blob: d926b3864de58d9086e03001ad00a0d08ef4ec64 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000023#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000024#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000025#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000028#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000029#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/GlobalAlias.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000037#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000038#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000039#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000040#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000041#include <algorithm>
42#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000043#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000044using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000045using namespace llvm::PatternMatch;
46
47const unsigned MaxDepth = 6;
48
Philip Reames1c292272015-03-10 22:43:20 +000049// Controls the number of uses of the value searched for possible
50// dominating comparisons.
51static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000052 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000053
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +000054// This optimization is known to cause performance regressions is some cases,
55// keep it under a temporary flag for now.
56static cl::opt<bool>
57DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
58 cl::Hidden, cl::init(true));
59
Sanjay Patelaee84212014-11-04 16:27:42 +000060/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
61/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000062static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000063 if (unsigned BitWidth = Ty->getScalarSizeInBits())
64 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000065
Mehdi Aminia28d91d2015-03-10 02:37:25 +000066 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000067}
Chris Lattner965c7692008-06-02 01:18:21 +000068
Benjamin Kramercfd8d902014-09-12 08:56:53 +000069namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000070// Simplifying using an assume can only be done in a particular control-flow
71// context (the context instruction provides that context). If an assume and
72// the context instruction are not in the same block then the DT helps in
73// figuring out if we can use it.
74struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000075 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +000076 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000077 const Instruction *CxtI;
78 const DominatorTree *DT;
79
Matthias Braun37e5d792016-01-28 06:29:33 +000080 /// Set of assumptions that should be excluded from further queries.
81 /// This is because of the potential for mutual recursion to cause
82 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
83 /// classic case of this is assume(x = y), which will attempt to determine
84 /// bits in x from bits in y, which will attempt to determine bits in y from
85 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
86 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
87 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
88 /// on.
Li Huang755f75f2016-10-15 19:00:04 +000089 std::array<const Value *, MaxDepth> Excluded;
Matthias Braun37e5d792016-01-28 06:29:33 +000090 unsigned NumExcluded;
91
Daniel Jasperaec2fa32016-12-19 08:22:17 +000092 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
93 const DominatorTree *DT)
94 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000095
96 Query(const Query &Q, const Value *NewExcl)
Daniel Jasperaec2fa32016-12-19 08:22:17 +000097 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +000098 Excluded = Q.Excluded;
99 Excluded[NumExcluded++] = NewExcl;
100 assert(NumExcluded <= Excluded.size());
101 }
102
103 bool isExcluded(const Value *Value) const {
104 if (NumExcluded == 0)
105 return false;
106 auto End = Excluded.begin() + NumExcluded;
107 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000108 }
109};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000110} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000111
Sanjay Patel547e9752014-11-04 16:09:50 +0000112// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000113// the preferred context instruction (if any).
114static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
115 // If we've been provided with a context instruction, then use that (provided
116 // it has been inserted).
117 if (CxtI && CxtI->getParent())
118 return CxtI;
119
120 // If the value is really an already-inserted instruction, then use that.
121 CxtI = dyn_cast<Instruction>(V);
122 if (CxtI && CxtI->getParent())
123 return CxtI;
124
125 return nullptr;
126}
127
Pete Cooper35b00d52016-08-13 01:05:32 +0000128static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000129 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000130
Pete Cooper35b00d52016-08-13 01:05:32 +0000131void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000132 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000133 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000134 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000135 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000136 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000137}
138
Pete Cooper35b00d52016-08-13 01:05:32 +0000139bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
140 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000141 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000142 const DominatorTree *DT) {
143 assert(LHS->getType() == RHS->getType() &&
144 "LHS and RHS should have the same type");
145 assert(LHS->getType()->isIntOrIntVectorTy() &&
146 "LHS and RHS should be integers");
147 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
148 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
149 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000150 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
151 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
Jingyue Wuca321902015-05-14 23:53:19 +0000152 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
153}
154
Pete Cooper35b00d52016-08-13 01:05:32 +0000155static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000156 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000157
Pete Cooper35b00d52016-08-13 01:05:32 +0000158void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000159 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000160 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000161 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000162 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000163 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000164}
165
Pete Cooper35b00d52016-08-13 01:05:32 +0000166static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000167 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000168
Pete Cooper35b00d52016-08-13 01:05:32 +0000169bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
170 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000171 unsigned Depth, AssumptionCache *AC,
172 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000173 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000174 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000175 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000176}
177
Pete Cooper35b00d52016-08-13 01:05:32 +0000178static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000179
Pete Cooper35b00d52016-08-13 01:05:32 +0000180bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000181 AssumptionCache *AC, const Instruction *CxtI,
182 const DominatorTree *DT) {
183 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000184}
185
Pete Cooper35b00d52016-08-13 01:05:32 +0000186bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000187 unsigned Depth,
188 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000189 const DominatorTree *DT) {
190 bool NonNegative, Negative;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000191 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +0000192 return NonNegative;
193}
194
Pete Cooper35b00d52016-08-13 01:05:32 +0000195bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000196 AssumptionCache *AC, const Instruction *CxtI,
197 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000198 if (auto *CI = dyn_cast<ConstantInt>(V))
199 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000200
Philip Reames8f12eba2016-03-09 21:31:47 +0000201 // TODO: We'd doing two recursive queries here. We should factor this such
202 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000203 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
204 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000205}
206
Pete Cooper35b00d52016-08-13 01:05:32 +0000207bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000208 AssumptionCache *AC, const Instruction *CxtI,
209 const DominatorTree *DT) {
Nick Lewycky762f8a82016-04-21 00:53:14 +0000210 bool NonNegative, Negative;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000211 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
Nick Lewycky762f8a82016-04-21 00:53:14 +0000212 return Negative;
213}
214
Pete Cooper35b00d52016-08-13 01:05:32 +0000215static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000216
Pete Cooper35b00d52016-08-13 01:05:32 +0000217bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000218 const DataLayout &DL,
219 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000220 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000221 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
222 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000223 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000224}
225
Pete Cooper35b00d52016-08-13 01:05:32 +0000226static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000227 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000228
Pete Cooper35b00d52016-08-13 01:05:32 +0000229bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
230 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000231 unsigned Depth, AssumptionCache *AC,
232 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000233 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000234 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000235}
236
Pete Cooper35b00d52016-08-13 01:05:32 +0000237static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
238 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000239
Pete Cooper35b00d52016-08-13 01:05:32 +0000240unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000241 unsigned Depth, AssumptionCache *AC,
242 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000243 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000244 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000245}
246
Pete Cooper35b00d52016-08-13 01:05:32 +0000247static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
248 bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000249 APInt &KnownZero, APInt &KnownOne,
250 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000251 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000252 if (!Add) {
Pete Cooper35b00d52016-08-13 01:05:32 +0000253 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000254 // We know that the top bits of C-X are clear if X contains less bits
255 // than C (i.e. no wrap-around can happen). For example, 20-X is
256 // positive if we can prove that X is >= 0 and < 16.
257 if (!CLHS->getValue().isNegative()) {
258 unsigned BitWidth = KnownZero.getBitWidth();
259 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
260 // NLZ can't be BitWidth with no sign bit
261 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000262 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000263
264 // If all of the MaskV bits are known to be zero, then we know the
265 // output top bits are zero, because we now know that the output is
266 // from [0-C].
267 if ((KnownZero2 & MaskV) == MaskV) {
268 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
269 // Top bits known zero.
270 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
271 }
272 }
273 }
274 }
275
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000276 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000277
David Majnemer97ddca32014-08-22 00:40:43 +0000278 // If an initial sequence of bits in the result is not needed, the
279 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000280 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000281 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
282 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000283
David Majnemer97ddca32014-08-22 00:40:43 +0000284 // Carry in a 1 for a subtract, rather than a 0.
285 APInt CarryIn(BitWidth, 0);
286 if (!Add) {
287 // Sum = LHS + ~RHS + 1
288 std::swap(KnownZero2, KnownOne2);
289 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000290 }
291
David Majnemer97ddca32014-08-22 00:40:43 +0000292 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
293 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
294
295 // Compute known bits of the carry.
296 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
297 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
298
299 // Compute set of known bits (where all three relevant bits are known).
300 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
301 APInt RHSKnown = KnownZero2 | KnownOne2;
302 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
303 APInt Known = LHSKnown & RHSKnown & CarryKnown;
304
305 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
306 "known bits of sum differ");
307
308 // Compute known bits of the result.
309 KnownZero = ~PossibleSumOne & Known;
310 KnownOne = PossibleSumOne & Known;
311
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000312 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000313 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000314 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000315 // Adding two non-negative numbers, or subtracting a negative number from
316 // a non-negative one, can't wrap into negative.
317 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
318 KnownZero |= APInt::getSignBit(BitWidth);
319 // Adding two negative numbers, or subtracting a non-negative number from
320 // a negative one, can't wrap into non-negative.
321 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
322 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000323 }
324 }
325}
326
Pete Cooper35b00d52016-08-13 01:05:32 +0000327static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000328 APInt &KnownZero, APInt &KnownOne,
329 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000330 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000331 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000332 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
333 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000334
335 bool isKnownNegative = false;
336 bool isKnownNonNegative = false;
337 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000338 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000339 if (Op0 == Op1) {
340 // The product of a number with itself is non-negative.
341 isKnownNonNegative = true;
342 } else {
343 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
344 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
345 bool isKnownNegativeOp1 = KnownOne.isNegative();
346 bool isKnownNegativeOp0 = KnownOne2.isNegative();
347 // The product of two numbers with the same sign is non-negative.
348 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
349 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
350 // The product of a negative number and a non-negative number is either
351 // negative or zero.
352 if (!isKnownNonNegative)
353 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000354 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000355 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000356 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000357 }
358 }
359
360 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000361 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000362 // More trickiness is possible, but this is sufficient for the
363 // interesting case of alignment computation.
364 KnownOne.clearAllBits();
365 unsigned TrailZ = KnownZero.countTrailingOnes() +
366 KnownZero2.countTrailingOnes();
367 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
368 KnownZero2.countLeadingOnes(),
369 BitWidth) - BitWidth;
370
371 TrailZ = std::min(TrailZ, BitWidth);
372 LeadZ = std::min(LeadZ, BitWidth);
373 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
374 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000375
376 // Only make use of no-wrap flags if we failed to compute the sign bit
377 // directly. This matters if the multiplication always overflows, in
378 // which case we prefer to follow the result of the direct computation,
379 // though as the program is invoking undefined behaviour we can choose
380 // whatever we like here.
381 if (isKnownNonNegative && !KnownOne.isNegative())
382 KnownZero.setBit(BitWidth - 1);
383 else if (isKnownNegative && !KnownZero.isNegative())
384 KnownOne.setBit(BitWidth - 1);
385}
386
Jingyue Wu37fcb592014-06-19 16:50:16 +0000387void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000388 APInt &KnownZero,
389 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000390 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000391 unsigned NumRanges = Ranges.getNumOperands() / 2;
392 assert(NumRanges >= 1);
393
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000394 KnownZero.setAllBits();
395 KnownOne.setAllBits();
396
Rafael Espindola53190532012-03-30 15:52:11 +0000397 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000398 ConstantInt *Lower =
399 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
400 ConstantInt *Upper =
401 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000402 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000403
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000404 // The first CommonPrefixBits of all values in Range are equal.
405 unsigned CommonPrefixBits =
406 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
407
408 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
409 KnownOne &= Range.getUnsignedMax() & Mask;
410 KnownZero &= ~Range.getUnsignedMax() & Mask;
411 }
Rafael Espindola53190532012-03-30 15:52:11 +0000412}
Jay Foad5a29c362014-05-15 12:12:55 +0000413
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000414static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000415 SmallVector<const Value *, 16> WorkSet(1, I);
416 SmallPtrSet<const Value *, 32> Visited;
417 SmallPtrSet<const Value *, 16> EphValues;
418
Hal Finkelf2199b22015-10-23 20:37:08 +0000419 // The instruction defining an assumption's condition itself is always
420 // considered ephemeral to that assumption (even if it has other
421 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000422 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000423 return true;
424
Hal Finkel60db0582014-09-07 18:57:58 +0000425 while (!WorkSet.empty()) {
426 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000427 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000428 continue;
429
430 // If all uses of this value are ephemeral, then so is this value.
David Majnemer0a16c222016-08-11 21:15:00 +0000431 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000432 if (V == E)
433 return true;
434
435 EphValues.insert(V);
436 if (const User *U = dyn_cast<User>(V))
437 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
438 J != JE; ++J) {
439 if (isSafeToSpeculativelyExecute(*J))
440 WorkSet.push_back(*J);
441 }
442 }
443 }
444
445 return false;
446}
447
448// Is this an intrinsic that cannot be speculated but also cannot trap?
449static bool isAssumeLikeIntrinsic(const Instruction *I) {
450 if (const CallInst *CI = dyn_cast<CallInst>(I))
451 if (Function *F = CI->getCalledFunction())
452 switch (F->getIntrinsicID()) {
453 default: break;
454 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
455 case Intrinsic::assume:
456 case Intrinsic::dbg_declare:
457 case Intrinsic::dbg_value:
458 case Intrinsic::invariant_start:
459 case Intrinsic::invariant_end:
460 case Intrinsic::lifetime_start:
461 case Intrinsic::lifetime_end:
462 case Intrinsic::objectsize:
463 case Intrinsic::ptr_annotation:
464 case Intrinsic::var_annotation:
465 return true;
466 }
467
468 return false;
469}
470
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000471bool llvm::isValidAssumeForContext(const Instruction *Inv,
472 const Instruction *CxtI,
473 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000474
475 // There are two restrictions on the use of an assume:
476 // 1. The assume must dominate the context (or the control flow must
477 // reach the assume whenever it reaches the context).
478 // 2. The context must not be in the assume's set of ephemeral values
479 // (otherwise we will use the assume to prove that the condition
480 // feeding the assume is trivially true, thus causing the removal of
481 // the assume).
482
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000483 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000484 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000485 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000486 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
487 // We don't have a DT, but this trivially dominates.
488 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000489 }
490
Pete Cooper54a02552016-08-12 01:00:15 +0000491 // With or without a DT, the only remaining case we will check is if the
492 // instructions are in the same BB. Give up if that is not the case.
493 if (Inv->getParent() != CxtI->getParent())
494 return false;
495
496 // If we have a dom tree, then we now know that the assume doens't dominate
497 // the other instruction. If we don't have a dom tree then we can check if
498 // the assume is first in the BB.
499 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000500 // Search forward from the assume until we reach the context (or the end
501 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000502 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000503 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000504 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000505 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000506 }
507
Pete Cooper54a02552016-08-12 01:00:15 +0000508 // The context comes first, but they're both in the same block. Make sure
509 // there is nothing in between that might interrupt the control flow.
510 for (BasicBlock::const_iterator I =
511 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
512 I != IE; ++I)
513 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
514 return false;
515
516 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000517}
518
Pete Cooper35b00d52016-08-13 01:05:32 +0000519static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000520 APInt &KnownOne, unsigned Depth,
521 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000522 // Use of assumptions is context-sensitive. If we don't have a context, we
523 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000524 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000525 return;
526
527 unsigned BitWidth = KnownZero.getBitWidth();
528
Hal Finkel8a9a7832017-01-11 13:24:24 +0000529 // Note that the patterns below need to be kept in sync with the code
530 // in AssumptionCache::updateAffectedValues.
531
532 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000533 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000534 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000535 CallInst *I = cast<CallInst>(AssumeVH);
536 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
537 "Got assumption for the wrong function!");
538 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000539 continue;
540
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000541 // Warning: This loop can end up being somewhat performance sensetive.
542 // We're running this loop for once for each value queried resulting in a
543 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000544
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000545 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
546 "must be an assume intrinsic");
547
548 Value *Arg = I->getArgOperand(0);
549
550 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000551 assert(BitWidth == 1 && "assume operand is not i1?");
552 KnownZero.clearAllBits();
553 KnownOne.setAllBits();
554 return;
555 }
556
David Majnemer9b609752014-12-12 23:59:29 +0000557 // The remaining tests are all recursive, so bail out if we hit the limit.
558 if (Depth == MaxDepth)
559 continue;
560
Hal Finkel60db0582014-09-07 18:57:58 +0000561 Value *A, *B;
562 auto m_V = m_CombineOr(m_Specific(V),
563 m_CombineOr(m_PtrToInt(m_Specific(V)),
564 m_BitCast(m_Specific(V))));
565
566 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000567 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000568 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000569 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000570 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000571 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000572 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000573 KnownZero |= RHSKnownZero;
574 KnownOne |= RHSKnownOne;
575 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000576 } else if (match(Arg,
577 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000578 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000579 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000580 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000581 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000582 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000583 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000584
585 // For those bits in the mask that are known to be one, we can propagate
586 // known bits from the RHS to V.
587 KnownZero |= RHSKnownZero & MaskKnownOne;
588 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000589 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000590 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
591 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000592 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000593 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000594 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000595 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000596 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000597 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000598
599 // For those bits in the mask that are known to be one, we can propagate
600 // inverted known bits from the RHS to V.
601 KnownZero |= RHSKnownOne & MaskKnownOne;
602 KnownOne |= RHSKnownZero & MaskKnownOne;
603 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000604 } else if (match(Arg,
605 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000606 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000607 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000608 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000609 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000610 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000611 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000612
613 // For those bits in B that are known to be zero, we can propagate known
614 // bits from the RHS to V.
615 KnownZero |= RHSKnownZero & BKnownZero;
616 KnownOne |= RHSKnownOne & BKnownZero;
617 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000618 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
619 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000620 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000621 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000622 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000623 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000624 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000625 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000626
627 // For those bits in B that are known to be zero, we can propagate
628 // inverted known bits from the RHS to V.
629 KnownZero |= RHSKnownOne & BKnownZero;
630 KnownOne |= RHSKnownZero & BKnownZero;
631 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000632 } else if (match(Arg,
633 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000634 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000635 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000636 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000637 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000638 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000639 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000640
641 // For those bits in B that are known to be zero, we can propagate known
642 // bits from the RHS to V. For those bits in B that are known to be one,
643 // we can propagate inverted known bits from the RHS to V.
644 KnownZero |= RHSKnownZero & BKnownZero;
645 KnownOne |= RHSKnownOne & BKnownZero;
646 KnownZero |= RHSKnownOne & BKnownOne;
647 KnownOne |= RHSKnownZero & BKnownOne;
648 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000649 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
650 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000651 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000652 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000653 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000654 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000655 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000656 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000657
658 // For those bits in B that are known to be zero, we can propagate
659 // inverted known bits from the RHS to V. For those bits in B that are
660 // known to be one, we can propagate known bits from the RHS to V.
661 KnownZero |= RHSKnownOne & BKnownZero;
662 KnownOne |= RHSKnownZero & BKnownZero;
663 KnownZero |= RHSKnownZero & BKnownOne;
664 KnownOne |= RHSKnownOne & BKnownOne;
665 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000666 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
667 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000668 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000669 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000670 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000671 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000672 // For those bits in RHS that are known, we can propagate them to known
673 // bits in V shifted to the right by C.
674 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
675 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
676 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000677 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
678 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000679 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000680 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000681 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000682 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000683 // For those bits in RHS that are known, we can propagate them inverted
684 // to known bits in V shifted to the right by C.
685 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
686 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
687 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000688 } else if (match(Arg,
689 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000690 m_AShr(m_V, m_ConstantInt(C))),
691 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000692 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000693 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000694 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000695 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000696 // For those bits in RHS that are known, we can propagate them to known
697 // bits in V shifted to the right by C.
698 KnownZero |= RHSKnownZero << C->getZExtValue();
699 KnownOne |= RHSKnownOne << C->getZExtValue();
700 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000701 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000702 m_LShr(m_V, m_ConstantInt(C)),
703 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000704 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000705 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000706 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000707 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000708 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000709 // For those bits in RHS that are known, we can propagate them inverted
710 // to known bits in V shifted to the right by C.
711 KnownZero |= RHSKnownOne << C->getZExtValue();
712 KnownOne |= RHSKnownZero << C->getZExtValue();
713 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000714 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000715 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000716 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000717 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000718 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000719
720 if (RHSKnownZero.isNegative()) {
721 // We know that the sign bit is zero.
722 KnownZero |= APInt::getSignBit(BitWidth);
723 }
724 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000725 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000726 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000727 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000728 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000729 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000730
731 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
732 // We know that the sign bit is zero.
733 KnownZero |= APInt::getSignBit(BitWidth);
734 }
735 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000736 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000737 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000738 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000739 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000740 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000741
742 if (RHSKnownOne.isNegative()) {
743 // We know that the sign bit is one.
744 KnownOne |= APInt::getSignBit(BitWidth);
745 }
746 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000747 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000748 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000749 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000750 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000751 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000752
753 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
754 // We know that the sign bit is one.
755 KnownOne |= APInt::getSignBit(BitWidth);
756 }
757 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000758 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000759 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000761 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000762 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000763
764 // Whatever high bits in c are zero are known to be zero.
765 KnownZero |=
766 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
767 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000768 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000769 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000770 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000771 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000772 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000773
774 // Whatever high bits in c are zero are known to be zero (if c is a power
775 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000776 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000777 KnownZero |=
778 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
779 else
780 KnownZero |=
781 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000782 }
783 }
784}
785
Hal Finkelf2199b22015-10-23 20:37:08 +0000786// Compute known bits from a shift operator, including those with a
787// non-constant shift amount. KnownZero and KnownOne are the outputs of this
788// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
789// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
790// functors that, given the known-zero or known-one bits respectively, and a
791// shift amount, compute the implied known-zero or known-one bits of the shift
792// operator's result respectively for that shift amount. The results from calling
793// KZF and KOF are conservatively combined for all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000794static void computeKnownBitsFromShiftOperator(
795 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2,
796 APInt &KnownOne2, unsigned Depth, const Query &Q,
797 function_ref<APInt(const APInt &, unsigned)> KZF,
798 function_ref<APInt(const APInt &, unsigned)> KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000799 unsigned BitWidth = KnownZero.getBitWidth();
800
801 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
802 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
803
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000804 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000805 KnownZero = KZF(KnownZero, ShiftAmt);
806 KnownOne = KOF(KnownOne, ShiftAmt);
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000807 // If there is conflict between KnownZero and KnownOne, this must be an
808 // overflowing left shift, so the shift result is undefined. Clear KnownZero
809 // and KnownOne bits so that other code could propagate this undef.
810 if ((KnownZero & KnownOne) != 0) {
811 KnownZero.clearAllBits();
812 KnownOne.clearAllBits();
813 }
814
Hal Finkelf2199b22015-10-23 20:37:08 +0000815 return;
816 }
817
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000818 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000819
820 // Note: We cannot use KnownZero.getLimitedValue() here, because if
821 // BitWidth > 64 and any upper bits are known, we'll end up returning the
822 // limit value (which implies all bits are known).
823 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
824 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
825
826 // It would be more-clearly correct to use the two temporaries for this
827 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000828 KnownZero.clearAllBits();
829 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000830
James Molloy493e57d2015-10-26 14:10:46 +0000831 // If we know the shifter operand is nonzero, we can sometimes infer more
832 // known bits. However this is expensive to compute, so be lazy about it and
833 // only compute it when absolutely necessary.
834 Optional<bool> ShifterOperandIsNonZero;
835
Hal Finkelf2199b22015-10-23 20:37:08 +0000836 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000837 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
838 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000839 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000840 if (!*ShifterOperandIsNonZero)
841 return;
842 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000843
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000844 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000845
846 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
847 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
848 // Combine the shifted known input bits only for those shift amounts
849 // compatible with its known constraints.
850 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
851 continue;
852 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
853 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000854 // If we know the shifter is nonzero, we may be able to infer more known
855 // bits. This check is sunk down as far as possible to avoid the expensive
856 // call to isKnownNonZero if the cheaper checks above fail.
857 if (ShiftAmt == 0) {
858 if (!ShifterOperandIsNonZero.hasValue())
859 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000860 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000861 if (*ShifterOperandIsNonZero)
862 continue;
863 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000864
865 KnownZero &= KZF(KnownZero2, ShiftAmt);
866 KnownOne &= KOF(KnownOne2, ShiftAmt);
867 }
868
869 // If there are no compatible shift amounts, then we've proven that the shift
870 // amount must be >= the BitWidth, and the result is undefined. We could
871 // return anything we'd like, but we need to make sure the sets of known bits
872 // stay disjoint (it should be better for some other code to actually
873 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000874 if ((KnownZero & KnownOne) != 0) {
875 KnownZero.clearAllBits();
876 KnownOne.clearAllBits();
877 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000878}
879
Pete Cooper35b00d52016-08-13 01:05:32 +0000880static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000881 APInt &KnownOne, unsigned Depth,
882 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000883 unsigned BitWidth = KnownZero.getBitWidth();
884
Chris Lattner965c7692008-06-02 01:18:21 +0000885 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000886 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000887 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000888 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000889 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000890 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000891 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000892 case Instruction::And: {
893 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000894 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
895 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000896
Chris Lattner965c7692008-06-02 01:18:21 +0000897 // Output known-1 bits are only known if set in both the LHS & RHS.
898 KnownOne &= KnownOne2;
899 // Output known-0 are known to be clear if zero in either the LHS | RHS.
900 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000901
902 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
903 // here we handle the more general case of adding any odd number by
904 // matching the form add(x, add(x, y)) where y is odd.
905 // TODO: This could be generalized to clearing any bit set in y where the
906 // following bit is known to be unset in y.
907 Value *Y = nullptr;
908 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
909 m_Value(Y))) ||
910 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
911 m_Value(Y)))) {
912 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000913 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000914 if (KnownOne3.countTrailingOnes() > 0)
915 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
916 }
Jay Foad5a29c362014-05-15 12:12:55 +0000917 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000918 }
919 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000920 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
921 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000922
Chris Lattner965c7692008-06-02 01:18:21 +0000923 // Output known-0 bits are only known if clear in both the LHS & RHS.
924 KnownZero &= KnownZero2;
925 // Output known-1 are known to be set if set in either the LHS | RHS.
926 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000927 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000928 }
929 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000930 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
931 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000932
Chris Lattner965c7692008-06-02 01:18:21 +0000933 // Output known-0 bits are known if clear or set in both the LHS & RHS.
934 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
935 // Output known-1 are known to be set if set in only one of the LHS, RHS.
936 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
937 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000938 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000939 }
940 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000941 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000942 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000943 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000944 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000945 }
946 case Instruction::UDiv: {
947 // For the purposes of computing leading zeros we can conservatively
948 // treat a udiv as a logical right shift by the power of 2 known to
949 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000950 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000951 unsigned LeadZ = KnownZero2.countLeadingOnes();
952
Jay Foad25a5e4c2010-12-01 08:53:58 +0000953 KnownOne2.clearAllBits();
954 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000955 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000956 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
957 if (RHSUnknownLeadingOnes != BitWidth)
958 LeadZ = std::min(BitWidth,
959 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
960
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000961 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000962 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000963 }
David Majnemera19d0f22016-08-06 08:16:00 +0000964 case Instruction::Select: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000965 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
966 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000967
Pete Cooper35b00d52016-08-13 01:05:32 +0000968 const Value *LHS;
969 const Value *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000970 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
971 if (SelectPatternResult::isMinOrMax(SPF)) {
972 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
973 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
974 } else {
975 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
976 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
977 }
978
979 unsigned MaxHighOnes = 0;
980 unsigned MaxHighZeros = 0;
981 if (SPF == SPF_SMAX) {
982 // If both sides are negative, the result is negative.
983 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
984 // We can derive a lower bound on the result by taking the max of the
985 // leading one bits.
986 MaxHighOnes =
987 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
988 // If either side is non-negative, the result is non-negative.
989 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
990 MaxHighZeros = 1;
991 } else if (SPF == SPF_SMIN) {
992 // If both sides are non-negative, the result is non-negative.
993 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
994 // We can derive an upper bound on the result by taking the max of the
995 // leading zero bits.
996 MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
997 KnownZero2.countLeadingOnes());
998 // If either side is negative, the result is negative.
999 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
1000 MaxHighOnes = 1;
1001 } else if (SPF == SPF_UMAX) {
1002 // We can derive a lower bound on the result by taking the max of the
1003 // leading one bits.
1004 MaxHighOnes =
1005 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1006 } else if (SPF == SPF_UMIN) {
1007 // We can derive an upper bound on the result by taking the max of the
1008 // leading zero bits.
1009 MaxHighZeros =
1010 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
1011 }
1012
Chris Lattner965c7692008-06-02 01:18:21 +00001013 // Only known if known in both the LHS and RHS.
1014 KnownOne &= KnownOne2;
1015 KnownZero &= KnownZero2;
David Majnemera19d0f22016-08-06 08:16:00 +00001016 if (MaxHighOnes > 0)
1017 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
1018 if (MaxHighZeros > 0)
1019 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001020 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001021 }
Chris Lattner965c7692008-06-02 01:18:21 +00001022 case Instruction::FPTrunc:
1023 case Instruction::FPExt:
1024 case Instruction::FPToUI:
1025 case Instruction::FPToSI:
1026 case Instruction::SIToFP:
1027 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001028 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001029 case Instruction::PtrToInt:
1030 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001031 // Fall through and handle them the same as zext/trunc.
1032 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001033 case Instruction::ZExt:
1034 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001035 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001036
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001037 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001038 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1039 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001040 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001041
1042 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001043 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1044 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001045 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001046 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1047 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001048 // Any top bits are known to be zero.
1049 if (BitWidth > SrcBitWidth)
1050 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001051 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001052 }
1053 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001054 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001055 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001056 // TODO: For now, not handling conversions like:
1057 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001058 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001059 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001060 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001061 }
1062 break;
1063 }
1064 case Instruction::SExt: {
1065 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001066 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001067
Jay Foad583abbc2010-12-07 08:25:19 +00001068 KnownZero = KnownZero.trunc(SrcBitWidth);
1069 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001070 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001071 KnownZero = KnownZero.zext(BitWidth);
1072 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001073
1074 // If the sign bit of the input is known set or clear, then we know the
1075 // top bits of the result.
1076 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1077 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1078 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1079 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001080 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001081 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001082 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001083 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001084 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1085 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1086 APInt KZResult =
1087 (KnownZero << ShiftAmt) |
1088 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1089 // If this shift has "nsw" keyword, then the result is either a poison
1090 // value or has the same sign bit as the first operand.
1091 if (NSW && KnownZero.isNegative())
1092 KZResult.setBit(BitWidth - 1);
1093 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001094 };
1095
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001096 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1097 APInt KOResult = KnownOne << ShiftAmt;
1098 if (NSW && KnownOne.isNegative())
1099 KOResult.setBit(BitWidth - 1);
1100 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001101 };
1102
1103 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001104 KnownZero2, KnownOne2, Depth, Q, KZF,
1105 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001106 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001107 }
1108 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001109 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001110 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1111 return APIntOps::lshr(KnownZero, ShiftAmt) |
1112 // High bits known zero.
1113 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1114 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001115
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001116 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Hal Finkelf2199b22015-10-23 20:37:08 +00001117 return APIntOps::lshr(KnownOne, ShiftAmt);
1118 };
1119
1120 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001121 KnownZero2, KnownOne2, Depth, Q, KZF,
1122 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001123 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001124 }
1125 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001126 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001127 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
Hal Finkelf2199b22015-10-23 20:37:08 +00001128 return APIntOps::ashr(KnownZero, ShiftAmt);
1129 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001130
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001131 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Hal Finkelf2199b22015-10-23 20:37:08 +00001132 return APIntOps::ashr(KnownOne, ShiftAmt);
1133 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001134
Hal Finkelf2199b22015-10-23 20:37:08 +00001135 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001136 KnownZero2, KnownOne2, Depth, Q, KZF,
1137 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001138 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001139 }
Chris Lattner965c7692008-06-02 01:18:21 +00001140 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001141 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001142 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001143 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1144 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001145 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001146 }
Chris Lattner965c7692008-06-02 01:18:21 +00001147 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001148 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001149 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001150 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1151 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001152 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001153 }
1154 case Instruction::SRem:
1155 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001156 APInt RA = Rem->getValue().abs();
1157 if (RA.isPowerOf2()) {
1158 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001159 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001160 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001161
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001162 // The low bits of the first operand are unchanged by the srem.
1163 KnownZero = KnownZero2 & LowBits;
1164 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001165
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001166 // If the first operand is non-negative or has all low bits zero, then
1167 // the upper bits are all zero.
1168 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1169 KnownZero |= ~LowBits;
1170
1171 // If the first operand is negative and not all low bits are zero, then
1172 // the upper bits are all one.
1173 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1174 KnownOne |= ~LowBits;
1175
Craig Topper1bef2c82012-12-22 19:15:35 +00001176 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001177 }
1178 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001179
1180 // The sign bit is the LHS's sign bit, except when the result of the
1181 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001182 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001183 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001184 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1185 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001186 // If it's known zero, our sign bit is also zero.
1187 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001188 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001189 }
1190
Chris Lattner965c7692008-06-02 01:18:21 +00001191 break;
1192 case Instruction::URem: {
1193 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001194 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001195 if (RA.isPowerOf2()) {
1196 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001197 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001198 KnownZero |= ~LowBits;
1199 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001200 break;
1201 }
1202 }
1203
1204 // Since the result is less than or equal to either operand, any leading
1205 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001206 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1207 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001208
Chris Lattner4612ae12009-01-20 18:22:57 +00001209 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001210 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001211 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001212 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001213 break;
1214 }
1215
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001216 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001217 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001218 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001219 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001220 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001221
Chris Lattner965c7692008-06-02 01:18:21 +00001222 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001223 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001224 break;
1225 }
1226 case Instruction::GetElementPtr: {
1227 // Analyze all of the subscripts of this getelementptr instruction
1228 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001229 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001230 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1231 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001232 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1233
1234 gep_type_iterator GTI = gep_type_begin(I);
1235 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1236 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001237 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001238 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001239
1240 // Handle case when index is vector zeroinitializer
1241 Constant *CIndex = cast<Constant>(Index);
1242 if (CIndex->isZeroValue())
1243 continue;
1244
1245 if (CIndex->getType()->isVectorTy())
1246 Index = CIndex->getSplatValue();
1247
Chris Lattner965c7692008-06-02 01:18:21 +00001248 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001249 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001250 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001251 TrailZ = std::min<unsigned>(TrailZ,
1252 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001253 } else {
1254 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001255 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001256 if (!IndexedTy->isSized()) {
1257 TrailZ = 0;
1258 break;
1259 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001260 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001261 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001262 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001263 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001264 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001265 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001266 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001267 }
1268 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001269
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001270 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001271 break;
1272 }
1273 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001274 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001275 // Handle the case of a simple two-predecessor recurrence PHI.
1276 // There's a lot more that could theoretically be done here, but
1277 // this is sufficient to catch some interesting cases.
1278 if (P->getNumIncomingValues() == 2) {
1279 for (unsigned i = 0; i != 2; ++i) {
1280 Value *L = P->getIncomingValue(i);
1281 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001282 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001283 if (!LU)
1284 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001285 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001286 // Check for operations that have the property that if
1287 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001288 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001289 if (Opcode == Instruction::Add ||
1290 Opcode == Instruction::Sub ||
1291 Opcode == Instruction::And ||
1292 Opcode == Instruction::Or ||
1293 Opcode == Instruction::Mul) {
1294 Value *LL = LU->getOperand(0);
1295 Value *LR = LU->getOperand(1);
1296 // Find a recurrence.
1297 if (LL == I)
1298 L = LR;
1299 else if (LR == I)
1300 L = LL;
1301 else
1302 break;
1303 // Ok, we have a PHI of the form L op= R. Check for low
1304 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001305 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001306
1307 // We need to take the minimum number of known bits
1308 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001309 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001310
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001311 KnownZero = APInt::getLowBitsSet(
1312 BitWidth, std::min(KnownZero2.countTrailingOnes(),
1313 KnownZero3.countTrailingOnes()));
1314
1315 if (DontImproveNonNegativePhiBits)
1316 break;
1317
1318 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1319 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1320 // If initial value of recurrence is nonnegative, and we are adding
1321 // a nonnegative number with nsw, the result can only be nonnegative
1322 // or poison value regardless of the number of times we execute the
1323 // add in phi recurrence. If initial value is negative and we are
1324 // adding a negative number with nsw, the result can only be
1325 // negative or poison value. Similar arguments apply to sub and mul.
1326 //
1327 // (add non-negative, non-negative) --> non-negative
1328 // (add negative, negative) --> negative
1329 if (Opcode == Instruction::Add) {
1330 if (KnownZero2.isNegative() && KnownZero3.isNegative())
1331 KnownZero.setBit(BitWidth - 1);
1332 else if (KnownOne2.isNegative() && KnownOne3.isNegative())
1333 KnownOne.setBit(BitWidth - 1);
1334 }
1335
1336 // (sub nsw non-negative, negative) --> non-negative
1337 // (sub nsw negative, non-negative) --> negative
1338 else if (Opcode == Instruction::Sub && LL == I) {
1339 if (KnownZero2.isNegative() && KnownOne3.isNegative())
1340 KnownZero.setBit(BitWidth - 1);
1341 else if (KnownOne2.isNegative() && KnownZero3.isNegative())
1342 KnownOne.setBit(BitWidth - 1);
1343 }
1344
1345 // (mul nsw non-negative, non-negative) --> non-negative
1346 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() &&
1347 KnownZero3.isNegative())
1348 KnownZero.setBit(BitWidth - 1);
1349 }
1350
Chris Lattner965c7692008-06-02 01:18:21 +00001351 break;
1352 }
1353 }
1354 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001355
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001356 // Unreachable blocks may have zero-operand PHI nodes.
1357 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001358 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001359
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001360 // Otherwise take the unions of the known bit sets of the operands,
1361 // taking conservative care to avoid excessive recursion.
1362 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001363 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001364 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001365 break;
1366
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001367 KnownZero = APInt::getAllOnesValue(BitWidth);
1368 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001369 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001370 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001371 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001372
1373 KnownZero2 = APInt(BitWidth, 0);
1374 KnownOne2 = APInt(BitWidth, 0);
1375 // Recurse, but cap the recursion to one level, because we don't
1376 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001377 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001378 KnownZero &= KnownZero2;
1379 KnownOne &= KnownOne2;
1380 // If all bits have been ruled out, there's no need to check
1381 // more operands.
1382 if (!KnownZero && !KnownOne)
1383 break;
1384 }
1385 }
Chris Lattner965c7692008-06-02 01:18:21 +00001386 break;
1387 }
1388 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001389 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001390 // If range metadata is attached to this call, set known bits from that,
1391 // and then intersect with known bits based on other properties of the
1392 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001393 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001394 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Pete Cooper35b00d52016-08-13 01:05:32 +00001395 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001396 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1397 KnownZero |= KnownZero2;
1398 KnownOne |= KnownOne2;
1399 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001400 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001401 switch (II->getIntrinsicID()) {
1402 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001403 case Intrinsic::bitreverse:
1404 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1405 KnownZero = KnownZero2.reverseBits();
1406 KnownOne = KnownOne2.reverseBits();
1407 break;
Philip Reames675418e2015-10-06 20:20:45 +00001408 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001409 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001410 KnownZero |= KnownZero2.byteSwap();
1411 KnownOne |= KnownOne2.byteSwap();
1412 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001413 case Intrinsic::ctlz:
1414 case Intrinsic::cttz: {
1415 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001416 // If this call is undefined for 0, the result will be less than 2^n.
1417 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1418 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001419 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001420 break;
1421 }
1422 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001423 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001424 // We can bound the space the count needs. Also, bits known to be zero
1425 // can't contribute to the population.
1426 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1427 unsigned LeadingZeros =
1428 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001429 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001430 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1431 KnownOne &= ~KnownZero;
1432 // TODO: we could bound KnownOne using the lower bound on the number
1433 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001434 break;
1435 }
Chad Rosierb3628842011-05-26 23:13:19 +00001436 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001437 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001438 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001439 }
1440 }
1441 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001442 case Instruction::ExtractElement:
1443 // Look through extract element. At the moment we keep this simple and skip
1444 // tracking the specific element. But at least we might find information
1445 // valid for all elements of the vector (for example if vector is sign
1446 // extended, shifted, etc).
1447 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1448 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001449 case Instruction::ExtractValue:
1450 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001451 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001452 if (EVI->getNumIndices() != 1) break;
1453 if (EVI->getIndices()[0] == 0) {
1454 switch (II->getIntrinsicID()) {
1455 default: break;
1456 case Intrinsic::uadd_with_overflow:
1457 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001458 computeKnownBitsAddSub(true, II->getArgOperand(0),
1459 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001460 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001461 break;
1462 case Intrinsic::usub_with_overflow:
1463 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001464 computeKnownBitsAddSub(false, II->getArgOperand(0),
1465 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001466 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001467 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001468 case Intrinsic::umul_with_overflow:
1469 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001470 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001471 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1472 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001473 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001474 }
1475 }
1476 }
Chris Lattner965c7692008-06-02 01:18:21 +00001477 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001478}
1479
1480/// Determine which bits of V are known to be either zero or one and return
1481/// them in the KnownZero/KnownOne bit sets.
1482///
1483/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1484/// we cannot optimize based on the assumption that it is zero without changing
1485/// it to be an explicit zero. If we don't change it to zero, other code could
1486/// optimized based on the contradictory assumption that it is non-zero.
1487/// Because instcombine aggressively folds operations with undef args anyway,
1488/// this won't lose us code quality.
1489///
1490/// This function is defined on values with integer type, values with pointer
1491/// type, and vectors of integers. In the case
1492/// where V is a vector, known zero, and known one values are the
1493/// same width as the vector element, and the bit is set only if it is true
1494/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00001495void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001496 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001497 assert(V && "No Value?");
1498 assert(Depth <= MaxDepth && "Limit Search Depth");
1499 unsigned BitWidth = KnownZero.getBitWidth();
1500
1501 assert((V->getType()->isIntOrIntVectorTy() ||
1502 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001503 "Not integer or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001504 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001505 (!V->getType()->isIntOrIntVectorTy() ||
1506 V->getType()->getScalarSizeInBits() == BitWidth) &&
1507 KnownZero.getBitWidth() == BitWidth &&
1508 KnownOne.getBitWidth() == BitWidth &&
1509 "V, KnownOne and KnownZero should have same BitWidth");
1510
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001511 const APInt *C;
1512 if (match(V, m_APInt(C))) {
1513 // We know all of the bits for a scalar constant or a splat vector constant!
1514 KnownOne = *C;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001515 KnownZero = ~KnownOne;
1516 return;
1517 }
1518 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001519 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001520 KnownOne.clearAllBits();
1521 KnownZero = APInt::getAllOnesValue(BitWidth);
1522 return;
1523 }
1524 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001525 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001526 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001527 // We know that CDS must be a vector of integers. Take the intersection of
1528 // each element.
1529 KnownZero.setAllBits(); KnownOne.setAllBits();
1530 APInt Elt(KnownZero.getBitWidth(), 0);
1531 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1532 Elt = CDS->getElementAsInteger(i);
1533 KnownZero &= ~Elt;
1534 KnownOne &= Elt;
1535 }
1536 return;
1537 }
1538
Pete Cooper35b00d52016-08-13 01:05:32 +00001539 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001540 // We know that CV must be a vector of integers. Take the intersection of
1541 // each element.
1542 KnownZero.setAllBits(); KnownOne.setAllBits();
1543 APInt Elt(KnownZero.getBitWidth(), 0);
1544 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1545 Constant *Element = CV->getAggregateElement(i);
1546 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1547 if (!ElementCI) {
1548 KnownZero.clearAllBits();
1549 KnownOne.clearAllBits();
1550 return;
1551 }
1552 Elt = ElementCI->getValue();
1553 KnownZero &= ~Elt;
1554 KnownOne &= Elt;
1555 }
1556 return;
1557 }
1558
Jingyue Wu12b0c282015-06-15 05:46:29 +00001559 // Start out not knowing anything.
1560 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1561
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001562 // We can't imply anything about undefs.
1563 if (isa<UndefValue>(V))
1564 return;
1565
1566 // There's no point in looking through other users of ConstantData for
1567 // assumptions. Confirm that we've handled them all.
1568 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1569
Jingyue Wu12b0c282015-06-15 05:46:29 +00001570 // Limit search depth.
1571 // All recursive calls that increase depth must come after this.
1572 if (Depth == MaxDepth)
1573 return;
1574
1575 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1576 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001577 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001578 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001579 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001580 return;
1581 }
1582
Pete Cooper35b00d52016-08-13 01:05:32 +00001583 if (const Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001584 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001585
Artur Pilipenko029d8532015-09-30 11:55:45 +00001586 // Aligned pointers have trailing zeros - refine KnownZero set
1587 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001588 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001589 if (Align)
1590 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1591 }
1592
Philip Reames146307e2016-03-03 19:44:06 +00001593 // computeKnownBitsFromAssume strictly refines KnownZero and
1594 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001595
1596 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001597 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001598
Jay Foad5a29c362014-05-15 12:12:55 +00001599 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001600}
1601
Sanjay Patelaee84212014-11-04 16:27:42 +00001602/// Determine whether the sign bit is known to be zero or one.
1603/// Convenience wrapper around computeKnownBits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001604void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001605 unsigned Depth, const Query &Q) {
1606 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001607 if (!BitWidth) {
1608 KnownZero = false;
1609 KnownOne = false;
1610 return;
1611 }
1612 APInt ZeroBits(BitWidth, 0);
1613 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001614 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001615 KnownOne = OneBits[BitWidth - 1];
1616 KnownZero = ZeroBits[BitWidth - 1];
1617}
1618
Sanjay Patelaee84212014-11-04 16:27:42 +00001619/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001620/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001621/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001622/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001623bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001624 const Query &Q) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001625 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001626 if (C->isNullValue())
1627 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001628
1629 const APInt *ConstIntOrConstSplatInt;
1630 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1631 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001632 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001633
1634 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1635 // it is shifted off the end then the result is undefined.
1636 if (match(V, m_Shl(m_One(), m_Value())))
1637 return true;
1638
1639 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1640 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001641 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001642 return true;
1643
1644 // The remaining tests are all recursive, so bail out if we hit the limit.
1645 if (Depth++ == MaxDepth)
1646 return false;
1647
Craig Topper9f008862014-04-15 04:59:12 +00001648 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001649 // A shift left or a logical shift right of a power of two is a power of two
1650 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001651 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001652 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001653 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001654
Pete Cooper35b00d52016-08-13 01:05:32 +00001655 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001656 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001657
Pete Cooper35b00d52016-08-13 01:05:32 +00001658 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001659 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1660 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001661
Duncan Sandsba286d72011-10-26 20:55:21 +00001662 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1663 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001664 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1665 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001666 return true;
1667 // X & (-X) is always a power of two or zero.
1668 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1669 return true;
1670 return false;
1671 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001672
David Majnemerb7d54092013-07-30 21:01:36 +00001673 // Adding a power-of-two or zero to the same power-of-two or zero yields
1674 // either the original power-of-two, a larger power-of-two or zero.
1675 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001676 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001677 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1678 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1679 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001680 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001681 return true;
1682 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1683 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001684 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001685 return true;
1686
1687 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1688 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001689 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001690
1691 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001692 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001693 // If i8 V is a power of two or zero:
1694 // ZeroBits: 1 1 1 0 1 1 1 1
1695 // ~ZeroBits: 0 0 0 1 0 0 0 0
1696 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1697 // If OrZero isn't set, we cannot give back a zero result.
1698 // Make sure either the LHS or RHS has a bit set.
1699 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1700 return true;
1701 }
1702 }
David Majnemerbeab5672013-05-18 19:30:37 +00001703
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001704 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001705 // is a power of two only if the first operand is a power of two and not
1706 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001707 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1708 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001709 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001710 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001711 }
1712
Duncan Sandsd3951082011-01-25 09:38:29 +00001713 return false;
1714}
1715
Chandler Carruth80d3e562012-12-07 02:08:58 +00001716/// \brief Test whether a GEP's result is known to be non-null.
1717///
1718/// Uses properties inherent in a GEP to try to determine whether it is known
1719/// to be non-null.
1720///
1721/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001722static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001723 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001724 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1725 return false;
1726
1727 // FIXME: Support vector-GEPs.
1728 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1729
1730 // If the base pointer is non-null, we cannot walk to a null address with an
1731 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001732 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001733 return true;
1734
Chandler Carruth80d3e562012-12-07 02:08:58 +00001735 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1736 // If so, then the GEP cannot produce a null pointer, as doing so would
1737 // inherently violate the inbounds contract within address space zero.
1738 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1739 GTI != GTE; ++GTI) {
1740 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001741 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001742 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1743 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001744 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001745 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1746 if (ElementOffset > 0)
1747 return true;
1748 continue;
1749 }
1750
1751 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001752 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001753 continue;
1754
1755 // Fast path the constant operand case both for efficiency and so we don't
1756 // increment Depth when just zipping down an all-constant GEP.
1757 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1758 if (!OpC->isZero())
1759 return true;
1760 continue;
1761 }
1762
1763 // We post-increment Depth here because while isKnownNonZero increments it
1764 // as well, when we pop back up that increment won't persist. We don't want
1765 // to recurse 10k times just because we have 10k GEP operands. We don't
1766 // bail completely out because we want to handle constant GEPs regardless
1767 // of depth.
1768 if (Depth++ >= MaxDepth)
1769 continue;
1770
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001771 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001772 return true;
1773 }
1774
1775 return false;
1776}
1777
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001778/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1779/// ensure that the value it's attached to is never Value? 'RangeType' is
1780/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001781static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001782 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1783 assert(NumRanges >= 1);
1784 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001785 ConstantInt *Lower =
1786 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1787 ConstantInt *Upper =
1788 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001789 ConstantRange Range(Lower->getValue(), Upper->getValue());
1790 if (Range.contains(Value))
1791 return false;
1792 }
1793 return true;
1794}
1795
Sanjay Patelaee84212014-11-04 16:27:42 +00001796/// Return true if the given value is known to be non-zero when defined.
1797/// For vectors return true if every element is known to be non-zero when
1798/// defined. Supports values with integer or pointer type and vectors of
1799/// integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001800bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001801 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001802 if (C->isNullValue())
1803 return false;
1804 if (isa<ConstantInt>(C))
1805 // Must be non-zero due to null test above.
1806 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001807
1808 // For constant vectors, check that all elements are undefined or known
1809 // non-zero to determine that the whole vector is known non-zero.
1810 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1811 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1812 Constant *Elt = C->getAggregateElement(i);
1813 if (!Elt || Elt->isNullValue())
1814 return false;
1815 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1816 return false;
1817 }
1818 return true;
1819 }
1820
Duncan Sandsd3951082011-01-25 09:38:29 +00001821 return false;
1822 }
1823
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001824 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001825 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001826 // If the possible ranges don't contain zero, then the value is
1827 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001828 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001829 const APInt ZeroValue(Ty->getBitWidth(), 0);
1830 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1831 return true;
1832 }
1833 }
1834 }
1835
Duncan Sandsd3951082011-01-25 09:38:29 +00001836 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001837 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001838 return false;
1839
Chandler Carruth80d3e562012-12-07 02:08:58 +00001840 // Check for pointer simplifications.
1841 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001842 if (isKnownNonNull(V))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001843 return true;
Pete Cooper35b00d52016-08-13 01:05:32 +00001844 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001845 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001846 return true;
1847 }
1848
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001849 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001850
1851 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001852 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001853 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001854 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001855
1856 // ext X != 0 if X != 0.
1857 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001858 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001859
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001860 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001861 // if the lowest bit is shifted off the end.
1862 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001863 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001864 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001865 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001866 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001867
Duncan Sandsd3951082011-01-25 09:38:29 +00001868 APInt KnownZero(BitWidth, 0);
1869 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001870 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001871 if (KnownOne[0])
1872 return true;
1873 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001874 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001875 // defined if the sign bit is shifted off the end.
1876 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001877 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001878 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001879 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001880 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001881
Duncan Sandsd3951082011-01-25 09:38:29 +00001882 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001883 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001884 if (XKnownNegative)
1885 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001886
1887 // If the shifter operand is a constant, and all of the bits shifted
1888 // out are known to be zero, and X is known non-zero then at least one
1889 // non-zero bit must remain.
1890 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1891 APInt KnownZero(BitWidth, 0);
1892 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001893 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001894
James Molloyb6be1eb2015-09-24 16:06:32 +00001895 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1896 // Is there a known one in the portion not shifted out?
1897 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1898 return true;
1899 // Are all the bits to be shifted out known zero?
1900 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001901 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001902 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001903 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001904 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001905 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001906 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001907 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001908 // X + Y.
1909 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1910 bool XKnownNonNegative, XKnownNegative;
1911 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001912 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1913 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001914
1915 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001916 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001917 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001918 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001919 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001920
1921 // If X and Y are both negative (as signed values) then their sum is not
1922 // zero unless both X and Y equal INT_MIN.
1923 if (BitWidth && XKnownNegative && YKnownNegative) {
1924 APInt KnownZero(BitWidth, 0);
1925 APInt KnownOne(BitWidth, 0);
1926 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1927 // The sign bit of X is set. If some other bit is set then X is not equal
1928 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001929 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001930 if ((KnownOne & Mask) != 0)
1931 return true;
1932 // The sign bit of Y is set. If some other bit is set then Y is not equal
1933 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001934 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001935 if ((KnownOne & Mask) != 0)
1936 return true;
1937 }
1938
1939 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001940 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001941 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001942 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001943 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001944 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001945 return true;
1946 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001947 // X * Y.
1948 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001949 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001950 // If X and Y are non-zero then so is X * Y as long as the multiplication
1951 // does not overflow.
1952 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001953 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001954 return true;
1955 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001956 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001957 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001958 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1959 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001960 return true;
1961 }
James Molloy897048b2015-09-29 14:08:45 +00001962 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00001963 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00001964 // Try and detect a recurrence that monotonically increases from a
1965 // starting value, as these are common as induction variables.
1966 if (PN->getNumIncomingValues() == 2) {
1967 Value *Start = PN->getIncomingValue(0);
1968 Value *Induction = PN->getIncomingValue(1);
1969 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1970 std::swap(Start, Induction);
1971 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1972 if (!C->isZero() && !C->isNegative()) {
1973 ConstantInt *X;
1974 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1975 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1976 !X->isNegative())
1977 return true;
1978 }
1979 }
1980 }
Jun Bum Limca832662016-02-01 17:03:07 +00001981 // Check if all incoming values are non-zero constant.
1982 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1983 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1984 });
1985 if (AllNonZeroConstants)
1986 return true;
James Molloy897048b2015-09-29 14:08:45 +00001987 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001988
1989 if (!BitWidth) return false;
1990 APInt KnownZero(BitWidth, 0);
1991 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001992 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001993 return KnownOne != 0;
1994}
1995
James Molloy1d88d6f2015-10-22 13:18:42 +00001996/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00001997static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
1998 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00001999 if (!BO || BO->getOpcode() != Instruction::Add)
2000 return false;
2001 Value *Op = nullptr;
2002 if (V2 == BO->getOperand(0))
2003 Op = BO->getOperand(1);
2004 else if (V2 == BO->getOperand(1))
2005 Op = BO->getOperand(0);
2006 else
2007 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002008 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002009}
2010
2011/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00002012static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002013 if (V1->getType()->isVectorTy() || V1 == V2)
2014 return false;
2015 if (V1->getType() != V2->getType())
2016 // We can't look through casts yet.
2017 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002018 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002019 return true;
2020
2021 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2022 // Are any known bits in V1 contradictory to known bits in V2? If V1
2023 // has a known zero where V2 has a known one, they must not be equal.
2024 auto BitWidth = Ty->getBitWidth();
2025 APInt KnownZero1(BitWidth, 0);
2026 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002027 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002028 APInt KnownZero2(BitWidth, 0);
2029 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002030 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002031
2032 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2033 if (OppositeBits.getBoolValue())
2034 return true;
2035 }
2036 return false;
2037}
2038
Sanjay Patelaee84212014-11-04 16:27:42 +00002039/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2040/// simplify operations downstream. Mask is known to be zero for bits that V
2041/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002042///
2043/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002044/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002045/// where V is a vector, the mask, known zero, and known one values are the
2046/// same width as the vector element, and the bit is set only if it is true
2047/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002048bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002049 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00002050 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002051 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002052 return (KnownZero & Mask) == Mask;
2053}
2054
Sanjay Patela06d9892016-06-22 19:20:59 +00002055/// For vector constants, loop over the elements and find the constant with the
2056/// minimum number of sign bits. Return 0 if the value is not a vector constant
2057/// or if any element was not analyzed; otherwise, return the count for the
2058/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002059static unsigned computeNumSignBitsVectorConstant(const Value *V,
2060 unsigned TyBits) {
2061 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002062 if (!CV || !CV->getType()->isVectorTy())
2063 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002064
Sanjay Patela06d9892016-06-22 19:20:59 +00002065 unsigned MinSignBits = TyBits;
2066 unsigned NumElts = CV->getType()->getVectorNumElements();
2067 for (unsigned i = 0; i != NumElts; ++i) {
2068 // If we find a non-ConstantInt, bail out.
2069 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2070 if (!Elt)
2071 return 0;
2072
2073 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2074 APInt EltVal = Elt->getValue();
2075 if (EltVal.isNegative())
2076 EltVal = ~EltVal;
2077 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2078 }
2079
2080 return MinSignBits;
2081}
Chris Lattner965c7692008-06-02 01:18:21 +00002082
Sanjay Patelaee84212014-11-04 16:27:42 +00002083/// Return the number of times the sign bit of the register is replicated into
2084/// the other bits. We know that at least 1 bit is always equal to the sign bit
2085/// (itself), but other cases can give us information. For example, immediately
2086/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002087/// other, so we return 3. For vectors, return the number of sign bits for the
2088/// vector element with the mininum number of known sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002089unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002090 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002091 unsigned Tmp, Tmp2;
2092 unsigned FirstAnswer = 1;
2093
Jay Foada0653a32014-05-14 21:14:37 +00002094 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002095 // below.
2096
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002097 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002098 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002099
Pete Cooper35b00d52016-08-13 01:05:32 +00002100 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002101 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002102 default: break;
2103 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002104 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002105 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002106
Nadav Rotemc99a3872015-03-06 00:23:58 +00002107 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002108 const APInt *Denominator;
2109 // sdiv X, C -> adds log(C) sign bits.
2110 if (match(U->getOperand(1), m_APInt(Denominator))) {
2111
2112 // Ignore non-positive denominator.
2113 if (!Denominator->isStrictlyPositive())
2114 break;
2115
2116 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002117 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002118
2119 // Add floor(log(C)) bits to the numerator bits.
2120 return std::min(TyBits, NumBits + Denominator->logBase2());
2121 }
2122 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002123 }
2124
2125 case Instruction::SRem: {
2126 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002127 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2128 // positive constant. This let us put a lower bound on the number of sign
2129 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002130 if (match(U->getOperand(1), m_APInt(Denominator))) {
2131
2132 // Ignore non-positive denominator.
2133 if (!Denominator->isStrictlyPositive())
2134 break;
2135
2136 // Calculate the incoming numerator bits. SRem by a positive constant
2137 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002138 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002139 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002140
2141 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002142 // denominator. Given that the denominator is positive, there are two
2143 // cases:
2144 //
2145 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2146 // (1 << ceilLogBase2(C)).
2147 //
2148 // 2. the numerator is negative. Then the result range is (-C,0] and
2149 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2150 //
2151 // Thus a lower bound on the number of sign bits is `TyBits -
2152 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002153
Sanjoy Dase561fee2015-03-25 22:33:53 +00002154 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002155 return std::max(NumrBits, ResBits);
2156 }
2157 break;
2158 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002159
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002160 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002161 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002162 // ashr X, C -> adds C sign bits. Vectors too.
2163 const APInt *ShAmt;
2164 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2165 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002166 if (Tmp > TyBits) Tmp = TyBits;
2167 }
2168 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002169 }
2170 case Instruction::Shl: {
2171 const APInt *ShAmt;
2172 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002173 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002174 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002175 Tmp2 = ShAmt->getZExtValue();
2176 if (Tmp2 >= TyBits || // Bad shift.
2177 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2178 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002179 }
2180 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002181 }
Chris Lattner965c7692008-06-02 01:18:21 +00002182 case Instruction::And:
2183 case Instruction::Or:
2184 case Instruction::Xor: // NOT is handled here.
2185 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002186 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002187 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002188 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002189 FirstAnswer = std::min(Tmp, Tmp2);
2190 // We computed what we know about the sign bits as our first
2191 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002192 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002193 }
2194 break;
2195
2196 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002197 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002198 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002199 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002200 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002201
Chris Lattner965c7692008-06-02 01:18:21 +00002202 case Instruction::Add:
2203 // Add can have at most one carry bit. Thus we know that the output
2204 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002205 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002206 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002207
Chris Lattner965c7692008-06-02 01:18:21 +00002208 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002209 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002210 if (CRHS->isAllOnesValue()) {
2211 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002212 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002213
Chris Lattner965c7692008-06-02 01:18:21 +00002214 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2215 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002216 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002217 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002218
Chris Lattner965c7692008-06-02 01:18:21 +00002219 // If we are subtracting one from a positive number, there is no carry
2220 // out of the result.
2221 if (KnownZero.isNegative())
2222 return Tmp;
2223 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002224
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002225 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002226 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002227 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002228
Chris Lattner965c7692008-06-02 01:18:21 +00002229 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002230 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002231 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002232
Chris Lattner965c7692008-06-02 01:18:21 +00002233 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002234 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002235 if (CLHS->isNullValue()) {
2236 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002237 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002238 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2239 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002240 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002241 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002242
Chris Lattner965c7692008-06-02 01:18:21 +00002243 // If the input is known to be positive (the sign bit is known clear),
2244 // the output of the NEG has the same number of sign bits as the input.
2245 if (KnownZero.isNegative())
2246 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002247
Chris Lattner965c7692008-06-02 01:18:21 +00002248 // Otherwise, we treat this like a SUB.
2249 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002250
Chris Lattner965c7692008-06-02 01:18:21 +00002251 // Sub can have at most one carry bit. Thus we know that the output
2252 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002253 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002254 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002255 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002256
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002257 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002258 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002259 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002260 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002261 if (NumIncomingValues > 4) break;
2262 // Unreachable blocks may have zero-operand PHI nodes.
2263 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002264
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002265 // Take the minimum of all incoming values. This can't infinitely loop
2266 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002267 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002268 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002269 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002270 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002271 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002272 }
2273 return Tmp;
2274 }
2275
Chris Lattner965c7692008-06-02 01:18:21 +00002276 case Instruction::Trunc:
2277 // FIXME: it's tricky to do anything useful for this, but it is an important
2278 // case for targets like X86.
2279 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002280
2281 case Instruction::ExtractElement:
2282 // Look through extract element. At the moment we keep this simple and skip
2283 // tracking the specific element. But at least we might find information
2284 // valid for all elements of the vector (for example if vector is sign
2285 // extended, shifted, etc).
2286 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002287 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002288
Chris Lattner965c7692008-06-02 01:18:21 +00002289 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2290 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002291
2292 // If we can examine all elements of a vector constant successfully, we're
2293 // done (we can't do any better than that). If not, keep trying.
2294 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2295 return VecSignBits;
2296
Chris Lattner965c7692008-06-02 01:18:21 +00002297 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002298 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002299
Sanjay Patele0536212016-06-23 17:41:59 +00002300 // If we know that the sign bit is either zero or one, determine the number of
2301 // identical bits in the top of the input value.
2302 if (KnownZero.isNegative())
2303 return std::max(FirstAnswer, KnownZero.countLeadingOnes());
Craig Topper1bef2c82012-12-22 19:15:35 +00002304
Sanjay Patele0536212016-06-23 17:41:59 +00002305 if (KnownOne.isNegative())
2306 return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2307
2308 // computeKnownBits gave us no extra information about the top bits.
2309 return FirstAnswer;
Chris Lattner965c7692008-06-02 01:18:21 +00002310}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002311
Sanjay Patelaee84212014-11-04 16:27:42 +00002312/// This function computes the integer multiple of Base that equals V.
2313/// If successful, it returns true and returns the multiple in
2314/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002315/// through SExt instructions only if LookThroughSExt is true.
2316bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002317 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002318 const unsigned MaxDepth = 6;
2319
Dan Gohman6a976bb2009-11-18 00:58:27 +00002320 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002321 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002322 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002323
Chris Lattner229907c2011-07-18 04:54:35 +00002324 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002325
Dan Gohman6a976bb2009-11-18 00:58:27 +00002326 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002327
2328 if (Base == 0)
2329 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002330
Victor Hernandez47444882009-11-10 08:28:35 +00002331 if (Base == 1) {
2332 Multiple = V;
2333 return true;
2334 }
2335
2336 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2337 Constant *BaseVal = ConstantInt::get(T, Base);
2338 if (CO && CO == BaseVal) {
2339 // Multiple is 1.
2340 Multiple = ConstantInt::get(T, 1);
2341 return true;
2342 }
2343
2344 if (CI && CI->getZExtValue() % Base == 0) {
2345 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002346 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002347 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002348
Victor Hernandez47444882009-11-10 08:28:35 +00002349 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002350
Victor Hernandez47444882009-11-10 08:28:35 +00002351 Operator *I = dyn_cast<Operator>(V);
2352 if (!I) return false;
2353
2354 switch (I->getOpcode()) {
2355 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002356 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002357 if (!LookThroughSExt) return false;
2358 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002359 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002360 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2361 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002362 case Instruction::Shl:
2363 case Instruction::Mul: {
2364 Value *Op0 = I->getOperand(0);
2365 Value *Op1 = I->getOperand(1);
2366
2367 if (I->getOpcode() == Instruction::Shl) {
2368 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2369 if (!Op1CI) return false;
2370 // Turn Op0 << Op1 into Op0 * 2^Op1
2371 APInt Op1Int = Op1CI->getValue();
2372 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002373 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002374 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002375 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002376 }
2377
Craig Topper9f008862014-04-15 04:59:12 +00002378 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002379 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2380 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2381 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002382 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002383 MulC->getType()->getPrimitiveSizeInBits())
2384 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002385 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002386 MulC->getType()->getPrimitiveSizeInBits())
2387 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002388
Chris Lattner72d283c2010-09-05 17:20:46 +00002389 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2390 Multiple = ConstantExpr::getMul(MulC, Op1C);
2391 return true;
2392 }
Victor Hernandez47444882009-11-10 08:28:35 +00002393
2394 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2395 if (Mul0CI->getValue() == 1) {
2396 // V == Base * Op1, so return Op1
2397 Multiple = Op1;
2398 return true;
2399 }
2400 }
2401
Craig Topper9f008862014-04-15 04:59:12 +00002402 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002403 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2404 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2405 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002406 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002407 MulC->getType()->getPrimitiveSizeInBits())
2408 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002409 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002410 MulC->getType()->getPrimitiveSizeInBits())
2411 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002412
Chris Lattner72d283c2010-09-05 17:20:46 +00002413 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2414 Multiple = ConstantExpr::getMul(MulC, Op0C);
2415 return true;
2416 }
Victor Hernandez47444882009-11-10 08:28:35 +00002417
2418 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2419 if (Mul1CI->getValue() == 1) {
2420 // V == Base * Op0, so return Op0
2421 Multiple = Op0;
2422 return true;
2423 }
2424 }
Victor Hernandez47444882009-11-10 08:28:35 +00002425 }
2426 }
2427
2428 // We could not determine if V is a multiple of Base.
2429 return false;
2430}
2431
David Majnemerb4b27232016-04-19 19:10:21 +00002432Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2433 const TargetLibraryInfo *TLI) {
2434 const Function *F = ICS.getCalledFunction();
2435 if (!F)
2436 return Intrinsic::not_intrinsic;
2437
2438 if (F->isIntrinsic())
2439 return F->getIntrinsicID();
2440
2441 if (!TLI)
2442 return Intrinsic::not_intrinsic;
2443
2444 LibFunc::Func Func;
2445 // We're going to make assumptions on the semantics of the functions, check
2446 // that the target knows that it's available in this environment and it does
2447 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002448 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2449 return Intrinsic::not_intrinsic;
2450
2451 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002452 return Intrinsic::not_intrinsic;
2453
2454 // Otherwise check if we have a call to a function that can be turned into a
2455 // vector intrinsic.
2456 switch (Func) {
2457 default:
2458 break;
2459 case LibFunc::sin:
2460 case LibFunc::sinf:
2461 case LibFunc::sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002462 return Intrinsic::sin;
David Majnemerb4b27232016-04-19 19:10:21 +00002463 case LibFunc::cos:
2464 case LibFunc::cosf:
2465 case LibFunc::cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002466 return Intrinsic::cos;
David Majnemerb4b27232016-04-19 19:10:21 +00002467 case LibFunc::exp:
2468 case LibFunc::expf:
2469 case LibFunc::expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002470 return Intrinsic::exp;
David Majnemerb4b27232016-04-19 19:10:21 +00002471 case LibFunc::exp2:
2472 case LibFunc::exp2f:
2473 case LibFunc::exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002474 return Intrinsic::exp2;
David Majnemerb4b27232016-04-19 19:10:21 +00002475 case LibFunc::log:
2476 case LibFunc::logf:
2477 case LibFunc::logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002478 return Intrinsic::log;
David Majnemerb4b27232016-04-19 19:10:21 +00002479 case LibFunc::log10:
2480 case LibFunc::log10f:
2481 case LibFunc::log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002482 return Intrinsic::log10;
David Majnemerb4b27232016-04-19 19:10:21 +00002483 case LibFunc::log2:
2484 case LibFunc::log2f:
2485 case LibFunc::log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002486 return Intrinsic::log2;
David Majnemerb4b27232016-04-19 19:10:21 +00002487 case LibFunc::fabs:
2488 case LibFunc::fabsf:
2489 case LibFunc::fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002490 return Intrinsic::fabs;
David Majnemerb4b27232016-04-19 19:10:21 +00002491 case LibFunc::fmin:
2492 case LibFunc::fminf:
2493 case LibFunc::fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002494 return Intrinsic::minnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002495 case LibFunc::fmax:
2496 case LibFunc::fmaxf:
2497 case LibFunc::fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002498 return Intrinsic::maxnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002499 case LibFunc::copysign:
2500 case LibFunc::copysignf:
2501 case LibFunc::copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002502 return Intrinsic::copysign;
David Majnemerb4b27232016-04-19 19:10:21 +00002503 case LibFunc::floor:
2504 case LibFunc::floorf:
2505 case LibFunc::floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002506 return Intrinsic::floor;
David Majnemerb4b27232016-04-19 19:10:21 +00002507 case LibFunc::ceil:
2508 case LibFunc::ceilf:
2509 case LibFunc::ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002510 return Intrinsic::ceil;
David Majnemerb4b27232016-04-19 19:10:21 +00002511 case LibFunc::trunc:
2512 case LibFunc::truncf:
2513 case LibFunc::truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002514 return Intrinsic::trunc;
David Majnemerb4b27232016-04-19 19:10:21 +00002515 case LibFunc::rint:
2516 case LibFunc::rintf:
2517 case LibFunc::rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002518 return Intrinsic::rint;
David Majnemerb4b27232016-04-19 19:10:21 +00002519 case LibFunc::nearbyint:
2520 case LibFunc::nearbyintf:
2521 case LibFunc::nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002522 return Intrinsic::nearbyint;
David Majnemerb4b27232016-04-19 19:10:21 +00002523 case LibFunc::round:
2524 case LibFunc::roundf:
2525 case LibFunc::roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002526 return Intrinsic::round;
David Majnemerb4b27232016-04-19 19:10:21 +00002527 case LibFunc::pow:
2528 case LibFunc::powf:
2529 case LibFunc::powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002530 return Intrinsic::pow;
David Majnemerb4b27232016-04-19 19:10:21 +00002531 case LibFunc::sqrt:
2532 case LibFunc::sqrtf:
2533 case LibFunc::sqrtl:
2534 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002535 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002536 return Intrinsic::not_intrinsic;
2537 }
2538
2539 return Intrinsic::not_intrinsic;
2540}
2541
Sanjay Patelaee84212014-11-04 16:27:42 +00002542/// Return true if we can prove that the specified FP value is never equal to
2543/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002544///
2545/// NOTE: this function will need to be revisited when we support non-default
2546/// rounding modes!
2547///
David Majnemer3ee5f342016-04-13 06:55:52 +00002548bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2549 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002550 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2551 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002552
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002553 if (Depth == MaxDepth)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002554 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002555
Dan Gohman80ca01c2009-07-17 20:47:02 +00002556 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002557 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002558
2559 // Check if the nsz fast-math flag is set
2560 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2561 if (FPO->hasNoSignedZeros())
2562 return true;
2563
Chris Lattnera12a6de2008-06-02 01:29:46 +00002564 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002565 if (I->getOpcode() == Instruction::FAdd)
2566 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2567 if (CFP->isNullValue())
2568 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002569
Chris Lattnera12a6de2008-06-02 01:29:46 +00002570 // sitofp and uitofp turn into +0.0 for zero.
2571 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2572 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002573
David Majnemer3ee5f342016-04-13 06:55:52 +00002574 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002575 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002576 switch (IID) {
2577 default:
2578 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002579 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002580 case Intrinsic::sqrt:
2581 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2582 // fabs(x) != -0.0
2583 case Intrinsic::fabs:
2584 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002585 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002586 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002587
Chris Lattnera12a6de2008-06-02 01:29:46 +00002588 return false;
2589}
2590
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002591/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2592/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2593/// bit despite comparing equal.
2594static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2595 const TargetLibraryInfo *TLI,
2596 bool SignBitOnly,
2597 unsigned Depth) {
2598 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2599 return !CFP->getValueAPF().isNegative() ||
2600 (!SignBitOnly && CFP->getValueAPF().isZero());
2601 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002602
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002603 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002604 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002605
2606 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002607 if (!I)
2608 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002609
2610 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002611 default:
2612 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002613 // Unsigned integers are always nonnegative.
2614 case Instruction::UIToFP:
2615 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002616 case Instruction::FMul:
2617 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002618 if (I->getOperand(0) == I->getOperand(1) &&
2619 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002620 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002621
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002622 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002623 case Instruction::FAdd:
2624 case Instruction::FDiv:
2625 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002626 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2627 Depth + 1) &&
2628 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2629 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002630 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002631 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2632 Depth + 1) &&
2633 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2634 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002635 case Instruction::FPExt:
2636 case Instruction::FPTrunc:
2637 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002638 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2639 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002640 case Instruction::Call:
David Majnemerb4b27232016-04-19 19:10:21 +00002641 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002642 switch (IID) {
2643 default:
2644 break;
2645 case Intrinsic::maxnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002646 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2647 Depth + 1) ||
2648 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2649 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002650 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002651 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2652 Depth + 1) &&
2653 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2654 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002655 case Intrinsic::exp:
2656 case Intrinsic::exp2:
2657 case Intrinsic::fabs:
2658 case Intrinsic::sqrt:
2659 return true;
2660 case Intrinsic::powi:
2661 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2662 // powi(x,n) is non-negative if n is even.
2663 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2664 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002665 }
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002666 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2667 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002668 case Intrinsic::fma:
2669 case Intrinsic::fmuladd:
2670 // x*x+y is non-negative if y is non-negative.
2671 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002672 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2673 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2674 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002675 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002676 break;
2677 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002678 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002679}
2680
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002681bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2682 const TargetLibraryInfo *TLI) {
2683 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2684}
2685
2686bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2687 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2688}
2689
Sanjay Patelaee84212014-11-04 16:27:42 +00002690/// If the specified value can be set by repeating the same byte in memory,
2691/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002692/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2693/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2694/// byte store (e.g. i16 0x1234), return null.
2695Value *llvm::isBytewiseValue(Value *V) {
2696 // All byte-wide stores are splatable, even of arbitrary variables.
2697 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002698
2699 // Handle 'null' ConstantArrayZero etc.
2700 if (Constant *C = dyn_cast<Constant>(V))
2701 if (C->isNullValue())
2702 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002703
Chris Lattner9cb10352010-12-26 20:15:01 +00002704 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002705 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002706 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2707 if (CFP->getType()->isFloatTy())
2708 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2709 if (CFP->getType()->isDoubleTy())
2710 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2711 // Don't handle long double formats, which have strange constraints.
2712 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002713
Benjamin Kramer17d90152015-02-07 19:29:02 +00002714 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002715 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002716 if (CI->getBitWidth() % 8 == 0) {
2717 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002718
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002719 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002720 return nullptr;
2721 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002722 }
2723 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002724
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002725 // A ConstantDataArray/Vector is splatable if all its members are equal and
2726 // also splatable.
2727 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2728 Value *Elt = CA->getElementAsConstant(0);
2729 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002730 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002731 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002732
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002733 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2734 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002735 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002736
Chris Lattner9cb10352010-12-26 20:15:01 +00002737 return Val;
2738 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002739
Chris Lattner9cb10352010-12-26 20:15:01 +00002740 // Conceptually, we could handle things like:
2741 // %a = zext i8 %X to i16
2742 // %b = shl i16 %a, 8
2743 // %c = or i16 %a, %b
2744 // but until there is an example that actually needs this, it doesn't seem
2745 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002746 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002747}
2748
2749
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002750// This is the recursive version of BuildSubAggregate. It takes a few different
2751// arguments. Idxs is the index within the nested struct From that we are
2752// looking at now (which is of type IndexedType). IdxSkip is the number of
2753// indices from Idxs that should be left out when inserting into the resulting
2754// struct. To is the result struct built so far, new insertvalue instructions
2755// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002756static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002757 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002758 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002759 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002760 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002761 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002762 // Save the original To argument so we can modify it
2763 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002764 // General case, the type indexed by Idxs is a struct
2765 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2766 // Process each struct element recursively
2767 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002768 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002769 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002770 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002771 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002772 if (!To) {
2773 // Couldn't find any inserted value for this index? Cleanup
2774 while (PrevTo != OrigTo) {
2775 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2776 PrevTo = Del->getAggregateOperand();
2777 Del->eraseFromParent();
2778 }
2779 // Stop processing elements
2780 break;
2781 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002782 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002783 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002784 if (To)
2785 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002786 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002787 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2788 // the struct's elements had a value that was inserted directly. In the latter
2789 // case, perhaps we can't determine each of the subelements individually, but
2790 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002791
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002792 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002793 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002794
2795 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002796 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002797
2798 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002799 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002800 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002801}
2802
2803// This helper takes a nested struct and extracts a part of it (which is again a
2804// struct) into a new value. For example, given the struct:
2805// { a, { b, { c, d }, e } }
2806// and the indices "1, 1" this returns
2807// { c, d }.
2808//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002809// It does this by inserting an insertvalue for each element in the resulting
2810// struct, as opposed to just inserting a single struct. This will only work if
2811// each of the elements of the substruct are known (ie, inserted into From by an
2812// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002813//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002814// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002815static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002816 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002817 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002818 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002819 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002820 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002821 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002822 unsigned IdxSkip = Idxs.size();
2823
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002824 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002825}
2826
Sanjay Patelaee84212014-11-04 16:27:42 +00002827/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002828/// the scalar value indexed is already around as a register, for example if it
2829/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002830///
2831/// If InsertBefore is not null, this function will duplicate (modified)
2832/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002833Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2834 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002835 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002836 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002837 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002838 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002839 // We have indices, so V should have an indexable type.
2840 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2841 "Not looking at a struct or array?");
2842 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2843 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002844
Chris Lattner67058832012-01-25 06:48:06 +00002845 if (Constant *C = dyn_cast<Constant>(V)) {
2846 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002847 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002848 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2849 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002850
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002851 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002852 // Loop the indices for the insertvalue instruction in parallel with the
2853 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002854 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002855 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2856 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002857 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002858 // We can't handle this without inserting insertvalues
2859 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002860 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002861
2862 // The requested index identifies a part of a nested aggregate. Handle
2863 // this specially. For example,
2864 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2865 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2866 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2867 // This can be changed into
2868 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2869 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2870 // which allows the unused 0,0 element from the nested struct to be
2871 // removed.
2872 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2873 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002874 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002875
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002876 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002877 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002878 // looking for, then.
2879 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002880 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002881 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002882 }
2883 // If we end up here, the indices of the insertvalue match with those
2884 // requested (though possibly only partially). Now we recursively look at
2885 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002886 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002887 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002888 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002889 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002890
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002891 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002892 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002893 // something else, we can extract from that something else directly instead.
2894 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002895
2896 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002897 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002898 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002899 SmallVector<unsigned, 5> Idxs;
2900 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002901 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002902 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002903
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002904 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002905 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002906
Craig Topper1bef2c82012-12-22 19:15:35 +00002907 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002908 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002909
Jay Foad57aa6362011-07-13 10:26:04 +00002910 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002911 }
2912 // Otherwise, we don't know (such as, extracting from a function return value
2913 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002914 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002915}
Evan Chengda3db112008-06-30 07:31:25 +00002916
Sanjay Patelaee84212014-11-04 16:27:42 +00002917/// Analyze the specified pointer to see if it can be expressed as a base
2918/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002919Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002920 const DataLayout &DL) {
2921 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002922 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002923
2924 // We walk up the defs but use a visited set to handle unreachable code. In
2925 // that case, we stop after accumulating the cycle once (not that it
2926 // matters).
2927 SmallPtrSet<Value *, 16> Visited;
2928 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002929 if (Ptr->getType()->isVectorTy())
2930 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002931
Nuno Lopes368c4d02012-12-31 20:48:35 +00002932 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00002933 // If one of the values we have visited is an addrspacecast, then
2934 // the pointer type of this GEP may be different from the type
2935 // of the Ptr parameter which was passed to this function. This
2936 // means when we construct GEPOffset, we need to use the size
2937 // of GEP's pointer type rather than the size of the original
2938 // pointer type.
2939 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002940 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2941 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002942
Tom Stellard17eb3412016-10-07 14:23:29 +00002943 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002944
Nuno Lopes368c4d02012-12-31 20:48:35 +00002945 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00002946 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2947 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002948 Ptr = cast<Operator>(Ptr)->getOperand(0);
2949 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002950 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002951 break;
2952 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002953 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002954 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002955 }
2956 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002957 Offset = ByteOffset.getSExtValue();
2958 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002959}
2960
David L Kreitzer752c1442016-04-13 14:31:06 +00002961bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2962 // Make sure the GEP has exactly three arguments.
2963 if (GEP->getNumOperands() != 3)
2964 return false;
2965
2966 // Make sure the index-ee is a pointer to array of i8.
2967 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2968 if (!AT || !AT->getElementType()->isIntegerTy(8))
2969 return false;
2970
2971 // Check to make sure that the first operand of the GEP is an integer and
2972 // has value 0 so that we are sure we're indexing into the initializer.
2973 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2974 if (!FirstIdx || !FirstIdx->isZero())
2975 return false;
2976
2977 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002978}
Chris Lattnere28618d2010-11-30 22:25:26 +00002979
Sanjay Patelaee84212014-11-04 16:27:42 +00002980/// This function computes the length of a null-terminated C string pointed to
2981/// by V. If successful, it returns true and returns the string in Str.
2982/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002983bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2984 uint64_t Offset, bool TrimAtNul) {
2985 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002986
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002987 // Look through bitcast instructions and geps.
2988 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002989
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002990 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002991 // offset.
2992 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002993 // The GEP operator should be based on a pointer to string constant, and is
2994 // indexing into the string constant.
2995 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002996 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002997
Evan Chengda3db112008-06-30 07:31:25 +00002998 // If the second index isn't a ConstantInt, then this is a variable index
2999 // into the array. If this occurs, we can't say anything meaningful about
3000 // the string.
3001 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003002 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003003 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003004 else
3005 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003006 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
3007 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00003008 }
Nick Lewycky46209882011-10-20 00:34:35 +00003009
Evan Chengda3db112008-06-30 07:31:25 +00003010 // The GEP instruction, constant or instruction, must reference a global
3011 // variable that is a constant and is initialized. The referenced constant
3012 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003013 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003014 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003015 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003016
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003017 // Handle the all-zeros case.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003018 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00003019 // This is a degenerate case. The initializer is constant zero so the
3020 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003021 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003022 return true;
3023 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003024
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003025 // This must be a ConstantDataArray.
3026 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00003027 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003028 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003029
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003030 // Get the number of elements in the array.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003031 uint64_t NumElts = Array->getType()->getArrayNumElements();
3032
3033 // Start out with the entire array in the StringRef.
3034 Str = Array->getAsString();
3035
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003036 if (Offset > NumElts)
3037 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003038
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003039 // Skip over 'offset' bytes.
3040 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003041
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003042 if (TrimAtNul) {
3043 // Trim off the \0 and anything after it. If the array is not nul
3044 // terminated, we just return the whole end of string. The client may know
3045 // some other way that the string is length-bound.
3046 Str = Str.substr(0, Str.find('\0'));
3047 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003048 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003049}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003050
3051// These next two are very similar to the above, but also look through PHI
3052// nodes.
3053// TODO: See if we can integrate these two together.
3054
Sanjay Patelaee84212014-11-04 16:27:42 +00003055/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003056/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003057static uint64_t GetStringLengthH(const Value *V,
3058 SmallPtrSetImpl<const PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003059 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003060 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003061
3062 // If this is a PHI node, there are two cases: either we have already seen it
3063 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003064 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003065 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003066 return ~0ULL; // already in the set.
3067
3068 // If it was new, see if all the input strings are the same length.
3069 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003070 for (Value *IncValue : PN->incoming_values()) {
3071 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003072 if (Len == 0) return 0; // Unknown length -> unknown.
3073
3074 if (Len == ~0ULL) continue;
3075
3076 if (Len != LenSoFar && LenSoFar != ~0ULL)
3077 return 0; // Disagree -> unknown.
3078 LenSoFar = Len;
3079 }
3080
3081 // Success, all agree.
3082 return LenSoFar;
3083 }
3084
3085 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003086 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003087 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3088 if (Len1 == 0) return 0;
3089 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3090 if (Len2 == 0) return 0;
3091 if (Len1 == ~0ULL) return Len2;
3092 if (Len2 == ~0ULL) return Len1;
3093 if (Len1 != Len2) return 0;
3094 return Len1;
3095 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003096
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003097 // Otherwise, see if we can read the string.
3098 StringRef StrData;
3099 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003100 return 0;
3101
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003102 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003103}
3104
Sanjay Patelaee84212014-11-04 16:27:42 +00003105/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003106/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003107uint64_t llvm::GetStringLength(const Value *V) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003108 if (!V->getType()->isPointerTy()) return 0;
3109
Pete Cooper35b00d52016-08-13 01:05:32 +00003110 SmallPtrSet<const PHINode*, 32> PHIs;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003111 uint64_t Len = GetStringLengthH(V, PHIs);
3112 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3113 // an empty string as a length.
3114 return Len == ~0ULL ? 1 : Len;
3115}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003116
Adam Nemete2b885c2015-04-23 20:09:20 +00003117/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3118/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003119static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3120 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003121 // Find the loop-defined value.
3122 Loop *L = LI->getLoopFor(PN->getParent());
3123 if (PN->getNumIncomingValues() != 2)
3124 return true;
3125
3126 // Find the value from previous iteration.
3127 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3128 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3129 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3130 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3131 return true;
3132
3133 // If a new pointer is loaded in the loop, the pointer references a different
3134 // object in every iteration. E.g.:
3135 // for (i)
3136 // int *p = a[i];
3137 // ...
3138 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3139 if (!L->isLoopInvariant(Load->getPointerOperand()))
3140 return false;
3141 return true;
3142}
3143
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003144Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3145 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003146 if (!V->getType()->isPointerTy())
3147 return V;
3148 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3149 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3150 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003151 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3152 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003153 V = cast<Operator>(V)->getOperand(0);
3154 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003155 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003156 return V;
3157 V = GA->getAliasee();
3158 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003159 if (auto CS = CallSite(V))
3160 if (Value *RV = CS.getReturnedArgOperand()) {
3161 V = RV;
3162 continue;
3163 }
3164
Dan Gohman05b18f12010-12-15 20:49:55 +00003165 // See if InstructionSimplify knows any relevant tricks.
3166 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003167 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003168 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003169 V = Simplified;
3170 continue;
3171 }
3172
Dan Gohmana4fcd242010-12-15 20:02:24 +00003173 return V;
3174 }
3175 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3176 }
3177 return V;
3178}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003179
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003180void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003181 const DataLayout &DL, LoopInfo *LI,
3182 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003183 SmallPtrSet<Value *, 4> Visited;
3184 SmallVector<Value *, 4> Worklist;
3185 Worklist.push_back(V);
3186 do {
3187 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003188 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003189
David Blaikie70573dc2014-11-19 07:49:26 +00003190 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003191 continue;
3192
3193 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3194 Worklist.push_back(SI->getTrueValue());
3195 Worklist.push_back(SI->getFalseValue());
3196 continue;
3197 }
3198
3199 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003200 // If this PHI changes the underlying object in every iteration of the
3201 // loop, don't look through it. Consider:
3202 // int **A;
3203 // for (i) {
3204 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3205 // Curr = A[i];
3206 // *Prev, *Curr;
3207 //
3208 // Prev is tracking Curr one iteration behind so they refer to different
3209 // underlying objects.
3210 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3211 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003212 for (Value *IncValue : PN->incoming_values())
3213 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003214 continue;
3215 }
3216
3217 Objects.push_back(P);
3218 } while (!Worklist.empty());
3219}
3220
Sanjay Patelaee84212014-11-04 16:27:42 +00003221/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003222bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003223 for (const User *U : V->users()) {
3224 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003225 if (!II) return false;
3226
3227 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3228 II->getIntrinsicID() != Intrinsic::lifetime_end)
3229 return false;
3230 }
3231 return true;
3232}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003233
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003234bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3235 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003236 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003237 const Operator *Inst = dyn_cast<Operator>(V);
3238 if (!Inst)
3239 return false;
3240
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003241 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3242 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3243 if (C->canTrap())
3244 return false;
3245
3246 switch (Inst->getOpcode()) {
3247 default:
3248 return true;
3249 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003250 case Instruction::URem: {
3251 // x / y is undefined if y == 0.
3252 const APInt *V;
3253 if (match(Inst->getOperand(1), m_APInt(V)))
3254 return *V != 0;
3255 return false;
3256 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003257 case Instruction::SDiv:
3258 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003259 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003260 const APInt *Numerator, *Denominator;
3261 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3262 return false;
3263 // We cannot hoist this division if the denominator is 0.
3264 if (*Denominator == 0)
3265 return false;
3266 // It's safe to hoist if the denominator is not 0 or -1.
3267 if (*Denominator != -1)
3268 return true;
3269 // At this point we know that the denominator is -1. It is safe to hoist as
3270 // long we know that the numerator is not INT_MIN.
3271 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3272 return !Numerator->isMinSignedValue();
3273 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003274 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003275 }
3276 case Instruction::Load: {
3277 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003278 if (!LI->isUnordered() ||
3279 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003280 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003281 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003282 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003283 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003284 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003285 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3286 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003287 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003288 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003289 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3290 switch (II->getIntrinsicID()) {
3291 // These synthetic intrinsics have no side-effects and just mark
3292 // information about their operands.
3293 // FIXME: There are other no-op synthetic instructions that potentially
3294 // should be considered at least *safe* to speculate...
3295 case Intrinsic::dbg_declare:
3296 case Intrinsic::dbg_value:
3297 return true;
3298
Xin Tongc13a8e82017-01-09 17:57:08 +00003299 case Intrinsic::bitreverse:
David Majnemer0a92f862015-08-28 21:13:39 +00003300 case Intrinsic::bswap:
3301 case Intrinsic::ctlz:
3302 case Intrinsic::ctpop:
3303 case Intrinsic::cttz:
3304 case Intrinsic::objectsize:
3305 case Intrinsic::sadd_with_overflow:
3306 case Intrinsic::smul_with_overflow:
3307 case Intrinsic::ssub_with_overflow:
3308 case Intrinsic::uadd_with_overflow:
3309 case Intrinsic::umul_with_overflow:
3310 case Intrinsic::usub_with_overflow:
3311 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003312 // These intrinsics are defined to have the same behavior as libm
3313 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003314 case Intrinsic::sqrt:
3315 case Intrinsic::fma:
3316 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003317 return true;
3318 // These intrinsics are defined to have the same behavior as libm
3319 // functions, and the corresponding libm functions never set errno.
3320 case Intrinsic::trunc:
3321 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003322 case Intrinsic::fabs:
3323 case Intrinsic::minnum:
3324 case Intrinsic::maxnum:
3325 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003326 // These intrinsics are defined to have the same behavior as libm
3327 // functions, which never overflow when operating on the IEEE754 types
3328 // that we support, and never set errno otherwise.
3329 case Intrinsic::ceil:
3330 case Intrinsic::floor:
3331 case Intrinsic::nearbyint:
3332 case Intrinsic::rint:
3333 case Intrinsic::round:
3334 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003335 // TODO: are convert_{from,to}_fp16 safe?
3336 // TODO: can we list target-specific intrinsics here?
3337 default: break;
3338 }
3339 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003340 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003341 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003342 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003343 case Instruction::VAArg:
3344 case Instruction::Alloca:
3345 case Instruction::Invoke:
3346 case Instruction::PHI:
3347 case Instruction::Store:
3348 case Instruction::Ret:
3349 case Instruction::Br:
3350 case Instruction::IndirectBr:
3351 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003352 case Instruction::Unreachable:
3353 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003354 case Instruction::AtomicRMW:
3355 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003356 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003357 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003358 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003359 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003360 case Instruction::CatchRet:
3361 case Instruction::CleanupPad:
3362 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003363 return false; // Misc instructions which have effects
3364 }
3365}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003366
Quentin Colombet6443cce2015-08-06 18:44:34 +00003367bool llvm::mayBeMemoryDependent(const Instruction &I) {
3368 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3369}
3370
Sanjay Patelaee84212014-11-04 16:27:42 +00003371/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003372bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003373 assert(V->getType()->isPointerTy() && "V must be pointer type");
3374
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003375 // Alloca never returns null, malloc might.
3376 if (isa<AllocaInst>(V)) return true;
3377
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003378 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003379 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003380 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003381
Peter Collingbourne235c2752016-12-08 19:01:00 +00003382 // A global variable in address space 0 is non null unless extern weak
3383 // or an absolute symbol reference. Other address spaces may have null as a
3384 // valid address for a global, so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003385 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Peter Collingbourne235c2752016-12-08 19:01:00 +00003386 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
Pete Cooper6b716212015-08-27 03:16:29 +00003387 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003388
Sanjoy Das5056e192016-05-07 02:08:22 +00003389 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003390 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003391 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003392
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003393 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003394 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003395 return true;
3396
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003397 return false;
3398}
David Majnemer491331a2015-01-02 07:29:43 +00003399
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003400static bool isKnownNonNullFromDominatingCondition(const Value *V,
3401 const Instruction *CtxI,
3402 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003403 assert(V->getType()->isPointerTy() && "V must be pointer type");
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003404 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003405 assert(CtxI && "Context instruction required for analysis");
3406 assert(DT && "Dominator tree required for analysis");
Chen Li0d043b52015-09-14 18:10:43 +00003407
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003408 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003409 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003410 // Avoid massive lists
3411 if (NumUsesExplored >= DomConditionsMaxUses)
3412 break;
3413 NumUsesExplored++;
3414 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003415 CmpInst::Predicate Pred;
3416 if (!match(const_cast<User *>(U),
3417 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3418 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003419 continue;
3420
Sanjoy Das987aaa12016-05-07 02:08:24 +00003421 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003422 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3423 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003424
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003425 BasicBlock *NonNullSuccessor =
3426 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3427 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3428 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3429 return true;
3430 } else if (Pred == ICmpInst::ICMP_NE &&
3431 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3432 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003433 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003434 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003435 }
3436 }
3437
3438 return false;
3439}
3440
3441bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003442 const DominatorTree *DT) {
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003443 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3444 return false;
3445
Sean Silva45835e72016-07-02 23:47:27 +00003446 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003447 return true;
3448
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003449 if (!CtxI || !DT)
3450 return false;
3451
3452 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003453}
3454
Pete Cooper35b00d52016-08-13 01:05:32 +00003455OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3456 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003457 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003458 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003459 const Instruction *CxtI,
3460 const DominatorTree *DT) {
3461 // Multiplying n * m significant bits yields a result of n + m significant
3462 // bits. If the total number of significant bits does not exceed the
3463 // result bit width (minus 1), there is no overflow.
3464 // This means if we have enough leading zero bits in the operands
3465 // we can guarantee that the result does not overflow.
3466 // Ref: "Hacker's Delight" by Henry Warren
3467 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3468 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003469 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003470 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003471 APInt RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003472 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3473 DT);
3474 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3475 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003476 // Note that underestimating the number of zero bits gives a more
3477 // conservative answer.
3478 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3479 RHSKnownZero.countLeadingOnes();
3480 // First handle the easy case: if we have enough zero bits there's
3481 // definitely no overflow.
3482 if (ZeroBits >= BitWidth)
3483 return OverflowResult::NeverOverflows;
3484
3485 // Get the largest possible values for each operand.
3486 APInt LHSMax = ~LHSKnownZero;
3487 APInt RHSMax = ~RHSKnownZero;
3488
3489 // We know the multiply operation doesn't overflow if the maximum values for
3490 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003491 bool MaxOverflow;
3492 LHSMax.umul_ov(RHSMax, MaxOverflow);
3493 if (!MaxOverflow)
3494 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003495
David Majnemerc8a576b2015-01-02 07:29:47 +00003496 // We know it always overflows if multiplying the smallest possible values for
3497 // the operands also results in overflow.
3498 bool MinOverflow;
3499 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3500 if (MinOverflow)
3501 return OverflowResult::AlwaysOverflows;
3502
3503 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003504}
David Majnemer5310c1e2015-01-07 00:39:50 +00003505
Pete Cooper35b00d52016-08-13 01:05:32 +00003506OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3507 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003508 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003509 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003510 const Instruction *CxtI,
3511 const DominatorTree *DT) {
3512 bool LHSKnownNonNegative, LHSKnownNegative;
3513 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003514 AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003515 if (LHSKnownNonNegative || LHSKnownNegative) {
3516 bool RHSKnownNonNegative, RHSKnownNegative;
3517 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003518 AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003519
3520 if (LHSKnownNegative && RHSKnownNegative) {
3521 // The sign bit is set in both cases: this MUST overflow.
3522 // Create a simple add instruction, and insert it into the struct.
3523 return OverflowResult::AlwaysOverflows;
3524 }
3525
3526 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3527 // The sign bit is clear in both cases: this CANNOT overflow.
3528 // Create a simple add instruction, and insert it into the struct.
3529 return OverflowResult::NeverOverflows;
3530 }
3531 }
3532
3533 return OverflowResult::MayOverflow;
3534}
James Molloy71b91c22015-05-11 14:42:20 +00003535
Pete Cooper35b00d52016-08-13 01:05:32 +00003536static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3537 const Value *RHS,
3538 const AddOperator *Add,
3539 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003540 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003541 const Instruction *CxtI,
3542 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003543 if (Add && Add->hasNoSignedWrap()) {
3544 return OverflowResult::NeverOverflows;
3545 }
3546
3547 bool LHSKnownNonNegative, LHSKnownNegative;
3548 bool RHSKnownNonNegative, RHSKnownNegative;
3549 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003550 AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003551 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003552 AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003553
3554 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3555 (LHSKnownNegative && RHSKnownNonNegative)) {
3556 // The sign bits are opposite: this CANNOT overflow.
3557 return OverflowResult::NeverOverflows;
3558 }
3559
3560 // The remaining code needs Add to be available. Early returns if not so.
3561 if (!Add)
3562 return OverflowResult::MayOverflow;
3563
3564 // If the sign of Add is the same as at least one of the operands, this add
3565 // CANNOT overflow. This is particularly useful when the sum is
3566 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3567 // operands.
3568 bool LHSOrRHSKnownNonNegative =
3569 (LHSKnownNonNegative || RHSKnownNonNegative);
3570 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3571 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3572 bool AddKnownNonNegative, AddKnownNegative;
3573 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003574 /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003575 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3576 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3577 return OverflowResult::NeverOverflows;
3578 }
3579 }
3580
3581 return OverflowResult::MayOverflow;
3582}
3583
Pete Cooper35b00d52016-08-13 01:05:32 +00003584bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3585 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003586#ifndef NDEBUG
3587 auto IID = II->getIntrinsicID();
3588 assert((IID == Intrinsic::sadd_with_overflow ||
3589 IID == Intrinsic::uadd_with_overflow ||
3590 IID == Intrinsic::ssub_with_overflow ||
3591 IID == Intrinsic::usub_with_overflow ||
3592 IID == Intrinsic::smul_with_overflow ||
3593 IID == Intrinsic::umul_with_overflow) &&
3594 "Not an overflow intrinsic!");
3595#endif
3596
Pete Cooper35b00d52016-08-13 01:05:32 +00003597 SmallVector<const BranchInst *, 2> GuardingBranches;
3598 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003599
Pete Cooper35b00d52016-08-13 01:05:32 +00003600 for (const User *U : II->users()) {
3601 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003602 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3603
3604 if (EVI->getIndices()[0] == 0)
3605 Results.push_back(EVI);
3606 else {
3607 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3608
Pete Cooper35b00d52016-08-13 01:05:32 +00003609 for (const auto *U : EVI->users())
3610 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003611 assert(B->isConditional() && "How else is it using an i1?");
3612 GuardingBranches.push_back(B);
3613 }
3614 }
3615 } else {
3616 // We are using the aggregate directly in a way we don't want to analyze
3617 // here (storing it to a global, say).
3618 return false;
3619 }
3620 }
3621
Pete Cooper35b00d52016-08-13 01:05:32 +00003622 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003623 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3624 if (!NoWrapEdge.isSingleEdge())
3625 return false;
3626
3627 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003628 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003629 // If the extractvalue itself is not executed on overflow, the we don't
3630 // need to check each use separately, since domination is transitive.
3631 if (DT.dominates(NoWrapEdge, Result->getParent()))
3632 continue;
3633
3634 for (auto &RU : Result->uses())
3635 if (!DT.dominates(NoWrapEdge, RU))
3636 return false;
3637 }
3638
3639 return true;
3640 };
3641
3642 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3643}
3644
3645
Pete Cooper35b00d52016-08-13 01:05:32 +00003646OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003647 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003648 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003649 const Instruction *CxtI,
3650 const DominatorTree *DT) {
3651 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003652 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003653}
3654
Pete Cooper35b00d52016-08-13 01:05:32 +00003655OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3656 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003657 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003658 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003659 const Instruction *CxtI,
3660 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003661 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003662}
3663
Jingyue Wu42f1d672015-07-28 18:22:40 +00003664bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003665 // A memory operation returns normally if it isn't volatile. A volatile
3666 // operation is allowed to trap.
3667 //
3668 // An atomic operation isn't guaranteed to return in a reasonable amount of
3669 // time because it's possible for another thread to interfere with it for an
3670 // arbitrary length of time, but programs aren't allowed to rely on that.
3671 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3672 return !LI->isVolatile();
3673 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3674 return !SI->isVolatile();
3675 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3676 return !CXI->isVolatile();
3677 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3678 return !RMWI->isVolatile();
3679 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3680 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003681
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003682 // If there is no successor, then execution can't transfer to it.
3683 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3684 return !CRI->unwindsToCaller();
3685 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3686 return !CatchSwitch->unwindsToCaller();
3687 if (isa<ResumeInst>(I))
3688 return false;
3689 if (isa<ReturnInst>(I))
3690 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003691
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003692 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00003693 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00003694 // Call sites that throw have implicit non-local control flow.
3695 if (!CS.doesNotThrow())
3696 return false;
3697
3698 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3699 // etc. and thus not return. However, LLVM already assumes that
3700 //
3701 // - Thread exiting actions are modeled as writes to memory invisible to
3702 // the program.
3703 //
3704 // - Loops that don't have side effects (side effects are volatile/atomic
3705 // stores and IO) always terminate (see http://llvm.org/PR965).
3706 // Furthermore IO itself is also modeled as writes to memory invisible to
3707 // the program.
3708 //
3709 // We rely on those assumptions here, and use the memory effects of the call
3710 // target as a proxy for checking that it always returns.
3711
3712 // FIXME: This isn't aggressive enough; a call which only writes to a global
3713 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003714 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3715 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003716 }
3717
3718 // Other instructions return normally.
3719 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003720}
3721
3722bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3723 const Loop *L) {
3724 // The loop header is guaranteed to be executed for every iteration.
3725 //
3726 // FIXME: Relax this constraint to cover all basic blocks that are
3727 // guaranteed to be executed at every iteration.
3728 if (I->getParent() != L->getHeader()) return false;
3729
3730 for (const Instruction &LI : *L->getHeader()) {
3731 if (&LI == I) return true;
3732 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3733 }
3734 llvm_unreachable("Instruction not contained in its own parent basic block.");
3735}
3736
3737bool llvm::propagatesFullPoison(const Instruction *I) {
3738 switch (I->getOpcode()) {
3739 case Instruction::Add:
3740 case Instruction::Sub:
3741 case Instruction::Xor:
3742 case Instruction::Trunc:
3743 case Instruction::BitCast:
3744 case Instruction::AddrSpaceCast:
3745 // These operations all propagate poison unconditionally. Note that poison
3746 // is not any particular value, so xor or subtraction of poison with
3747 // itself still yields poison, not zero.
3748 return true;
3749
3750 case Instruction::AShr:
3751 case Instruction::SExt:
3752 // For these operations, one bit of the input is replicated across
3753 // multiple output bits. A replicated poison bit is still poison.
3754 return true;
3755
3756 case Instruction::Shl: {
3757 // Left shift *by* a poison value is poison. The number of
3758 // positions to shift is unsigned, so no negative values are
3759 // possible there. Left shift by zero places preserves poison. So
3760 // it only remains to consider left shift of poison by a positive
3761 // number of places.
3762 //
3763 // A left shift by a positive number of places leaves the lowest order bit
3764 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3765 // make the poison operand violate that flag, yielding a fresh full-poison
3766 // value.
3767 auto *OBO = cast<OverflowingBinaryOperator>(I);
3768 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3769 }
3770
3771 case Instruction::Mul: {
3772 // A multiplication by zero yields a non-poison zero result, so we need to
3773 // rule out zero as an operand. Conservatively, multiplication by a
3774 // non-zero constant is not multiplication by zero.
3775 //
3776 // Multiplication by a non-zero constant can leave some bits
3777 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3778 // order bit unpoisoned. So we need to consider that.
3779 //
3780 // Multiplication by 1 preserves poison. If the multiplication has a
3781 // no-wrap flag, then we can make the poison operand violate that flag
3782 // when multiplied by any integer other than 0 and 1.
3783 auto *OBO = cast<OverflowingBinaryOperator>(I);
3784 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3785 for (Value *V : OBO->operands()) {
3786 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3787 // A ConstantInt cannot yield poison, so we can assume that it is
3788 // the other operand that is poison.
3789 return !CI->isZero();
3790 }
3791 }
3792 }
3793 return false;
3794 }
3795
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003796 case Instruction::ICmp:
3797 // Comparing poison with any value yields poison. This is why, for
3798 // instance, x s< (x +nsw 1) can be folded to true.
3799 return true;
3800
Jingyue Wu42f1d672015-07-28 18:22:40 +00003801 case Instruction::GetElementPtr:
3802 // A GEP implicitly represents a sequence of additions, subtractions,
3803 // truncations, sign extensions and multiplications. The multiplications
3804 // are by the non-zero sizes of some set of types, so we do not have to be
3805 // concerned with multiplication by zero. If the GEP is in-bounds, then
3806 // these operations are implicitly no-signed-wrap so poison is propagated
3807 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3808 return cast<GEPOperator>(I)->isInBounds();
3809
3810 default:
3811 return false;
3812 }
3813}
3814
3815const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3816 switch (I->getOpcode()) {
3817 case Instruction::Store:
3818 return cast<StoreInst>(I)->getPointerOperand();
3819
3820 case Instruction::Load:
3821 return cast<LoadInst>(I)->getPointerOperand();
3822
3823 case Instruction::AtomicCmpXchg:
3824 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3825
3826 case Instruction::AtomicRMW:
3827 return cast<AtomicRMWInst>(I)->getPointerOperand();
3828
3829 case Instruction::UDiv:
3830 case Instruction::SDiv:
3831 case Instruction::URem:
3832 case Instruction::SRem:
3833 return I->getOperand(1);
3834
3835 default:
3836 return nullptr;
3837 }
3838}
3839
3840bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3841 // We currently only look for uses of poison values within the same basic
3842 // block, as that makes it easier to guarantee that the uses will be
3843 // executed given that PoisonI is executed.
3844 //
3845 // FIXME: Expand this to consider uses beyond the same basic block. To do
3846 // this, look out for the distinction between post-dominance and strong
3847 // post-dominance.
3848 const BasicBlock *BB = PoisonI->getParent();
3849
3850 // Set of instructions that we have proved will yield poison if PoisonI
3851 // does.
3852 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003853 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003854 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003855 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003856
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003857 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003858
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003859 unsigned Iter = 0;
3860 while (Iter++ < MaxDepth) {
3861 for (auto &I : make_range(Begin, End)) {
3862 if (&I != PoisonI) {
3863 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3864 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3865 return true;
3866 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3867 return false;
3868 }
3869
3870 // Mark poison that propagates from I through uses of I.
3871 if (YieldsPoison.count(&I)) {
3872 for (const User *User : I.users()) {
3873 const Instruction *UserI = cast<Instruction>(User);
3874 if (propagatesFullPoison(UserI))
3875 YieldsPoison.insert(User);
3876 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003877 }
3878 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003879
3880 if (auto *NextBB = BB->getSingleSuccessor()) {
3881 if (Visited.insert(NextBB).second) {
3882 BB = NextBB;
3883 Begin = BB->getFirstNonPHI()->getIterator();
3884 End = BB->end();
3885 continue;
3886 }
3887 }
3888
3889 break;
3890 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003891 return false;
3892}
3893
Pete Cooper35b00d52016-08-13 01:05:32 +00003894static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00003895 if (FMF.noNaNs())
3896 return true;
3897
3898 if (auto *C = dyn_cast<ConstantFP>(V))
3899 return !C->isNaN();
3900 return false;
3901}
3902
Pete Cooper35b00d52016-08-13 01:05:32 +00003903static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00003904 if (auto *C = dyn_cast<ConstantFP>(V))
3905 return !C->isZero();
3906 return false;
3907}
3908
Sanjay Patel819f0962016-11-13 19:30:19 +00003909/// Match non-obvious integer minimum and maximum sequences.
3910static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
3911 Value *CmpLHS, Value *CmpRHS,
3912 Value *TrueVal, Value *FalseVal,
3913 Value *&LHS, Value *&RHS) {
3914 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
3915 return {SPF_UNKNOWN, SPNB_NA, false};
3916
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003917 // Z = X -nsw Y
3918 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
3919 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
3920 if (match(TrueVal, m_Zero()) &&
3921 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) {
3922 LHS = TrueVal;
3923 RHS = FalseVal;
3924 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
3925 }
3926
3927 // Z = X -nsw Y
3928 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
3929 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
3930 if (match(FalseVal, m_Zero()) &&
3931 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) {
3932 LHS = TrueVal;
3933 RHS = FalseVal;
3934 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
3935 }
3936
Sanjay Patel819f0962016-11-13 19:30:19 +00003937 const APInt *C1;
3938 if (!match(CmpRHS, m_APInt(C1)))
3939 return {SPF_UNKNOWN, SPNB_NA, false};
3940
3941 // An unsigned min/max can be written with a signed compare.
3942 const APInt *C2;
3943 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
3944 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
3945 // Is the sign bit set?
3946 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
3947 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
3948 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) {
3949 LHS = TrueVal;
3950 RHS = FalseVal;
3951 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
3952 }
3953
3954 // Is the sign bit clear?
3955 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
3956 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
3957 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
3958 C2->isMinSignedValue()) {
3959 LHS = TrueVal;
3960 RHS = FalseVal;
3961 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
3962 }
3963 }
3964
3965 // Look through 'not' ops to find disguised signed min/max.
3966 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
3967 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
3968 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
3969 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) {
3970 LHS = TrueVal;
3971 RHS = FalseVal;
3972 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
3973 }
3974
3975 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
3976 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
3977 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
3978 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) {
3979 LHS = TrueVal;
3980 RHS = FalseVal;
3981 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
3982 }
3983
3984 return {SPF_UNKNOWN, SPNB_NA, false};
3985}
3986
James Molloy134bec22015-08-11 09:12:57 +00003987static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3988 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003989 Value *CmpLHS, Value *CmpRHS,
3990 Value *TrueVal, Value *FalseVal,
3991 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003992 LHS = CmpLHS;
3993 RHS = CmpRHS;
3994
James Molloy134bec22015-08-11 09:12:57 +00003995 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3996 // return inconsistent results between implementations.
3997 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3998 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3999 // Therefore we behave conservatively and only proceed if at least one of the
4000 // operands is known to not be zero, or if we don't care about signed zeroes.
4001 switch (Pred) {
4002 default: break;
4003 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4004 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4005 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4006 !isKnownNonZero(CmpRHS))
4007 return {SPF_UNKNOWN, SPNB_NA, false};
4008 }
4009
4010 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4011 bool Ordered = false;
4012
4013 // When given one NaN and one non-NaN input:
4014 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4015 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4016 // ordered comparison fails), which could be NaN or non-NaN.
4017 // so here we discover exactly what NaN behavior is required/accepted.
4018 if (CmpInst::isFPPredicate(Pred)) {
4019 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4020 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4021
4022 if (LHSSafe && RHSSafe) {
4023 // Both operands are known non-NaN.
4024 NaNBehavior = SPNB_RETURNS_ANY;
4025 } else if (CmpInst::isOrdered(Pred)) {
4026 // An ordered comparison will return false when given a NaN, so it
4027 // returns the RHS.
4028 Ordered = true;
4029 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004030 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004031 NaNBehavior = SPNB_RETURNS_NAN;
4032 else if (RHSSafe)
4033 NaNBehavior = SPNB_RETURNS_OTHER;
4034 else
4035 // Completely unsafe.
4036 return {SPF_UNKNOWN, SPNB_NA, false};
4037 } else {
4038 Ordered = false;
4039 // An unordered comparison will return true when given a NaN, so it
4040 // returns the LHS.
4041 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004042 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004043 NaNBehavior = SPNB_RETURNS_OTHER;
4044 else if (RHSSafe)
4045 NaNBehavior = SPNB_RETURNS_NAN;
4046 else
4047 // Completely unsafe.
4048 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004049 }
4050 }
4051
James Molloy71b91c22015-05-11 14:42:20 +00004052 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004053 std::swap(CmpLHS, CmpRHS);
4054 Pred = CmpInst::getSwappedPredicate(Pred);
4055 if (NaNBehavior == SPNB_RETURNS_NAN)
4056 NaNBehavior = SPNB_RETURNS_OTHER;
4057 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4058 NaNBehavior = SPNB_RETURNS_NAN;
4059 Ordered = !Ordered;
4060 }
4061
4062 // ([if]cmp X, Y) ? X : Y
4063 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004064 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004065 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004066 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004067 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004068 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004069 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004070 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004071 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004072 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004073 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4074 case FCmpInst::FCMP_UGT:
4075 case FCmpInst::FCMP_UGE:
4076 case FCmpInst::FCMP_OGT:
4077 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4078 case FCmpInst::FCMP_ULT:
4079 case FCmpInst::FCMP_ULE:
4080 case FCmpInst::FCMP_OLT:
4081 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004082 }
4083 }
4084
Sanjay Patele372aec2016-10-27 15:26:10 +00004085 const APInt *C1;
4086 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004087 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4088 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4089
4090 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4091 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Sanjay Patele372aec2016-10-27 15:26:10 +00004092 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004093 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004094 }
4095
4096 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4097 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Sanjay Patele372aec2016-10-27 15:26:10 +00004098 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
James Molloy134bec22015-08-11 09:12:57 +00004099 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004100 }
4101 }
James Molloy71b91c22015-05-11 14:42:20 +00004102 }
4103
Sanjay Patel819f0962016-11-13 19:30:19 +00004104 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004105}
James Molloy270ef8c2015-05-15 16:04:50 +00004106
James Molloy569cea62015-09-02 17:25:25 +00004107static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4108 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00004109 CastInst *CI = dyn_cast<CastInst>(V1);
4110 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00004111 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00004112 return nullptr;
4113 *CastOp = CI->getOpcode();
4114
David Majnemerd2a074b2016-04-29 18:40:34 +00004115 if (auto *CI2 = dyn_cast<CastInst>(V2)) {
James Molloy569cea62015-09-02 17:25:25 +00004116 // If V1 and V2 are both the same cast from the same type, we can look
4117 // through V1.
4118 if (CI2->getOpcode() == CI->getOpcode() &&
4119 CI2->getSrcTy() == CI->getSrcTy())
4120 return CI2->getOperand(0);
4121 return nullptr;
4122 } else if (!C) {
4123 return nullptr;
4124 }
4125
David Majnemerd2a074b2016-04-29 18:40:34 +00004126 Constant *CastedTo = nullptr;
4127
David Majnemer826e9832016-04-29 21:22:04 +00004128 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
4129 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
4130
David Majnemerd2a074b2016-04-29 18:40:34 +00004131 if (isa<SExtInst>(CI) && CmpI->isSigned())
4132 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
4133
David Majnemer826e9832016-04-29 21:22:04 +00004134 if (isa<TruncInst>(CI))
4135 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
4136
4137 if (isa<FPTruncInst>(CI))
4138 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
4139
4140 if (isa<FPExtInst>(CI))
4141 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
4142
David Majnemerd2a074b2016-04-29 18:40:34 +00004143 if (isa<FPToUIInst>(CI))
4144 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
4145
4146 if (isa<FPToSIInst>(CI))
4147 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
4148
4149 if (isa<UIToFPInst>(CI))
4150 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
4151
4152 if (isa<SIToFPInst>(CI))
4153 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
4154
4155 if (!CastedTo)
4156 return nullptr;
4157
4158 Constant *CastedBack =
4159 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
4160 // Make sure the cast doesn't lose any information.
4161 if (CastedBack != C)
4162 return nullptr;
4163
4164 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004165}
4166
Sanjay Patele8dc0902016-05-23 17:57:54 +00004167SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004168 Instruction::CastOps *CastOp) {
4169 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004170 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004171
James Molloy134bec22015-08-11 09:12:57 +00004172 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4173 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004174
James Molloy134bec22015-08-11 09:12:57 +00004175 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004176 Value *CmpLHS = CmpI->getOperand(0);
4177 Value *CmpRHS = CmpI->getOperand(1);
4178 Value *TrueVal = SI->getTrueValue();
4179 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004180 FastMathFlags FMF;
4181 if (isa<FPMathOperator>(CmpI))
4182 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004183
4184 // Bail out early.
4185 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004186 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004187
4188 // Deal with type mismatches.
4189 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004190 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004191 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004192 cast<CastInst>(TrueVal)->getOperand(0), C,
4193 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004194 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004195 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004196 C, cast<CastInst>(FalseVal)->getOperand(0),
4197 LHS, RHS);
4198 }
James Molloy134bec22015-08-11 09:12:57 +00004199 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004200 LHS, RHS);
4201}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004202
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004203/// Return true if "icmp Pred LHS RHS" is always true.
Pete Cooper35b00d52016-08-13 01:05:32 +00004204static bool isTruePredicate(CmpInst::Predicate Pred,
4205 const Value *LHS, const Value *RHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004206 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004207 AssumptionCache *AC, const Instruction *CxtI,
4208 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004209 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004210 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4211 return true;
4212
4213 switch (Pred) {
4214 default:
4215 return false;
4216
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004217 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004218 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004219
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004220 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004221 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004222 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004223 return false;
4224 }
4225
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004226 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004227 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004228
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004229 // LHS u<= LHS +_{nuw} C for any C
4230 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004231 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004232
4233 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004234 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4235 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004236 const APInt *&CA, const APInt *&CB) {
4237 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4238 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4239 return true;
4240
4241 // If X & C == 0 then (X | C) == X +_{nuw} C
4242 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4243 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4244 unsigned BitWidth = CA->getBitWidth();
4245 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004246 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
Sanjoy Das92568102015-11-10 23:56:20 +00004247
4248 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4249 return true;
4250 }
4251
4252 return false;
4253 };
4254
Pete Cooper35b00d52016-08-13 01:05:32 +00004255 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004256 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004257 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4258 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004259
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004260 return false;
4261 }
4262 }
4263}
4264
4265/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004266/// ALHS ARHS" is true. Otherwise, return None.
4267static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004268isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4269 const Value *ARHS, const Value *BLHS,
4270 const Value *BRHS, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004271 unsigned Depth, AssumptionCache *AC,
4272 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004273 switch (Pred) {
4274 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004275 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004276
4277 case CmpInst::ICMP_SLT:
4278 case CmpInst::ICMP_SLE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004279 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004280 DT) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004281 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004282 return true;
4283 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004284
4285 case CmpInst::ICMP_ULT:
4286 case CmpInst::ICMP_ULE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004287 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4288 DT) &&
4289 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004290 return true;
4291 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004292 }
4293}
4294
Chad Rosier226a7342016-05-05 17:41:19 +00004295/// Return true if the operands of the two compares match. IsSwappedOps is true
4296/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004297static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4298 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004299 bool &IsSwappedOps) {
4300
4301 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4302 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4303 return IsMatchingOps || IsSwappedOps;
4304}
4305
Chad Rosier41dd31f2016-04-20 19:15:26 +00004306/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4307/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4308/// BRHS" is false. Otherwise, return None if we can't infer anything.
4309static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004310 const Value *ALHS,
4311 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004312 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004313 const Value *BLHS,
4314 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004315 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004316 // Canonicalize the operands so they're matching.
4317 if (IsSwappedOps) {
4318 std::swap(BLHS, BRHS);
4319 BPred = ICmpInst::getSwappedPredicate(BPred);
4320 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004321 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004322 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004323 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004324 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004325
Chad Rosier41dd31f2016-04-20 19:15:26 +00004326 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004327}
4328
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004329/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4330/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4331/// C2" is false. Otherwise, return None if we can't infer anything.
4332static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004333isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4334 const ConstantInt *C1,
4335 CmpInst::Predicate BPred,
4336 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004337 assert(ALHS == BLHS && "LHS operands must match.");
4338 ConstantRange DomCR =
4339 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4340 ConstantRange CR =
4341 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4342 ConstantRange Intersection = DomCR.intersectWith(CR);
4343 ConstantRange Difference = DomCR.difference(CR);
4344 if (Intersection.isEmptySet())
4345 return false;
4346 if (Difference.isEmptySet())
4347 return true;
4348 return None;
4349}
4350
Pete Cooper35b00d52016-08-13 01:05:32 +00004351Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00004352 const DataLayout &DL, bool InvertAPred,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004353 unsigned Depth, AssumptionCache *AC,
4354 const Instruction *CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004355 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00004356 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4357 if (LHS->getType() != RHS->getType())
4358 return None;
4359
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004360 Type *OpTy = LHS->getType();
4361 assert(OpTy->getScalarType()->isIntegerTy(1));
4362
4363 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00004364 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004365 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004366
4367 if (OpTy->isVectorTy())
4368 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004369 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004370 assert(OpTy->isIntegerTy(1) && "implied by above");
4371
4372 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004373 Value *ALHS, *ARHS;
4374 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004375
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004376 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4377 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004378 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004379
Chad Rosiere2cbd132016-04-25 17:23:36 +00004380 if (InvertAPred)
4381 APred = CmpInst::getInversePredicate(APred);
4382
Chad Rosier226a7342016-05-05 17:41:19 +00004383 // Can we infer anything when the two compares have matching operands?
4384 bool IsSwappedOps;
4385 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4386 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4387 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004388 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004389 // No amount of additional analysis will infer the second condition, so
4390 // early exit.
4391 return None;
4392 }
4393
4394 // Can we infer anything when the LHS operands match and the RHS operands are
4395 // constants (not necessarily matching)?
4396 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4397 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4398 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4399 cast<ConstantInt>(BRHS)))
4400 return Implication;
4401 // No amount of additional analysis will infer the second condition, so
4402 // early exit.
4403 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004404 }
4405
Chad Rosier41dd31f2016-04-20 19:15:26 +00004406 if (APred == BPred)
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004407 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4408 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004409
Chad Rosier41dd31f2016-04-20 19:15:26 +00004410 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004411}