blob: 062df545fc9abef46e3b62c68bddb2d22b2bccfc [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
Misha Brukmane2eceb52004-07-23 16:08:20 +000014#include "PowerPCTargetMachine.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000015#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Function.h"
18#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000019#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000020#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000021#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/MRegisterInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000029#include "Support/Debug.h"
Misha Brukmane2eceb52004-07-23 16:08:20 +000030#include "Support/Statistic.h"
Misha Brukman98649d12004-06-24 21:54:47 +000031#include <vector>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000032using namespace llvm;
33
34namespace {
Misha Brukmanb097f212004-07-26 18:13:24 +000035 Statistic<> GEPFolds("ppc-codegen", "Number of GEPs folded");
Misha Brukmane2eceb52004-07-23 16:08:20 +000036
Misha Brukman422791f2004-06-21 17:41:12 +000037 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
38 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000039 ///
40 enum TypeClass {
Misha Brukman7e898c32004-07-20 00:41:46 +000041 cByte, cShort, cInt, cFP32, cFP64, cLong
Misha Brukman5dfe3a92004-06-21 16:55:25 +000042 };
43}
44
45/// getClass - Turn a primitive type into a "class" number which is based on the
46/// size of the type, and whether or not it is floating point.
47///
48static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000049 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000050 case Type::SByteTyID:
51 case Type::UByteTyID: return cByte; // Byte operands are class #0
52 case Type::ShortTyID:
53 case Type::UShortTyID: return cShort; // Short operands are class #1
54 case Type::IntTyID:
55 case Type::UIntTyID:
Misha Brukman2834a4d2004-07-07 20:07:22 +000056 case Type::PointerTyID: return cInt; // Ints and pointers are class #2
Misha Brukman5dfe3a92004-06-21 16:55:25 +000057
Misha Brukman7e898c32004-07-20 00:41:46 +000058 case Type::FloatTyID: return cFP32; // Single float is #3
59 case Type::DoubleTyID: return cFP64; // Double Point is #4
Misha Brukman5dfe3a92004-06-21 16:55:25 +000060
61 case Type::LongTyID:
Misha Brukman7e898c32004-07-20 00:41:46 +000062 case Type::ULongTyID: return cLong; // Longs are class #5
Misha Brukman5dfe3a92004-06-21 16:55:25 +000063 default:
64 assert(0 && "Invalid type to getClass!");
65 return cByte; // not reached
66 }
67}
68
69// getClassB - Just like getClass, but treat boolean values as ints.
70static inline TypeClass getClassB(const Type *Ty) {
Misha Brukman4c14f332004-07-23 01:11:19 +000071 if (Ty == Type::BoolTy) return cInt;
Misha Brukman5dfe3a92004-06-21 16:55:25 +000072 return getClass(Ty);
73}
74
75namespace {
76 struct ISel : public FunctionPass, InstVisitor<ISel> {
Misha Brukmane2eceb52004-07-23 16:08:20 +000077 PowerPCTargetMachine &TM;
Misha Brukman5dfe3a92004-06-21 16:55:25 +000078 MachineFunction *F; // The function we are compiling into
79 MachineBasicBlock *BB; // The current MBB we are compiling
80 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Misha Brukmanb097f212004-07-26 18:13:24 +000081
Misha Brukman313efcb2004-07-09 15:45:07 +000082 std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
Misha Brukman5dfe3a92004-06-21 16:55:25 +000083
Misha Brukman2834a4d2004-07-07 20:07:22 +000084 // External functions used in the Module
Misha Brukman7e898c32004-07-20 00:41:46 +000085 Function *fmodfFn, *fmodFn, *__moddi3Fn, *__divdi3Fn, *__umoddi3Fn,
86 *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__floatdisfFn, *__floatdidfFn,
87 *mallocFn, *freeFn;
Misha Brukman2834a4d2004-07-07 20:07:22 +000088
Misha Brukman5dfe3a92004-06-21 16:55:25 +000089 // MBBMap - Mapping between LLVM BB -> Machine BB
90 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
91
92 // AllocaMap - Mapping from fixed sized alloca instructions to the
93 // FrameIndex for the alloca.
94 std::map<AllocaInst*, unsigned> AllocaMap;
95
Misha Brukmanb097f212004-07-26 18:13:24 +000096 // A Reg to hold the base address used for global loads and stores, and a
97 // flag to set whether or not we need to emit it for this function.
98 unsigned GlobalBaseReg;
99 bool GlobalBaseInitialized;
100
Misha Brukmane2eceb52004-07-23 16:08:20 +0000101 ISel(TargetMachine &tm) : TM(reinterpret_cast<PowerPCTargetMachine&>(tm)),
102 F(0), BB(0) {}
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000103
Misha Brukman2834a4d2004-07-07 20:07:22 +0000104 bool doInitialization(Module &M) {
Misha Brukmanb0932592004-07-07 15:36:18 +0000105 // Add external functions that we may call
Misha Brukman2834a4d2004-07-07 20:07:22 +0000106 Type *d = Type::DoubleTy;
Misha Brukmanf3f63822004-07-08 19:41:16 +0000107 Type *f = Type::FloatTy;
Misha Brukman2834a4d2004-07-07 20:07:22 +0000108 Type *l = Type::LongTy;
109 Type *ul = Type::ULongTy;
Misha Brukman313efcb2004-07-09 15:45:07 +0000110 Type *voidPtr = PointerType::get(Type::SByteTy);
Misha Brukman7e898c32004-07-20 00:41:46 +0000111 // float fmodf(float, float);
112 fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000113 // double fmod(double, double);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000114 fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000115 // long __moddi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000116 __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000117 // long __divdi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000118 __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000119 // unsigned long __umoddi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000120 __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000121 // unsigned long __udivdi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000122 __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
Misha Brukman7e898c32004-07-20 00:41:46 +0000123 // long __fixsfdi(float)
124 __fixdfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
Misha Brukmanf3f63822004-07-08 19:41:16 +0000125 // long __fixdfdi(double)
126 __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
127 // float __floatdisf(long)
128 __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
129 // double __floatdidf(long)
130 __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
Misha Brukman313efcb2004-07-09 15:45:07 +0000131 // void* malloc(size_t)
132 mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
133 // void free(void*)
134 freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000135 return false;
136 }
Misha Brukmand18a31d2004-07-06 22:51:53 +0000137
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000138 /// runOnFunction - Top level implementation of instruction selection for
139 /// the entire function.
140 ///
141 bool runOnFunction(Function &Fn) {
142 // First pass over the function, lower any unknown intrinsic functions
143 // with the IntrinsicLowering class.
144 LowerUnknownIntrinsicFunctionCalls(Fn);
145
146 F = &MachineFunction::construct(&Fn, TM);
147
148 // Create all of the machine basic blocks for the function...
149 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
150 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
151
152 BB = &F->front();
153
Misha Brukmanb097f212004-07-26 18:13:24 +0000154 // Make sure we re-emit a set of the global base reg if necessary
155 GlobalBaseInitialized = false;
156
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000157 // Copy incoming arguments off of the stack...
158 LoadArgumentsToVirtualRegs(Fn);
159
160 // Instruction select everything except PHI nodes
161 visit(Fn);
162
163 // Select the PHI nodes
164 SelectPHINodes();
165
166 RegMap.clear();
167 MBBMap.clear();
168 AllocaMap.clear();
169 F = 0;
170 // We always build a machine code representation for the function
171 return true;
172 }
173
174 virtual const char *getPassName() const {
175 return "PowerPC Simple Instruction Selection";
176 }
177
178 /// visitBasicBlock - This method is called when we are visiting a new basic
179 /// block. This simply creates a new MachineBasicBlock to emit code into
180 /// and adds it to the current MachineFunction. Subsequent visit* for
181 /// instructions will be invoked for all instructions in the basic block.
182 ///
183 void visitBasicBlock(BasicBlock &LLVM_BB) {
184 BB = MBBMap[&LLVM_BB];
185 }
186
187 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
188 /// function, lowering any calls to unknown intrinsic functions into the
189 /// equivalent LLVM code.
190 ///
191 void LowerUnknownIntrinsicFunctionCalls(Function &F);
192
193 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
194 /// from the stack into virtual registers.
195 ///
196 void LoadArgumentsToVirtualRegs(Function &F);
197
198 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
199 /// because we have to generate our sources into the source basic blocks,
200 /// not the current one.
201 ///
202 void SelectPHINodes();
203
204 // Visitation methods for various instructions. These methods simply emit
205 // fixed PowerPC code for each instruction.
206
207 // Control flow operators
208 void visitReturnInst(ReturnInst &RI);
209 void visitBranchInst(BranchInst &BI);
210
211 struct ValueRecord {
212 Value *Val;
213 unsigned Reg;
214 const Type *Ty;
215 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
216 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
217 };
Misha Brukmanb097f212004-07-26 18:13:24 +0000218
219 // This struct is for recording the necessary operations to emit the GEP
220 struct CollapsedGepOp {
221 bool isMul;
222 Value *index;
223 ConstantSInt *size;
224 CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
225 isMul(mul), index(i), size(s) {}
226 };
227
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000228 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +0000229 const std::vector<ValueRecord> &Args, bool isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000230 void visitCallInst(CallInst &I);
231 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
232
233 // Arithmetic operators
234 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
235 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
236 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
237 void visitMul(BinaryOperator &B);
238
239 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
240 void visitRem(BinaryOperator &B) { visitDivRem(B); }
241 void visitDivRem(BinaryOperator &B);
242
243 // Bitwise operators
244 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
245 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
246 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
247
248 // Comparison operators...
249 void visitSetCondInst(SetCondInst &I);
250 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
251 MachineBasicBlock *MBB,
252 MachineBasicBlock::iterator MBBI);
253 void visitSelectInst(SelectInst &SI);
254
255
256 // Memory Instructions
257 void visitLoadInst(LoadInst &I);
258 void visitStoreInst(StoreInst &I);
259 void visitGetElementPtrInst(GetElementPtrInst &I);
260 void visitAllocaInst(AllocaInst &I);
261 void visitMallocInst(MallocInst &I);
262 void visitFreeInst(FreeInst &I);
263
264 // Other operators
265 void visitShiftInst(ShiftInst &I);
266 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
267 void visitCastInst(CastInst &I);
268 void visitVANextInst(VANextInst &I);
269 void visitVAArgInst(VAArgInst &I);
270
271 void visitInstruction(Instruction &I) {
272 std::cerr << "Cannot instruction select: " << I;
273 abort();
274 }
275
276 /// promote32 - Make a value 32-bits wide, and put it somewhere.
277 ///
278 void promote32(unsigned targetReg, const ValueRecord &VR);
279
280 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
281 /// constant expression GEP support.
282 ///
283 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
284 Value *Src, User::op_iterator IdxBegin,
Misha Brukmanb097f212004-07-26 18:13:24 +0000285 User::op_iterator IdxEnd, unsigned TargetReg,
286 bool CollapseRemainder, ConstantSInt **Remainder);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000287
288 /// emitCastOperation - Common code shared between visitCastInst and
289 /// constant expression cast support.
290 ///
291 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
292 Value *Src, const Type *DestTy, unsigned TargetReg);
293
294 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
295 /// and constant expression support.
296 ///
297 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
298 MachineBasicBlock::iterator IP,
299 Value *Op0, Value *Op1,
300 unsigned OperatorClass, unsigned TargetReg);
301
302 /// emitBinaryFPOperation - This method handles emission of floating point
303 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
304 void emitBinaryFPOperation(MachineBasicBlock *BB,
305 MachineBasicBlock::iterator IP,
306 Value *Op0, Value *Op1,
307 unsigned OperatorClass, unsigned TargetReg);
308
309 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
310 Value *Op0, Value *Op1, unsigned TargetReg);
311
Misha Brukman1013ef52004-07-21 20:09:08 +0000312 void doMultiply(MachineBasicBlock *MBB,
313 MachineBasicBlock::iterator IP,
314 unsigned DestReg, Value *Op0, Value *Op1);
315
316 /// doMultiplyConst - This method will multiply the value in Op0Reg by the
317 /// value of the ContantInt *CI
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000318 void doMultiplyConst(MachineBasicBlock *MBB,
Misha Brukman1013ef52004-07-21 20:09:08 +0000319 MachineBasicBlock::iterator IP,
320 unsigned DestReg, Value *Op0, ConstantInt *CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000321
322 void emitDivRemOperation(MachineBasicBlock *BB,
323 MachineBasicBlock::iterator IP,
324 Value *Op0, Value *Op1, bool isDiv,
325 unsigned TargetReg);
326
327 /// emitSetCCOperation - Common code shared between visitSetCondInst and
328 /// constant expression support.
329 ///
330 void emitSetCCOperation(MachineBasicBlock *BB,
331 MachineBasicBlock::iterator IP,
332 Value *Op0, Value *Op1, unsigned Opcode,
333 unsigned TargetReg);
334
335 /// emitShiftOperation - Common code shared between visitShiftInst and
336 /// constant expression support.
337 ///
338 void emitShiftOperation(MachineBasicBlock *MBB,
339 MachineBasicBlock::iterator IP,
340 Value *Op, Value *ShiftAmount, bool isLeftShift,
341 const Type *ResultTy, unsigned DestReg);
342
343 /// emitSelectOperation - Common code shared between visitSelectInst and the
344 /// constant expression support.
Misha Brukmanb097f212004-07-26 18:13:24 +0000345 ///
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000346 void emitSelectOperation(MachineBasicBlock *MBB,
347 MachineBasicBlock::iterator IP,
348 Value *Cond, Value *TrueVal, Value *FalseVal,
349 unsigned DestReg);
350
Misha Brukmanb097f212004-07-26 18:13:24 +0000351 /// copyGlobalBaseToRegister - Output the instructions required to put the
352 /// base address to use for accessing globals into a register.
353 ///
354 void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
355 MachineBasicBlock::iterator IP,
356 unsigned R);
357
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000358 /// copyConstantToRegister - Output the instructions required to put the
359 /// specified constant into the specified register.
360 ///
361 void copyConstantToRegister(MachineBasicBlock *MBB,
362 MachineBasicBlock::iterator MBBI,
363 Constant *C, unsigned Reg);
364
365 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
366 unsigned LHS, unsigned RHS);
367
368 /// makeAnotherReg - This method returns the next register number we haven't
369 /// yet used.
370 ///
371 /// Long values are handled somewhat specially. They are always allocated
372 /// as pairs of 32 bit integer values. The register number returned is the
Misha Brukman1013ef52004-07-21 20:09:08 +0000373 /// high 32 bits of the long value, and the regNum+1 is the low 32 bits.
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000374 ///
375 unsigned makeAnotherReg(const Type *Ty) {
376 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
377 "Current target doesn't have PPC reg info??");
378 const PowerPCRegisterInfo *MRI =
379 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
380 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
381 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
382 // Create the lower part
383 F->getSSARegMap()->createVirtualRegister(RC);
384 // Create the upper part.
385 return F->getSSARegMap()->createVirtualRegister(RC)-1;
386 }
387
388 // Add the mapping of regnumber => reg class to MachineFunction
389 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
390 return F->getSSARegMap()->createVirtualRegister(RC);
391 }
392
393 /// getReg - This method turns an LLVM value into a register number.
394 ///
395 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
396 unsigned getReg(Value *V) {
397 // Just append to the end of the current bb.
398 MachineBasicBlock::iterator It = BB->end();
399 return getReg(V, BB, It);
400 }
401 unsigned getReg(Value *V, MachineBasicBlock *MBB,
402 MachineBasicBlock::iterator IPt);
Misha Brukman1013ef52004-07-21 20:09:08 +0000403
404 /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
405 /// is okay to use as an immediate argument to a certain binary operation
406 bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000407
408 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
409 /// that is to be statically allocated with the initial stack frame
410 /// adjustment.
411 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
412 };
413}
414
415/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
416/// instruction in the entry block, return it. Otherwise, return a null
417/// pointer.
418static AllocaInst *dyn_castFixedAlloca(Value *V) {
419 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
420 BasicBlock *BB = AI->getParent();
421 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
422 return AI;
423 }
424 return 0;
425}
426
427/// getReg - This method turns an LLVM value into a register number.
428///
429unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
430 MachineBasicBlock::iterator IPt) {
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000431 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattnera51e4f62004-07-18 18:45:01 +0000432 unsigned Reg = makeAnotherReg(V->getType());
433 copyConstantToRegister(MBB, IPt, C, Reg);
434 return Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000435 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
436 unsigned Reg = makeAnotherReg(V->getType());
437 unsigned FI = getFixedSizedAllocaFI(AI);
438 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
439 return Reg;
440 }
441
442 unsigned &Reg = RegMap[V];
443 if (Reg == 0) {
444 Reg = makeAnotherReg(V->getType());
445 RegMap[V] = Reg;
446 }
447
448 return Reg;
449}
450
Misha Brukman1013ef52004-07-21 20:09:08 +0000451/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
452/// is okay to use as an immediate argument to a certain binary operator.
453///
454/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
Misha Brukman47225442004-07-23 22:35:49 +0000455bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000456 ConstantSInt *Op1Cs;
457 ConstantUInt *Op1Cu;
458
459 // ADDI, Compare, and non-indexed Load take SIMM
Misha Brukman17a90002004-07-21 20:22:06 +0000460 bool cond1 = (Operator == 0)
461 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
Misha Brukman1013ef52004-07-21 20:09:08 +0000462 && (Op1Cs->getValue() <= 32767)
Misha Brukman17a90002004-07-21 20:22:06 +0000463 && (Op1Cs->getValue() >= -32768);
Misha Brukman1013ef52004-07-21 20:09:08 +0000464
465 // SUBI takes -SIMM since it is a mnemonic for ADDI
Misha Brukman17a90002004-07-21 20:22:06 +0000466 bool cond2 = (Operator == 1)
467 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
Misha Brukman1013ef52004-07-21 20:09:08 +0000468 && (Op1Cs->getValue() <= 32768)
Misha Brukman17a90002004-07-21 20:22:06 +0000469 && (Op1Cs->getValue() >= -32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000470
471 // ANDIo, ORI, and XORI take unsigned values
Misha Brukman17a90002004-07-21 20:22:06 +0000472 bool cond3 = (Operator >= 2)
Misha Brukman2ed17ca2004-07-22 15:58:04 +0000473 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
474 && (Op1Cs->getValue() >= 0)
Misha Brukman17a90002004-07-21 20:22:06 +0000475 && (Op1Cs->getValue() <= 32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000476
477 // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
Misha Brukman17a90002004-07-21 20:22:06 +0000478 bool cond4 = (Operator < 2)
479 && (Op1Cu = dyn_cast<ConstantUInt>(CI))
480 && (Op1Cu->getValue() <= 32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000481
482 // ANDIo, ORI, and XORI take UIMMs, so they can be larger
Misha Brukman17a90002004-07-21 20:22:06 +0000483 bool cond5 = (Operator >= 2)
484 && (Op1Cu = dyn_cast<ConstantUInt>(CI))
485 && (Op1Cu->getValue() <= 65535);
Misha Brukman1013ef52004-07-21 20:09:08 +0000486
487 if (cond1 || cond2 || cond3 || cond4 || cond5)
488 return true;
489
490 return false;
491}
492
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000493/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
494/// that is to be statically allocated with the initial stack frame
495/// adjustment.
496unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
497 // Already computed this?
498 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
499 if (I != AllocaMap.end() && I->first == AI) return I->second;
500
501 const Type *Ty = AI->getAllocatedType();
502 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
503 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
504 TySize *= CUI->getValue(); // Get total allocated size...
505 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
506
507 // Create a new stack object using the frame manager...
508 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
509 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
510 return FrameIdx;
511}
512
513
Misha Brukmanb097f212004-07-26 18:13:24 +0000514/// copyGlobalBaseToRegister - Output the instructions required to put the
515/// base address to use for accessing globals into a register.
516///
517void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
518 MachineBasicBlock::iterator IP,
519 unsigned R) {
520 if (!GlobalBaseInitialized) {
521 // Insert the set of GlobalBaseReg into the first MBB of the function
522 MachineBasicBlock &FirstMBB = F->front();
523 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
524 GlobalBaseReg = makeAnotherReg(Type::IntTy);
Misha Brukman435c7852004-07-27 17:13:58 +0000525 BuildMI(FirstMBB, MBBI, PPC32::IMPLICIT_DEF, 0, PPC32::LR);
Misha Brukmanb097f212004-07-26 18:13:24 +0000526 BuildMI(FirstMBB, MBBI, PPC32::MovePCtoLR, 0, GlobalBaseReg);
527 GlobalBaseInitialized = true;
528 }
529 // Emit our copy of GlobalBaseReg to the destination register in the
530 // current MBB
531 BuildMI(*MBB, IP, PPC32::OR, 2, R).addReg(GlobalBaseReg)
532 .addReg(GlobalBaseReg);
533}
534
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000535/// copyConstantToRegister - Output the instructions required to put the
536/// specified constant into the specified register.
537///
538void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
539 MachineBasicBlock::iterator IP,
540 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000541 if (C->getType()->isIntegral()) {
542 unsigned Class = getClassB(C->getType());
543
544 if (Class == cLong) {
545 // Copy the value into the register pair.
546 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman7e898c32004-07-20 00:41:46 +0000547
548 if (Val < (1ULL << 16)) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000549 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
550 BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addSImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000551 } else if (Val < (1ULL << 32)) {
552 unsigned Temp = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +0000553 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
554 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm((Val >> 16) & 0xFFFF);
555 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(Temp).addImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000556 } else if (Val < (1ULL << 48)) {
557 unsigned Temp = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +0000558 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm((Val >> 32) & 0xFFFF);
559 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm((Val >> 16) & 0xFFFF);
560 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(Temp).addImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000561 } else {
562 unsigned TempLo = makeAnotherReg(Type::IntTy);
563 unsigned TempHi = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +0000564 BuildMI(*MBB, IP, PPC32::LIS, 1, TempHi).addSImm((Val >> 48) & 0xFFFF);
565 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TempHi)
Misha Brukman7e898c32004-07-20 00:41:46 +0000566 .addImm((Val >> 32) & 0xFFFF);
Misha Brukman1013ef52004-07-21 20:09:08 +0000567 BuildMI(*MBB, IP, PPC32::LIS, 1, TempLo).addSImm((Val >> 16) & 0xFFFF);
568 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(TempLo)
569 .addImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000570 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000571 return;
572 }
573
574 assert(Class <= cInt && "Type not handled yet!");
575
576 if (C->getType() == Type::BoolTy) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000577 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000578 } else if (Class == cByte || Class == cShort) {
579 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukman1013ef52004-07-21 20:09:08 +0000580 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000581 } else {
582 ConstantInt *CI = cast<ConstantInt>(C);
583 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
584 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000585 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000586 } else {
587 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +0000588 BuildMI(*MBB, IP, PPC32::LIS, 1, TmpReg)
Misha Brukman1013ef52004-07-21 20:09:08 +0000589 .addSImm(CI->getRawValue() >> 16);
Misha Brukman911afde2004-06-25 14:50:41 +0000590 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
591 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000592 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000593 }
594 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000595 // We need to spill the constant to memory...
596 MachineConstantPool *CP = F->getConstantPool();
597 unsigned CPI = CP->getConstantPoolIndex(CFP);
598 const Type *Ty = CFP->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000599
Misha Brukmand18a31d2004-07-06 22:51:53 +0000600 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukmanfc879c32004-07-08 18:02:38 +0000601
Misha Brukmanb097f212004-07-26 18:13:24 +0000602 // Load addr of constant to reg; constant is located at base + distance
603 unsigned GlobalBase = makeAnotherReg(Type::IntTy);
Misha Brukmanfc879c32004-07-08 18:02:38 +0000604 unsigned Reg1 = makeAnotherReg(Type::IntTy);
605 unsigned Reg2 = makeAnotherReg(Type::IntTy);
Misha Brukmanb097f212004-07-26 18:13:24 +0000606 // Move value at base + distance into return reg
607 copyGlobalBaseToRegister(MBB, IP, GlobalBase);
608 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, Reg1).addReg(GlobalBase)
Misha Brukmanfc879c32004-07-08 18:02:38 +0000609 .addConstantPoolIndex(CPI);
Misha Brukmanec6319a2004-07-20 15:51:37 +0000610 BuildMI(*MBB, IP, PPC32::LOADLoDirect, 2, Reg2).addReg(Reg1)
Misha Brukmanfc879c32004-07-08 18:02:38 +0000611 .addConstantPoolIndex(CPI);
612
Misha Brukmand18a31d2004-07-06 22:51:53 +0000613 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukman1013ef52004-07-21 20:09:08 +0000614 BuildMI(*MBB, IP, LoadOpcode, 2, R).addSImm(0).addReg(Reg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000615 } else if (isa<ConstantPointerNull>(C)) {
616 // Copy zero (null pointer) to the register.
Misha Brukman1013ef52004-07-21 20:09:08 +0000617 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
Chris Lattner67910e12004-07-18 07:29:35 +0000618 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
Misha Brukmanb097f212004-07-26 18:13:24 +0000619 // GV is located at base + distance
620 unsigned GlobalBase = makeAnotherReg(Type::IntTy);
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000621 unsigned TmpReg = makeAnotherReg(GV->getType());
Misha Brukmanbf417a62004-07-20 20:43:05 +0000622 unsigned Opcode = (GV->hasWeakLinkage() || GV->isExternal()) ?
623 PPC32::LOADLoIndirect : PPC32::LOADLoDirect;
Misha Brukmanb097f212004-07-26 18:13:24 +0000624
625 // Move value at base + distance into return reg
626 copyGlobalBaseToRegister(MBB, IP, GlobalBase);
627 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, TmpReg).addReg(GlobalBase)
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000628 .addGlobalAddress(GV);
Misha Brukmanec6319a2004-07-20 15:51:37 +0000629 BuildMI(*MBB, IP, Opcode, 2, R).addReg(TmpReg).addGlobalAddress(GV);
Misha Brukmane2eceb52004-07-23 16:08:20 +0000630
631 // Add the GV to the list of things whose addresses have been taken.
632 TM.AddressTaken.insert(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000633 } else {
Chris Lattner76e2df22004-07-15 02:14:30 +0000634 std::cerr << "Offending constant: " << *C << "\n";
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000635 assert(0 && "Type not handled yet!");
636 }
637}
638
639/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
640/// the stack into virtual registers.
641///
642/// FIXME: When we can calculate which args are coming in via registers
643/// source them from there instead.
644void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000645 unsigned ArgOffset = 20; // FIXME why is this not 24?
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000646 unsigned GPR_remaining = 8;
647 unsigned FPR_remaining = 13;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000648 unsigned GPR_idx = 0, FPR_idx = 0;
649 static const unsigned GPR[] = {
650 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
651 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
652 };
653 static const unsigned FPR[] = {
Misha Brukman32caa8d2004-07-14 17:57:04 +0000654 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7,
Misha Brukman2834a4d2004-07-07 20:07:22 +0000655 PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13
Misha Brukmand18a31d2004-07-06 22:51:53 +0000656 };
Misha Brukman422791f2004-06-21 17:41:12 +0000657
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000658 MachineFrameInfo *MFI = F->getFrameInfo();
Misha Brukmand18a31d2004-07-06 22:51:53 +0000659
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000660 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
661 bool ArgLive = !I->use_empty();
662 unsigned Reg = ArgLive ? getReg(*I) : 0;
663 int FI; // Frame object index
664
665 switch (getClassB(I->getType())) {
666 case cByte:
667 if (ArgLive) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000668 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000669 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000670 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000671 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
672 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000673 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000674 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000675 }
676 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000677 break;
678 case cShort:
679 if (ArgLive) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000680 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000681 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000682 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000683 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
684 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000685 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000686 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000687 }
688 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000689 break;
690 case cInt:
691 if (ArgLive) {
692 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000693 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000694 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000695 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
696 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000697 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000698 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000699 }
700 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000701 break;
702 case cLong:
703 if (ArgLive) {
704 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000705 if (GPR_remaining > 1) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000706 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
707 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
Misha Brukman313efcb2004-07-09 15:45:07 +0000708 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
709 .addReg(GPR[GPR_idx]);
710 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
711 .addReg(GPR[GPR_idx+1]);
Misha Brukman422791f2004-06-21 17:41:12 +0000712 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +0000713 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
714 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
Misha Brukman422791f2004-06-21 17:41:12 +0000715 }
716 }
Misha Brukman1013ef52004-07-21 20:09:08 +0000717 // longs require 4 additional bytes and use 2 GPRs
718 ArgOffset += 4;
Misha Brukman422791f2004-06-21 17:41:12 +0000719 if (GPR_remaining > 1) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000720 GPR_remaining--;
Misha Brukman422791f2004-06-21 17:41:12 +0000721 GPR_idx++;
722 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000723 break;
Misha Brukman7e898c32004-07-20 00:41:46 +0000724 case cFP32:
725 if (ArgLive) {
726 FI = MFI->CreateFixedObject(4, ArgOffset);
727
Misha Brukman422791f2004-06-21 17:41:12 +0000728 if (FPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000729 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000730 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
731 FPR_remaining--;
732 FPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000733 } else {
Misha Brukman7e898c32004-07-20 00:41:46 +0000734 addFrameReference(BuildMI(BB, PPC32::LFS, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000735 }
736 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000737 break;
738 case cFP64:
739 if (ArgLive) {
740 FI = MFI->CreateFixedObject(8, ArgOffset);
741
742 if (FPR_remaining > 0) {
743 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
744 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
745 FPR_remaining--;
746 FPR_idx++;
747 } else {
748 addFrameReference(BuildMI(BB, PPC32::LFD, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000749 }
750 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000751
752 // doubles require 4 additional bytes and use 2 GPRs of param space
753 ArgOffset += 4;
754 if (GPR_remaining > 0) {
755 GPR_remaining--;
756 GPR_idx++;
757 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000758 break;
759 default:
760 assert(0 && "Unhandled argument type!");
761 }
762 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000763 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000764 GPR_remaining--; // uses up 2 GPRs
765 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000766 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000767 }
768
769 // If the function takes variable number of arguments, add a frame offset for
770 // the start of the first vararg value... this is used to expand
771 // llvm.va_start.
772 if (Fn.getFunctionType()->isVarArg())
Misha Brukmanb097f212004-07-26 18:13:24 +0000773 VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000774}
775
776
777/// SelectPHINodes - Insert machine code to generate phis. This is tricky
778/// because we have to generate our sources into the source basic blocks, not
779/// the current one.
780///
781void ISel::SelectPHINodes() {
782 const TargetInstrInfo &TII = *TM.getInstrInfo();
783 const Function &LF = *F->getFunction(); // The LLVM function...
784 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
785 const BasicBlock *BB = I;
786 MachineBasicBlock &MBB = *MBBMap[I];
787
788 // Loop over all of the PHI nodes in the LLVM basic block...
789 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
790 for (BasicBlock::const_iterator I = BB->begin();
791 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
792
793 // Create a new machine instr PHI node, and insert it.
794 unsigned PHIReg = getReg(*PN);
795 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
796 PPC32::PHI, PN->getNumOperands(), PHIReg);
797
798 MachineInstr *LongPhiMI = 0;
799 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
800 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
801 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
802
803 // PHIValues - Map of blocks to incoming virtual registers. We use this
804 // so that we only initialize one incoming value for a particular block,
805 // even if the block has multiple entries in the PHI node.
806 //
807 std::map<MachineBasicBlock*, unsigned> PHIValues;
808
809 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Misha Brukman313efcb2004-07-09 15:45:07 +0000810 MachineBasicBlock *PredMBB = 0;
811 for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
812 PE = MBB.pred_end (); PI != PE; ++PI)
813 if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
814 PredMBB = *PI;
815 break;
816 }
817 assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
818
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000819 unsigned ValReg;
820 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
821 PHIValues.lower_bound(PredMBB);
822
823 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
824 // We already inserted an initialization of the register for this
825 // predecessor. Recycle it.
826 ValReg = EntryIt->second;
Misha Brukman47225442004-07-23 22:35:49 +0000827 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000828 // Get the incoming value into a virtual register.
829 //
830 Value *Val = PN->getIncomingValue(i);
831
832 // If this is a constant or GlobalValue, we may have to insert code
833 // into the basic block to compute it into a virtual register.
834 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
835 isa<GlobalValue>(Val)) {
836 // Simple constants get emitted at the end of the basic block,
837 // before any terminator instructions. We "know" that the code to
838 // move a constant into a register will never clobber any flags.
839 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
840 } else {
841 // Because we don't want to clobber any values which might be in
842 // physical registers with the computation of this constant (which
843 // might be arbitrarily complex if it is a constant expression),
844 // just insert the computation at the top of the basic block.
845 MachineBasicBlock::iterator PI = PredMBB->begin();
Misha Brukman47225442004-07-23 22:35:49 +0000846
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000847 // Skip over any PHI nodes though!
848 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
849 ++PI;
Misha Brukman47225442004-07-23 22:35:49 +0000850
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000851 ValReg = getReg(Val, PredMBB, PI);
852 }
853
854 // Remember that we inserted a value for this PHI for this predecessor
855 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
856 }
857
858 PhiMI->addRegOperand(ValReg);
859 PhiMI->addMachineBasicBlockOperand(PredMBB);
860 if (LongPhiMI) {
861 LongPhiMI->addRegOperand(ValReg+1);
862 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
863 }
864 }
865
866 // Now that we emitted all of the incoming values for the PHI node, make
867 // sure to reposition the InsertPoint after the PHI that we just added.
868 // This is needed because we might have inserted a constant into this
869 // block, right after the PHI's which is before the old insert point!
870 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
871 ++PHIInsertPoint;
872 }
873 }
874}
875
876
877// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
878// it into the conditional branch or select instruction which is the only user
879// of the cc instruction. This is the case if the conditional branch is the
880// only user of the setcc, and if the setcc is in the same basic block as the
Misha Brukman1013ef52004-07-21 20:09:08 +0000881// conditional branch.
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000882//
883static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
884 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
885 if (SCI->hasOneUse()) {
886 Instruction *User = cast<Instruction>(SCI->use_back());
887 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
Misha Brukmanbebde752004-07-16 21:06:24 +0000888 SCI->getParent() == User->getParent())
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000889 return SCI;
890 }
891 return 0;
892}
893
Misha Brukmanb097f212004-07-26 18:13:24 +0000894
895// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
896// the load or store instruction that is the only user of the GEP.
897//
898static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
899 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
900 if (GEPI->hasOneUse()) {
901 Instruction *User = cast<Instruction>(GEPI->use_back());
902 if (isa<StoreInst>(User) &&
903 GEPI->getParent() == User->getParent() &&
904 User->getOperand(0) != GEPI &&
905 User->getOperand(1) == GEPI) {
906 ++GEPFolds;
907 return GEPI;
908 }
909 if (isa<LoadInst>(User) &&
910 GEPI->getParent() == User->getParent() &&
911 User->getOperand(0) == GEPI) {
912 ++GEPFolds;
913 return GEPI;
914 }
915 }
916 return 0;
917}
918
919
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000920// Return a fixed numbering for setcc instructions which does not depend on the
921// order of the opcodes.
922//
923static unsigned getSetCCNumber(unsigned Opcode) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000924 switch (Opcode) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000925 default: assert(0 && "Unknown setcc instruction!");
926 case Instruction::SetEQ: return 0;
927 case Instruction::SetNE: return 1;
928 case Instruction::SetLT: return 2;
929 case Instruction::SetGE: return 3;
930 case Instruction::SetGT: return 4;
931 case Instruction::SetLE: return 5;
932 }
933}
934
Misha Brukmane9c65512004-07-06 15:32:44 +0000935static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
936 switch (Opcode) {
937 default: assert(0 && "Unknown setcc instruction!");
938 case Instruction::SetEQ: return PPC32::BEQ;
939 case Instruction::SetNE: return PPC32::BNE;
940 case Instruction::SetLT: return PPC32::BLT;
941 case Instruction::SetGE: return PPC32::BGE;
942 case Instruction::SetGT: return PPC32::BGT;
943 case Instruction::SetLE: return PPC32::BLE;
944 }
945}
946
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000947/// emitUCOM - emits an unordered FP compare.
948void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
949 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000950 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000951}
952
Misha Brukmanbebde752004-07-16 21:06:24 +0000953/// EmitComparison - emits a comparison of the two operands, returning the
954/// extended setcc code to use. The result is in CR0.
955///
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000956unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
957 MachineBasicBlock *MBB,
958 MachineBasicBlock::iterator IP) {
959 // The arguments are already supposed to be of the same type.
960 const Type *CompTy = Op0->getType();
961 unsigned Class = getClassB(CompTy);
962 unsigned Op0r = getReg(Op0, MBB, IP);
Misha Brukman47225442004-07-23 22:35:49 +0000963
Misha Brukmanb097f212004-07-26 18:13:24 +0000964 // Before we do a comparison, we have to make sure that we're truncating our
965 // registers appropriately.
966 if (Class == cByte) {
967 unsigned TmpReg = makeAnotherReg(CompTy);
968 if (CompTy->isSigned())
969 BuildMI(*MBB, IP, PPC32::EXTSB, 1, TmpReg).addReg(Op0r);
970 else
971 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
972 .addImm(24).addImm(31);
973 Op0r = TmpReg;
974 } else if (Class == cShort) {
975 unsigned TmpReg = makeAnotherReg(CompTy);
976 if (CompTy->isSigned())
977 BuildMI(*MBB, IP, PPC32::EXTSH, 1, TmpReg).addReg(Op0r);
978 else
979 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
980 .addImm(16).addImm(31);
981 Op0r = TmpReg;
982 }
983
Misha Brukman1013ef52004-07-21 20:09:08 +0000984 // Use crand for lt, gt and crandc for le, ge
985 unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC32::CRAND : PPC32::CRANDC;
986 // ? cr1[lt] : cr1[gt]
987 unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 4 : 5;
988 // ? cr0[lt] : cr0[gt]
989 unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1;
Misha Brukman2ed17ca2004-07-22 15:58:04 +0000990 unsigned Opcode = CompTy->isSigned() ? PPC32::CMPW : PPC32::CMPLW;
991 unsigned OpcodeImm = CompTy->isSigned() ? PPC32::CMPWI : PPC32::CMPLWI;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000992
993 // Special case handling of: cmp R, i
Misha Brukman2ed17ca2004-07-22 15:58:04 +0000994 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000995 if (Class == cByte || Class == cShort || Class == cInt) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000996 unsigned Op1v = CI->getRawValue() & 0xFFFF;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000997
Misha Brukman1013ef52004-07-21 20:09:08 +0000998 // Treat compare like ADDI for the purposes of immediate suitability
999 if (canUseAsImmediateForOpcode(CI, 0)) {
1000 BuildMI(*MBB, IP, OpcodeImm, 2, PPC32::CR0).addReg(Op0r).addSImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +00001001 } else {
1002 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00001003 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +00001004 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001005 return OpNum;
1006 } else {
1007 assert(Class == cLong && "Unknown integer class!");
1008 unsigned LowCst = CI->getRawValue();
1009 unsigned HiCst = CI->getRawValue() >> 32;
1010 if (OpNum < 2) { // seteq, setne
Misha Brukman1013ef52004-07-21 20:09:08 +00001011 unsigned LoLow = makeAnotherReg(Type::IntTy);
1012 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1013 unsigned HiLow = makeAnotherReg(Type::IntTy);
1014 unsigned HiTmp = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001015 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Misha Brukman47225442004-07-23 22:35:49 +00001016
Misha Brukman1013ef52004-07-21 20:09:08 +00001017 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r+1)
1018 .addImm(LowCst & 0xFFFF);
1019 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
1020 .addImm(LowCst >> 16);
1021 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r)
1022 .addImm(HiCst & 0xFFFF);
1023 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
1024 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001025 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001026 return OpNum;
1027 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001028 unsigned ConstReg = makeAnotherReg(CompTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00001029 copyConstantToRegister(MBB, IP, CI, ConstReg);
Misha Brukman47225442004-07-23 22:35:49 +00001030
Misha Brukman1013ef52004-07-21 20:09:08 +00001031 // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001032 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r)
Misha Brukmanbebde752004-07-16 21:06:24 +00001033 .addReg(ConstReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001034 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR1).addReg(Op0r+1)
Misha Brukman1013ef52004-07-21 20:09:08 +00001035 .addReg(ConstReg+1);
1036 BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
1037 BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
1038 .addImm(2);
Misha Brukman422791f2004-06-21 17:41:12 +00001039 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001040 }
1041 }
1042 }
1043
1044 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00001045
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001046 switch (Class) {
1047 default: assert(0 && "Unknown type class!");
1048 case cByte:
1049 case cShort:
1050 case cInt:
Misha Brukman1013ef52004-07-21 20:09:08 +00001051 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001052 break;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001053
Misha Brukman7e898c32004-07-20 00:41:46 +00001054 case cFP32:
1055 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001056 emitUCOM(MBB, IP, Op0r, Op1r);
1057 break;
1058
1059 case cLong:
1060 if (OpNum < 2) { // seteq, setne
1061 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1062 unsigned HiTmp = makeAnotherReg(Type::IntTy);
1063 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001064 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r);
1065 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001066 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001067 break; // Allow the sete or setne to be generated from flags set by OR
1068 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001069 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1070 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001071
1072 // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001073 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
1074 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001075 BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
1076 BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
1077 .addImm(2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001078 return OpNum;
1079 }
1080 }
1081 return OpNum;
1082}
1083
Misha Brukmand18a31d2004-07-06 22:51:53 +00001084/// visitSetCondInst - emit code to calculate the condition via
1085/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001086///
1087void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001088 if (canFoldSetCCIntoBranchOrSelect(&I))
Misha Brukmane9c65512004-07-06 15:32:44 +00001089 return;
Misha Brukmanbebde752004-07-16 21:06:24 +00001090
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001091 unsigned DestReg = getReg(I);
Misha Brukman2834a4d2004-07-07 20:07:22 +00001092 unsigned OpNum = I.getOpcode();
Misha Brukman425ff242004-07-01 21:34:10 +00001093 const Type *Ty = I.getOperand (0)->getType();
Misha Brukman47225442004-07-23 22:35:49 +00001094
Misha Brukmand18a31d2004-07-06 22:51:53 +00001095 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
Misha Brukman47225442004-07-23 22:35:49 +00001096
Misha Brukmand18a31d2004-07-06 22:51:53 +00001097 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
Misha Brukman425ff242004-07-01 21:34:10 +00001098 MachineBasicBlock *thisMBB = BB;
1099 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001100 ilist<MachineBasicBlock>::iterator It = BB;
1101 ++It;
1102
Misha Brukman425ff242004-07-01 21:34:10 +00001103 // thisMBB:
1104 // ...
1105 // cmpTY cr0, r1, r2
1106 // bCC copy1MBB
1107 // b copy0MBB
1108
1109 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1110 // if we could insert other, non-terminator instructions after the
1111 // bCC. But MBB->getFirstTerminator() can't understand this.
1112 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001113 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001114 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1115 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001116 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001117 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
Misha Brukman1013ef52004-07-21 20:09:08 +00001118 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1119 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001120 // Update machine-CFG edges
1121 BB->addSuccessor(copy1MBB);
1122 BB->addSuccessor(copy0MBB);
1123
Misha Brukman425ff242004-07-01 21:34:10 +00001124 // copy1MBB:
1125 // %TrueValue = li 1
Misha Brukmane9c65512004-07-06 15:32:44 +00001126 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +00001127 BB = copy1MBB;
Misha Brukmane2eceb52004-07-23 16:08:20 +00001128 unsigned TrueValue = makeAnotherReg(I.getType());
Misha Brukman1013ef52004-07-21 20:09:08 +00001129 BuildMI(BB, PPC32::LI, 1, TrueValue).addSImm(1);
Misha Brukman425ff242004-07-01 21:34:10 +00001130 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1131 // Update machine-CFG edges
1132 BB->addSuccessor(sinkMBB);
1133
Misha Brukman1013ef52004-07-21 20:09:08 +00001134 // copy0MBB:
1135 // %FalseValue = li 0
1136 // fallthrough
1137 BB = copy0MBB;
1138 unsigned FalseValue = makeAnotherReg(I.getType());
1139 BuildMI(BB, PPC32::LI, 1, FalseValue).addSImm(0);
1140 // Update machine-CFG edges
1141 BB->addSuccessor(sinkMBB);
1142
Misha Brukman425ff242004-07-01 21:34:10 +00001143 // sinkMBB:
1144 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1145 // ...
1146 BB = sinkMBB;
1147 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1148 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001149}
1150
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001151void ISel::visitSelectInst(SelectInst &SI) {
1152 unsigned DestReg = getReg(SI);
1153 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001154 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1155 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001156}
1157
1158/// emitSelect - Common code shared between visitSelectInst and the constant
1159/// expression support.
1160/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
1161/// no select instruction. FSEL only works for comparisons against zero.
1162void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1163 MachineBasicBlock::iterator IP,
1164 Value *Cond, Value *TrueVal, Value *FalseVal,
1165 unsigned DestReg) {
1166 unsigned SelectClass = getClassB(TrueVal->getType());
Misha Brukman7e898c32004-07-20 00:41:46 +00001167 unsigned Opcode;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001168
Misha Brukmanbebde752004-07-16 21:06:24 +00001169 // See if we can fold the setcc into the select instruction, or if we have
1170 // to get the register of the Cond value
Misha Brukmanbebde752004-07-16 21:06:24 +00001171 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1172 // We successfully folded the setcc into the select instruction.
Misha Brukmanbebde752004-07-16 21:06:24 +00001173 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukman47225442004-07-23 22:35:49 +00001174 OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
Misha Brukmanbebde752004-07-16 21:06:24 +00001175 Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
1176 } else {
1177 unsigned CondReg = getReg(Cond, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00001178 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(CondReg).addSImm(0);
Misha Brukmanbebde752004-07-16 21:06:24 +00001179 Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001180 }
Misha Brukmanbebde752004-07-16 21:06:24 +00001181
1182 // thisMBB:
1183 // ...
1184 // cmpTY cr0, r1, r2
1185 // bCC copy1MBB
1186 // b copy0MBB
1187
1188 MachineBasicBlock *thisMBB = BB;
1189 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001190 ilist<MachineBasicBlock>::iterator It = BB;
1191 ++It;
Misha Brukmanbebde752004-07-16 21:06:24 +00001192
1193 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1194 // if we could insert other, non-terminator instructions after the
1195 // bCC. But MBB->getFirstTerminator() can't understand this.
1196 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001197 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001198 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1199 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001200 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001201 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
Misha Brukman1013ef52004-07-21 20:09:08 +00001202 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1203 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001204 // Update machine-CFG edges
1205 BB->addSuccessor(copy1MBB);
1206 BB->addSuccessor(copy0MBB);
1207
Misha Brukmanbebde752004-07-16 21:06:24 +00001208 // copy1MBB:
1209 // %TrueValue = ...
1210 // b sinkMBB
1211 BB = copy1MBB;
1212 unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
1213 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1214 // Update machine-CFG edges
1215 BB->addSuccessor(sinkMBB);
1216
Misha Brukman1013ef52004-07-21 20:09:08 +00001217 // copy0MBB:
1218 // %FalseValue = ...
1219 // fallthrough
1220 BB = copy0MBB;
1221 unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
1222 // Update machine-CFG edges
1223 BB->addSuccessor(sinkMBB);
1224
Misha Brukmanbebde752004-07-16 21:06:24 +00001225 // sinkMBB:
1226 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1227 // ...
1228 BB = sinkMBB;
1229 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1230 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukmana31f1f72004-07-21 20:30:18 +00001231 // For a register pair representing a long value, define the second reg
1232 if (getClass(TrueVal->getType()) == cLong)
1233 BuildMI(BB, PPC32::LI, 1, DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001234 return;
1235}
1236
1237
1238
1239/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1240/// operand, in the specified target register.
1241///
1242void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1243 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1244
1245 Value *Val = VR.Val;
1246 const Type *Ty = VR.Ty;
1247 if (Val) {
1248 if (Constant *C = dyn_cast<Constant>(Val)) {
1249 Val = ConstantExpr::getCast(C, Type::IntTy);
1250 Ty = Type::IntTy;
1251 }
1252
Misha Brukman2fec9902004-06-21 20:22:03 +00001253 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001254 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1255 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1256
1257 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001258 BuildMI(BB, PPC32::LI, 1, targetReg).addSImm(TheVal);
Misha Brukman422791f2004-06-21 17:41:12 +00001259 } else {
1260 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001261 BuildMI(BB, PPC32::LIS, 1, TmpReg).addSImm(TheVal >> 16);
Misha Brukman2fec9902004-06-21 20:22:03 +00001262 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1263 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001264 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001265 return;
1266 }
1267 }
1268
1269 // Make sure we have the register number for this value...
1270 unsigned Reg = Val ? getReg(Val) : VR.Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001271 switch (getClassB(Ty)) {
1272 case cByte:
1273 // Extend value into target register (8->32)
1274 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001275 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1276 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001277 else
1278 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1279 break;
1280 case cShort:
1281 // Extend value into target register (16->32)
1282 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001283 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1284 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001285 else
1286 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1287 break;
1288 case cInt:
1289 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001290 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001291 break;
1292 default:
1293 assert(0 && "Unpromotable operand class in promote32");
1294 }
1295}
1296
Misha Brukman2fec9902004-06-21 20:22:03 +00001297/// visitReturnInst - implemented with BLR
1298///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001299void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001300 // Only do the processing if this is a non-void return
1301 if (I.getNumOperands() > 0) {
1302 Value *RetVal = I.getOperand(0);
1303 switch (getClassB(RetVal->getType())) {
1304 case cByte: // integral return values: extend or move into r3 and return
1305 case cShort:
1306 case cInt:
1307 promote32(PPC32::R3, ValueRecord(RetVal));
1308 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001309 case cFP32:
1310 case cFP64: { // Floats & Doubles: Return in f1
Misha Brukmand47bbf72004-06-25 19:04:27 +00001311 unsigned RetReg = getReg(RetVal);
1312 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1313 break;
1314 }
1315 case cLong: {
1316 unsigned RetReg = getReg(RetVal);
1317 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1318 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1319 break;
1320 }
1321 default:
1322 visitInstruction(I);
1323 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001324 }
1325 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1326}
1327
1328// getBlockAfter - Return the basic block which occurs lexically after the
1329// specified one.
1330static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1331 Function::iterator I = BB; ++I; // Get iterator to next block
1332 return I != BB->getParent()->end() ? &*I : 0;
1333}
1334
1335/// visitBranchInst - Handle conditional and unconditional branches here. Note
1336/// that since code layout is frozen at this point, that if we are trying to
1337/// jump to a block that is the immediate successor of the current block, we can
1338/// just make a fall-through (but we don't currently).
1339///
1340void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001341 // Update machine-CFG edges
Misha Brukmane2eceb52004-07-23 16:08:20 +00001342 BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001343 if (BI.isConditional())
Misha Brukmane2eceb52004-07-23 16:08:20 +00001344 BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001345
1346 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
Misha Brukmane9c65512004-07-06 15:32:44 +00001347
Misha Brukman2fec9902004-06-21 20:22:03 +00001348 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmane9c65512004-07-06 15:32:44 +00001349 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001350 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1351 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001352 }
1353
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001354 // See if we can fold the setcc into the branch itself...
1355 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1356 if (SCI == 0) {
1357 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1358 // computed some other way...
1359 unsigned condReg = getReg(BI.getCondition());
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001360 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(condReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00001361 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001362 if (BI.getSuccessor(1) == NextBB) {
1363 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001364 BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(PPC32::BNE)
1365 .addMBB(MBBMap[BI.getSuccessor(0)])
1366 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001367 } else {
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001368 BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(PPC32::BEQ)
1369 .addMBB(MBBMap[BI.getSuccessor(1)])
1370 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001371 if (BI.getSuccessor(0) != NextBB)
1372 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1373 }
1374 return;
1375 }
1376
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001377 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukmane9c65512004-07-06 15:32:44 +00001378 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001379 MachineBasicBlock::iterator MII = BB->end();
1380 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001381
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001382 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001383 BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(Opcode)
1384 .addMBB(MBBMap[BI.getSuccessor(0)])
1385 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001386 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001387 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001388 } else {
1389 // Change to the inverse condition...
1390 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001391 Opcode = PowerPCInstrInfo::invertPPCBranchOpcode(Opcode);
1392 BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(Opcode)
1393 .addMBB(MBBMap[BI.getSuccessor(1)])
1394 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001395 }
1396 }
1397}
1398
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001399/// doCall - This emits an abstract call instruction, setting up the arguments
1400/// and the return value as appropriate. For the actual function call itself,
1401/// it inserts the specified CallMI instruction into the stream.
1402///
1403/// FIXME: See Documentation at the following URL for "correct" behavior
1404/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1405void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +00001406 const std::vector<ValueRecord> &Args, bool isVarArg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001407 // Count how many bytes are to be pushed on the stack...
1408 unsigned NumBytes = 0;
1409
1410 if (!Args.empty()) {
1411 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1412 switch (getClassB(Args[i].Ty)) {
1413 case cByte: case cShort: case cInt:
1414 NumBytes += 4; break;
1415 case cLong:
1416 NumBytes += 8; break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001417 case cFP32:
1418 NumBytes += 4; break;
1419 case cFP64:
1420 NumBytes += 8; break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001421 break;
1422 default: assert(0 && "Unknown class!");
1423 }
1424
1425 // Adjust the stack pointer for the new arguments...
Misha Brukman1013ef52004-07-21 20:09:08 +00001426 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addSImm(NumBytes);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001427
1428 // Arguments go on the stack in reverse order, as specified by the ABI.
Misha Brukman7e898c32004-07-20 00:41:46 +00001429 // Offset to the paramater area on the stack is 24.
1430 unsigned ArgOffset = 24;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001431 int GPR_remaining = 8, FPR_remaining = 13;
Misha Brukmanfc879c32004-07-08 18:02:38 +00001432 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001433 static const unsigned GPR[] = {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001434 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1435 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1436 };
Misha Brukmand18a31d2004-07-06 22:51:53 +00001437 static const unsigned FPR[] = {
Misha Brukman2834a4d2004-07-07 20:07:22 +00001438 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6,
1439 PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12,
1440 PPC32::F13
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001441 };
Misha Brukman422791f2004-06-21 17:41:12 +00001442
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001443 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1444 unsigned ArgReg;
1445 switch (getClassB(Args[i].Ty)) {
1446 case cByte:
1447 case cShort:
1448 // Promote arg to 32 bits wide into a temporary register...
1449 ArgReg = makeAnotherReg(Type::UIntTy);
1450 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001451
1452 // Reg or stack?
1453 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001454 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001455 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001456 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukmanb097f212004-07-26 18:13:24 +00001457 }
1458 if (GPR_remaining <= 0 || isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001459 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001460 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001461 }
1462 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001463 case cInt:
1464 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1465
Misha Brukman422791f2004-06-21 17:41:12 +00001466 // Reg or stack?
1467 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001468 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001469 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001470 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukmanb097f212004-07-26 18:13:24 +00001471 }
1472 if (GPR_remaining <= 0 || isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001473 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001474 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001475 }
1476 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001477 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001478 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001479
Misha Brukmanec6319a2004-07-20 15:51:37 +00001480 // Reg or stack? Note that PPC calling conventions state that long args
1481 // are passed rN = hi, rN+1 = lo, opposite of LLVM.
Misha Brukman422791f2004-06-21 17:41:12 +00001482 if (GPR_remaining > 1) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001483 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanec6319a2004-07-20 15:51:37 +00001484 .addReg(ArgReg);
Misha Brukman1013ef52004-07-21 20:09:08 +00001485 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
1486 .addReg(ArgReg+1);
Misha Brukman7e898c32004-07-20 00:41:46 +00001487 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1488 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
Misha Brukmanb097f212004-07-26 18:13:24 +00001489 }
1490 if (GPR_remaining <= 1 || isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001491 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001492 .addReg(PPC32::R1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001493 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001494 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001495 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001496
1497 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001498 GPR_remaining -= 1; // uses up 2 GPRs
1499 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001500 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001501 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001502 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman7e898c32004-07-20 00:41:46 +00001503 // Reg or stack?
1504 if (FPR_remaining > 0) {
1505 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1506 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1507 FPR_remaining--;
1508 FPR_idx++;
1509
1510 // If this is a vararg function, and there are GPRs left, also
1511 // pass the float in an int. Otherwise, put it on the stack.
1512 if (isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001513 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001514 .addReg(PPC32::R1);
1515 if (GPR_remaining > 0) {
1516 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx])
Misha Brukman1013ef52004-07-21 20:09:08 +00001517 .addSImm(ArgOffset).addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001518 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1519 }
Misha Brukman1916bf92004-06-24 21:56:15 +00001520 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001521 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001522 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001523 .addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001524 }
1525 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001526 case cFP64:
1527 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1528 // Reg or stack?
1529 if (FPR_remaining > 0) {
1530 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1531 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1532 FPR_remaining--;
1533 FPR_idx++;
1534 // For vararg functions, must pass doubles via int regs as well
1535 if (isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001536 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001537 .addReg(PPC32::R1);
1538
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001539 // Doubles can be split across reg + stack for varargs
1540 if (GPR_remaining > 0) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001541 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001542 .addReg(PPC32::R1);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001543 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1544 }
1545 if (GPR_remaining > 1) {
Misha Brukman7e898c32004-07-20 00:41:46 +00001546 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx+1])
Misha Brukman1013ef52004-07-21 20:09:08 +00001547 .addSImm(ArgOffset+4).addReg(PPC32::R1);
Misha Brukman7e898c32004-07-20 00:41:46 +00001548 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
1549 }
1550 }
1551 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001552 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001553 .addReg(PPC32::R1);
1554 }
1555 // Doubles use 8 bytes, and 2 GPRs worth of param space
1556 ArgOffset += 4;
1557 GPR_remaining--;
1558 GPR_idx++;
1559 break;
1560
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001561 default: assert(0 && "Unknown class!");
1562 }
1563 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001564 GPR_remaining--;
1565 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001566 }
1567 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001568 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001569 }
1570
Misha Brukman435c7852004-07-27 17:13:58 +00001571 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, PPC32::LR);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001572 BB->push_back(CallMI);
Misha Brukman1013ef52004-07-21 20:09:08 +00001573 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addSImm(NumBytes);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001574
1575 // If there is a return value, scavenge the result from the location the call
1576 // leaves it in...
1577 //
1578 if (Ret.Ty != Type::VoidTy) {
1579 unsigned DestClass = getClassB(Ret.Ty);
1580 switch (DestClass) {
1581 case cByte:
1582 case cShort:
1583 case cInt:
1584 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001585 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001586 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001587 case cFP32: // Floating-point return values live in f1
1588 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001589 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1590 break;
Misha Brukmanec6319a2004-07-20 15:51:37 +00001591 case cLong: // Long values are in r3 hi:r4 lo
Misha Brukman1013ef52004-07-21 20:09:08 +00001592 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1593 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001594 break;
1595 default: assert(0 && "Unknown class!");
1596 }
1597 }
1598}
1599
1600
1601/// visitCallInst - Push args on stack and do a procedure call instruction.
1602void ISel::visitCallInst(CallInst &CI) {
1603 MachineInstr *TheCall;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001604 Function *F = CI.getCalledFunction();
1605 if (F) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001606 // Is it an intrinsic function call?
1607 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1608 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1609 return;
1610 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001611 // Emit a CALL instruction with PC-relative displacement.
1612 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
Misha Brukmane2eceb52004-07-23 16:08:20 +00001613 // Add it to the set of functions called to be used by the Printer
1614 TM.CalledFunctions.insert(F);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001615 } else { // Emit an indirect call through the CTR
1616 unsigned Reg = getReg(CI.getCalledValue());
Misha Brukman7e898c32004-07-20 00:41:46 +00001617 BuildMI(BB, PPC32::MTCTR, 1).addReg(Reg);
1618 TheCall = BuildMI(PPC32::CALLindirect, 2).addZImm(20).addZImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001619 }
1620
1621 std::vector<ValueRecord> Args;
1622 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1623 Args.push_back(ValueRecord(CI.getOperand(i)));
1624
1625 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001626 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1627 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001628}
1629
1630
1631/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1632///
1633static Value *dyncastIsNan(Value *V) {
1634 if (CallInst *CI = dyn_cast<CallInst>(V))
1635 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001636 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001637 return CI->getOperand(1);
1638 return 0;
1639}
1640
1641/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1642/// or's whos operands are all calls to the isnan predicate.
1643static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1644 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1645
1646 // Check all uses, which will be or's of isnans if this predicate is true.
1647 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1648 Instruction *I = cast<Instruction>(*UI);
1649 if (I->getOpcode() != Instruction::Or) return false;
1650 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1651 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1652 }
1653
1654 return true;
1655}
1656
1657/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1658/// function, lowering any calls to unknown intrinsic functions into the
1659/// equivalent LLVM code.
1660///
1661void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1662 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1663 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1664 if (CallInst *CI = dyn_cast<CallInst>(I++))
1665 if (Function *F = CI->getCalledFunction())
1666 switch (F->getIntrinsicID()) {
1667 case Intrinsic::not_intrinsic:
1668 case Intrinsic::vastart:
1669 case Intrinsic::vacopy:
1670 case Intrinsic::vaend:
1671 case Intrinsic::returnaddress:
1672 case Intrinsic::frameaddress:
Misha Brukmanb097f212004-07-26 18:13:24 +00001673 // FIXME: should lower these ourselves
Misha Brukmana2916ce2004-06-21 17:58:36 +00001674 // case Intrinsic::isunordered:
Misha Brukmanb097f212004-07-26 18:13:24 +00001675 // case Intrinsic::memcpy: -> doCall(). system memcpy almost
1676 // guaranteed to be faster than anything we generate ourselves
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001677 // We directly implement these intrinsics
1678 break;
1679 case Intrinsic::readio: {
1680 // On PPC, memory operations are in-order. Lower this intrinsic
1681 // into a volatile load.
1682 Instruction *Before = CI->getPrev();
1683 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1684 CI->replaceAllUsesWith(LI);
1685 BB->getInstList().erase(CI);
1686 break;
1687 }
1688 case Intrinsic::writeio: {
1689 // On PPC, memory operations are in-order. Lower this intrinsic
1690 // into a volatile store.
1691 Instruction *Before = CI->getPrev();
Misha Brukman8d442c22004-07-14 15:29:51 +00001692 StoreInst *SI = new StoreInst(CI->getOperand(1),
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001693 CI->getOperand(2), true, CI);
Misha Brukman8d442c22004-07-14 15:29:51 +00001694 CI->replaceAllUsesWith(SI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001695 BB->getInstList().erase(CI);
1696 break;
1697 }
1698 default:
1699 // All other intrinsic calls we must lower.
1700 Instruction *Before = CI->getPrev();
1701 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1702 if (Before) { // Move iterator to instruction after call
1703 I = Before; ++I;
1704 } else {
1705 I = BB->begin();
1706 }
1707 }
1708}
1709
1710void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1711 unsigned TmpReg1, TmpReg2, TmpReg3;
1712 switch (ID) {
1713 case Intrinsic::vastart:
1714 // Get the address of the first vararg value...
1715 TmpReg1 = getReg(CI);
Misha Brukmanec6319a2004-07-20 15:51:37 +00001716 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex,
1717 0, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001718 return;
1719
1720 case Intrinsic::vacopy:
1721 TmpReg1 = getReg(CI);
1722 TmpReg2 = getReg(CI.getOperand(1));
1723 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1724 return;
1725 case Intrinsic::vaend: return;
1726
1727 case Intrinsic::returnaddress:
Misha Brukmanec6319a2004-07-20 15:51:37 +00001728 TmpReg1 = getReg(CI);
1729 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1730 MachineFrameInfo *MFI = F->getFrameInfo();
1731 unsigned NumBytes = MFI->getStackSize();
1732
Misha Brukman1013ef52004-07-21 20:09:08 +00001733 BuildMI(BB, PPC32::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
Misha Brukmanec6319a2004-07-20 15:51:37 +00001734 .addReg(PPC32::R1);
1735 } else {
1736 // Values other than zero are not implemented yet.
Misha Brukman1013ef52004-07-21 20:09:08 +00001737 BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
Misha Brukmanec6319a2004-07-20 15:51:37 +00001738 }
1739 return;
1740
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001741 case Intrinsic::frameaddress:
1742 TmpReg1 = getReg(CI);
1743 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00001744 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(PPC32::R1).addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001745 } else {
1746 // Values other than zero are not implemented yet.
Misha Brukman1013ef52004-07-21 20:09:08 +00001747 BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001748 }
1749 return;
Misha Brukmanb097f212004-07-26 18:13:24 +00001750
Misha Brukmana2916ce2004-06-21 17:58:36 +00001751#if 0
1752 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001753 case Intrinsic::isnan:
1754 // If this is only used by 'isunordered' style comparisons, don't emit it.
1755 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1756 TmpReg1 = getReg(CI.getOperand(1));
1757 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001758 TmpReg2 = makeAnotherReg(Type::IntTy);
1759 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001760 TmpReg3 = getReg(CI);
1761 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1762 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001763#endif
1764
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001765 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1766 }
1767}
1768
1769/// visitSimpleBinary - Implement simple binary operators for integral types...
1770/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1771/// Xor.
1772///
1773void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1774 unsigned DestReg = getReg(B);
1775 MachineBasicBlock::iterator MI = BB->end();
1776 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1777 unsigned Class = getClassB(B.getType());
1778
1779 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1780}
1781
1782/// emitBinaryFPOperation - This method handles emission of floating point
1783/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1784void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1785 MachineBasicBlock::iterator IP,
1786 Value *Op0, Value *Op1,
1787 unsigned OperatorClass, unsigned DestReg) {
1788
1789 // Special case: op Reg, <const fp>
1790 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001791 // Create a constant pool entry for this constant.
1792 MachineConstantPool *CP = F->getConstantPool();
1793 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1794 const Type *Ty = Op1->getType();
Misha Brukmand9aa7832004-07-12 23:49:47 +00001795 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001796
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001797 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001798 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1799 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001800 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001801
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001802 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001803 unsigned Op1Reg = getReg(Op1C, BB, IP);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001804 unsigned Op0r = getReg(Op0, BB, IP);
Misha Brukmana596f8c2004-07-13 15:35:45 +00001805 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001806 return;
1807 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001808
1809 // Special case: R1 = op <const fp>, R2
Misha Brukmana596f8c2004-07-13 15:35:45 +00001810 if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
1811 if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001812 // -0.0 - X === -X
1813 unsigned op1Reg = getReg(Op1, BB, IP);
1814 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1815 return;
1816 } else {
1817 // R1 = op CST, R2 --> R1 = opr R2, CST
1818
1819 // Create a constant pool entry for this constant.
1820 MachineConstantPool *CP = F->getConstantPool();
Misha Brukmana596f8c2004-07-13 15:35:45 +00001821 unsigned CPI = CP->getConstantPoolIndex(Op0C);
1822 const Type *Ty = Op0C->getType();
1823 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001824
1825 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001826 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1827 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001828 };
1829
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001830 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001831 unsigned Op0Reg = getReg(Op0C, BB, IP);
1832 unsigned Op1Reg = getReg(Op1, BB, IP);
1833 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001834 return;
1835 }
1836
1837 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001838 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001839 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1840 };
1841
1842 unsigned Opcode = OpcodeTab[OperatorClass];
1843 unsigned Op0r = getReg(Op0, BB, IP);
1844 unsigned Op1r = getReg(Op1, BB, IP);
1845 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1846}
1847
1848/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1849/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1850/// Or, 4 for Xor.
1851///
1852/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1853/// and constant expression support.
1854///
1855void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1856 MachineBasicBlock::iterator IP,
1857 Value *Op0, Value *Op1,
1858 unsigned OperatorClass, unsigned DestReg) {
1859 unsigned Class = getClassB(Op0->getType());
1860
Misha Brukman422791f2004-06-21 17:41:12 +00001861 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001862 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001863 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1864 };
Misha Brukman1013ef52004-07-21 20:09:08 +00001865 static const unsigned ImmOpcodeTab[] = {
1866 PPC32::ADDI, PPC32::SUBI, PPC32::ANDIo, PPC32::ORI, PPC32::XORI
1867 };
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001868 static const unsigned RImmOpcodeTab[] = {
1869 PPC32::ADDI, PPC32::SUBFIC, PPC32::ANDIo, PPC32::ORI, PPC32::XORI
1870 };
Misha Brukman1013ef52004-07-21 20:09:08 +00001871
Misha Brukman422791f2004-06-21 17:41:12 +00001872 // Otherwise, code generate the full operation with a constant.
1873 static const unsigned BottomTab[] = {
1874 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1875 };
1876 static const unsigned TopTab[] = {
1877 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1878 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001879
Misha Brukman7e898c32004-07-20 00:41:46 +00001880 if (Class == cFP32 || Class == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001881 assert(OperatorClass < 2 && "No logical ops for FP!");
1882 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1883 return;
1884 }
1885
1886 if (Op0->getType() == Type::BoolTy) {
1887 if (OperatorClass == 3)
1888 // If this is an or of two isnan's, emit an FP comparison directly instead
1889 // of or'ing two isnan's together.
1890 if (Value *LHS = dyncastIsNan(Op0))
1891 if (Value *RHS = dyncastIsNan(Op1)) {
1892 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001893 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001894 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001895 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001896 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1897 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001898 return;
1899 }
1900 }
1901
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001902 // Special case: op <const int>, Reg
Misha Brukman1013ef52004-07-21 20:09:08 +00001903 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001904 // sub 0, X -> subfic
1905 if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001906 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001907 int imm = CI->getRawValue() & 0xFFFF;
Misha Brukman1013ef52004-07-21 20:09:08 +00001908
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001909 if (Class == cLong) {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001910 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, DestReg+1).addReg(Op1r+1)
1911 .addSImm(imm);
Misha Brukman1013ef52004-07-21 20:09:08 +00001912 BuildMI(*MBB, IP, PPC32::SUBFZE, 1, DestReg).addReg(Op1r);
1913 } else {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001914 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001915 }
1916 return;
1917 }
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001918
1919 // If it is easy to do, swap the operands and emit an immediate op
1920 if (Class != cLong && OperatorClass != 1 &&
1921 canUseAsImmediateForOpcode(CI, OperatorClass)) {
1922 unsigned Op1r = getReg(Op1, MBB, IP);
1923 int imm = CI->getRawValue() & 0xFFFF;
1924
1925 if (OperatorClass < 2)
1926 BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
1927 .addSImm(imm);
1928 else
1929 BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
1930 .addZImm(imm);
1931 return;
1932 }
Misha Brukman1013ef52004-07-21 20:09:08 +00001933 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001934
1935 // Special case: op Reg, <const int>
1936 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1937 unsigned Op0r = getReg(Op0, MBB, IP);
1938
1939 // xor X, -1 -> not X
1940 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1941 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
Misha Brukman1013ef52004-07-21 20:09:08 +00001942 if (Class == cLong) // Invert the low part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001943 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1944 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001945 return;
1946 }
Misha Brukman1013ef52004-07-21 20:09:08 +00001947
Misha Brukman1013ef52004-07-21 20:09:08 +00001948 if (Class != cLong) {
1949 if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
1950 int immediate = Op1C->getRawValue() & 0xFFFF;
1951
1952 if (OperatorClass < 2)
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001953 BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
Misha Brukman1013ef52004-07-21 20:09:08 +00001954 .addSImm(immediate);
1955 else
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001956 BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
Misha Brukman1013ef52004-07-21 20:09:08 +00001957 .addZImm(immediate);
1958 } else {
1959 unsigned Op1r = getReg(Op1, MBB, IP);
1960 BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
1961 .addReg(Op1r);
1962 }
1963 return;
1964 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001965
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001966 unsigned Op1r = getReg(Op1, MBB, IP);
1967
Misha Brukman1013ef52004-07-21 20:09:08 +00001968 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001969 .addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001970 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
1971 .addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001972 return;
1973 }
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001974
1975 // We couldn't generate an immediate variant of the op, load both halves into
1976 // registers and emit the appropriate opcode.
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001977 unsigned Op0r = getReg(Op0, MBB, IP);
1978 unsigned Op1r = getReg(Op1, MBB, IP);
1979
1980 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001981 unsigned Opcode = OpcodeTab[OperatorClass];
1982 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001983 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001984 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001985 .addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001986 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
1987 .addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001988 }
1989 return;
1990}
1991
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001992// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1993// returns zero when the input is not exactly a power of two.
1994static unsigned ExactLog2(unsigned Val) {
1995 if (Val == 0 || (Val & (Val-1))) return 0;
1996 unsigned Count = 0;
1997 while (Val != 1) {
1998 Val >>= 1;
1999 ++Count;
2000 }
Misha Brukman1013ef52004-07-21 20:09:08 +00002001 return Count;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002002}
2003
Misha Brukman1013ef52004-07-21 20:09:08 +00002004/// doMultiply - Emit appropriate instructions to multiply together the
2005/// Values Op0 and Op1, and put the result in DestReg.
Misha Brukman2fec9902004-06-21 20:22:03 +00002006///
Misha Brukman1013ef52004-07-21 20:09:08 +00002007void ISel::doMultiply(MachineBasicBlock *MBB,
2008 MachineBasicBlock::iterator IP,
2009 unsigned DestReg, Value *Op0, Value *Op1) {
2010 unsigned Class0 = getClass(Op0->getType());
2011 unsigned Class1 = getClass(Op1->getType());
2012
2013 unsigned Op0r = getReg(Op0, MBB, IP);
2014 unsigned Op1r = getReg(Op1, MBB, IP);
2015
2016 // 64 x 64 -> 64
2017 if (Class0 == cLong && Class1 == cLong) {
2018 unsigned Tmp1 = makeAnotherReg(Type::IntTy);
2019 unsigned Tmp2 = makeAnotherReg(Type::IntTy);
2020 unsigned Tmp3 = makeAnotherReg(Type::IntTy);
2021 unsigned Tmp4 = makeAnotherReg(Type::IntTy);
2022 BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
2023 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
2024 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
2025 BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
2026 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
2027 BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
2028 return;
2029 }
2030
2031 // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
2032 if (Class0 == cLong && Class1 <= cInt) {
2033 unsigned Tmp0 = makeAnotherReg(Type::IntTy);
2034 unsigned Tmp1 = makeAnotherReg(Type::IntTy);
2035 unsigned Tmp2 = makeAnotherReg(Type::IntTy);
2036 unsigned Tmp3 = makeAnotherReg(Type::IntTy);
2037 unsigned Tmp4 = makeAnotherReg(Type::IntTy);
2038 if (Op1->getType()->isSigned())
2039 BuildMI(*MBB, IP, PPC32::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
2040 else
2041 BuildMI(*MBB, IP, PPC32::LI, 2, Tmp0).addSImm(0);
2042 BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
2043 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
2044 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
2045 BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
2046 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
2047 BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
2048 return;
2049 }
2050
2051 // 32 x 32 -> 32
2052 if (Class0 <= cInt && Class1 <= cInt) {
2053 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
2054 return;
2055 }
2056
2057 assert(0 && "doMultiply cannot operate on unknown type!");
2058}
2059
2060/// doMultiplyConst - This method will multiply the value in Op0 by the
2061/// value of the ContantInt *CI
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002062void ISel::doMultiplyConst(MachineBasicBlock *MBB,
2063 MachineBasicBlock::iterator IP,
Misha Brukman1013ef52004-07-21 20:09:08 +00002064 unsigned DestReg, Value *Op0, ConstantInt *CI) {
2065 unsigned Class = getClass(Op0->getType());
2066
2067 // Mul op0, 0 ==> 0
2068 if (CI->isNullValue()) {
2069 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
2070 if (Class == cLong)
2071 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002072 return;
Misha Brukman1013ef52004-07-21 20:09:08 +00002073 }
2074
2075 // Mul op0, 1 ==> op0
2076 if (CI->equalsInt(1)) {
2077 unsigned Op0r = getReg(Op0, MBB, IP);
2078 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
2079 if (Class == cLong)
2080 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002081 return;
2082 }
2083
2084 // If the element size is exactly a power of 2, use a shift to get it.
Misha Brukman1013ef52004-07-21 20:09:08 +00002085 if (unsigned Shift = ExactLog2(CI->getRawValue())) {
2086 ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
2087 emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
2088 return;
2089 }
2090
2091 // If 32 bits or less and immediate is in right range, emit mul by immediate
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002092 if (Class == cByte || Class == cShort || Class == cInt) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002093 if (canUseAsImmediateForOpcode(CI, 0)) {
2094 unsigned Op0r = getReg(Op0, MBB, IP);
2095 unsigned imm = CI->getRawValue() & 0xFFFF;
2096 BuildMI(*MBB, IP, PPC32::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002097 return;
2098 }
2099 }
2100
Misha Brukman1013ef52004-07-21 20:09:08 +00002101 doMultiply(MBB, IP, DestReg, Op0, CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002102}
2103
2104void ISel::visitMul(BinaryOperator &I) {
2105 unsigned ResultReg = getReg(I);
2106
2107 Value *Op0 = I.getOperand(0);
2108 Value *Op1 = I.getOperand(1);
2109
2110 MachineBasicBlock::iterator IP = BB->end();
2111 emitMultiply(BB, IP, Op0, Op1, ResultReg);
2112}
2113
2114void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
2115 Value *Op0, Value *Op1, unsigned DestReg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002116 TypeClass Class = getClass(Op0->getType());
2117
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002118 switch (Class) {
2119 case cByte:
2120 case cShort:
2121 case cInt:
Misha Brukman1013ef52004-07-21 20:09:08 +00002122 case cLong:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002123 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002124 doMultiplyConst(MBB, IP, DestReg, Op0, CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002125 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00002126 doMultiply(MBB, IP, DestReg, Op0, Op1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002127 }
2128 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002129 case cFP32:
2130 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002131 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2132 return;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002133 break;
2134 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002135}
2136
2137
2138/// visitDivRem - Handle division and remainder instructions... these
2139/// instruction both require the same instructions to be generated, they just
2140/// select the result from a different register. Note that both of these
2141/// instructions work differently for signed and unsigned operands.
2142///
2143void ISel::visitDivRem(BinaryOperator &I) {
2144 unsigned ResultReg = getReg(I);
2145 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2146
2147 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00002148 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
2149 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002150}
2151
2152void ISel::emitDivRemOperation(MachineBasicBlock *BB,
2153 MachineBasicBlock::iterator IP,
2154 Value *Op0, Value *Op1, bool isDiv,
2155 unsigned ResultReg) {
2156 const Type *Ty = Op0->getType();
2157 unsigned Class = getClass(Ty);
2158 switch (Class) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002159 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002160 if (isDiv) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002161 // Floating point divide...
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002162 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2163 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002164 } else {
2165 // Floating point remainder via fmodf(float x, float y);
2166 unsigned Op0Reg = getReg(Op0, BB, IP);
2167 unsigned Op1Reg = getReg(Op1, BB, IP);
2168 MachineInstr *TheCall =
2169 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
2170 std::vector<ValueRecord> Args;
2171 Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
2172 Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
2173 doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002174 TM.CalledFunctions.insert(fmodfFn);
Misha Brukman7e898c32004-07-20 00:41:46 +00002175 }
2176 return;
2177 case cFP64:
2178 if (isDiv) {
2179 // Floating point divide...
2180 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2181 return;
2182 } else {
2183 // Floating point remainder via fmod(double x, double y);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002184 unsigned Op0Reg = getReg(Op0, BB, IP);
2185 unsigned Op1Reg = getReg(Op1, BB, IP);
2186 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002187 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002188 std::vector<ValueRecord> Args;
2189 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2190 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002191 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002192 TM.CalledFunctions.insert(fmodFn);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002193 }
2194 return;
2195 case cLong: {
Misha Brukman7e898c32004-07-20 00:41:46 +00002196 static Function* const Funcs[] =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002197 { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002198 unsigned Op0Reg = getReg(Op0, BB, IP);
2199 unsigned Op1Reg = getReg(Op1, BB, IP);
2200 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2201 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002202 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002203
2204 std::vector<ValueRecord> Args;
2205 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2206 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002207 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002208 TM.CalledFunctions.insert(Funcs[NameIdx]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002209 return;
2210 }
2211 case cByte: case cShort: case cInt:
2212 break; // Small integrals, handled below...
2213 default: assert(0 && "Unknown class!");
2214 }
2215
2216 // Special case signed division by power of 2.
2217 if (isDiv)
2218 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2219 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2220 int V = CI->getValue();
2221
2222 if (V == 1) { // X /s 1 => X
2223 unsigned Op0Reg = getReg(Op0, BB, IP);
2224 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
2225 return;
2226 }
2227
2228 if (V == -1) { // X /s -1 => -X
2229 unsigned Op0Reg = getReg(Op0, BB, IP);
2230 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
2231 return;
2232 }
2233
Misha Brukmanec6319a2004-07-20 15:51:37 +00002234 unsigned log2V = ExactLog2(V);
2235 if (log2V != 0 && Ty->isSigned()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002236 unsigned Op0Reg = getReg(Op0, BB, IP);
2237 unsigned TmpReg = makeAnotherReg(Op0->getType());
Misha Brukmanec6319a2004-07-20 15:51:37 +00002238
Misha Brukman1013ef52004-07-21 20:09:08 +00002239 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
Misha Brukmanec6319a2004-07-20 15:51:37 +00002240 BuildMI(*BB, IP, PPC32::ADDZE, 1, ResultReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002241 return;
2242 }
2243 }
2244
2245 unsigned Op0Reg = getReg(Op0, BB, IP);
2246 unsigned Op1Reg = getReg(Op1, BB, IP);
Misha Brukmanec6319a2004-07-20 15:51:37 +00002247 unsigned Opcode = Ty->isSigned() ? PPC32::DIVW : PPC32::DIVWU;
2248
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002249 if (isDiv) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00002250 BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002251 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002252 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2253 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2254
Misha Brukmanec6319a2004-07-20 15:51:37 +00002255 BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002256 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2257 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002258 }
2259}
2260
2261
2262/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2263/// for constant immediate shift values, and for constant immediate
2264/// shift values equal to 1. Even the general case is sort of special,
2265/// because the shift amount has to be in CL, not just any old register.
2266///
2267void ISel::visitShiftInst(ShiftInst &I) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00002268 MachineBasicBlock::iterator IP = BB->end();
2269 emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
2270 I.getOpcode() == Instruction::Shl, I.getType(),
2271 getReg(I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002272}
2273
2274/// emitShiftOperation - Common code shared between visitShiftInst and
2275/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002276///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002277void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2278 MachineBasicBlock::iterator IP,
2279 Value *Op, Value *ShiftAmount, bool isLeftShift,
2280 const Type *ResultTy, unsigned DestReg) {
2281 unsigned SrcReg = getReg (Op, MBB, IP);
2282 bool isSigned = ResultTy->isSigned ();
2283 unsigned Class = getClass (ResultTy);
2284
2285 // Longs, as usual, are handled specially...
2286 if (Class == cLong) {
2287 // If we have a constant shift, we can generate much more efficient code
2288 // than otherwise...
2289 //
2290 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2291 unsigned Amount = CUI->getValue();
2292 if (Amount < 32) {
2293 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002294 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002295 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2296 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman1013ef52004-07-21 20:09:08 +00002297 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2298 .addImm(Amount).addImm(32-Amount).addImm(31);
2299 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2300 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002301 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002302 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002303 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2304 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman1013ef52004-07-21 20:09:08 +00002305 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2306 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2307 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2308 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002309 }
2310 } else { // Shifting more than 32 bits
2311 Amount -= 32;
2312 if (isLeftShift) {
2313 if (Amount != 0) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002314 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002315 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002316 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002317 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2318 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002319 }
Misha Brukman1013ef52004-07-21 20:09:08 +00002320 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
2321 } else {
2322 if (Amount != 0) {
2323 if (isSigned)
2324 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(SrcReg)
2325 .addImm(Amount);
2326 else
2327 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2328 .addImm(32-Amount).addImm(Amount).addImm(31);
2329 } else {
2330 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2331 .addReg(SrcReg);
2332 }
2333 BuildMI(*MBB, IP,PPC32::LI, 1, DestReg).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002334 }
2335 }
2336 } else {
2337 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2338 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002339 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2340 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2341 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2342 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2343 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2344
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002345 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002346 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002347 .addSImm(32);
2348 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002349 .addReg(ShiftAmountReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002350 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg3).addReg(SrcReg+1)
2351 .addReg(TmpReg1);
2352 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
Misha Brukman2fec9902004-06-21 20:22:03 +00002353 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002354 .addSImm(-32);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002355 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg6).addReg(SrcReg+1)
2356 .addReg(TmpReg5);
Misha Brukman1013ef52004-07-21 20:09:08 +00002357 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
Misha Brukman2fec9902004-06-21 20:22:03 +00002358 .addReg(TmpReg6);
Misha Brukman1013ef52004-07-21 20:09:08 +00002359 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg+1).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002360 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002361 } else {
2362 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002363 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002364 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukmanb097f212004-07-26 18:13:24 +00002365 std::cerr << "ERROR: Unimplemented: signed right shift of long\n";
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002366 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002367 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002368 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002369 .addSImm(32);
2370 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002371 .addReg(ShiftAmountReg);
Misha Brukman1013ef52004-07-21 20:09:08 +00002372 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002373 .addReg(TmpReg1);
2374 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2375 .addReg(TmpReg3);
2376 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002377 .addSImm(-32);
2378 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002379 .addReg(TmpReg5);
Misha Brukman1013ef52004-07-21 20:09:08 +00002380 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
Misha Brukman2fec9902004-06-21 20:22:03 +00002381 .addReg(TmpReg6);
Misha Brukman1013ef52004-07-21 20:09:08 +00002382 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002383 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002384 }
2385 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002386 }
2387 return;
2388 }
2389
2390 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2391 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2392 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2393 unsigned Amount = CUI->getValue();
2394
Misha Brukman422791f2004-06-21 17:41:12 +00002395 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002396 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2397 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002398 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002399 if (isSigned) {
2400 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2401 } else {
2402 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2403 .addImm(32-Amount).addImm(Amount).addImm(31);
2404 }
Misha Brukman422791f2004-06-21 17:41:12 +00002405 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002406 } else { // The shift amount is non-constant.
2407 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2408
Misha Brukman422791f2004-06-21 17:41:12 +00002409 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002410 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2411 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002412 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002413 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2414 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002415 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002416 }
2417}
2418
2419
Misha Brukmanb097f212004-07-26 18:13:24 +00002420/// visitLoadInst - Implement LLVM load instructions. Pretty straightforward
2421/// mapping of LLVM classes to PPC load instructions, with the exception of
2422/// signed byte loads, which need a sign extension following them.
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002423///
2424void ISel::visitLoadInst(LoadInst &I) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002425 // Immediate opcodes, for reg+imm addressing
2426 static const unsigned ImmOpcodes[] = {
2427 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ,
2428 PPC32::LFS, PPC32::LFD, PPC32::LWZ
2429 };
2430 // Indexed opcodes, for reg+reg addressing
2431 static const unsigned IdxOpcodes[] = {
2432 PPC32::LBZX, PPC32::LHZX, PPC32::LWZX,
2433 PPC32::LFSX, PPC32::LFDX, PPC32::LWZX
Misha Brukman2fec9902004-06-21 20:22:03 +00002434 };
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002435
Misha Brukmanb097f212004-07-26 18:13:24 +00002436 unsigned Class = getClassB(I.getType());
2437 unsigned ImmOpcode = ImmOpcodes[Class];
2438 unsigned IdxOpcode = IdxOpcodes[Class];
2439 unsigned DestReg = getReg(I);
2440 Value *SourceAddr = I.getOperand(0);
2441
2442 if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC32::LHA;
2443 if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC32::LHAX;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002444
Misha Brukmanb097f212004-07-26 18:13:24 +00002445 if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
Misha Brukman422791f2004-06-21 17:41:12 +00002446 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002447 if (Class == cLong) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002448 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
2449 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg+1), FI, 4);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002450 } else if (Class == cByte && I.getType()->isSigned()) {
2451 unsigned TmpReg = makeAnotherReg(I.getType());
Misha Brukmanb097f212004-07-26 18:13:24 +00002452 addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002453 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002454 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00002455 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002456 }
Misha Brukmanb097f212004-07-26 18:13:24 +00002457 return;
2458 }
2459
2460 // If this load is the only use of the GEP instruction that is its address,
2461 // then we can fold the GEP directly into the load instruction.
2462 // emitGEPOperation with a second to last arg of 'true' will place the
2463 // base register for the GEP into baseReg, and the constant offset from that
2464 // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
2465 // otherwise, we copy the offset into another reg, and use reg+reg addressing.
2466 if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
2467 unsigned baseReg = getReg(GEPI);
2468 ConstantSInt *offset;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002469
Misha Brukmanb097f212004-07-26 18:13:24 +00002470 emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
2471 GEPI->op_end(), baseReg, true, &offset);
2472
2473 if (Class != cLong && canUseAsImmediateForOpcode(offset, 0)) {
2474 if (Class == cByte && I.getType()->isSigned()) {
2475 unsigned TmpReg = makeAnotherReg(I.getType());
2476 BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
2477 .addReg(baseReg);
2478 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
2479 } else {
2480 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue())
2481 .addReg(baseReg);
2482 }
2483 return;
2484 }
2485
2486 unsigned indexReg = getReg(offset);
2487
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002488 if (Class == cLong) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002489 unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
2490 BuildMI(BB, PPC32::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
2491 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
2492 BuildMI(BB, IdxOpcode, 2, DestReg+1).addReg(indexPlus4).addReg(baseReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002493 } else if (Class == cByte && I.getType()->isSigned()) {
2494 unsigned TmpReg = makeAnotherReg(I.getType());
Misha Brukmanb097f212004-07-26 18:13:24 +00002495 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002496 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002497 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00002498 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002499 }
Misha Brukmanb097f212004-07-26 18:13:24 +00002500 return;
2501 }
2502
2503 // The fallback case, where the load was from a source that could not be
2504 // folded into the load instruction.
2505 unsigned SrcAddrReg = getReg(SourceAddr);
2506
2507 if (Class == cLong) {
2508 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
2509 BuildMI(BB, ImmOpcode, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg);
2510 } else if (Class == cByte && I.getType()->isSigned()) {
2511 unsigned TmpReg = makeAnotherReg(I.getType());
2512 BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
2513 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
2514 } else {
2515 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002516 }
2517}
2518
2519/// visitStoreInst - Implement LLVM store instructions
2520///
2521void ISel::visitStoreInst(StoreInst &I) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002522 // Immediate opcodes, for reg+imm addressing
2523 static const unsigned ImmOpcodes[] = {
2524 PPC32::STB, PPC32::STH, PPC32::STW,
2525 PPC32::STFS, PPC32::STFD, PPC32::STW
2526 };
2527 // Indexed opcodes, for reg+reg addressing
2528 static const unsigned IdxOpcodes[] = {
2529 PPC32::STBX, PPC32::STHX, PPC32::STWX,
2530 PPC32::STFSX, PPC32::STDX, PPC32::STWX
2531 };
2532
2533 Value *SourceAddr = I.getOperand(1);
2534 const Type *ValTy = I.getOperand(0)->getType();
2535 unsigned Class = getClassB(ValTy);
2536 unsigned ImmOpcode = ImmOpcodes[Class];
2537 unsigned IdxOpcode = IdxOpcodes[Class];
2538 unsigned ValReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002539
Misha Brukmanb097f212004-07-26 18:13:24 +00002540 // If this store is the only use of the GEP instruction that is its address,
2541 // then we can fold the GEP directly into the store instruction.
2542 // emitGEPOperation with a second to last arg of 'true' will place the
2543 // base register for the GEP into baseReg, and the constant offset from that
2544 // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
2545 // otherwise, we copy the offset into another reg, and use reg+reg addressing.
2546 if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
2547 unsigned baseReg = getReg(GEPI);
2548 ConstantSInt *offset;
2549
2550 emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
2551 GEPI->op_end(), baseReg, true, &offset);
2552
2553 if (Class != cLong && canUseAsImmediateForOpcode(offset, 0)) {
2554 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
2555 .addReg(baseReg);
2556 return;
2557 }
2558
2559 unsigned indexReg = getReg(offset);
2560
2561 if (Class == cLong) {
2562 unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
2563 BuildMI(BB, PPC32::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
2564 BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
2565 BuildMI(BB, IdxOpcode, 3).addReg(ValReg+1).addReg(indexPlus4)
2566 .addReg(baseReg);
2567 return;
2568 }
2569 BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002570 return;
2571 }
Misha Brukmanb097f212004-07-26 18:13:24 +00002572
2573 // If the store address wasn't the only use of a GEP, we fall back to the
2574 // standard path: store the ValReg at the value in AddressReg.
2575 unsigned AddressReg = getReg(I.getOperand(1));
2576 if (Class == cLong) {
2577 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
2578 BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg);
2579 return;
2580 }
2581 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002582}
2583
2584
2585/// visitCastInst - Here we have various kinds of copying with or without sign
2586/// extension going on.
2587///
2588void ISel::visitCastInst(CastInst &CI) {
2589 Value *Op = CI.getOperand(0);
2590
2591 unsigned SrcClass = getClassB(Op->getType());
2592 unsigned DestClass = getClassB(CI.getType());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002593
2594 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2595 // of the case are GEP instructions, then the cast does not need to be
2596 // generated explicitly, it will be folded into the GEP.
2597 if (DestClass == cLong && SrcClass == cInt) {
2598 bool AllUsesAreGEPs = true;
2599 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2600 if (!isa<GetElementPtrInst>(*I)) {
2601 AllUsesAreGEPs = false;
2602 break;
2603 }
2604
2605 // No need to codegen this cast if all users are getelementptr instrs...
2606 if (AllUsesAreGEPs) return;
2607 }
2608
2609 unsigned DestReg = getReg(CI);
2610 MachineBasicBlock::iterator MI = BB->end();
2611 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2612}
2613
2614/// emitCastOperation - Common code shared between visitCastInst and constant
2615/// expression cast support.
2616///
Misha Brukman7e898c32004-07-20 00:41:46 +00002617void ISel::emitCastOperation(MachineBasicBlock *MBB,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002618 MachineBasicBlock::iterator IP,
2619 Value *Src, const Type *DestTy,
2620 unsigned DestReg) {
2621 const Type *SrcTy = Src->getType();
2622 unsigned SrcClass = getClassB(SrcTy);
2623 unsigned DestClass = getClassB(DestTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002624 unsigned SrcReg = getReg(Src, MBB, IP);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002625
2626 // Implement casts to bool by using compare on the operand followed by set if
2627 // not zero on the result.
2628 if (DestTy == Type::BoolTy) {
2629 switch (SrcClass) {
2630 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002631 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002632 case cInt: {
2633 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00002634 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
Misha Brukman7e898c32004-07-20 00:41:46 +00002635 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002636 break;
2637 }
2638 case cLong: {
2639 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2640 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002641 BuildMI(*MBB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00002642 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1);
Misha Brukmanbf417a62004-07-20 20:43:05 +00002643 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg)
2644 .addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002645 break;
2646 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002647 case cFP32:
2648 case cFP64:
2649 // FSEL perhaps?
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002650 std::cerr << "ERROR: Cast fp-to-bool not implemented!\n";
Misha Brukmand18a31d2004-07-06 22:51:53 +00002651 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002652 }
2653 return;
2654 }
2655
Misha Brukman7e898c32004-07-20 00:41:46 +00002656 // Handle cast of Float -> Double
2657 if (SrcClass == cFP32 && DestClass == cFP64) {
2658 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2659 return;
2660 }
2661
2662 // Handle cast of Double -> Float
2663 if (SrcClass == cFP64 && DestClass == cFP32) {
2664 BuildMI(*MBB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
2665 return;
2666 }
2667
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002668 // Handle casts from integer to floating point now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002669 if (DestClass == cFP32 || DestClass == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002670
Misha Brukman422791f2004-06-21 17:41:12 +00002671 // Emit a library call for long to float conversion
2672 if (SrcClass == cLong) {
2673 std::vector<ValueRecord> Args;
2674 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002675 Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002676 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002677 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002678 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002679 TM.CalledFunctions.insert(floatFn);
Misha Brukman422791f2004-06-21 17:41:12 +00002680 return;
2681 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002682
Misha Brukman7e898c32004-07-20 00:41:46 +00002683 // Make sure we're dealing with a full 32 bits
2684 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2685 promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
2686
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002687 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002688
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002689 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002690 // Also spill room for a special conversion constant
2691 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002692 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2693 int ValueFrameIdx =
2694 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2695
Misha Brukman422791f2004-06-21 17:41:12 +00002696 unsigned constantHi = makeAnotherReg(Type::IntTy);
2697 unsigned constantLo = makeAnotherReg(Type::IntTy);
2698 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2699 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2700
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002701 if (!SrcTy->isSigned()) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002702 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
2703 BuildMI(*BB, IP, PPC32::LI, 1, constantLo).addSImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002704 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2705 ConstantFrameIndex);
2706 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2707 ConstantFrameIndex, 4);
2708 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2709 ValueFrameIdx);
2710 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2711 ValueFrameIdx, 4);
2712 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2713 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002714 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2715 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2716 } else {
2717 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00002718 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
2719 BuildMI(*BB, IP, PPC32::LIS, 1, constantLo).addSImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002720 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2721 ConstantFrameIndex);
2722 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2723 ConstantFrameIndex, 4);
2724 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2725 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002726 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002727 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2728 ValueFrameIdx, 4);
2729 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2730 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002731 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukmanb097f212004-07-26 18:13:24 +00002732 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002733 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002734 return;
2735 }
2736
2737 // Handle casts from floating point to integer now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002738 if (SrcClass == cFP32 || SrcClass == cFP64) {
Misha Brukman422791f2004-06-21 17:41:12 +00002739 // emit library call
2740 if (DestClass == cLong) {
2741 std::vector<ValueRecord> Args;
2742 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002743 Function *floatFn = (DestClass == cFP32) ? __fixsfdiFn : __fixdfdiFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002744 MachineInstr *TheCall =
Misha Brukman7e898c32004-07-20 00:41:46 +00002745 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002746 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002747 TM.CalledFunctions.insert(floatFn);
Misha Brukman422791f2004-06-21 17:41:12 +00002748 return;
2749 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002750
2751 int ValueFrameIdx =
Misha Brukman7e898c32004-07-20 00:41:46 +00002752 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002753
Misha Brukman7e898c32004-07-20 00:41:46 +00002754 if (DestTy->isSigned()) {
Misha Brukman4c14f332004-07-23 01:11:19 +00002755 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2756
2757 // Convert to integer in the FP reg and store it to a stack slot
2758 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
2759 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2760 .addReg(TempReg), ValueFrameIdx);
Misha Brukmanb097f212004-07-26 18:13:24 +00002761
2762 // There is no load signed byte opcode, so we must emit a sign extend for
2763 // that particular size. Make sure to source the new integer from the
2764 // correct offset.
Misha Brukman4c14f332004-07-23 01:11:19 +00002765 if (DestClass == cByte) {
2766 unsigned TempReg2 = makeAnotherReg(DestTy);
Misha Brukmanb097f212004-07-26 18:13:24 +00002767 addFrameReference(BuildMI(*BB, IP, PPC32::LBZ, 2, TempReg2),
2768 ValueFrameIdx, 7);
Misha Brukman4c14f332004-07-23 01:11:19 +00002769 BuildMI(*MBB, IP, PPC32::EXTSB, DestReg).addReg(TempReg2);
2770 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00002771 int offset = (DestClass == cShort) ? 6 : 4;
2772 unsigned LoadOp = (DestClass == cShort) ? PPC32::LHA : PPC32::LWZ;
Misha Brukman4c14f332004-07-23 01:11:19 +00002773 addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg),
Misha Brukmanb097f212004-07-26 18:13:24 +00002774 ValueFrameIdx, offset);
Misha Brukman4c14f332004-07-23 01:11:19 +00002775 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002776 } else {
Misha Brukmanb160d1f2004-07-23 20:32:59 +00002777 unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
2778 double maxInt = (1LL << 32) - 1;
2779 unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
2780 double border = 1LL << 31;
2781 unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
2782 unsigned UseZero = makeAnotherReg(Type::DoubleTy);
2783 unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
2784 unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
2785 unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
2786 unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
2787 unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
2788 unsigned IntTmp = makeAnotherReg(Type::IntTy);
2789 unsigned XorReg = makeAnotherReg(Type::IntTy);
2790 int FrameIdx =
2791 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
2792 // Update machine-CFG edges
2793 MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
2794 MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
2795 MachineBasicBlock *OldMBB = BB;
2796 ilist<MachineBasicBlock>::iterator It = BB; ++It;
2797 F->getBasicBlockList().insert(It, XorMBB);
2798 F->getBasicBlockList().insert(It, PhiMBB);
2799 BB->addSuccessor(XorMBB);
2800 BB->addSuccessor(PhiMBB);
2801
2802 // Convert from floating point to unsigned 32-bit value
2803 // Use 0 if incoming value is < 0.0
2804 BuildMI(*BB, IP, PPC32::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
2805 .addReg(Zero);
2806 // Use 2**32 - 1 if incoming value is >= 2**32
2807 BuildMI(*BB, IP, PPC32::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
2808 BuildMI(*BB, IP, PPC32::FSEL, 3, UseChoice).addReg(UseMaxInt)
2809 .addReg(UseZero).addReg(MaxInt);
2810 // Subtract 2**31
2811 BuildMI(*BB, IP, PPC32::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
2812 // Use difference if >= 2**31
2813 BuildMI(*BB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(UseChoice)
2814 .addReg(Border);
2815 BuildMI(*BB, IP, PPC32::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
2816 .addReg(UseChoice);
2817 // Convert to integer
2818 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
2819 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3).addReg(ConvReg),
2820 FrameIdx);
Misha Brukmanb097f212004-07-26 18:13:24 +00002821 if (DestClass == cByte) {
2822 addFrameReference(BuildMI(*BB, IP, PPC32::LBZ, 2, DestReg),
2823 FrameIdx, 7);
2824 } else if (DestClass == cShort) {
2825 addFrameReference(BuildMI(*BB, IP, PPC32::LHZ, 2, DestReg),
2826 FrameIdx, 6);
2827 } if (DestClass == cInt) {
2828 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, IntTmp),
2829 FrameIdx, 4);
2830 BuildMI(*BB, IP, PPC32::BLT, 2).addReg(PPC32::CR0).addMBB(PhiMBB);
2831 BuildMI(*BB, IP, PPC32::B, 1).addMBB(XorMBB);
Misha Brukmanb160d1f2004-07-23 20:32:59 +00002832
Misha Brukmanb097f212004-07-26 18:13:24 +00002833 // XorMBB:
2834 // add 2**31 if input was >= 2**31
2835 BB = XorMBB;
2836 BuildMI(BB, PPC32::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
2837 XorMBB->addSuccessor(PhiMBB);
Misha Brukmanb160d1f2004-07-23 20:32:59 +00002838
Misha Brukmanb097f212004-07-26 18:13:24 +00002839 // PhiMBB:
2840 // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
2841 BB = PhiMBB;
2842 BuildMI(BB, PPC32::PHI, 2, DestReg).addReg(IntTmp).addMBB(OldMBB)
2843 .addReg(XorReg).addMBB(XorMBB);
2844 }
2845 }
2846 return;
2847 }
2848
2849 // Check our invariants
2850 assert((SrcClass <= cInt || SrcClass == cLong) &&
2851 "Unhandled source class for cast operation!");
2852 assert((DestClass <= cInt || DestClass == cLong) &&
2853 "Unhandled destination class for cast operation!");
2854
2855 bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2856 bool destUnsigned = DestTy->isUnsigned();
2857
2858 // Unsigned -> Unsigned, clear if larger,
2859 if (sourceUnsigned && destUnsigned) {
2860 // handle long dest class now to keep switch clean
2861 if (DestClass == cLong) {
2862 if (SrcClass == cLong) {
2863 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2864 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2865 .addReg(SrcReg+1);
2866 } else {
2867 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
2868 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2869 .addReg(SrcReg);
2870 }
2871 return;
2872 }
2873
2874 // handle u{ byte, short, int } x u{ byte, short, int }
2875 unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
2876 switch (SrcClass) {
2877 case cByte:
2878 case cShort:
2879 if (SrcClass == DestClass)
2880 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2881 else
2882 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2883 .addImm(0).addImm(clearBits).addImm(31);
2884 break;
2885 case cLong:
2886 ++SrcReg;
2887 // Fall through
2888 case cInt:
2889 if (DestClass == cInt)
2890 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2891 else
2892 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2893 .addImm(0).addImm(clearBits).addImm(31);
2894 break;
2895 }
2896 return;
2897 }
2898
2899 // Signed -> Signed
2900 if (!sourceUnsigned && !destUnsigned) {
2901 // handle long dest class now to keep switch clean
2902 if (DestClass == cLong) {
2903 if (SrcClass == cLong) {
2904 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2905 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2906 .addReg(SrcReg+1);
2907 } else {
2908 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
2909 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2910 .addReg(SrcReg);
2911 }
2912 return;
2913 }
2914
2915 // handle { byte, short, int } x { byte, short, int }
2916 switch (SrcClass) {
2917 case cByte:
2918 if (DestClass == cByte)
2919 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2920 else
2921 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2922 break;
2923 case cShort:
2924 if (DestClass == cByte)
2925 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2926 else if (DestClass == cShort)
2927 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2928 else
2929 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2930 break;
2931 case cLong:
2932 ++SrcReg;
2933 // Fall through
2934 case cInt:
2935 if (DestClass == cByte)
2936 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2937 else if (DestClass == cShort)
2938 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2939 else
2940 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2941 break;
2942 }
2943 return;
2944 }
2945
2946 // Unsigned -> Signed
2947 if (sourceUnsigned && !destUnsigned) {
2948 // handle long dest class now to keep switch clean
2949 if (DestClass == cLong) {
2950 if (SrcClass == cLong) {
2951 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2952 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1).
2953 addReg(SrcReg+1);
2954 } else {
2955 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
2956 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2957 .addReg(SrcReg);
2958 }
2959 return;
2960 }
2961
2962 // handle u{ byte, short, int } -> { byte, short, int }
2963 switch (SrcClass) {
2964 case cByte:
2965 if (DestClass == cByte)
2966 // uByte 255 -> signed byte == -1
2967 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2968 else
2969 // uByte 255 -> signed short/int == 255
2970 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
2971 .addImm(24).addImm(31);
2972 break;
2973 case cShort:
2974 if (DestClass == cByte)
2975 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2976 else if (DestClass == cShort)
2977 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2978 else
2979 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
2980 .addImm(16).addImm(31);
2981 break;
2982 case cLong:
2983 ++SrcReg;
2984 // Fall through
2985 case cInt:
2986 if (DestClass == cByte)
2987 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2988 else if (DestClass == cShort)
2989 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2990 else
2991 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2992 break;
2993 }
2994 return;
2995 }
2996
2997 // Signed -> Unsigned
2998 if (!sourceUnsigned && destUnsigned) {
2999 // handle long dest class now to keep switch clean
3000 if (DestClass == cLong) {
3001 if (SrcClass == cLong) {
3002 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3003 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
3004 .addReg(SrcReg+1);
3005 } else {
3006 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
3007 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
3008 .addReg(SrcReg);
3009 }
3010 return;
3011 }
3012
3013 // handle { byte, short, int } -> u{ byte, short, int }
3014 unsigned clearBits = (DestClass == cByte) ? 24 : 16;
3015 switch (SrcClass) {
3016 case cByte:
3017 case cShort:
3018 if (DestClass == cByte || DestClass == cShort)
3019 // sbyte -1 -> ubyte 0x000000FF
3020 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
3021 .addImm(0).addImm(clearBits).addImm(31);
3022 else
3023 // sbyte -1 -> ubyte 0xFFFFFFFF
3024 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3025 break;
3026 case cLong:
3027 ++SrcReg;
3028 // Fall through
3029 case cInt:
3030 if (DestClass == cInt)
3031 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3032 else
3033 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
3034 .addImm(0).addImm(clearBits).addImm(31);
3035 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00003036 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003037 return;
3038 }
3039
3040 // Anything we haven't handled already, we can't (yet) handle at all.
Misha Brukmanb097f212004-07-26 18:13:24 +00003041 std::cerr << "Unhandled cast from " << SrcTy->getDescription()
3042 << "to " << DestTy->getDescription() << '\n';
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003043 abort();
3044}
3045
3046/// visitVANextInst - Implement the va_next instruction...
3047///
3048void ISel::visitVANextInst(VANextInst &I) {
3049 unsigned VAList = getReg(I.getOperand(0));
3050 unsigned DestReg = getReg(I);
3051
3052 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00003053 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003054 default:
3055 std::cerr << I;
3056 assert(0 && "Error: bad type for va_next instruction!");
3057 return;
3058 case Type::PointerTyID:
3059 case Type::UIntTyID:
3060 case Type::IntTyID:
3061 Size = 4;
3062 break;
3063 case Type::ULongTyID:
3064 case Type::LongTyID:
3065 case Type::DoubleTyID:
3066 Size = 8;
3067 break;
3068 }
3069
3070 // Increment the VAList pointer...
Misha Brukman1013ef52004-07-21 20:09:08 +00003071 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003072}
3073
3074void ISel::visitVAArgInst(VAArgInst &I) {
3075 unsigned VAList = getReg(I.getOperand(0));
3076 unsigned DestReg = getReg(I);
3077
Misha Brukman358829f2004-06-21 17:25:55 +00003078 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003079 default:
3080 std::cerr << I;
3081 assert(0 && "Error: bad type for va_next instruction!");
3082 return;
3083 case Type::PointerTyID:
3084 case Type::UIntTyID:
3085 case Type::IntTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00003086 BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003087 break;
3088 case Type::ULongTyID:
3089 case Type::LongTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00003090 BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
3091 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003092 break;
Misha Brukmanb097f212004-07-26 18:13:24 +00003093 case Type::FloatTyID:
3094 BuildMI(BB, PPC32::LFS, 2, DestReg).addSImm(0).addReg(VAList);
3095 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003096 case Type::DoubleTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00003097 BuildMI(BB, PPC32::LFD, 2, DestReg).addSImm(0).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003098 break;
3099 }
3100}
3101
3102/// visitGetElementPtrInst - instruction-select GEP instructions
3103///
3104void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
Misha Brukmanb097f212004-07-26 18:13:24 +00003105 if (canFoldGEPIntoLoadOrStore(&I))
3106 return;
3107
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003108 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00003109 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
Misha Brukmanb097f212004-07-26 18:13:24 +00003110 outputReg, false, 0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003111}
3112
Misha Brukman1013ef52004-07-21 20:09:08 +00003113/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
3114/// constant expression GEP support.
3115///
Misha Brukman17a90002004-07-21 20:22:06 +00003116void ISel::emitGEPOperation(MachineBasicBlock *MBB,
3117 MachineBasicBlock::iterator IP,
3118 Value *Src, User::op_iterator IdxBegin,
Misha Brukmanb097f212004-07-26 18:13:24 +00003119 User::op_iterator IdxEnd, unsigned TargetReg,
3120 bool GEPIsFolded, ConstantSInt **RemainderPtr) {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003121 const TargetData &TD = TM.getTargetData();
3122 const Type *Ty = Src->getType();
3123 unsigned basePtrReg = getReg(Src, MBB, IP);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003124 int64_t constValue = 0;
Misha Brukmane2eceb52004-07-23 16:08:20 +00003125
3126 // Record the operations to emit the GEP in a vector so that we can emit them
3127 // after having analyzed the entire instruction.
Misha Brukmanb097f212004-07-26 18:13:24 +00003128 std::vector<CollapsedGepOp> ops;
Misha Brukmane2eceb52004-07-23 16:08:20 +00003129
Misha Brukman1013ef52004-07-21 20:09:08 +00003130 // GEPs have zero or more indices; we must perform a struct access
3131 // or array access for each one.
3132 for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
3133 ++oi) {
3134 Value *idx = *oi;
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003135 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00003136 // It's a struct access. idx is the index into the structure,
3137 // which names the field. Use the TargetData structure to
3138 // pick out what the layout of the structure is in memory.
3139 // Use the (constant) structure index's value to find the
3140 // right byte offset from the StructLayout class's list of
3141 // structure member offsets.
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003142 unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
Misha Brukman1013ef52004-07-21 20:09:08 +00003143 unsigned memberOffset =
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003144 TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
Misha Brukmane2eceb52004-07-23 16:08:20 +00003145
3146 // StructType member offsets are always constant values. Add it to the
3147 // running total.
3148 constValue += memberOffset;
3149
3150 // The next type is the member of the structure selected by the
3151 // index.
3152 Ty = StTy->getElementType (fieldIndex);
3153 } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
Misha Brukman313efcb2004-07-09 15:45:07 +00003154 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
3155 // operand. Handle this case directly now...
3156 if (CastInst *CI = dyn_cast<CastInst>(idx))
3157 if (CI->getOperand(0)->getType() == Type::IntTy ||
3158 CI->getOperand(0)->getType() == Type::UIntTy)
3159 idx = CI->getOperand(0);
Misha Brukman1013ef52004-07-21 20:09:08 +00003160
Misha Brukmane2eceb52004-07-23 16:08:20 +00003161 // It's an array or pointer access: [ArraySize x ElementType].
3162 // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
3163 // must find the size of the pointed-to type (Not coincidentally, the next
3164 // type is the type of the elements in the array).
Misha Brukman1013ef52004-07-21 20:09:08 +00003165 Ty = SqTy->getElementType();
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003166 unsigned elementSize = TD.getTypeSize(Ty);
Misha Brukman1013ef52004-07-21 20:09:08 +00003167
Misha Brukmane2eceb52004-07-23 16:08:20 +00003168 if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003169 if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
3170 constValue += CS->getValue() * elementSize;
3171 else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
3172 constValue += CU->getValue() * elementSize;
3173 else
3174 assert(0 && "Invalid ConstantInt GEP index type!");
3175 } else {
3176 // Push current gep state to this point as an add
Misha Brukmanb097f212004-07-26 18:13:24 +00003177 ops.push_back(CollapsedGepOp(false, 0,
3178 ConstantSInt::get(Type::IntTy,constValue)));
Misha Brukmane2eceb52004-07-23 16:08:20 +00003179
3180 // Push multiply gep op and reset constant value
Misha Brukmanb097f212004-07-26 18:13:24 +00003181 ops.push_back(CollapsedGepOp(true, idx,
3182 ConstantSInt::get(Type::IntTy, elementSize)));
Misha Brukmane2eceb52004-07-23 16:08:20 +00003183
3184 constValue = 0;
Misha Brukman313efcb2004-07-09 15:45:07 +00003185 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003186 }
Misha Brukmane2eceb52004-07-23 16:08:20 +00003187 }
Misha Brukmane2eceb52004-07-23 16:08:20 +00003188 // Emit instructions for all the collapsed ops
Misha Brukmanb097f212004-07-26 18:13:24 +00003189 for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
Misha Brukmane2eceb52004-07-23 16:08:20 +00003190 cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
Misha Brukmanb097f212004-07-26 18:13:24 +00003191 CollapsedGepOp& cgo = *cgo_i;
Misha Brukmane2eceb52004-07-23 16:08:20 +00003192 unsigned nextBasePtrReg = makeAnotherReg (Type::IntTy);
3193
Misha Brukmanb097f212004-07-26 18:13:24 +00003194 if (cgo.isMul) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003195 // We know the elementSize is a constant, so we can emit a constant mul
3196 // and then add it to the current base reg
3197 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanb097f212004-07-26 18:13:24 +00003198 doMultiplyConst(MBB, IP, TmpReg, cgo.index, cgo.size);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003199 BuildMI(*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
3200 .addReg(TmpReg);
3201 } else {
3202 // Try and generate an immediate addition if possible
Misha Brukmanb097f212004-07-26 18:13:24 +00003203 if (cgo.size->isNullValue()) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003204 BuildMI(*MBB, IP, PPC32::OR, 2, nextBasePtrReg).addReg(basePtrReg)
3205 .addReg(basePtrReg);
Misha Brukmanb097f212004-07-26 18:13:24 +00003206 } else if (canUseAsImmediateForOpcode(cgo.size, 0)) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003207 BuildMI(*MBB, IP, PPC32::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
Misha Brukmanb097f212004-07-26 18:13:24 +00003208 .addSImm(cgo.size->getValue());
Misha Brukmane2eceb52004-07-23 16:08:20 +00003209 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00003210 unsigned Op1r = getReg(cgo.size, MBB, IP);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003211 BuildMI(*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
3212 .addReg(Op1r);
3213 }
3214 }
3215
Misha Brukman1013ef52004-07-21 20:09:08 +00003216 basePtrReg = nextBasePtrReg;
Misha Brukman2fec9902004-06-21 20:22:03 +00003217 }
Misha Brukmane2eceb52004-07-23 16:08:20 +00003218 // Add the current base register plus any accumulated constant value
3219 ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
3220
Misha Brukmanb097f212004-07-26 18:13:24 +00003221 // If we are emitting this during a fold, copy the current base register to
3222 // the target, and save the current constant offset so the folding load or
3223 // store can try and use it as an immediate.
3224 if (GEPIsFolded) {
3225 BuildMI (BB, PPC32::OR, 2, TargetReg).addReg(basePtrReg).addReg(basePtrReg);
3226 *RemainderPtr = remainder;
3227 return;
3228 }
3229
Misha Brukman1013ef52004-07-21 20:09:08 +00003230 // After we have processed all the indices, the result is left in
3231 // basePtrReg. Move it to the register where we were expected to
3232 // put the answer.
Misha Brukmane2eceb52004-07-23 16:08:20 +00003233 if (remainder->isNullValue()) {
3234 BuildMI (BB, PPC32::OR, 2, TargetReg).addReg(basePtrReg).addReg(basePtrReg);
3235 } else if (canUseAsImmediateForOpcode(remainder, 0)) {
3236 BuildMI(*MBB, IP, PPC32::ADDI, 2, TargetReg).addReg(basePtrReg)
3237 .addSImm(remainder->getValue());
3238 } else {
3239 unsigned Op1r = getReg(remainder, MBB, IP);
3240 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r);
3241 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003242}
3243
3244/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
3245/// frame manager, otherwise do it the hard way.
3246///
3247void ISel::visitAllocaInst(AllocaInst &I) {
3248 // If this is a fixed size alloca in the entry block for the function, we
3249 // statically stack allocate the space, so we don't need to do anything here.
3250 //
3251 if (dyn_castFixedAlloca(&I)) return;
3252
3253 // Find the data size of the alloca inst's getAllocatedType.
3254 const Type *Ty = I.getAllocatedType();
3255 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
3256
3257 // Create a register to hold the temporary result of multiplying the type size
3258 // constant by the variable amount.
3259 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003260
3261 // TotalSizeReg = mul <numelements>, <TypeSize>
3262 MachineBasicBlock::iterator MBBI = BB->end();
Misha Brukman1013ef52004-07-21 20:09:08 +00003263 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
3264 doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003265
3266 // AddedSize = add <TotalSizeReg>, 15
3267 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00003268 BuildMI(BB, PPC32::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003269
3270 // AlignedSize = and <AddedSize>, ~15
3271 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukmana31f1f72004-07-21 20:30:18 +00003272 BuildMI(BB, PPC32::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
Misha Brukman2fec9902004-06-21 20:22:03 +00003273 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003274
3275 // Subtract size from stack pointer, thereby allocating some space.
3276 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
3277
3278 // Put a pointer to the space into the result register, by copying
3279 // the stack pointer.
3280 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
3281
3282 // Inform the Frame Information that we have just allocated a variable-sized
3283 // object.
3284 F->getFrameInfo()->CreateVariableSizedObject();
3285}
3286
3287/// visitMallocInst - Malloc instructions are code generated into direct calls
3288/// to the library malloc.
3289///
3290void ISel::visitMallocInst(MallocInst &I) {
3291 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
3292 unsigned Arg;
3293
3294 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
3295 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
3296 } else {
3297 Arg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003298 MachineBasicBlock::iterator MBBI = BB->end();
Misha Brukman1013ef52004-07-21 20:09:08 +00003299 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
3300 doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003301 }
3302
3303 std::vector<ValueRecord> Args;
3304 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00003305 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00003306 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00003307 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003308 TM.CalledFunctions.insert(mallocFn);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003309}
3310
3311
3312/// visitFreeInst - Free instructions are code gen'd to call the free libc
3313/// function.
3314///
3315void ISel::visitFreeInst(FreeInst &I) {
3316 std::vector<ValueRecord> Args;
3317 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00003318 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00003319 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(freeFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00003320 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003321 TM.CalledFunctions.insert(freeFn);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003322}
3323
3324/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
3325/// into a machine code representation is a very simple peep-hole fashion. The
3326/// generated code sucks but the implementation is nice and simple.
3327///
3328FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
3329 return new ISel(TM);
3330}