 if (NoWrap && isa<SCEVConstant>(Diff)) {
8338 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
8339 if (!D.isNegative())
8340 End = Start;
8341 } else
8342 End = IsSigned ? getSMinExpr(RHS, Start)
8343 : getUMinExpr(RHS, Start);
8344 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008345
8346 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8347
8348 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8349 : getUnsignedRange(Start).getUnsignedMax();
8350
8351 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8352 : getUnsignedRange(Stride).getUnsignedMin();
8353
8354 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8355 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8356 : APInt::getMinValue(BitWidth) + (MinStride - 1);
8357
8358 // Although End can be a MIN expression we estimate MinEnd considering only
8359 // the case End = RHS. This is safe because in the other case (Start - End)
8360 // is zero, leading to a zero maximum backedge taken count.
8361 APInt MinEnd =
8362 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8363 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8364
8365
8366 const SCEV *MaxBECount = getCouldNotCompute();
8367 if (isa<SCEVConstant>(BECount))
8368 MaxBECount = BECount;
8369 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00008370 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008371 getConstant(MinStride), false);
8372
8373 if (isa<SCEVCouldNotCompute>(MaxBECount))
8374 MaxBECount = BECount;
8375
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008376 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00008377}
8378
Chris Lattnerd934c702004-04-02 20:23:17 +00008379/// getNumIterationsInRange - Return the number of iterations of this loop that
8380/// produce values in the specified constant range. Another way of looking at
8381/// this is that it returns the first iteration number where the value is not in
8382/// the condition, thus computing the exit count. If the iteration count can't
8383/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00008384const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00008385 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00008386 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00008387 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008388
8389 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00008390 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00008391 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00008392 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008393 Operands[0] = SE.getZero(SC->getType());
Andrew Trick8b55b732011-03-14 16:50:06 +00008394 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00008395 getNoWrapFlags(FlagNW));
Sanjoy Das63914592015-10-18 00:29:20 +00008396 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00008397 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00008398 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00008399 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00008400 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008401 }
8402
8403 // The only time we can solve this is when we have all constant indices.
8404 // Otherwise, we cannot determine the overflow conditions.
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00008405 if (std::any_of(op_begin(), op_end(),
8406 [](const SCEV *Op) { return !isa<SCEVConstant>(Op);}))
8407 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008408
8409 // Okay at this point we know that all elements of the chrec are constants and
8410 // that the start element is zero.
8411
8412 // First check to see if the range contains zero. If not, the first
8413 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00008414 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00008415 if (!Range.contains(APInt(BitWidth, 0)))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008416 return SE.getZero(getType());
Misha Brukman01808ca2005-04-21 21:13:18 +00008417
Chris Lattnerd934c702004-04-02 20:23:17 +00008418 if (isAffine()) {
8419 // If this is an affine expression then we have this situation:
8420 // Solve {0,+,A} in Range === Ax in Range
8421
Nick Lewycky52460262007-07-16 02:08:00 +00008422 // We know that zero is in the range. If A is positive then we know that
8423 // the upper value of the range must be the first possible exit value.
8424 // If A is negative then the lower of the range is the last possible loop
8425 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00008426 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00008427 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
8428 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00008429
Nick Lewycky52460262007-07-16 02:08:00 +00008430 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00008431 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00008432 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00008433
8434 // Evaluate at the exit value. If we really did fall out of the valid
8435 // range, then we computed our trip count, otherwise wrap around or other
8436 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00008437 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008438 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00008439 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008440
8441 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00008442 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00008443 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00008444 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00008445 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00008446 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00008447 } else if (isQuadratic()) {
8448 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8449 // quadratic equation to solve it. To do this, we must frame our problem in
8450 // terms of figuring out when zero is crossed, instead of when
8451 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00008452 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00008453 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00008454 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8455 // getNoWrapFlags(FlagNW)
8456 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00008457
8458 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00008459 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00008460 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00008461 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8462 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00008463 if (R1) {
8464 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00008465 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00008466 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00008467 R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00008468 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00008469 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00008470
Chris Lattnerd934c702004-04-02 20:23:17 +00008471 // Make sure the root is not off by one. The returned iteration should
8472 // not be in the range, but the previous one should be. When solving
8473 // for "X*X < 5", for example, we should not return a root of 2.
8474 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00008475 R1->getValue(),
8476 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008477 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008478 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00008479 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00008480 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00008481
Dan Gohmana37eaf22007-10-22 18:31:58 +00008482 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008483 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00008484 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00008485 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008486 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008487
Chris Lattnerd934c702004-04-02 20:23:17 +00008488 // If R1 was not in the range, then it is a good return value. Make
8489 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00008490 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00008491 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00008492 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008493 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00008494 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00008495 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008496 }
8497 }
8498 }
8499
Dan Gohman31efa302009-04-18 17:58:19 +00008500 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008501}
8502
Sebastian Pop448712b2014-05-07 18:01:20 +00008503namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008504struct FindUndefs {
8505 bool Found;
8506 FindUndefs() : Found(false) {}
8507
8508 bool follow(const SCEV *S) {
8509 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8510 if (isa<UndefValue>(C->getValue()))
8511 Found = true;
8512 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8513 if (isa<UndefValue>(C->getValue()))
8514 Found = true;
8515 }
8516
8517 // Keep looking if we haven't found it yet.
8518 return !Found;
8519 }
8520 bool isDone() const {
8521 // Stop recursion if we have found an undef.
8522 return Found;
8523 }
8524};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008525}
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008526
8527// Return true when S contains at least an undef value.
8528static inline bool
8529containsUndefs(const SCEV *S) {
8530 FindUndefs F;
8531 SCEVTraversal<FindUndefs> ST(F);
8532 ST.visitAll(S);
8533
8534 return F.Found;
8535}
8536
8537namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00008538// Collect all steps of SCEV expressions.
8539struct SCEVCollectStrides {
8540 ScalarEvolution &SE;
8541 SmallVectorImpl<const SCEV *> &Strides;
8542
8543 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8544 : SE(SE), Strides(S) {}
8545
8546 bool follow(const SCEV *S) {
8547 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8548 Strides.push_back(AR->getStepRecurrence(SE));
8549 return true;
8550 }
8551 bool isDone() const { return false; }
8552};
8553
8554// Collect all SCEVUnknown and SCEVMulExpr expressions.
8555struct SCEVCollectTerms {
8556 SmallVectorImpl<const SCEV *> &Terms;
8557
8558 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8559 : Terms(T) {}
8560
8561 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008562 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008563 if (!containsUndefs(S))
8564 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00008565
8566 // Stop recursion: once we collected a term, do not walk its operands.
8567 return false;
8568 }
8569
8570 // Keep looking.
8571 return true;
8572 }
8573 bool isDone() const { return false; }
8574};
Tobias Grosser374bce02015-10-12 08:02:00 +00008575
8576// Check if a SCEV contains an AddRecExpr.
8577struct SCEVHasAddRec {
8578 bool &ContainsAddRec;
8579
8580 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8581 ContainsAddRec = false;
8582 }
8583
8584 bool follow(const SCEV *S) {
8585 if (isa<SCEVAddRecExpr>(S)) {
8586 ContainsAddRec = true;
8587
8588 // Stop recursion: once we collected a term, do not walk its operands.
8589 return false;
8590 }
8591
8592 // Keep looking.
8593 return true;
8594 }
8595 bool isDone() const { return false; }
8596};
8597
8598// Find factors that are multiplied with an expression that (possibly as a
8599// subexpression) contains an AddRecExpr. In the expression:
8600//
8601// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
8602//
8603// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
8604// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
8605// parameters as they form a product with an induction variable.
8606//
8607// This collector expects all array size parameters to be in the same MulExpr.
8608// It might be necessary to later add support for collecting parameters that are
8609// spread over different nested MulExpr.
8610struct SCEVCollectAddRecMultiplies {
8611 SmallVectorImpl<const SCEV *> &Terms;
8612 ScalarEvolution &SE;
8613
8614 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
8615 : Terms(T), SE(SE) {}
8616
8617 bool follow(const SCEV *S) {
8618 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
8619 bool HasAddRec = false;
8620 SmallVector<const SCEV *, 0> Operands;
8621 for (auto Op : Mul->operands()) {
8622 if (isa<SCEVUnknown>(Op)) {
8623 Operands.push_back(Op);
8624 } else {
8625 bool ContainsAddRec;
8626 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
8627 visitAll(Op, ContiansAddRec);
8628 HasAddRec |= ContainsAddRec;
8629 }
8630 }
8631 if (Operands.size() == 0)
8632 return true;
8633
8634 if (!HasAddRec)
8635 return false;
8636
8637 Terms.push_back(SE.getMulExpr(Operands));
8638 // Stop recursion: once we collected a term, do not walk its operands.
8639 return false;
8640 }
8641
8642 // Keep looking.
8643 return true;
8644 }
8645 bool isDone() const { return false; }
8646};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008647}
Sebastian Pop448712b2014-05-07 18:01:20 +00008648
Tobias Grosser374bce02015-10-12 08:02:00 +00008649/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
8650/// two places:
8651/// 1) The strides of AddRec expressions.
8652/// 2) Unknowns that are multiplied with AddRec expressions.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008653void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
8654 SmallVectorImpl<const SCEV *> &Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008655 SmallVector<const SCEV *, 4> Strides;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008656 SCEVCollectStrides StrideCollector(*this, Strides);
8657 visitAll(Expr, StrideCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00008658
8659 DEBUG({
8660 dbgs() << "Strides:\n";
8661 for (const SCEV *S : Strides)
8662 dbgs() << *S << "\n";
8663 });
8664
8665 for (const SCEV *S : Strides) {
8666 SCEVCollectTerms TermCollector(Terms);
8667 visitAll(S, TermCollector);
8668 }
8669
8670 DEBUG({
8671 dbgs() << "Terms:\n";
8672 for (const SCEV *T : Terms)
8673 dbgs() << *T << "\n";
8674 });
Tobias Grosser374bce02015-10-12 08:02:00 +00008675
8676 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
8677 visitAll(Expr, MulCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00008678}
8679
Sebastian Popb1a548f2014-05-12 19:01:53 +00008680static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00008681 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00008682 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00008683 int Last = Terms.size() - 1;
8684 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00008685
Sebastian Pop448712b2014-05-07 18:01:20 +00008686 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00008687 if (Last == 0) {
8688 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008689 SmallVector<const SCEV *, 2> Qs;
8690 for (const SCEV *Op : M->operands())
8691 if (!isa<SCEVConstant>(Op))
8692 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00008693
Sebastian Pope30bd352014-05-27 22:41:56 +00008694 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00008695 }
8696
Sebastian Pope30bd352014-05-27 22:41:56 +00008697 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008698 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00008699 }
8700
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008701 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008702 // Normalize the terms before the next call to findArrayDimensionsRec.
8703 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008704 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008705
8706 // Bail out when GCD does not evenly divide one of the terms.
8707 if (!R->isZero())
8708 return false;
8709
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008710 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00008711 }
8712
Tobias Grosser3080cf12014-05-08 07:55:34 +00008713 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00008714 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
8715 return isa<SCEVConstant>(E);
8716 }),
8717 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00008718
Sebastian Pop448712b2014-05-07 18:01:20 +00008719 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00008720 if (!findArrayDimensionsRec(SE, Terms, Sizes))
8721 return false;
8722
Sebastian Pope30bd352014-05-27 22:41:56 +00008723 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008724 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00008725}
Sebastian Popc62c6792013-11-12 22:47:20 +00008726
Sebastian Pop448712b2014-05-07 18:01:20 +00008727namespace {
8728struct FindParameter {
8729 bool FoundParameter;
8730 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00008731
Sebastian Pop448712b2014-05-07 18:01:20 +00008732 bool follow(const SCEV *S) {
8733 if (isa<SCEVUnknown>(S)) {
8734 FoundParameter = true;
8735 // Stop recursion: we found a parameter.
8736 return false;
8737 }
8738 // Keep looking.
8739 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00008740 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008741 bool isDone() const {
8742 // Stop recursion if we have found a parameter.
8743 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00008744 }
Sebastian Popc62c6792013-11-12 22:47:20 +00008745};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008746}
Sebastian Popc62c6792013-11-12 22:47:20 +00008747
Sebastian Pop448712b2014-05-07 18:01:20 +00008748// Returns true when S contains at least a SCEVUnknown parameter.
8749static inline bool
8750containsParameters(const SCEV *S) {
8751 FindParameter F;
8752 SCEVTraversal<FindParameter> ST(F);
8753 ST.visitAll(S);
8754
8755 return F.FoundParameter;
8756}
8757
8758// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
8759static inline bool
8760containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
8761 for (const SCEV *T : Terms)
8762 if (containsParameters(T))
8763 return true;
8764 return false;
8765}
8766
8767// Return the number of product terms in S.
8768static inline int numberOfTerms(const SCEV *S) {
8769 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
8770 return Expr->getNumOperands();
8771 return 1;
8772}
8773
Sebastian Popa6e58602014-05-27 22:41:45 +00008774static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
8775 if (isa<SCEVConstant>(T))
8776 return nullptr;
8777
8778 if (isa<SCEVUnknown>(T))
8779 return T;
8780
8781 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
8782 SmallVector<const SCEV *, 2> Factors;
8783 for (const SCEV *Op : M->operands())
8784 if (!isa<SCEVConstant>(Op))
8785 Factors.push_back(Op);
8786
8787 return SE.getMulExpr(Factors);
8788 }
8789
8790 return T;
8791}
8792
8793/// Return the size of an element read or written by Inst.
8794const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
8795 Type *Ty;
8796 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
8797 Ty = Store->getValueOperand()->getType();
8798 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00008799 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00008800 else
8801 return nullptr;
8802
8803 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
8804 return getSizeOfExpr(ETy, Ty);
8805}
8806
Sebastian Pop448712b2014-05-07 18:01:20 +00008807/// Second step of delinearization: compute the array dimensions Sizes from the
8808/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00008809void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
8810 SmallVectorImpl<const SCEV *> &Sizes,
8811 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00008812
Sebastian Pop53524082014-05-29 19:44:05 +00008813 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00008814 return;
8815
8816 // Early return when Terms do not contain parameters: we do not delinearize
8817 // non parametric SCEVs.
8818 if (!containsParameters(Terms))
8819 return;
8820
8821 DEBUG({
8822 dbgs() << "Terms:\n";
8823 for (const SCEV *T : Terms)
8824 dbgs() << *T << "\n";
8825 });
8826
8827 // Remove duplicates.
8828 std::sort(Terms.begin(), Terms.end());
8829 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
8830
8831 // Put larger terms first.
8832 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
8833 return numberOfTerms(LHS) > numberOfTerms(RHS);
8834 });
8835
Sebastian Popa6e58602014-05-27 22:41:45 +00008836 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8837
Tobias Grosser374bce02015-10-12 08:02:00 +00008838 // Try to divide all terms by the element size. If term is not divisible by
8839 // element size, proceed with the original term.
Sebastian Popa6e58602014-05-27 22:41:45 +00008840 for (const SCEV *&Term : Terms) {
8841 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008842 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Tobias Grosser374bce02015-10-12 08:02:00 +00008843 if (!Q->isZero())
8844 Term = Q;
Sebastian Popa6e58602014-05-27 22:41:45 +00008845 }
8846
8847 SmallVector<const SCEV *, 4> NewTerms;
8848
8849 // Remove constant factors.
8850 for (const SCEV *T : Terms)
8851 if (const SCEV *NewT = removeConstantFactors(SE, T))
8852 NewTerms.push_back(NewT);
8853
Sebastian Pop448712b2014-05-07 18:01:20 +00008854 DEBUG({
8855 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00008856 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00008857 dbgs() << *T << "\n";
8858 });
8859
Sebastian Popa6e58602014-05-27 22:41:45 +00008860 if (NewTerms.empty() ||
8861 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00008862 Sizes.clear();
8863 return;
8864 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008865
Sebastian Popa6e58602014-05-27 22:41:45 +00008866 // The last element to be pushed into Sizes is the size of an element.
8867 Sizes.push_back(ElementSize);
8868
Sebastian Pop448712b2014-05-07 18:01:20 +00008869 DEBUG({
8870 dbgs() << "Sizes:\n";
8871 for (const SCEV *S : Sizes)
8872 dbgs() << *S << "\n";
8873 });
8874}
8875
8876/// Third step of delinearization: compute the access functions for the
8877/// Subscripts based on the dimensions in Sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008878void ScalarEvolution::computeAccessFunctions(
8879 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
8880 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008881
Sebastian Popb1a548f2014-05-12 19:01:53 +00008882 // Early exit in case this SCEV is not an affine multivariate function.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008883 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008884 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008885
Sanjoy Das1195dbe2015-10-08 03:45:58 +00008886 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008887 if (!AR->isAffine())
8888 return;
8889
8890 const SCEV *Res = Expr;
Sebastian Pop448712b2014-05-07 18:01:20 +00008891 int Last = Sizes.size() - 1;
8892 for (int i = Last; i >= 0; i--) {
8893 const SCEV *Q, *R;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008894 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00008895
8896 DEBUG({
8897 dbgs() << "Res: " << *Res << "\n";
8898 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
8899 dbgs() << "Res divided by Sizes[i]:\n";
8900 dbgs() << "Quotient: " << *Q << "\n";
8901 dbgs() << "Remainder: " << *R << "\n";
8902 });
8903
8904 Res = Q;
8905
Sebastian Popa6e58602014-05-27 22:41:45 +00008906 // Do not record the last subscript corresponding to the size of elements in
8907 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00008908 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008909
8910 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00008911 if (isa<SCEVAddRecExpr>(R)) {
8912 Subscripts.clear();
8913 Sizes.clear();
8914 return;
8915 }
Sebastian Popa6e58602014-05-27 22:41:45 +00008916
Sebastian Pop448712b2014-05-07 18:01:20 +00008917 continue;
8918 }
8919
8920 // Record the access function for the current subscript.
8921 Subscripts.push_back(R);
8922 }
8923
8924 // Also push in last position the remainder of the last division: it will be
8925 // the access function of the innermost dimension.
8926 Subscripts.push_back(Res);
8927
8928 std::reverse(Subscripts.begin(), Subscripts.end());
8929
8930 DEBUG({
8931 dbgs() << "Subscripts:\n";
8932 for (const SCEV *S : Subscripts)
8933 dbgs() << *S << "\n";
8934 });
Sebastian Pop448712b2014-05-07 18:01:20 +00008935}
8936
Sebastian Popc62c6792013-11-12 22:47:20 +00008937/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
8938/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00008939/// is the offset start of the array. The SCEV->delinearize algorithm computes
8940/// the multiples of SCEV coefficients: that is a pattern matching of sub
8941/// expressions in the stride and base of a SCEV corresponding to the
8942/// computation of a GCD (greatest common divisor) of base and stride. When
8943/// SCEV->delinearize fails, it returns the SCEV unchanged.
8944///
8945/// For example: when analyzing the memory access A[i][j][k] in this loop nest
8946///
8947/// void foo(long n, long m, long o, double A[n][m][o]) {
8948///
8949/// for (long i = 0; i < n; i++)
8950/// for (long j = 0; j < m; j++)
8951/// for (long k = 0; k < o; k++)
8952/// A[i][j][k] = 1.0;
8953/// }
8954///
8955/// the delinearization input is the following AddRec SCEV:
8956///
8957/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
8958///
8959/// From this SCEV, we are able to say that the base offset of the access is %A
8960/// because it appears as an offset that does not divide any of the strides in
8961/// the loops:
8962///
8963/// CHECK: Base offset: %A
8964///
8965/// and then SCEV->delinearize determines the size of some of the dimensions of
8966/// the array as these are the multiples by which the strides are happening:
8967///
8968/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
8969///
8970/// Note that the outermost dimension remains of UnknownSize because there are
8971/// no strides that would help identifying the size of the last dimension: when
8972/// the array has been statically allocated, one could compute the size of that
8973/// dimension by dividing the overall size of the array by the size of the known
8974/// dimensions: %m * %o * 8.
8975///
8976/// Finally delinearize provides the access functions for the array reference
8977/// that does correspond to A[i][j][k] of the above C testcase:
8978///
8979/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
8980///
8981/// The testcases are checking the output of a function pass:
8982/// DelinearizationPass that walks through all loads and stores of a function
8983/// asking for the SCEV of the memory access with respect to all enclosing
8984/// loops, calling SCEV->delinearize on that and printing the results.
8985
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008986void ScalarEvolution::delinearize(const SCEV *Expr,
Sebastian Pop28e6b972014-05-27 22:41:51 +00008987 SmallVectorImpl<const SCEV *> &Subscripts,
8988 SmallVectorImpl<const SCEV *> &Sizes,
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008989 const SCEV *ElementSize) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008990 // First step: collect parametric terms.
8991 SmallVector<const SCEV *, 4> Terms;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008992 collectParametricTerms(Expr, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00008993
Sebastian Popb1a548f2014-05-12 19:01:53 +00008994 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008995 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008996
Sebastian Pop448712b2014-05-07 18:01:20 +00008997 // Second step: find subscript sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008998 findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00008999
Sebastian Popb1a548f2014-05-12 19:01:53 +00009000 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00009001 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009002
Sebastian Pop448712b2014-05-07 18:01:20 +00009003 // Third step: compute the access functions for each subscript.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009004 computeAccessFunctions(Expr, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00009005
Sebastian Pop28e6b972014-05-27 22:41:51 +00009006 if (Subscripts.empty())
9007 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009008
Sebastian Pop448712b2014-05-07 18:01:20 +00009009 DEBUG({
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009010 dbgs() << "succeeded to delinearize " << *Expr << "\n";
Sebastian Pop448712b2014-05-07 18:01:20 +00009011 dbgs() << "ArrayDecl[UnknownSize]";
9012 for (const SCEV *S : Sizes)
9013 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00009014
Sebastian Pop444621a2014-05-09 22:45:02 +00009015 dbgs() << "\nArrayRef";
9016 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00009017 dbgs() << "[" << *S << "]";
9018 dbgs() << "\n";
9019 });
Sebastian Popc62c6792013-11-12 22:47:20 +00009020}
Chris Lattnerd934c702004-04-02 20:23:17 +00009021
9022//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00009023// SCEVCallbackVH Class Implementation
9024//===----------------------------------------------------------------------===//
9025
Dan Gohmand33a0902009-05-19 19:22:47 +00009026void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00009027 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00009028 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9029 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009030 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00009031 // this now dangles!
9032}
9033
Dan Gohman7a066722010-07-28 01:09:07 +00009034void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00009035 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00009036
Dan Gohman48f82222009-05-04 22:30:44 +00009037 // Forget all the expressions associated with users of the old value,
9038 // so that future queries will recompute the expressions using the new
9039 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00009040 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00009041 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00009042 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00009043 while (!Worklist.empty()) {
9044 User *U = Worklist.pop_back_val();
9045 // Deleting the Old value will cause this to dangle. Postpone
9046 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009047 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00009048 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00009049 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00009050 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00009051 if (PHINode *PN = dyn_cast<PHINode>(U))
9052 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009053 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00009054 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00009055 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009056 // Delete the Old value.
9057 if (PHINode *PN = dyn_cast<PHINode>(Old))
9058 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009059 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009060 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00009061}
9062
Dan Gohmand33a0902009-05-19 19:22:47 +00009063ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00009064 : CallbackVH(V), SE(se) {}
9065
9066//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00009067// ScalarEvolution Class Implementation
9068//===----------------------------------------------------------------------===//
9069
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009070ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9071 AssumptionCache &AC, DominatorTree &DT,
9072 LoopInfo &LI)
9073 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9074 CouldNotCompute(new SCEVCouldNotCompute()),
Sanjoy Das7d910f22015-10-02 18:50:30 +00009075 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9076 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9077 FirstUnknown(nullptr) {}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009078
9079ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9080 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
9081 CouldNotCompute(std::move(Arg.CouldNotCompute)),
9082 ValueExprMap(std::move(Arg.ValueExprMap)),
Sanjoy Das7d910f22015-10-02 18:50:30 +00009083 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009084 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9085 ConstantEvolutionLoopExitValue(
9086 std::move(Arg.ConstantEvolutionLoopExitValue)),
9087 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9088 LoopDispositions(std::move(Arg.LoopDispositions)),
9089 BlockDispositions(std::move(Arg.BlockDispositions)),
9090 UnsignedRanges(std::move(Arg.UnsignedRanges)),
9091 SignedRanges(std::move(Arg.SignedRanges)),
9092 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
Silviu Barangae3c05342015-11-02 14:41:02 +00009093 UniquePreds(std::move(Arg.UniquePreds)),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009094 SCEVAllocator(std::move(Arg.SCEVAllocator)),
9095 FirstUnknown(Arg.FirstUnknown) {
9096 Arg.FirstUnknown = nullptr;
Dan Gohmanc8e23622009-04-21 23:15:49 +00009097}
9098
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009099ScalarEvolution::~ScalarEvolution() {
Dan Gohman7cac9572010-08-02 23:49:30 +00009100 // Iterate through all the SCEVUnknown instances and call their
9101 // destructors, so that they release their references to their values.
Naomi Musgravef90c1be2015-09-16 23:46:40 +00009102 for (SCEVUnknown *U = FirstUnknown; U;) {
9103 SCEVUnknown *Tmp = U;
9104 U = U->Next;
9105 Tmp->~SCEVUnknown();
9106 }
Craig Topper9f008862014-04-15 04:59:12 +00009107 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00009108
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009109 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00009110
9111 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9112 // that a loop had multiple computable exits.
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009113 for (auto &BTCI : BackedgeTakenCounts)
9114 BTCI.second.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00009115
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00009116 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00009117 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
Sanjoy Das7d910f22015-10-02 18:50:30 +00009118 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
Dan Gohman0a40ad92009-04-16 03:18:22 +00009119}
9120
Dan Gohmanc8e23622009-04-21 23:15:49 +00009121bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00009122 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00009123}
9124
Dan Gohmanc8e23622009-04-21 23:15:49 +00009125static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00009126 const Loop *L) {
9127 // Print all inner loops first
9128 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9129 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00009130
Dan Gohmanbc694912010-01-09 18:17:45 +00009131 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00009132 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009133 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00009134
Dan Gohmancb0efec2009-12-18 01:14:11 +00009135 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00009136 L->getExitBlocks(ExitBlocks);
9137 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00009138 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00009139
Dan Gohman0bddac12009-02-24 18:55:53 +00009140 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9141 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00009142 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00009143 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00009144 }
9145
Dan Gohmanbc694912010-01-09 18:17:45 +00009146 OS << "\n"
9147 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00009148 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009149 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00009150
9151 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9152 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9153 } else {
9154 OS << "Unpredictable max backedge-taken count. ";
9155 }
9156
9157 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00009158}
9159
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009160void ScalarEvolution::print(raw_ostream &OS) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00009161 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00009162 // out SCEV values of all instructions that are interesting. Doing
9163 // this potentially causes it to create new SCEV objects though,
9164 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00009165 // observable from outside the class though, so casting away the
9166 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00009167 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00009168
Dan Gohmanbc694912010-01-09 18:17:45 +00009169 OS << "Classifying expressions for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009170 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009171 OS << "\n";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009172 for (Instruction &I : instructions(F))
9173 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9174 OS << I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00009175 OS << " --> ";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009176 const SCEV *SV = SE.getSCEV(&I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009177 SV->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009178 if (!isa<SCEVCouldNotCompute>(SV)) {
9179 OS << " U: ";
9180 SE.getUnsignedRange(SV).print(OS);
9181 OS << " S: ";
9182 SE.getSignedRange(SV).print(OS);
9183 }
Misha Brukman01808ca2005-04-21 21:13:18 +00009184
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009185 const Loop *L = LI.getLoopFor(I.getParent());
Dan Gohmanb9063a82009-06-19 17:49:54 +00009186
Dan Gohmanaf752342009-07-07 17:06:11 +00009187 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00009188 if (AtUse != SV) {
9189 OS << " --> ";
9190 AtUse->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009191 if (!isa<SCEVCouldNotCompute>(AtUse)) {
9192 OS << " U: ";
9193 SE.getUnsignedRange(AtUse).print(OS);
9194 OS << " S: ";
9195 SE.getSignedRange(AtUse).print(OS);
9196 }
Dan Gohmanb9063a82009-06-19 17:49:54 +00009197 }
9198
9199 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00009200 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00009201 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00009202 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00009203 OS << "<<Unknown>>";
9204 } else {
9205 OS << *ExitValue;
9206 }
9207 }
9208
Chris Lattnerd934c702004-04-02 20:23:17 +00009209 OS << "\n";
9210 }
9211
Dan Gohmanbc694912010-01-09 18:17:45 +00009212 OS << "Determining loop execution counts for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009213 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009214 OS << "\n";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009215 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
Dan Gohmanc8e23622009-04-21 23:15:49 +00009216 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009217}
Dan Gohmane20f8242009-04-21 00:47:46 +00009218
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009219ScalarEvolution::LoopDisposition
9220ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009221 auto &Values = LoopDispositions[S];
9222 for (auto &V : Values) {
9223 if (V.getPointer() == L)
9224 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009225 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009226 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009227 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009228 auto &Values2 = LoopDispositions[S];
9229 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9230 if (V.getPointer() == L) {
9231 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009232 break;
9233 }
9234 }
9235 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009236}
9237
9238ScalarEvolution::LoopDisposition
9239ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009240 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009241 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009242 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009243 case scTruncate:
9244 case scZeroExtend:
9245 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009246 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00009247 case scAddRecExpr: {
9248 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9249
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009250 // If L is the addrec's loop, it's computable.
9251 if (AR->getLoop() == L)
9252 return LoopComputable;
9253
Dan Gohmanafd6db92010-11-17 21:23:15 +00009254 // Add recurrences are never invariant in the function-body (null loop).
9255 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009256 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009257
9258 // This recurrence is variant w.r.t. L if L contains AR's loop.
9259 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009260 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009261
9262 // This recurrence is invariant w.r.t. L if AR's loop contains L.
9263 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009264 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009265
9266 // This recurrence is variant w.r.t. L if any of its operands
9267 // are variant.
9268 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
9269 I != E; ++I)
9270 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009271 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009272
9273 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009274 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009275 }
9276 case scAddExpr:
9277 case scMulExpr:
9278 case scUMaxExpr:
9279 case scSMaxExpr: {
9280 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00009281 bool HasVarying = false;
9282 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
9283 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009284 LoopDisposition D = getLoopDisposition(*I, L);
9285 if (D == LoopVariant)
9286 return LoopVariant;
9287 if (D == LoopComputable)
9288 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009289 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009290 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009291 }
9292 case scUDivExpr: {
9293 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009294 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9295 if (LD == LoopVariant)
9296 return LoopVariant;
9297 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9298 if (RD == LoopVariant)
9299 return LoopVariant;
9300 return (LD == LoopInvariant && RD == LoopInvariant) ?
9301 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009302 }
9303 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009304 // All non-instruction values are loop invariant. All instructions are loop
9305 // invariant if they are not contained in the specified loop.
9306 // Instructions are never considered invariant in the function body
9307 // (null loop) because they are defined within the "loop".
9308 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9309 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9310 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009311 case scCouldNotCompute:
9312 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00009313 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009314 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009315}
9316
9317bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9318 return getLoopDisposition(S, L) == LoopInvariant;
9319}
9320
9321bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9322 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009323}
Dan Gohman20d9ce22010-11-17 21:41:58 +00009324
Dan Gohman8ea83d82010-11-18 00:34:22 +00009325ScalarEvolution::BlockDisposition
9326ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009327 auto &Values = BlockDispositions[S];
9328 for (auto &V : Values) {
9329 if (V.getPointer() == BB)
9330 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009331 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009332 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009333 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009334 auto &Values2 = BlockDispositions[S];
9335 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9336 if (V.getPointer() == BB) {
9337 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009338 break;
9339 }
9340 }
9341 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009342}
9343
Dan Gohman8ea83d82010-11-18 00:34:22 +00009344ScalarEvolution::BlockDisposition
9345ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009346 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00009347 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009348 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009349 case scTruncate:
9350 case scZeroExtend:
9351 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009352 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00009353 case scAddRecExpr: {
9354 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00009355 // to test for proper dominance too, because the instruction which
9356 // produces the addrec's value is a PHI, and a PHI effectively properly
9357 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00009358 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009359 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009360 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009361 }
9362 // FALL THROUGH into SCEVNAryExpr handling.
9363 case scAddExpr:
9364 case scMulExpr:
9365 case scUMaxExpr:
9366 case scSMaxExpr: {
9367 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009368 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009369 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00009370 I != E; ++I) {
9371 BlockDisposition D = getBlockDisposition(*I, BB);
9372 if (D == DoesNotDominateBlock)
9373 return DoesNotDominateBlock;
9374 if (D == DominatesBlock)
9375 Proper = false;
9376 }
9377 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009378 }
9379 case scUDivExpr: {
9380 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009381 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9382 BlockDisposition LD = getBlockDisposition(LHS, BB);
9383 if (LD == DoesNotDominateBlock)
9384 return DoesNotDominateBlock;
9385 BlockDisposition RD = getBlockDisposition(RHS, BB);
9386 if (RD == DoesNotDominateBlock)
9387 return DoesNotDominateBlock;
9388 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9389 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009390 }
9391 case scUnknown:
9392 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00009393 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9394 if (I->getParent() == BB)
9395 return DominatesBlock;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009396 if (DT.properlyDominates(I->getParent(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009397 return ProperlyDominatesBlock;
9398 return DoesNotDominateBlock;
9399 }
9400 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009401 case scCouldNotCompute:
9402 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00009403 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009404 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00009405}
9406
9407bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9408 return getBlockDisposition(S, BB) >= DominatesBlock;
9409}
9410
9411bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9412 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009413}
Dan Gohman534749b2010-11-17 22:27:42 +00009414
Andrew Trick365e31c2012-07-13 23:33:03 +00009415namespace {
9416// Search for a SCEV expression node within an expression tree.
9417// Implements SCEVTraversal::Visitor.
9418struct SCEVSearch {
9419 const SCEV *Node;
9420 bool IsFound;
9421
9422 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9423
9424 bool follow(const SCEV *S) {
9425 IsFound |= (S == Node);
9426 return !IsFound;
9427 }
9428 bool isDone() const { return IsFound; }
9429};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00009430}
Andrew Trick365e31c2012-07-13 23:33:03 +00009431
Dan Gohman534749b2010-11-17 22:27:42 +00009432bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00009433 SCEVSearch Search(Op);
9434 visitAll(S, Search);
9435 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00009436}
Dan Gohman7e6b3932010-11-17 23:28:48 +00009437
9438void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9439 ValuesAtScopes.erase(S);
9440 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009441 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00009442 UnsignedRanges.erase(S);
9443 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00009444
9445 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
9446 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
9447 BackedgeTakenInfo &BEInfo = I->second;
9448 if (BEInfo.hasOperand(S, this)) {
9449 BEInfo.clear();
9450 BackedgeTakenCounts.erase(I++);
9451 }
9452 else
9453 ++I;
9454 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00009455}
Benjamin Kramer214935e2012-10-26 17:31:32 +00009456
9457typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009458
Alp Tokercb402912014-01-24 17:20:08 +00009459/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009460static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9461 size_t Pos = 0;
9462 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9463 Str.replace(Pos, From.size(), To.data(), To.size());
9464 Pos += To.size();
9465 }
9466}
9467
Benjamin Kramer214935e2012-10-26 17:31:32 +00009468/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9469static void
9470getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9471 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
9472 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
9473
9474 std::string &S = Map[L];
9475 if (S.empty()) {
9476 raw_string_ostream OS(S);
9477 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009478
9479 // false and 0 are semantically equivalent. This can happen in dead loops.
9480 replaceSubString(OS.str(), "false", "0");
9481 // Remove wrap flags, their use in SCEV is highly fragile.
9482 // FIXME: Remove this when SCEV gets smarter about them.
9483 replaceSubString(OS.str(), "<nw>", "");
9484 replaceSubString(OS.str(), "<nsw>", "");
9485 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00009486 }
9487 }
9488}
9489
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009490void ScalarEvolution::verify() const {
Benjamin Kramer214935e2012-10-26 17:31:32 +00009491 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9492
9493 // Gather stringified backedge taken counts for all loops using SCEV's caches.
9494 // FIXME: It would be much better to store actual values instead of strings,
9495 // but SCEV pointers will change if we drop the caches.
9496 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009497 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
Benjamin Kramer214935e2012-10-26 17:31:32 +00009498 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9499
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009500 // Gather stringified backedge taken counts for all loops using a fresh
9501 // ScalarEvolution object.
9502 ScalarEvolution SE2(F, TLI, AC, DT, LI);
9503 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9504 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
Benjamin Kramer214935e2012-10-26 17:31:32 +00009505
9506 // Now compare whether they're the same with and without caches. This allows
9507 // verifying that no pass changed the cache.
9508 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9509 "New loops suddenly appeared!");
9510
9511 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9512 OldE = BackedgeDumpsOld.end(),
9513 NewI = BackedgeDumpsNew.begin();
9514 OldI != OldE; ++OldI, ++NewI) {
9515 assert(OldI->first == NewI->first && "Loop order changed!");
9516
9517 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9518 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009519 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00009520 // means that a pass is buggy or SCEV has to learn a new pattern but is
9521 // usually not harmful.
9522 if (OldI->second != NewI->second &&
9523 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009524 NewI->second.find("undef") == std::string::npos &&
9525 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00009526 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009527 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00009528 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009529 << "' changed from '" << OldI->second
9530 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00009531 std::abort();
9532 }
9533 }
9534
9535 // TODO: Verify more things.
9536}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009537
9538char ScalarEvolutionAnalysis::PassID;
9539
9540ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
9541 AnalysisManager<Function> *AM) {
9542 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F),
9543 AM->getResult<AssumptionAnalysis>(F),
9544 AM->getResult<DominatorTreeAnalysis>(F),
9545 AM->getResult<LoopAnalysis>(F));
9546}
9547
9548PreservedAnalyses
9549ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) {
9550 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS);
9551 return PreservedAnalyses::all();
9552}
9553
9554INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
9555 "Scalar Evolution Analysis", false, true)
9556INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
9557INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
9558INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
9559INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
9560INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
9561 "Scalar Evolution Analysis", false, true)
9562char ScalarEvolutionWrapperPass::ID = 0;
9563
9564ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
9565 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
9566}
9567
9568bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
9569 SE.reset(new ScalarEvolution(
9570 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
9571 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
9572 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
9573 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
9574 return false;
9575}
9576
9577void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
9578
9579void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
9580 SE->print(OS);
9581}
9582
9583void ScalarEvolutionWrapperPass::verifyAnalysis() const {
9584 if (!VerifySCEV)
9585 return;
9586
9587 SE->verify();
9588}
9589
9590void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
9591 AU.setPreservesAll();
9592 AU.addRequiredTransitive<AssumptionCacheTracker>();
9593 AU.addRequiredTransitive<LoopInfoWrapperPass>();
9594 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
9595 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
9596}
Silviu Barangae3c05342015-11-02 14:41:02 +00009597
9598const SCEVPredicate *
9599ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
9600 const SCEVConstant *RHS) {
9601 FoldingSetNodeID ID;
9602 // Unique this node based on the arguments
9603 ID.AddInteger(SCEVPredicate::P_Equal);
9604 ID.AddPointer(LHS);
9605 ID.AddPointer(RHS);
9606 void *IP = nullptr;
9607 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
9608 return S;
9609 SCEVEqualPredicate *Eq = new (SCEVAllocator)
9610 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
9611 UniquePreds.InsertNode(Eq, IP);
9612 return Eq;
9613}
9614
9615class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
9616public:
9617 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
9618 SCEVUnionPredicate &A) {
9619 SCEVPredicateRewriter Rewriter(SE, A);
9620 return Rewriter.visit(Scev);
9621 }
9622
9623 SCEVPredicateRewriter(ScalarEvolution &SE, SCEVUnionPredicate &P)
9624 : SCEVRewriteVisitor(SE), P(P) {}
9625
9626 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
9627 auto ExprPreds = P.getPredicatesForExpr(Expr);
9628 for (auto *Pred : ExprPreds)
9629 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
9630 if (IPred->getLHS() == Expr)
9631 return IPred->getRHS();
9632
9633 return Expr;
9634 }
9635
9636private:
9637 SCEVUnionPredicate &P;
9638};
9639
9640const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *Scev,
9641 SCEVUnionPredicate &Preds) {
9642 return SCEVPredicateRewriter::rewrite(Scev, *this, Preds);
9643}
9644
9645/// SCEV predicates
9646SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
9647 SCEVPredicateKind Kind)
9648 : FastID(ID), Kind(Kind) {}
9649
9650SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
9651 const SCEVUnknown *LHS,
9652 const SCEVConstant *RHS)
9653 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
9654
9655bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
9656 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
9657
9658 if (!Op)
9659 return false;
9660
9661 return Op->LHS == LHS && Op->RHS == RHS;
9662}
9663
9664bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
9665
9666const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
9667
9668void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
9669 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
9670}
9671
9672/// Union predicates don't get cached so create a dummy set ID for it.
9673SCEVUnionPredicate::SCEVUnionPredicate()
9674 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
9675
9676bool SCEVUnionPredicate::isAlwaysTrue() const {
9677 return std::all_of(Preds.begin(), Preds.end(),
9678 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
9679}
9680
9681ArrayRef<const SCEVPredicate *>
9682SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
9683 auto I = SCEVToPreds.find(Expr);
9684 if (I == SCEVToPreds.end())
9685 return ArrayRef<const SCEVPredicate *>();
9686 return I->second;
9687}
9688
9689bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
9690 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
9691 return std::all_of(
9692 Set->Preds.begin(), Set->Preds.end(),
9693 [this](const SCEVPredicate *I) { return this->implies(I); });
9694
9695 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
9696 if (ScevPredsIt == SCEVToPreds.end())
9697 return false;
9698 auto &SCEVPreds = ScevPredsIt->second;
9699
9700 return std::any_of(SCEVPreds.begin(), SCEVPreds.end(),
9701 [N](const SCEVPredicate *I) { return I->implies(N); });
9702}
9703
9704const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
9705
9706void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
9707 for (auto Pred : Preds)
9708 Pred->print(OS, Depth);
9709}
9710
9711void SCEVUnionPredicate::add(const SCEVPredicate *N) {
9712 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
9713 for (auto Pred : Set->Preds)
9714 add(Pred);
9715 return;
9716 }
9717
9718 if (implies(N))
9719 return;
9720
9721 const SCEV *Key = N->getExpr();
9722 assert(Key && "Only SCEVUnionPredicate doesn't have an "
9723 " associated expression!");
9724
9725 SCEVToPreds[Key].push_back(N);
9726 Preds.push_back(N);
9727}