blob: 8da6b9d705e06af06199283d1fda3a58d01fb0b8 [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
Misha Brukmane2eceb52004-07-23 16:08:20 +000014#include "PowerPCTargetMachine.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000015#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Function.h"
18#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000019#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000020#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000021#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/MRegisterInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000029#include "Support/Debug.h"
Misha Brukmane2eceb52004-07-23 16:08:20 +000030#include "Support/Statistic.h"
Misha Brukman98649d12004-06-24 21:54:47 +000031#include <vector>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000032using namespace llvm;
33
34namespace {
Misha Brukmanb097f212004-07-26 18:13:24 +000035 Statistic<> GEPFolds("ppc-codegen", "Number of GEPs folded");
Misha Brukmane2eceb52004-07-23 16:08:20 +000036
Misha Brukman422791f2004-06-21 17:41:12 +000037 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
38 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000039 ///
40 enum TypeClass {
Misha Brukman7e898c32004-07-20 00:41:46 +000041 cByte, cShort, cInt, cFP32, cFP64, cLong
Misha Brukman5dfe3a92004-06-21 16:55:25 +000042 };
43}
44
45/// getClass - Turn a primitive type into a "class" number which is based on the
46/// size of the type, and whether or not it is floating point.
47///
48static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000049 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000050 case Type::SByteTyID:
51 case Type::UByteTyID: return cByte; // Byte operands are class #0
52 case Type::ShortTyID:
53 case Type::UShortTyID: return cShort; // Short operands are class #1
54 case Type::IntTyID:
55 case Type::UIntTyID:
Misha Brukman2834a4d2004-07-07 20:07:22 +000056 case Type::PointerTyID: return cInt; // Ints and pointers are class #2
Misha Brukman5dfe3a92004-06-21 16:55:25 +000057
Misha Brukman7e898c32004-07-20 00:41:46 +000058 case Type::FloatTyID: return cFP32; // Single float is #3
59 case Type::DoubleTyID: return cFP64; // Double Point is #4
Misha Brukman5dfe3a92004-06-21 16:55:25 +000060
61 case Type::LongTyID:
Misha Brukman7e898c32004-07-20 00:41:46 +000062 case Type::ULongTyID: return cLong; // Longs are class #5
Misha Brukman5dfe3a92004-06-21 16:55:25 +000063 default:
64 assert(0 && "Invalid type to getClass!");
65 return cByte; // not reached
66 }
67}
68
69// getClassB - Just like getClass, but treat boolean values as ints.
70static inline TypeClass getClassB(const Type *Ty) {
Misha Brukman4c14f332004-07-23 01:11:19 +000071 if (Ty == Type::BoolTy) return cInt;
Misha Brukman5dfe3a92004-06-21 16:55:25 +000072 return getClass(Ty);
73}
74
75namespace {
76 struct ISel : public FunctionPass, InstVisitor<ISel> {
Misha Brukmane2eceb52004-07-23 16:08:20 +000077 PowerPCTargetMachine &TM;
Misha Brukman5dfe3a92004-06-21 16:55:25 +000078 MachineFunction *F; // The function we are compiling into
79 MachineBasicBlock *BB; // The current MBB we are compiling
80 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Misha Brukmanb097f212004-07-26 18:13:24 +000081
Misha Brukman313efcb2004-07-09 15:45:07 +000082 std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
Misha Brukman5dfe3a92004-06-21 16:55:25 +000083
Misha Brukman2834a4d2004-07-07 20:07:22 +000084 // External functions used in the Module
Misha Brukman7e898c32004-07-20 00:41:46 +000085 Function *fmodfFn, *fmodFn, *__moddi3Fn, *__divdi3Fn, *__umoddi3Fn,
86 *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__floatdisfFn, *__floatdidfFn,
87 *mallocFn, *freeFn;
Misha Brukman2834a4d2004-07-07 20:07:22 +000088
Misha Brukman5dfe3a92004-06-21 16:55:25 +000089 // MBBMap - Mapping between LLVM BB -> Machine BB
90 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
91
92 // AllocaMap - Mapping from fixed sized alloca instructions to the
93 // FrameIndex for the alloca.
94 std::map<AllocaInst*, unsigned> AllocaMap;
95
Misha Brukmanb097f212004-07-26 18:13:24 +000096 // A Reg to hold the base address used for global loads and stores, and a
97 // flag to set whether or not we need to emit it for this function.
98 unsigned GlobalBaseReg;
99 bool GlobalBaseInitialized;
100
Misha Brukmane2eceb52004-07-23 16:08:20 +0000101 ISel(TargetMachine &tm) : TM(reinterpret_cast<PowerPCTargetMachine&>(tm)),
102 F(0), BB(0) {}
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000103
Misha Brukman2834a4d2004-07-07 20:07:22 +0000104 bool doInitialization(Module &M) {
Misha Brukmanb0932592004-07-07 15:36:18 +0000105 // Add external functions that we may call
Misha Brukman2834a4d2004-07-07 20:07:22 +0000106 Type *d = Type::DoubleTy;
Misha Brukmanf3f63822004-07-08 19:41:16 +0000107 Type *f = Type::FloatTy;
Misha Brukman2834a4d2004-07-07 20:07:22 +0000108 Type *l = Type::LongTy;
109 Type *ul = Type::ULongTy;
Misha Brukman313efcb2004-07-09 15:45:07 +0000110 Type *voidPtr = PointerType::get(Type::SByteTy);
Misha Brukman7e898c32004-07-20 00:41:46 +0000111 // float fmodf(float, float);
112 fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000113 // double fmod(double, double);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000114 fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000115 // long __moddi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000116 __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000117 // long __divdi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000118 __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000119 // unsigned long __umoddi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000120 __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000121 // unsigned long __udivdi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000122 __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
Misha Brukman7e898c32004-07-20 00:41:46 +0000123 // long __fixsfdi(float)
124 __fixdfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
Misha Brukmanf3f63822004-07-08 19:41:16 +0000125 // long __fixdfdi(double)
126 __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
127 // float __floatdisf(long)
128 __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
129 // double __floatdidf(long)
130 __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
Misha Brukman313efcb2004-07-09 15:45:07 +0000131 // void* malloc(size_t)
132 mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
133 // void free(void*)
134 freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000135 return false;
136 }
Misha Brukmand18a31d2004-07-06 22:51:53 +0000137
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000138 /// runOnFunction - Top level implementation of instruction selection for
139 /// the entire function.
140 ///
141 bool runOnFunction(Function &Fn) {
142 // First pass over the function, lower any unknown intrinsic functions
143 // with the IntrinsicLowering class.
144 LowerUnknownIntrinsicFunctionCalls(Fn);
145
146 F = &MachineFunction::construct(&Fn, TM);
147
148 // Create all of the machine basic blocks for the function...
149 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
150 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
151
152 BB = &F->front();
153
Misha Brukmanb097f212004-07-26 18:13:24 +0000154 // Make sure we re-emit a set of the global base reg if necessary
155 GlobalBaseInitialized = false;
156
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000157 // Copy incoming arguments off of the stack...
158 LoadArgumentsToVirtualRegs(Fn);
159
160 // Instruction select everything except PHI nodes
161 visit(Fn);
162
163 // Select the PHI nodes
164 SelectPHINodes();
165
166 RegMap.clear();
167 MBBMap.clear();
168 AllocaMap.clear();
169 F = 0;
170 // We always build a machine code representation for the function
171 return true;
172 }
173
174 virtual const char *getPassName() const {
175 return "PowerPC Simple Instruction Selection";
176 }
177
178 /// visitBasicBlock - This method is called when we are visiting a new basic
179 /// block. This simply creates a new MachineBasicBlock to emit code into
180 /// and adds it to the current MachineFunction. Subsequent visit* for
181 /// instructions will be invoked for all instructions in the basic block.
182 ///
183 void visitBasicBlock(BasicBlock &LLVM_BB) {
184 BB = MBBMap[&LLVM_BB];
185 }
186
187 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
188 /// function, lowering any calls to unknown intrinsic functions into the
189 /// equivalent LLVM code.
190 ///
191 void LowerUnknownIntrinsicFunctionCalls(Function &F);
192
193 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
194 /// from the stack into virtual registers.
195 ///
196 void LoadArgumentsToVirtualRegs(Function &F);
197
198 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
199 /// because we have to generate our sources into the source basic blocks,
200 /// not the current one.
201 ///
202 void SelectPHINodes();
203
204 // Visitation methods for various instructions. These methods simply emit
205 // fixed PowerPC code for each instruction.
206
207 // Control flow operators
208 void visitReturnInst(ReturnInst &RI);
209 void visitBranchInst(BranchInst &BI);
210
211 struct ValueRecord {
212 Value *Val;
213 unsigned Reg;
214 const Type *Ty;
215 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
216 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
217 };
Misha Brukmanb097f212004-07-26 18:13:24 +0000218
219 // This struct is for recording the necessary operations to emit the GEP
220 struct CollapsedGepOp {
221 bool isMul;
222 Value *index;
223 ConstantSInt *size;
224 CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
225 isMul(mul), index(i), size(s) {}
226 };
227
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000228 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +0000229 const std::vector<ValueRecord> &Args, bool isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000230 void visitCallInst(CallInst &I);
231 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
232
233 // Arithmetic operators
234 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
235 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
236 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
237 void visitMul(BinaryOperator &B);
238
239 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
240 void visitRem(BinaryOperator &B) { visitDivRem(B); }
241 void visitDivRem(BinaryOperator &B);
242
243 // Bitwise operators
244 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
245 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
246 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
247
248 // Comparison operators...
249 void visitSetCondInst(SetCondInst &I);
250 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
251 MachineBasicBlock *MBB,
252 MachineBasicBlock::iterator MBBI);
253 void visitSelectInst(SelectInst &SI);
254
255
256 // Memory Instructions
257 void visitLoadInst(LoadInst &I);
258 void visitStoreInst(StoreInst &I);
259 void visitGetElementPtrInst(GetElementPtrInst &I);
260 void visitAllocaInst(AllocaInst &I);
261 void visitMallocInst(MallocInst &I);
262 void visitFreeInst(FreeInst &I);
263
264 // Other operators
265 void visitShiftInst(ShiftInst &I);
266 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
267 void visitCastInst(CastInst &I);
268 void visitVANextInst(VANextInst &I);
269 void visitVAArgInst(VAArgInst &I);
270
271 void visitInstruction(Instruction &I) {
272 std::cerr << "Cannot instruction select: " << I;
273 abort();
274 }
275
276 /// promote32 - Make a value 32-bits wide, and put it somewhere.
277 ///
278 void promote32(unsigned targetReg, const ValueRecord &VR);
279
280 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
281 /// constant expression GEP support.
282 ///
283 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
284 Value *Src, User::op_iterator IdxBegin,
Misha Brukmanb097f212004-07-26 18:13:24 +0000285 User::op_iterator IdxEnd, unsigned TargetReg,
286 bool CollapseRemainder, ConstantSInt **Remainder);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000287
288 /// emitCastOperation - Common code shared between visitCastInst and
289 /// constant expression cast support.
290 ///
291 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
292 Value *Src, const Type *DestTy, unsigned TargetReg);
293
294 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
295 /// and constant expression support.
296 ///
297 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
298 MachineBasicBlock::iterator IP,
299 Value *Op0, Value *Op1,
300 unsigned OperatorClass, unsigned TargetReg);
301
302 /// emitBinaryFPOperation - This method handles emission of floating point
303 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
304 void emitBinaryFPOperation(MachineBasicBlock *BB,
305 MachineBasicBlock::iterator IP,
306 Value *Op0, Value *Op1,
307 unsigned OperatorClass, unsigned TargetReg);
308
309 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
310 Value *Op0, Value *Op1, unsigned TargetReg);
311
Misha Brukman1013ef52004-07-21 20:09:08 +0000312 void doMultiply(MachineBasicBlock *MBB,
313 MachineBasicBlock::iterator IP,
314 unsigned DestReg, Value *Op0, Value *Op1);
315
316 /// doMultiplyConst - This method will multiply the value in Op0Reg by the
317 /// value of the ContantInt *CI
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000318 void doMultiplyConst(MachineBasicBlock *MBB,
Misha Brukman1013ef52004-07-21 20:09:08 +0000319 MachineBasicBlock::iterator IP,
320 unsigned DestReg, Value *Op0, ConstantInt *CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000321
322 void emitDivRemOperation(MachineBasicBlock *BB,
323 MachineBasicBlock::iterator IP,
324 Value *Op0, Value *Op1, bool isDiv,
325 unsigned TargetReg);
326
327 /// emitSetCCOperation - Common code shared between visitSetCondInst and
328 /// constant expression support.
329 ///
330 void emitSetCCOperation(MachineBasicBlock *BB,
331 MachineBasicBlock::iterator IP,
332 Value *Op0, Value *Op1, unsigned Opcode,
333 unsigned TargetReg);
334
335 /// emitShiftOperation - Common code shared between visitShiftInst and
336 /// constant expression support.
337 ///
338 void emitShiftOperation(MachineBasicBlock *MBB,
339 MachineBasicBlock::iterator IP,
340 Value *Op, Value *ShiftAmount, bool isLeftShift,
341 const Type *ResultTy, unsigned DestReg);
342
343 /// emitSelectOperation - Common code shared between visitSelectInst and the
344 /// constant expression support.
Misha Brukmanb097f212004-07-26 18:13:24 +0000345 ///
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000346 void emitSelectOperation(MachineBasicBlock *MBB,
347 MachineBasicBlock::iterator IP,
348 Value *Cond, Value *TrueVal, Value *FalseVal,
349 unsigned DestReg);
350
Misha Brukmanb097f212004-07-26 18:13:24 +0000351 /// copyGlobalBaseToRegister - Output the instructions required to put the
352 /// base address to use for accessing globals into a register.
353 ///
354 void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
355 MachineBasicBlock::iterator IP,
356 unsigned R);
357
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000358 /// copyConstantToRegister - Output the instructions required to put the
359 /// specified constant into the specified register.
360 ///
361 void copyConstantToRegister(MachineBasicBlock *MBB,
362 MachineBasicBlock::iterator MBBI,
363 Constant *C, unsigned Reg);
364
365 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
366 unsigned LHS, unsigned RHS);
367
368 /// makeAnotherReg - This method returns the next register number we haven't
369 /// yet used.
370 ///
371 /// Long values are handled somewhat specially. They are always allocated
372 /// as pairs of 32 bit integer values. The register number returned is the
Misha Brukman1013ef52004-07-21 20:09:08 +0000373 /// high 32 bits of the long value, and the regNum+1 is the low 32 bits.
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000374 ///
375 unsigned makeAnotherReg(const Type *Ty) {
376 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
377 "Current target doesn't have PPC reg info??");
378 const PowerPCRegisterInfo *MRI =
379 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
380 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
381 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
382 // Create the lower part
383 F->getSSARegMap()->createVirtualRegister(RC);
384 // Create the upper part.
385 return F->getSSARegMap()->createVirtualRegister(RC)-1;
386 }
387
388 // Add the mapping of regnumber => reg class to MachineFunction
389 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
390 return F->getSSARegMap()->createVirtualRegister(RC);
391 }
392
393 /// getReg - This method turns an LLVM value into a register number.
394 ///
395 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
396 unsigned getReg(Value *V) {
397 // Just append to the end of the current bb.
398 MachineBasicBlock::iterator It = BB->end();
399 return getReg(V, BB, It);
400 }
401 unsigned getReg(Value *V, MachineBasicBlock *MBB,
402 MachineBasicBlock::iterator IPt);
Misha Brukman1013ef52004-07-21 20:09:08 +0000403
404 /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
405 /// is okay to use as an immediate argument to a certain binary operation
406 bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000407
408 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
409 /// that is to be statically allocated with the initial stack frame
410 /// adjustment.
411 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
412 };
413}
414
415/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
416/// instruction in the entry block, return it. Otherwise, return a null
417/// pointer.
418static AllocaInst *dyn_castFixedAlloca(Value *V) {
419 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
420 BasicBlock *BB = AI->getParent();
421 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
422 return AI;
423 }
424 return 0;
425}
426
427/// getReg - This method turns an LLVM value into a register number.
428///
429unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
430 MachineBasicBlock::iterator IPt) {
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000431 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattnera51e4f62004-07-18 18:45:01 +0000432 unsigned Reg = makeAnotherReg(V->getType());
433 copyConstantToRegister(MBB, IPt, C, Reg);
434 return Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000435 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
436 unsigned Reg = makeAnotherReg(V->getType());
437 unsigned FI = getFixedSizedAllocaFI(AI);
438 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
439 return Reg;
440 }
441
442 unsigned &Reg = RegMap[V];
443 if (Reg == 0) {
444 Reg = makeAnotherReg(V->getType());
445 RegMap[V] = Reg;
446 }
447
448 return Reg;
449}
450
Misha Brukman1013ef52004-07-21 20:09:08 +0000451/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
452/// is okay to use as an immediate argument to a certain binary operator.
453///
454/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
Misha Brukman47225442004-07-23 22:35:49 +0000455bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000456 ConstantSInt *Op1Cs;
457 ConstantUInt *Op1Cu;
458
459 // ADDI, Compare, and non-indexed Load take SIMM
Misha Brukman17a90002004-07-21 20:22:06 +0000460 bool cond1 = (Operator == 0)
461 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
Misha Brukman1013ef52004-07-21 20:09:08 +0000462 && (Op1Cs->getValue() <= 32767)
Misha Brukman17a90002004-07-21 20:22:06 +0000463 && (Op1Cs->getValue() >= -32768);
Misha Brukman1013ef52004-07-21 20:09:08 +0000464
465 // SUBI takes -SIMM since it is a mnemonic for ADDI
Misha Brukman17a90002004-07-21 20:22:06 +0000466 bool cond2 = (Operator == 1)
467 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
Misha Brukman1013ef52004-07-21 20:09:08 +0000468 && (Op1Cs->getValue() <= 32768)
Misha Brukman17a90002004-07-21 20:22:06 +0000469 && (Op1Cs->getValue() >= -32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000470
471 // ANDIo, ORI, and XORI take unsigned values
Misha Brukman17a90002004-07-21 20:22:06 +0000472 bool cond3 = (Operator >= 2)
Misha Brukman2ed17ca2004-07-22 15:58:04 +0000473 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
474 && (Op1Cs->getValue() >= 0)
Misha Brukman17a90002004-07-21 20:22:06 +0000475 && (Op1Cs->getValue() <= 32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000476
477 // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
Misha Brukman17a90002004-07-21 20:22:06 +0000478 bool cond4 = (Operator < 2)
479 && (Op1Cu = dyn_cast<ConstantUInt>(CI))
480 && (Op1Cu->getValue() <= 32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000481
482 // ANDIo, ORI, and XORI take UIMMs, so they can be larger
Misha Brukman17a90002004-07-21 20:22:06 +0000483 bool cond5 = (Operator >= 2)
484 && (Op1Cu = dyn_cast<ConstantUInt>(CI))
485 && (Op1Cu->getValue() <= 65535);
Misha Brukman1013ef52004-07-21 20:09:08 +0000486
487 if (cond1 || cond2 || cond3 || cond4 || cond5)
488 return true;
489
490 return false;
491}
492
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000493/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
494/// that is to be statically allocated with the initial stack frame
495/// adjustment.
496unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
497 // Already computed this?
498 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
499 if (I != AllocaMap.end() && I->first == AI) return I->second;
500
501 const Type *Ty = AI->getAllocatedType();
502 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
503 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
504 TySize *= CUI->getValue(); // Get total allocated size...
505 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
506
507 // Create a new stack object using the frame manager...
508 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
509 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
510 return FrameIdx;
511}
512
513
Misha Brukmanb097f212004-07-26 18:13:24 +0000514/// copyGlobalBaseToRegister - Output the instructions required to put the
515/// base address to use for accessing globals into a register.
516///
517void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
518 MachineBasicBlock::iterator IP,
519 unsigned R) {
520 if (!GlobalBaseInitialized) {
521 // Insert the set of GlobalBaseReg into the first MBB of the function
522 MachineBasicBlock &FirstMBB = F->front();
523 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
524 GlobalBaseReg = makeAnotherReg(Type::IntTy);
Misha Brukman435c7852004-07-27 17:13:58 +0000525 BuildMI(FirstMBB, MBBI, PPC32::IMPLICIT_DEF, 0, PPC32::LR);
Misha Brukmanb097f212004-07-26 18:13:24 +0000526 BuildMI(FirstMBB, MBBI, PPC32::MovePCtoLR, 0, GlobalBaseReg);
527 GlobalBaseInitialized = true;
528 }
529 // Emit our copy of GlobalBaseReg to the destination register in the
530 // current MBB
531 BuildMI(*MBB, IP, PPC32::OR, 2, R).addReg(GlobalBaseReg)
532 .addReg(GlobalBaseReg);
533}
534
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000535/// copyConstantToRegister - Output the instructions required to put the
536/// specified constant into the specified register.
537///
538void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
539 MachineBasicBlock::iterator IP,
540 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000541 if (C->getType()->isIntegral()) {
542 unsigned Class = getClassB(C->getType());
543
544 if (Class == cLong) {
Misha Brukmana0af38c2004-07-28 19:13:49 +0000545 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
546 uint64_t uval = CUI->getValue();
547 unsigned hiUVal = uval >> 32;
548 unsigned loUVal = uval;
549 ConstantUInt *CUHi = ConstantUInt::get(Type::UIntTy, hiUVal);
550 ConstantUInt *CULo = ConstantUInt::get(Type::UIntTy, loUVal);
551 copyConstantToRegister(MBB, IP, CUHi, R);
552 copyConstantToRegister(MBB, IP, CULo, R+1);
553 return;
554 } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
555 int64_t sval = CSI->getValue();
556 int hiSVal = sval >> 32;
557 int loSVal = sval;
558 ConstantSInt *CSHi = ConstantSInt::get(Type::IntTy, hiSVal);
559 ConstantSInt *CSLo = ConstantSInt::get(Type::IntTy, loSVal);
560 copyConstantToRegister(MBB, IP, CSHi, R);
561 copyConstantToRegister(MBB, IP, CSLo, R+1);
562 return;
Misha Brukman7e898c32004-07-20 00:41:46 +0000563 } else {
Misha Brukmana0af38c2004-07-28 19:13:49 +0000564 std::cerr << "Unhandled long constant type!\n";
565 abort();
566 }
567 }
568
569 assert(Class <= cInt && "Type not handled yet!");
570
571 // Handle bool
572 if (C->getType() == Type::BoolTy) {
573 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(C == ConstantBool::True);
574 return;
575 }
576
577 // Handle int
578 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
579 unsigned uval = CUI->getValue();
580 if (uval < 32768) {
581 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(uval);
582 } else {
583 unsigned Temp = makeAnotherReg(Type::IntTy);
584 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm(uval >> 16);
585 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(Temp).addImm(uval);
586 }
587 return;
588 } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
589 int sval = CSI->getValue();
590 if (sval < 32768 && sval >= -32768) {
591 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(sval);
592 } else {
593 unsigned Temp = makeAnotherReg(Type::IntTy);
594 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm(sval >> 16);
595 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(Temp).addImm(sval);
Misha Brukman7e898c32004-07-20 00:41:46 +0000596 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000597 return;
598 }
Misha Brukmana0af38c2004-07-28 19:13:49 +0000599
600 std::cerr << "Unhandled integer constant!\n";
601 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000602 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000603 // We need to spill the constant to memory...
604 MachineConstantPool *CP = F->getConstantPool();
605 unsigned CPI = CP->getConstantPoolIndex(CFP);
606 const Type *Ty = CFP->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000607
Misha Brukmand18a31d2004-07-06 22:51:53 +0000608 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukmanfc879c32004-07-08 18:02:38 +0000609
Misha Brukmanb097f212004-07-26 18:13:24 +0000610 // Load addr of constant to reg; constant is located at base + distance
611 unsigned GlobalBase = makeAnotherReg(Type::IntTy);
Misha Brukmanfc879c32004-07-08 18:02:38 +0000612 unsigned Reg1 = makeAnotherReg(Type::IntTy);
613 unsigned Reg2 = makeAnotherReg(Type::IntTy);
Misha Brukmanb097f212004-07-26 18:13:24 +0000614 // Move value at base + distance into return reg
615 copyGlobalBaseToRegister(MBB, IP, GlobalBase);
616 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, Reg1).addReg(GlobalBase)
Misha Brukmanfc879c32004-07-08 18:02:38 +0000617 .addConstantPoolIndex(CPI);
Misha Brukmanec6319a2004-07-20 15:51:37 +0000618 BuildMI(*MBB, IP, PPC32::LOADLoDirect, 2, Reg2).addReg(Reg1)
Misha Brukmanfc879c32004-07-08 18:02:38 +0000619 .addConstantPoolIndex(CPI);
620
Misha Brukmand18a31d2004-07-06 22:51:53 +0000621 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukman1013ef52004-07-21 20:09:08 +0000622 BuildMI(*MBB, IP, LoadOpcode, 2, R).addSImm(0).addReg(Reg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000623 } else if (isa<ConstantPointerNull>(C)) {
624 // Copy zero (null pointer) to the register.
Misha Brukman1013ef52004-07-21 20:09:08 +0000625 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
Chris Lattner67910e12004-07-18 07:29:35 +0000626 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
Misha Brukmanb097f212004-07-26 18:13:24 +0000627 // GV is located at base + distance
628 unsigned GlobalBase = makeAnotherReg(Type::IntTy);
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000629 unsigned TmpReg = makeAnotherReg(GV->getType());
Misha Brukmanbf417a62004-07-20 20:43:05 +0000630 unsigned Opcode = (GV->hasWeakLinkage() || GV->isExternal()) ?
631 PPC32::LOADLoIndirect : PPC32::LOADLoDirect;
Misha Brukmanb097f212004-07-26 18:13:24 +0000632
633 // Move value at base + distance into return reg
634 copyGlobalBaseToRegister(MBB, IP, GlobalBase);
635 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, TmpReg).addReg(GlobalBase)
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000636 .addGlobalAddress(GV);
Misha Brukmanec6319a2004-07-20 15:51:37 +0000637 BuildMI(*MBB, IP, Opcode, 2, R).addReg(TmpReg).addGlobalAddress(GV);
Misha Brukmane2eceb52004-07-23 16:08:20 +0000638
639 // Add the GV to the list of things whose addresses have been taken.
640 TM.AddressTaken.insert(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000641 } else {
Chris Lattner76e2df22004-07-15 02:14:30 +0000642 std::cerr << "Offending constant: " << *C << "\n";
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000643 assert(0 && "Type not handled yet!");
644 }
645}
646
647/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
648/// the stack into virtual registers.
649///
650/// FIXME: When we can calculate which args are coming in via registers
651/// source them from there instead.
652void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000653 unsigned ArgOffset = 20; // FIXME why is this not 24?
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000654 unsigned GPR_remaining = 8;
655 unsigned FPR_remaining = 13;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000656 unsigned GPR_idx = 0, FPR_idx = 0;
657 static const unsigned GPR[] = {
658 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
659 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
660 };
661 static const unsigned FPR[] = {
Misha Brukman32caa8d2004-07-14 17:57:04 +0000662 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7,
Misha Brukman2834a4d2004-07-07 20:07:22 +0000663 PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13
Misha Brukmand18a31d2004-07-06 22:51:53 +0000664 };
Misha Brukman422791f2004-06-21 17:41:12 +0000665
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000666 MachineFrameInfo *MFI = F->getFrameInfo();
Misha Brukmand18a31d2004-07-06 22:51:53 +0000667
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000668 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
669 bool ArgLive = !I->use_empty();
670 unsigned Reg = ArgLive ? getReg(*I) : 0;
671 int FI; // Frame object index
672
673 switch (getClassB(I->getType())) {
674 case cByte:
675 if (ArgLive) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000676 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000677 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000678 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000679 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
680 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000681 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000682 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000683 }
684 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000685 break;
686 case cShort:
687 if (ArgLive) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000688 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000689 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000690 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000691 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
692 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000693 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000694 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000695 }
696 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000697 break;
698 case cInt:
699 if (ArgLive) {
700 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000701 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000702 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000703 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
704 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000705 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000706 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000707 }
708 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000709 break;
710 case cLong:
711 if (ArgLive) {
712 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000713 if (GPR_remaining > 1) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000714 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
715 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
Misha Brukman313efcb2004-07-09 15:45:07 +0000716 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
717 .addReg(GPR[GPR_idx]);
718 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
719 .addReg(GPR[GPR_idx+1]);
Misha Brukman422791f2004-06-21 17:41:12 +0000720 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +0000721 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
722 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
Misha Brukman422791f2004-06-21 17:41:12 +0000723 }
724 }
Misha Brukman1013ef52004-07-21 20:09:08 +0000725 // longs require 4 additional bytes and use 2 GPRs
726 ArgOffset += 4;
Misha Brukman422791f2004-06-21 17:41:12 +0000727 if (GPR_remaining > 1) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000728 GPR_remaining--;
Misha Brukman422791f2004-06-21 17:41:12 +0000729 GPR_idx++;
730 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000731 break;
Misha Brukman7e898c32004-07-20 00:41:46 +0000732 case cFP32:
733 if (ArgLive) {
734 FI = MFI->CreateFixedObject(4, ArgOffset);
735
Misha Brukman422791f2004-06-21 17:41:12 +0000736 if (FPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000737 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000738 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
739 FPR_remaining--;
740 FPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000741 } else {
Misha Brukman7e898c32004-07-20 00:41:46 +0000742 addFrameReference(BuildMI(BB, PPC32::LFS, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000743 }
744 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000745 break;
746 case cFP64:
747 if (ArgLive) {
748 FI = MFI->CreateFixedObject(8, ArgOffset);
749
750 if (FPR_remaining > 0) {
751 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
752 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
753 FPR_remaining--;
754 FPR_idx++;
755 } else {
756 addFrameReference(BuildMI(BB, PPC32::LFD, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000757 }
758 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000759
760 // doubles require 4 additional bytes and use 2 GPRs of param space
761 ArgOffset += 4;
762 if (GPR_remaining > 0) {
763 GPR_remaining--;
764 GPR_idx++;
765 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000766 break;
767 default:
768 assert(0 && "Unhandled argument type!");
769 }
770 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000771 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000772 GPR_remaining--; // uses up 2 GPRs
773 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000774 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000775 }
776
777 // If the function takes variable number of arguments, add a frame offset for
778 // the start of the first vararg value... this is used to expand
779 // llvm.va_start.
780 if (Fn.getFunctionType()->isVarArg())
Misha Brukmanb097f212004-07-26 18:13:24 +0000781 VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000782}
783
784
785/// SelectPHINodes - Insert machine code to generate phis. This is tricky
786/// because we have to generate our sources into the source basic blocks, not
787/// the current one.
788///
789void ISel::SelectPHINodes() {
790 const TargetInstrInfo &TII = *TM.getInstrInfo();
791 const Function &LF = *F->getFunction(); // The LLVM function...
792 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
793 const BasicBlock *BB = I;
794 MachineBasicBlock &MBB = *MBBMap[I];
795
796 // Loop over all of the PHI nodes in the LLVM basic block...
797 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
798 for (BasicBlock::const_iterator I = BB->begin();
799 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
800
801 // Create a new machine instr PHI node, and insert it.
802 unsigned PHIReg = getReg(*PN);
803 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
804 PPC32::PHI, PN->getNumOperands(), PHIReg);
805
806 MachineInstr *LongPhiMI = 0;
807 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
808 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
809 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
810
811 // PHIValues - Map of blocks to incoming virtual registers. We use this
812 // so that we only initialize one incoming value for a particular block,
813 // even if the block has multiple entries in the PHI node.
814 //
815 std::map<MachineBasicBlock*, unsigned> PHIValues;
816
817 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Misha Brukman313efcb2004-07-09 15:45:07 +0000818 MachineBasicBlock *PredMBB = 0;
819 for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
820 PE = MBB.pred_end (); PI != PE; ++PI)
821 if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
822 PredMBB = *PI;
823 break;
824 }
825 assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
826
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000827 unsigned ValReg;
828 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
829 PHIValues.lower_bound(PredMBB);
830
831 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
832 // We already inserted an initialization of the register for this
833 // predecessor. Recycle it.
834 ValReg = EntryIt->second;
Misha Brukman47225442004-07-23 22:35:49 +0000835 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000836 // Get the incoming value into a virtual register.
837 //
838 Value *Val = PN->getIncomingValue(i);
839
840 // If this is a constant or GlobalValue, we may have to insert code
841 // into the basic block to compute it into a virtual register.
842 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
843 isa<GlobalValue>(Val)) {
844 // Simple constants get emitted at the end of the basic block,
845 // before any terminator instructions. We "know" that the code to
846 // move a constant into a register will never clobber any flags.
847 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
848 } else {
849 // Because we don't want to clobber any values which might be in
850 // physical registers with the computation of this constant (which
851 // might be arbitrarily complex if it is a constant expression),
852 // just insert the computation at the top of the basic block.
853 MachineBasicBlock::iterator PI = PredMBB->begin();
Misha Brukman47225442004-07-23 22:35:49 +0000854
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000855 // Skip over any PHI nodes though!
856 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
857 ++PI;
Misha Brukman47225442004-07-23 22:35:49 +0000858
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000859 ValReg = getReg(Val, PredMBB, PI);
860 }
861
862 // Remember that we inserted a value for this PHI for this predecessor
863 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
864 }
865
866 PhiMI->addRegOperand(ValReg);
867 PhiMI->addMachineBasicBlockOperand(PredMBB);
868 if (LongPhiMI) {
869 LongPhiMI->addRegOperand(ValReg+1);
870 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
871 }
872 }
873
874 // Now that we emitted all of the incoming values for the PHI node, make
875 // sure to reposition the InsertPoint after the PHI that we just added.
876 // This is needed because we might have inserted a constant into this
877 // block, right after the PHI's which is before the old insert point!
878 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
879 ++PHIInsertPoint;
880 }
881 }
882}
883
884
885// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
886// it into the conditional branch or select instruction which is the only user
887// of the cc instruction. This is the case if the conditional branch is the
888// only user of the setcc, and if the setcc is in the same basic block as the
Misha Brukman1013ef52004-07-21 20:09:08 +0000889// conditional branch.
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000890//
891static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
892 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
893 if (SCI->hasOneUse()) {
894 Instruction *User = cast<Instruction>(SCI->use_back());
895 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
Misha Brukmanbebde752004-07-16 21:06:24 +0000896 SCI->getParent() == User->getParent())
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000897 return SCI;
898 }
899 return 0;
900}
901
Misha Brukmanb097f212004-07-26 18:13:24 +0000902
903// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
904// the load or store instruction that is the only user of the GEP.
905//
906static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
907 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
908 if (GEPI->hasOneUse()) {
909 Instruction *User = cast<Instruction>(GEPI->use_back());
910 if (isa<StoreInst>(User) &&
911 GEPI->getParent() == User->getParent() &&
912 User->getOperand(0) != GEPI &&
913 User->getOperand(1) == GEPI) {
914 ++GEPFolds;
915 return GEPI;
916 }
917 if (isa<LoadInst>(User) &&
918 GEPI->getParent() == User->getParent() &&
919 User->getOperand(0) == GEPI) {
920 ++GEPFolds;
921 return GEPI;
922 }
923 }
924 return 0;
925}
926
927
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000928// Return a fixed numbering for setcc instructions which does not depend on the
929// order of the opcodes.
930//
931static unsigned getSetCCNumber(unsigned Opcode) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000932 switch (Opcode) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000933 default: assert(0 && "Unknown setcc instruction!");
934 case Instruction::SetEQ: return 0;
935 case Instruction::SetNE: return 1;
936 case Instruction::SetLT: return 2;
937 case Instruction::SetGE: return 3;
938 case Instruction::SetGT: return 4;
939 case Instruction::SetLE: return 5;
940 }
941}
942
Misha Brukmane9c65512004-07-06 15:32:44 +0000943static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
944 switch (Opcode) {
945 default: assert(0 && "Unknown setcc instruction!");
946 case Instruction::SetEQ: return PPC32::BEQ;
947 case Instruction::SetNE: return PPC32::BNE;
948 case Instruction::SetLT: return PPC32::BLT;
949 case Instruction::SetGE: return PPC32::BGE;
950 case Instruction::SetGT: return PPC32::BGT;
951 case Instruction::SetLE: return PPC32::BLE;
952 }
953}
954
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000955/// emitUCOM - emits an unordered FP compare.
956void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
957 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000958 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000959}
960
Misha Brukmanbebde752004-07-16 21:06:24 +0000961/// EmitComparison - emits a comparison of the two operands, returning the
962/// extended setcc code to use. The result is in CR0.
963///
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000964unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
965 MachineBasicBlock *MBB,
966 MachineBasicBlock::iterator IP) {
967 // The arguments are already supposed to be of the same type.
968 const Type *CompTy = Op0->getType();
969 unsigned Class = getClassB(CompTy);
970 unsigned Op0r = getReg(Op0, MBB, IP);
Misha Brukman47225442004-07-23 22:35:49 +0000971
Misha Brukmanb097f212004-07-26 18:13:24 +0000972 // Before we do a comparison, we have to make sure that we're truncating our
973 // registers appropriately.
974 if (Class == cByte) {
975 unsigned TmpReg = makeAnotherReg(CompTy);
976 if (CompTy->isSigned())
977 BuildMI(*MBB, IP, PPC32::EXTSB, 1, TmpReg).addReg(Op0r);
978 else
979 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
980 .addImm(24).addImm(31);
981 Op0r = TmpReg;
982 } else if (Class == cShort) {
983 unsigned TmpReg = makeAnotherReg(CompTy);
984 if (CompTy->isSigned())
985 BuildMI(*MBB, IP, PPC32::EXTSH, 1, TmpReg).addReg(Op0r);
986 else
987 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
988 .addImm(16).addImm(31);
989 Op0r = TmpReg;
990 }
991
Misha Brukman1013ef52004-07-21 20:09:08 +0000992 // Use crand for lt, gt and crandc for le, ge
993 unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC32::CRAND : PPC32::CRANDC;
994 // ? cr1[lt] : cr1[gt]
995 unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 4 : 5;
996 // ? cr0[lt] : cr0[gt]
997 unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1;
Misha Brukman2ed17ca2004-07-22 15:58:04 +0000998 unsigned Opcode = CompTy->isSigned() ? PPC32::CMPW : PPC32::CMPLW;
999 unsigned OpcodeImm = CompTy->isSigned() ? PPC32::CMPWI : PPC32::CMPLWI;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001000
1001 // Special case handling of: cmp R, i
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001002 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001003 if (Class == cByte || Class == cShort || Class == cInt) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001004 unsigned Op1v = CI->getRawValue() & 0xFFFF;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001005
Misha Brukman1013ef52004-07-21 20:09:08 +00001006 // Treat compare like ADDI for the purposes of immediate suitability
1007 if (canUseAsImmediateForOpcode(CI, 0)) {
1008 BuildMI(*MBB, IP, OpcodeImm, 2, PPC32::CR0).addReg(Op0r).addSImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +00001009 } else {
1010 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00001011 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +00001012 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001013 return OpNum;
1014 } else {
1015 assert(Class == cLong && "Unknown integer class!");
1016 unsigned LowCst = CI->getRawValue();
1017 unsigned HiCst = CI->getRawValue() >> 32;
1018 if (OpNum < 2) { // seteq, setne
Misha Brukman1013ef52004-07-21 20:09:08 +00001019 unsigned LoLow = makeAnotherReg(Type::IntTy);
1020 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1021 unsigned HiLow = makeAnotherReg(Type::IntTy);
1022 unsigned HiTmp = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001023 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Misha Brukman47225442004-07-23 22:35:49 +00001024
Misha Brukman1013ef52004-07-21 20:09:08 +00001025 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r+1)
1026 .addImm(LowCst & 0xFFFF);
1027 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
1028 .addImm(LowCst >> 16);
1029 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r)
1030 .addImm(HiCst & 0xFFFF);
1031 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
1032 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001033 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001034 return OpNum;
1035 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001036 unsigned ConstReg = makeAnotherReg(CompTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00001037 copyConstantToRegister(MBB, IP, CI, ConstReg);
Misha Brukman47225442004-07-23 22:35:49 +00001038
Misha Brukman1013ef52004-07-21 20:09:08 +00001039 // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001040 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r)
Misha Brukmanbebde752004-07-16 21:06:24 +00001041 .addReg(ConstReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001042 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR1).addReg(Op0r+1)
Misha Brukman1013ef52004-07-21 20:09:08 +00001043 .addReg(ConstReg+1);
1044 BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
1045 BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
1046 .addImm(2);
Misha Brukman422791f2004-06-21 17:41:12 +00001047 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001048 }
1049 }
1050 }
1051
1052 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00001053
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001054 switch (Class) {
1055 default: assert(0 && "Unknown type class!");
1056 case cByte:
1057 case cShort:
1058 case cInt:
Misha Brukman1013ef52004-07-21 20:09:08 +00001059 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001060 break;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001061
Misha Brukman7e898c32004-07-20 00:41:46 +00001062 case cFP32:
1063 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001064 emitUCOM(MBB, IP, Op0r, Op1r);
1065 break;
1066
1067 case cLong:
1068 if (OpNum < 2) { // seteq, setne
1069 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1070 unsigned HiTmp = makeAnotherReg(Type::IntTy);
1071 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001072 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r);
1073 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001074 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001075 break; // Allow the sete or setne to be generated from flags set by OR
1076 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001077 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1078 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001079
1080 // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001081 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
1082 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001083 BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
1084 BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
1085 .addImm(2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001086 return OpNum;
1087 }
1088 }
1089 return OpNum;
1090}
1091
Misha Brukmand18a31d2004-07-06 22:51:53 +00001092/// visitSetCondInst - emit code to calculate the condition via
1093/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001094///
1095void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001096 if (canFoldSetCCIntoBranchOrSelect(&I))
Misha Brukmane9c65512004-07-06 15:32:44 +00001097 return;
Misha Brukmanbebde752004-07-16 21:06:24 +00001098
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001099 unsigned DestReg = getReg(I);
Misha Brukman2834a4d2004-07-07 20:07:22 +00001100 unsigned OpNum = I.getOpcode();
Misha Brukman425ff242004-07-01 21:34:10 +00001101 const Type *Ty = I.getOperand (0)->getType();
Misha Brukman47225442004-07-23 22:35:49 +00001102
Misha Brukmand18a31d2004-07-06 22:51:53 +00001103 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
Misha Brukman47225442004-07-23 22:35:49 +00001104
Misha Brukmand18a31d2004-07-06 22:51:53 +00001105 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
Misha Brukman425ff242004-07-01 21:34:10 +00001106 MachineBasicBlock *thisMBB = BB;
1107 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001108 ilist<MachineBasicBlock>::iterator It = BB;
1109 ++It;
1110
Misha Brukman425ff242004-07-01 21:34:10 +00001111 // thisMBB:
1112 // ...
1113 // cmpTY cr0, r1, r2
1114 // bCC copy1MBB
1115 // b copy0MBB
1116
1117 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1118 // if we could insert other, non-terminator instructions after the
1119 // bCC. But MBB->getFirstTerminator() can't understand this.
1120 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001121 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001122 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1123 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001124 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001125 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
Misha Brukman1013ef52004-07-21 20:09:08 +00001126 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1127 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001128 // Update machine-CFG edges
1129 BB->addSuccessor(copy1MBB);
1130 BB->addSuccessor(copy0MBB);
1131
Misha Brukman425ff242004-07-01 21:34:10 +00001132 // copy1MBB:
1133 // %TrueValue = li 1
Misha Brukmane9c65512004-07-06 15:32:44 +00001134 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +00001135 BB = copy1MBB;
Misha Brukmane2eceb52004-07-23 16:08:20 +00001136 unsigned TrueValue = makeAnotherReg(I.getType());
Misha Brukman1013ef52004-07-21 20:09:08 +00001137 BuildMI(BB, PPC32::LI, 1, TrueValue).addSImm(1);
Misha Brukman425ff242004-07-01 21:34:10 +00001138 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1139 // Update machine-CFG edges
1140 BB->addSuccessor(sinkMBB);
1141
Misha Brukman1013ef52004-07-21 20:09:08 +00001142 // copy0MBB:
1143 // %FalseValue = li 0
1144 // fallthrough
1145 BB = copy0MBB;
1146 unsigned FalseValue = makeAnotherReg(I.getType());
1147 BuildMI(BB, PPC32::LI, 1, FalseValue).addSImm(0);
1148 // Update machine-CFG edges
1149 BB->addSuccessor(sinkMBB);
1150
Misha Brukman425ff242004-07-01 21:34:10 +00001151 // sinkMBB:
1152 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1153 // ...
1154 BB = sinkMBB;
1155 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1156 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001157}
1158
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001159void ISel::visitSelectInst(SelectInst &SI) {
1160 unsigned DestReg = getReg(SI);
1161 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001162 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1163 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001164}
1165
1166/// emitSelect - Common code shared between visitSelectInst and the constant
1167/// expression support.
1168/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
1169/// no select instruction. FSEL only works for comparisons against zero.
1170void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1171 MachineBasicBlock::iterator IP,
1172 Value *Cond, Value *TrueVal, Value *FalseVal,
1173 unsigned DestReg) {
1174 unsigned SelectClass = getClassB(TrueVal->getType());
Misha Brukman7e898c32004-07-20 00:41:46 +00001175 unsigned Opcode;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001176
Misha Brukmanbebde752004-07-16 21:06:24 +00001177 // See if we can fold the setcc into the select instruction, or if we have
1178 // to get the register of the Cond value
Misha Brukmanbebde752004-07-16 21:06:24 +00001179 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1180 // We successfully folded the setcc into the select instruction.
Misha Brukmanbebde752004-07-16 21:06:24 +00001181 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukman47225442004-07-23 22:35:49 +00001182 OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
Misha Brukmanbebde752004-07-16 21:06:24 +00001183 Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
1184 } else {
1185 unsigned CondReg = getReg(Cond, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00001186 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(CondReg).addSImm(0);
Misha Brukmanbebde752004-07-16 21:06:24 +00001187 Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001188 }
Misha Brukmanbebde752004-07-16 21:06:24 +00001189
1190 // thisMBB:
1191 // ...
1192 // cmpTY cr0, r1, r2
1193 // bCC copy1MBB
1194 // b copy0MBB
1195
1196 MachineBasicBlock *thisMBB = BB;
1197 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001198 ilist<MachineBasicBlock>::iterator It = BB;
1199 ++It;
Misha Brukmanbebde752004-07-16 21:06:24 +00001200
1201 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1202 // if we could insert other, non-terminator instructions after the
1203 // bCC. But MBB->getFirstTerminator() can't understand this.
1204 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001205 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001206 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1207 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001208 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001209 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
Misha Brukman1013ef52004-07-21 20:09:08 +00001210 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1211 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001212 // Update machine-CFG edges
1213 BB->addSuccessor(copy1MBB);
1214 BB->addSuccessor(copy0MBB);
1215
Misha Brukmanbebde752004-07-16 21:06:24 +00001216 // copy1MBB:
1217 // %TrueValue = ...
1218 // b sinkMBB
1219 BB = copy1MBB;
1220 unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
1221 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1222 // Update machine-CFG edges
1223 BB->addSuccessor(sinkMBB);
1224
Misha Brukman1013ef52004-07-21 20:09:08 +00001225 // copy0MBB:
1226 // %FalseValue = ...
1227 // fallthrough
1228 BB = copy0MBB;
1229 unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
1230 // Update machine-CFG edges
1231 BB->addSuccessor(sinkMBB);
1232
Misha Brukmanbebde752004-07-16 21:06:24 +00001233 // sinkMBB:
1234 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1235 // ...
1236 BB = sinkMBB;
1237 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1238 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukmana31f1f72004-07-21 20:30:18 +00001239 // For a register pair representing a long value, define the second reg
1240 if (getClass(TrueVal->getType()) == cLong)
1241 BuildMI(BB, PPC32::LI, 1, DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001242 return;
1243}
1244
1245
1246
1247/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1248/// operand, in the specified target register.
1249///
1250void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1251 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1252
1253 Value *Val = VR.Val;
1254 const Type *Ty = VR.Ty;
1255 if (Val) {
1256 if (Constant *C = dyn_cast<Constant>(Val)) {
1257 Val = ConstantExpr::getCast(C, Type::IntTy);
1258 Ty = Type::IntTy;
1259 }
1260
Misha Brukman2fec9902004-06-21 20:22:03 +00001261 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001262 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1263 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1264
1265 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001266 BuildMI(BB, PPC32::LI, 1, targetReg).addSImm(TheVal);
Misha Brukman422791f2004-06-21 17:41:12 +00001267 } else {
1268 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001269 BuildMI(BB, PPC32::LIS, 1, TmpReg).addSImm(TheVal >> 16);
Misha Brukman2fec9902004-06-21 20:22:03 +00001270 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1271 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001272 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001273 return;
1274 }
1275 }
1276
1277 // Make sure we have the register number for this value...
1278 unsigned Reg = Val ? getReg(Val) : VR.Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001279 switch (getClassB(Ty)) {
1280 case cByte:
1281 // Extend value into target register (8->32)
1282 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001283 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1284 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001285 else
1286 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1287 break;
1288 case cShort:
1289 // Extend value into target register (16->32)
1290 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001291 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1292 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001293 else
1294 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1295 break;
1296 case cInt:
1297 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001298 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001299 break;
1300 default:
1301 assert(0 && "Unpromotable operand class in promote32");
1302 }
1303}
1304
Misha Brukman2fec9902004-06-21 20:22:03 +00001305/// visitReturnInst - implemented with BLR
1306///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001307void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001308 // Only do the processing if this is a non-void return
1309 if (I.getNumOperands() > 0) {
1310 Value *RetVal = I.getOperand(0);
1311 switch (getClassB(RetVal->getType())) {
1312 case cByte: // integral return values: extend or move into r3 and return
1313 case cShort:
1314 case cInt:
1315 promote32(PPC32::R3, ValueRecord(RetVal));
1316 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001317 case cFP32:
1318 case cFP64: { // Floats & Doubles: Return in f1
Misha Brukmand47bbf72004-06-25 19:04:27 +00001319 unsigned RetReg = getReg(RetVal);
1320 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1321 break;
1322 }
1323 case cLong: {
1324 unsigned RetReg = getReg(RetVal);
1325 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1326 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1327 break;
1328 }
1329 default:
1330 visitInstruction(I);
1331 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001332 }
1333 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1334}
1335
1336// getBlockAfter - Return the basic block which occurs lexically after the
1337// specified one.
1338static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1339 Function::iterator I = BB; ++I; // Get iterator to next block
1340 return I != BB->getParent()->end() ? &*I : 0;
1341}
1342
1343/// visitBranchInst - Handle conditional and unconditional branches here. Note
1344/// that since code layout is frozen at this point, that if we are trying to
1345/// jump to a block that is the immediate successor of the current block, we can
1346/// just make a fall-through (but we don't currently).
1347///
1348void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001349 // Update machine-CFG edges
Misha Brukmane2eceb52004-07-23 16:08:20 +00001350 BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001351 if (BI.isConditional())
Misha Brukmane2eceb52004-07-23 16:08:20 +00001352 BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001353
1354 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
Misha Brukmane9c65512004-07-06 15:32:44 +00001355
Misha Brukman2fec9902004-06-21 20:22:03 +00001356 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmane9c65512004-07-06 15:32:44 +00001357 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001358 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1359 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001360 }
1361
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001362 // See if we can fold the setcc into the branch itself...
1363 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1364 if (SCI == 0) {
1365 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1366 // computed some other way...
1367 unsigned condReg = getReg(BI.getCondition());
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001368 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(condReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00001369 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001370 if (BI.getSuccessor(1) == NextBB) {
1371 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001372 BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(PPC32::BNE)
1373 .addMBB(MBBMap[BI.getSuccessor(0)])
1374 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001375 } else {
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001376 BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(PPC32::BEQ)
1377 .addMBB(MBBMap[BI.getSuccessor(1)])
1378 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001379 if (BI.getSuccessor(0) != NextBB)
1380 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1381 }
1382 return;
1383 }
1384
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001385 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukmane9c65512004-07-06 15:32:44 +00001386 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001387 MachineBasicBlock::iterator MII = BB->end();
1388 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001389
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001390 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001391 BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(Opcode)
1392 .addMBB(MBBMap[BI.getSuccessor(0)])
1393 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001394 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001395 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001396 } else {
1397 // Change to the inverse condition...
1398 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001399 Opcode = PowerPCInstrInfo::invertPPCBranchOpcode(Opcode);
1400 BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(Opcode)
1401 .addMBB(MBBMap[BI.getSuccessor(1)])
1402 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001403 }
1404 }
1405}
1406
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001407/// doCall - This emits an abstract call instruction, setting up the arguments
1408/// and the return value as appropriate. For the actual function call itself,
1409/// it inserts the specified CallMI instruction into the stream.
1410///
1411/// FIXME: See Documentation at the following URL for "correct" behavior
1412/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1413void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +00001414 const std::vector<ValueRecord> &Args, bool isVarArg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001415 // Count how many bytes are to be pushed on the stack...
1416 unsigned NumBytes = 0;
1417
1418 if (!Args.empty()) {
1419 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1420 switch (getClassB(Args[i].Ty)) {
1421 case cByte: case cShort: case cInt:
1422 NumBytes += 4; break;
1423 case cLong:
1424 NumBytes += 8; break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001425 case cFP32:
1426 NumBytes += 4; break;
1427 case cFP64:
1428 NumBytes += 8; break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001429 break;
1430 default: assert(0 && "Unknown class!");
1431 }
1432
1433 // Adjust the stack pointer for the new arguments...
Misha Brukman1013ef52004-07-21 20:09:08 +00001434 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addSImm(NumBytes);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001435
1436 // Arguments go on the stack in reverse order, as specified by the ABI.
Misha Brukman7e898c32004-07-20 00:41:46 +00001437 // Offset to the paramater area on the stack is 24.
1438 unsigned ArgOffset = 24;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001439 int GPR_remaining = 8, FPR_remaining = 13;
Misha Brukmanfc879c32004-07-08 18:02:38 +00001440 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001441 static const unsigned GPR[] = {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001442 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1443 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1444 };
Misha Brukmand18a31d2004-07-06 22:51:53 +00001445 static const unsigned FPR[] = {
Misha Brukman2834a4d2004-07-07 20:07:22 +00001446 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6,
1447 PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12,
1448 PPC32::F13
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001449 };
Misha Brukman422791f2004-06-21 17:41:12 +00001450
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001451 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1452 unsigned ArgReg;
1453 switch (getClassB(Args[i].Ty)) {
1454 case cByte:
1455 case cShort:
1456 // Promote arg to 32 bits wide into a temporary register...
1457 ArgReg = makeAnotherReg(Type::UIntTy);
1458 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001459
1460 // Reg or stack?
1461 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001462 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001463 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001464 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukmanb097f212004-07-26 18:13:24 +00001465 }
1466 if (GPR_remaining <= 0 || isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001467 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001468 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001469 }
1470 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001471 case cInt:
1472 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1473
Misha Brukman422791f2004-06-21 17:41:12 +00001474 // Reg or stack?
1475 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001476 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001477 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001478 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukmanb097f212004-07-26 18:13:24 +00001479 }
1480 if (GPR_remaining <= 0 || isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001481 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001482 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001483 }
1484 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001485 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001486 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001487
Misha Brukmanec6319a2004-07-20 15:51:37 +00001488 // Reg or stack? Note that PPC calling conventions state that long args
1489 // are passed rN = hi, rN+1 = lo, opposite of LLVM.
Misha Brukman422791f2004-06-21 17:41:12 +00001490 if (GPR_remaining > 1) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001491 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanec6319a2004-07-20 15:51:37 +00001492 .addReg(ArgReg);
Misha Brukman1013ef52004-07-21 20:09:08 +00001493 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
1494 .addReg(ArgReg+1);
Misha Brukman7e898c32004-07-20 00:41:46 +00001495 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1496 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
Misha Brukmanb097f212004-07-26 18:13:24 +00001497 }
1498 if (GPR_remaining <= 1 || isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001499 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001500 .addReg(PPC32::R1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001501 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001502 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001503 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001504
1505 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001506 GPR_remaining -= 1; // uses up 2 GPRs
1507 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001508 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001509 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001510 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman7e898c32004-07-20 00:41:46 +00001511 // Reg or stack?
1512 if (FPR_remaining > 0) {
1513 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1514 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1515 FPR_remaining--;
1516 FPR_idx++;
1517
1518 // If this is a vararg function, and there are GPRs left, also
1519 // pass the float in an int. Otherwise, put it on the stack.
1520 if (isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001521 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001522 .addReg(PPC32::R1);
1523 if (GPR_remaining > 0) {
1524 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx])
Misha Brukman1013ef52004-07-21 20:09:08 +00001525 .addSImm(ArgOffset).addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001526 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1527 }
Misha Brukman1916bf92004-06-24 21:56:15 +00001528 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001529 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001530 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001531 .addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001532 }
1533 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001534 case cFP64:
1535 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1536 // Reg or stack?
1537 if (FPR_remaining > 0) {
1538 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1539 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1540 FPR_remaining--;
1541 FPR_idx++;
1542 // For vararg functions, must pass doubles via int regs as well
1543 if (isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001544 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001545 .addReg(PPC32::R1);
1546
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001547 // Doubles can be split across reg + stack for varargs
1548 if (GPR_remaining > 0) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001549 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001550 .addReg(PPC32::R1);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001551 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1552 }
1553 if (GPR_remaining > 1) {
Misha Brukman7e898c32004-07-20 00:41:46 +00001554 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx+1])
Misha Brukman1013ef52004-07-21 20:09:08 +00001555 .addSImm(ArgOffset+4).addReg(PPC32::R1);
Misha Brukman7e898c32004-07-20 00:41:46 +00001556 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
1557 }
1558 }
1559 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001560 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001561 .addReg(PPC32::R1);
1562 }
1563 // Doubles use 8 bytes, and 2 GPRs worth of param space
1564 ArgOffset += 4;
1565 GPR_remaining--;
1566 GPR_idx++;
1567 break;
1568
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001569 default: assert(0 && "Unknown class!");
1570 }
1571 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001572 GPR_remaining--;
1573 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001574 }
1575 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001576 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001577 }
1578
Misha Brukman435c7852004-07-27 17:13:58 +00001579 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, PPC32::LR);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001580 BB->push_back(CallMI);
Misha Brukman1013ef52004-07-21 20:09:08 +00001581 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addSImm(NumBytes);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001582
1583 // If there is a return value, scavenge the result from the location the call
1584 // leaves it in...
1585 //
1586 if (Ret.Ty != Type::VoidTy) {
1587 unsigned DestClass = getClassB(Ret.Ty);
1588 switch (DestClass) {
1589 case cByte:
1590 case cShort:
1591 case cInt:
1592 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001593 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001594 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001595 case cFP32: // Floating-point return values live in f1
1596 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001597 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1598 break;
Misha Brukmanec6319a2004-07-20 15:51:37 +00001599 case cLong: // Long values are in r3 hi:r4 lo
Misha Brukman1013ef52004-07-21 20:09:08 +00001600 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1601 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001602 break;
1603 default: assert(0 && "Unknown class!");
1604 }
1605 }
1606}
1607
1608
1609/// visitCallInst - Push args on stack and do a procedure call instruction.
1610void ISel::visitCallInst(CallInst &CI) {
1611 MachineInstr *TheCall;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001612 Function *F = CI.getCalledFunction();
1613 if (F) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001614 // Is it an intrinsic function call?
1615 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1616 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1617 return;
1618 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001619 // Emit a CALL instruction with PC-relative displacement.
1620 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
Misha Brukmane2eceb52004-07-23 16:08:20 +00001621 // Add it to the set of functions called to be used by the Printer
1622 TM.CalledFunctions.insert(F);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001623 } else { // Emit an indirect call through the CTR
1624 unsigned Reg = getReg(CI.getCalledValue());
Misha Brukman7e898c32004-07-20 00:41:46 +00001625 BuildMI(BB, PPC32::MTCTR, 1).addReg(Reg);
1626 TheCall = BuildMI(PPC32::CALLindirect, 2).addZImm(20).addZImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001627 }
1628
1629 std::vector<ValueRecord> Args;
1630 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1631 Args.push_back(ValueRecord(CI.getOperand(i)));
1632
1633 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001634 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1635 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001636}
1637
1638
1639/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1640///
1641static Value *dyncastIsNan(Value *V) {
1642 if (CallInst *CI = dyn_cast<CallInst>(V))
1643 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001644 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001645 return CI->getOperand(1);
1646 return 0;
1647}
1648
1649/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1650/// or's whos operands are all calls to the isnan predicate.
1651static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1652 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1653
1654 // Check all uses, which will be or's of isnans if this predicate is true.
1655 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1656 Instruction *I = cast<Instruction>(*UI);
1657 if (I->getOpcode() != Instruction::Or) return false;
1658 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1659 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1660 }
1661
1662 return true;
1663}
1664
1665/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1666/// function, lowering any calls to unknown intrinsic functions into the
1667/// equivalent LLVM code.
1668///
1669void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1670 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1671 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1672 if (CallInst *CI = dyn_cast<CallInst>(I++))
1673 if (Function *F = CI->getCalledFunction())
1674 switch (F->getIntrinsicID()) {
1675 case Intrinsic::not_intrinsic:
1676 case Intrinsic::vastart:
1677 case Intrinsic::vacopy:
1678 case Intrinsic::vaend:
1679 case Intrinsic::returnaddress:
1680 case Intrinsic::frameaddress:
Misha Brukmanb097f212004-07-26 18:13:24 +00001681 // FIXME: should lower these ourselves
Misha Brukmana2916ce2004-06-21 17:58:36 +00001682 // case Intrinsic::isunordered:
Misha Brukmanb097f212004-07-26 18:13:24 +00001683 // case Intrinsic::memcpy: -> doCall(). system memcpy almost
1684 // guaranteed to be faster than anything we generate ourselves
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001685 // We directly implement these intrinsics
1686 break;
1687 case Intrinsic::readio: {
1688 // On PPC, memory operations are in-order. Lower this intrinsic
1689 // into a volatile load.
1690 Instruction *Before = CI->getPrev();
1691 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1692 CI->replaceAllUsesWith(LI);
1693 BB->getInstList().erase(CI);
1694 break;
1695 }
1696 case Intrinsic::writeio: {
1697 // On PPC, memory operations are in-order. Lower this intrinsic
1698 // into a volatile store.
1699 Instruction *Before = CI->getPrev();
Misha Brukman8d442c22004-07-14 15:29:51 +00001700 StoreInst *SI = new StoreInst(CI->getOperand(1),
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001701 CI->getOperand(2), true, CI);
Misha Brukman8d442c22004-07-14 15:29:51 +00001702 CI->replaceAllUsesWith(SI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001703 BB->getInstList().erase(CI);
1704 break;
1705 }
1706 default:
1707 // All other intrinsic calls we must lower.
1708 Instruction *Before = CI->getPrev();
1709 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1710 if (Before) { // Move iterator to instruction after call
1711 I = Before; ++I;
1712 } else {
1713 I = BB->begin();
1714 }
1715 }
1716}
1717
1718void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1719 unsigned TmpReg1, TmpReg2, TmpReg3;
1720 switch (ID) {
1721 case Intrinsic::vastart:
1722 // Get the address of the first vararg value...
1723 TmpReg1 = getReg(CI);
Misha Brukmanec6319a2004-07-20 15:51:37 +00001724 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex,
1725 0, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001726 return;
1727
1728 case Intrinsic::vacopy:
1729 TmpReg1 = getReg(CI);
1730 TmpReg2 = getReg(CI.getOperand(1));
1731 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1732 return;
1733 case Intrinsic::vaend: return;
1734
1735 case Intrinsic::returnaddress:
Misha Brukmanec6319a2004-07-20 15:51:37 +00001736 TmpReg1 = getReg(CI);
1737 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1738 MachineFrameInfo *MFI = F->getFrameInfo();
1739 unsigned NumBytes = MFI->getStackSize();
1740
Misha Brukman1013ef52004-07-21 20:09:08 +00001741 BuildMI(BB, PPC32::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
Misha Brukmanec6319a2004-07-20 15:51:37 +00001742 .addReg(PPC32::R1);
1743 } else {
1744 // Values other than zero are not implemented yet.
Misha Brukman1013ef52004-07-21 20:09:08 +00001745 BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
Misha Brukmanec6319a2004-07-20 15:51:37 +00001746 }
1747 return;
1748
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001749 case Intrinsic::frameaddress:
1750 TmpReg1 = getReg(CI);
1751 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00001752 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(PPC32::R1).addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001753 } else {
1754 // Values other than zero are not implemented yet.
Misha Brukman1013ef52004-07-21 20:09:08 +00001755 BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001756 }
1757 return;
Misha Brukmanb097f212004-07-26 18:13:24 +00001758
Misha Brukmana2916ce2004-06-21 17:58:36 +00001759#if 0
1760 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001761 case Intrinsic::isnan:
1762 // If this is only used by 'isunordered' style comparisons, don't emit it.
1763 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1764 TmpReg1 = getReg(CI.getOperand(1));
1765 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001766 TmpReg2 = makeAnotherReg(Type::IntTy);
1767 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001768 TmpReg3 = getReg(CI);
1769 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1770 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001771#endif
1772
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001773 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1774 }
1775}
1776
1777/// visitSimpleBinary - Implement simple binary operators for integral types...
1778/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1779/// Xor.
1780///
1781void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1782 unsigned DestReg = getReg(B);
1783 MachineBasicBlock::iterator MI = BB->end();
1784 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1785 unsigned Class = getClassB(B.getType());
1786
1787 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1788}
1789
1790/// emitBinaryFPOperation - This method handles emission of floating point
1791/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1792void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1793 MachineBasicBlock::iterator IP,
1794 Value *Op0, Value *Op1,
1795 unsigned OperatorClass, unsigned DestReg) {
1796
1797 // Special case: op Reg, <const fp>
1798 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001799 // Create a constant pool entry for this constant.
1800 MachineConstantPool *CP = F->getConstantPool();
1801 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1802 const Type *Ty = Op1->getType();
Misha Brukmand9aa7832004-07-12 23:49:47 +00001803 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001804
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001805 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001806 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1807 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001808 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001809
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001810 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001811 unsigned Op1Reg = getReg(Op1C, BB, IP);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001812 unsigned Op0r = getReg(Op0, BB, IP);
Misha Brukmana596f8c2004-07-13 15:35:45 +00001813 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001814 return;
1815 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001816
1817 // Special case: R1 = op <const fp>, R2
Misha Brukmana596f8c2004-07-13 15:35:45 +00001818 if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
1819 if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001820 // -0.0 - X === -X
1821 unsigned op1Reg = getReg(Op1, BB, IP);
1822 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1823 return;
1824 } else {
1825 // R1 = op CST, R2 --> R1 = opr R2, CST
1826
1827 // Create a constant pool entry for this constant.
1828 MachineConstantPool *CP = F->getConstantPool();
Misha Brukmana596f8c2004-07-13 15:35:45 +00001829 unsigned CPI = CP->getConstantPoolIndex(Op0C);
1830 const Type *Ty = Op0C->getType();
1831 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001832
1833 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001834 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1835 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001836 };
1837
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001838 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001839 unsigned Op0Reg = getReg(Op0C, BB, IP);
1840 unsigned Op1Reg = getReg(Op1, BB, IP);
1841 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001842 return;
1843 }
1844
1845 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001846 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001847 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1848 };
1849
1850 unsigned Opcode = OpcodeTab[OperatorClass];
1851 unsigned Op0r = getReg(Op0, BB, IP);
1852 unsigned Op1r = getReg(Op1, BB, IP);
1853 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1854}
1855
1856/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1857/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1858/// Or, 4 for Xor.
1859///
1860/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1861/// and constant expression support.
1862///
1863void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1864 MachineBasicBlock::iterator IP,
1865 Value *Op0, Value *Op1,
1866 unsigned OperatorClass, unsigned DestReg) {
1867 unsigned Class = getClassB(Op0->getType());
1868
Misha Brukman422791f2004-06-21 17:41:12 +00001869 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001870 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001871 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1872 };
Misha Brukman1013ef52004-07-21 20:09:08 +00001873 static const unsigned ImmOpcodeTab[] = {
1874 PPC32::ADDI, PPC32::SUBI, PPC32::ANDIo, PPC32::ORI, PPC32::XORI
1875 };
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001876 static const unsigned RImmOpcodeTab[] = {
1877 PPC32::ADDI, PPC32::SUBFIC, PPC32::ANDIo, PPC32::ORI, PPC32::XORI
1878 };
Misha Brukman1013ef52004-07-21 20:09:08 +00001879
Misha Brukman422791f2004-06-21 17:41:12 +00001880 // Otherwise, code generate the full operation with a constant.
1881 static const unsigned BottomTab[] = {
1882 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1883 };
1884 static const unsigned TopTab[] = {
1885 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1886 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001887
Misha Brukman7e898c32004-07-20 00:41:46 +00001888 if (Class == cFP32 || Class == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001889 assert(OperatorClass < 2 && "No logical ops for FP!");
1890 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1891 return;
1892 }
1893
1894 if (Op0->getType() == Type::BoolTy) {
1895 if (OperatorClass == 3)
1896 // If this is an or of two isnan's, emit an FP comparison directly instead
1897 // of or'ing two isnan's together.
1898 if (Value *LHS = dyncastIsNan(Op0))
1899 if (Value *RHS = dyncastIsNan(Op1)) {
1900 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001901 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001902 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001903 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001904 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1905 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001906 return;
1907 }
1908 }
1909
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001910 // Special case: op <const int>, Reg
Misha Brukman1013ef52004-07-21 20:09:08 +00001911 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001912 // sub 0, X -> subfic
1913 if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001914 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001915 int imm = CI->getRawValue() & 0xFFFF;
Misha Brukman1013ef52004-07-21 20:09:08 +00001916
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001917 if (Class == cLong) {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001918 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, DestReg+1).addReg(Op1r+1)
1919 .addSImm(imm);
Misha Brukman1013ef52004-07-21 20:09:08 +00001920 BuildMI(*MBB, IP, PPC32::SUBFZE, 1, DestReg).addReg(Op1r);
1921 } else {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001922 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001923 }
1924 return;
1925 }
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001926
1927 // If it is easy to do, swap the operands and emit an immediate op
1928 if (Class != cLong && OperatorClass != 1 &&
1929 canUseAsImmediateForOpcode(CI, OperatorClass)) {
1930 unsigned Op1r = getReg(Op1, MBB, IP);
1931 int imm = CI->getRawValue() & 0xFFFF;
1932
1933 if (OperatorClass < 2)
1934 BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
1935 .addSImm(imm);
1936 else
1937 BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
1938 .addZImm(imm);
1939 return;
1940 }
Misha Brukman1013ef52004-07-21 20:09:08 +00001941 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001942
1943 // Special case: op Reg, <const int>
1944 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1945 unsigned Op0r = getReg(Op0, MBB, IP);
1946
1947 // xor X, -1 -> not X
1948 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1949 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
Misha Brukman1013ef52004-07-21 20:09:08 +00001950 if (Class == cLong) // Invert the low part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001951 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1952 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001953 return;
1954 }
Misha Brukman1013ef52004-07-21 20:09:08 +00001955
Misha Brukman1013ef52004-07-21 20:09:08 +00001956 if (Class != cLong) {
1957 if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
1958 int immediate = Op1C->getRawValue() & 0xFFFF;
1959
1960 if (OperatorClass < 2)
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001961 BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
Misha Brukman1013ef52004-07-21 20:09:08 +00001962 .addSImm(immediate);
1963 else
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001964 BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
Misha Brukman1013ef52004-07-21 20:09:08 +00001965 .addZImm(immediate);
1966 } else {
1967 unsigned Op1r = getReg(Op1, MBB, IP);
1968 BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
1969 .addReg(Op1r);
1970 }
1971 return;
1972 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001973
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001974 unsigned Op1r = getReg(Op1, MBB, IP);
1975
Misha Brukman1013ef52004-07-21 20:09:08 +00001976 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001977 .addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001978 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
1979 .addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001980 return;
1981 }
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001982
1983 // We couldn't generate an immediate variant of the op, load both halves into
1984 // registers and emit the appropriate opcode.
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001985 unsigned Op0r = getReg(Op0, MBB, IP);
1986 unsigned Op1r = getReg(Op1, MBB, IP);
1987
1988 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001989 unsigned Opcode = OpcodeTab[OperatorClass];
1990 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001991 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001992 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001993 .addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001994 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
1995 .addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001996 }
1997 return;
1998}
1999
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002000// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
2001// returns zero when the input is not exactly a power of two.
2002static unsigned ExactLog2(unsigned Val) {
2003 if (Val == 0 || (Val & (Val-1))) return 0;
2004 unsigned Count = 0;
2005 while (Val != 1) {
2006 Val >>= 1;
2007 ++Count;
2008 }
Misha Brukman1013ef52004-07-21 20:09:08 +00002009 return Count;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002010}
2011
Misha Brukman1013ef52004-07-21 20:09:08 +00002012/// doMultiply - Emit appropriate instructions to multiply together the
2013/// Values Op0 and Op1, and put the result in DestReg.
Misha Brukman2fec9902004-06-21 20:22:03 +00002014///
Misha Brukman1013ef52004-07-21 20:09:08 +00002015void ISel::doMultiply(MachineBasicBlock *MBB,
2016 MachineBasicBlock::iterator IP,
2017 unsigned DestReg, Value *Op0, Value *Op1) {
2018 unsigned Class0 = getClass(Op0->getType());
2019 unsigned Class1 = getClass(Op1->getType());
2020
2021 unsigned Op0r = getReg(Op0, MBB, IP);
2022 unsigned Op1r = getReg(Op1, MBB, IP);
2023
2024 // 64 x 64 -> 64
2025 if (Class0 == cLong && Class1 == cLong) {
2026 unsigned Tmp1 = makeAnotherReg(Type::IntTy);
2027 unsigned Tmp2 = makeAnotherReg(Type::IntTy);
2028 unsigned Tmp3 = makeAnotherReg(Type::IntTy);
2029 unsigned Tmp4 = makeAnotherReg(Type::IntTy);
2030 BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
2031 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
2032 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
2033 BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
2034 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
2035 BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
2036 return;
2037 }
2038
2039 // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
2040 if (Class0 == cLong && Class1 <= cInt) {
2041 unsigned Tmp0 = makeAnotherReg(Type::IntTy);
2042 unsigned Tmp1 = makeAnotherReg(Type::IntTy);
2043 unsigned Tmp2 = makeAnotherReg(Type::IntTy);
2044 unsigned Tmp3 = makeAnotherReg(Type::IntTy);
2045 unsigned Tmp4 = makeAnotherReg(Type::IntTy);
2046 if (Op1->getType()->isSigned())
2047 BuildMI(*MBB, IP, PPC32::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
2048 else
2049 BuildMI(*MBB, IP, PPC32::LI, 2, Tmp0).addSImm(0);
2050 BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
2051 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
2052 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
2053 BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
2054 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
2055 BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
2056 return;
2057 }
2058
2059 // 32 x 32 -> 32
2060 if (Class0 <= cInt && Class1 <= cInt) {
2061 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
2062 return;
2063 }
2064
2065 assert(0 && "doMultiply cannot operate on unknown type!");
2066}
2067
2068/// doMultiplyConst - This method will multiply the value in Op0 by the
2069/// value of the ContantInt *CI
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002070void ISel::doMultiplyConst(MachineBasicBlock *MBB,
2071 MachineBasicBlock::iterator IP,
Misha Brukman1013ef52004-07-21 20:09:08 +00002072 unsigned DestReg, Value *Op0, ConstantInt *CI) {
2073 unsigned Class = getClass(Op0->getType());
2074
2075 // Mul op0, 0 ==> 0
2076 if (CI->isNullValue()) {
2077 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
2078 if (Class == cLong)
2079 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002080 return;
Misha Brukman1013ef52004-07-21 20:09:08 +00002081 }
2082
2083 // Mul op0, 1 ==> op0
2084 if (CI->equalsInt(1)) {
2085 unsigned Op0r = getReg(Op0, MBB, IP);
2086 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
2087 if (Class == cLong)
2088 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002089 return;
2090 }
2091
2092 // If the element size is exactly a power of 2, use a shift to get it.
Misha Brukman1013ef52004-07-21 20:09:08 +00002093 if (unsigned Shift = ExactLog2(CI->getRawValue())) {
2094 ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
2095 emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
2096 return;
2097 }
2098
2099 // If 32 bits or less and immediate is in right range, emit mul by immediate
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002100 if (Class == cByte || Class == cShort || Class == cInt) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002101 if (canUseAsImmediateForOpcode(CI, 0)) {
2102 unsigned Op0r = getReg(Op0, MBB, IP);
2103 unsigned imm = CI->getRawValue() & 0xFFFF;
2104 BuildMI(*MBB, IP, PPC32::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002105 return;
2106 }
2107 }
2108
Misha Brukman1013ef52004-07-21 20:09:08 +00002109 doMultiply(MBB, IP, DestReg, Op0, CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002110}
2111
2112void ISel::visitMul(BinaryOperator &I) {
2113 unsigned ResultReg = getReg(I);
2114
2115 Value *Op0 = I.getOperand(0);
2116 Value *Op1 = I.getOperand(1);
2117
2118 MachineBasicBlock::iterator IP = BB->end();
2119 emitMultiply(BB, IP, Op0, Op1, ResultReg);
2120}
2121
2122void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
2123 Value *Op0, Value *Op1, unsigned DestReg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002124 TypeClass Class = getClass(Op0->getType());
2125
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002126 switch (Class) {
2127 case cByte:
2128 case cShort:
2129 case cInt:
Misha Brukman1013ef52004-07-21 20:09:08 +00002130 case cLong:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002131 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002132 doMultiplyConst(MBB, IP, DestReg, Op0, CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002133 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00002134 doMultiply(MBB, IP, DestReg, Op0, Op1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002135 }
2136 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002137 case cFP32:
2138 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002139 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2140 return;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002141 break;
2142 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002143}
2144
2145
2146/// visitDivRem - Handle division and remainder instructions... these
2147/// instruction both require the same instructions to be generated, they just
2148/// select the result from a different register. Note that both of these
2149/// instructions work differently for signed and unsigned operands.
2150///
2151void ISel::visitDivRem(BinaryOperator &I) {
2152 unsigned ResultReg = getReg(I);
2153 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2154
2155 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00002156 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
2157 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002158}
2159
2160void ISel::emitDivRemOperation(MachineBasicBlock *BB,
2161 MachineBasicBlock::iterator IP,
2162 Value *Op0, Value *Op1, bool isDiv,
2163 unsigned ResultReg) {
2164 const Type *Ty = Op0->getType();
2165 unsigned Class = getClass(Ty);
2166 switch (Class) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002167 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002168 if (isDiv) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002169 // Floating point divide...
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002170 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2171 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002172 } else {
2173 // Floating point remainder via fmodf(float x, float y);
2174 unsigned Op0Reg = getReg(Op0, BB, IP);
2175 unsigned Op1Reg = getReg(Op1, BB, IP);
2176 MachineInstr *TheCall =
2177 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
2178 std::vector<ValueRecord> Args;
2179 Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
2180 Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
2181 doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002182 TM.CalledFunctions.insert(fmodfFn);
Misha Brukman7e898c32004-07-20 00:41:46 +00002183 }
2184 return;
2185 case cFP64:
2186 if (isDiv) {
2187 // Floating point divide...
2188 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2189 return;
2190 } else {
2191 // Floating point remainder via fmod(double x, double y);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002192 unsigned Op0Reg = getReg(Op0, BB, IP);
2193 unsigned Op1Reg = getReg(Op1, BB, IP);
2194 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002195 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002196 std::vector<ValueRecord> Args;
2197 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2198 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002199 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002200 TM.CalledFunctions.insert(fmodFn);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002201 }
2202 return;
2203 case cLong: {
Misha Brukman7e898c32004-07-20 00:41:46 +00002204 static Function* const Funcs[] =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002205 { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002206 unsigned Op0Reg = getReg(Op0, BB, IP);
2207 unsigned Op1Reg = getReg(Op1, BB, IP);
2208 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2209 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002210 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002211
2212 std::vector<ValueRecord> Args;
2213 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2214 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002215 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002216 TM.CalledFunctions.insert(Funcs[NameIdx]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002217 return;
2218 }
2219 case cByte: case cShort: case cInt:
2220 break; // Small integrals, handled below...
2221 default: assert(0 && "Unknown class!");
2222 }
2223
2224 // Special case signed division by power of 2.
2225 if (isDiv)
2226 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2227 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2228 int V = CI->getValue();
2229
2230 if (V == 1) { // X /s 1 => X
2231 unsigned Op0Reg = getReg(Op0, BB, IP);
2232 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
2233 return;
2234 }
2235
2236 if (V == -1) { // X /s -1 => -X
2237 unsigned Op0Reg = getReg(Op0, BB, IP);
2238 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
2239 return;
2240 }
2241
Misha Brukmanec6319a2004-07-20 15:51:37 +00002242 unsigned log2V = ExactLog2(V);
2243 if (log2V != 0 && Ty->isSigned()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002244 unsigned Op0Reg = getReg(Op0, BB, IP);
2245 unsigned TmpReg = makeAnotherReg(Op0->getType());
Misha Brukmanec6319a2004-07-20 15:51:37 +00002246
Misha Brukman1013ef52004-07-21 20:09:08 +00002247 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
Misha Brukmanec6319a2004-07-20 15:51:37 +00002248 BuildMI(*BB, IP, PPC32::ADDZE, 1, ResultReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002249 return;
2250 }
2251 }
2252
2253 unsigned Op0Reg = getReg(Op0, BB, IP);
2254 unsigned Op1Reg = getReg(Op1, BB, IP);
Misha Brukmanec6319a2004-07-20 15:51:37 +00002255 unsigned Opcode = Ty->isSigned() ? PPC32::DIVW : PPC32::DIVWU;
2256
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002257 if (isDiv) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00002258 BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002259 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002260 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2261 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2262
Misha Brukmanec6319a2004-07-20 15:51:37 +00002263 BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002264 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2265 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002266 }
2267}
2268
2269
2270/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2271/// for constant immediate shift values, and for constant immediate
2272/// shift values equal to 1. Even the general case is sort of special,
2273/// because the shift amount has to be in CL, not just any old register.
2274///
2275void ISel::visitShiftInst(ShiftInst &I) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00002276 MachineBasicBlock::iterator IP = BB->end();
2277 emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
2278 I.getOpcode() == Instruction::Shl, I.getType(),
2279 getReg(I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002280}
2281
2282/// emitShiftOperation - Common code shared between visitShiftInst and
2283/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002284///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002285void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2286 MachineBasicBlock::iterator IP,
2287 Value *Op, Value *ShiftAmount, bool isLeftShift,
2288 const Type *ResultTy, unsigned DestReg) {
2289 unsigned SrcReg = getReg (Op, MBB, IP);
2290 bool isSigned = ResultTy->isSigned ();
2291 unsigned Class = getClass (ResultTy);
2292
2293 // Longs, as usual, are handled specially...
2294 if (Class == cLong) {
2295 // If we have a constant shift, we can generate much more efficient code
2296 // than otherwise...
2297 //
2298 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2299 unsigned Amount = CUI->getValue();
2300 if (Amount < 32) {
2301 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002302 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002303 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2304 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman1013ef52004-07-21 20:09:08 +00002305 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2306 .addImm(Amount).addImm(32-Amount).addImm(31);
2307 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2308 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002309 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002310 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002311 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2312 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman1013ef52004-07-21 20:09:08 +00002313 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2314 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2315 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2316 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002317 }
2318 } else { // Shifting more than 32 bits
2319 Amount -= 32;
2320 if (isLeftShift) {
2321 if (Amount != 0) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002322 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002323 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002324 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002325 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2326 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002327 }
Misha Brukman1013ef52004-07-21 20:09:08 +00002328 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
2329 } else {
2330 if (Amount != 0) {
2331 if (isSigned)
2332 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(SrcReg)
2333 .addImm(Amount);
2334 else
2335 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2336 .addImm(32-Amount).addImm(Amount).addImm(31);
2337 } else {
2338 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2339 .addReg(SrcReg);
2340 }
2341 BuildMI(*MBB, IP,PPC32::LI, 1, DestReg).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002342 }
2343 }
2344 } else {
2345 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2346 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002347 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2348 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2349 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2350 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2351 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2352
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002353 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002354 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002355 .addSImm(32);
2356 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002357 .addReg(ShiftAmountReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002358 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg3).addReg(SrcReg+1)
2359 .addReg(TmpReg1);
2360 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
Misha Brukman2fec9902004-06-21 20:22:03 +00002361 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002362 .addSImm(-32);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002363 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg6).addReg(SrcReg+1)
2364 .addReg(TmpReg5);
Misha Brukman1013ef52004-07-21 20:09:08 +00002365 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
Misha Brukman2fec9902004-06-21 20:22:03 +00002366 .addReg(TmpReg6);
Misha Brukman1013ef52004-07-21 20:09:08 +00002367 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg+1).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002368 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002369 } else {
2370 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002371 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002372 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukmanb097f212004-07-26 18:13:24 +00002373 std::cerr << "ERROR: Unimplemented: signed right shift of long\n";
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002374 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002375 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002376 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002377 .addSImm(32);
2378 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002379 .addReg(ShiftAmountReg);
Misha Brukman1013ef52004-07-21 20:09:08 +00002380 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002381 .addReg(TmpReg1);
2382 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2383 .addReg(TmpReg3);
2384 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002385 .addSImm(-32);
2386 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002387 .addReg(TmpReg5);
Misha Brukman1013ef52004-07-21 20:09:08 +00002388 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
Misha Brukman2fec9902004-06-21 20:22:03 +00002389 .addReg(TmpReg6);
Misha Brukman1013ef52004-07-21 20:09:08 +00002390 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002391 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002392 }
2393 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002394 }
2395 return;
2396 }
2397
2398 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2399 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2400 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2401 unsigned Amount = CUI->getValue();
2402
Misha Brukman422791f2004-06-21 17:41:12 +00002403 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002404 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2405 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002406 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002407 if (isSigned) {
2408 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2409 } else {
2410 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2411 .addImm(32-Amount).addImm(Amount).addImm(31);
2412 }
Misha Brukman422791f2004-06-21 17:41:12 +00002413 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002414 } else { // The shift amount is non-constant.
2415 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2416
Misha Brukman422791f2004-06-21 17:41:12 +00002417 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002418 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2419 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002420 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002421 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2422 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002423 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002424 }
2425}
2426
2427
Misha Brukmanb097f212004-07-26 18:13:24 +00002428/// visitLoadInst - Implement LLVM load instructions. Pretty straightforward
2429/// mapping of LLVM classes to PPC load instructions, with the exception of
2430/// signed byte loads, which need a sign extension following them.
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002431///
2432void ISel::visitLoadInst(LoadInst &I) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002433 // Immediate opcodes, for reg+imm addressing
2434 static const unsigned ImmOpcodes[] = {
2435 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ,
2436 PPC32::LFS, PPC32::LFD, PPC32::LWZ
2437 };
2438 // Indexed opcodes, for reg+reg addressing
2439 static const unsigned IdxOpcodes[] = {
2440 PPC32::LBZX, PPC32::LHZX, PPC32::LWZX,
2441 PPC32::LFSX, PPC32::LFDX, PPC32::LWZX
Misha Brukman2fec9902004-06-21 20:22:03 +00002442 };
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002443
Misha Brukmanb097f212004-07-26 18:13:24 +00002444 unsigned Class = getClassB(I.getType());
2445 unsigned ImmOpcode = ImmOpcodes[Class];
2446 unsigned IdxOpcode = IdxOpcodes[Class];
2447 unsigned DestReg = getReg(I);
2448 Value *SourceAddr = I.getOperand(0);
2449
2450 if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC32::LHA;
2451 if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC32::LHAX;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002452
Misha Brukmanb097f212004-07-26 18:13:24 +00002453 if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
Misha Brukman422791f2004-06-21 17:41:12 +00002454 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002455 if (Class == cLong) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002456 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
2457 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg+1), FI, 4);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002458 } else if (Class == cByte && I.getType()->isSigned()) {
2459 unsigned TmpReg = makeAnotherReg(I.getType());
Misha Brukmanb097f212004-07-26 18:13:24 +00002460 addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002461 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002462 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00002463 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002464 }
Misha Brukmanb097f212004-07-26 18:13:24 +00002465 return;
2466 }
2467
2468 // If this load is the only use of the GEP instruction that is its address,
2469 // then we can fold the GEP directly into the load instruction.
2470 // emitGEPOperation with a second to last arg of 'true' will place the
2471 // base register for the GEP into baseReg, and the constant offset from that
2472 // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
2473 // otherwise, we copy the offset into another reg, and use reg+reg addressing.
2474 if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
2475 unsigned baseReg = getReg(GEPI);
2476 ConstantSInt *offset;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002477
Misha Brukmanb097f212004-07-26 18:13:24 +00002478 emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
2479 GEPI->op_end(), baseReg, true, &offset);
2480
2481 if (Class != cLong && canUseAsImmediateForOpcode(offset, 0)) {
2482 if (Class == cByte && I.getType()->isSigned()) {
2483 unsigned TmpReg = makeAnotherReg(I.getType());
2484 BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
2485 .addReg(baseReg);
2486 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
2487 } else {
2488 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue())
2489 .addReg(baseReg);
2490 }
2491 return;
2492 }
2493
2494 unsigned indexReg = getReg(offset);
2495
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002496 if (Class == cLong) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002497 unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
2498 BuildMI(BB, PPC32::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
2499 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
2500 BuildMI(BB, IdxOpcode, 2, DestReg+1).addReg(indexPlus4).addReg(baseReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002501 } else if (Class == cByte && I.getType()->isSigned()) {
2502 unsigned TmpReg = makeAnotherReg(I.getType());
Misha Brukmanb097f212004-07-26 18:13:24 +00002503 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002504 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002505 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00002506 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002507 }
Misha Brukmanb097f212004-07-26 18:13:24 +00002508 return;
2509 }
2510
2511 // The fallback case, where the load was from a source that could not be
2512 // folded into the load instruction.
2513 unsigned SrcAddrReg = getReg(SourceAddr);
2514
2515 if (Class == cLong) {
2516 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
2517 BuildMI(BB, ImmOpcode, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg);
2518 } else if (Class == cByte && I.getType()->isSigned()) {
2519 unsigned TmpReg = makeAnotherReg(I.getType());
2520 BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
2521 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
2522 } else {
2523 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002524 }
2525}
2526
2527/// visitStoreInst - Implement LLVM store instructions
2528///
2529void ISel::visitStoreInst(StoreInst &I) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002530 // Immediate opcodes, for reg+imm addressing
2531 static const unsigned ImmOpcodes[] = {
2532 PPC32::STB, PPC32::STH, PPC32::STW,
2533 PPC32::STFS, PPC32::STFD, PPC32::STW
2534 };
2535 // Indexed opcodes, for reg+reg addressing
2536 static const unsigned IdxOpcodes[] = {
2537 PPC32::STBX, PPC32::STHX, PPC32::STWX,
2538 PPC32::STFSX, PPC32::STDX, PPC32::STWX
2539 };
2540
2541 Value *SourceAddr = I.getOperand(1);
2542 const Type *ValTy = I.getOperand(0)->getType();
2543 unsigned Class = getClassB(ValTy);
2544 unsigned ImmOpcode = ImmOpcodes[Class];
2545 unsigned IdxOpcode = IdxOpcodes[Class];
2546 unsigned ValReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002547
Misha Brukmanb097f212004-07-26 18:13:24 +00002548 // If this store is the only use of the GEP instruction that is its address,
2549 // then we can fold the GEP directly into the store instruction.
2550 // emitGEPOperation with a second to last arg of 'true' will place the
2551 // base register for the GEP into baseReg, and the constant offset from that
2552 // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
2553 // otherwise, we copy the offset into another reg, and use reg+reg addressing.
2554 if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
2555 unsigned baseReg = getReg(GEPI);
2556 ConstantSInt *offset;
2557
2558 emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
2559 GEPI->op_end(), baseReg, true, &offset);
2560
2561 if (Class != cLong && canUseAsImmediateForOpcode(offset, 0)) {
2562 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
2563 .addReg(baseReg);
2564 return;
2565 }
2566
2567 unsigned indexReg = getReg(offset);
2568
2569 if (Class == cLong) {
2570 unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
2571 BuildMI(BB, PPC32::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
2572 BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
2573 BuildMI(BB, IdxOpcode, 3).addReg(ValReg+1).addReg(indexPlus4)
2574 .addReg(baseReg);
2575 return;
2576 }
2577 BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002578 return;
2579 }
Misha Brukmanb097f212004-07-26 18:13:24 +00002580
2581 // If the store address wasn't the only use of a GEP, we fall back to the
2582 // standard path: store the ValReg at the value in AddressReg.
2583 unsigned AddressReg = getReg(I.getOperand(1));
2584 if (Class == cLong) {
2585 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
2586 BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg);
2587 return;
2588 }
2589 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002590}
2591
2592
2593/// visitCastInst - Here we have various kinds of copying with or without sign
2594/// extension going on.
2595///
2596void ISel::visitCastInst(CastInst &CI) {
2597 Value *Op = CI.getOperand(0);
2598
2599 unsigned SrcClass = getClassB(Op->getType());
2600 unsigned DestClass = getClassB(CI.getType());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002601
2602 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2603 // of the case are GEP instructions, then the cast does not need to be
2604 // generated explicitly, it will be folded into the GEP.
2605 if (DestClass == cLong && SrcClass == cInt) {
2606 bool AllUsesAreGEPs = true;
2607 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2608 if (!isa<GetElementPtrInst>(*I)) {
2609 AllUsesAreGEPs = false;
2610 break;
2611 }
2612
2613 // No need to codegen this cast if all users are getelementptr instrs...
2614 if (AllUsesAreGEPs) return;
2615 }
2616
2617 unsigned DestReg = getReg(CI);
2618 MachineBasicBlock::iterator MI = BB->end();
2619 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2620}
2621
2622/// emitCastOperation - Common code shared between visitCastInst and constant
2623/// expression cast support.
2624///
Misha Brukman7e898c32004-07-20 00:41:46 +00002625void ISel::emitCastOperation(MachineBasicBlock *MBB,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002626 MachineBasicBlock::iterator IP,
2627 Value *Src, const Type *DestTy,
2628 unsigned DestReg) {
2629 const Type *SrcTy = Src->getType();
2630 unsigned SrcClass = getClassB(SrcTy);
2631 unsigned DestClass = getClassB(DestTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002632 unsigned SrcReg = getReg(Src, MBB, IP);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002633
2634 // Implement casts to bool by using compare on the operand followed by set if
2635 // not zero on the result.
2636 if (DestTy == Type::BoolTy) {
2637 switch (SrcClass) {
2638 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002639 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002640 case cInt: {
2641 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00002642 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
Misha Brukman7e898c32004-07-20 00:41:46 +00002643 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002644 break;
2645 }
2646 case cLong: {
2647 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2648 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002649 BuildMI(*MBB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00002650 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1);
Misha Brukmanbf417a62004-07-20 20:43:05 +00002651 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg)
2652 .addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002653 break;
2654 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002655 case cFP32:
2656 case cFP64:
2657 // FSEL perhaps?
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002658 std::cerr << "ERROR: Cast fp-to-bool not implemented!\n";
Misha Brukmand18a31d2004-07-06 22:51:53 +00002659 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002660 }
2661 return;
2662 }
2663
Misha Brukman7e898c32004-07-20 00:41:46 +00002664 // Handle cast of Float -> Double
2665 if (SrcClass == cFP32 && DestClass == cFP64) {
2666 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2667 return;
2668 }
2669
2670 // Handle cast of Double -> Float
2671 if (SrcClass == cFP64 && DestClass == cFP32) {
2672 BuildMI(*MBB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
2673 return;
2674 }
2675
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002676 // Handle casts from integer to floating point now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002677 if (DestClass == cFP32 || DestClass == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002678
Misha Brukman422791f2004-06-21 17:41:12 +00002679 // Emit a library call for long to float conversion
2680 if (SrcClass == cLong) {
2681 std::vector<ValueRecord> Args;
2682 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002683 Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002684 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002685 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002686 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002687 TM.CalledFunctions.insert(floatFn);
Misha Brukman422791f2004-06-21 17:41:12 +00002688 return;
2689 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002690
Misha Brukman7e898c32004-07-20 00:41:46 +00002691 // Make sure we're dealing with a full 32 bits
2692 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2693 promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
2694
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002695 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002696
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002697 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002698 // Also spill room for a special conversion constant
2699 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002700 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2701 int ValueFrameIdx =
2702 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2703
Misha Brukman422791f2004-06-21 17:41:12 +00002704 unsigned constantHi = makeAnotherReg(Type::IntTy);
2705 unsigned constantLo = makeAnotherReg(Type::IntTy);
2706 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2707 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2708
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002709 if (!SrcTy->isSigned()) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002710 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
2711 BuildMI(*BB, IP, PPC32::LI, 1, constantLo).addSImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002712 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2713 ConstantFrameIndex);
2714 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2715 ConstantFrameIndex, 4);
2716 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2717 ValueFrameIdx);
2718 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2719 ValueFrameIdx, 4);
2720 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2721 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002722 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2723 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2724 } else {
2725 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00002726 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
2727 BuildMI(*BB, IP, PPC32::LIS, 1, constantLo).addSImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002728 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2729 ConstantFrameIndex);
2730 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2731 ConstantFrameIndex, 4);
2732 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2733 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002734 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002735 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2736 ValueFrameIdx, 4);
2737 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2738 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002739 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukmanb097f212004-07-26 18:13:24 +00002740 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002741 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002742 return;
2743 }
2744
2745 // Handle casts from floating point to integer now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002746 if (SrcClass == cFP32 || SrcClass == cFP64) {
Misha Brukman422791f2004-06-21 17:41:12 +00002747 // emit library call
2748 if (DestClass == cLong) {
2749 std::vector<ValueRecord> Args;
2750 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002751 Function *floatFn = (DestClass == cFP32) ? __fixsfdiFn : __fixdfdiFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002752 MachineInstr *TheCall =
Misha Brukman7e898c32004-07-20 00:41:46 +00002753 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002754 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002755 TM.CalledFunctions.insert(floatFn);
Misha Brukman422791f2004-06-21 17:41:12 +00002756 return;
2757 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002758
2759 int ValueFrameIdx =
Misha Brukman7e898c32004-07-20 00:41:46 +00002760 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002761
Misha Brukman7e898c32004-07-20 00:41:46 +00002762 if (DestTy->isSigned()) {
Misha Brukman4c14f332004-07-23 01:11:19 +00002763 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2764
2765 // Convert to integer in the FP reg and store it to a stack slot
2766 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
2767 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2768 .addReg(TempReg), ValueFrameIdx);
Misha Brukmanb097f212004-07-26 18:13:24 +00002769
2770 // There is no load signed byte opcode, so we must emit a sign extend for
2771 // that particular size. Make sure to source the new integer from the
2772 // correct offset.
Misha Brukman4c14f332004-07-23 01:11:19 +00002773 if (DestClass == cByte) {
2774 unsigned TempReg2 = makeAnotherReg(DestTy);
Misha Brukmanb097f212004-07-26 18:13:24 +00002775 addFrameReference(BuildMI(*BB, IP, PPC32::LBZ, 2, TempReg2),
2776 ValueFrameIdx, 7);
Misha Brukman4c14f332004-07-23 01:11:19 +00002777 BuildMI(*MBB, IP, PPC32::EXTSB, DestReg).addReg(TempReg2);
2778 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00002779 int offset = (DestClass == cShort) ? 6 : 4;
2780 unsigned LoadOp = (DestClass == cShort) ? PPC32::LHA : PPC32::LWZ;
Misha Brukman4c14f332004-07-23 01:11:19 +00002781 addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg),
Misha Brukmanb097f212004-07-26 18:13:24 +00002782 ValueFrameIdx, offset);
Misha Brukman4c14f332004-07-23 01:11:19 +00002783 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002784 } else {
Misha Brukmanb160d1f2004-07-23 20:32:59 +00002785 unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
2786 double maxInt = (1LL << 32) - 1;
2787 unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
2788 double border = 1LL << 31;
2789 unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
2790 unsigned UseZero = makeAnotherReg(Type::DoubleTy);
2791 unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
2792 unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
2793 unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
2794 unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
2795 unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
2796 unsigned IntTmp = makeAnotherReg(Type::IntTy);
2797 unsigned XorReg = makeAnotherReg(Type::IntTy);
2798 int FrameIdx =
2799 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
2800 // Update machine-CFG edges
2801 MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
2802 MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
2803 MachineBasicBlock *OldMBB = BB;
2804 ilist<MachineBasicBlock>::iterator It = BB; ++It;
2805 F->getBasicBlockList().insert(It, XorMBB);
2806 F->getBasicBlockList().insert(It, PhiMBB);
2807 BB->addSuccessor(XorMBB);
2808 BB->addSuccessor(PhiMBB);
2809
2810 // Convert from floating point to unsigned 32-bit value
2811 // Use 0 if incoming value is < 0.0
2812 BuildMI(*BB, IP, PPC32::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
2813 .addReg(Zero);
2814 // Use 2**32 - 1 if incoming value is >= 2**32
2815 BuildMI(*BB, IP, PPC32::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
2816 BuildMI(*BB, IP, PPC32::FSEL, 3, UseChoice).addReg(UseMaxInt)
2817 .addReg(UseZero).addReg(MaxInt);
2818 // Subtract 2**31
2819 BuildMI(*BB, IP, PPC32::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
2820 // Use difference if >= 2**31
2821 BuildMI(*BB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(UseChoice)
2822 .addReg(Border);
2823 BuildMI(*BB, IP, PPC32::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
2824 .addReg(UseChoice);
2825 // Convert to integer
2826 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
2827 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3).addReg(ConvReg),
2828 FrameIdx);
Misha Brukmanb097f212004-07-26 18:13:24 +00002829 if (DestClass == cByte) {
2830 addFrameReference(BuildMI(*BB, IP, PPC32::LBZ, 2, DestReg),
2831 FrameIdx, 7);
2832 } else if (DestClass == cShort) {
2833 addFrameReference(BuildMI(*BB, IP, PPC32::LHZ, 2, DestReg),
2834 FrameIdx, 6);
2835 } if (DestClass == cInt) {
2836 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, IntTmp),
2837 FrameIdx, 4);
2838 BuildMI(*BB, IP, PPC32::BLT, 2).addReg(PPC32::CR0).addMBB(PhiMBB);
2839 BuildMI(*BB, IP, PPC32::B, 1).addMBB(XorMBB);
Misha Brukmanb160d1f2004-07-23 20:32:59 +00002840
Misha Brukmanb097f212004-07-26 18:13:24 +00002841 // XorMBB:
2842 // add 2**31 if input was >= 2**31
2843 BB = XorMBB;
2844 BuildMI(BB, PPC32::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
2845 XorMBB->addSuccessor(PhiMBB);
Misha Brukmanb160d1f2004-07-23 20:32:59 +00002846
Misha Brukmanb097f212004-07-26 18:13:24 +00002847 // PhiMBB:
2848 // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
2849 BB = PhiMBB;
2850 BuildMI(BB, PPC32::PHI, 2, DestReg).addReg(IntTmp).addMBB(OldMBB)
2851 .addReg(XorReg).addMBB(XorMBB);
2852 }
2853 }
2854 return;
2855 }
2856
2857 // Check our invariants
2858 assert((SrcClass <= cInt || SrcClass == cLong) &&
2859 "Unhandled source class for cast operation!");
2860 assert((DestClass <= cInt || DestClass == cLong) &&
2861 "Unhandled destination class for cast operation!");
2862
2863 bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2864 bool destUnsigned = DestTy->isUnsigned();
2865
2866 // Unsigned -> Unsigned, clear if larger,
2867 if (sourceUnsigned && destUnsigned) {
2868 // handle long dest class now to keep switch clean
2869 if (DestClass == cLong) {
2870 if (SrcClass == cLong) {
2871 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2872 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2873 .addReg(SrcReg+1);
2874 } else {
2875 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
2876 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2877 .addReg(SrcReg);
2878 }
2879 return;
2880 }
2881
2882 // handle u{ byte, short, int } x u{ byte, short, int }
2883 unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
2884 switch (SrcClass) {
2885 case cByte:
2886 case cShort:
2887 if (SrcClass == DestClass)
2888 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2889 else
2890 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2891 .addImm(0).addImm(clearBits).addImm(31);
2892 break;
2893 case cLong:
2894 ++SrcReg;
2895 // Fall through
2896 case cInt:
2897 if (DestClass == cInt)
2898 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2899 else
2900 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2901 .addImm(0).addImm(clearBits).addImm(31);
2902 break;
2903 }
2904 return;
2905 }
2906
2907 // Signed -> Signed
2908 if (!sourceUnsigned && !destUnsigned) {
2909 // handle long dest class now to keep switch clean
2910 if (DestClass == cLong) {
2911 if (SrcClass == cLong) {
2912 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2913 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2914 .addReg(SrcReg+1);
2915 } else {
2916 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
2917 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2918 .addReg(SrcReg);
2919 }
2920 return;
2921 }
2922
2923 // handle { byte, short, int } x { byte, short, int }
2924 switch (SrcClass) {
2925 case cByte:
2926 if (DestClass == cByte)
2927 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2928 else
2929 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2930 break;
2931 case cShort:
2932 if (DestClass == cByte)
2933 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2934 else if (DestClass == cShort)
2935 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2936 else
2937 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2938 break;
2939 case cLong:
2940 ++SrcReg;
2941 // Fall through
2942 case cInt:
2943 if (DestClass == cByte)
2944 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2945 else if (DestClass == cShort)
2946 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2947 else
2948 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2949 break;
2950 }
2951 return;
2952 }
2953
2954 // Unsigned -> Signed
2955 if (sourceUnsigned && !destUnsigned) {
2956 // handle long dest class now to keep switch clean
2957 if (DestClass == cLong) {
2958 if (SrcClass == cLong) {
2959 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2960 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1).
2961 addReg(SrcReg+1);
2962 } else {
2963 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
2964 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2965 .addReg(SrcReg);
2966 }
2967 return;
2968 }
2969
2970 // handle u{ byte, short, int } -> { byte, short, int }
2971 switch (SrcClass) {
2972 case cByte:
2973 if (DestClass == cByte)
2974 // uByte 255 -> signed byte == -1
2975 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2976 else
2977 // uByte 255 -> signed short/int == 255
2978 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
2979 .addImm(24).addImm(31);
2980 break;
2981 case cShort:
2982 if (DestClass == cByte)
2983 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2984 else if (DestClass == cShort)
2985 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2986 else
2987 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
2988 .addImm(16).addImm(31);
2989 break;
2990 case cLong:
2991 ++SrcReg;
2992 // Fall through
2993 case cInt:
2994 if (DestClass == cByte)
2995 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2996 else if (DestClass == cShort)
2997 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2998 else
2999 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3000 break;
3001 }
3002 return;
3003 }
3004
3005 // Signed -> Unsigned
3006 if (!sourceUnsigned && destUnsigned) {
3007 // handle long dest class now to keep switch clean
3008 if (DestClass == cLong) {
3009 if (SrcClass == cLong) {
3010 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3011 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
3012 .addReg(SrcReg+1);
3013 } else {
3014 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
3015 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
3016 .addReg(SrcReg);
3017 }
3018 return;
3019 }
3020
3021 // handle { byte, short, int } -> u{ byte, short, int }
3022 unsigned clearBits = (DestClass == cByte) ? 24 : 16;
3023 switch (SrcClass) {
3024 case cByte:
3025 case cShort:
3026 if (DestClass == cByte || DestClass == cShort)
3027 // sbyte -1 -> ubyte 0x000000FF
3028 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
3029 .addImm(0).addImm(clearBits).addImm(31);
3030 else
3031 // sbyte -1 -> ubyte 0xFFFFFFFF
3032 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3033 break;
3034 case cLong:
3035 ++SrcReg;
3036 // Fall through
3037 case cInt:
3038 if (DestClass == cInt)
3039 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3040 else
3041 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
3042 .addImm(0).addImm(clearBits).addImm(31);
3043 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00003044 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003045 return;
3046 }
3047
3048 // Anything we haven't handled already, we can't (yet) handle at all.
Misha Brukmanb097f212004-07-26 18:13:24 +00003049 std::cerr << "Unhandled cast from " << SrcTy->getDescription()
3050 << "to " << DestTy->getDescription() << '\n';
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003051 abort();
3052}
3053
3054/// visitVANextInst - Implement the va_next instruction...
3055///
3056void ISel::visitVANextInst(VANextInst &I) {
3057 unsigned VAList = getReg(I.getOperand(0));
3058 unsigned DestReg = getReg(I);
3059
3060 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00003061 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003062 default:
3063 std::cerr << I;
3064 assert(0 && "Error: bad type for va_next instruction!");
3065 return;
3066 case Type::PointerTyID:
3067 case Type::UIntTyID:
3068 case Type::IntTyID:
3069 Size = 4;
3070 break;
3071 case Type::ULongTyID:
3072 case Type::LongTyID:
3073 case Type::DoubleTyID:
3074 Size = 8;
3075 break;
3076 }
3077
3078 // Increment the VAList pointer...
Misha Brukman1013ef52004-07-21 20:09:08 +00003079 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003080}
3081
3082void ISel::visitVAArgInst(VAArgInst &I) {
3083 unsigned VAList = getReg(I.getOperand(0));
3084 unsigned DestReg = getReg(I);
3085
Misha Brukman358829f2004-06-21 17:25:55 +00003086 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003087 default:
3088 std::cerr << I;
3089 assert(0 && "Error: bad type for va_next instruction!");
3090 return;
3091 case Type::PointerTyID:
3092 case Type::UIntTyID:
3093 case Type::IntTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00003094 BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003095 break;
3096 case Type::ULongTyID:
3097 case Type::LongTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00003098 BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
3099 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003100 break;
Misha Brukmanb097f212004-07-26 18:13:24 +00003101 case Type::FloatTyID:
3102 BuildMI(BB, PPC32::LFS, 2, DestReg).addSImm(0).addReg(VAList);
3103 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003104 case Type::DoubleTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00003105 BuildMI(BB, PPC32::LFD, 2, DestReg).addSImm(0).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003106 break;
3107 }
3108}
3109
3110/// visitGetElementPtrInst - instruction-select GEP instructions
3111///
3112void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
Misha Brukmanb097f212004-07-26 18:13:24 +00003113 if (canFoldGEPIntoLoadOrStore(&I))
3114 return;
3115
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003116 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00003117 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
Misha Brukmanb097f212004-07-26 18:13:24 +00003118 outputReg, false, 0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003119}
3120
Misha Brukman1013ef52004-07-21 20:09:08 +00003121/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
3122/// constant expression GEP support.
3123///
Misha Brukman17a90002004-07-21 20:22:06 +00003124void ISel::emitGEPOperation(MachineBasicBlock *MBB,
3125 MachineBasicBlock::iterator IP,
3126 Value *Src, User::op_iterator IdxBegin,
Misha Brukmanb097f212004-07-26 18:13:24 +00003127 User::op_iterator IdxEnd, unsigned TargetReg,
3128 bool GEPIsFolded, ConstantSInt **RemainderPtr) {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003129 const TargetData &TD = TM.getTargetData();
3130 const Type *Ty = Src->getType();
3131 unsigned basePtrReg = getReg(Src, MBB, IP);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003132 int64_t constValue = 0;
Misha Brukmane2eceb52004-07-23 16:08:20 +00003133
3134 // Record the operations to emit the GEP in a vector so that we can emit them
3135 // after having analyzed the entire instruction.
Misha Brukmanb097f212004-07-26 18:13:24 +00003136 std::vector<CollapsedGepOp> ops;
Misha Brukmane2eceb52004-07-23 16:08:20 +00003137
Misha Brukman1013ef52004-07-21 20:09:08 +00003138 // GEPs have zero or more indices; we must perform a struct access
3139 // or array access for each one.
3140 for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
3141 ++oi) {
3142 Value *idx = *oi;
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003143 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00003144 // It's a struct access. idx is the index into the structure,
3145 // which names the field. Use the TargetData structure to
3146 // pick out what the layout of the structure is in memory.
3147 // Use the (constant) structure index's value to find the
3148 // right byte offset from the StructLayout class's list of
3149 // structure member offsets.
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003150 unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
Misha Brukman1013ef52004-07-21 20:09:08 +00003151 unsigned memberOffset =
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003152 TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
Misha Brukmane2eceb52004-07-23 16:08:20 +00003153
3154 // StructType member offsets are always constant values. Add it to the
3155 // running total.
3156 constValue += memberOffset;
3157
3158 // The next type is the member of the structure selected by the
3159 // index.
3160 Ty = StTy->getElementType (fieldIndex);
3161 } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
Misha Brukman313efcb2004-07-09 15:45:07 +00003162 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
3163 // operand. Handle this case directly now...
3164 if (CastInst *CI = dyn_cast<CastInst>(idx))
3165 if (CI->getOperand(0)->getType() == Type::IntTy ||
3166 CI->getOperand(0)->getType() == Type::UIntTy)
3167 idx = CI->getOperand(0);
Misha Brukman1013ef52004-07-21 20:09:08 +00003168
Misha Brukmane2eceb52004-07-23 16:08:20 +00003169 // It's an array or pointer access: [ArraySize x ElementType].
3170 // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
3171 // must find the size of the pointed-to type (Not coincidentally, the next
3172 // type is the type of the elements in the array).
Misha Brukman1013ef52004-07-21 20:09:08 +00003173 Ty = SqTy->getElementType();
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003174 unsigned elementSize = TD.getTypeSize(Ty);
Misha Brukman1013ef52004-07-21 20:09:08 +00003175
Misha Brukmane2eceb52004-07-23 16:08:20 +00003176 if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003177 if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
3178 constValue += CS->getValue() * elementSize;
3179 else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
3180 constValue += CU->getValue() * elementSize;
3181 else
3182 assert(0 && "Invalid ConstantInt GEP index type!");
3183 } else {
3184 // Push current gep state to this point as an add
Misha Brukmanb097f212004-07-26 18:13:24 +00003185 ops.push_back(CollapsedGepOp(false, 0,
3186 ConstantSInt::get(Type::IntTy,constValue)));
Misha Brukmane2eceb52004-07-23 16:08:20 +00003187
3188 // Push multiply gep op and reset constant value
Misha Brukmanb097f212004-07-26 18:13:24 +00003189 ops.push_back(CollapsedGepOp(true, idx,
3190 ConstantSInt::get(Type::IntTy, elementSize)));
Misha Brukmane2eceb52004-07-23 16:08:20 +00003191
3192 constValue = 0;
Misha Brukman313efcb2004-07-09 15:45:07 +00003193 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003194 }
Misha Brukmane2eceb52004-07-23 16:08:20 +00003195 }
Misha Brukmane2eceb52004-07-23 16:08:20 +00003196 // Emit instructions for all the collapsed ops
Misha Brukmanb097f212004-07-26 18:13:24 +00003197 for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
Misha Brukmane2eceb52004-07-23 16:08:20 +00003198 cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
Misha Brukmanb097f212004-07-26 18:13:24 +00003199 CollapsedGepOp& cgo = *cgo_i;
Misha Brukmane2eceb52004-07-23 16:08:20 +00003200 unsigned nextBasePtrReg = makeAnotherReg (Type::IntTy);
3201
Misha Brukmanb097f212004-07-26 18:13:24 +00003202 if (cgo.isMul) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003203 // We know the elementSize is a constant, so we can emit a constant mul
3204 // and then add it to the current base reg
3205 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanb097f212004-07-26 18:13:24 +00003206 doMultiplyConst(MBB, IP, TmpReg, cgo.index, cgo.size);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003207 BuildMI(*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
3208 .addReg(TmpReg);
3209 } else {
3210 // Try and generate an immediate addition if possible
Misha Brukmanb097f212004-07-26 18:13:24 +00003211 if (cgo.size->isNullValue()) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003212 BuildMI(*MBB, IP, PPC32::OR, 2, nextBasePtrReg).addReg(basePtrReg)
3213 .addReg(basePtrReg);
Misha Brukmanb097f212004-07-26 18:13:24 +00003214 } else if (canUseAsImmediateForOpcode(cgo.size, 0)) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003215 BuildMI(*MBB, IP, PPC32::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
Misha Brukmanb097f212004-07-26 18:13:24 +00003216 .addSImm(cgo.size->getValue());
Misha Brukmane2eceb52004-07-23 16:08:20 +00003217 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00003218 unsigned Op1r = getReg(cgo.size, MBB, IP);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003219 BuildMI(*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
3220 .addReg(Op1r);
3221 }
3222 }
3223
Misha Brukman1013ef52004-07-21 20:09:08 +00003224 basePtrReg = nextBasePtrReg;
Misha Brukman2fec9902004-06-21 20:22:03 +00003225 }
Misha Brukmane2eceb52004-07-23 16:08:20 +00003226 // Add the current base register plus any accumulated constant value
3227 ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
3228
Misha Brukmanb097f212004-07-26 18:13:24 +00003229 // If we are emitting this during a fold, copy the current base register to
3230 // the target, and save the current constant offset so the folding load or
3231 // store can try and use it as an immediate.
3232 if (GEPIsFolded) {
3233 BuildMI (BB, PPC32::OR, 2, TargetReg).addReg(basePtrReg).addReg(basePtrReg);
3234 *RemainderPtr = remainder;
3235 return;
3236 }
3237
Misha Brukman1013ef52004-07-21 20:09:08 +00003238 // After we have processed all the indices, the result is left in
3239 // basePtrReg. Move it to the register where we were expected to
3240 // put the answer.
Misha Brukmane2eceb52004-07-23 16:08:20 +00003241 if (remainder->isNullValue()) {
3242 BuildMI (BB, PPC32::OR, 2, TargetReg).addReg(basePtrReg).addReg(basePtrReg);
3243 } else if (canUseAsImmediateForOpcode(remainder, 0)) {
3244 BuildMI(*MBB, IP, PPC32::ADDI, 2, TargetReg).addReg(basePtrReg)
3245 .addSImm(remainder->getValue());
3246 } else {
3247 unsigned Op1r = getReg(remainder, MBB, IP);
3248 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r);
3249 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003250}
3251
3252/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
3253/// frame manager, otherwise do it the hard way.
3254///
3255void ISel::visitAllocaInst(AllocaInst &I) {
3256 // If this is a fixed size alloca in the entry block for the function, we
3257 // statically stack allocate the space, so we don't need to do anything here.
3258 //
3259 if (dyn_castFixedAlloca(&I)) return;
3260
3261 // Find the data size of the alloca inst's getAllocatedType.
3262 const Type *Ty = I.getAllocatedType();
3263 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
3264
3265 // Create a register to hold the temporary result of multiplying the type size
3266 // constant by the variable amount.
3267 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003268
3269 // TotalSizeReg = mul <numelements>, <TypeSize>
3270 MachineBasicBlock::iterator MBBI = BB->end();
Misha Brukman1013ef52004-07-21 20:09:08 +00003271 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
3272 doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003273
3274 // AddedSize = add <TotalSizeReg>, 15
3275 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00003276 BuildMI(BB, PPC32::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003277
3278 // AlignedSize = and <AddedSize>, ~15
3279 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukmana31f1f72004-07-21 20:30:18 +00003280 BuildMI(BB, PPC32::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
Misha Brukman2fec9902004-06-21 20:22:03 +00003281 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003282
3283 // Subtract size from stack pointer, thereby allocating some space.
3284 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
3285
3286 // Put a pointer to the space into the result register, by copying
3287 // the stack pointer.
3288 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
3289
3290 // Inform the Frame Information that we have just allocated a variable-sized
3291 // object.
3292 F->getFrameInfo()->CreateVariableSizedObject();
3293}
3294
3295/// visitMallocInst - Malloc instructions are code generated into direct calls
3296/// to the library malloc.
3297///
3298void ISel::visitMallocInst(MallocInst &I) {
3299 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
3300 unsigned Arg;
3301
3302 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
3303 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
3304 } else {
3305 Arg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003306 MachineBasicBlock::iterator MBBI = BB->end();
Misha Brukman1013ef52004-07-21 20:09:08 +00003307 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
3308 doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003309 }
3310
3311 std::vector<ValueRecord> Args;
3312 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00003313 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00003314 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00003315 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003316 TM.CalledFunctions.insert(mallocFn);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003317}
3318
3319
3320/// visitFreeInst - Free instructions are code gen'd to call the free libc
3321/// function.
3322///
3323void ISel::visitFreeInst(FreeInst &I) {
3324 std::vector<ValueRecord> Args;
3325 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00003326 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00003327 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(freeFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00003328 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003329 TM.CalledFunctions.insert(freeFn);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003330}
3331
3332/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
3333/// into a machine code representation is a very simple peep-hole fashion. The
3334/// generated code sucks but the implementation is nice and simple.
3335///
3336FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
3337 return new ISel(TM);
3338}