blob: a0412644892e38667d75c346938392a858989d16 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Anton Korobeynikovc6c98af2007-04-29 18:02:48 +000027 <li><a href="#aliasstructure">Aliases</a>
Reid Spencerca86e162006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000029 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000030 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000031 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000032 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000033 </ol>
34 </li>
Chris Lattner00950542001-06-06 20:29:01 +000035 <li><a href="#typesystem">Type System</a>
36 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000038 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000039 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000040 <li><a href="#t_floating">Floating Point Types</a></li>
41 <li><a href="#t_void">Void Type</a></li>
42 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000043 </ol>
44 </li>
Chris Lattner00950542001-06-06 20:29:01 +000045 <li><a href="#t_derived">Derived Types</a>
46 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000047 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000048 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000049 <li><a href="#t_function">Function Type</a></li>
50 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000051 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000052 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000053 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000054 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000055 </ol>
56 </li>
57 </ol>
58 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000059 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000060 <ol>
61 <li><a href="#simpleconstants">Simple Constants</a>
62 <li><a href="#aggregateconstants">Aggregate Constants</a>
63 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
64 <li><a href="#undefvalues">Undefined Values</a>
65 <li><a href="#constantexprs">Constant Expressions</a>
66 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000067 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000068 <li><a href="#othervalues">Other Values</a>
69 <ol>
70 <li><a href="#inlineasm">Inline Assembler Expressions</a>
71 </ol>
72 </li>
Chris Lattner00950542001-06-06 20:29:01 +000073 <li><a href="#instref">Instruction Reference</a>
74 <ol>
75 <li><a href="#terminators">Terminator Instructions</a>
76 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000077 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
78 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000079 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
80 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000082 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000083 </ol>
84 </li>
Chris Lattner00950542001-06-06 20:29:01 +000085 <li><a href="#binaryops">Binary Operations</a>
86 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000087 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
88 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
89 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000090 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
91 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
92 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000093 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
94 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
95 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000096 </ol>
97 </li>
Chris Lattner00950542001-06-06 20:29:01 +000098 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
99 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000100 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
101 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
102 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000103 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000104 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000105 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000106 </ol>
107 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000108 <li><a href="#vectorops">Vector Operations</a>
109 <ol>
110 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
111 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
112 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000113 </ol>
114 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000115 <li><a href="#aggregateops">Aggregate Operations</a>
116 <ol>
117 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
118 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
119 </ol>
120 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000121 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000122 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000123 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
124 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
125 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000126 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
127 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
128 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000129 </ol>
130 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000131 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000132 <ol>
133 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
134 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000138 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
140 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
141 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000142 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
143 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000144 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000145 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000146 <li><a href="#otherops">Other Operations</a>
147 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000148 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
149 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000150 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
151 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000152 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000153 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000154 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000155 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Devang Patelc3fc6df2008-03-10 20:49:15 +0000156 <li><a href="#i_getresult">'<tt>getresult</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000157 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000158 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000159 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000160 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000161 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000162 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000163 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
164 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000165 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
167 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000168 </ol>
169 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000170 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
171 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000172 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
174 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000175 </ol>
176 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000177 <li><a href="#int_codegen">Code Generator Intrinsics</a>
178 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000179 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
181 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
182 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
183 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
184 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
185 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000186 </ol>
187 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000188 <li><a href="#int_libc">Standard C Library Intrinsics</a>
189 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000190 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
194 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000195 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000198 </ol>
199 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000200 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000201 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000202 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000203 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
205 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000206 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
207 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000208 </ol>
209 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000210 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000211 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000212 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000213 <ol>
214 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000215 </ol>
216 </li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000217 <li><a href="#int_atomics">Atomic intrinsics</a>
218 <ol>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000219 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
Mon P Wang28873102008-06-25 08:15:39 +0000220 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000221 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Mon P Wang28873102008-06-25 08:15:39 +0000222 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
223 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
224 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
225 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
226 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
227 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
228 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
229 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
230 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
231 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000232 </ol>
233 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000234 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000235 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000236 <li><a href="#int_var_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000237 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000238 <li><a href="#int_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000239 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000240 <li><a href="#int_trap">
241 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000242 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000243 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000244 </ol>
245 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000246</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000247
248<div class="doc_author">
249 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
250 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000251</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000252
Chris Lattner00950542001-06-06 20:29:01 +0000253<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000254<div class="doc_section"> <a name="abstract">Abstract </a></div>
255<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000256
Misha Brukman9d0919f2003-11-08 01:05:38 +0000257<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000258<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000259LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000260type safety, low-level operations, flexibility, and the capability of
261representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000262representation used throughout all phases of the LLVM compilation
263strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000264</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000265
Chris Lattner00950542001-06-06 20:29:01 +0000266<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000267<div class="doc_section"> <a name="introduction">Introduction</a> </div>
268<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000269
Misha Brukman9d0919f2003-11-08 01:05:38 +0000270<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
Chris Lattner261efe92003-11-25 01:02:51 +0000272<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000273different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000274representation (suitable for fast loading by a Just-In-Time compiler),
275and as a human readable assembly language representation. This allows
276LLVM to provide a powerful intermediate representation for efficient
277compiler transformations and analysis, while providing a natural means
278to debug and visualize the transformations. The three different forms
279of LLVM are all equivalent. This document describes the human readable
280representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000281
John Criswellc1f786c2005-05-13 22:25:59 +0000282<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000283while being expressive, typed, and extensible at the same time. It
284aims to be a "universal IR" of sorts, by being at a low enough level
285that high-level ideas may be cleanly mapped to it (similar to how
286microprocessors are "universal IR's", allowing many source languages to
287be mapped to them). By providing type information, LLVM can be used as
288the target of optimizations: for example, through pointer analysis, it
289can be proven that a C automatic variable is never accessed outside of
290the current function... allowing it to be promoted to a simple SSA
291value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000292
Misha Brukman9d0919f2003-11-08 01:05:38 +0000293</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000294
Chris Lattner00950542001-06-06 20:29:01 +0000295<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000296<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000297
Misha Brukman9d0919f2003-11-08 01:05:38 +0000298<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000299
Chris Lattner261efe92003-11-25 01:02:51 +0000300<p>It is important to note that this document describes 'well formed'
301LLVM assembly language. There is a difference between what the parser
302accepts and what is considered 'well formed'. For example, the
303following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000304
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000305<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000306<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000307%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000308</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000309</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000310
Chris Lattner261efe92003-11-25 01:02:51 +0000311<p>...because the definition of <tt>%x</tt> does not dominate all of
312its uses. The LLVM infrastructure provides a verification pass that may
313be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000314automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000315the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000316by the verifier pass indicate bugs in transformation passes or input to
317the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000318</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000319
Chris Lattnercc689392007-10-03 17:34:29 +0000320<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000321
Chris Lattner00950542001-06-06 20:29:01 +0000322<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000323<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000324<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000325
Misha Brukman9d0919f2003-11-08 01:05:38 +0000326<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000327
Reid Spencer2c452282007-08-07 14:34:28 +0000328 <p>LLVM identifiers come in two basic types: global and local. Global
329 identifiers (functions, global variables) begin with the @ character. Local
330 identifiers (register names, types) begin with the % character. Additionally,
331 there are three different formats for identifiers, for different purposes:
Chris Lattnerd7923912004-05-23 21:06:01 +0000332
Chris Lattner00950542001-06-06 20:29:01 +0000333<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000334 <li>Named values are represented as a string of characters with their prefix.
335 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
336 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000337 Identifiers which require other characters in their names can be surrounded
Reid Spencer2c452282007-08-07 14:34:28 +0000338 with quotes. In this way, anything except a <tt>&quot;</tt> character can
339 be used in a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000340
Reid Spencer2c452282007-08-07 14:34:28 +0000341 <li>Unnamed values are represented as an unsigned numeric value with their
342 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000343
Reid Spencercc16dc32004-12-09 18:02:53 +0000344 <li>Constants, which are described in a <a href="#constants">section about
345 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000346</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000347
Reid Spencer2c452282007-08-07 14:34:28 +0000348<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000349don't need to worry about name clashes with reserved words, and the set of
350reserved words may be expanded in the future without penalty. Additionally,
351unnamed identifiers allow a compiler to quickly come up with a temporary
352variable without having to avoid symbol table conflicts.</p>
353
Chris Lattner261efe92003-11-25 01:02:51 +0000354<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000355languages. There are keywords for different opcodes
356('<tt><a href="#i_add">add</a></tt>',
357 '<tt><a href="#i_bitcast">bitcast</a></tt>',
358 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000359href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000360and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000361none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000362
363<p>Here is an example of LLVM code to multiply the integer variable
364'<tt>%X</tt>' by 8:</p>
365
Misha Brukman9d0919f2003-11-08 01:05:38 +0000366<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000367
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000368<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000369<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000370%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000371</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000372</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000373
Misha Brukman9d0919f2003-11-08 01:05:38 +0000374<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000375
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000376<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000377<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000378%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000379</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000380</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000381
Misha Brukman9d0919f2003-11-08 01:05:38 +0000382<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000383
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000384<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000385<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000386<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
387<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
388%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000389</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000390</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000391
Chris Lattner261efe92003-11-25 01:02:51 +0000392<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
393important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000394
Chris Lattner00950542001-06-06 20:29:01 +0000395<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000396
397 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
398 line.</li>
399
400 <li>Unnamed temporaries are created when the result of a computation is not
401 assigned to a named value.</li>
402
Misha Brukman9d0919f2003-11-08 01:05:38 +0000403 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000404
Misha Brukman9d0919f2003-11-08 01:05:38 +0000405</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000406
John Criswelle4c57cc2005-05-12 16:52:32 +0000407<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000408demonstrating instructions, we will follow an instruction with a comment that
409defines the type and name of value produced. Comments are shown in italic
410text.</p>
411
Misha Brukman9d0919f2003-11-08 01:05:38 +0000412</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000413
414<!-- *********************************************************************** -->
415<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
416<!-- *********************************************************************** -->
417
418<!-- ======================================================================= -->
419<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
420</div>
421
422<div class="doc_text">
423
424<p>LLVM programs are composed of "Module"s, each of which is a
425translation unit of the input programs. Each module consists of
426functions, global variables, and symbol table entries. Modules may be
427combined together with the LLVM linker, which merges function (and
428global variable) definitions, resolves forward declarations, and merges
429symbol table entries. Here is an example of the "hello world" module:</p>
430
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000431<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000432<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000433<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
434 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000435
436<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000437<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000438
439<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000440define i32 @main() { <i>; i32()* </i>
Reid Spencerca86e162006-12-31 07:07:53 +0000441 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000442 %cast210 = <a
Chris Lattner6c0955b2007-06-12 17:01:15 +0000443 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000444
445 <i>; Call puts function to write out the string to stdout...</i>
446 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000447 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000448 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000449 href="#i_ret">ret</a> i32 0<br>}<br>
450</pre>
451</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000452
453<p>This example is made up of a <a href="#globalvars">global variable</a>
454named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
455function, and a <a href="#functionstructure">function definition</a>
456for "<tt>main</tt>".</p>
457
Chris Lattnere5d947b2004-12-09 16:36:40 +0000458<p>In general, a module is made up of a list of global values,
459where both functions and global variables are global values. Global values are
460represented by a pointer to a memory location (in this case, a pointer to an
461array of char, and a pointer to a function), and have one of the following <a
462href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000463
Chris Lattnere5d947b2004-12-09 16:36:40 +0000464</div>
465
466<!-- ======================================================================= -->
467<div class="doc_subsection">
468 <a name="linkage">Linkage Types</a>
469</div>
470
471<div class="doc_text">
472
473<p>
474All Global Variables and Functions have one of the following types of linkage:
475</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000476
477<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000478
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000479 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000480
481 <dd>Global values with internal linkage are only directly accessible by
482 objects in the current module. In particular, linking code into a module with
483 an internal global value may cause the internal to be renamed as necessary to
484 avoid collisions. Because the symbol is internal to the module, all
485 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000486 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000487 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000488
Chris Lattnerfa730212004-12-09 16:11:40 +0000489 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000490
Chris Lattner4887bd82007-01-14 06:51:48 +0000491 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
492 the same name when linkage occurs. This is typically used to implement
493 inline functions, templates, or other code which must be generated in each
494 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
495 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000496 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000497
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000498 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
499
500 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
501 linkage, except that unreferenced <tt>common</tt> globals may not be
502 discarded. This is used for globals that may be emitted in multiple
503 translation units, but that are not guaranteed to be emitted into every
504 translation unit that uses them. One example of this is tentative
505 definitions in C, such as "<tt>int X;</tt>" at global scope.
506 </dd>
507
Chris Lattnerfa730212004-12-09 16:11:40 +0000508 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000509
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000510 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
511 that some targets may choose to emit different assembly sequences for them
512 for target-dependent reasons. This is used for globals that are declared
513 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000514 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000515
Chris Lattnerfa730212004-12-09 16:11:40 +0000516 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000517
518 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
519 pointer to array type. When two global variables with appending linkage are
520 linked together, the two global arrays are appended together. This is the
521 LLVM, typesafe, equivalent of having the system linker append together
522 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000523 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000524
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000525 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000526 <dd>The semantics of this linkage follow the ELF object file model: the
527 symbol is weak until linked, if not linked, the symbol becomes null instead
528 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000529 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000530
Chris Lattnerfa730212004-12-09 16:11:40 +0000531 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000532
533 <dd>If none of the above identifiers are used, the global is externally
534 visible, meaning that it participates in linkage and can be used to resolve
535 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000536 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000537</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000538
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000539 <p>
540 The next two types of linkage are targeted for Microsoft Windows platform
541 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000542 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000543 </p>
544
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000545 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000546 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
547
548 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
549 or variable via a global pointer to a pointer that is set up by the DLL
550 exporting the symbol. On Microsoft Windows targets, the pointer name is
551 formed by combining <code>_imp__</code> and the function or variable name.
552 </dd>
553
554 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
555
556 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
557 pointer to a pointer in a DLL, so that it can be referenced with the
558 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
559 name is formed by combining <code>_imp__</code> and the function or variable
560 name.
561 </dd>
562
Chris Lattnerfa730212004-12-09 16:11:40 +0000563</dl>
564
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000565<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000566variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
567variable and was linked with this one, one of the two would be renamed,
568preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
569external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000570outside of the current module.</p>
571<p>It is illegal for a function <i>declaration</i>
572to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000573or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000574<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
575linkages.
Chris Lattnerfa730212004-12-09 16:11:40 +0000576</div>
577
578<!-- ======================================================================= -->
579<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000580 <a name="callingconv">Calling Conventions</a>
581</div>
582
583<div class="doc_text">
584
585<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
586and <a href="#i_invoke">invokes</a> can all have an optional calling convention
587specified for the call. The calling convention of any pair of dynamic
588caller/callee must match, or the behavior of the program is undefined. The
589following calling conventions are supported by LLVM, and more may be added in
590the future:</p>
591
592<dl>
593 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
594
595 <dd>This calling convention (the default if no other calling convention is
596 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000597 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000598 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000599 </dd>
600
601 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
602
603 <dd>This calling convention attempts to make calls as fast as possible
604 (e.g. by passing things in registers). This calling convention allows the
605 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000606 without having to conform to an externally specified ABI (Application Binary
607 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000608 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
609 supported. This calling convention does not support varargs and requires the
610 prototype of all callees to exactly match the prototype of the function
611 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000612 </dd>
613
614 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
615
616 <dd>This calling convention attempts to make code in the caller as efficient
617 as possible under the assumption that the call is not commonly executed. As
618 such, these calls often preserve all registers so that the call does not break
619 any live ranges in the caller side. This calling convention does not support
620 varargs and requires the prototype of all callees to exactly match the
621 prototype of the function definition.
622 </dd>
623
Chris Lattnercfe6b372005-05-07 01:46:40 +0000624 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000625
626 <dd>Any calling convention may be specified by number, allowing
627 target-specific calling conventions to be used. Target specific calling
628 conventions start at 64.
629 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000630</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000631
632<p>More calling conventions can be added/defined on an as-needed basis, to
633support pascal conventions or any other well-known target-independent
634convention.</p>
635
636</div>
637
638<!-- ======================================================================= -->
639<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000640 <a name="visibility">Visibility Styles</a>
641</div>
642
643<div class="doc_text">
644
645<p>
646All Global Variables and Functions have one of the following visibility styles:
647</p>
648
649<dl>
650 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
651
Chris Lattnerd3eda892008-08-05 18:29:16 +0000652 <dd>On targets that use the ELF object file format, default visibility means
653 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000654 modules and, in shared libraries, means that the declared entity may be
655 overridden. On Darwin, default visibility means that the declaration is
656 visible to other modules. Default visibility corresponds to "external
657 linkage" in the language.
658 </dd>
659
660 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
661
662 <dd>Two declarations of an object with hidden visibility refer to the same
663 object if they are in the same shared object. Usually, hidden visibility
664 indicates that the symbol will not be placed into the dynamic symbol table,
665 so no other module (executable or shared library) can reference it
666 directly.
667 </dd>
668
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000669 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
670
671 <dd>On ELF, protected visibility indicates that the symbol will be placed in
672 the dynamic symbol table, but that references within the defining module will
673 bind to the local symbol. That is, the symbol cannot be overridden by another
674 module.
675 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000676</dl>
677
678</div>
679
680<!-- ======================================================================= -->
681<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000682 <a name="globalvars">Global Variables</a>
683</div>
684
685<div class="doc_text">
686
Chris Lattner3689a342005-02-12 19:30:21 +0000687<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000688instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000689an explicit section to be placed in, and may have an optional explicit alignment
690specified. A variable may be defined as "thread_local", which means that it
691will not be shared by threads (each thread will have a separated copy of the
692variable). A variable may be defined as a global "constant," which indicates
693that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000694optimization, allowing the global data to be placed in the read-only section of
695an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000696cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000697
698<p>
699LLVM explicitly allows <em>declarations</em> of global variables to be marked
700constant, even if the final definition of the global is not. This capability
701can be used to enable slightly better optimization of the program, but requires
702the language definition to guarantee that optimizations based on the
703'constantness' are valid for the translation units that do not include the
704definition.
705</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000706
707<p>As SSA values, global variables define pointer values that are in
708scope (i.e. they dominate) all basic blocks in the program. Global
709variables always define a pointer to their "content" type because they
710describe a region of memory, and all memory objects in LLVM are
711accessed through pointers.</p>
712
Christopher Lamb284d9922007-12-11 09:31:00 +0000713<p>A global variable may be declared to reside in a target-specifc numbered
714address space. For targets that support them, address spaces may affect how
715optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000716the variable. The default address space is zero. The address space qualifier
717must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000718
Chris Lattner88f6c462005-11-12 00:45:07 +0000719<p>LLVM allows an explicit section to be specified for globals. If the target
720supports it, it will emit globals to the section specified.</p>
721
Chris Lattner2cbdc452005-11-06 08:02:57 +0000722<p>An explicit alignment may be specified for a global. If not present, or if
723the alignment is set to zero, the alignment of the global is set by the target
724to whatever it feels convenient. If an explicit alignment is specified, the
725global is forced to have at least that much alignment. All alignments must be
726a power of 2.</p>
727
Christopher Lamb284d9922007-12-11 09:31:00 +0000728<p>For example, the following defines a global in a numbered address space with
729an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000730
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000731<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000732<pre>
Christopher Lamb284d9922007-12-11 09:31:00 +0000733@G = constant float 1.0 addrspace(5), section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000734</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000735</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000736
Chris Lattnerfa730212004-12-09 16:11:40 +0000737</div>
738
739
740<!-- ======================================================================= -->
741<div class="doc_subsection">
742 <a name="functionstructure">Functions</a>
743</div>
744
745<div class="doc_text">
746
Reid Spencerca86e162006-12-31 07:07:53 +0000747<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
748an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000749<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000750<a href="#callingconv">calling convention</a>, a return type, an optional
751<a href="#paramattrs">parameter attribute</a> for the return type, a function
752name, a (possibly empty) argument list (each with optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000753<a href="#paramattrs">parameter attributes</a>), an optional section, an
Devang Patelf8b94812008-09-04 23:05:13 +0000754optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000755an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000756
757LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
758optional <a href="#linkage">linkage type</a>, an optional
759<a href="#visibility">visibility style</a>, an optional
760<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000761<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000762name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000763<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000764
Chris Lattnerd3eda892008-08-05 18:29:16 +0000765<p>A function definition contains a list of basic blocks, forming the CFG
766(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000767the function. Each basic block may optionally start with a label (giving the
768basic block a symbol table entry), contains a list of instructions, and ends
769with a <a href="#terminators">terminator</a> instruction (such as a branch or
770function return).</p>
771
Chris Lattner4a3c9012007-06-08 16:52:14 +0000772<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000773executed on entrance to the function, and it is not allowed to have predecessor
774basic blocks (i.e. there can not be any branches to the entry block of a
775function). Because the block can have no predecessors, it also cannot have any
776<a href="#i_phi">PHI nodes</a>.</p>
777
Chris Lattner88f6c462005-11-12 00:45:07 +0000778<p>LLVM allows an explicit section to be specified for functions. If the target
779supports it, it will emit functions to the section specified.</p>
780
Chris Lattner2cbdc452005-11-06 08:02:57 +0000781<p>An explicit alignment may be specified for a function. If not present, or if
782the alignment is set to zero, the alignment of the function is set by the target
783to whatever it feels convenient. If an explicit alignment is specified, the
784function is forced to have at least that much alignment. All alignments must be
785a power of 2.</p>
786
Chris Lattnerfa730212004-12-09 16:11:40 +0000787</div>
788
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000789
790<!-- ======================================================================= -->
791<div class="doc_subsection">
792 <a name="aliasstructure">Aliases</a>
793</div>
794<div class="doc_text">
795 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000796 function, global variable, another alias or bitcast of global value). Aliases
797 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000798 optional <a href="#visibility">visibility style</a>.</p>
799
800 <h5>Syntax:</h5>
801
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000802<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000803<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000804@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000805</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000806</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000807
808</div>
809
810
811
Chris Lattner4e9aba72006-01-23 23:23:47 +0000812<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000813<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
814<div class="doc_text">
815 <p>The return type and each parameter of a function type may have a set of
816 <i>parameter attributes</i> associated with them. Parameter attributes are
817 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000818 a function. Parameter attributes are considered to be part of the function,
819 not of the function type, so functions with different parameter attributes
820 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000821
Reid Spencer950e9f82007-01-15 18:27:39 +0000822 <p>Parameter attributes are simple keywords that follow the type specified. If
823 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000824 example:</p>
825
826<div class="doc_code">
827<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000828declare i32 @printf(i8* noalias , ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000829declare i32 @atoi(i8 zeroext)
830declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000831</pre>
832</div>
833
Duncan Sandsdc024672007-11-27 13:23:08 +0000834 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
835 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000836
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000837 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000838 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000839 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000840 <dd>This indicates to the code generator that the parameter or return value
841 should be zero-extended to a 32-bit value by the caller (for a parameter)
842 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000843
Reid Spencer9445e9a2007-07-19 23:13:04 +0000844 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000845 <dd>This indicates to the code generator that the parameter or return value
846 should be sign-extended to a 32-bit value by the caller (for a parameter)
847 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000848
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000849 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000850 <dd>This indicates that this parameter or return value should be treated
851 in a special target-dependent fashion during while emitting code for a
852 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000853 to memory, though some targets use it to distinguish between two different
854 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000855
856 <dt><tt>byval</tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000857 <dd>This indicates that the pointer parameter should really be passed by
858 value to the function. The attribute implies that a hidden copy of the
859 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000860 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000861 pointer arguments. It is generally used to pass structs and arrays by
Chris Lattner66d922c2008-10-04 18:33:34 +0000862 value, but is also valid on pointers to scalars.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000863
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000864 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000865 <dd>This indicates that the pointer parameter specifies the address of a
866 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000867 This pointer must be guaranteed by the caller to be valid: loads and stores
868 to the structure may be assumed by the callee to not to trap. This may only
869 be applied to the first parameter.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000870
Zhou Shengfebca342007-06-05 05:28:26 +0000871 <dt><tt>noalias</tt></dt>
Owen Anderson117bbd32008-02-18 04:09:01 +0000872 <dd>This indicates that the parameter does not alias any global or any other
873 parameter. The caller is responsible for ensuring that this is the case,
874 usually by placing the value in a stack allocation.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000875
Duncan Sands50f19f52007-07-27 19:57:41 +0000876 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000877 <dd>This indicates that the pointer parameter can be excised using the
Duncan Sands50f19f52007-07-27 19:57:41 +0000878 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000879 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000880
Reid Spencerca86e162006-12-31 07:07:53 +0000881</div>
882
883<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000884<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000885 <a name="gc">Garbage Collector Names</a>
886</div>
887
888<div class="doc_text">
889<p>Each function may specify a garbage collector name, which is simply a
890string.</p>
891
892<div class="doc_code"><pre
893>define void @f() gc "name" { ...</pre></div>
894
895<p>The compiler declares the supported values of <i>name</i>. Specifying a
896collector which will cause the compiler to alter its output in order to support
897the named garbage collection algorithm.</p>
898</div>
899
900<!-- ======================================================================= -->
901<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000902 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +0000903</div>
904
905<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000906
907<p>Function attributes are set to communicate additional information about
908 a function. Function attributes are considered to be part of the function,
909 not of the function type, so functions with different parameter attributes
910 can have the same function type.</p>
911
912 <p>Function attributes are simple keywords that follow the type specified. If
913 multiple attributes are needed, they are space separated. For
914 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +0000915
916<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000917<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000918define void @f() noinline { ... }
919define void @f() alwaysinline { ... }
920define void @f() alwaysinline optsize { ... }
921define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000922</pre>
Devang Patelf8b94812008-09-04 23:05:13 +0000923</div>
924
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000925<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000926<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000927<dd>This attribute indicates that the inliner should attempt to inline this
928function into callers whenever possible, ignoring any active inlining size
929threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000930
Devang Patel2c9c3e72008-09-26 23:51:19 +0000931<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000932<dd>This attribute indicates that the inliner should never inline this function
933in any situation. This attribute may not be used together with
934<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000935
Devang Patel2c9c3e72008-09-26 23:51:19 +0000936<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +0000937<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +0000938make choices that keep the code size of this function low, and otherwise do
939optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000940
Devang Patel2c9c3e72008-09-26 23:51:19 +0000941<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000942<dd>This function attribute indicates that the function never returns normally.
943This produces undefined behavior at runtime if the function ever does
944dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000945
946<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000947<dd>This function attribute indicates that the function never returns with an
948unwind or exceptional control flow. If the function does unwind, its runtime
949behavior is undefined.</dd>
950
951<dt><tt>readnone</tt></dt>
952<dd>This attribute indicates that the function computes its result (or its
953thrown exception) based strictly on its arguments. It does not read any global
954mutable state (e.g. memory, control registers, etc) visible to caller functions.
955Furthermore, <tt>readnone</tt> functions never change any state visible to their
956caller.
Devang Patel2c9c3e72008-09-26 23:51:19 +0000957
958<dt><tt>readonly</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000959<dd>This function attribute indicates that the function has no side-effects on
960the calling function, but that it depends on state (memory state, control
961register state, etc) that may be set in the caller. A readonly function always
962returns the same value (or throws the same exception) whenever it is called with
963a particular set of arguments and global state.</dd>
964
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000965</dl>
966
Devang Patelf8b94812008-09-04 23:05:13 +0000967</div>
968
969<!-- ======================================================================= -->
970<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000971 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000972</div>
973
974<div class="doc_text">
975<p>
976Modules may contain "module-level inline asm" blocks, which corresponds to the
977GCC "file scope inline asm" blocks. These blocks are internally concatenated by
978LLVM and treated as a single unit, but may be separated in the .ll file if
979desired. The syntax is very simple:
980</p>
981
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000982<div class="doc_code">
983<pre>
984module asm "inline asm code goes here"
985module asm "more can go here"
986</pre>
987</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000988
989<p>The strings can contain any character by escaping non-printable characters.
990 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
991 for the number.
992</p>
993
994<p>
995 The inline asm code is simply printed to the machine code .s file when
996 assembly code is generated.
997</p>
998</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000999
Reid Spencerde151942007-02-19 23:54:10 +00001000<!-- ======================================================================= -->
1001<div class="doc_subsection">
1002 <a name="datalayout">Data Layout</a>
1003</div>
1004
1005<div class="doc_text">
1006<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001007data is to be laid out in memory. The syntax for the data layout is simply:</p>
1008<pre> target datalayout = "<i>layout specification</i>"</pre>
1009<p>The <i>layout specification</i> consists of a list of specifications
1010separated by the minus sign character ('-'). Each specification starts with a
1011letter and may include other information after the letter to define some
1012aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001013<dl>
1014 <dt><tt>E</tt></dt>
1015 <dd>Specifies that the target lays out data in big-endian form. That is, the
1016 bits with the most significance have the lowest address location.</dd>
1017 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001018 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001019 the bits with the least significance have the lowest address location.</dd>
1020 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1021 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1022 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1023 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1024 too.</dd>
1025 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1026 <dd>This specifies the alignment for an integer type of a given bit
1027 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1028 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1029 <dd>This specifies the alignment for a vector type of a given bit
1030 <i>size</i>.</dd>
1031 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1032 <dd>This specifies the alignment for a floating point type of a given bit
1033 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1034 (double).</dd>
1035 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1036 <dd>This specifies the alignment for an aggregate type of a given bit
1037 <i>size</i>.</dd>
1038</dl>
1039<p>When constructing the data layout for a given target, LLVM starts with a
1040default set of specifications which are then (possibly) overriden by the
1041specifications in the <tt>datalayout</tt> keyword. The default specifications
1042are given in this list:</p>
1043<ul>
1044 <li><tt>E</tt> - big endian</li>
1045 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1046 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1047 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1048 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1049 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001050 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001051 alignment of 64-bits</li>
1052 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1053 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1054 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1055 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1056 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1057</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001058<p>When LLVM is determining the alignment for a given type, it uses the
Reid Spencerde151942007-02-19 23:54:10 +00001059following rules:
1060<ol>
1061 <li>If the type sought is an exact match for one of the specifications, that
1062 specification is used.</li>
1063 <li>If no match is found, and the type sought is an integer type, then the
1064 smallest integer type that is larger than the bitwidth of the sought type is
1065 used. If none of the specifications are larger than the bitwidth then the the
1066 largest integer type is used. For example, given the default specifications
1067 above, the i7 type will use the alignment of i8 (next largest) while both
1068 i65 and i256 will use the alignment of i64 (largest specified).</li>
1069 <li>If no match is found, and the type sought is a vector type, then the
1070 largest vector type that is smaller than the sought vector type will be used
1071 as a fall back. This happens because <128 x double> can be implemented in
1072 terms of 64 <2 x double>, for example.</li>
1073</ol>
1074</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001075
Chris Lattner00950542001-06-06 20:29:01 +00001076<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001077<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1078<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001079
Misha Brukman9d0919f2003-11-08 01:05:38 +00001080<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001081
Misha Brukman9d0919f2003-11-08 01:05:38 +00001082<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001083intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001084optimizations to be performed on the intermediate representation directly,
1085without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001086extra analyses on the side before the transformation. A strong type
1087system makes it easier to read the generated code and enables novel
1088analyses and transformations that are not feasible to perform on normal
1089three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001090
1091</div>
1092
Chris Lattner00950542001-06-06 20:29:01 +00001093<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001094<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001095Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001096<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001097<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001098classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001099
1100<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001101 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001102 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001103 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001104 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001105 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001106 </tr>
1107 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001108 <td><a href="#t_floating">floating point</a></td>
1109 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001110 </tr>
1111 <tr>
1112 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001113 <td><a href="#t_integer">integer</a>,
1114 <a href="#t_floating">floating point</a>,
1115 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001116 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001117 <a href="#t_struct">structure</a>,
1118 <a href="#t_array">array</a>,
Dan Gohmanade5faa2008-05-23 22:50:26 +00001119 <a href="#t_label">label</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001120 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001121 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001122 <tr>
1123 <td><a href="#t_primitive">primitive</a></td>
1124 <td><a href="#t_label">label</a>,
1125 <a href="#t_void">void</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001126 <a href="#t_floating">floating point</a>.</td>
1127 </tr>
1128 <tr>
1129 <td><a href="#t_derived">derived</a></td>
1130 <td><a href="#t_integer">integer</a>,
1131 <a href="#t_array">array</a>,
1132 <a href="#t_function">function</a>,
1133 <a href="#t_pointer">pointer</a>,
1134 <a href="#t_struct">structure</a>,
1135 <a href="#t_pstruct">packed structure</a>,
1136 <a href="#t_vector">vector</a>,
1137 <a href="#t_opaque">opaque</a>.
1138 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001139 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001140</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001141
Chris Lattner261efe92003-11-25 01:02:51 +00001142<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1143most important. Values of these types are the only ones which can be
1144produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001145instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001146</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001147
Chris Lattner00950542001-06-06 20:29:01 +00001148<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001149<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001150
Chris Lattner4f69f462008-01-04 04:32:38 +00001151<div class="doc_text">
1152<p>The primitive types are the fundamental building blocks of the LLVM
1153system.</p>
1154
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001155</div>
1156
Chris Lattner4f69f462008-01-04 04:32:38 +00001157<!-- _______________________________________________________________________ -->
1158<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1159
1160<div class="doc_text">
1161 <table>
1162 <tbody>
1163 <tr><th>Type</th><th>Description</th></tr>
1164 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1165 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1166 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1167 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1168 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1169 </tbody>
1170 </table>
1171</div>
1172
1173<!-- _______________________________________________________________________ -->
1174<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1175
1176<div class="doc_text">
1177<h5>Overview:</h5>
1178<p>The void type does not represent any value and has no size.</p>
1179
1180<h5>Syntax:</h5>
1181
1182<pre>
1183 void
1184</pre>
1185</div>
1186
1187<!-- _______________________________________________________________________ -->
1188<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1189
1190<div class="doc_text">
1191<h5>Overview:</h5>
1192<p>The label type represents code labels.</p>
1193
1194<h5>Syntax:</h5>
1195
1196<pre>
1197 label
1198</pre>
1199</div>
1200
1201
1202<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001203<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001204
Misha Brukman9d0919f2003-11-08 01:05:38 +00001205<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001206
Chris Lattner261efe92003-11-25 01:02:51 +00001207<p>The real power in LLVM comes from the derived types in the system.
1208This is what allows a programmer to represent arrays, functions,
1209pointers, and other useful types. Note that these derived types may be
1210recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001211
Misha Brukman9d0919f2003-11-08 01:05:38 +00001212</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001213
Chris Lattner00950542001-06-06 20:29:01 +00001214<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001215<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1216
1217<div class="doc_text">
1218
1219<h5>Overview:</h5>
1220<p>The integer type is a very simple derived type that simply specifies an
1221arbitrary bit width for the integer type desired. Any bit width from 1 bit to
12222^23-1 (about 8 million) can be specified.</p>
1223
1224<h5>Syntax:</h5>
1225
1226<pre>
1227 iN
1228</pre>
1229
1230<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1231value.</p>
1232
1233<h5>Examples:</h5>
1234<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001235 <tbody>
1236 <tr>
1237 <td><tt>i1</tt></td>
1238 <td>a single-bit integer.</td>
1239 </tr><tr>
1240 <td><tt>i32</tt></td>
1241 <td>a 32-bit integer.</td>
1242 </tr><tr>
1243 <td><tt>i1942652</tt></td>
1244 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001245 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001246 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001247</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001248</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001249
1250<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001251<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001252
Misha Brukman9d0919f2003-11-08 01:05:38 +00001253<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001254
Chris Lattner00950542001-06-06 20:29:01 +00001255<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001256
Misha Brukman9d0919f2003-11-08 01:05:38 +00001257<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001258sequentially in memory. The array type requires a size (number of
1259elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001260
Chris Lattner7faa8832002-04-14 06:13:44 +00001261<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001262
1263<pre>
1264 [&lt;# elements&gt; x &lt;elementtype&gt;]
1265</pre>
1266
John Criswelle4c57cc2005-05-12 16:52:32 +00001267<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001268be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001269
Chris Lattner7faa8832002-04-14 06:13:44 +00001270<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001271<table class="layout">
1272 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001273 <td class="left"><tt>[40 x i32]</tt></td>
1274 <td class="left">Array of 40 32-bit integer values.</td>
1275 </tr>
1276 <tr class="layout">
1277 <td class="left"><tt>[41 x i32]</tt></td>
1278 <td class="left">Array of 41 32-bit integer values.</td>
1279 </tr>
1280 <tr class="layout">
1281 <td class="left"><tt>[4 x i8]</tt></td>
1282 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001283 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001284</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001285<p>Here are some examples of multidimensional arrays:</p>
1286<table class="layout">
1287 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001288 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1289 <td class="left">3x4 array of 32-bit integer values.</td>
1290 </tr>
1291 <tr class="layout">
1292 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1293 <td class="left">12x10 array of single precision floating point values.</td>
1294 </tr>
1295 <tr class="layout">
1296 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1297 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001298 </tr>
1299</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001300
John Criswell0ec250c2005-10-24 16:17:18 +00001301<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1302length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001303LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1304As a special case, however, zero length arrays are recognized to be variable
1305length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001306type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001307
Misha Brukman9d0919f2003-11-08 01:05:38 +00001308</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001309
Chris Lattner00950542001-06-06 20:29:01 +00001310<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001311<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001312<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001313
Chris Lattner00950542001-06-06 20:29:01 +00001314<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001315
Chris Lattner261efe92003-11-25 01:02:51 +00001316<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001317consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001318return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001319If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001320class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001321
Chris Lattner00950542001-06-06 20:29:01 +00001322<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001323
1324<pre>
1325 &lt;returntype list&gt; (&lt;parameter list&gt;)
1326</pre>
1327
John Criswell0ec250c2005-10-24 16:17:18 +00001328<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001329specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001330which indicates that the function takes a variable number of arguments.
1331Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001332 href="#int_varargs">variable argument handling intrinsic</a> functions.
1333'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1334<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001335
Chris Lattner00950542001-06-06 20:29:01 +00001336<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001337<table class="layout">
1338 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001339 <td class="left"><tt>i32 (i32)</tt></td>
1340 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001341 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001342 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001343 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001344 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001345 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1346 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001347 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001348 <tt>float</tt>.
1349 </td>
1350 </tr><tr class="layout">
1351 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1352 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001353 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001354 which returns an integer. This is the signature for <tt>printf</tt> in
1355 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001356 </td>
Devang Patela582f402008-03-24 05:35:41 +00001357 </tr><tr class="layout">
1358 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel3a5bff82008-03-24 18:10:52 +00001359 <td class="left">A function taking an <tt>i32></tt>, returning two
1360 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001361 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001362 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001363</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001364
Misha Brukman9d0919f2003-11-08 01:05:38 +00001365</div>
Chris Lattner00950542001-06-06 20:29:01 +00001366<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001367<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001368<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001369<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001370<p>The structure type is used to represent a collection of data members
1371together in memory. The packing of the field types is defined to match
1372the ABI of the underlying processor. The elements of a structure may
1373be any type that has a size.</p>
1374<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1375and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1376field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1377instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001378<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001379<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001380<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001381<table class="layout">
1382 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001383 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1384 <td class="left">A triple of three <tt>i32</tt> values</td>
1385 </tr><tr class="layout">
1386 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1387 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1388 second element is a <a href="#t_pointer">pointer</a> to a
1389 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1390 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001391 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001392</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001393</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001394
Chris Lattner00950542001-06-06 20:29:01 +00001395<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001396<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1397</div>
1398<div class="doc_text">
1399<h5>Overview:</h5>
1400<p>The packed structure type is used to represent a collection of data members
1401together in memory. There is no padding between fields. Further, the alignment
1402of a packed structure is 1 byte. The elements of a packed structure may
1403be any type that has a size.</p>
1404<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1405and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1406field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1407instruction.</p>
1408<h5>Syntax:</h5>
1409<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1410<h5>Examples:</h5>
1411<table class="layout">
1412 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001413 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1414 <td class="left">A triple of three <tt>i32</tt> values</td>
1415 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001416 <td class="left">
1417<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001418 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1419 second element is a <a href="#t_pointer">pointer</a> to a
1420 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1421 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001422 </tr>
1423</table>
1424</div>
1425
1426<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001427<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001428<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001429<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001430<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001431reference to another object, which must live in memory. Pointer types may have
1432an optional address space attribute defining the target-specific numbered
1433address space where the pointed-to object resides. The default address space is
1434zero.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001435<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001436<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001437<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001438<table class="layout">
1439 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001440 <td class="left"><tt>[4x i32]*</tt></td>
1441 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1442 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1443 </tr>
1444 <tr class="layout">
1445 <td class="left"><tt>i32 (i32 *) *</tt></td>
1446 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001447 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001448 <tt>i32</tt>.</td>
1449 </tr>
1450 <tr class="layout">
1451 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1452 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1453 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001454 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001455</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001456</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001457
Chris Lattnera58561b2004-08-12 19:12:28 +00001458<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001459<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001460<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001461
Chris Lattnera58561b2004-08-12 19:12:28 +00001462<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001463
Reid Spencer485bad12007-02-15 03:07:05 +00001464<p>A vector type is a simple derived type that represents a vector
1465of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001466are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001467A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001468elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001469of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001470considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001471
Chris Lattnera58561b2004-08-12 19:12:28 +00001472<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001473
1474<pre>
1475 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1476</pre>
1477
John Criswellc1f786c2005-05-13 22:25:59 +00001478<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001479be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001480
Chris Lattnera58561b2004-08-12 19:12:28 +00001481<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001482
Reid Spencerd3f876c2004-11-01 08:19:36 +00001483<table class="layout">
1484 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001485 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1486 <td class="left">Vector of 4 32-bit integer values.</td>
1487 </tr>
1488 <tr class="layout">
1489 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1490 <td class="left">Vector of 8 32-bit floating-point values.</td>
1491 </tr>
1492 <tr class="layout">
1493 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1494 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001495 </tr>
1496</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001497</div>
1498
Chris Lattner69c11bb2005-04-25 17:34:15 +00001499<!-- _______________________________________________________________________ -->
1500<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1501<div class="doc_text">
1502
1503<h5>Overview:</h5>
1504
1505<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001506corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001507In LLVM, opaque types can eventually be resolved to any type (not just a
1508structure type).</p>
1509
1510<h5>Syntax:</h5>
1511
1512<pre>
1513 opaque
1514</pre>
1515
1516<h5>Examples:</h5>
1517
1518<table class="layout">
1519 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001520 <td class="left"><tt>opaque</tt></td>
1521 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001522 </tr>
1523</table>
1524</div>
1525
1526
Chris Lattnerc3f59762004-12-09 17:30:23 +00001527<!-- *********************************************************************** -->
1528<div class="doc_section"> <a name="constants">Constants</a> </div>
1529<!-- *********************************************************************** -->
1530
1531<div class="doc_text">
1532
1533<p>LLVM has several different basic types of constants. This section describes
1534them all and their syntax.</p>
1535
1536</div>
1537
1538<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001539<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001540
1541<div class="doc_text">
1542
1543<dl>
1544 <dt><b>Boolean constants</b></dt>
1545
1546 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001547 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001548 </dd>
1549
1550 <dt><b>Integer constants</b></dt>
1551
Reid Spencercc16dc32004-12-09 18:02:53 +00001552 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001553 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001554 integer types.
1555 </dd>
1556
1557 <dt><b>Floating point constants</b></dt>
1558
1559 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1560 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001561 notation (see below). The assembler requires the exact decimal value of
1562 a floating-point constant. For example, the assembler accepts 1.25 but
1563 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1564 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001565
1566 <dt><b>Null pointer constants</b></dt>
1567
John Criswell9e2485c2004-12-10 15:51:16 +00001568 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001569 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1570
1571</dl>
1572
John Criswell9e2485c2004-12-10 15:51:16 +00001573<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001574of floating point constants. For example, the form '<tt>double
15750x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
15764.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001577(and the only time that they are generated by the disassembler) is when a
1578floating point constant must be emitted but it cannot be represented as a
1579decimal floating point number. For example, NaN's, infinities, and other
1580special values are represented in their IEEE hexadecimal format so that
1581assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001582
1583</div>
1584
1585<!-- ======================================================================= -->
1586<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1587</div>
1588
1589<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001590<p>Aggregate constants arise from aggregation of simple constants
1591and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001592
1593<dl>
1594 <dt><b>Structure constants</b></dt>
1595
1596 <dd>Structure constants are represented with notation similar to structure
1597 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001598 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1599 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001600 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001601 types of elements must match those specified by the type.
1602 </dd>
1603
1604 <dt><b>Array constants</b></dt>
1605
1606 <dd>Array constants are represented with notation similar to array type
1607 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001608 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001609 constants must have <a href="#t_array">array type</a>, and the number and
1610 types of elements must match those specified by the type.
1611 </dd>
1612
Reid Spencer485bad12007-02-15 03:07:05 +00001613 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001614
Reid Spencer485bad12007-02-15 03:07:05 +00001615 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001616 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001617 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001618 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001619 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001620 match those specified by the type.
1621 </dd>
1622
1623 <dt><b>Zero initialization</b></dt>
1624
1625 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1626 value to zero of <em>any</em> type, including scalar and aggregate types.
1627 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001628 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001629 initializers.
1630 </dd>
1631</dl>
1632
1633</div>
1634
1635<!-- ======================================================================= -->
1636<div class="doc_subsection">
1637 <a name="globalconstants">Global Variable and Function Addresses</a>
1638</div>
1639
1640<div class="doc_text">
1641
1642<p>The addresses of <a href="#globalvars">global variables</a> and <a
1643href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001644constants. These constants are explicitly referenced when the <a
1645href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001646href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1647file:</p>
1648
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001649<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001650<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001651@X = global i32 17
1652@Y = global i32 42
1653@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001654</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001655</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001656
1657</div>
1658
1659<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001660<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001661<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001662 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001663 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001664 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001665
Reid Spencer2dc45b82004-12-09 18:13:12 +00001666 <p>Undefined values indicate to the compiler that the program is well defined
1667 no matter what value is used, giving the compiler more freedom to optimize.
1668 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001669</div>
1670
1671<!-- ======================================================================= -->
1672<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1673</div>
1674
1675<div class="doc_text">
1676
1677<p>Constant expressions are used to allow expressions involving other constants
1678to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001679href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001680that does not have side effects (e.g. load and call are not supported). The
1681following is the syntax for constant expressions:</p>
1682
1683<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001684 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1685 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001686 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001687
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001688 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1689 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001690 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001691
1692 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1693 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001694 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001695
1696 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1697 <dd>Truncate a floating point constant to another floating point type. The
1698 size of CST must be larger than the size of TYPE. Both types must be
1699 floating point.</dd>
1700
1701 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1702 <dd>Floating point extend a constant to another type. The size of CST must be
1703 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1704
Reid Spencer1539a1c2007-07-31 14:40:14 +00001705 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001706 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001707 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1708 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1709 of the same number of elements. If the value won't fit in the integer type,
1710 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001711
Reid Spencerd4448792006-11-09 23:03:26 +00001712 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001713 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001714 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1715 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1716 of the same number of elements. If the value won't fit in the integer type,
1717 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001718
Reid Spencerd4448792006-11-09 23:03:26 +00001719 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001720 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001721 constant. TYPE must be a scalar or vector floating point type. CST must be of
1722 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1723 of the same number of elements. If the value won't fit in the floating point
1724 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001725
Reid Spencerd4448792006-11-09 23:03:26 +00001726 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001727 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001728 constant. TYPE must be a scalar or vector floating point type. CST must be of
1729 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1730 of the same number of elements. If the value won't fit in the floating point
1731 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001732
Reid Spencer5c0ef472006-11-11 23:08:07 +00001733 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1734 <dd>Convert a pointer typed constant to the corresponding integer constant
1735 TYPE must be an integer type. CST must be of pointer type. The CST value is
1736 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1737
1738 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1739 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1740 pointer type. CST must be of integer type. The CST value is zero extended,
1741 truncated, or unchanged to make it fit in a pointer size. This one is
1742 <i>really</i> dangerous!</dd>
1743
1744 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001745 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1746 identical (same number of bits). The conversion is done as if the CST value
1747 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001748 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001749 vector types to any other type, as long as they have the same bit width. For
Dan Gohman500233a2008-09-08 16:45:59 +00001750 pointers it is only valid to cast to another pointer type. It is not valid
1751 to bitcast to or from an aggregate type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001752 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001753
1754 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1755
1756 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1757 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1758 instruction, the index list may have zero or more indexes, which are required
1759 to make sense for the type of "CSTPTR".</dd>
1760
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001761 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1762
1763 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001764 constants.</dd>
1765
1766 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1767 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1768
1769 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1770 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001771
Nate Begemanac80ade2008-05-12 19:01:56 +00001772 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1773 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1774
1775 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1776 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1777
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001778 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1779
1780 <dd>Perform the <a href="#i_extractelement">extractelement
1781 operation</a> on constants.
1782
Robert Bocchino05ccd702006-01-15 20:48:27 +00001783 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1784
1785 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001786 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001787
Chris Lattnerc1989542006-04-08 00:13:41 +00001788
1789 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1790
1791 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001792 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001793
Chris Lattnerc3f59762004-12-09 17:30:23 +00001794 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1795
Reid Spencer2dc45b82004-12-09 18:13:12 +00001796 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1797 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001798 binary</a> operations. The constraints on operands are the same as those for
1799 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001800 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001801</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001802</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001803
Chris Lattner00950542001-06-06 20:29:01 +00001804<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001805<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1806<!-- *********************************************************************** -->
1807
1808<!-- ======================================================================= -->
1809<div class="doc_subsection">
1810<a name="inlineasm">Inline Assembler Expressions</a>
1811</div>
1812
1813<div class="doc_text">
1814
1815<p>
1816LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1817Module-Level Inline Assembly</a>) through the use of a special value. This
1818value represents the inline assembler as a string (containing the instructions
1819to emit), a list of operand constraints (stored as a string), and a flag that
1820indicates whether or not the inline asm expression has side effects. An example
1821inline assembler expression is:
1822</p>
1823
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001824<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001825<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001826i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001827</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001828</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001829
1830<p>
1831Inline assembler expressions may <b>only</b> be used as the callee operand of
1832a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1833</p>
1834
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001835<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001836<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001837%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001838</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001839</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001840
1841<p>
1842Inline asms with side effects not visible in the constraint list must be marked
1843as having side effects. This is done through the use of the
1844'<tt>sideeffect</tt>' keyword, like so:
1845</p>
1846
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001847<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001848<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001849call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001850</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001851</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001852
1853<p>TODO: The format of the asm and constraints string still need to be
1854documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00001855need to be documented). This is probably best done by reference to another
1856document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00001857</p>
1858
1859</div>
1860
1861<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001862<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1863<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001864
Misha Brukman9d0919f2003-11-08 01:05:38 +00001865<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001866
Chris Lattner261efe92003-11-25 01:02:51 +00001867<p>The LLVM instruction set consists of several different
1868classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001869instructions</a>, <a href="#binaryops">binary instructions</a>,
1870<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001871 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1872instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001873
Misha Brukman9d0919f2003-11-08 01:05:38 +00001874</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001875
Chris Lattner00950542001-06-06 20:29:01 +00001876<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001877<div class="doc_subsection"> <a name="terminators">Terminator
1878Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001879
Misha Brukman9d0919f2003-11-08 01:05:38 +00001880<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001881
Chris Lattner261efe92003-11-25 01:02:51 +00001882<p>As mentioned <a href="#functionstructure">previously</a>, every
1883basic block in a program ends with a "Terminator" instruction, which
1884indicates which block should be executed after the current block is
1885finished. These terminator instructions typically yield a '<tt>void</tt>'
1886value: they produce control flow, not values (the one exception being
1887the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001888<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001889 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1890instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001891the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1892 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1893 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001894
Misha Brukman9d0919f2003-11-08 01:05:38 +00001895</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001896
Chris Lattner00950542001-06-06 20:29:01 +00001897<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001898<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1899Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001900<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001901<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001902<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001903 ret void <i>; Return from void function</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001904 ret &lt;type&gt; &lt;value&gt;, &lt;type&gt; &lt;value&gt; <i>; Return two values from a non-void function </i>
Chris Lattner00950542001-06-06 20:29:01 +00001905</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001906
Chris Lattner00950542001-06-06 20:29:01 +00001907<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001908
Chris Lattner261efe92003-11-25 01:02:51 +00001909<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
John Criswellc1f786c2005-05-13 22:25:59 +00001910value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001911<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001912returns value(s) and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00001913control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001914
Chris Lattner00950542001-06-06 20:29:01 +00001915<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001916
1917<p>The '<tt>ret</tt>' instruction may return zero, one or multiple values.
1918The type of each return value must be a '<a href="#t_firstclass">first
1919class</a>' type. Note that a function is not <a href="#wellformed">well
1920formed</a> if there exists a '<tt>ret</tt>' instruction inside of the
1921function that returns values that do not match the return type of the
1922function.</p>
1923
Chris Lattner00950542001-06-06 20:29:01 +00001924<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001925
Chris Lattner261efe92003-11-25 01:02:51 +00001926<p>When the '<tt>ret</tt>' instruction is executed, control flow
1927returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001928 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001929the instruction after the call. If the caller was an "<a
1930 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001931at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001932returns a value, that value shall set the call or invoke instruction's
Devang Patelc3fc6df2008-03-10 20:49:15 +00001933return value. If the instruction returns multiple values then these
Devang Patel0dbb4a12008-03-11 05:51:59 +00001934values can only be accessed through a '<a href="#i_getresult"><tt>getresult</tt>
1935</a>' instruction.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001936
Chris Lattner00950542001-06-06 20:29:01 +00001937<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001938
1939<pre>
1940 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001941 ret void <i>; Return from a void function</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001942 ret i32 4, i8 2 <i>; Return two values 4 and 2 </i>
Chris Lattner00950542001-06-06 20:29:01 +00001943</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001944</div>
Chris Lattner00950542001-06-06 20:29:01 +00001945<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001946<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001947<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001948<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001949<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001950</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001951<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001952<p>The '<tt>br</tt>' instruction is used to cause control flow to
1953transfer to a different basic block in the current function. There are
1954two forms of this instruction, corresponding to a conditional branch
1955and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001956<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001957<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00001958single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00001959unconditional form of the '<tt>br</tt>' instruction takes a single
1960'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001961<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001962<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001963argument is evaluated. If the value is <tt>true</tt>, control flows
1964to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1965control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001966<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001967<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00001968 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001969</div>
Chris Lattner00950542001-06-06 20:29:01 +00001970<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001971<div class="doc_subsubsection">
1972 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1973</div>
1974
Misha Brukman9d0919f2003-11-08 01:05:38 +00001975<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001976<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001977
1978<pre>
1979 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1980</pre>
1981
Chris Lattner00950542001-06-06 20:29:01 +00001982<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001983
1984<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1985several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001986instruction, allowing a branch to occur to one of many possible
1987destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001988
1989
Chris Lattner00950542001-06-06 20:29:01 +00001990<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001991
1992<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1993comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1994an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1995table is not allowed to contain duplicate constant entries.</p>
1996
Chris Lattner00950542001-06-06 20:29:01 +00001997<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001998
Chris Lattner261efe92003-11-25 01:02:51 +00001999<p>The <tt>switch</tt> instruction specifies a table of values and
2000destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002001table is searched for the given value. If the value is found, control flow is
2002transfered to the corresponding destination; otherwise, control flow is
2003transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002004
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002005<h5>Implementation:</h5>
2006
2007<p>Depending on properties of the target machine and the particular
2008<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002009ways. For example, it could be generated as a series of chained conditional
2010branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002011
2012<h5>Example:</h5>
2013
2014<pre>
2015 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002016 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00002017 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002018
2019 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002020 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002021
2022 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002023 switch i32 %val, label %otherwise [ i32 0, label %onzero
2024 i32 1, label %onone
2025 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002026</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002027</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002028
Chris Lattner00950542001-06-06 20:29:01 +00002029<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002030<div class="doc_subsubsection">
2031 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2032</div>
2033
Misha Brukman9d0919f2003-11-08 01:05:38 +00002034<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002035
Chris Lattner00950542001-06-06 20:29:01 +00002036<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002037
2038<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002039 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00002040 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002041</pre>
2042
Chris Lattner6536cfe2002-05-06 22:08:29 +00002043<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002044
2045<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2046function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002047'<tt>normal</tt>' label or the
2048'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002049"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2050"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002051href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Devang Patelc3fc6df2008-03-10 20:49:15 +00002052continued at the dynamically nearest "exception" label. If the callee function
Devang Patel0dbb4a12008-03-11 05:51:59 +00002053returns multiple values then individual return values are only accessible through
2054a '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002055
Chris Lattner00950542001-06-06 20:29:01 +00002056<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002057
Misha Brukman9d0919f2003-11-08 01:05:38 +00002058<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002059
Chris Lattner00950542001-06-06 20:29:01 +00002060<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002061 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002062 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002063 convention</a> the call should use. If none is specified, the call defaults
2064 to using C calling conventions.
2065 </li>
2066 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2067 function value being invoked. In most cases, this is a direct function
2068 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2069 an arbitrary pointer to function value.
2070 </li>
2071
2072 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2073 function to be invoked. </li>
2074
2075 <li>'<tt>function args</tt>': argument list whose types match the function
2076 signature argument types. If the function signature indicates the function
2077 accepts a variable number of arguments, the extra arguments can be
2078 specified. </li>
2079
2080 <li>'<tt>normal label</tt>': the label reached when the called function
2081 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2082
2083 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2084 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2085
Chris Lattner00950542001-06-06 20:29:01 +00002086</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002087
Chris Lattner00950542001-06-06 20:29:01 +00002088<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002089
Misha Brukman9d0919f2003-11-08 01:05:38 +00002090<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002091href="#i_call">call</a></tt>' instruction in most regards. The primary
2092difference is that it establishes an association with a label, which is used by
2093the runtime library to unwind the stack.</p>
2094
2095<p>This instruction is used in languages with destructors to ensure that proper
2096cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2097exception. Additionally, this is important for implementation of
2098'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2099
Chris Lattner00950542001-06-06 20:29:01 +00002100<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002101<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002102 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002103 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002104 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002105 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002106</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002107</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002108
2109
Chris Lattner27f71f22003-09-03 00:41:47 +00002110<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002111
Chris Lattner261efe92003-11-25 01:02:51 +00002112<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2113Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002114
Misha Brukman9d0919f2003-11-08 01:05:38 +00002115<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002116
Chris Lattner27f71f22003-09-03 00:41:47 +00002117<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002118<pre>
2119 unwind
2120</pre>
2121
Chris Lattner27f71f22003-09-03 00:41:47 +00002122<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002123
2124<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2125at the first callee in the dynamic call stack which used an <a
2126href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2127primarily used to implement exception handling.</p>
2128
Chris Lattner27f71f22003-09-03 00:41:47 +00002129<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002130
Chris Lattner72ed2002008-04-19 21:01:16 +00002131<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002132immediately halt. The dynamic call stack is then searched for the first <a
2133href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2134execution continues at the "exceptional" destination block specified by the
2135<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2136dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002137</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002138
2139<!-- _______________________________________________________________________ -->
2140
2141<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2142Instruction</a> </div>
2143
2144<div class="doc_text">
2145
2146<h5>Syntax:</h5>
2147<pre>
2148 unreachable
2149</pre>
2150
2151<h5>Overview:</h5>
2152
2153<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2154instruction is used to inform the optimizer that a particular portion of the
2155code is not reachable. This can be used to indicate that the code after a
2156no-return function cannot be reached, and other facts.</p>
2157
2158<h5>Semantics:</h5>
2159
2160<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2161</div>
2162
2163
2164
Chris Lattner00950542001-06-06 20:29:01 +00002165<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002166<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002167<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002168<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002169program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002170produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002171multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002172The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002173<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002174</div>
Chris Lattner00950542001-06-06 20:29:01 +00002175<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002176<div class="doc_subsubsection">
2177 <a name="i_add">'<tt>add</tt>' Instruction</a>
2178</div>
2179
Misha Brukman9d0919f2003-11-08 01:05:38 +00002180<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002181
Chris Lattner00950542001-06-06 20:29:01 +00002182<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002183
2184<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002185 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002186</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002187
Chris Lattner00950542001-06-06 20:29:01 +00002188<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002189
Misha Brukman9d0919f2003-11-08 01:05:38 +00002190<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002191
Chris Lattner00950542001-06-06 20:29:01 +00002192<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002193
2194<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2195 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2196 <a href="#t_vector">vector</a> values. Both arguments must have identical
2197 types.</p>
2198
Chris Lattner00950542001-06-06 20:29:01 +00002199<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002200
Misha Brukman9d0919f2003-11-08 01:05:38 +00002201<p>The value produced is the integer or floating point sum of the two
2202operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002203
Chris Lattner5ec89832008-01-28 00:36:27 +00002204<p>If an integer sum has unsigned overflow, the result returned is the
2205mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2206the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002207
Chris Lattner5ec89832008-01-28 00:36:27 +00002208<p>Because LLVM integers use a two's complement representation, this
2209instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002210
Chris Lattner00950542001-06-06 20:29:01 +00002211<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002212
2213<pre>
2214 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002215</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002216</div>
Chris Lattner00950542001-06-06 20:29:01 +00002217<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002218<div class="doc_subsubsection">
2219 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2220</div>
2221
Misha Brukman9d0919f2003-11-08 01:05:38 +00002222<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002223
Chris Lattner00950542001-06-06 20:29:01 +00002224<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002225
2226<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002227 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002228</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002229
Chris Lattner00950542001-06-06 20:29:01 +00002230<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002231
Misha Brukman9d0919f2003-11-08 01:05:38 +00002232<p>The '<tt>sub</tt>' instruction returns the difference of its two
2233operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002234
2235<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2236'<tt>neg</tt>' instruction present in most other intermediate
2237representations.</p>
2238
Chris Lattner00950542001-06-06 20:29:01 +00002239<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002240
2241<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2242 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2243 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2244 types.</p>
2245
Chris Lattner00950542001-06-06 20:29:01 +00002246<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002247
Chris Lattner261efe92003-11-25 01:02:51 +00002248<p>The value produced is the integer or floating point difference of
2249the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002250
Chris Lattner5ec89832008-01-28 00:36:27 +00002251<p>If an integer difference has unsigned overflow, the result returned is the
2252mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2253the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002254
Chris Lattner5ec89832008-01-28 00:36:27 +00002255<p>Because LLVM integers use a two's complement representation, this
2256instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002257
Chris Lattner00950542001-06-06 20:29:01 +00002258<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002259<pre>
2260 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002261 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002262</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002263</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002264
Chris Lattner00950542001-06-06 20:29:01 +00002265<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002266<div class="doc_subsubsection">
2267 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2268</div>
2269
Misha Brukman9d0919f2003-11-08 01:05:38 +00002270<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002271
Chris Lattner00950542001-06-06 20:29:01 +00002272<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002273<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002274</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002275<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002276<p>The '<tt>mul</tt>' instruction returns the product of its two
2277operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002278
Chris Lattner00950542001-06-06 20:29:01 +00002279<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002280
2281<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2282href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2283or <a href="#t_vector">vector</a> values. Both arguments must have identical
2284types.</p>
2285
Chris Lattner00950542001-06-06 20:29:01 +00002286<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002287
Chris Lattner261efe92003-11-25 01:02:51 +00002288<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002289two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002290
Chris Lattner5ec89832008-01-28 00:36:27 +00002291<p>If the result of an integer multiplication has unsigned overflow,
2292the result returned is the mathematical result modulo
22932<sup>n</sup>, where n is the bit width of the result.</p>
2294<p>Because LLVM integers use a two's complement representation, and the
2295result is the same width as the operands, this instruction returns the
2296correct result for both signed and unsigned integers. If a full product
2297(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2298should be sign-extended or zero-extended as appropriate to the
2299width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002300<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002301<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002302</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002303</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002304
Chris Lattner00950542001-06-06 20:29:01 +00002305<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002306<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2307</a></div>
2308<div class="doc_text">
2309<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002310<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002311</pre>
2312<h5>Overview:</h5>
2313<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2314operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002315
Reid Spencer1628cec2006-10-26 06:15:43 +00002316<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002317
Reid Spencer1628cec2006-10-26 06:15:43 +00002318<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002319<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2320values. Both arguments must have identical types.</p>
2321
Reid Spencer1628cec2006-10-26 06:15:43 +00002322<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002323
Chris Lattner5ec89832008-01-28 00:36:27 +00002324<p>The value produced is the unsigned integer quotient of the two operands.</p>
2325<p>Note that unsigned integer division and signed integer division are distinct
2326operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2327<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002328<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002329<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002330</pre>
2331</div>
2332<!-- _______________________________________________________________________ -->
2333<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2334</a> </div>
2335<div class="doc_text">
2336<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002337<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002338 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002339</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002340
Reid Spencer1628cec2006-10-26 06:15:43 +00002341<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002342
Reid Spencer1628cec2006-10-26 06:15:43 +00002343<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2344operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002345
Reid Spencer1628cec2006-10-26 06:15:43 +00002346<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002347
2348<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2349<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2350values. Both arguments must have identical types.</p>
2351
Reid Spencer1628cec2006-10-26 06:15:43 +00002352<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002353<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002354<p>Note that signed integer division and unsigned integer division are distinct
2355operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2356<p>Division by zero leads to undefined behavior. Overflow also leads to
2357undefined behavior; this is a rare case, but can occur, for example,
2358by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002359<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002360<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002361</pre>
2362</div>
2363<!-- _______________________________________________________________________ -->
2364<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002365Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002366<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002367<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002368<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002369 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002370</pre>
2371<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002372
Reid Spencer1628cec2006-10-26 06:15:43 +00002373<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002374operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002375
Chris Lattner261efe92003-11-25 01:02:51 +00002376<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002377
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002378<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002379<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2380of floating point values. Both arguments must have identical types.</p>
2381
Chris Lattner261efe92003-11-25 01:02:51 +00002382<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002383
Reid Spencer1628cec2006-10-26 06:15:43 +00002384<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002385
Chris Lattner261efe92003-11-25 01:02:51 +00002386<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002387
2388<pre>
2389 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002390</pre>
2391</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002392
Chris Lattner261efe92003-11-25 01:02:51 +00002393<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002394<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2395</div>
2396<div class="doc_text">
2397<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002398<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002399</pre>
2400<h5>Overview:</h5>
2401<p>The '<tt>urem</tt>' instruction returns the remainder from the
2402unsigned division of its two arguments.</p>
2403<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002404<p>The two arguments to the '<tt>urem</tt>' instruction must be
2405<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2406values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002407<h5>Semantics:</h5>
2408<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002409This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002410<p>Note that unsigned integer remainder and signed integer remainder are
2411distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2412<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002413<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002414<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002415</pre>
2416
2417</div>
2418<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002419<div class="doc_subsubsection">
2420 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2421</div>
2422
Chris Lattner261efe92003-11-25 01:02:51 +00002423<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002424
Chris Lattner261efe92003-11-25 01:02:51 +00002425<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002426
2427<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002428 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002429</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002430
Chris Lattner261efe92003-11-25 01:02:51 +00002431<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002432
Reid Spencer0a783f72006-11-02 01:53:59 +00002433<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002434signed division of its two operands. This instruction can also take
2435<a href="#t_vector">vector</a> versions of the values in which case
2436the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002437
Chris Lattner261efe92003-11-25 01:02:51 +00002438<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002439
Reid Spencer0a783f72006-11-02 01:53:59 +00002440<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002441<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2442values. Both arguments must have identical types.</p>
2443
Chris Lattner261efe92003-11-25 01:02:51 +00002444<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002445
Reid Spencer0a783f72006-11-02 01:53:59 +00002446<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002447has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2448operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002449a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002450 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002451Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002452please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002453Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002454<p>Note that signed integer remainder and unsigned integer remainder are
2455distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2456<p>Taking the remainder of a division by zero leads to undefined behavior.
2457Overflow also leads to undefined behavior; this is a rare case, but can occur,
2458for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2459(The remainder doesn't actually overflow, but this rule lets srem be
2460implemented using instructions that return both the result of the division
2461and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002462<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002463<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002464</pre>
2465
2466</div>
2467<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002468<div class="doc_subsubsection">
2469 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2470
Reid Spencer0a783f72006-11-02 01:53:59 +00002471<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002472
Reid Spencer0a783f72006-11-02 01:53:59 +00002473<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002474<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002475</pre>
2476<h5>Overview:</h5>
2477<p>The '<tt>frem</tt>' instruction returns the remainder from the
2478division of its two operands.</p>
2479<h5>Arguments:</h5>
2480<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002481<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2482of floating point values. Both arguments must have identical types.</p>
2483
Reid Spencer0a783f72006-11-02 01:53:59 +00002484<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002485
Chris Lattnera73afe02008-04-01 18:45:27 +00002486<p>This instruction returns the <i>remainder</i> of a division.
2487The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002488
Reid Spencer0a783f72006-11-02 01:53:59 +00002489<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002490
2491<pre>
2492 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002493</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002494</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002495
Reid Spencer8e11bf82007-02-02 13:57:07 +00002496<!-- ======================================================================= -->
2497<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2498Operations</a> </div>
2499<div class="doc_text">
2500<p>Bitwise binary operators are used to do various forms of
2501bit-twiddling in a program. They are generally very efficient
2502instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002503instructions. They require two operands of the same type, execute an operation on them,
2504and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002505</div>
2506
Reid Spencer569f2fa2007-01-31 21:39:12 +00002507<!-- _______________________________________________________________________ -->
2508<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2509Instruction</a> </div>
2510<div class="doc_text">
2511<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002512<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002513</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002514
Reid Spencer569f2fa2007-01-31 21:39:12 +00002515<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002516
Reid Spencer569f2fa2007-01-31 21:39:12 +00002517<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2518the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002519
Reid Spencer569f2fa2007-01-31 21:39:12 +00002520<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002521
Reid Spencer569f2fa2007-01-31 21:39:12 +00002522<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002523 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002524type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002525
Reid Spencer569f2fa2007-01-31 21:39:12 +00002526<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002527
Gabor Greiffb224a22008-08-07 21:46:00 +00002528<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2529where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
2530equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002531
Reid Spencer569f2fa2007-01-31 21:39:12 +00002532<h5>Example:</h5><pre>
2533 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2534 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2535 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002536 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002537</pre>
2538</div>
2539<!-- _______________________________________________________________________ -->
2540<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2541Instruction</a> </div>
2542<div class="doc_text">
2543<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002544<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002545</pre>
2546
2547<h5>Overview:</h5>
2548<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002549operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002550
2551<h5>Arguments:</h5>
2552<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002553<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002554type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002555
2556<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002557
Reid Spencer569f2fa2007-01-31 21:39:12 +00002558<p>This instruction always performs a logical shift right operation. The most
2559significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002560shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
2561the number of bits in <tt>op1</tt>, the result is undefined.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002562
2563<h5>Example:</h5>
2564<pre>
2565 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2566 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2567 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2568 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002569 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002570</pre>
2571</div>
2572
Reid Spencer8e11bf82007-02-02 13:57:07 +00002573<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002574<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2575Instruction</a> </div>
2576<div class="doc_text">
2577
2578<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002579<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002580</pre>
2581
2582<h5>Overview:</h5>
2583<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002584operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002585
2586<h5>Arguments:</h5>
2587<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002588<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002589type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002590
2591<h5>Semantics:</h5>
2592<p>This instruction always performs an arithmetic shift right operation,
2593The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00002594of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
2595larger than the number of bits in <tt>op1</tt>, the result is undefined.
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002596</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002597
2598<h5>Example:</h5>
2599<pre>
2600 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2601 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2602 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2603 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002604 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002605</pre>
2606</div>
2607
Chris Lattner00950542001-06-06 20:29:01 +00002608<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002609<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2610Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002611
Misha Brukman9d0919f2003-11-08 01:05:38 +00002612<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002613
Chris Lattner00950542001-06-06 20:29:01 +00002614<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002615
2616<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002617 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002618</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002619
Chris Lattner00950542001-06-06 20:29:01 +00002620<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002621
Chris Lattner261efe92003-11-25 01:02:51 +00002622<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2623its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002624
Chris Lattner00950542001-06-06 20:29:01 +00002625<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002626
2627<p>The two arguments to the '<tt>and</tt>' instruction must be
2628<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2629values. Both arguments must have identical types.</p>
2630
Chris Lattner00950542001-06-06 20:29:01 +00002631<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002632<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002633<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002634<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002635<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002636 <tbody>
2637 <tr>
2638 <td>In0</td>
2639 <td>In1</td>
2640 <td>Out</td>
2641 </tr>
2642 <tr>
2643 <td>0</td>
2644 <td>0</td>
2645 <td>0</td>
2646 </tr>
2647 <tr>
2648 <td>0</td>
2649 <td>1</td>
2650 <td>0</td>
2651 </tr>
2652 <tr>
2653 <td>1</td>
2654 <td>0</td>
2655 <td>0</td>
2656 </tr>
2657 <tr>
2658 <td>1</td>
2659 <td>1</td>
2660 <td>1</td>
2661 </tr>
2662 </tbody>
2663</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002664</div>
Chris Lattner00950542001-06-06 20:29:01 +00002665<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002666<pre>
2667 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002668 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2669 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002670</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002671</div>
Chris Lattner00950542001-06-06 20:29:01 +00002672<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002673<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002674<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002675<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002676<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002677</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002678<h5>Overview:</h5>
2679<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2680or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002681<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002682
2683<p>The two arguments to the '<tt>or</tt>' instruction must be
2684<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2685values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002686<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002687<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002688<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002689<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002690<table border="1" cellspacing="0" cellpadding="4">
2691 <tbody>
2692 <tr>
2693 <td>In0</td>
2694 <td>In1</td>
2695 <td>Out</td>
2696 </tr>
2697 <tr>
2698 <td>0</td>
2699 <td>0</td>
2700 <td>0</td>
2701 </tr>
2702 <tr>
2703 <td>0</td>
2704 <td>1</td>
2705 <td>1</td>
2706 </tr>
2707 <tr>
2708 <td>1</td>
2709 <td>0</td>
2710 <td>1</td>
2711 </tr>
2712 <tr>
2713 <td>1</td>
2714 <td>1</td>
2715 <td>1</td>
2716 </tr>
2717 </tbody>
2718</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002719</div>
Chris Lattner00950542001-06-06 20:29:01 +00002720<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002721<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2722 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2723 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002724</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002725</div>
Chris Lattner00950542001-06-06 20:29:01 +00002726<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002727<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2728Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002729<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002730<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002731<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002732</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002733<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002734<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2735or of its two operands. The <tt>xor</tt> is used to implement the
2736"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002737<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002738<p>The two arguments to the '<tt>xor</tt>' instruction must be
2739<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2740values. Both arguments must have identical types.</p>
2741
Chris Lattner00950542001-06-06 20:29:01 +00002742<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002743
Misha Brukman9d0919f2003-11-08 01:05:38 +00002744<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002745<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002746<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002747<table border="1" cellspacing="0" cellpadding="4">
2748 <tbody>
2749 <tr>
2750 <td>In0</td>
2751 <td>In1</td>
2752 <td>Out</td>
2753 </tr>
2754 <tr>
2755 <td>0</td>
2756 <td>0</td>
2757 <td>0</td>
2758 </tr>
2759 <tr>
2760 <td>0</td>
2761 <td>1</td>
2762 <td>1</td>
2763 </tr>
2764 <tr>
2765 <td>1</td>
2766 <td>0</td>
2767 <td>1</td>
2768 </tr>
2769 <tr>
2770 <td>1</td>
2771 <td>1</td>
2772 <td>0</td>
2773 </tr>
2774 </tbody>
2775</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002776</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002777<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002778<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002779<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2780 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2781 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2782 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002783</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002784</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002785
Chris Lattner00950542001-06-06 20:29:01 +00002786<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002787<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002788 <a name="vectorops">Vector Operations</a>
2789</div>
2790
2791<div class="doc_text">
2792
2793<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002794target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002795vector-specific operations needed to process vectors effectively. While LLVM
2796does directly support these vector operations, many sophisticated algorithms
2797will want to use target-specific intrinsics to take full advantage of a specific
2798target.</p>
2799
2800</div>
2801
2802<!-- _______________________________________________________________________ -->
2803<div class="doc_subsubsection">
2804 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2805</div>
2806
2807<div class="doc_text">
2808
2809<h5>Syntax:</h5>
2810
2811<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002812 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002813</pre>
2814
2815<h5>Overview:</h5>
2816
2817<p>
2818The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002819element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002820</p>
2821
2822
2823<h5>Arguments:</h5>
2824
2825<p>
2826The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002827value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002828an index indicating the position from which to extract the element.
2829The index may be a variable.</p>
2830
2831<h5>Semantics:</h5>
2832
2833<p>
2834The result is a scalar of the same type as the element type of
2835<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2836<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2837results are undefined.
2838</p>
2839
2840<h5>Example:</h5>
2841
2842<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002843 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002844</pre>
2845</div>
2846
2847
2848<!-- _______________________________________________________________________ -->
2849<div class="doc_subsubsection">
2850 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2851</div>
2852
2853<div class="doc_text">
2854
2855<h5>Syntax:</h5>
2856
2857<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00002858 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002859</pre>
2860
2861<h5>Overview:</h5>
2862
2863<p>
2864The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002865element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002866</p>
2867
2868
2869<h5>Arguments:</h5>
2870
2871<p>
2872The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002873value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002874scalar value whose type must equal the element type of the first
2875operand. The third operand is an index indicating the position at
2876which to insert the value. The index may be a variable.</p>
2877
2878<h5>Semantics:</h5>
2879
2880<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002881The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002882element values are those of <tt>val</tt> except at position
2883<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2884exceeds the length of <tt>val</tt>, the results are undefined.
2885</p>
2886
2887<h5>Example:</h5>
2888
2889<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002890 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002891</pre>
2892</div>
2893
2894<!-- _______________________________________________________________________ -->
2895<div class="doc_subsubsection">
2896 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2897</div>
2898
2899<div class="doc_text">
2900
2901<h5>Syntax:</h5>
2902
2903<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002904 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002905</pre>
2906
2907<h5>Overview:</h5>
2908
2909<p>
2910The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2911from two input vectors, returning a vector of the same type.
2912</p>
2913
2914<h5>Arguments:</h5>
2915
2916<p>
2917The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2918with types that match each other and types that match the result of the
2919instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerca86e162006-12-31 07:07:53 +00002920of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattner3df241e2006-04-08 23:07:04 +00002921</p>
2922
2923<p>
2924The shuffle mask operand is required to be a constant vector with either
2925constant integer or undef values.
2926</p>
2927
2928<h5>Semantics:</h5>
2929
2930<p>
2931The elements of the two input vectors are numbered from left to right across
2932both of the vectors. The shuffle mask operand specifies, for each element of
2933the result vector, which element of the two input registers the result element
2934gets. The element selector may be undef (meaning "don't care") and the second
2935operand may be undef if performing a shuffle from only one vector.
2936</p>
2937
2938<h5>Example:</h5>
2939
2940<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002941 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002942 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002943 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2944 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattner3df241e2006-04-08 23:07:04 +00002945</pre>
2946</div>
2947
Tanya Lattner09474292006-04-14 19:24:33 +00002948
Chris Lattner3df241e2006-04-08 23:07:04 +00002949<!-- ======================================================================= -->
2950<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00002951 <a name="aggregateops">Aggregate Operations</a>
2952</div>
2953
2954<div class="doc_text">
2955
2956<p>LLVM supports several instructions for working with aggregate values.
2957</p>
2958
2959</div>
2960
2961<!-- _______________________________________________________________________ -->
2962<div class="doc_subsubsection">
2963 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
2964</div>
2965
2966<div class="doc_text">
2967
2968<h5>Syntax:</h5>
2969
2970<pre>
2971 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
2972</pre>
2973
2974<h5>Overview:</h5>
2975
2976<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002977The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
2978or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002979</p>
2980
2981
2982<h5>Arguments:</h5>
2983
2984<p>
2985The first operand of an '<tt>extractvalue</tt>' instruction is a
2986value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002987type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00002988in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00002989'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2990</p>
2991
2992<h5>Semantics:</h5>
2993
2994<p>
2995The result is the value at the position in the aggregate specified by
2996the index operands.
2997</p>
2998
2999<h5>Example:</h5>
3000
3001<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003002 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003003</pre>
3004</div>
3005
3006
3007<!-- _______________________________________________________________________ -->
3008<div class="doc_subsubsection">
3009 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3010</div>
3011
3012<div class="doc_text">
3013
3014<h5>Syntax:</h5>
3015
3016<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003017 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003018</pre>
3019
3020<h5>Overview:</h5>
3021
3022<p>
3023The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003024into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003025</p>
3026
3027
3028<h5>Arguments:</h5>
3029
3030<p>
3031The first operand of an '<tt>insertvalue</tt>' instruction is a
3032value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3033The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003034The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003035indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003036indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003037'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3038The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003039by the indices.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003040
3041<h5>Semantics:</h5>
3042
3043<p>
3044The result is an aggregate of the same type as <tt>val</tt>. Its
3045value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003046specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003047</p>
3048
3049<h5>Example:</h5>
3050
3051<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003052 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003053</pre>
3054</div>
3055
3056
3057<!-- ======================================================================= -->
3058<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003059 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003060</div>
3061
Misha Brukman9d0919f2003-11-08 01:05:38 +00003062<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003063
Chris Lattner261efe92003-11-25 01:02:51 +00003064<p>A key design point of an SSA-based representation is how it
3065represents memory. In LLVM, no memory locations are in SSA form, which
3066makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003067allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003068
Misha Brukman9d0919f2003-11-08 01:05:38 +00003069</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003070
Chris Lattner00950542001-06-06 20:29:01 +00003071<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003072<div class="doc_subsubsection">
3073 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3074</div>
3075
Misha Brukman9d0919f2003-11-08 01:05:38 +00003076<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003077
Chris Lattner00950542001-06-06 20:29:01 +00003078<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003079
3080<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003081 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003082</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003083
Chris Lattner00950542001-06-06 20:29:01 +00003084<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003085
Chris Lattner261efe92003-11-25 01:02:51 +00003086<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003087heap and returns a pointer to it. The object is always allocated in the generic
3088address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003089
Chris Lattner00950542001-06-06 20:29:01 +00003090<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003091
3092<p>The '<tt>malloc</tt>' instruction allocates
3093<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003094bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003095appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003096number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003097If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003098be aligned to at least that boundary. If not specified, or if zero, the target can
3099choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003100
Misha Brukman9d0919f2003-11-08 01:05:38 +00003101<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003102
Chris Lattner00950542001-06-06 20:29:01 +00003103<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003104
Chris Lattner261efe92003-11-25 01:02:51 +00003105<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattner72ed2002008-04-19 21:01:16 +00003106a pointer is returned. The result of a zero byte allocattion is undefined. The
3107result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003108
Chris Lattner2cbdc452005-11-06 08:02:57 +00003109<h5>Example:</h5>
3110
3111<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003112 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003113
Bill Wendlingaac388b2007-05-29 09:42:13 +00003114 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3115 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3116 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3117 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3118 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003119</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003120</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003121
Chris Lattner00950542001-06-06 20:29:01 +00003122<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003123<div class="doc_subsubsection">
3124 <a name="i_free">'<tt>free</tt>' Instruction</a>
3125</div>
3126
Misha Brukman9d0919f2003-11-08 01:05:38 +00003127<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003128
Chris Lattner00950542001-06-06 20:29:01 +00003129<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003130
3131<pre>
3132 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003133</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003134
Chris Lattner00950542001-06-06 20:29:01 +00003135<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003136
Chris Lattner261efe92003-11-25 01:02:51 +00003137<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003138memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003139
Chris Lattner00950542001-06-06 20:29:01 +00003140<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003141
Chris Lattner261efe92003-11-25 01:02:51 +00003142<p>'<tt>value</tt>' shall be a pointer value that points to a value
3143that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3144instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003145
Chris Lattner00950542001-06-06 20:29:01 +00003146<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003147
John Criswell9e2485c2004-12-10 15:51:16 +00003148<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003149after this instruction executes. If the pointer is null, the operation
3150is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003151
Chris Lattner00950542001-06-06 20:29:01 +00003152<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003153
3154<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003155 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3156 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003157</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003158</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003159
Chris Lattner00950542001-06-06 20:29:01 +00003160<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003161<div class="doc_subsubsection">
3162 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3163</div>
3164
Misha Brukman9d0919f2003-11-08 01:05:38 +00003165<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003166
Chris Lattner00950542001-06-06 20:29:01 +00003167<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003168
3169<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003170 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003171</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003172
Chris Lattner00950542001-06-06 20:29:01 +00003173<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003174
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003175<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3176currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003177returns to its caller. The object is always allocated in the generic address
3178space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003179
Chris Lattner00950542001-06-06 20:29:01 +00003180<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003181
John Criswell9e2485c2004-12-10 15:51:16 +00003182<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003183bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003184appropriate type to the program. If "NumElements" is specified, it is the
3185number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003186If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003187to be aligned to at least that boundary. If not specified, or if zero, the target
3188can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003189
Misha Brukman9d0919f2003-11-08 01:05:38 +00003190<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003191
Chris Lattner00950542001-06-06 20:29:01 +00003192<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003193
Chris Lattner72ed2002008-04-19 21:01:16 +00003194<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3195there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003196memory is automatically released when the function returns. The '<tt>alloca</tt>'
3197instruction is commonly used to represent automatic variables that must
3198have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003199 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003200instructions), the memory is reclaimed. Allocating zero bytes
3201is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003202
Chris Lattner00950542001-06-06 20:29:01 +00003203<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003204
3205<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003206 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003207 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3208 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003209 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003210</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003211</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003212
Chris Lattner00950542001-06-06 20:29:01 +00003213<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003214<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3215Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003216<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003217<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003218<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003219<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003220<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003221<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003222<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003223address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003224 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003225marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003226the number or order of execution of this <tt>load</tt> with other
3227volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3228instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003229<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003230The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003231(that is, the alignment of the memory address). A value of 0 or an
3232omitted "align" argument means that the operation has the preferential
3233alignment for the target. It is the responsibility of the code emitter
3234to ensure that the alignment information is correct. Overestimating
3235the alignment results in an undefined behavior. Underestimating the
3236alignment may produce less efficient code. An alignment of 1 is always
3237safe.
3238</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003239<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003240<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003241<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003242<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003243 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003244 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3245 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003246</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003247</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003248<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003249<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3250Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003251<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003252<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003253<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3254 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003255</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003256<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003257<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003258<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003259<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003260to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003261operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3262of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003263operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003264optimizer is not allowed to modify the number or order of execution of
3265this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3266 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003267<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003268The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003269(that is, the alignment of the memory address). A value of 0 or an
3270omitted "align" argument means that the operation has the preferential
3271alignment for the target. It is the responsibility of the code emitter
3272to ensure that the alignment information is correct. Overestimating
3273the alignment results in an undefined behavior. Underestimating the
3274alignment may produce less efficient code. An alignment of 1 is always
3275safe.
3276</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003277<h5>Semantics:</h5>
3278<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3279at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003280<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003281<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003282 store i32 3, i32* %ptr <i>; yields {void}</i>
3283 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003284</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003285</div>
3286
Chris Lattner2b7d3202002-05-06 03:03:22 +00003287<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003288<div class="doc_subsubsection">
3289 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3290</div>
3291
Misha Brukman9d0919f2003-11-08 01:05:38 +00003292<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003293<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003294<pre>
3295 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
3296</pre>
3297
Chris Lattner7faa8832002-04-14 06:13:44 +00003298<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003299
3300<p>
3301The '<tt>getelementptr</tt>' instruction is used to get the address of a
3302subelement of an aggregate data structure.</p>
3303
Chris Lattner7faa8832002-04-14 06:13:44 +00003304<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003305
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003306<p>This instruction takes a list of integer operands that indicate what
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003307elements of the aggregate object to index to. The actual types of the arguments
3308provided depend on the type of the first pointer argument. The
3309'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00003310levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerca86e162006-12-31 07:07:53 +00003311structure, only <tt>i32</tt> integer constants are allowed. When indexing
Chris Lattner05d67092008-04-24 05:59:56 +00003312into an array or pointer, only integers of 32 or 64 bits are allowed; 32-bit
3313values will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003314
Chris Lattner261efe92003-11-25 01:02:51 +00003315<p>For example, let's consider a C code fragment and how it gets
3316compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003317
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003318<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003319<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003320struct RT {
3321 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003322 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003323 char C;
3324};
3325struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003326 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003327 double Y;
3328 struct RT Z;
3329};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003330
Chris Lattnercabc8462007-05-29 15:43:56 +00003331int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003332 return &amp;s[1].Z.B[5][13];
3333}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003334</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003335</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003336
Misha Brukman9d0919f2003-11-08 01:05:38 +00003337<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003338
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003339<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003340<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003341%RT = type { i8 , [10 x [20 x i32]], i8 }
3342%ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003343
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003344define i32* %foo(%ST* %s) {
3345entry:
3346 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3347 ret i32* %reg
3348}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003349</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003350</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003351
Chris Lattner7faa8832002-04-14 06:13:44 +00003352<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003353
3354<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00003355on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003356and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencer42ddd842006-12-03 16:53:48 +00003357<a href="#t_integer">integer</a> type but the value will always be sign extended
Chris Lattner4316dec2008-04-02 00:38:26 +00003358to 64-bits. <a href="#t_struct">Structure</a> and <a href="#t_pstruct">packed
3359structure</a> types require <tt>i32</tt> <b>constants</b>.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003360
Misha Brukman9d0919f2003-11-08 01:05:38 +00003361<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003362type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003363}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003364the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3365i8 }</tt>' type, another structure. The third index indexes into the second
3366element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003367array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003368'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3369to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003370
Chris Lattner261efe92003-11-25 01:02:51 +00003371<p>Note that it is perfectly legal to index partially through a
3372structure, returning a pointer to an inner element. Because of this,
3373the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003374
3375<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003376 define i32* %foo(%ST* %s) {
3377 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003378 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3379 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003380 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3381 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3382 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003383 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003384</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003385
3386<p>Note that it is undefined to access an array out of bounds: array and
3387pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003388The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003389defined to be accessible as variable length arrays, which requires access
3390beyond the zero'th element.</p>
3391
Chris Lattner884a9702006-08-15 00:45:58 +00003392<p>The getelementptr instruction is often confusing. For some more insight
3393into how it works, see <a href="GetElementPtr.html">the getelementptr
3394FAQ</a>.</p>
3395
Chris Lattner7faa8832002-04-14 06:13:44 +00003396<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003397
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003398<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003399 <i>; yields [12 x i8]*:aptr</i>
3400 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003401</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003402</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003403
Chris Lattner00950542001-06-06 20:29:01 +00003404<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003405<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003406</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003407<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003408<p>The instructions in this category are the conversion instructions (casting)
3409which all take a single operand and a type. They perform various bit conversions
3410on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003411</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003412
Chris Lattner6536cfe2002-05-06 22:08:29 +00003413<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003414<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003415 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3416</div>
3417<div class="doc_text">
3418
3419<h5>Syntax:</h5>
3420<pre>
3421 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3422</pre>
3423
3424<h5>Overview:</h5>
3425<p>
3426The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3427</p>
3428
3429<h5>Arguments:</h5>
3430<p>
3431The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3432be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003433and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003434type. The bit size of <tt>value</tt> must be larger than the bit size of
3435<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003436
3437<h5>Semantics:</h5>
3438<p>
3439The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003440and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3441larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3442It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003443
3444<h5>Example:</h5>
3445<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003446 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003447 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3448 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003449</pre>
3450</div>
3451
3452<!-- _______________________________________________________________________ -->
3453<div class="doc_subsubsection">
3454 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3455</div>
3456<div class="doc_text">
3457
3458<h5>Syntax:</h5>
3459<pre>
3460 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3461</pre>
3462
3463<h5>Overview:</h5>
3464<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3465<tt>ty2</tt>.</p>
3466
3467
3468<h5>Arguments:</h5>
3469<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003470<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3471also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003472<tt>value</tt> must be smaller than the bit size of the destination type,
3473<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003474
3475<h5>Semantics:</h5>
3476<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003477bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003478
Reid Spencerb5929522007-01-12 15:46:11 +00003479<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003480
3481<h5>Example:</h5>
3482<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003483 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003484 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003485</pre>
3486</div>
3487
3488<!-- _______________________________________________________________________ -->
3489<div class="doc_subsubsection">
3490 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3491</div>
3492<div class="doc_text">
3493
3494<h5>Syntax:</h5>
3495<pre>
3496 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3497</pre>
3498
3499<h5>Overview:</h5>
3500<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3501
3502<h5>Arguments:</h5>
3503<p>
3504The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003505<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3506also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003507<tt>value</tt> must be smaller than the bit size of the destination type,
3508<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003509
3510<h5>Semantics:</h5>
3511<p>
3512The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3513bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003514the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003515
Reid Spencerc78f3372007-01-12 03:35:51 +00003516<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003517
3518<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003519<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003520 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003521 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003522</pre>
3523</div>
3524
3525<!-- _______________________________________________________________________ -->
3526<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003527 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3528</div>
3529
3530<div class="doc_text">
3531
3532<h5>Syntax:</h5>
3533
3534<pre>
3535 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3536</pre>
3537
3538<h5>Overview:</h5>
3539<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3540<tt>ty2</tt>.</p>
3541
3542
3543<h5>Arguments:</h5>
3544<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3545 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3546cast it to. The size of <tt>value</tt> must be larger than the size of
3547<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3548<i>no-op cast</i>.</p>
3549
3550<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003551<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3552<a href="#t_floating">floating point</a> type to a smaller
3553<a href="#t_floating">floating point</a> type. If the value cannot fit within
3554the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003555
3556<h5>Example:</h5>
3557<pre>
3558 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3559 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3560</pre>
3561</div>
3562
3563<!-- _______________________________________________________________________ -->
3564<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003565 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3566</div>
3567<div class="doc_text">
3568
3569<h5>Syntax:</h5>
3570<pre>
3571 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3572</pre>
3573
3574<h5>Overview:</h5>
3575<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3576floating point value.</p>
3577
3578<h5>Arguments:</h5>
3579<p>The '<tt>fpext</tt>' instruction takes a
3580<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003581and a <a href="#t_floating">floating point</a> type to cast it to. The source
3582type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003583
3584<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003585<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003586<a href="#t_floating">floating point</a> type to a larger
3587<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003588used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003589<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003590
3591<h5>Example:</h5>
3592<pre>
3593 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3594 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3595</pre>
3596</div>
3597
3598<!-- _______________________________________________________________________ -->
3599<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003600 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003601</div>
3602<div class="doc_text">
3603
3604<h5>Syntax:</h5>
3605<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003606 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003607</pre>
3608
3609<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003610<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003611unsigned integer equivalent of type <tt>ty2</tt>.
3612</p>
3613
3614<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003615<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003616scalar or vector <a href="#t_floating">floating point</a> value, and a type
3617to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3618type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3619vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003620
3621<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003622<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003623<a href="#t_floating">floating point</a> operand into the nearest (rounding
3624towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3625the results are undefined.</p>
3626
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003627<h5>Example:</h5>
3628<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003629 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003630 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003631 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003632</pre>
3633</div>
3634
3635<!-- _______________________________________________________________________ -->
3636<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003637 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003638</div>
3639<div class="doc_text">
3640
3641<h5>Syntax:</h5>
3642<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003643 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003644</pre>
3645
3646<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003647<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003648<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003649</p>
3650
Chris Lattner6536cfe2002-05-06 22:08:29 +00003651<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003652<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003653scalar or vector <a href="#t_floating">floating point</a> value, and a type
3654to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3655type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3656vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003657
Chris Lattner6536cfe2002-05-06 22:08:29 +00003658<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003659<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003660<a href="#t_floating">floating point</a> operand into the nearest (rounding
3661towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3662the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003663
Chris Lattner33ba0d92001-07-09 00:26:23 +00003664<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003665<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003666 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003667 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003668 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003669</pre>
3670</div>
3671
3672<!-- _______________________________________________________________________ -->
3673<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003674 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003675</div>
3676<div class="doc_text">
3677
3678<h5>Syntax:</h5>
3679<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003680 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003681</pre>
3682
3683<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003684<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003685integer and converts that value to the <tt>ty2</tt> type.</p>
3686
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003687<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003688<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3689scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3690to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3691type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3692floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003693
3694<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003695<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003696integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003697the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003698
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003699<h5>Example:</h5>
3700<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003701 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003702 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003703</pre>
3704</div>
3705
3706<!-- _______________________________________________________________________ -->
3707<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003708 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003709</div>
3710<div class="doc_text">
3711
3712<h5>Syntax:</h5>
3713<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003714 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003715</pre>
3716
3717<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003718<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003719integer and converts that value to the <tt>ty2</tt> type.</p>
3720
3721<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003722<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3723scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3724to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3725type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3726floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003727
3728<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003729<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003730integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003731the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003732
3733<h5>Example:</h5>
3734<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003735 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003736 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003737</pre>
3738</div>
3739
3740<!-- _______________________________________________________________________ -->
3741<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003742 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3743</div>
3744<div class="doc_text">
3745
3746<h5>Syntax:</h5>
3747<pre>
3748 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3749</pre>
3750
3751<h5>Overview:</h5>
3752<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3753the integer type <tt>ty2</tt>.</p>
3754
3755<h5>Arguments:</h5>
3756<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003757must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Reid Spencer72679252006-11-11 21:00:47 +00003758<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3759
3760<h5>Semantics:</h5>
3761<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3762<tt>ty2</tt> by interpreting the pointer value as an integer and either
3763truncating or zero extending that value to the size of the integer type. If
3764<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3765<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003766are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3767change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003768
3769<h5>Example:</h5>
3770<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003771 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3772 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003773</pre>
3774</div>
3775
3776<!-- _______________________________________________________________________ -->
3777<div class="doc_subsubsection">
3778 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3779</div>
3780<div class="doc_text">
3781
3782<h5>Syntax:</h5>
3783<pre>
3784 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3785</pre>
3786
3787<h5>Overview:</h5>
3788<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3789a pointer type, <tt>ty2</tt>.</p>
3790
3791<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003792<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003793value to cast, and a type to cast it to, which must be a
Anton Korobeynikov7f705592007-01-12 19:20:47 +00003794<a href="#t_pointer">pointer</a> type.
Reid Spencer72679252006-11-11 21:00:47 +00003795
3796<h5>Semantics:</h5>
3797<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3798<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3799the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3800size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3801the size of a pointer then a zero extension is done. If they are the same size,
3802nothing is done (<i>no-op cast</i>).</p>
3803
3804<h5>Example:</h5>
3805<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003806 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3807 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3808 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003809</pre>
3810</div>
3811
3812<!-- _______________________________________________________________________ -->
3813<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003814 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003815</div>
3816<div class="doc_text">
3817
3818<h5>Syntax:</h5>
3819<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003820 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003821</pre>
3822
3823<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003824
Reid Spencer5c0ef472006-11-11 23:08:07 +00003825<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003826<tt>ty2</tt> without changing any bits.</p>
3827
3828<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003829
Reid Spencer5c0ef472006-11-11 23:08:07 +00003830<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00003831a non-aggregate first class value, and a type to cast it to, which must also be
3832a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
3833<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003834and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00003835type is a pointer, the destination type must also be a pointer. This
3836instruction supports bitwise conversion of vectors to integers and to vectors
3837of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003838
3839<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003840<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003841<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3842this conversion. The conversion is done as if the <tt>value</tt> had been
3843stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3844converted to other pointer types with this instruction. To convert pointers to
3845other types, use the <a href="#i_inttoptr">inttoptr</a> or
3846<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003847
3848<h5>Example:</h5>
3849<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003850 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003851 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3852 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003853</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003854</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003855
Reid Spencer2fd21e62006-11-08 01:18:52 +00003856<!-- ======================================================================= -->
3857<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3858<div class="doc_text">
3859<p>The instructions in this category are the "miscellaneous"
3860instructions, which defy better classification.</p>
3861</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003862
3863<!-- _______________________________________________________________________ -->
3864<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3865</div>
3866<div class="doc_text">
3867<h5>Syntax:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003868<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003869</pre>
3870<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003871<p>The '<tt>icmp</tt>' instruction returns a boolean value or
3872a vector of boolean values based on comparison
3873of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003874<h5>Arguments:</h5>
3875<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003876the condition code indicating the kind of comparison to perform. It is not
3877a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003878<ol>
3879 <li><tt>eq</tt>: equal</li>
3880 <li><tt>ne</tt>: not equal </li>
3881 <li><tt>ugt</tt>: unsigned greater than</li>
3882 <li><tt>uge</tt>: unsigned greater or equal</li>
3883 <li><tt>ult</tt>: unsigned less than</li>
3884 <li><tt>ule</tt>: unsigned less or equal</li>
3885 <li><tt>sgt</tt>: signed greater than</li>
3886 <li><tt>sge</tt>: signed greater or equal</li>
3887 <li><tt>slt</tt>: signed less than</li>
3888 <li><tt>sle</tt>: signed less or equal</li>
3889</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003890<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00003891<a href="#t_pointer">pointer</a>
3892or integer <a href="#t_vector">vector</a> typed.
3893They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003894<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003895<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00003896the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00003897yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003898<ol>
3899 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3900 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3901 </li>
3902 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3903 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3904 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003905 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003906 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003907 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003908 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003909 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003910 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003911 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003912 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003913 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003914 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003915 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003916 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003917 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003918 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003919 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003920</ol>
3921<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00003922values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003923<p>If the operands are integer vectors, then they are compared
3924element by element. The result is an <tt>i1</tt> vector with
3925the same number of elements as the values being compared.
3926Otherwise, the result is an <tt>i1</tt>.
3927</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003928
3929<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003930<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3931 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3932 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3933 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3934 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3935 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003936</pre>
3937</div>
3938
3939<!-- _______________________________________________________________________ -->
3940<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3941</div>
3942<div class="doc_text">
3943<h5>Syntax:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003944<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003945</pre>
3946<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003947<p>The '<tt>fcmp</tt>' instruction returns a boolean value
3948or vector of boolean values based on comparison
3949of its operands.
3950<p>
3951If the operands are floating point scalars, then the result
3952type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
3953</p>
3954<p>If the operands are floating point vectors, then the result type
3955is a vector of boolean with the same number of elements as the
3956operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003957<h5>Arguments:</h5>
3958<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003959the condition code indicating the kind of comparison to perform. It is not
3960a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003961<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00003962 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003963 <li><tt>oeq</tt>: ordered and equal</li>
3964 <li><tt>ogt</tt>: ordered and greater than </li>
3965 <li><tt>oge</tt>: ordered and greater than or equal</li>
3966 <li><tt>olt</tt>: ordered and less than </li>
3967 <li><tt>ole</tt>: ordered and less than or equal</li>
3968 <li><tt>one</tt>: ordered and not equal</li>
3969 <li><tt>ord</tt>: ordered (no nans)</li>
3970 <li><tt>ueq</tt>: unordered or equal</li>
3971 <li><tt>ugt</tt>: unordered or greater than </li>
3972 <li><tt>uge</tt>: unordered or greater than or equal</li>
3973 <li><tt>ult</tt>: unordered or less than </li>
3974 <li><tt>ule</tt>: unordered or less than or equal</li>
3975 <li><tt>une</tt>: unordered or not equal</li>
3976 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003977 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003978</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003979<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00003980<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003981<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
3982either a <a href="#t_floating">floating point</a> type
3983or a <a href="#t_vector">vector</a> of floating point type.
3984They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003985<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003986<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003987according to the condition code given as <tt>cond</tt>.
3988If the operands are vectors, then the vectors are compared
3989element by element.
3990Each comparison performed
3991always yields an <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003992<ol>
3993 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003994 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003995 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003996 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003997 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003998 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003999 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004000 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004001 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004002 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004003 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004004 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004005 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004006 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4007 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004008 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004009 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004010 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004011 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004012 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004013 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004014 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004015 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004016 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004017 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004018 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004019 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004020 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4021</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004022
4023<h5>Example:</h5>
4024<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004025 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4026 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4027 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004028</pre>
4029</div>
4030
Reid Spencer2fd21e62006-11-08 01:18:52 +00004031<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004032<div class="doc_subsubsection">
4033 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4034</div>
4035<div class="doc_text">
4036<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004037<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004038</pre>
4039<h5>Overview:</h5>
4040<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4041element-wise comparison of its two integer vector operands.</p>
4042<h5>Arguments:</h5>
4043<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4044the condition code indicating the kind of comparison to perform. It is not
4045a value, just a keyword. The possible condition code are:
4046<ol>
4047 <li><tt>eq</tt>: equal</li>
4048 <li><tt>ne</tt>: not equal </li>
4049 <li><tt>ugt</tt>: unsigned greater than</li>
4050 <li><tt>uge</tt>: unsigned greater or equal</li>
4051 <li><tt>ult</tt>: unsigned less than</li>
4052 <li><tt>ule</tt>: unsigned less or equal</li>
4053 <li><tt>sgt</tt>: signed greater than</li>
4054 <li><tt>sge</tt>: signed greater or equal</li>
4055 <li><tt>slt</tt>: signed less than</li>
4056 <li><tt>sle</tt>: signed less or equal</li>
4057</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004058<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004059<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4060<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004061<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004062according to the condition code given as <tt>cond</tt>. The comparison yields a
4063<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4064identical type as the values being compared. The most significant bit in each
4065element is 1 if the element-wise comparison evaluates to true, and is 0
4066otherwise. All other bits of the result are undefined. The condition codes
4067are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
4068instruction</a>.
4069
4070<h5>Example:</h5>
4071<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004072 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4073 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004074</pre>
4075</div>
4076
4077<!-- _______________________________________________________________________ -->
4078<div class="doc_subsubsection">
4079 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4080</div>
4081<div class="doc_text">
4082<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004083<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004084<h5>Overview:</h5>
4085<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4086element-wise comparison of its two floating point vector operands. The output
4087elements have the same width as the input elements.</p>
4088<h5>Arguments:</h5>
4089<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4090the condition code indicating the kind of comparison to perform. It is not
4091a value, just a keyword. The possible condition code are:
4092<ol>
4093 <li><tt>false</tt>: no comparison, always returns false</li>
4094 <li><tt>oeq</tt>: ordered and equal</li>
4095 <li><tt>ogt</tt>: ordered and greater than </li>
4096 <li><tt>oge</tt>: ordered and greater than or equal</li>
4097 <li><tt>olt</tt>: ordered and less than </li>
4098 <li><tt>ole</tt>: ordered and less than or equal</li>
4099 <li><tt>one</tt>: ordered and not equal</li>
4100 <li><tt>ord</tt>: ordered (no nans)</li>
4101 <li><tt>ueq</tt>: unordered or equal</li>
4102 <li><tt>ugt</tt>: unordered or greater than </li>
4103 <li><tt>uge</tt>: unordered or greater than or equal</li>
4104 <li><tt>ult</tt>: unordered or less than </li>
4105 <li><tt>ule</tt>: unordered or less than or equal</li>
4106 <li><tt>une</tt>: unordered or not equal</li>
4107 <li><tt>uno</tt>: unordered (either nans)</li>
4108 <li><tt>true</tt>: no comparison, always returns true</li>
4109</ol>
4110<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4111<a href="#t_floating">floating point</a> typed. They must also be identical
4112types.</p>
4113<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004114<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004115according to the condition code given as <tt>cond</tt>. The comparison yields a
4116<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4117an identical number of elements as the values being compared, and each element
4118having identical with to the width of the floating point elements. The most
4119significant bit in each element is 1 if the element-wise comparison evaluates to
4120true, and is 0 otherwise. All other bits of the result are undefined. The
4121condition codes are evaluated identically to the
4122<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.
4123
4124<h5>Example:</h5>
4125<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004126 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4127 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt; <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004128</pre>
4129</div>
4130
4131<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004132<div class="doc_subsubsection">
4133 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4134</div>
4135
Reid Spencer2fd21e62006-11-08 01:18:52 +00004136<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004137
Reid Spencer2fd21e62006-11-08 01:18:52 +00004138<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004139
Reid Spencer2fd21e62006-11-08 01:18:52 +00004140<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4141<h5>Overview:</h5>
4142<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4143the SSA graph representing the function.</p>
4144<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004145
Jeff Cohenb627eab2007-04-29 01:07:00 +00004146<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004147field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4148as arguments, with one pair for each predecessor basic block of the
4149current block. Only values of <a href="#t_firstclass">first class</a>
4150type may be used as the value arguments to the PHI node. Only labels
4151may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004152
Reid Spencer2fd21e62006-11-08 01:18:52 +00004153<p>There must be no non-phi instructions between the start of a basic
4154block and the PHI instructions: i.e. PHI instructions must be first in
4155a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004156
Reid Spencer2fd21e62006-11-08 01:18:52 +00004157<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004158
Jeff Cohenb627eab2007-04-29 01:07:00 +00004159<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4160specified by the pair corresponding to the predecessor basic block that executed
4161just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004162
Reid Spencer2fd21e62006-11-08 01:18:52 +00004163<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004164<pre>
4165Loop: ; Infinite loop that counts from 0 on up...
4166 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4167 %nextindvar = add i32 %indvar, 1
4168 br label %Loop
4169</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004170</div>
4171
Chris Lattnercc37aae2004-03-12 05:50:16 +00004172<!-- _______________________________________________________________________ -->
4173<div class="doc_subsubsection">
4174 <a name="i_select">'<tt>select</tt>' Instruction</a>
4175</div>
4176
4177<div class="doc_text">
4178
4179<h5>Syntax:</h5>
4180
4181<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004182 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4183
4184 <i>selty</i> is either i1 or {&lt;N x i1&gt}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004185</pre>
4186
4187<h5>Overview:</h5>
4188
4189<p>
4190The '<tt>select</tt>' instruction is used to choose one value based on a
4191condition, without branching.
4192</p>
4193
4194
4195<h5>Arguments:</h5>
4196
4197<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004198The '<tt>select</tt>' instruction requires an 'i1' value or
4199a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004200condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004201type. If the val1/val2 are vectors and
4202the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004203individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004204</p>
4205
4206<h5>Semantics:</h5>
4207
4208<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004209If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004210value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004211</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004212<p>
4213If the condition is a vector of i1, then the value arguments must
4214be vectors of the same size, and the selection is done element
4215by element.
4216</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004217
4218<h5>Example:</h5>
4219
4220<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004221 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004222</pre>
4223</div>
4224
Robert Bocchino05ccd702006-01-15 20:48:27 +00004225
4226<!-- _______________________________________________________________________ -->
4227<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004228 <a name="i_call">'<tt>call</tt>' Instruction</a>
4229</div>
4230
Misha Brukman9d0919f2003-11-08 01:05:38 +00004231<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004232
Chris Lattner00950542001-06-06 20:29:01 +00004233<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004234<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004235 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00004236</pre>
4237
Chris Lattner00950542001-06-06 20:29:01 +00004238<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004239
Misha Brukman9d0919f2003-11-08 01:05:38 +00004240<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004241
Chris Lattner00950542001-06-06 20:29:01 +00004242<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004243
Misha Brukman9d0919f2003-11-08 01:05:38 +00004244<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004245
Chris Lattner6536cfe2002-05-06 22:08:29 +00004246<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004247 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004248 <p>The optional "tail" marker indicates whether the callee function accesses
4249 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004250 function call is eligible for tail call optimization. Note that calls may
4251 be marked "tail" even if they do not occur before a <a
4252 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00004253 </li>
4254 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004255 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004256 convention</a> the call should use. If none is specified, the call defaults
4257 to using C calling conventions.
4258 </li>
4259 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004260 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4261 the type of the return value. Functions that return no value are marked
4262 <tt><a href="#t_void">void</a></tt>.</p>
4263 </li>
4264 <li>
4265 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4266 value being invoked. The argument types must match the types implied by
4267 this signature. This type can be omitted if the function is not varargs
4268 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004269 </li>
4270 <li>
4271 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4272 be invoked. In most cases, this is a direct function invocation, but
4273 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004274 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004275 </li>
4276 <li>
4277 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004278 function signature argument types. All arguments must be of
4279 <a href="#t_firstclass">first class</a> type. If the function signature
4280 indicates the function accepts a variable number of arguments, the extra
4281 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004282 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004283</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004284
Chris Lattner00950542001-06-06 20:29:01 +00004285<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004286
Chris Lattner261efe92003-11-25 01:02:51 +00004287<p>The '<tt>call</tt>' instruction is used to cause control flow to
4288transfer to a specified function, with its incoming arguments bound to
4289the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4290instruction in the called function, control flow continues with the
4291instruction after the function call, and the return value of the
Chris Lattner772fccf2008-03-21 17:24:17 +00004292function is bound to the result argument. If the callee returns multiple
4293values then the return values of the function are only accessible through
4294the '<tt><a href="#i_getresult">getresult</a></tt>' instruction.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004295
Chris Lattner00950542001-06-06 20:29:01 +00004296<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004297
4298<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004299 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004300 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4301 %X = tail call i32 @foo() <i>; yields i32</i>
4302 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4303 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004304
4305 %struct.A = type { i32, i8 }
Chris Lattner772fccf2008-03-21 17:24:17 +00004306 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
4307 %gr = getresult %struct.A %r, 0 <i>; yields i32</i>
4308 %gr1 = getresult %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004309</pre>
4310
Misha Brukman9d0919f2003-11-08 01:05:38 +00004311</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004312
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004313<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004314<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004315 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004316</div>
4317
Misha Brukman9d0919f2003-11-08 01:05:38 +00004318<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004319
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004320<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004321
4322<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004323 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004324</pre>
4325
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004326<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004327
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004328<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004329the "variable argument" area of a function call. It is used to implement the
4330<tt>va_arg</tt> macro in C.</p>
4331
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004332<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004333
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004334<p>This instruction takes a <tt>va_list*</tt> value and the type of
4335the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004336increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004337actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004338
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004339<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004340
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004341<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4342type from the specified <tt>va_list</tt> and causes the
4343<tt>va_list</tt> to point to the next argument. For more information,
4344see the variable argument handling <a href="#int_varargs">Intrinsic
4345Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004346
4347<p>It is legal for this instruction to be called in a function which does not
4348take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004349function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004350
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004351<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004352href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004353argument.</p>
4354
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004355<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004356
4357<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4358
Misha Brukman9d0919f2003-11-08 01:05:38 +00004359</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004360
Devang Patelc3fc6df2008-03-10 20:49:15 +00004361<!-- _______________________________________________________________________ -->
4362<div class="doc_subsubsection">
4363 <a name="i_getresult">'<tt>getresult</tt>' Instruction</a>
4364</div>
4365
4366<div class="doc_text">
4367
4368<h5>Syntax:</h5>
4369<pre>
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004370 &lt;resultval&gt; = getresult &lt;type&gt; &lt;retval&gt;, &lt;index&gt;
Devang Patelc3fc6df2008-03-10 20:49:15 +00004371</pre>
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004372
Devang Patelc3fc6df2008-03-10 20:49:15 +00004373<h5>Overview:</h5>
4374
4375<p> The '<tt>getresult</tt>' instruction is used to extract individual values
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004376from a '<tt><a href="#i_call">call</a></tt>'
4377or '<tt><a href="#i_invoke">invoke</a></tt>' instruction that returns multiple
4378results.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004379
4380<h5>Arguments:</h5>
4381
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004382<p>The '<tt>getresult</tt>' instruction takes a call or invoke value as its
Chris Lattner1c406d72008-04-23 04:06:52 +00004383first argument, or an undef value. The value must have <a
4384href="#t_struct">structure type</a>. The second argument is a constant
4385unsigned index value which must be in range for the number of values returned
4386by the call.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004387
4388<h5>Semantics:</h5>
4389
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004390<p>The '<tt>getresult</tt>' instruction extracts the element identified by
4391'<tt>index</tt>' from the aggregate value.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004392
4393<h5>Example:</h5>
4394
4395<pre>
4396 %struct.A = type { i32, i8 }
4397
4398 %r = call %struct.A @foo()
Chris Lattner45c5e8b2008-03-21 17:20:51 +00004399 %gr = getresult %struct.A %r, 0 <i>; yields i32:%gr</i>
4400 %gr1 = getresult %struct.A %r, 1 <i>; yields i8:%gr1</i>
Devang Patelc3fc6df2008-03-10 20:49:15 +00004401 add i32 %gr, 42
4402 add i8 %gr1, 41
4403</pre>
4404
4405</div>
4406
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004407<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004408<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4409<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004410
Misha Brukman9d0919f2003-11-08 01:05:38 +00004411<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004412
4413<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004414well known names and semantics and are required to follow certain restrictions.
4415Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004416language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004417adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004418
John Criswellfc6b8952005-05-16 16:17:45 +00004419<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004420prefix is reserved in LLVM for intrinsic names; thus, function names may not
4421begin with this prefix. Intrinsic functions must always be external functions:
4422you cannot define the body of intrinsic functions. Intrinsic functions may
4423only be used in call or invoke instructions: it is illegal to take the address
4424of an intrinsic function. Additionally, because intrinsic functions are part
4425of the LLVM language, it is required if any are added that they be documented
4426here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004427
Chandler Carruth69940402007-08-04 01:51:18 +00004428<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4429a family of functions that perform the same operation but on different data
4430types. Because LLVM can represent over 8 million different integer types,
4431overloading is used commonly to allow an intrinsic function to operate on any
4432integer type. One or more of the argument types or the result type can be
4433overloaded to accept any integer type. Argument types may also be defined as
4434exactly matching a previous argument's type or the result type. This allows an
4435intrinsic function which accepts multiple arguments, but needs all of them to
4436be of the same type, to only be overloaded with respect to a single argument or
4437the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004438
Chandler Carruth69940402007-08-04 01:51:18 +00004439<p>Overloaded intrinsics will have the names of its overloaded argument types
4440encoded into its function name, each preceded by a period. Only those types
4441which are overloaded result in a name suffix. Arguments whose type is matched
4442against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4443take an integer of any width and returns an integer of exactly the same integer
4444width. This leads to a family of functions such as
4445<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4446Only one type, the return type, is overloaded, and only one type suffix is
4447required. Because the argument's type is matched against the return type, it
4448does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004449
4450<p>To learn how to add an intrinsic function, please see the
4451<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004452</p>
4453
Misha Brukman9d0919f2003-11-08 01:05:38 +00004454</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004455
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004456<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004457<div class="doc_subsection">
4458 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4459</div>
4460
Misha Brukman9d0919f2003-11-08 01:05:38 +00004461<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004462
Misha Brukman9d0919f2003-11-08 01:05:38 +00004463<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004464 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004465intrinsic functions. These functions are related to the similarly
4466named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004467
Chris Lattner261efe92003-11-25 01:02:51 +00004468<p>All of these functions operate on arguments that use a
4469target-specific value type "<tt>va_list</tt>". The LLVM assembly
4470language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004471transformations should be prepared to handle these functions regardless of
4472the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004473
Chris Lattner374ab302006-05-15 17:26:46 +00004474<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004475instruction and the variable argument handling intrinsic functions are
4476used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004477
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004478<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004479<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004480define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004481 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004482 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004483 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004484 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004485
4486 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004487 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004488
4489 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004490 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004491 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004492 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004493 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004494
4495 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004496 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004497 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004498}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004499
4500declare void @llvm.va_start(i8*)
4501declare void @llvm.va_copy(i8*, i8*)
4502declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004503</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004504</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004505
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004506</div>
4507
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004508<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004509<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004510 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004511</div>
4512
4513
Misha Brukman9d0919f2003-11-08 01:05:38 +00004514<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004515<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004516<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004517<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004518<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
4519<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4520href="#i_va_arg">va_arg</a></tt>.</p>
4521
4522<h5>Arguments:</h5>
4523
4524<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4525
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004526<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004527
4528<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4529macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004530<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004531<tt>va_arg</tt> will produce the first variable argument passed to the function.
4532Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004533last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004534
Misha Brukman9d0919f2003-11-08 01:05:38 +00004535</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004536
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004537<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004538<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004539 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004540</div>
4541
Misha Brukman9d0919f2003-11-08 01:05:38 +00004542<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004543<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004544<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004545<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004546
Jeff Cohenb627eab2007-04-29 01:07:00 +00004547<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004548which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004549or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004550
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004551<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004552
Jeff Cohenb627eab2007-04-29 01:07:00 +00004553<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004554
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004555<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004556
Misha Brukman9d0919f2003-11-08 01:05:38 +00004557<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004558macro available in C. In a target-dependent way, it destroys the
4559<tt>va_list</tt> element to which the argument points. Calls to <a
4560href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4561<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4562<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004563
Misha Brukman9d0919f2003-11-08 01:05:38 +00004564</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004565
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004566<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004567<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004568 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004569</div>
4570
Misha Brukman9d0919f2003-11-08 01:05:38 +00004571<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004572
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004573<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004574
4575<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004576 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004577</pre>
4578
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004579<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004580
Jeff Cohenb627eab2007-04-29 01:07:00 +00004581<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4582from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004583
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004584<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004585
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004586<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004587The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004588
Chris Lattnerd7923912004-05-23 21:06:01 +00004589
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004590<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004591
Jeff Cohenb627eab2007-04-29 01:07:00 +00004592<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4593macro available in C. In a target-dependent way, it copies the source
4594<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4595intrinsic is necessary because the <tt><a href="#int_va_start">
4596llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4597example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004598
Misha Brukman9d0919f2003-11-08 01:05:38 +00004599</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004600
Chris Lattner33aec9e2004-02-12 17:01:32 +00004601<!-- ======================================================================= -->
4602<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004603 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4604</div>
4605
4606<div class="doc_text">
4607
4608<p>
4609LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004610Collection</a> (GC) requires the implementation and generation of these
4611intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004612These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004613stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004614href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004615Front-ends for type-safe garbage collected languages should generate these
4616intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4617href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4618</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004619
4620<p>The garbage collection intrinsics only operate on objects in the generic
4621 address space (address space zero).</p>
4622
Chris Lattnerd7923912004-05-23 21:06:01 +00004623</div>
4624
4625<!-- _______________________________________________________________________ -->
4626<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004627 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004628</div>
4629
4630<div class="doc_text">
4631
4632<h5>Syntax:</h5>
4633
4634<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004635 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004636</pre>
4637
4638<h5>Overview:</h5>
4639
John Criswell9e2485c2004-12-10 15:51:16 +00004640<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004641the code generator, and allows some metadata to be associated with it.</p>
4642
4643<h5>Arguments:</h5>
4644
4645<p>The first argument specifies the address of a stack object that contains the
4646root pointer. The second pointer (which must be either a constant or a global
4647value address) contains the meta-data to be associated with the root.</p>
4648
4649<h5>Semantics:</h5>
4650
Chris Lattner05d67092008-04-24 05:59:56 +00004651<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004652location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004653the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4654intrinsic may only be used in a function which <a href="#gc">specifies a GC
4655algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004656
4657</div>
4658
4659
4660<!-- _______________________________________________________________________ -->
4661<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004662 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004663</div>
4664
4665<div class="doc_text">
4666
4667<h5>Syntax:</h5>
4668
4669<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004670 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004671</pre>
4672
4673<h5>Overview:</h5>
4674
4675<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4676locations, allowing garbage collector implementations that require read
4677barriers.</p>
4678
4679<h5>Arguments:</h5>
4680
Chris Lattner80626e92006-03-14 20:02:51 +00004681<p>The second argument is the address to read from, which should be an address
4682allocated from the garbage collector. The first object is a pointer to the
4683start of the referenced object, if needed by the language runtime (otherwise
4684null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004685
4686<h5>Semantics:</h5>
4687
4688<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4689instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004690garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4691may only be used in a function which <a href="#gc">specifies a GC
4692algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004693
4694</div>
4695
4696
4697<!-- _______________________________________________________________________ -->
4698<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004699 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004700</div>
4701
4702<div class="doc_text">
4703
4704<h5>Syntax:</h5>
4705
4706<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004707 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004708</pre>
4709
4710<h5>Overview:</h5>
4711
4712<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4713locations, allowing garbage collector implementations that require write
4714barriers (such as generational or reference counting collectors).</p>
4715
4716<h5>Arguments:</h5>
4717
Chris Lattner80626e92006-03-14 20:02:51 +00004718<p>The first argument is the reference to store, the second is the start of the
4719object to store it to, and the third is the address of the field of Obj to
4720store to. If the runtime does not require a pointer to the object, Obj may be
4721null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004722
4723<h5>Semantics:</h5>
4724
4725<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4726instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004727garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4728may only be used in a function which <a href="#gc">specifies a GC
4729algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004730
4731</div>
4732
4733
4734
4735<!-- ======================================================================= -->
4736<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004737 <a name="int_codegen">Code Generator Intrinsics</a>
4738</div>
4739
4740<div class="doc_text">
4741<p>
4742These intrinsics are provided by LLVM to expose special features that may only
4743be implemented with code generator support.
4744</p>
4745
4746</div>
4747
4748<!-- _______________________________________________________________________ -->
4749<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004750 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004751</div>
4752
4753<div class="doc_text">
4754
4755<h5>Syntax:</h5>
4756<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004757 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004758</pre>
4759
4760<h5>Overview:</h5>
4761
4762<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004763The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4764target-specific value indicating the return address of the current function
4765or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004766</p>
4767
4768<h5>Arguments:</h5>
4769
4770<p>
4771The argument to this intrinsic indicates which function to return the address
4772for. Zero indicates the calling function, one indicates its caller, etc. The
4773argument is <b>required</b> to be a constant integer value.
4774</p>
4775
4776<h5>Semantics:</h5>
4777
4778<p>
4779The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4780the return address of the specified call frame, or zero if it cannot be
4781identified. The value returned by this intrinsic is likely to be incorrect or 0
4782for arguments other than zero, so it should only be used for debugging purposes.
4783</p>
4784
4785<p>
4786Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004787aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004788source-language caller.
4789</p>
4790</div>
4791
4792
4793<!-- _______________________________________________________________________ -->
4794<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004795 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004796</div>
4797
4798<div class="doc_text">
4799
4800<h5>Syntax:</h5>
4801<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004802 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004803</pre>
4804
4805<h5>Overview:</h5>
4806
4807<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004808The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4809target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004810</p>
4811
4812<h5>Arguments:</h5>
4813
4814<p>
4815The argument to this intrinsic indicates which function to return the frame
4816pointer for. Zero indicates the calling function, one indicates its caller,
4817etc. The argument is <b>required</b> to be a constant integer value.
4818</p>
4819
4820<h5>Semantics:</h5>
4821
4822<p>
4823The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4824the frame address of the specified call frame, or zero if it cannot be
4825identified. The value returned by this intrinsic is likely to be incorrect or 0
4826for arguments other than zero, so it should only be used for debugging purposes.
4827</p>
4828
4829<p>
4830Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004831aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004832source-language caller.
4833</p>
4834</div>
4835
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004836<!-- _______________________________________________________________________ -->
4837<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004838 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004839</div>
4840
4841<div class="doc_text">
4842
4843<h5>Syntax:</h5>
4844<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004845 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004846</pre>
4847
4848<h5>Overview:</h5>
4849
4850<p>
4851The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004852the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004853<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4854features like scoped automatic variable sized arrays in C99.
4855</p>
4856
4857<h5>Semantics:</h5>
4858
4859<p>
4860This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004861href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004862<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4863<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4864state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4865practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4866that were allocated after the <tt>llvm.stacksave</tt> was executed.
4867</p>
4868
4869</div>
4870
4871<!-- _______________________________________________________________________ -->
4872<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004873 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004874</div>
4875
4876<div class="doc_text">
4877
4878<h5>Syntax:</h5>
4879<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004880 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004881</pre>
4882
4883<h5>Overview:</h5>
4884
4885<p>
4886The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4887the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004888href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004889useful for implementing language features like scoped automatic variable sized
4890arrays in C99.
4891</p>
4892
4893<h5>Semantics:</h5>
4894
4895<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004896See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004897</p>
4898
4899</div>
4900
4901
4902<!-- _______________________________________________________________________ -->
4903<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004904 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004905</div>
4906
4907<div class="doc_text">
4908
4909<h5>Syntax:</h5>
4910<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004911 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004912</pre>
4913
4914<h5>Overview:</h5>
4915
4916
4917<p>
4918The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004919a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4920no
4921effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004922characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004923</p>
4924
4925<h5>Arguments:</h5>
4926
4927<p>
4928<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4929determining if the fetch should be for a read (0) or write (1), and
4930<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004931locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004932<tt>locality</tt> arguments must be constant integers.
4933</p>
4934
4935<h5>Semantics:</h5>
4936
4937<p>
4938This intrinsic does not modify the behavior of the program. In particular,
4939prefetches cannot trap and do not produce a value. On targets that support this
4940intrinsic, the prefetch can provide hints to the processor cache for better
4941performance.
4942</p>
4943
4944</div>
4945
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004946<!-- _______________________________________________________________________ -->
4947<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004948 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004949</div>
4950
4951<div class="doc_text">
4952
4953<h5>Syntax:</h5>
4954<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004955 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004956</pre>
4957
4958<h5>Overview:</h5>
4959
4960
4961<p>
John Criswellfc6b8952005-05-16 16:17:45 +00004962The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00004963(PC) in a region of
4964code to simulators and other tools. The method is target specific, but it is
4965expected that the marker will use exported symbols to transmit the PC of the
4966marker.
4967The marker makes no guarantees that it will remain with any specific instruction
4968after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00004969optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00004970correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004971</p>
4972
4973<h5>Arguments:</h5>
4974
4975<p>
4976<tt>id</tt> is a numerical id identifying the marker.
4977</p>
4978
4979<h5>Semantics:</h5>
4980
4981<p>
4982This intrinsic does not modify the behavior of the program. Backends that do not
4983support this intrinisic may ignore it.
4984</p>
4985
4986</div>
4987
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004988<!-- _______________________________________________________________________ -->
4989<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004990 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004991</div>
4992
4993<div class="doc_text">
4994
4995<h5>Syntax:</h5>
4996<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004997 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004998</pre>
4999
5000<h5>Overview:</h5>
5001
5002
5003<p>
5004The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5005counter register (or similar low latency, high accuracy clocks) on those targets
5006that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5007As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5008should only be used for small timings.
5009</p>
5010
5011<h5>Semantics:</h5>
5012
5013<p>
5014When directly supported, reading the cycle counter should not modify any memory.
5015Implementations are allowed to either return a application specific value or a
5016system wide value. On backends without support, this is lowered to a constant 0.
5017</p>
5018
5019</div>
5020
Chris Lattner10610642004-02-14 04:08:35 +00005021<!-- ======================================================================= -->
5022<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005023 <a name="int_libc">Standard C Library Intrinsics</a>
5024</div>
5025
5026<div class="doc_text">
5027<p>
Chris Lattner10610642004-02-14 04:08:35 +00005028LLVM provides intrinsics for a few important standard C library functions.
5029These intrinsics allow source-language front-ends to pass information about the
5030alignment of the pointer arguments to the code generator, providing opportunity
5031for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005032</p>
5033
5034</div>
5035
5036<!-- _______________________________________________________________________ -->
5037<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005038 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005039</div>
5040
5041<div class="doc_text">
5042
5043<h5>Syntax:</h5>
5044<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005045 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005046 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005047 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005048 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005049</pre>
5050
5051<h5>Overview:</h5>
5052
5053<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005054The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005055location to the destination location.
5056</p>
5057
5058<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005059Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5060intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005061</p>
5062
5063<h5>Arguments:</h5>
5064
5065<p>
5066The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005067the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005068specifying the number of bytes to copy, and the fourth argument is the alignment
5069of the source and destination locations.
5070</p>
5071
Chris Lattner3301ced2004-02-12 21:18:15 +00005072<p>
5073If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005074the caller guarantees that both the source and destination pointers are aligned
5075to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005076</p>
5077
Chris Lattner33aec9e2004-02-12 17:01:32 +00005078<h5>Semantics:</h5>
5079
5080<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005081The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005082location to the destination location, which are not allowed to overlap. It
5083copies "len" bytes of memory over. If the argument is known to be aligned to
5084some boundary, this can be specified as the fourth argument, otherwise it should
5085be set to 0 or 1.
5086</p>
5087</div>
5088
5089
Chris Lattner0eb51b42004-02-12 18:10:10 +00005090<!-- _______________________________________________________________________ -->
5091<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005092 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005093</div>
5094
5095<div class="doc_text">
5096
5097<h5>Syntax:</h5>
5098<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005099 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005100 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005101 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005102 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005103</pre>
5104
5105<h5>Overview:</h5>
5106
5107<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005108The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5109location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005110'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005111</p>
5112
5113<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005114Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5115intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005116</p>
5117
5118<h5>Arguments:</h5>
5119
5120<p>
5121The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005122the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005123specifying the number of bytes to copy, and the fourth argument is the alignment
5124of the source and destination locations.
5125</p>
5126
Chris Lattner3301ced2004-02-12 21:18:15 +00005127<p>
5128If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005129the caller guarantees that the source and destination pointers are aligned to
5130that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005131</p>
5132
Chris Lattner0eb51b42004-02-12 18:10:10 +00005133<h5>Semantics:</h5>
5134
5135<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005136The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005137location to the destination location, which may overlap. It
5138copies "len" bytes of memory over. If the argument is known to be aligned to
5139some boundary, this can be specified as the fourth argument, otherwise it should
5140be set to 0 or 1.
5141</p>
5142</div>
5143
Chris Lattner8ff75902004-01-06 05:31:32 +00005144
Chris Lattner10610642004-02-14 04:08:35 +00005145<!-- _______________________________________________________________________ -->
5146<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005147 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005148</div>
5149
5150<div class="doc_text">
5151
5152<h5>Syntax:</h5>
5153<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005154 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005155 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005156 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005157 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005158</pre>
5159
5160<h5>Overview:</h5>
5161
5162<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005163The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005164byte value.
5165</p>
5166
5167<p>
5168Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5169does not return a value, and takes an extra alignment argument.
5170</p>
5171
5172<h5>Arguments:</h5>
5173
5174<p>
5175The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005176byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005177argument specifying the number of bytes to fill, and the fourth argument is the
5178known alignment of destination location.
5179</p>
5180
5181<p>
5182If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005183the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005184</p>
5185
5186<h5>Semantics:</h5>
5187
5188<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005189The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5190the
Chris Lattner10610642004-02-14 04:08:35 +00005191destination location. If the argument is known to be aligned to some boundary,
5192this can be specified as the fourth argument, otherwise it should be set to 0 or
51931.
5194</p>
5195</div>
5196
5197
Chris Lattner32006282004-06-11 02:28:03 +00005198<!-- _______________________________________________________________________ -->
5199<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005200 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005201</div>
5202
5203<div class="doc_text">
5204
5205<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005206<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005207floating point or vector of floating point type. Not all targets support all
5208types however.
Chris Lattnera4d74142005-07-21 01:29:16 +00005209<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005210 declare float @llvm.sqrt.f32(float %Val)
5211 declare double @llvm.sqrt.f64(double %Val)
5212 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5213 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5214 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005215</pre>
5216
5217<h5>Overview:</h5>
5218
5219<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005220The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005221returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005222<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005223negative numbers other than -0.0 (which allows for better optimization, because
5224there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5225defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005226</p>
5227
5228<h5>Arguments:</h5>
5229
5230<p>
5231The argument and return value are floating point numbers of the same type.
5232</p>
5233
5234<h5>Semantics:</h5>
5235
5236<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005237This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005238floating point number.
5239</p>
5240</div>
5241
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005242<!-- _______________________________________________________________________ -->
5243<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005244 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005245</div>
5246
5247<div class="doc_text">
5248
5249<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005250<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005251floating point or vector of floating point type. Not all targets support all
5252types however.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005253<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005254 declare float @llvm.powi.f32(float %Val, i32 %power)
5255 declare double @llvm.powi.f64(double %Val, i32 %power)
5256 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5257 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5258 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005259</pre>
5260
5261<h5>Overview:</h5>
5262
5263<p>
5264The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5265specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005266multiplications is not defined. When a vector of floating point type is
5267used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005268</p>
5269
5270<h5>Arguments:</h5>
5271
5272<p>
5273The second argument is an integer power, and the first is a value to raise to
5274that power.
5275</p>
5276
5277<h5>Semantics:</h5>
5278
5279<p>
5280This function returns the first value raised to the second power with an
5281unspecified sequence of rounding operations.</p>
5282</div>
5283
Dan Gohman91c284c2007-10-15 20:30:11 +00005284<!-- _______________________________________________________________________ -->
5285<div class="doc_subsubsection">
5286 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5287</div>
5288
5289<div class="doc_text">
5290
5291<h5>Syntax:</h5>
5292<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5293floating point or vector of floating point type. Not all targets support all
5294types however.
5295<pre>
5296 declare float @llvm.sin.f32(float %Val)
5297 declare double @llvm.sin.f64(double %Val)
5298 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5299 declare fp128 @llvm.sin.f128(fp128 %Val)
5300 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5301</pre>
5302
5303<h5>Overview:</h5>
5304
5305<p>
5306The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5307</p>
5308
5309<h5>Arguments:</h5>
5310
5311<p>
5312The argument and return value are floating point numbers of the same type.
5313</p>
5314
5315<h5>Semantics:</h5>
5316
5317<p>
5318This function returns the sine of the specified operand, returning the
5319same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005320conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005321</div>
5322
5323<!-- _______________________________________________________________________ -->
5324<div class="doc_subsubsection">
5325 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5326</div>
5327
5328<div class="doc_text">
5329
5330<h5>Syntax:</h5>
5331<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5332floating point or vector of floating point type. Not all targets support all
5333types however.
5334<pre>
5335 declare float @llvm.cos.f32(float %Val)
5336 declare double @llvm.cos.f64(double %Val)
5337 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5338 declare fp128 @llvm.cos.f128(fp128 %Val)
5339 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5340</pre>
5341
5342<h5>Overview:</h5>
5343
5344<p>
5345The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5346</p>
5347
5348<h5>Arguments:</h5>
5349
5350<p>
5351The argument and return value are floating point numbers of the same type.
5352</p>
5353
5354<h5>Semantics:</h5>
5355
5356<p>
5357This function returns the cosine of the specified operand, returning the
5358same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005359conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005360</div>
5361
5362<!-- _______________________________________________________________________ -->
5363<div class="doc_subsubsection">
5364 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5365</div>
5366
5367<div class="doc_text">
5368
5369<h5>Syntax:</h5>
5370<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5371floating point or vector of floating point type. Not all targets support all
5372types however.
5373<pre>
5374 declare float @llvm.pow.f32(float %Val, float %Power)
5375 declare double @llvm.pow.f64(double %Val, double %Power)
5376 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5377 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5378 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5379</pre>
5380
5381<h5>Overview:</h5>
5382
5383<p>
5384The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5385specified (positive or negative) power.
5386</p>
5387
5388<h5>Arguments:</h5>
5389
5390<p>
5391The second argument is a floating point power, and the first is a value to
5392raise to that power.
5393</p>
5394
5395<h5>Semantics:</h5>
5396
5397<p>
5398This function returns the first value raised to the second power,
5399returning the
5400same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005401conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005402</div>
5403
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005404
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005405<!-- ======================================================================= -->
5406<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005407 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005408</div>
5409
5410<div class="doc_text">
5411<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005412LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005413These allow efficient code generation for some algorithms.
5414</p>
5415
5416</div>
5417
5418<!-- _______________________________________________________________________ -->
5419<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005420 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005421</div>
5422
5423<div class="doc_text">
5424
5425<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005426<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carruth69940402007-08-04 01:51:18 +00005427type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Nate Begeman7e36c472006-01-13 23:26:38 +00005428<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005429 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5430 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5431 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005432</pre>
5433
5434<h5>Overview:</h5>
5435
5436<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005437The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005438values with an even number of bytes (positive multiple of 16 bits). These are
5439useful for performing operations on data that is not in the target's native
5440byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005441</p>
5442
5443<h5>Semantics:</h5>
5444
5445<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005446The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005447and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5448intrinsic returns an i32 value that has the four bytes of the input i32
5449swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005450i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5451<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005452additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005453</p>
5454
5455</div>
5456
5457<!-- _______________________________________________________________________ -->
5458<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005459 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005460</div>
5461
5462<div class="doc_text">
5463
5464<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005465<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5466width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005467<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005468 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5469 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005470 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005471 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5472 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005473</pre>
5474
5475<h5>Overview:</h5>
5476
5477<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005478The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5479value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005480</p>
5481
5482<h5>Arguments:</h5>
5483
5484<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005485The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005486integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005487</p>
5488
5489<h5>Semantics:</h5>
5490
5491<p>
5492The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5493</p>
5494</div>
5495
5496<!-- _______________________________________________________________________ -->
5497<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005498 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005499</div>
5500
5501<div class="doc_text">
5502
5503<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005504<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5505integer bit width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005506<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005507 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5508 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005509 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005510 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5511 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005512</pre>
5513
5514<h5>Overview:</h5>
5515
5516<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005517The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5518leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005519</p>
5520
5521<h5>Arguments:</h5>
5522
5523<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005524The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005525integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005526</p>
5527
5528<h5>Semantics:</h5>
5529
5530<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005531The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5532in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005533of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005534</p>
5535</div>
Chris Lattner32006282004-06-11 02:28:03 +00005536
5537
Chris Lattnereff29ab2005-05-15 19:39:26 +00005538
5539<!-- _______________________________________________________________________ -->
5540<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005541 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005542</div>
5543
5544<div class="doc_text">
5545
5546<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005547<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5548integer bit width. Not all targets support all bit widths however.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005549<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005550 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5551 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005552 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005553 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5554 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005555</pre>
5556
5557<h5>Overview:</h5>
5558
5559<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005560The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5561trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005562</p>
5563
5564<h5>Arguments:</h5>
5565
5566<p>
5567The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005568integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005569</p>
5570
5571<h5>Semantics:</h5>
5572
5573<p>
5574The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5575in a variable. If the src == 0 then the result is the size in bits of the type
5576of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5577</p>
5578</div>
5579
Reid Spencer497d93e2007-04-01 08:27:01 +00005580<!-- _______________________________________________________________________ -->
5581<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005582 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005583</div>
5584
5585<div class="doc_text">
5586
5587<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005588<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005589on any integer bit width.
5590<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005591 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5592 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005593</pre>
5594
5595<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005596<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005597range of bits from an integer value and returns them in the same bit width as
5598the original value.</p>
5599
5600<h5>Arguments:</h5>
5601<p>The first argument, <tt>%val</tt> and the result may be integer types of
5602any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005603arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005604
5605<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005606<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005607of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5608<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5609operates in forward mode.</p>
5610<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5611right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005612only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5613<ol>
5614 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5615 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5616 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5617 to determine the number of bits to retain.</li>
5618 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5619 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5620</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005621<p>In reverse mode, a similar computation is made except that the bits are
5622returned in the reverse order. So, for example, if <tt>X</tt> has the value
5623<tt>i16 0x0ACF (101011001111)</tt> and we apply
5624<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5625<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005626</div>
5627
Reid Spencerf86037f2007-04-11 23:23:49 +00005628<div class="doc_subsubsection">
5629 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5630</div>
5631
5632<div class="doc_text">
5633
5634<h5>Syntax:</h5>
5635<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5636on any integer bit width.
5637<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005638 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5639 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005640</pre>
5641
5642<h5>Overview:</h5>
5643<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5644of bits in an integer value with another integer value. It returns the integer
5645with the replaced bits.</p>
5646
5647<h5>Arguments:</h5>
5648<p>The first argument, <tt>%val</tt> and the result may be integer types of
5649any bit width but they must have the same bit width. <tt>%val</tt> is the value
5650whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5651integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5652type since they specify only a bit index.</p>
5653
5654<h5>Semantics:</h5>
5655<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5656of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5657<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5658operates in forward mode.</p>
5659<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5660truncating it down to the size of the replacement area or zero extending it
5661up to that size.</p>
5662<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5663are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5664in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5665to the <tt>%hi</tt>th bit.
Reid Spencerc6749c42007-05-14 16:50:20 +00005666<p>In reverse mode, a similar computation is made except that the bits are
5667reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5668<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
Reid Spencerf86037f2007-04-11 23:23:49 +00005669<h5>Examples:</h5>
5670<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005671 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005672 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5673 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5674 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005675 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005676</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00005677</div>
5678
Chris Lattner8ff75902004-01-06 05:31:32 +00005679<!-- ======================================================================= -->
5680<div class="doc_subsection">
5681 <a name="int_debugger">Debugger Intrinsics</a>
5682</div>
5683
5684<div class="doc_text">
5685<p>
5686The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5687are described in the <a
5688href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5689Debugging</a> document.
5690</p>
5691</div>
5692
5693
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005694<!-- ======================================================================= -->
5695<div class="doc_subsection">
5696 <a name="int_eh">Exception Handling Intrinsics</a>
5697</div>
5698
5699<div class="doc_text">
5700<p> The LLVM exception handling intrinsics (which all start with
5701<tt>llvm.eh.</tt> prefix), are described in the <a
5702href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5703Handling</a> document. </p>
5704</div>
5705
Tanya Lattner6d806e92007-06-15 20:50:54 +00005706<!-- ======================================================================= -->
5707<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005708 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005709</div>
5710
5711<div class="doc_text">
5712<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005713 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005714 the <tt>nest</tt> attribute, from a function. The result is a callable
5715 function pointer lacking the nest parameter - the caller does not need
5716 to provide a value for it. Instead, the value to use is stored in
5717 advance in a "trampoline", a block of memory usually allocated
5718 on the stack, which also contains code to splice the nest value into the
5719 argument list. This is used to implement the GCC nested function address
5720 extension.
5721</p>
5722<p>
5723 For example, if the function is
5724 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00005725 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005726<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005727 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5728 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5729 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5730 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005731</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00005732 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5733 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005734</div>
5735
5736<!-- _______________________________________________________________________ -->
5737<div class="doc_subsubsection">
5738 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5739</div>
5740<div class="doc_text">
5741<h5>Syntax:</h5>
5742<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005743declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005744</pre>
5745<h5>Overview:</h5>
5746<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005747 This fills the memory pointed to by <tt>tramp</tt> with code
5748 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005749</p>
5750<h5>Arguments:</h5>
5751<p>
5752 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5753 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5754 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005755 intrinsic. Note that the size and the alignment are target-specific - LLVM
5756 currently provides no portable way of determining them, so a front-end that
5757 generates this intrinsic needs to have some target-specific knowledge.
5758 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005759</p>
5760<h5>Semantics:</h5>
5761<p>
5762 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005763 dependent code, turning it into a function. A pointer to this function is
5764 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005765 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005766 before being called. The new function's signature is the same as that of
5767 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5768 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5769 of pointer type. Calling the new function is equivalent to calling
5770 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5771 missing <tt>nest</tt> argument. If, after calling
5772 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5773 modified, then the effect of any later call to the returned function pointer is
5774 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005775</p>
5776</div>
5777
5778<!-- ======================================================================= -->
5779<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005780 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5781</div>
5782
5783<div class="doc_text">
5784<p>
5785 These intrinsic functions expand the "universal IR" of LLVM to represent
5786 hardware constructs for atomic operations and memory synchronization. This
5787 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00005788 is aimed at a low enough level to allow any programming models or APIs
5789 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005790 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5791 hardware behavior. Just as hardware provides a "universal IR" for source
5792 languages, it also provides a starting point for developing a "universal"
5793 atomic operation and synchronization IR.
5794</p>
5795<p>
5796 These do <em>not</em> form an API such as high-level threading libraries,
5797 software transaction memory systems, atomic primitives, and intrinsic
5798 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5799 application libraries. The hardware interface provided by LLVM should allow
5800 a clean implementation of all of these APIs and parallel programming models.
5801 No one model or paradigm should be selected above others unless the hardware
5802 itself ubiquitously does so.
5803
5804</p>
5805</div>
5806
5807<!-- _______________________________________________________________________ -->
5808<div class="doc_subsubsection">
5809 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5810</div>
5811<div class="doc_text">
5812<h5>Syntax:</h5>
5813<pre>
5814declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5815i1 &lt;device&gt; )
5816
5817</pre>
5818<h5>Overview:</h5>
5819<p>
5820 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5821 specific pairs of memory access types.
5822</p>
5823<h5>Arguments:</h5>
5824<p>
5825 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5826 The first four arguments enables a specific barrier as listed below. The fith
5827 argument specifies that the barrier applies to io or device or uncached memory.
5828
5829</p>
5830 <ul>
5831 <li><tt>ll</tt>: load-load barrier</li>
5832 <li><tt>ls</tt>: load-store barrier</li>
5833 <li><tt>sl</tt>: store-load barrier</li>
5834 <li><tt>ss</tt>: store-store barrier</li>
5835 <li><tt>device</tt>: barrier applies to device and uncached memory also.
5836 </ul>
5837<h5>Semantics:</h5>
5838<p>
5839 This intrinsic causes the system to enforce some ordering constraints upon
5840 the loads and stores of the program. This barrier does not indicate
5841 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5842 which they occur. For any of the specified pairs of load and store operations
5843 (f.ex. load-load, or store-load), all of the first operations preceding the
5844 barrier will complete before any of the second operations succeeding the
5845 barrier begin. Specifically the semantics for each pairing is as follows:
5846</p>
5847 <ul>
5848 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5849 after the barrier begins.</li>
5850
5851 <li><tt>ls</tt>: All loads before the barrier must complete before any
5852 store after the barrier begins.</li>
5853 <li><tt>ss</tt>: All stores before the barrier must complete before any
5854 store after the barrier begins.</li>
5855 <li><tt>sl</tt>: All stores before the barrier must complete before any
5856 load after the barrier begins.</li>
5857 </ul>
5858<p>
5859 These semantics are applied with a logical "and" behavior when more than one
5860 is enabled in a single memory barrier intrinsic.
5861</p>
5862<p>
5863 Backends may implement stronger barriers than those requested when they do not
5864 support as fine grained a barrier as requested. Some architectures do not
5865 need all types of barriers and on such architectures, these become noops.
5866</p>
5867<h5>Example:</h5>
5868<pre>
5869%ptr = malloc i32
5870 store i32 4, %ptr
5871
5872%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5873 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5874 <i>; guarantee the above finishes</i>
5875 store i32 8, %ptr <i>; before this begins</i>
5876</pre>
5877</div>
5878
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005879<!-- _______________________________________________________________________ -->
5880<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00005881 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005882</div>
5883<div class="doc_text">
5884<h5>Syntax:</h5>
5885<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00005886 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5887 any integer bit width and for different address spaces. Not all targets
5888 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005889
5890<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005891declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5892declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5893declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5894declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005895
5896</pre>
5897<h5>Overview:</h5>
5898<p>
5899 This loads a value in memory and compares it to a given value. If they are
5900 equal, it stores a new value into the memory.
5901</p>
5902<h5>Arguments:</h5>
5903<p>
Mon P Wang28873102008-06-25 08:15:39 +00005904 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005905 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5906 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5907 this integer type. While any bit width integer may be used, targets may only
5908 lower representations they support in hardware.
5909
5910</p>
5911<h5>Semantics:</h5>
5912<p>
5913 This entire intrinsic must be executed atomically. It first loads the value
5914 in memory pointed to by <tt>ptr</tt> and compares it with the value
5915 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5916 loaded value is yielded in all cases. This provides the equivalent of an
5917 atomic compare-and-swap operation within the SSA framework.
5918</p>
5919<h5>Examples:</h5>
5920
5921<pre>
5922%ptr = malloc i32
5923 store i32 4, %ptr
5924
5925%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00005926%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005927 <i>; yields {i32}:result1 = 4</i>
5928%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5929%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5930
5931%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00005932%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005933 <i>; yields {i32}:result2 = 8</i>
5934%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5935
5936%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5937</pre>
5938</div>
5939
5940<!-- _______________________________________________________________________ -->
5941<div class="doc_subsubsection">
5942 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5943</div>
5944<div class="doc_text">
5945<h5>Syntax:</h5>
5946
5947<p>
5948 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5949 integer bit width. Not all targets support all bit widths however.</p>
5950<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005951declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5952declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5953declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5954declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005955
5956</pre>
5957<h5>Overview:</h5>
5958<p>
5959 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5960 the value from memory. It then stores the value in <tt>val</tt> in the memory
5961 at <tt>ptr</tt>.
5962</p>
5963<h5>Arguments:</h5>
5964
5965<p>
Mon P Wang28873102008-06-25 08:15:39 +00005966 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005967 <tt>val</tt> argument and the result must be integers of the same bit width.
5968 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5969 integer type. The targets may only lower integer representations they
5970 support.
5971</p>
5972<h5>Semantics:</h5>
5973<p>
5974 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5975 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5976 equivalent of an atomic swap operation within the SSA framework.
5977
5978</p>
5979<h5>Examples:</h5>
5980<pre>
5981%ptr = malloc i32
5982 store i32 4, %ptr
5983
5984%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00005985%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005986 <i>; yields {i32}:result1 = 4</i>
5987%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5988%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5989
5990%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00005991%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005992 <i>; yields {i32}:result2 = 8</i>
5993
5994%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
5995%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
5996</pre>
5997</div>
5998
5999<!-- _______________________________________________________________________ -->
6000<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006001 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006002
6003</div>
6004<div class="doc_text">
6005<h5>Syntax:</h5>
6006<p>
Mon P Wang28873102008-06-25 08:15:39 +00006007 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006008 integer bit width. Not all targets support all bit widths however.</p>
6009<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006010declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6011declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6012declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6013declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006014
6015</pre>
6016<h5>Overview:</h5>
6017<p>
6018 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6019 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6020</p>
6021<h5>Arguments:</h5>
6022<p>
6023
6024 The intrinsic takes two arguments, the first a pointer to an integer value
6025 and the second an integer value. The result is also an integer value. These
6026 integer types can have any bit width, but they must all have the same bit
6027 width. The targets may only lower integer representations they support.
6028</p>
6029<h5>Semantics:</h5>
6030<p>
6031 This intrinsic does a series of operations atomically. It first loads the
6032 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6033 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6034</p>
6035
6036<h5>Examples:</h5>
6037<pre>
6038%ptr = malloc i32
6039 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006040%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006041 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006042%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006043 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006044%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006045 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006046%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006047</pre>
6048</div>
6049
Mon P Wang28873102008-06-25 08:15:39 +00006050<!-- _______________________________________________________________________ -->
6051<div class="doc_subsubsection">
6052 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6053
6054</div>
6055<div class="doc_text">
6056<h5>Syntax:</h5>
6057<p>
6058 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006059 any integer bit width and for different address spaces. Not all targets
6060 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006061<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006062declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6063declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6064declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6065declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006066
6067</pre>
6068<h5>Overview:</h5>
6069<p>
6070 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6071 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6072</p>
6073<h5>Arguments:</h5>
6074<p>
6075
6076 The intrinsic takes two arguments, the first a pointer to an integer value
6077 and the second an integer value. The result is also an integer value. These
6078 integer types can have any bit width, but they must all have the same bit
6079 width. The targets may only lower integer representations they support.
6080</p>
6081<h5>Semantics:</h5>
6082<p>
6083 This intrinsic does a series of operations atomically. It first loads the
6084 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6085 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6086</p>
6087
6088<h5>Examples:</h5>
6089<pre>
6090%ptr = malloc i32
6091 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006092%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006093 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006094%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006095 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006096%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006097 <i>; yields {i32}:result3 = 2</i>
6098%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6099</pre>
6100</div>
6101
6102<!-- _______________________________________________________________________ -->
6103<div class="doc_subsubsection">
6104 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6105 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6106 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6107 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6108
6109</div>
6110<div class="doc_text">
6111<h5>Syntax:</h5>
6112<p>
6113 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6114 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006115 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6116 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006117<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006118declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6119declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6120declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6121declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006122
6123</pre>
6124
6125<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006126declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6127declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6128declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6129declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006130
6131</pre>
6132
6133<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006134declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6135declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6136declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6137declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006138
6139</pre>
6140
6141<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006142declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6143declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6144declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6145declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006146
6147</pre>
6148<h5>Overview:</h5>
6149<p>
6150 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6151 the value stored in memory at <tt>ptr</tt>. It yields the original value
6152 at <tt>ptr</tt>.
6153</p>
6154<h5>Arguments:</h5>
6155<p>
6156
6157 These intrinsics take two arguments, the first a pointer to an integer value
6158 and the second an integer value. The result is also an integer value. These
6159 integer types can have any bit width, but they must all have the same bit
6160 width. The targets may only lower integer representations they support.
6161</p>
6162<h5>Semantics:</h5>
6163<p>
6164 These intrinsics does a series of operations atomically. They first load the
6165 value stored at <tt>ptr</tt>. They then do the bitwise operation
6166 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6167 value stored at <tt>ptr</tt>.
6168</p>
6169
6170<h5>Examples:</h5>
6171<pre>
6172%ptr = malloc i32
6173 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006174%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006175 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006176%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006177 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006178%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006179 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006180%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006181 <i>; yields {i32}:result3 = FF</i>
6182%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6183</pre>
6184</div>
6185
6186
6187<!-- _______________________________________________________________________ -->
6188<div class="doc_subsubsection">
6189 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6190 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6191 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6192 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6193
6194</div>
6195<div class="doc_text">
6196<h5>Syntax:</h5>
6197<p>
6198 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6199 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006200 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6201 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006202 support all bit widths however.</p>
6203<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006204declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6205declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6206declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6207declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006208
6209</pre>
6210
6211<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006212declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6213declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6214declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6215declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006216
6217</pre>
6218
6219<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006220declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6221declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6222declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6223declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006224
6225</pre>
6226
6227<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006228declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6229declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6230declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6231declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006232
6233</pre>
6234<h5>Overview:</h5>
6235<p>
6236 These intrinsics takes the signed or unsigned minimum or maximum of
6237 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6238 original value at <tt>ptr</tt>.
6239</p>
6240<h5>Arguments:</h5>
6241<p>
6242
6243 These intrinsics take two arguments, the first a pointer to an integer value
6244 and the second an integer value. The result is also an integer value. These
6245 integer types can have any bit width, but they must all have the same bit
6246 width. The targets may only lower integer representations they support.
6247</p>
6248<h5>Semantics:</h5>
6249<p>
6250 These intrinsics does a series of operations atomically. They first load the
6251 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6252 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6253 the original value stored at <tt>ptr</tt>.
6254</p>
6255
6256<h5>Examples:</h5>
6257<pre>
6258%ptr = malloc i32
6259 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006260%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006261 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006262%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006263 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006264%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006265 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006266%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006267 <i>; yields {i32}:result3 = 8</i>
6268%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6269</pre>
6270</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006271
6272<!-- ======================================================================= -->
6273<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006274 <a name="int_general">General Intrinsics</a>
6275</div>
6276
6277<div class="doc_text">
6278<p> This class of intrinsics is designed to be generic and has
6279no specific purpose. </p>
6280</div>
6281
6282<!-- _______________________________________________________________________ -->
6283<div class="doc_subsubsection">
6284 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6285</div>
6286
6287<div class="doc_text">
6288
6289<h5>Syntax:</h5>
6290<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006291 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006292</pre>
6293
6294<h5>Overview:</h5>
6295
6296<p>
6297The '<tt>llvm.var.annotation</tt>' intrinsic
6298</p>
6299
6300<h5>Arguments:</h5>
6301
6302<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006303The first argument is a pointer to a value, the second is a pointer to a
6304global string, the third is a pointer to a global string which is the source
6305file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006306</p>
6307
6308<h5>Semantics:</h5>
6309
6310<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006311This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006312This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006313annotations. These have no other defined use, they are ignored by code
6314generation and optimization.
6315</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006316</div>
6317
Tanya Lattnerb6367882007-09-21 22:59:12 +00006318<!-- _______________________________________________________________________ -->
6319<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006320 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006321</div>
6322
6323<div class="doc_text">
6324
6325<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006326<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6327any integer bit width.
6328</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006329<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006330 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6331 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6332 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6333 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6334 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006335</pre>
6336
6337<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006338
6339<p>
6340The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006341</p>
6342
6343<h5>Arguments:</h5>
6344
6345<p>
6346The first argument is an integer value (result of some expression),
6347the second is a pointer to a global string, the third is a pointer to a global
6348string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006349It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006350</p>
6351
6352<h5>Semantics:</h5>
6353
6354<p>
6355This intrinsic allows annotations to be put on arbitrary expressions
6356with arbitrary strings. This can be useful for special purpose optimizations
6357that want to look for these annotations. These have no other defined use, they
6358are ignored by code generation and optimization.
6359</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006360
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006361<!-- _______________________________________________________________________ -->
6362<div class="doc_subsubsection">
6363 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6364</div>
6365
6366<div class="doc_text">
6367
6368<h5>Syntax:</h5>
6369<pre>
6370 declare void @llvm.trap()
6371</pre>
6372
6373<h5>Overview:</h5>
6374
6375<p>
6376The '<tt>llvm.trap</tt>' intrinsic
6377</p>
6378
6379<h5>Arguments:</h5>
6380
6381<p>
6382None
6383</p>
6384
6385<h5>Semantics:</h5>
6386
6387<p>
6388This intrinsics is lowered to the target dependent trap instruction. If the
6389target does not have a trap instruction, this intrinsic will be lowered to the
6390call of the abort() function.
6391</p>
6392</div>
6393
Chris Lattner00950542001-06-06 20:29:01 +00006394<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00006395<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006396<address>
6397 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6398 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6399 <a href="http://validator.w3.org/check/referer"><img
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006400 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006401
6402 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00006403 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006404 Last modified: $Date$
6405</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006406
Misha Brukman9d0919f2003-11-08 01:05:38 +00006407</body>
6408</html>