blob: eed2d13187a86ca9f28fa49ff77b270f4a0d405f [file] [log] [blame]
Chris Lattner310968c2005-01-07 07:44:53 +00001//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
Misha Brukmanf976c852005-04-21 22:55:34 +00002//
Chris Lattner310968c2005-01-07 07:44:53 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanf976c852005-04-21 22:55:34 +00007//
Chris Lattner310968c2005-01-07 07:44:53 +00008//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
Rafael Espindolaf1ba1ca2007-11-05 23:12:20 +000015#include "llvm/Target/TargetSubtarget.h"
Owen Anderson07000c62006-05-12 06:33:49 +000016#include "llvm/Target/TargetData.h"
Chris Lattner310968c2005-01-07 07:44:53 +000017#include "llvm/Target/TargetMachine.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000018#include "llvm/Target/MRegisterInfo.h"
Chris Lattnerdc879292006-03-31 00:28:56 +000019#include "llvm/DerivedTypes.h"
Chris Lattner310968c2005-01-07 07:44:53 +000020#include "llvm/CodeGen/SelectionDAG.h"
Chris Lattner4ccb0702006-01-26 20:37:03 +000021#include "llvm/ADT/StringExtras.h"
Owen Anderson718cb662007-09-07 04:06:50 +000022#include "llvm/ADT/STLExtras.h"
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +000023#include "llvm/Support/MathExtras.h"
Dan Gohmanc3b0b5c2007-09-25 15:10:49 +000024#include "llvm/Target/TargetAsmInfo.h"
Rafael Espindolaf1ba1ca2007-11-05 23:12:20 +000025#include "llvm/CallingConv.h"
Chris Lattner310968c2005-01-07 07:44:53 +000026using namespace llvm;
27
Evan Cheng56966222007-01-12 02:11:51 +000028/// InitLibcallNames - Set default libcall names.
29///
Evan Cheng79cca502007-01-12 22:51:10 +000030static void InitLibcallNames(const char **Names) {
Evan Cheng56966222007-01-12 02:11:51 +000031 Names[RTLIB::SHL_I32] = "__ashlsi3";
32 Names[RTLIB::SHL_I64] = "__ashldi3";
33 Names[RTLIB::SRL_I32] = "__lshrsi3";
34 Names[RTLIB::SRL_I64] = "__lshrdi3";
35 Names[RTLIB::SRA_I32] = "__ashrsi3";
36 Names[RTLIB::SRA_I64] = "__ashrdi3";
37 Names[RTLIB::MUL_I32] = "__mulsi3";
38 Names[RTLIB::MUL_I64] = "__muldi3";
39 Names[RTLIB::SDIV_I32] = "__divsi3";
40 Names[RTLIB::SDIV_I64] = "__divdi3";
41 Names[RTLIB::UDIV_I32] = "__udivsi3";
42 Names[RTLIB::UDIV_I64] = "__udivdi3";
43 Names[RTLIB::SREM_I32] = "__modsi3";
44 Names[RTLIB::SREM_I64] = "__moddi3";
45 Names[RTLIB::UREM_I32] = "__umodsi3";
46 Names[RTLIB::UREM_I64] = "__umoddi3";
47 Names[RTLIB::NEG_I32] = "__negsi2";
48 Names[RTLIB::NEG_I64] = "__negdi2";
49 Names[RTLIB::ADD_F32] = "__addsf3";
50 Names[RTLIB::ADD_F64] = "__adddf3";
Dale Johannesen161e8972007-10-05 20:04:43 +000051 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
Evan Cheng56966222007-01-12 02:11:51 +000052 Names[RTLIB::SUB_F32] = "__subsf3";
53 Names[RTLIB::SUB_F64] = "__subdf3";
Dale Johannesen161e8972007-10-05 20:04:43 +000054 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
Evan Cheng56966222007-01-12 02:11:51 +000055 Names[RTLIB::MUL_F32] = "__mulsf3";
56 Names[RTLIB::MUL_F64] = "__muldf3";
Dale Johannesen161e8972007-10-05 20:04:43 +000057 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
Evan Cheng56966222007-01-12 02:11:51 +000058 Names[RTLIB::DIV_F32] = "__divsf3";
59 Names[RTLIB::DIV_F64] = "__divdf3";
Dale Johannesen161e8972007-10-05 20:04:43 +000060 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
Evan Cheng56966222007-01-12 02:11:51 +000061 Names[RTLIB::REM_F32] = "fmodf";
62 Names[RTLIB::REM_F64] = "fmod";
Dale Johannesen161e8972007-10-05 20:04:43 +000063 Names[RTLIB::REM_PPCF128] = "fmodl";
Evan Cheng56966222007-01-12 02:11:51 +000064 Names[RTLIB::NEG_F32] = "__negsf2";
65 Names[RTLIB::NEG_F64] = "__negdf2";
66 Names[RTLIB::POWI_F32] = "__powisf2";
67 Names[RTLIB::POWI_F64] = "__powidf2";
Dale Johannesen161e8972007-10-05 20:04:43 +000068 Names[RTLIB::POWI_F80] = "__powixf2";
69 Names[RTLIB::POWI_PPCF128] = "__powitf2";
Evan Cheng56966222007-01-12 02:11:51 +000070 Names[RTLIB::SQRT_F32] = "sqrtf";
71 Names[RTLIB::SQRT_F64] = "sqrt";
Dale Johannesen161e8972007-10-05 20:04:43 +000072 Names[RTLIB::SQRT_F80] = "sqrtl";
73 Names[RTLIB::SQRT_PPCF128] = "sqrtl";
Evan Cheng56966222007-01-12 02:11:51 +000074 Names[RTLIB::SIN_F32] = "sinf";
75 Names[RTLIB::SIN_F64] = "sin";
76 Names[RTLIB::COS_F32] = "cosf";
77 Names[RTLIB::COS_F64] = "cos";
Dan Gohmane54be102007-10-11 23:09:10 +000078 Names[RTLIB::POW_F32] = "powf";
79 Names[RTLIB::POW_F64] = "pow";
80 Names[RTLIB::POW_F80] = "powl";
81 Names[RTLIB::POW_PPCF128] = "powl";
Evan Cheng56966222007-01-12 02:11:51 +000082 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
83 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
84 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
85 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
86 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
87 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
Dale Johannesen161e8972007-10-05 20:04:43 +000088 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
89 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
Evan Cheng56966222007-01-12 02:11:51 +000090 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
91 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
92 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
93 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
Dale Johannesen161e8972007-10-05 20:04:43 +000094 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
95 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
96 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
Evan Cheng56966222007-01-12 02:11:51 +000097 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
98 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
99 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
100 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
Dale Johannesen161e8972007-10-05 20:04:43 +0000101 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
102 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
Evan Cheng56966222007-01-12 02:11:51 +0000103 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
104 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
105 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
106 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
107 Names[RTLIB::OEQ_F32] = "__eqsf2";
108 Names[RTLIB::OEQ_F64] = "__eqdf2";
109 Names[RTLIB::UNE_F32] = "__nesf2";
110 Names[RTLIB::UNE_F64] = "__nedf2";
111 Names[RTLIB::OGE_F32] = "__gesf2";
112 Names[RTLIB::OGE_F64] = "__gedf2";
113 Names[RTLIB::OLT_F32] = "__ltsf2";
114 Names[RTLIB::OLT_F64] = "__ltdf2";
115 Names[RTLIB::OLE_F32] = "__lesf2";
116 Names[RTLIB::OLE_F64] = "__ledf2";
117 Names[RTLIB::OGT_F32] = "__gtsf2";
118 Names[RTLIB::OGT_F64] = "__gtdf2";
119 Names[RTLIB::UO_F32] = "__unordsf2";
120 Names[RTLIB::UO_F64] = "__unorddf2";
Evan Chengd385fd62007-01-31 09:29:11 +0000121 Names[RTLIB::O_F32] = "__unordsf2";
122 Names[RTLIB::O_F64] = "__unorddf2";
123}
124
125/// InitCmpLibcallCCs - Set default comparison libcall CC.
126///
127static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
128 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
129 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
130 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
131 CCs[RTLIB::UNE_F32] = ISD::SETNE;
132 CCs[RTLIB::UNE_F64] = ISD::SETNE;
133 CCs[RTLIB::OGE_F32] = ISD::SETGE;
134 CCs[RTLIB::OGE_F64] = ISD::SETGE;
135 CCs[RTLIB::OLT_F32] = ISD::SETLT;
136 CCs[RTLIB::OLT_F64] = ISD::SETLT;
137 CCs[RTLIB::OLE_F32] = ISD::SETLE;
138 CCs[RTLIB::OLE_F64] = ISD::SETLE;
139 CCs[RTLIB::OGT_F32] = ISD::SETGT;
140 CCs[RTLIB::OGT_F64] = ISD::SETGT;
141 CCs[RTLIB::UO_F32] = ISD::SETNE;
142 CCs[RTLIB::UO_F64] = ISD::SETNE;
143 CCs[RTLIB::O_F32] = ISD::SETEQ;
144 CCs[RTLIB::O_F64] = ISD::SETEQ;
Evan Cheng56966222007-01-12 02:11:51 +0000145}
146
Chris Lattner310968c2005-01-07 07:44:53 +0000147TargetLowering::TargetLowering(TargetMachine &tm)
Chris Lattner3e6e8cc2006-01-29 08:41:12 +0000148 : TM(tm), TD(TM.getTargetData()) {
Evan Cheng33143dc2006-03-03 06:58:59 +0000149 assert(ISD::BUILTIN_OP_END <= 156 &&
Chris Lattner310968c2005-01-07 07:44:53 +0000150 "Fixed size array in TargetLowering is not large enough!");
Chris Lattnercba82f92005-01-16 07:28:11 +0000151 // All operations default to being supported.
152 memset(OpActions, 0, sizeof(OpActions));
Evan Chengc5484282006-10-04 00:56:09 +0000153 memset(LoadXActions, 0, sizeof(LoadXActions));
Evan Cheng8b2794a2006-10-13 21:14:26 +0000154 memset(&StoreXActions, 0, sizeof(StoreXActions));
Dan Gohman93f81e22007-07-09 20:49:44 +0000155 memset(&IndexedModeActions, 0, sizeof(IndexedModeActions));
Dale Johannesen5411a392007-08-09 01:04:01 +0000156 memset(&ConvertActions, 0, sizeof(ConvertActions));
Dan Gohman93f81e22007-07-09 20:49:44 +0000157
Chris Lattner1a3048b2007-12-22 20:47:56 +0000158 // Set default actions for various operations.
Evan Cheng5ff839f2006-11-09 18:56:43 +0000159 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
Chris Lattner1a3048b2007-12-22 20:47:56 +0000160 // Default all indexed load / store to expand.
Evan Cheng5ff839f2006-11-09 18:56:43 +0000161 for (unsigned IM = (unsigned)ISD::PRE_INC;
162 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
163 setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
164 setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
165 }
Chris Lattner1a3048b2007-12-22 20:47:56 +0000166
167 // These operations default to expand.
168 setOperationAction(ISD::FGETSIGN, (MVT::ValueType)VT, Expand);
Evan Cheng5ff839f2006-11-09 18:56:43 +0000169 }
Chris Lattner310968c2005-01-07 07:44:53 +0000170
Owen Andersona69571c2006-05-03 01:29:57 +0000171 IsLittleEndian = TD->isLittleEndian();
Chris Lattnercf9668f2006-10-06 22:52:08 +0000172 UsesGlobalOffsetTable = false;
Owen Andersona69571c2006-05-03 01:29:57 +0000173 ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
Chris Lattnerd6e49672005-01-19 03:36:14 +0000174 ShiftAmtHandling = Undefined;
Chris Lattner310968c2005-01-07 07:44:53 +0000175 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
Owen Anderson718cb662007-09-07 04:06:50 +0000176 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
Evan Chenga03a5dc2006-02-14 08:38:30 +0000177 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
Reid Spencer0f9beca2005-08-27 19:09:02 +0000178 allowUnalignedMemoryAccesses = false;
Anton Korobeynikovd27a2582006-12-10 23:12:42 +0000179 UseUnderscoreSetJmp = false;
180 UseUnderscoreLongJmp = false;
Chris Lattner66180392007-02-25 01:28:05 +0000181 SelectIsExpensive = false;
Nate Begeman405e3ec2005-10-21 00:02:42 +0000182 IntDivIsCheap = false;
183 Pow2DivIsCheap = false;
Chris Lattneree4a7652006-01-25 18:57:15 +0000184 StackPointerRegisterToSaveRestore = 0;
Jim Laskey9bb3c932007-02-22 18:04:49 +0000185 ExceptionPointerRegister = 0;
186 ExceptionSelectorRegister = 0;
Chris Lattnerdfe89342007-09-21 17:06:39 +0000187 SetCCResultContents = UndefinedSetCCResult;
Evan Cheng0577a222006-01-25 18:52:42 +0000188 SchedPreferenceInfo = SchedulingForLatency;
Chris Lattner7acf5f32006-09-05 17:39:15 +0000189 JumpBufSize = 0;
Duraid Madina0c9e0ff2006-09-04 07:44:11 +0000190 JumpBufAlignment = 0;
Evan Chengd60483e2007-05-16 23:45:53 +0000191 IfCvtBlockSizeLimit = 2;
Evan Cheng56966222007-01-12 02:11:51 +0000192
193 InitLibcallNames(LibcallRoutineNames);
Evan Chengd385fd62007-01-31 09:29:11 +0000194 InitCmpLibcallCCs(CmpLibcallCCs);
Dan Gohmanc3b0b5c2007-09-25 15:10:49 +0000195
196 // Tell Legalize whether the assembler supports DEBUG_LOC.
197 if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
198 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
Chris Lattner310968c2005-01-07 07:44:53 +0000199}
200
Chris Lattnercba82f92005-01-16 07:28:11 +0000201TargetLowering::~TargetLowering() {}
202
Rafael Espindolaf1ba1ca2007-11-05 23:12:20 +0000203
204SDOperand TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
205 assert(getSubtarget() && "Subtarget not defined");
206 SDOperand ChainOp = Op.getOperand(0);
207 SDOperand DestOp = Op.getOperand(1);
208 SDOperand SourceOp = Op.getOperand(2);
209 SDOperand CountOp = Op.getOperand(3);
210 SDOperand AlignOp = Op.getOperand(4);
211 SDOperand AlwaysInlineOp = Op.getOperand(5);
212
213 bool AlwaysInline = (bool)cast<ConstantSDNode>(AlwaysInlineOp)->getValue();
214 unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
215 if (Align == 0) Align = 1;
216
217 // If size is unknown, call memcpy.
218 ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
219 if (!I) {
220 assert(!AlwaysInline && "Cannot inline copy of unknown size");
221 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
222 }
223
224 // If not DWORD aligned or if size is more than threshold, then call memcpy.
225 // The libc version is likely to be faster for the following cases. It can
226 // use the address value and run time information about the CPU.
227 // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
228 unsigned Size = I->getValue();
229 if (AlwaysInline ||
230 (Size <= getSubtarget()->getMaxInlineSizeThreshold() &&
231 (Align & 3) == 0))
232 return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
233 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
234}
235
236
237SDOperand TargetLowering::LowerMEMCPYCall(SDOperand Chain,
238 SDOperand Dest,
239 SDOperand Source,
240 SDOperand Count,
241 SelectionDAG &DAG) {
242 MVT::ValueType IntPtr = getPointerTy();
243 TargetLowering::ArgListTy Args;
244 TargetLowering::ArgListEntry Entry;
245 Entry.Ty = getTargetData()->getIntPtrType();
246 Entry.Node = Dest; Args.push_back(Entry);
247 Entry.Node = Source; Args.push_back(Entry);
248 Entry.Node = Count; Args.push_back(Entry);
249 std::pair<SDOperand,SDOperand> CallResult =
250 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
251 DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
252 return CallResult.second;
253}
254
255
Chris Lattner310968c2005-01-07 07:44:53 +0000256/// computeRegisterProperties - Once all of the register classes are added,
257/// this allows us to compute derived properties we expose.
258void TargetLowering::computeRegisterProperties() {
Nate Begeman6a648612005-11-29 05:45:29 +0000259 assert(MVT::LAST_VALUETYPE <= 32 &&
Chris Lattnerbb97d812005-01-16 01:10:58 +0000260 "Too many value types for ValueTypeActions to hold!");
261
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000262 // Everything defaults to needing one register.
263 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
Dan Gohmanb9f10192007-06-21 14:42:22 +0000264 NumRegistersForVT[i] = 1;
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000265 RegisterTypeForVT[i] = TransformToType[i] = i;
266 }
267 // ...except isVoid, which doesn't need any registers.
268 NumRegistersForVT[MVT::isVoid] = 0;
Misha Brukmanf976c852005-04-21 22:55:34 +0000269
Chris Lattner310968c2005-01-07 07:44:53 +0000270 // Find the largest integer register class.
271 unsigned LargestIntReg = MVT::i128;
272 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
273 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
274
275 // Every integer value type larger than this largest register takes twice as
276 // many registers to represent as the previous ValueType.
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000277 for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
278 MVT::isInteger(ExpandedReg); ++ExpandedReg) {
Dan Gohmanb9f10192007-06-21 14:42:22 +0000279 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000280 RegisterTypeForVT[ExpandedReg] = LargestIntReg;
281 TransformToType[ExpandedReg] = ExpandedReg - 1;
282 ValueTypeActions.setTypeAction(ExpandedReg, Expand);
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000283 }
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000284
285 // Inspect all of the ValueType's smaller than the largest integer
286 // register to see which ones need promotion.
287 MVT::ValueType LegalIntReg = LargestIntReg;
288 for (MVT::ValueType IntReg = LargestIntReg - 1;
289 IntReg >= MVT::i1; --IntReg) {
290 if (isTypeLegal(IntReg)) {
291 LegalIntReg = IntReg;
292 } else {
293 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
294 ValueTypeActions.setTypeAction(IntReg, Promote);
295 }
296 }
297
Dale Johannesen161e8972007-10-05 20:04:43 +0000298 // ppcf128 type is really two f64's.
299 if (!isTypeLegal(MVT::ppcf128)) {
300 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
301 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
302 TransformToType[MVT::ppcf128] = MVT::f64;
303 ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
304 }
305
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000306 // Decide how to handle f64. If the target does not have native f64 support,
307 // expand it to i64 and we will be generating soft float library calls.
308 if (!isTypeLegal(MVT::f64)) {
309 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
310 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
311 TransformToType[MVT::f64] = MVT::i64;
312 ValueTypeActions.setTypeAction(MVT::f64, Expand);
313 }
314
315 // Decide how to handle f32. If the target does not have native support for
316 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
317 if (!isTypeLegal(MVT::f32)) {
318 if (isTypeLegal(MVT::f64)) {
319 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
320 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
321 TransformToType[MVT::f32] = MVT::f64;
322 ValueTypeActions.setTypeAction(MVT::f32, Promote);
323 } else {
324 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
325 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
326 TransformToType[MVT::f32] = MVT::i32;
327 ValueTypeActions.setTypeAction(MVT::f32, Expand);
328 }
Evan Cheng1a8f1fe2006-12-09 02:42:38 +0000329 }
Nate Begeman4ef3b812005-11-22 01:29:36 +0000330
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000331 // Loop over all of the vector value types to see which need transformations.
332 for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
Evan Cheng677274b2006-03-23 23:24:51 +0000333 i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000334 if (!isTypeLegal(i)) {
335 MVT::ValueType IntermediateVT, RegisterVT;
336 unsigned NumIntermediates;
337 NumRegistersForVT[i] =
338 getVectorTypeBreakdown(i,
339 IntermediateVT, NumIntermediates,
340 RegisterVT);
341 RegisterTypeForVT[i] = RegisterVT;
342 TransformToType[i] = MVT::Other; // this isn't actually used
343 ValueTypeActions.setTypeAction(i, Expand);
Dan Gohman7f321562007-06-25 16:23:39 +0000344 }
Chris Lattner3a5935842006-03-16 19:50:01 +0000345 }
Chris Lattnerbb97d812005-01-16 01:10:58 +0000346}
Chris Lattnercba82f92005-01-16 07:28:11 +0000347
Evan Cheng72261582005-12-20 06:22:03 +0000348const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
349 return NULL;
350}
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000351
Dan Gohman7f321562007-06-25 16:23:39 +0000352/// getVectorTypeBreakdown - Vector types are broken down into some number of
353/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
Chris Lattnerdc879292006-03-31 00:28:56 +0000354/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
Dan Gohman7f321562007-06-25 16:23:39 +0000355/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
Chris Lattnerdc879292006-03-31 00:28:56 +0000356///
Dan Gohman7f321562007-06-25 16:23:39 +0000357/// This method returns the number of registers needed, and the VT for each
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000358/// register. It also returns the VT and quantity of the intermediate values
359/// before they are promoted/expanded.
Chris Lattnerdc879292006-03-31 00:28:56 +0000360///
Dan Gohman7f321562007-06-25 16:23:39 +0000361unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000362 MVT::ValueType &IntermediateVT,
363 unsigned &NumIntermediates,
364 MVT::ValueType &RegisterVT) const {
Chris Lattnerdc879292006-03-31 00:28:56 +0000365 // Figure out the right, legal destination reg to copy into.
Dan Gohman7f321562007-06-25 16:23:39 +0000366 unsigned NumElts = MVT::getVectorNumElements(VT);
367 MVT::ValueType EltTy = MVT::getVectorElementType(VT);
Chris Lattnerdc879292006-03-31 00:28:56 +0000368
369 unsigned NumVectorRegs = 1;
370
Nate Begemand73ab882007-11-27 19:28:48 +0000371 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
372 // could break down into LHS/RHS like LegalizeDAG does.
373 if (!isPowerOf2_32(NumElts)) {
374 NumVectorRegs = NumElts;
375 NumElts = 1;
376 }
377
Chris Lattnerdc879292006-03-31 00:28:56 +0000378 // Divide the input until we get to a supported size. This will always
379 // end with a scalar if the target doesn't support vectors.
Dan Gohman7f321562007-06-25 16:23:39 +0000380 while (NumElts > 1 &&
381 !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000382 NumElts >>= 1;
383 NumVectorRegs <<= 1;
384 }
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000385
386 NumIntermediates = NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000387
Dan Gohman7f321562007-06-25 16:23:39 +0000388 MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
389 if (!isTypeLegal(NewVT))
390 NewVT = EltTy;
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000391 IntermediateVT = NewVT;
Chris Lattnerdc879292006-03-31 00:28:56 +0000392
Dan Gohman7f321562007-06-25 16:23:39 +0000393 MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
Dan Gohmanb6f5b002007-06-28 23:29:44 +0000394 RegisterVT = DestVT;
Dan Gohman7f321562007-06-25 16:23:39 +0000395 if (DestVT < NewVT) {
Chris Lattnerdc879292006-03-31 00:28:56 +0000396 // Value is expanded, e.g. i64 -> i16.
Dan Gohman7f321562007-06-25 16:23:39 +0000397 return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
Chris Lattnerdc879292006-03-31 00:28:56 +0000398 } else {
399 // Otherwise, promotion or legal types use the same number of registers as
400 // the vector decimated to the appropriate level.
Chris Lattner79227e22006-03-31 00:46:36 +0000401 return NumVectorRegs;
Chris Lattnerdc879292006-03-31 00:28:56 +0000402 }
403
Evan Chenge9b3da12006-05-17 18:10:06 +0000404 return 1;
Chris Lattnerdc879292006-03-31 00:28:56 +0000405}
406
Evan Chengcc415862007-11-09 01:32:10 +0000407SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
408 SelectionDAG &DAG) const {
409 if (usesGlobalOffsetTable())
410 return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
411 return Table;
412}
413
Chris Lattnereb8146b2006-02-04 02:13:02 +0000414//===----------------------------------------------------------------------===//
415// Optimization Methods
416//===----------------------------------------------------------------------===//
417
Nate Begeman368e18d2006-02-16 21:11:51 +0000418/// ShrinkDemandedConstant - Check to see if the specified operand of the
419/// specified instruction is a constant integer. If so, check to see if there
420/// are any bits set in the constant that are not demanded. If so, shrink the
421/// constant and return true.
422bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
423 uint64_t Demanded) {
Chris Lattnerec665152006-02-26 23:36:02 +0000424 // FIXME: ISD::SELECT, ISD::SELECT_CC
Nate Begeman368e18d2006-02-16 21:11:51 +0000425 switch(Op.getOpcode()) {
426 default: break;
Nate Begemande996292006-02-03 22:24:05 +0000427 case ISD::AND:
Nate Begeman368e18d2006-02-16 21:11:51 +0000428 case ISD::OR:
429 case ISD::XOR:
430 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
431 if ((~Demanded & C->getValue()) != 0) {
432 MVT::ValueType VT = Op.getValueType();
433 SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
434 DAG.getConstant(Demanded & C->getValue(),
435 VT));
436 return CombineTo(Op, New);
Nate Begemande996292006-02-03 22:24:05 +0000437 }
Nate Begemande996292006-02-03 22:24:05 +0000438 break;
439 }
440 return false;
441}
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000442
Nate Begeman368e18d2006-02-16 21:11:51 +0000443/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
444/// DemandedMask bits of the result of Op are ever used downstream. If we can
445/// use this information to simplify Op, create a new simplified DAG node and
446/// return true, returning the original and new nodes in Old and New. Otherwise,
447/// analyze the expression and return a mask of KnownOne and KnownZero bits for
448/// the expression (used to simplify the caller). The KnownZero/One bits may
449/// only be accurate for those bits in the DemandedMask.
450bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
451 uint64_t &KnownZero,
452 uint64_t &KnownOne,
453 TargetLoweringOpt &TLO,
454 unsigned Depth) const {
455 KnownZero = KnownOne = 0; // Don't know anything.
Chris Lattner3fc5b012007-05-17 18:19:23 +0000456
457 // The masks are not wide enough to represent this type! Should use APInt.
458 if (Op.getValueType() == MVT::i128)
459 return false;
460
Nate Begeman368e18d2006-02-16 21:11:51 +0000461 // Other users may use these bits.
462 if (!Op.Val->hasOneUse()) {
463 if (Depth != 0) {
464 // If not at the root, Just compute the KnownZero/KnownOne bits to
465 // simplify things downstream.
Dan Gohmanea859be2007-06-22 14:59:07 +0000466 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
Nate Begeman368e18d2006-02-16 21:11:51 +0000467 return false;
468 }
469 // If this is the root being simplified, allow it to have multiple uses,
470 // just set the DemandedMask to all bits.
471 DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
472 } else if (DemandedMask == 0) {
473 // Not demanding any bits from Op.
474 if (Op.getOpcode() != ISD::UNDEF)
475 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
476 return false;
477 } else if (Depth == 6) { // Limit search depth.
478 return false;
479 }
480
481 uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000482 switch (Op.getOpcode()) {
483 case ISD::Constant:
Nate Begeman368e18d2006-02-16 21:11:51 +0000484 // We know all of the bits for a constant!
485 KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
486 KnownZero = ~KnownOne & DemandedMask;
Chris Lattnerec665152006-02-26 23:36:02 +0000487 return false; // Don't fall through, will infinitely loop.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000488 case ISD::AND:
Chris Lattner81cd3552006-02-27 00:36:27 +0000489 // If the RHS is a constant, check to see if the LHS would be zero without
490 // using the bits from the RHS. Below, we use knowledge about the RHS to
491 // simplify the LHS, here we're using information from the LHS to simplify
492 // the RHS.
493 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
494 uint64_t LHSZero, LHSOne;
Dan Gohmanea859be2007-06-22 14:59:07 +0000495 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
496 LHSZero, LHSOne, Depth+1);
Chris Lattner81cd3552006-02-27 00:36:27 +0000497 // If the LHS already has zeros where RHSC does, this and is dead.
498 if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
499 return TLO.CombineTo(Op, Op.getOperand(0));
500 // If any of the set bits in the RHS are known zero on the LHS, shrink
501 // the constant.
502 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
503 return true;
504 }
505
Nate Begeman368e18d2006-02-16 21:11:51 +0000506 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
507 KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000508 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000509 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Nate Begeman368e18d2006-02-16 21:11:51 +0000510 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
511 KnownZero2, KnownOne2, TLO, Depth+1))
512 return true;
513 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
514
515 // If all of the demanded bits are known one on one side, return the other.
516 // These bits cannot contribute to the result of the 'and'.
517 if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
518 return TLO.CombineTo(Op, Op.getOperand(0));
519 if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
520 return TLO.CombineTo(Op, Op.getOperand(1));
521 // If all of the demanded bits in the inputs are known zeros, return zero.
522 if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
523 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
524 // If the RHS is a constant, see if we can simplify it.
525 if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
526 return true;
Chris Lattner5f0c6582006-02-27 00:22:28 +0000527
Nate Begeman368e18d2006-02-16 21:11:51 +0000528 // Output known-1 bits are only known if set in both the LHS & RHS.
529 KnownOne &= KnownOne2;
530 // Output known-0 are known to be clear if zero in either the LHS | RHS.
531 KnownZero |= KnownZero2;
532 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000533 case ISD::OR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000534 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
535 KnownOne, TLO, Depth+1))
536 return true;
537 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
538 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
539 KnownZero2, KnownOne2, TLO, Depth+1))
540 return true;
541 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
542
543 // If all of the demanded bits are known zero on one side, return the other.
544 // These bits cannot contribute to the result of the 'or'.
Jeff Cohen5755b172006-02-17 02:12:18 +0000545 if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
Nate Begeman368e18d2006-02-16 21:11:51 +0000546 return TLO.CombineTo(Op, Op.getOperand(0));
Jeff Cohen5755b172006-02-17 02:12:18 +0000547 if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
Nate Begeman368e18d2006-02-16 21:11:51 +0000548 return TLO.CombineTo(Op, Op.getOperand(1));
549 // If all of the potentially set bits on one side are known to be set on
550 // the other side, just use the 'other' side.
551 if ((DemandedMask & (~KnownZero) & KnownOne2) ==
552 (DemandedMask & (~KnownZero)))
553 return TLO.CombineTo(Op, Op.getOperand(0));
554 if ((DemandedMask & (~KnownZero2) & KnownOne) ==
555 (DemandedMask & (~KnownZero2)))
556 return TLO.CombineTo(Op, Op.getOperand(1));
557 // If the RHS is a constant, see if we can simplify it.
558 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
559 return true;
560
561 // Output known-0 bits are only known if clear in both the LHS & RHS.
562 KnownZero &= KnownZero2;
563 // Output known-1 are known to be set if set in either the LHS | RHS.
564 KnownOne |= KnownOne2;
565 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000566 case ISD::XOR:
Nate Begeman368e18d2006-02-16 21:11:51 +0000567 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
568 KnownOne, TLO, Depth+1))
569 return true;
570 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
571 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
572 KnownOne2, TLO, Depth+1))
573 return true;
574 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
575
576 // If all of the demanded bits are known zero on one side, return the other.
577 // These bits cannot contribute to the result of the 'xor'.
578 if ((DemandedMask & KnownZero) == DemandedMask)
579 return TLO.CombineTo(Op, Op.getOperand(0));
580 if ((DemandedMask & KnownZero2) == DemandedMask)
581 return TLO.CombineTo(Op, Op.getOperand(1));
Chris Lattner3687c1a2006-11-27 21:50:02 +0000582
583 // If all of the unknown bits are known to be zero on one side or the other
584 // (but not both) turn this into an *inclusive* or.
585 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
586 if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
587 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
588 Op.getOperand(0),
589 Op.getOperand(1)));
Nate Begeman368e18d2006-02-16 21:11:51 +0000590
591 // Output known-0 bits are known if clear or set in both the LHS & RHS.
592 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
593 // Output known-1 are known to be set if set in only one of the LHS, RHS.
594 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
595
Nate Begeman368e18d2006-02-16 21:11:51 +0000596 // If all of the demanded bits on one side are known, and all of the set
597 // bits on that side are also known to be set on the other side, turn this
598 // into an AND, as we know the bits will be cleared.
599 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
600 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
601 if ((KnownOne & KnownOne2) == KnownOne) {
602 MVT::ValueType VT = Op.getValueType();
603 SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
604 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
605 ANDC));
606 }
607 }
608
609 // If the RHS is a constant, see if we can simplify it.
610 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
611 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
612 return true;
613
614 KnownZero = KnownZeroOut;
615 KnownOne = KnownOneOut;
616 break;
617 case ISD::SETCC:
618 // If we know the result of a setcc has the top bits zero, use this info.
619 if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
620 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
621 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000622 case ISD::SELECT:
Nate Begeman368e18d2006-02-16 21:11:51 +0000623 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
624 KnownOne, TLO, Depth+1))
625 return true;
626 if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
627 KnownOne2, TLO, Depth+1))
628 return true;
629 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
630 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
631
632 // If the operands are constants, see if we can simplify them.
633 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
634 return true;
635
636 // Only known if known in both the LHS and RHS.
637 KnownOne &= KnownOne2;
638 KnownZero &= KnownZero2;
639 break;
Chris Lattnerec665152006-02-26 23:36:02 +0000640 case ISD::SELECT_CC:
641 if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
642 KnownOne, TLO, Depth+1))
643 return true;
644 if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
645 KnownOne2, TLO, Depth+1))
646 return true;
647 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
648 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
649
650 // If the operands are constants, see if we can simplify them.
651 if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
652 return true;
653
654 // Only known if known in both the LHS and RHS.
655 KnownOne &= KnownOne2;
656 KnownZero &= KnownZero2;
657 break;
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000658 case ISD::SHL:
Nate Begeman368e18d2006-02-16 21:11:51 +0000659 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Chris Lattner895c4ab2007-04-17 21:14:16 +0000660 unsigned ShAmt = SA->getValue();
661 SDOperand InOp = Op.getOperand(0);
662
663 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
664 // single shift. We can do this if the bottom bits (which are shifted
665 // out) are never demanded.
666 if (InOp.getOpcode() == ISD::SRL &&
667 isa<ConstantSDNode>(InOp.getOperand(1))) {
668 if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
669 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
670 unsigned Opc = ISD::SHL;
671 int Diff = ShAmt-C1;
672 if (Diff < 0) {
673 Diff = -Diff;
674 Opc = ISD::SRL;
675 }
676
677 SDOperand NewSA =
Chris Lattner4e7e6cd2007-05-30 16:30:06 +0000678 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000679 MVT::ValueType VT = Op.getValueType();
Chris Lattner0a16a1f2007-04-18 03:01:40 +0000680 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
Chris Lattner895c4ab2007-04-17 21:14:16 +0000681 InOp.getOperand(0), NewSA));
682 }
683 }
684
685 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
Nate Begeman368e18d2006-02-16 21:11:51 +0000686 KnownZero, KnownOne, TLO, Depth+1))
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000687 return true;
Nate Begeman368e18d2006-02-16 21:11:51 +0000688 KnownZero <<= SA->getValue();
689 KnownOne <<= SA->getValue();
690 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000691 }
692 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000693 case ISD::SRL:
694 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
695 MVT::ValueType VT = Op.getValueType();
696 unsigned ShAmt = SA->getValue();
Chris Lattner895c4ab2007-04-17 21:14:16 +0000697 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
698 unsigned VTSize = MVT::getSizeInBits(VT);
699 SDOperand InOp = Op.getOperand(0);
700
701 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
702 // single shift. We can do this if the top bits (which are shifted out)
703 // are never demanded.
704 if (InOp.getOpcode() == ISD::SHL &&
705 isa<ConstantSDNode>(InOp.getOperand(1))) {
706 if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
707 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
708 unsigned Opc = ISD::SRL;
709 int Diff = ShAmt-C1;
710 if (Diff < 0) {
711 Diff = -Diff;
712 Opc = ISD::SHL;
713 }
714
715 SDOperand NewSA =
Chris Lattner8c7d2d52007-04-17 22:53:02 +0000716 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
Chris Lattner895c4ab2007-04-17 21:14:16 +0000717 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
718 InOp.getOperand(0), NewSA));
719 }
720 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000721
722 // Compute the new bits that are at the top now.
Chris Lattner895c4ab2007-04-17 21:14:16 +0000723 if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000724 KnownZero, KnownOne, TLO, Depth+1))
725 return true;
726 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
727 KnownZero &= TypeMask;
728 KnownOne &= TypeMask;
729 KnownZero >>= ShAmt;
730 KnownOne >>= ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000731
732 uint64_t HighBits = (1ULL << ShAmt)-1;
Chris Lattner895c4ab2007-04-17 21:14:16 +0000733 HighBits <<= VTSize - ShAmt;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000734 KnownZero |= HighBits; // High bits known zero.
Nate Begeman368e18d2006-02-16 21:11:51 +0000735 }
736 break;
737 case ISD::SRA:
738 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
739 MVT::ValueType VT = Op.getValueType();
740 unsigned ShAmt = SA->getValue();
741
742 // Compute the new bits that are at the top now.
Nate Begeman368e18d2006-02-16 21:11:51 +0000743 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
744
Chris Lattner1b737132006-05-08 17:22:53 +0000745 uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
746
747 // If any of the demanded bits are produced by the sign extension, we also
748 // demand the input sign bit.
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000749 uint64_t HighBits = (1ULL << ShAmt)-1;
750 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
Chris Lattner1b737132006-05-08 17:22:53 +0000751 if (HighBits & DemandedMask)
752 InDemandedMask |= MVT::getIntVTSignBit(VT);
753
754 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
Nate Begeman368e18d2006-02-16 21:11:51 +0000755 KnownZero, KnownOne, TLO, Depth+1))
756 return true;
757 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
758 KnownZero &= TypeMask;
759 KnownOne &= TypeMask;
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000760 KnownZero >>= ShAmt;
761 KnownOne >>= ShAmt;
Nate Begeman368e18d2006-02-16 21:11:51 +0000762
763 // Handle the sign bits.
764 uint64_t SignBit = MVT::getIntVTSignBit(VT);
Chris Lattnerc4fa6032006-06-13 16:52:37 +0000765 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
Nate Begeman368e18d2006-02-16 21:11:51 +0000766
767 // If the input sign bit is known to be zero, or if none of the top bits
768 // are demanded, turn this into an unsigned shift right.
769 if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
770 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
771 Op.getOperand(1)));
772 } else if (KnownOne & SignBit) { // New bits are known one.
773 KnownOne |= HighBits;
774 }
775 }
776 break;
777 case ISD::SIGN_EXTEND_INREG: {
Nate Begeman368e18d2006-02-16 21:11:51 +0000778 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
779
Chris Lattnerec665152006-02-26 23:36:02 +0000780 // Sign extension. Compute the demanded bits in the result that are not
Nate Begeman368e18d2006-02-16 21:11:51 +0000781 // present in the input.
Chris Lattnerec665152006-02-26 23:36:02 +0000782 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
Nate Begeman368e18d2006-02-16 21:11:51 +0000783
Chris Lattnerec665152006-02-26 23:36:02 +0000784 // If none of the extended bits are demanded, eliminate the sextinreg.
785 if (NewBits == 0)
786 return TLO.CombineTo(Op, Op.getOperand(0));
787
Nate Begeman368e18d2006-02-16 21:11:51 +0000788 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
789 int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
790
Chris Lattnerec665152006-02-26 23:36:02 +0000791 // Since the sign extended bits are demanded, we know that the sign
Nate Begeman368e18d2006-02-16 21:11:51 +0000792 // bit is demanded.
Chris Lattnerec665152006-02-26 23:36:02 +0000793 InputDemandedBits |= InSignBit;
Nate Begeman368e18d2006-02-16 21:11:51 +0000794
795 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
796 KnownZero, KnownOne, TLO, Depth+1))
797 return true;
798 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
799
800 // If the sign bit of the input is known set or clear, then we know the
801 // top bits of the result.
802
Chris Lattnerec665152006-02-26 23:36:02 +0000803 // If the input sign bit is known zero, convert this into a zero extension.
804 if (KnownZero & InSignBit)
805 return TLO.CombineTo(Op,
806 TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
807
808 if (KnownOne & InSignBit) { // Input sign bit known set
Nate Begeman368e18d2006-02-16 21:11:51 +0000809 KnownOne |= NewBits;
810 KnownZero &= ~NewBits;
Chris Lattnerec665152006-02-26 23:36:02 +0000811 } else { // Input sign bit unknown
Nate Begeman368e18d2006-02-16 21:11:51 +0000812 KnownZero &= ~NewBits;
813 KnownOne &= ~NewBits;
814 }
815 break;
816 }
Chris Lattnerec665152006-02-26 23:36:02 +0000817 case ISD::CTTZ:
818 case ISD::CTLZ:
819 case ISD::CTPOP: {
820 MVT::ValueType VT = Op.getValueType();
821 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
822 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
823 KnownOne = 0;
824 break;
825 }
Evan Cheng466685d2006-10-09 20:57:25 +0000826 case ISD::LOAD: {
Evan Chengc5484282006-10-04 00:56:09 +0000827 if (ISD::isZEXTLoad(Op.Val)) {
Evan Cheng466685d2006-10-09 20:57:25 +0000828 LoadSDNode *LD = cast<LoadSDNode>(Op);
Evan Cheng2e49f092006-10-11 07:10:22 +0000829 MVT::ValueType VT = LD->getLoadedVT();
Evan Chengc5484282006-10-04 00:56:09 +0000830 KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
831 }
Chris Lattnerec665152006-02-26 23:36:02 +0000832 break;
833 }
834 case ISD::ZERO_EXTEND: {
835 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
836
837 // If none of the top bits are demanded, convert this into an any_extend.
838 uint64_t NewBits = (~InMask) & DemandedMask;
839 if (NewBits == 0)
840 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
841 Op.getValueType(),
842 Op.getOperand(0)));
843
844 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
845 KnownZero, KnownOne, TLO, Depth+1))
846 return true;
847 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
848 KnownZero |= NewBits;
849 break;
850 }
851 case ISD::SIGN_EXTEND: {
852 MVT::ValueType InVT = Op.getOperand(0).getValueType();
853 uint64_t InMask = MVT::getIntVTBitMask(InVT);
854 uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
855 uint64_t NewBits = (~InMask) & DemandedMask;
856
857 // If none of the top bits are demanded, convert this into an any_extend.
858 if (NewBits == 0)
Chris Lattnerfea997a2007-02-01 04:55:59 +0000859 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
Chris Lattnerec665152006-02-26 23:36:02 +0000860 Op.getOperand(0)));
861
862 // Since some of the sign extended bits are demanded, we know that the sign
863 // bit is demanded.
864 uint64_t InDemandedBits = DemandedMask & InMask;
865 InDemandedBits |= InSignBit;
866
867 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
868 KnownOne, TLO, Depth+1))
869 return true;
870
871 // If the sign bit is known zero, convert this to a zero extend.
872 if (KnownZero & InSignBit)
873 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
874 Op.getValueType(),
875 Op.getOperand(0)));
876
877 // If the sign bit is known one, the top bits match.
878 if (KnownOne & InSignBit) {
879 KnownOne |= NewBits;
880 KnownZero &= ~NewBits;
881 } else { // Otherwise, top bits aren't known.
882 KnownOne &= ~NewBits;
883 KnownZero &= ~NewBits;
884 }
885 break;
886 }
887 case ISD::ANY_EXTEND: {
888 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
889 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
890 KnownZero, KnownOne, TLO, Depth+1))
891 return true;
892 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
893 break;
894 }
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000895 case ISD::TRUNCATE: {
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000896 // Simplify the input, using demanded bit information, and compute the known
897 // zero/one bits live out.
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000898 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
899 KnownZero, KnownOne, TLO, Depth+1))
900 return true;
Chris Lattnerc93dfda2006-05-06 00:11:52 +0000901
902 // If the input is only used by this truncate, see if we can shrink it based
903 // on the known demanded bits.
904 if (Op.getOperand(0).Val->hasOneUse()) {
905 SDOperand In = Op.getOperand(0);
906 switch (In.getOpcode()) {
907 default: break;
908 case ISD::SRL:
909 // Shrink SRL by a constant if none of the high bits shifted in are
910 // demanded.
911 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
912 uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
913 HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
914 HighBits >>= ShAmt->getValue();
915
916 if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
917 (DemandedMask & HighBits) == 0) {
918 // None of the shifted in bits are needed. Add a truncate of the
919 // shift input, then shift it.
920 SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
921 Op.getValueType(),
922 In.getOperand(0));
923 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
924 NewTrunc, In.getOperand(1)));
925 }
926 }
927 break;
928 }
929 }
930
Chris Lattnerfe8babf2006-05-05 22:32:12 +0000931 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
932 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
933 KnownZero &= OutMask;
934 KnownOne &= OutMask;
935 break;
936 }
Chris Lattnerec665152006-02-26 23:36:02 +0000937 case ISD::AssertZext: {
938 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
939 uint64_t InMask = MVT::getIntVTBitMask(VT);
940 if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
941 KnownZero, KnownOne, TLO, Depth+1))
942 return true;
943 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
944 KnownZero |= ~InMask & DemandedMask;
945 break;
946 }
Nate Begeman368e18d2006-02-16 21:11:51 +0000947 case ISD::ADD:
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000948 case ISD::SUB:
Chris Lattner1482b5f2006-04-02 06:15:09 +0000949 case ISD::INTRINSIC_WO_CHAIN:
950 case ISD::INTRINSIC_W_CHAIN:
951 case ISD::INTRINSIC_VOID:
952 // Just use ComputeMaskedBits to compute output bits.
Dan Gohmanea859be2007-06-22 14:59:07 +0000953 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
Chris Lattnera6bc5a42006-02-27 01:00:42 +0000954 break;
Nate Begeman368e18d2006-02-16 21:11:51 +0000955 }
Chris Lattnerec665152006-02-26 23:36:02 +0000956
957 // If we know the value of all of the demanded bits, return this as a
958 // constant.
959 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
960 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
961
Nate Begeman368e18d2006-02-16 21:11:51 +0000962 return false;
963}
964
Nate Begeman368e18d2006-02-16 21:11:51 +0000965/// computeMaskedBitsForTargetNode - Determine which of the bits specified
966/// in Mask are known to be either zero or one and return them in the
967/// KnownZero/KnownOne bitsets.
968void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
969 uint64_t Mask,
970 uint64_t &KnownZero,
971 uint64_t &KnownOne,
Dan Gohmanea859be2007-06-22 14:59:07 +0000972 const SelectionDAG &DAG,
Nate Begeman368e18d2006-02-16 21:11:51 +0000973 unsigned Depth) const {
Chris Lattner1b5232a2006-04-02 06:19:46 +0000974 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
975 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
976 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
977 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
Chris Lattnerc6fd6cd2006-01-30 04:09:27 +0000978 "Should use MaskedValueIsZero if you don't know whether Op"
979 " is a target node!");
Nate Begeman368e18d2006-02-16 21:11:51 +0000980 KnownZero = 0;
981 KnownOne = 0;
Evan Cheng3a03ebb2005-12-21 23:05:39 +0000982}
Chris Lattner4ccb0702006-01-26 20:37:03 +0000983
Chris Lattner5c3e21d2006-05-06 09:27:13 +0000984/// ComputeNumSignBitsForTargetNode - This method can be implemented by
985/// targets that want to expose additional information about sign bits to the
986/// DAG Combiner.
987unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
988 unsigned Depth) const {
989 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
990 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
991 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
992 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
993 "Should use ComputeNumSignBits if you don't know whether Op"
994 " is a target node!");
995 return 1;
996}
997
998
Evan Chengfa1eb272007-02-08 22:13:59 +0000999/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1000/// and cc. If it is unable to simplify it, return a null SDOperand.
1001SDOperand
1002TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
1003 ISD::CondCode Cond, bool foldBooleans,
1004 DAGCombinerInfo &DCI) const {
1005 SelectionDAG &DAG = DCI.DAG;
1006
1007 // These setcc operations always fold.
1008 switch (Cond) {
1009 default: break;
1010 case ISD::SETFALSE:
1011 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1012 case ISD::SETTRUE:
1013 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
1014 }
1015
1016 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1017 uint64_t C1 = N1C->getValue();
1018 if (isa<ConstantSDNode>(N0.Val)) {
1019 return DAG.FoldSetCC(VT, N0, N1, Cond);
1020 } else {
1021 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1022 // equality comparison, then we're just comparing whether X itself is
1023 // zero.
1024 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1025 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1026 N0.getOperand(1).getOpcode() == ISD::Constant) {
1027 unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1028 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1029 ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
1030 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1031 // (srl (ctlz x), 5) == 0 -> X != 0
1032 // (srl (ctlz x), 5) != 1 -> X != 0
1033 Cond = ISD::SETNE;
1034 } else {
1035 // (srl (ctlz x), 5) != 0 -> X == 0
1036 // (srl (ctlz x), 5) == 1 -> X == 0
1037 Cond = ISD::SETEQ;
1038 }
1039 SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1040 return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1041 Zero, Cond);
1042 }
1043 }
1044
1045 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1046 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1047 unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
1048
1049 // If the comparison constant has bits in the upper part, the
1050 // zero-extended value could never match.
1051 if (C1 & (~0ULL << InSize)) {
1052 unsigned VSize = MVT::getSizeInBits(N0.getValueType());
1053 switch (Cond) {
1054 case ISD::SETUGT:
1055 case ISD::SETUGE:
1056 case ISD::SETEQ: return DAG.getConstant(0, VT);
1057 case ISD::SETULT:
1058 case ISD::SETULE:
1059 case ISD::SETNE: return DAG.getConstant(1, VT);
1060 case ISD::SETGT:
1061 case ISD::SETGE:
1062 // True if the sign bit of C1 is set.
Chris Lattner01ca65b2007-02-24 02:09:29 +00001063 return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +00001064 case ISD::SETLT:
1065 case ISD::SETLE:
1066 // True if the sign bit of C1 isn't set.
Chris Lattner01ca65b2007-02-24 02:09:29 +00001067 return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
Evan Chengfa1eb272007-02-08 22:13:59 +00001068 default:
1069 break;
1070 }
1071 }
1072
1073 // Otherwise, we can perform the comparison with the low bits.
1074 switch (Cond) {
1075 case ISD::SETEQ:
1076 case ISD::SETNE:
1077 case ISD::SETUGT:
1078 case ISD::SETUGE:
1079 case ISD::SETULT:
1080 case ISD::SETULE:
1081 return DAG.getSetCC(VT, N0.getOperand(0),
1082 DAG.getConstant(C1, N0.getOperand(0).getValueType()),
1083 Cond);
1084 default:
1085 break; // todo, be more careful with signed comparisons
1086 }
1087 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1088 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1089 MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1090 unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1091 MVT::ValueType ExtDstTy = N0.getValueType();
1092 unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1093
1094 // If the extended part has any inconsistent bits, it cannot ever
1095 // compare equal. In other words, they have to be all ones or all
1096 // zeros.
1097 uint64_t ExtBits =
1098 (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
1099 if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1100 return DAG.getConstant(Cond == ISD::SETNE, VT);
1101
1102 SDOperand ZextOp;
1103 MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1104 if (Op0Ty == ExtSrcTy) {
1105 ZextOp = N0.getOperand(0);
1106 } else {
1107 int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1108 ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1109 DAG.getConstant(Imm, Op0Ty));
1110 }
1111 if (!DCI.isCalledByLegalizer())
1112 DCI.AddToWorklist(ZextOp.Val);
1113 // Otherwise, make this a use of a zext.
1114 return DAG.getSetCC(VT, ZextOp,
1115 DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1116 ExtDstTy),
1117 Cond);
1118 } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1119 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1120
1121 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1122 if (N0.getOpcode() == ISD::SETCC) {
1123 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1124 if (TrueWhenTrue)
1125 return N0;
1126
1127 // Invert the condition.
1128 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1129 CC = ISD::getSetCCInverse(CC,
1130 MVT::isInteger(N0.getOperand(0).getValueType()));
1131 return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1132 }
1133
1134 if ((N0.getOpcode() == ISD::XOR ||
1135 (N0.getOpcode() == ISD::AND &&
1136 N0.getOperand(0).getOpcode() == ISD::XOR &&
1137 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1138 isa<ConstantSDNode>(N0.getOperand(1)) &&
1139 cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1140 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1141 // can only do this if the top bits are known zero.
Dan Gohmanea859be2007-06-22 14:59:07 +00001142 if (DAG.MaskedValueIsZero(N0,
1143 MVT::getIntVTBitMask(N0.getValueType())-1)){
Evan Chengfa1eb272007-02-08 22:13:59 +00001144 // Okay, get the un-inverted input value.
1145 SDOperand Val;
1146 if (N0.getOpcode() == ISD::XOR)
1147 Val = N0.getOperand(0);
1148 else {
1149 assert(N0.getOpcode() == ISD::AND &&
1150 N0.getOperand(0).getOpcode() == ISD::XOR);
1151 // ((X^1)&1)^1 -> X & 1
1152 Val = DAG.getNode(ISD::AND, N0.getValueType(),
1153 N0.getOperand(0).getOperand(0),
1154 N0.getOperand(1));
1155 }
1156 return DAG.getSetCC(VT, Val, N1,
1157 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1158 }
1159 }
1160 }
1161
1162 uint64_t MinVal, MaxVal;
1163 unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1164 if (ISD::isSignedIntSetCC(Cond)) {
1165 MinVal = 1ULL << (OperandBitSize-1);
1166 if (OperandBitSize != 1) // Avoid X >> 64, which is undefined.
1167 MaxVal = ~0ULL >> (65-OperandBitSize);
1168 else
1169 MaxVal = 0;
1170 } else {
1171 MinVal = 0;
1172 MaxVal = ~0ULL >> (64-OperandBitSize);
1173 }
1174
1175 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1176 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1177 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
1178 --C1; // X >= C0 --> X > (C0-1)
1179 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1180 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1181 }
1182
1183 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1184 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
1185 ++C1; // X <= C0 --> X < (C0+1)
1186 return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1187 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1188 }
1189
1190 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1191 return DAG.getConstant(0, VT); // X < MIN --> false
1192 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1193 return DAG.getConstant(1, VT); // X >= MIN --> true
1194 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1195 return DAG.getConstant(0, VT); // X > MAX --> false
1196 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1197 return DAG.getConstant(1, VT); // X <= MAX --> true
1198
1199 // Canonicalize setgt X, Min --> setne X, Min
1200 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1201 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1202 // Canonicalize setlt X, Max --> setne X, Max
1203 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1204 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1205
1206 // If we have setult X, 1, turn it into seteq X, 0
1207 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1208 return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1209 ISD::SETEQ);
1210 // If we have setugt X, Max-1, turn it into seteq X, Max
1211 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1212 return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1213 ISD::SETEQ);
1214
1215 // If we have "setcc X, C0", check to see if we can shrink the immediate
1216 // by changing cc.
1217
1218 // SETUGT X, SINTMAX -> SETLT X, 0
1219 if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1220 C1 == (~0ULL >> (65-OperandBitSize)))
1221 return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1222 ISD::SETLT);
1223
1224 // FIXME: Implement the rest of these.
1225
1226 // Fold bit comparisons when we can.
1227 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1228 VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1229 if (ConstantSDNode *AndRHS =
1230 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1231 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
1232 // Perform the xform if the AND RHS is a single bit.
1233 if (isPowerOf2_64(AndRHS->getValue())) {
1234 return DAG.getNode(ISD::SRL, VT, N0,
1235 DAG.getConstant(Log2_64(AndRHS->getValue()),
1236 getShiftAmountTy()));
1237 }
1238 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1239 // (X & 8) == 8 --> (X & 8) >> 3
1240 // Perform the xform if C1 is a single bit.
1241 if (isPowerOf2_64(C1)) {
1242 return DAG.getNode(ISD::SRL, VT, N0,
1243 DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1244 }
1245 }
1246 }
1247 }
1248 } else if (isa<ConstantSDNode>(N0.Val)) {
1249 // Ensure that the constant occurs on the RHS.
1250 return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1251 }
1252
1253 if (isa<ConstantFPSDNode>(N0.Val)) {
1254 // Constant fold or commute setcc.
1255 SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1256 if (O.Val) return O;
1257 }
1258
1259 if (N0 == N1) {
1260 // We can always fold X == X for integer setcc's.
1261 if (MVT::isInteger(N0.getValueType()))
1262 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1263 unsigned UOF = ISD::getUnorderedFlavor(Cond);
1264 if (UOF == 2) // FP operators that are undefined on NaNs.
1265 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1266 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1267 return DAG.getConstant(UOF, VT);
1268 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1269 // if it is not already.
1270 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1271 if (NewCond != Cond)
1272 return DAG.getSetCC(VT, N0, N1, NewCond);
1273 }
1274
1275 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1276 MVT::isInteger(N0.getValueType())) {
1277 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1278 N0.getOpcode() == ISD::XOR) {
1279 // Simplify (X+Y) == (X+Z) --> Y == Z
1280 if (N0.getOpcode() == N1.getOpcode()) {
1281 if (N0.getOperand(0) == N1.getOperand(0))
1282 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1283 if (N0.getOperand(1) == N1.getOperand(1))
1284 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1285 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1286 // If X op Y == Y op X, try other combinations.
1287 if (N0.getOperand(0) == N1.getOperand(1))
1288 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1289 if (N0.getOperand(1) == N1.getOperand(0))
1290 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1291 }
1292 }
1293
1294 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1295 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1296 // Turn (X+C1) == C2 --> X == C2-C1
1297 if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1298 return DAG.getSetCC(VT, N0.getOperand(0),
1299 DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1300 N0.getValueType()), Cond);
1301 }
1302
1303 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1304 if (N0.getOpcode() == ISD::XOR)
1305 // If we know that all of the inverted bits are zero, don't bother
1306 // performing the inversion.
Dan Gohmanea859be2007-06-22 14:59:07 +00001307 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
Evan Chengfa1eb272007-02-08 22:13:59 +00001308 return DAG.getSetCC(VT, N0.getOperand(0),
1309 DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1310 N0.getValueType()), Cond);
1311 }
1312
1313 // Turn (C1-X) == C2 --> X == C1-C2
1314 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1315 if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1316 return DAG.getSetCC(VT, N0.getOperand(1),
1317 DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1318 N0.getValueType()), Cond);
1319 }
1320 }
1321 }
1322
1323 // Simplify (X+Z) == X --> Z == 0
1324 if (N0.getOperand(0) == N1)
1325 return DAG.getSetCC(VT, N0.getOperand(1),
1326 DAG.getConstant(0, N0.getValueType()), Cond);
1327 if (N0.getOperand(1) == N1) {
1328 if (DAG.isCommutativeBinOp(N0.getOpcode()))
1329 return DAG.getSetCC(VT, N0.getOperand(0),
1330 DAG.getConstant(0, N0.getValueType()), Cond);
Chris Lattner2ad913b2007-05-19 00:43:44 +00001331 else if (N0.Val->hasOneUse()) {
Evan Chengfa1eb272007-02-08 22:13:59 +00001332 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1333 // (Z-X) == X --> Z == X<<1
1334 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1335 N1,
1336 DAG.getConstant(1, getShiftAmountTy()));
1337 if (!DCI.isCalledByLegalizer())
1338 DCI.AddToWorklist(SH.Val);
1339 return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1340 }
1341 }
1342 }
1343
1344 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1345 N1.getOpcode() == ISD::XOR) {
1346 // Simplify X == (X+Z) --> Z == 0
1347 if (N1.getOperand(0) == N0) {
1348 return DAG.getSetCC(VT, N1.getOperand(1),
1349 DAG.getConstant(0, N1.getValueType()), Cond);
1350 } else if (N1.getOperand(1) == N0) {
1351 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1352 return DAG.getSetCC(VT, N1.getOperand(0),
1353 DAG.getConstant(0, N1.getValueType()), Cond);
Chris Lattner7667c0b2007-05-19 00:46:51 +00001354 } else if (N1.Val->hasOneUse()) {
Evan Chengfa1eb272007-02-08 22:13:59 +00001355 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1356 // X == (Z-X) --> X<<1 == Z
1357 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1358 DAG.getConstant(1, getShiftAmountTy()));
1359 if (!DCI.isCalledByLegalizer())
1360 DCI.AddToWorklist(SH.Val);
1361 return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1362 }
1363 }
1364 }
1365 }
1366
1367 // Fold away ALL boolean setcc's.
1368 SDOperand Temp;
1369 if (N0.getValueType() == MVT::i1 && foldBooleans) {
1370 switch (Cond) {
1371 default: assert(0 && "Unknown integer setcc!");
1372 case ISD::SETEQ: // X == Y -> (X^Y)^1
1373 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1374 N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1375 if (!DCI.isCalledByLegalizer())
1376 DCI.AddToWorklist(Temp.Val);
1377 break;
1378 case ISD::SETNE: // X != Y --> (X^Y)
1379 N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1380 break;
1381 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> X^1 & Y
1382 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> X^1 & Y
1383 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1384 N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1385 if (!DCI.isCalledByLegalizer())
1386 DCI.AddToWorklist(Temp.Val);
1387 break;
1388 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> Y^1 & X
1389 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X
1390 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1391 N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1392 if (!DCI.isCalledByLegalizer())
1393 DCI.AddToWorklist(Temp.Val);
1394 break;
1395 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y
1396 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y
1397 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1398 N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1399 if (!DCI.isCalledByLegalizer())
1400 DCI.AddToWorklist(Temp.Val);
1401 break;
1402 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X
1403 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X
1404 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1405 N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1406 break;
1407 }
1408 if (VT != MVT::i1) {
1409 if (!DCI.isCalledByLegalizer())
1410 DCI.AddToWorklist(N0.Val);
1411 // FIXME: If running after legalize, we probably can't do this.
1412 N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1413 }
1414 return N0;
1415 }
1416
1417 // Could not fold it.
1418 return SDOperand();
1419}
1420
Chris Lattner00ffed02006-03-01 04:52:55 +00001421SDOperand TargetLowering::
1422PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1423 // Default implementation: no optimization.
1424 return SDOperand();
1425}
1426
Chris Lattnereb8146b2006-02-04 02:13:02 +00001427//===----------------------------------------------------------------------===//
1428// Inline Assembler Implementation Methods
1429//===----------------------------------------------------------------------===//
1430
1431TargetLowering::ConstraintType
Chris Lattner4234f572007-03-25 02:14:49 +00001432TargetLowering::getConstraintType(const std::string &Constraint) const {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001433 // FIXME: lots more standard ones to handle.
Chris Lattner4234f572007-03-25 02:14:49 +00001434 if (Constraint.size() == 1) {
1435 switch (Constraint[0]) {
1436 default: break;
1437 case 'r': return C_RegisterClass;
1438 case 'm': // memory
1439 case 'o': // offsetable
1440 case 'V': // not offsetable
1441 return C_Memory;
1442 case 'i': // Simple Integer or Relocatable Constant
1443 case 'n': // Simple Integer
1444 case 's': // Relocatable Constant
Chris Lattnerc13dd1c2007-03-25 04:35:41 +00001445 case 'X': // Allow ANY value.
Chris Lattner4234f572007-03-25 02:14:49 +00001446 case 'I': // Target registers.
1447 case 'J':
1448 case 'K':
1449 case 'L':
1450 case 'M':
1451 case 'N':
1452 case 'O':
1453 case 'P':
1454 return C_Other;
1455 }
Chris Lattnereb8146b2006-02-04 02:13:02 +00001456 }
Chris Lattner065421f2007-03-25 02:18:14 +00001457
1458 if (Constraint.size() > 1 && Constraint[0] == '{' &&
1459 Constraint[Constraint.size()-1] == '}')
1460 return C_Register;
Chris Lattner4234f572007-03-25 02:14:49 +00001461 return C_Unknown;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001462}
1463
Chris Lattner48884cd2007-08-25 00:47:38 +00001464/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1465/// vector. If it is invalid, don't add anything to Ops.
1466void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1467 char ConstraintLetter,
1468 std::vector<SDOperand> &Ops,
1469 SelectionDAG &DAG) {
Chris Lattnereb8146b2006-02-04 02:13:02 +00001470 switch (ConstraintLetter) {
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001471 default: break;
Dale Johanneseneb57ea72007-11-05 21:20:28 +00001472 case 'X': // Allows any operand; labels (basic block) use this.
1473 if (Op.getOpcode() == ISD::BasicBlock) {
1474 Ops.push_back(Op);
1475 return;
1476 }
1477 // fall through
Chris Lattnereb8146b2006-02-04 02:13:02 +00001478 case 'i': // Simple Integer or Relocatable Constant
1479 case 'n': // Simple Integer
Dale Johanneseneb57ea72007-11-05 21:20:28 +00001480 case 's': { // Relocatable Constant
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001481 // These operands are interested in values of the form (GV+C), where C may
1482 // be folded in as an offset of GV, or it may be explicitly added. Also, it
1483 // is possible and fine if either GV or C are missing.
1484 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1485 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1486
1487 // If we have "(add GV, C)", pull out GV/C
1488 if (Op.getOpcode() == ISD::ADD) {
1489 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1490 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1491 if (C == 0 || GA == 0) {
1492 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1493 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1494 }
1495 if (C == 0 || GA == 0)
1496 C = 0, GA = 0;
1497 }
1498
1499 // If we find a valid operand, map to the TargetXXX version so that the
1500 // value itself doesn't get selected.
1501 if (GA) { // Either &GV or &GV+C
1502 if (ConstraintLetter != 'n') {
1503 int64_t Offs = GA->getOffset();
1504 if (C) Offs += C->getValue();
Chris Lattner48884cd2007-08-25 00:47:38 +00001505 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1506 Op.getValueType(), Offs));
1507 return;
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001508 }
1509 }
1510 if (C) { // just C, no GV.
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001511 // Simple constants are not allowed for 's'.
Chris Lattner48884cd2007-08-25 00:47:38 +00001512 if (ConstraintLetter != 's') {
1513 Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1514 return;
1515 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001516 }
Chris Lattner9ff6ee82007-02-17 06:00:35 +00001517 break;
Chris Lattnereb8146b2006-02-04 02:13:02 +00001518 }
Chris Lattner75c7d2b2007-05-03 16:54:34 +00001519 }
Chris Lattnereb8146b2006-02-04 02:13:02 +00001520}
1521
Chris Lattner4ccb0702006-01-26 20:37:03 +00001522std::vector<unsigned> TargetLowering::
Chris Lattner1efa40f2006-02-22 00:56:39 +00001523getRegClassForInlineAsmConstraint(const std::string &Constraint,
1524 MVT::ValueType VT) const {
1525 return std::vector<unsigned>();
1526}
1527
1528
1529std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
Chris Lattner4217ca8dc2006-02-21 23:11:00 +00001530getRegForInlineAsmConstraint(const std::string &Constraint,
1531 MVT::ValueType VT) const {
Chris Lattner1efa40f2006-02-22 00:56:39 +00001532 if (Constraint[0] != '{')
1533 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattnera55079a2006-02-01 01:29:47 +00001534 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1535
1536 // Remove the braces from around the name.
1537 std::string RegName(Constraint.begin()+1, Constraint.end()-1);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001538
1539 // Figure out which register class contains this reg.
Chris Lattner4ccb0702006-01-26 20:37:03 +00001540 const MRegisterInfo *RI = TM.getRegisterInfo();
Chris Lattner1efa40f2006-02-22 00:56:39 +00001541 for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1542 E = RI->regclass_end(); RCI != E; ++RCI) {
1543 const TargetRegisterClass *RC = *RCI;
Chris Lattnerb3befd42006-02-22 23:00:51 +00001544
1545 // If none of the the value types for this register class are valid, we
1546 // can't use it. For example, 64-bit reg classes on 32-bit targets.
1547 bool isLegal = false;
1548 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1549 I != E; ++I) {
1550 if (isTypeLegal(*I)) {
1551 isLegal = true;
1552 break;
1553 }
1554 }
1555
1556 if (!isLegal) continue;
1557
Chris Lattner1efa40f2006-02-22 00:56:39 +00001558 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1559 I != E; ++I) {
Chris Lattnerb3befd42006-02-22 23:00:51 +00001560 if (StringsEqualNoCase(RegName, RI->get(*I).Name))
Chris Lattner1efa40f2006-02-22 00:56:39 +00001561 return std::make_pair(*I, RC);
Chris Lattner1efa40f2006-02-22 00:56:39 +00001562 }
Chris Lattner4ccb0702006-01-26 20:37:03 +00001563 }
Chris Lattnera55079a2006-02-01 01:29:47 +00001564
Chris Lattner1efa40f2006-02-22 00:56:39 +00001565 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
Chris Lattner4ccb0702006-01-26 20:37:03 +00001566}
Evan Cheng30b37b52006-03-13 23:18:16 +00001567
1568//===----------------------------------------------------------------------===//
1569// Loop Strength Reduction hooks
1570//===----------------------------------------------------------------------===//
1571
Chris Lattner1436bb62007-03-30 23:14:50 +00001572/// isLegalAddressingMode - Return true if the addressing mode represented
1573/// by AM is legal for this target, for a load/store of the specified type.
1574bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1575 const Type *Ty) const {
1576 // The default implementation of this implements a conservative RISCy, r+r and
1577 // r+i addr mode.
1578
1579 // Allows a sign-extended 16-bit immediate field.
1580 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1581 return false;
1582
1583 // No global is ever allowed as a base.
1584 if (AM.BaseGV)
1585 return false;
1586
1587 // Only support r+r,
1588 switch (AM.Scale) {
1589 case 0: // "r+i" or just "i", depending on HasBaseReg.
1590 break;
1591 case 1:
1592 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
1593 return false;
1594 // Otherwise we have r+r or r+i.
1595 break;
1596 case 2:
1597 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
1598 return false;
1599 // Allow 2*r as r+r.
1600 break;
1601 }
1602
1603 return true;
1604}
1605
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001606// Magic for divide replacement
1607
1608struct ms {
1609 int64_t m; // magic number
1610 int64_t s; // shift amount
1611};
1612
1613struct mu {
1614 uint64_t m; // magic number
1615 int64_t a; // add indicator
1616 int64_t s; // shift amount
1617};
1618
1619/// magic - calculate the magic numbers required to codegen an integer sdiv as
1620/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1621/// or -1.
1622static ms magic32(int32_t d) {
1623 int32_t p;
1624 uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1625 const uint32_t two31 = 0x80000000U;
1626 struct ms mag;
1627
1628 ad = abs(d);
1629 t = two31 + ((uint32_t)d >> 31);
1630 anc = t - 1 - t%ad; // absolute value of nc
1631 p = 31; // initialize p
1632 q1 = two31/anc; // initialize q1 = 2p/abs(nc)
1633 r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1634 q2 = two31/ad; // initialize q2 = 2p/abs(d)
1635 r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
1636 do {
1637 p = p + 1;
1638 q1 = 2*q1; // update q1 = 2p/abs(nc)
1639 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1640 if (r1 >= anc) { // must be unsigned comparison
1641 q1 = q1 + 1;
1642 r1 = r1 - anc;
1643 }
1644 q2 = 2*q2; // update q2 = 2p/abs(d)
1645 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1646 if (r2 >= ad) { // must be unsigned comparison
1647 q2 = q2 + 1;
1648 r2 = r2 - ad;
1649 }
1650 delta = ad - r2;
1651 } while (q1 < delta || (q1 == delta && r1 == 0));
1652
1653 mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1654 if (d < 0) mag.m = -mag.m; // resulting magic number
1655 mag.s = p - 32; // resulting shift
1656 return mag;
1657}
1658
1659/// magicu - calculate the magic numbers required to codegen an integer udiv as
1660/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1661static mu magicu32(uint32_t d) {
1662 int32_t p;
1663 uint32_t nc, delta, q1, r1, q2, r2;
1664 struct mu magu;
1665 magu.a = 0; // initialize "add" indicator
1666 nc = - 1 - (-d)%d;
1667 p = 31; // initialize p
1668 q1 = 0x80000000/nc; // initialize q1 = 2p/nc
1669 r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
1670 q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
1671 r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
1672 do {
1673 p = p + 1;
1674 if (r1 >= nc - r1 ) {
1675 q1 = 2*q1 + 1; // update q1
1676 r1 = 2*r1 - nc; // update r1
1677 }
1678 else {
1679 q1 = 2*q1; // update q1
1680 r1 = 2*r1; // update r1
1681 }
1682 if (r2 + 1 >= d - r2) {
1683 if (q2 >= 0x7FFFFFFF) magu.a = 1;
1684 q2 = 2*q2 + 1; // update q2
1685 r2 = 2*r2 + 1 - d; // update r2
1686 }
1687 else {
1688 if (q2 >= 0x80000000) magu.a = 1;
1689 q2 = 2*q2; // update q2
1690 r2 = 2*r2 + 1; // update r2
1691 }
1692 delta = d - 1 - r2;
1693 } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1694 magu.m = q2 + 1; // resulting magic number
1695 magu.s = p - 32; // resulting shift
1696 return magu;
1697}
1698
1699/// magic - calculate the magic numbers required to codegen an integer sdiv as
1700/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1701/// or -1.
1702static ms magic64(int64_t d) {
1703 int64_t p;
1704 uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1705 const uint64_t two63 = 9223372036854775808ULL; // 2^63
1706 struct ms mag;
1707
1708 ad = d >= 0 ? d : -d;
1709 t = two63 + ((uint64_t)d >> 63);
1710 anc = t - 1 - t%ad; // absolute value of nc
1711 p = 63; // initialize p
1712 q1 = two63/anc; // initialize q1 = 2p/abs(nc)
1713 r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1714 q2 = two63/ad; // initialize q2 = 2p/abs(d)
1715 r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d))
1716 do {
1717 p = p + 1;
1718 q1 = 2*q1; // update q1 = 2p/abs(nc)
1719 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1720 if (r1 >= anc) { // must be unsigned comparison
1721 q1 = q1 + 1;
1722 r1 = r1 - anc;
1723 }
1724 q2 = 2*q2; // update q2 = 2p/abs(d)
1725 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1726 if (r2 >= ad) { // must be unsigned comparison
1727 q2 = q2 + 1;
1728 r2 = r2 - ad;
1729 }
1730 delta = ad - r2;
1731 } while (q1 < delta || (q1 == delta && r1 == 0));
1732
1733 mag.m = q2 + 1;
1734 if (d < 0) mag.m = -mag.m; // resulting magic number
1735 mag.s = p - 64; // resulting shift
1736 return mag;
1737}
1738
1739/// magicu - calculate the magic numbers required to codegen an integer udiv as
1740/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1741static mu magicu64(uint64_t d)
1742{
1743 int64_t p;
1744 uint64_t nc, delta, q1, r1, q2, r2;
1745 struct mu magu;
1746 magu.a = 0; // initialize "add" indicator
1747 nc = - 1 - (-d)%d;
1748 p = 63; // initialize p
1749 q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc
1750 r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc)
1751 q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d
1752 r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d)
1753 do {
1754 p = p + 1;
1755 if (r1 >= nc - r1 ) {
1756 q1 = 2*q1 + 1; // update q1
1757 r1 = 2*r1 - nc; // update r1
1758 }
1759 else {
1760 q1 = 2*q1; // update q1
1761 r1 = 2*r1; // update r1
1762 }
1763 if (r2 + 1 >= d - r2) {
1764 if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1765 q2 = 2*q2 + 1; // update q2
1766 r2 = 2*r2 + 1 - d; // update r2
1767 }
1768 else {
1769 if (q2 >= 0x8000000000000000ull) magu.a = 1;
1770 q2 = 2*q2; // update q2
1771 r2 = 2*r2 + 1; // update r2
1772 }
1773 delta = d - 1 - r2;
Andrew Lenharth3e348492006-05-16 17:45:23 +00001774 } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001775 magu.m = q2 + 1; // resulting magic number
1776 magu.s = p - 64; // resulting shift
1777 return magu;
1778}
1779
1780/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1781/// return a DAG expression to select that will generate the same value by
1782/// multiplying by a magic number. See:
1783/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1784SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00001785 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001786 MVT::ValueType VT = N->getValueType(0);
1787
1788 // Check to see if we can do this.
1789 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1790 return SDOperand(); // BuildSDIV only operates on i32 or i64
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001791
1792 int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1793 ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1794
1795 // Multiply the numerator (operand 0) by the magic value
Dan Gohman525178c2007-10-08 18:33:35 +00001796 SDOperand Q;
1797 if (isOperationLegal(ISD::MULHS, VT))
1798 Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1799 DAG.getConstant(magics.m, VT));
1800 else if (isOperationLegal(ISD::SMUL_LOHI, VT))
1801 Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
1802 N->getOperand(0),
1803 DAG.getConstant(magics.m, VT)).Val, 1);
1804 else
1805 return SDOperand(); // No mulhs or equvialent
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001806 // If d > 0 and m < 0, add the numerator
1807 if (d > 0 && magics.m < 0) {
1808 Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1809 if (Created)
1810 Created->push_back(Q.Val);
1811 }
1812 // If d < 0 and m > 0, subtract the numerator.
1813 if (d < 0 && magics.m > 0) {
1814 Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1815 if (Created)
1816 Created->push_back(Q.Val);
1817 }
1818 // Shift right algebraic if shift value is nonzero
1819 if (magics.s > 0) {
1820 Q = DAG.getNode(ISD::SRA, VT, Q,
1821 DAG.getConstant(magics.s, getShiftAmountTy()));
1822 if (Created)
1823 Created->push_back(Q.Val);
1824 }
1825 // Extract the sign bit and add it to the quotient
1826 SDOperand T =
1827 DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1828 getShiftAmountTy()));
1829 if (Created)
1830 Created->push_back(T.Val);
1831 return DAG.getNode(ISD::ADD, VT, Q, T);
1832}
1833
1834/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1835/// return a DAG expression to select that will generate the same value by
1836/// multiplying by a magic number. See:
1837/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1838SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
Anton Korobeynikovbed29462007-04-16 18:10:23 +00001839 std::vector<SDNode*>* Created) const {
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001840 MVT::ValueType VT = N->getValueType(0);
1841
1842 // Check to see if we can do this.
1843 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1844 return SDOperand(); // BuildUDIV only operates on i32 or i64
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001845
1846 uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1847 mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1848
1849 // Multiply the numerator (operand 0) by the magic value
Dan Gohman525178c2007-10-08 18:33:35 +00001850 SDOperand Q;
1851 if (isOperationLegal(ISD::MULHU, VT))
1852 Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1853 DAG.getConstant(magics.m, VT));
1854 else if (isOperationLegal(ISD::UMUL_LOHI, VT))
1855 Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
1856 N->getOperand(0),
1857 DAG.getConstant(magics.m, VT)).Val, 1);
1858 else
1859 return SDOperand(); // No mulhu or equvialent
Andrew Lenharthdae9cbe2006-05-16 17:42:15 +00001860 if (Created)
1861 Created->push_back(Q.Val);
1862
1863 if (magics.a == 0) {
1864 return DAG.getNode(ISD::SRL, VT, Q,
1865 DAG.getConstant(magics.s, getShiftAmountTy()));
1866 } else {
1867 SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1868 if (Created)
1869 Created->push_back(NPQ.Val);
1870 NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1871 DAG.getConstant(1, getShiftAmountTy()));
1872 if (Created)
1873 Created->push_back(NPQ.Val);
1874 NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1875 if (Created)
1876 Created->push_back(NPQ.Val);
1877 return DAG.getNode(ISD::SRL, VT, NPQ,
1878 DAG.getConstant(magics.s-1, getShiftAmountTy()));
1879 }
1880}