blob: 35272380d69db2f3a1cd840d6ab3c953ddc8577a [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
Misha Brukmane2eceb52004-07-23 16:08:20 +000014#include "PowerPCTargetMachine.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000015#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Function.h"
18#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000019#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000020#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000021#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/MRegisterInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000029#include "Support/Debug.h"
Misha Brukmane2eceb52004-07-23 16:08:20 +000030#include "Support/Statistic.h"
Misha Brukman98649d12004-06-24 21:54:47 +000031#include <vector>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000032using namespace llvm;
33
34namespace {
Misha Brukmanb097f212004-07-26 18:13:24 +000035 Statistic<> GEPFolds("ppc-codegen", "Number of GEPs folded");
Misha Brukmane2eceb52004-07-23 16:08:20 +000036
Misha Brukman422791f2004-06-21 17:41:12 +000037 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
38 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000039 ///
40 enum TypeClass {
Misha Brukman7e898c32004-07-20 00:41:46 +000041 cByte, cShort, cInt, cFP32, cFP64, cLong
Misha Brukman5dfe3a92004-06-21 16:55:25 +000042 };
43}
44
45/// getClass - Turn a primitive type into a "class" number which is based on the
46/// size of the type, and whether or not it is floating point.
47///
48static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000049 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000050 case Type::SByteTyID:
51 case Type::UByteTyID: return cByte; // Byte operands are class #0
52 case Type::ShortTyID:
53 case Type::UShortTyID: return cShort; // Short operands are class #1
54 case Type::IntTyID:
55 case Type::UIntTyID:
Misha Brukman2834a4d2004-07-07 20:07:22 +000056 case Type::PointerTyID: return cInt; // Ints and pointers are class #2
Misha Brukman5dfe3a92004-06-21 16:55:25 +000057
Misha Brukman7e898c32004-07-20 00:41:46 +000058 case Type::FloatTyID: return cFP32; // Single float is #3
59 case Type::DoubleTyID: return cFP64; // Double Point is #4
Misha Brukman5dfe3a92004-06-21 16:55:25 +000060
61 case Type::LongTyID:
Misha Brukman7e898c32004-07-20 00:41:46 +000062 case Type::ULongTyID: return cLong; // Longs are class #5
Misha Brukman5dfe3a92004-06-21 16:55:25 +000063 default:
64 assert(0 && "Invalid type to getClass!");
65 return cByte; // not reached
66 }
67}
68
69// getClassB - Just like getClass, but treat boolean values as ints.
70static inline TypeClass getClassB(const Type *Ty) {
Misha Brukman4c14f332004-07-23 01:11:19 +000071 if (Ty == Type::BoolTy) return cInt;
Misha Brukman5dfe3a92004-06-21 16:55:25 +000072 return getClass(Ty);
73}
74
75namespace {
76 struct ISel : public FunctionPass, InstVisitor<ISel> {
Misha Brukmane2eceb52004-07-23 16:08:20 +000077 PowerPCTargetMachine &TM;
Misha Brukman5dfe3a92004-06-21 16:55:25 +000078 MachineFunction *F; // The function we are compiling into
79 MachineBasicBlock *BB; // The current MBB we are compiling
80 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Misha Brukmanb097f212004-07-26 18:13:24 +000081
Misha Brukman313efcb2004-07-09 15:45:07 +000082 std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
Misha Brukman5dfe3a92004-06-21 16:55:25 +000083
Misha Brukman2834a4d2004-07-07 20:07:22 +000084 // External functions used in the Module
Misha Brukman7e898c32004-07-20 00:41:46 +000085 Function *fmodfFn, *fmodFn, *__moddi3Fn, *__divdi3Fn, *__umoddi3Fn,
86 *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__floatdisfFn, *__floatdidfFn,
87 *mallocFn, *freeFn;
Misha Brukman2834a4d2004-07-07 20:07:22 +000088
Misha Brukman5dfe3a92004-06-21 16:55:25 +000089 // MBBMap - Mapping between LLVM BB -> Machine BB
90 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
91
92 // AllocaMap - Mapping from fixed sized alloca instructions to the
93 // FrameIndex for the alloca.
94 std::map<AllocaInst*, unsigned> AllocaMap;
95
Misha Brukmanb097f212004-07-26 18:13:24 +000096 // A Reg to hold the base address used for global loads and stores, and a
97 // flag to set whether or not we need to emit it for this function.
98 unsigned GlobalBaseReg;
99 bool GlobalBaseInitialized;
100
Misha Brukmane2eceb52004-07-23 16:08:20 +0000101 ISel(TargetMachine &tm) : TM(reinterpret_cast<PowerPCTargetMachine&>(tm)),
102 F(0), BB(0) {}
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000103
Misha Brukman2834a4d2004-07-07 20:07:22 +0000104 bool doInitialization(Module &M) {
Misha Brukmanb0932592004-07-07 15:36:18 +0000105 // Add external functions that we may call
Misha Brukman2834a4d2004-07-07 20:07:22 +0000106 Type *d = Type::DoubleTy;
Misha Brukmanf3f63822004-07-08 19:41:16 +0000107 Type *f = Type::FloatTy;
Misha Brukman2834a4d2004-07-07 20:07:22 +0000108 Type *l = Type::LongTy;
109 Type *ul = Type::ULongTy;
Misha Brukman313efcb2004-07-09 15:45:07 +0000110 Type *voidPtr = PointerType::get(Type::SByteTy);
Misha Brukman7e898c32004-07-20 00:41:46 +0000111 // float fmodf(float, float);
112 fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000113 // double fmod(double, double);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000114 fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000115 // long __moddi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000116 __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000117 // long __divdi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000118 __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000119 // unsigned long __umoddi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000120 __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000121 // unsigned long __udivdi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000122 __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
Misha Brukman7e898c32004-07-20 00:41:46 +0000123 // long __fixsfdi(float)
124 __fixdfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
Misha Brukmanf3f63822004-07-08 19:41:16 +0000125 // long __fixdfdi(double)
126 __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
127 // float __floatdisf(long)
128 __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
129 // double __floatdidf(long)
130 __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
Misha Brukman313efcb2004-07-09 15:45:07 +0000131 // void* malloc(size_t)
132 mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
133 // void free(void*)
134 freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000135 return false;
136 }
Misha Brukmand18a31d2004-07-06 22:51:53 +0000137
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000138 /// runOnFunction - Top level implementation of instruction selection for
139 /// the entire function.
140 ///
141 bool runOnFunction(Function &Fn) {
142 // First pass over the function, lower any unknown intrinsic functions
143 // with the IntrinsicLowering class.
144 LowerUnknownIntrinsicFunctionCalls(Fn);
145
146 F = &MachineFunction::construct(&Fn, TM);
147
148 // Create all of the machine basic blocks for the function...
149 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
150 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
151
152 BB = &F->front();
153
Misha Brukmanb097f212004-07-26 18:13:24 +0000154 // Make sure we re-emit a set of the global base reg if necessary
155 GlobalBaseInitialized = false;
156
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000157 // Copy incoming arguments off of the stack...
158 LoadArgumentsToVirtualRegs(Fn);
159
160 // Instruction select everything except PHI nodes
161 visit(Fn);
162
163 // Select the PHI nodes
164 SelectPHINodes();
165
166 RegMap.clear();
167 MBBMap.clear();
168 AllocaMap.clear();
169 F = 0;
170 // We always build a machine code representation for the function
171 return true;
172 }
173
174 virtual const char *getPassName() const {
175 return "PowerPC Simple Instruction Selection";
176 }
177
178 /// visitBasicBlock - This method is called when we are visiting a new basic
179 /// block. This simply creates a new MachineBasicBlock to emit code into
180 /// and adds it to the current MachineFunction. Subsequent visit* for
181 /// instructions will be invoked for all instructions in the basic block.
182 ///
183 void visitBasicBlock(BasicBlock &LLVM_BB) {
184 BB = MBBMap[&LLVM_BB];
185 }
186
187 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
188 /// function, lowering any calls to unknown intrinsic functions into the
189 /// equivalent LLVM code.
190 ///
191 void LowerUnknownIntrinsicFunctionCalls(Function &F);
192
193 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
194 /// from the stack into virtual registers.
195 ///
196 void LoadArgumentsToVirtualRegs(Function &F);
197
198 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
199 /// because we have to generate our sources into the source basic blocks,
200 /// not the current one.
201 ///
202 void SelectPHINodes();
203
204 // Visitation methods for various instructions. These methods simply emit
205 // fixed PowerPC code for each instruction.
206
207 // Control flow operators
208 void visitReturnInst(ReturnInst &RI);
209 void visitBranchInst(BranchInst &BI);
210
211 struct ValueRecord {
212 Value *Val;
213 unsigned Reg;
214 const Type *Ty;
215 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
216 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
217 };
Misha Brukmanb097f212004-07-26 18:13:24 +0000218
219 // This struct is for recording the necessary operations to emit the GEP
220 struct CollapsedGepOp {
221 bool isMul;
222 Value *index;
223 ConstantSInt *size;
224 CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
225 isMul(mul), index(i), size(s) {}
226 };
227
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000228 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +0000229 const std::vector<ValueRecord> &Args, bool isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000230 void visitCallInst(CallInst &I);
231 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
232
233 // Arithmetic operators
234 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
235 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
236 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
237 void visitMul(BinaryOperator &B);
238
239 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
240 void visitRem(BinaryOperator &B) { visitDivRem(B); }
241 void visitDivRem(BinaryOperator &B);
242
243 // Bitwise operators
244 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
245 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
246 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
247
248 // Comparison operators...
249 void visitSetCondInst(SetCondInst &I);
250 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
251 MachineBasicBlock *MBB,
252 MachineBasicBlock::iterator MBBI);
253 void visitSelectInst(SelectInst &SI);
254
255
256 // Memory Instructions
257 void visitLoadInst(LoadInst &I);
258 void visitStoreInst(StoreInst &I);
259 void visitGetElementPtrInst(GetElementPtrInst &I);
260 void visitAllocaInst(AllocaInst &I);
261 void visitMallocInst(MallocInst &I);
262 void visitFreeInst(FreeInst &I);
263
264 // Other operators
265 void visitShiftInst(ShiftInst &I);
266 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
267 void visitCastInst(CastInst &I);
268 void visitVANextInst(VANextInst &I);
269 void visitVAArgInst(VAArgInst &I);
270
271 void visitInstruction(Instruction &I) {
272 std::cerr << "Cannot instruction select: " << I;
273 abort();
274 }
275
276 /// promote32 - Make a value 32-bits wide, and put it somewhere.
277 ///
278 void promote32(unsigned targetReg, const ValueRecord &VR);
279
280 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
281 /// constant expression GEP support.
282 ///
283 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
284 Value *Src, User::op_iterator IdxBegin,
Misha Brukmanb097f212004-07-26 18:13:24 +0000285 User::op_iterator IdxEnd, unsigned TargetReg,
286 bool CollapseRemainder, ConstantSInt **Remainder);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000287
288 /// emitCastOperation - Common code shared between visitCastInst and
289 /// constant expression cast support.
290 ///
291 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
292 Value *Src, const Type *DestTy, unsigned TargetReg);
293
294 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
295 /// and constant expression support.
296 ///
297 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
298 MachineBasicBlock::iterator IP,
299 Value *Op0, Value *Op1,
300 unsigned OperatorClass, unsigned TargetReg);
301
302 /// emitBinaryFPOperation - This method handles emission of floating point
303 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
304 void emitBinaryFPOperation(MachineBasicBlock *BB,
305 MachineBasicBlock::iterator IP,
306 Value *Op0, Value *Op1,
307 unsigned OperatorClass, unsigned TargetReg);
308
309 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
310 Value *Op0, Value *Op1, unsigned TargetReg);
311
Misha Brukman1013ef52004-07-21 20:09:08 +0000312 void doMultiply(MachineBasicBlock *MBB,
313 MachineBasicBlock::iterator IP,
314 unsigned DestReg, Value *Op0, Value *Op1);
315
316 /// doMultiplyConst - This method will multiply the value in Op0Reg by the
317 /// value of the ContantInt *CI
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000318 void doMultiplyConst(MachineBasicBlock *MBB,
Misha Brukman1013ef52004-07-21 20:09:08 +0000319 MachineBasicBlock::iterator IP,
320 unsigned DestReg, Value *Op0, ConstantInt *CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000321
322 void emitDivRemOperation(MachineBasicBlock *BB,
323 MachineBasicBlock::iterator IP,
324 Value *Op0, Value *Op1, bool isDiv,
325 unsigned TargetReg);
326
327 /// emitSetCCOperation - Common code shared between visitSetCondInst and
328 /// constant expression support.
329 ///
330 void emitSetCCOperation(MachineBasicBlock *BB,
331 MachineBasicBlock::iterator IP,
332 Value *Op0, Value *Op1, unsigned Opcode,
333 unsigned TargetReg);
334
335 /// emitShiftOperation - Common code shared between visitShiftInst and
336 /// constant expression support.
337 ///
338 void emitShiftOperation(MachineBasicBlock *MBB,
339 MachineBasicBlock::iterator IP,
340 Value *Op, Value *ShiftAmount, bool isLeftShift,
341 const Type *ResultTy, unsigned DestReg);
342
343 /// emitSelectOperation - Common code shared between visitSelectInst and the
344 /// constant expression support.
Misha Brukmanb097f212004-07-26 18:13:24 +0000345 ///
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000346 void emitSelectOperation(MachineBasicBlock *MBB,
347 MachineBasicBlock::iterator IP,
348 Value *Cond, Value *TrueVal, Value *FalseVal,
349 unsigned DestReg);
350
Misha Brukmanb097f212004-07-26 18:13:24 +0000351 /// copyGlobalBaseToRegister - Output the instructions required to put the
352 /// base address to use for accessing globals into a register.
353 ///
354 void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
355 MachineBasicBlock::iterator IP,
356 unsigned R);
357
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000358 /// copyConstantToRegister - Output the instructions required to put the
359 /// specified constant into the specified register.
360 ///
361 void copyConstantToRegister(MachineBasicBlock *MBB,
362 MachineBasicBlock::iterator MBBI,
363 Constant *C, unsigned Reg);
364
365 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
366 unsigned LHS, unsigned RHS);
367
368 /// makeAnotherReg - This method returns the next register number we haven't
369 /// yet used.
370 ///
371 /// Long values are handled somewhat specially. They are always allocated
372 /// as pairs of 32 bit integer values. The register number returned is the
Misha Brukman1013ef52004-07-21 20:09:08 +0000373 /// high 32 bits of the long value, and the regNum+1 is the low 32 bits.
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000374 ///
375 unsigned makeAnotherReg(const Type *Ty) {
376 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
377 "Current target doesn't have PPC reg info??");
378 const PowerPCRegisterInfo *MRI =
379 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
380 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
381 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
382 // Create the lower part
383 F->getSSARegMap()->createVirtualRegister(RC);
384 // Create the upper part.
385 return F->getSSARegMap()->createVirtualRegister(RC)-1;
386 }
387
388 // Add the mapping of regnumber => reg class to MachineFunction
389 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
390 return F->getSSARegMap()->createVirtualRegister(RC);
391 }
392
393 /// getReg - This method turns an LLVM value into a register number.
394 ///
395 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
396 unsigned getReg(Value *V) {
397 // Just append to the end of the current bb.
398 MachineBasicBlock::iterator It = BB->end();
399 return getReg(V, BB, It);
400 }
401 unsigned getReg(Value *V, MachineBasicBlock *MBB,
402 MachineBasicBlock::iterator IPt);
Misha Brukman1013ef52004-07-21 20:09:08 +0000403
404 /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
405 /// is okay to use as an immediate argument to a certain binary operation
406 bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000407
408 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
409 /// that is to be statically allocated with the initial stack frame
410 /// adjustment.
411 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
412 };
413}
414
415/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
416/// instruction in the entry block, return it. Otherwise, return a null
417/// pointer.
418static AllocaInst *dyn_castFixedAlloca(Value *V) {
419 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
420 BasicBlock *BB = AI->getParent();
421 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
422 return AI;
423 }
424 return 0;
425}
426
427/// getReg - This method turns an LLVM value into a register number.
428///
429unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
430 MachineBasicBlock::iterator IPt) {
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000431 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattnera51e4f62004-07-18 18:45:01 +0000432 unsigned Reg = makeAnotherReg(V->getType());
433 copyConstantToRegister(MBB, IPt, C, Reg);
434 return Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000435 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
436 unsigned Reg = makeAnotherReg(V->getType());
437 unsigned FI = getFixedSizedAllocaFI(AI);
438 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
439 return Reg;
440 }
441
442 unsigned &Reg = RegMap[V];
443 if (Reg == 0) {
444 Reg = makeAnotherReg(V->getType());
445 RegMap[V] = Reg;
446 }
447
448 return Reg;
449}
450
Misha Brukman1013ef52004-07-21 20:09:08 +0000451/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
452/// is okay to use as an immediate argument to a certain binary operator.
453///
454/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
Misha Brukman47225442004-07-23 22:35:49 +0000455bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000456 ConstantSInt *Op1Cs;
457 ConstantUInt *Op1Cu;
458
459 // ADDI, Compare, and non-indexed Load take SIMM
Misha Brukman17a90002004-07-21 20:22:06 +0000460 bool cond1 = (Operator == 0)
461 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
Misha Brukman1013ef52004-07-21 20:09:08 +0000462 && (Op1Cs->getValue() <= 32767)
Misha Brukman17a90002004-07-21 20:22:06 +0000463 && (Op1Cs->getValue() >= -32768);
Misha Brukman1013ef52004-07-21 20:09:08 +0000464
465 // SUBI takes -SIMM since it is a mnemonic for ADDI
Misha Brukman17a90002004-07-21 20:22:06 +0000466 bool cond2 = (Operator == 1)
467 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
Misha Brukman1013ef52004-07-21 20:09:08 +0000468 && (Op1Cs->getValue() <= 32768)
Misha Brukman17a90002004-07-21 20:22:06 +0000469 && (Op1Cs->getValue() >= -32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000470
471 // ANDIo, ORI, and XORI take unsigned values
Misha Brukman17a90002004-07-21 20:22:06 +0000472 bool cond3 = (Operator >= 2)
Misha Brukman2ed17ca2004-07-22 15:58:04 +0000473 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
474 && (Op1Cs->getValue() >= 0)
Misha Brukman17a90002004-07-21 20:22:06 +0000475 && (Op1Cs->getValue() <= 32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000476
477 // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
Misha Brukman17a90002004-07-21 20:22:06 +0000478 bool cond4 = (Operator < 2)
479 && (Op1Cu = dyn_cast<ConstantUInt>(CI))
480 && (Op1Cu->getValue() <= 32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000481
482 // ANDIo, ORI, and XORI take UIMMs, so they can be larger
Misha Brukman17a90002004-07-21 20:22:06 +0000483 bool cond5 = (Operator >= 2)
484 && (Op1Cu = dyn_cast<ConstantUInt>(CI))
485 && (Op1Cu->getValue() <= 65535);
Misha Brukman1013ef52004-07-21 20:09:08 +0000486
487 if (cond1 || cond2 || cond3 || cond4 || cond5)
488 return true;
489
490 return false;
491}
492
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000493/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
494/// that is to be statically allocated with the initial stack frame
495/// adjustment.
496unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
497 // Already computed this?
498 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
499 if (I != AllocaMap.end() && I->first == AI) return I->second;
500
501 const Type *Ty = AI->getAllocatedType();
502 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
503 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
504 TySize *= CUI->getValue(); // Get total allocated size...
505 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
506
507 // Create a new stack object using the frame manager...
508 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
509 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
510 return FrameIdx;
511}
512
513
Misha Brukmanb097f212004-07-26 18:13:24 +0000514/// copyGlobalBaseToRegister - Output the instructions required to put the
515/// base address to use for accessing globals into a register.
516///
517void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
518 MachineBasicBlock::iterator IP,
519 unsigned R) {
520 if (!GlobalBaseInitialized) {
521 // Insert the set of GlobalBaseReg into the first MBB of the function
522 MachineBasicBlock &FirstMBB = F->front();
523 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
524 GlobalBaseReg = makeAnotherReg(Type::IntTy);
Misha Brukman435c7852004-07-27 17:13:58 +0000525 BuildMI(FirstMBB, MBBI, PPC32::IMPLICIT_DEF, 0, PPC32::LR);
Misha Brukmanb097f212004-07-26 18:13:24 +0000526 BuildMI(FirstMBB, MBBI, PPC32::MovePCtoLR, 0, GlobalBaseReg);
527 GlobalBaseInitialized = true;
528 }
529 // Emit our copy of GlobalBaseReg to the destination register in the
530 // current MBB
531 BuildMI(*MBB, IP, PPC32::OR, 2, R).addReg(GlobalBaseReg)
532 .addReg(GlobalBaseReg);
533}
534
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000535/// copyConstantToRegister - Output the instructions required to put the
536/// specified constant into the specified register.
537///
538void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
539 MachineBasicBlock::iterator IP,
540 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000541 if (C->getType()->isIntegral()) {
542 unsigned Class = getClassB(C->getType());
543
544 if (Class == cLong) {
Misha Brukmana0af38c2004-07-28 19:13:49 +0000545 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
546 uint64_t uval = CUI->getValue();
547 unsigned hiUVal = uval >> 32;
548 unsigned loUVal = uval;
549 ConstantUInt *CUHi = ConstantUInt::get(Type::UIntTy, hiUVal);
550 ConstantUInt *CULo = ConstantUInt::get(Type::UIntTy, loUVal);
551 copyConstantToRegister(MBB, IP, CUHi, R);
552 copyConstantToRegister(MBB, IP, CULo, R+1);
553 return;
554 } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
555 int64_t sval = CSI->getValue();
556 int hiSVal = sval >> 32;
557 int loSVal = sval;
558 ConstantSInt *CSHi = ConstantSInt::get(Type::IntTy, hiSVal);
559 ConstantSInt *CSLo = ConstantSInt::get(Type::IntTy, loSVal);
560 copyConstantToRegister(MBB, IP, CSHi, R);
561 copyConstantToRegister(MBB, IP, CSLo, R+1);
562 return;
Misha Brukman7e898c32004-07-20 00:41:46 +0000563 } else {
Misha Brukmana0af38c2004-07-28 19:13:49 +0000564 std::cerr << "Unhandled long constant type!\n";
565 abort();
566 }
567 }
568
569 assert(Class <= cInt && "Type not handled yet!");
570
571 // Handle bool
572 if (C->getType() == Type::BoolTy) {
573 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(C == ConstantBool::True);
574 return;
575 }
576
577 // Handle int
578 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
579 unsigned uval = CUI->getValue();
580 if (uval < 32768) {
581 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(uval);
582 } else {
583 unsigned Temp = makeAnotherReg(Type::IntTy);
584 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm(uval >> 16);
585 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(Temp).addImm(uval);
586 }
587 return;
588 } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
589 int sval = CSI->getValue();
590 if (sval < 32768 && sval >= -32768) {
591 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(sval);
592 } else {
593 unsigned Temp = makeAnotherReg(Type::IntTy);
594 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm(sval >> 16);
595 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(Temp).addImm(sval);
Misha Brukman7e898c32004-07-20 00:41:46 +0000596 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000597 return;
598 }
Misha Brukmana0af38c2004-07-28 19:13:49 +0000599
600 std::cerr << "Unhandled integer constant!\n";
601 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000602 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000603 // We need to spill the constant to memory...
604 MachineConstantPool *CP = F->getConstantPool();
605 unsigned CPI = CP->getConstantPoolIndex(CFP);
606 const Type *Ty = CFP->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000607
Misha Brukmand18a31d2004-07-06 22:51:53 +0000608 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukmanfc879c32004-07-08 18:02:38 +0000609
Misha Brukmanb097f212004-07-26 18:13:24 +0000610 // Load addr of constant to reg; constant is located at base + distance
611 unsigned GlobalBase = makeAnotherReg(Type::IntTy);
Misha Brukmanfc879c32004-07-08 18:02:38 +0000612 unsigned Reg1 = makeAnotherReg(Type::IntTy);
613 unsigned Reg2 = makeAnotherReg(Type::IntTy);
Misha Brukmanb097f212004-07-26 18:13:24 +0000614 // Move value at base + distance into return reg
615 copyGlobalBaseToRegister(MBB, IP, GlobalBase);
616 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, Reg1).addReg(GlobalBase)
Misha Brukmanfc879c32004-07-08 18:02:38 +0000617 .addConstantPoolIndex(CPI);
Misha Brukmanec6319a2004-07-20 15:51:37 +0000618 BuildMI(*MBB, IP, PPC32::LOADLoDirect, 2, Reg2).addReg(Reg1)
Misha Brukmanfc879c32004-07-08 18:02:38 +0000619 .addConstantPoolIndex(CPI);
620
Misha Brukmand18a31d2004-07-06 22:51:53 +0000621 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukman1013ef52004-07-21 20:09:08 +0000622 BuildMI(*MBB, IP, LoadOpcode, 2, R).addSImm(0).addReg(Reg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000623 } else if (isa<ConstantPointerNull>(C)) {
624 // Copy zero (null pointer) to the register.
Misha Brukman1013ef52004-07-21 20:09:08 +0000625 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
Chris Lattner67910e12004-07-18 07:29:35 +0000626 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
Misha Brukmanb097f212004-07-26 18:13:24 +0000627 // GV is located at base + distance
628 unsigned GlobalBase = makeAnotherReg(Type::IntTy);
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000629 unsigned TmpReg = makeAnotherReg(GV->getType());
Misha Brukmanbf417a62004-07-20 20:43:05 +0000630 unsigned Opcode = (GV->hasWeakLinkage() || GV->isExternal()) ?
631 PPC32::LOADLoIndirect : PPC32::LOADLoDirect;
Misha Brukmanb097f212004-07-26 18:13:24 +0000632
633 // Move value at base + distance into return reg
634 copyGlobalBaseToRegister(MBB, IP, GlobalBase);
635 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, TmpReg).addReg(GlobalBase)
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000636 .addGlobalAddress(GV);
Misha Brukmanec6319a2004-07-20 15:51:37 +0000637 BuildMI(*MBB, IP, Opcode, 2, R).addReg(TmpReg).addGlobalAddress(GV);
Misha Brukmane2eceb52004-07-23 16:08:20 +0000638
639 // Add the GV to the list of things whose addresses have been taken.
640 TM.AddressTaken.insert(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000641 } else {
Chris Lattner76e2df22004-07-15 02:14:30 +0000642 std::cerr << "Offending constant: " << *C << "\n";
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000643 assert(0 && "Type not handled yet!");
644 }
645}
646
647/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
648/// the stack into virtual registers.
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000649void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
Chris Lattner3ea93462004-08-06 06:58:50 +0000650 unsigned ArgOffset = 24;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000651 unsigned GPR_remaining = 8;
652 unsigned FPR_remaining = 13;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000653 unsigned GPR_idx = 0, FPR_idx = 0;
654 static const unsigned GPR[] = {
655 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
656 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
657 };
658 static const unsigned FPR[] = {
Misha Brukman32caa8d2004-07-14 17:57:04 +0000659 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7,
Misha Brukman2834a4d2004-07-07 20:07:22 +0000660 PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13
Misha Brukmand18a31d2004-07-06 22:51:53 +0000661 };
Misha Brukman422791f2004-06-21 17:41:12 +0000662
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000663 MachineFrameInfo *MFI = F->getFrameInfo();
Misha Brukmand18a31d2004-07-06 22:51:53 +0000664
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000665 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
666 bool ArgLive = !I->use_empty();
667 unsigned Reg = ArgLive ? getReg(*I) : 0;
668 int FI; // Frame object index
669
670 switch (getClassB(I->getType())) {
671 case cByte:
672 if (ArgLive) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000673 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000674 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000675 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000676 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
677 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000678 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000679 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000680 }
681 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000682 break;
683 case cShort:
684 if (ArgLive) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000685 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000686 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000687 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000688 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
689 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000690 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000691 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000692 }
693 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000694 break;
695 case cInt:
696 if (ArgLive) {
697 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000698 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000699 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000700 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
701 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000702 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000703 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000704 }
705 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000706 break;
707 case cLong:
708 if (ArgLive) {
709 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000710 if (GPR_remaining > 1) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000711 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
712 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
Misha Brukman313efcb2004-07-09 15:45:07 +0000713 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
714 .addReg(GPR[GPR_idx]);
715 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
716 .addReg(GPR[GPR_idx+1]);
Misha Brukman422791f2004-06-21 17:41:12 +0000717 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +0000718 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
719 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
Misha Brukman422791f2004-06-21 17:41:12 +0000720 }
721 }
Misha Brukman1013ef52004-07-21 20:09:08 +0000722 // longs require 4 additional bytes and use 2 GPRs
723 ArgOffset += 4;
Misha Brukman422791f2004-06-21 17:41:12 +0000724 if (GPR_remaining > 1) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000725 GPR_remaining--;
Misha Brukman422791f2004-06-21 17:41:12 +0000726 GPR_idx++;
727 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000728 break;
Misha Brukman7e898c32004-07-20 00:41:46 +0000729 case cFP32:
730 if (ArgLive) {
731 FI = MFI->CreateFixedObject(4, ArgOffset);
732
Misha Brukman422791f2004-06-21 17:41:12 +0000733 if (FPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000734 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000735 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
736 FPR_remaining--;
737 FPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000738 } else {
Misha Brukman7e898c32004-07-20 00:41:46 +0000739 addFrameReference(BuildMI(BB, PPC32::LFS, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000740 }
741 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000742 break;
743 case cFP64:
744 if (ArgLive) {
745 FI = MFI->CreateFixedObject(8, ArgOffset);
746
747 if (FPR_remaining > 0) {
748 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
749 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
750 FPR_remaining--;
751 FPR_idx++;
752 } else {
753 addFrameReference(BuildMI(BB, PPC32::LFD, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000754 }
755 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000756
757 // doubles require 4 additional bytes and use 2 GPRs of param space
758 ArgOffset += 4;
759 if (GPR_remaining > 0) {
760 GPR_remaining--;
761 GPR_idx++;
762 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000763 break;
764 default:
765 assert(0 && "Unhandled argument type!");
766 }
767 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000768 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000769 GPR_remaining--; // uses up 2 GPRs
770 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000771 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000772 }
773
774 // If the function takes variable number of arguments, add a frame offset for
775 // the start of the first vararg value... this is used to expand
776 // llvm.va_start.
777 if (Fn.getFunctionType()->isVarArg())
Misha Brukmanb097f212004-07-26 18:13:24 +0000778 VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000779}
780
781
782/// SelectPHINodes - Insert machine code to generate phis. This is tricky
783/// because we have to generate our sources into the source basic blocks, not
784/// the current one.
785///
786void ISel::SelectPHINodes() {
787 const TargetInstrInfo &TII = *TM.getInstrInfo();
788 const Function &LF = *F->getFunction(); // The LLVM function...
789 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
790 const BasicBlock *BB = I;
791 MachineBasicBlock &MBB = *MBBMap[I];
792
793 // Loop over all of the PHI nodes in the LLVM basic block...
794 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
795 for (BasicBlock::const_iterator I = BB->begin();
796 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
797
798 // Create a new machine instr PHI node, and insert it.
799 unsigned PHIReg = getReg(*PN);
800 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
801 PPC32::PHI, PN->getNumOperands(), PHIReg);
802
803 MachineInstr *LongPhiMI = 0;
804 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
805 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
806 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
807
808 // PHIValues - Map of blocks to incoming virtual registers. We use this
809 // so that we only initialize one incoming value for a particular block,
810 // even if the block has multiple entries in the PHI node.
811 //
812 std::map<MachineBasicBlock*, unsigned> PHIValues;
813
814 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Misha Brukman313efcb2004-07-09 15:45:07 +0000815 MachineBasicBlock *PredMBB = 0;
816 for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
817 PE = MBB.pred_end (); PI != PE; ++PI)
818 if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
819 PredMBB = *PI;
820 break;
821 }
822 assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
823
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000824 unsigned ValReg;
825 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
826 PHIValues.lower_bound(PredMBB);
827
828 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
829 // We already inserted an initialization of the register for this
830 // predecessor. Recycle it.
831 ValReg = EntryIt->second;
Misha Brukman47225442004-07-23 22:35:49 +0000832 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000833 // Get the incoming value into a virtual register.
834 //
835 Value *Val = PN->getIncomingValue(i);
836
837 // If this is a constant or GlobalValue, we may have to insert code
838 // into the basic block to compute it into a virtual register.
839 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
840 isa<GlobalValue>(Val)) {
841 // Simple constants get emitted at the end of the basic block,
842 // before any terminator instructions. We "know" that the code to
843 // move a constant into a register will never clobber any flags.
844 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
845 } else {
846 // Because we don't want to clobber any values which might be in
847 // physical registers with the computation of this constant (which
848 // might be arbitrarily complex if it is a constant expression),
849 // just insert the computation at the top of the basic block.
850 MachineBasicBlock::iterator PI = PredMBB->begin();
Misha Brukman47225442004-07-23 22:35:49 +0000851
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000852 // Skip over any PHI nodes though!
853 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
854 ++PI;
Misha Brukman47225442004-07-23 22:35:49 +0000855
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000856 ValReg = getReg(Val, PredMBB, PI);
857 }
858
859 // Remember that we inserted a value for this PHI for this predecessor
860 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
861 }
862
863 PhiMI->addRegOperand(ValReg);
864 PhiMI->addMachineBasicBlockOperand(PredMBB);
865 if (LongPhiMI) {
866 LongPhiMI->addRegOperand(ValReg+1);
867 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
868 }
869 }
870
871 // Now that we emitted all of the incoming values for the PHI node, make
872 // sure to reposition the InsertPoint after the PHI that we just added.
873 // This is needed because we might have inserted a constant into this
874 // block, right after the PHI's which is before the old insert point!
875 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
876 ++PHIInsertPoint;
877 }
878 }
879}
880
881
882// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
883// it into the conditional branch or select instruction which is the only user
884// of the cc instruction. This is the case if the conditional branch is the
885// only user of the setcc, and if the setcc is in the same basic block as the
Misha Brukman1013ef52004-07-21 20:09:08 +0000886// conditional branch.
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000887//
888static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
889 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
890 if (SCI->hasOneUse()) {
891 Instruction *User = cast<Instruction>(SCI->use_back());
892 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
Misha Brukmanbebde752004-07-16 21:06:24 +0000893 SCI->getParent() == User->getParent())
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000894 return SCI;
895 }
896 return 0;
897}
898
Misha Brukmanb097f212004-07-26 18:13:24 +0000899
900// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
901// the load or store instruction that is the only user of the GEP.
902//
903static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
904 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
905 if (GEPI->hasOneUse()) {
906 Instruction *User = cast<Instruction>(GEPI->use_back());
907 if (isa<StoreInst>(User) &&
908 GEPI->getParent() == User->getParent() &&
909 User->getOperand(0) != GEPI &&
910 User->getOperand(1) == GEPI) {
911 ++GEPFolds;
912 return GEPI;
913 }
914 if (isa<LoadInst>(User) &&
915 GEPI->getParent() == User->getParent() &&
916 User->getOperand(0) == GEPI) {
917 ++GEPFolds;
918 return GEPI;
919 }
920 }
921 return 0;
922}
923
924
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000925// Return a fixed numbering for setcc instructions which does not depend on the
926// order of the opcodes.
927//
928static unsigned getSetCCNumber(unsigned Opcode) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000929 switch (Opcode) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000930 default: assert(0 && "Unknown setcc instruction!");
931 case Instruction::SetEQ: return 0;
932 case Instruction::SetNE: return 1;
933 case Instruction::SetLT: return 2;
934 case Instruction::SetGE: return 3;
935 case Instruction::SetGT: return 4;
936 case Instruction::SetLE: return 5;
937 }
938}
939
Misha Brukmane9c65512004-07-06 15:32:44 +0000940static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
941 switch (Opcode) {
942 default: assert(0 && "Unknown setcc instruction!");
943 case Instruction::SetEQ: return PPC32::BEQ;
944 case Instruction::SetNE: return PPC32::BNE;
945 case Instruction::SetLT: return PPC32::BLT;
946 case Instruction::SetGE: return PPC32::BGE;
947 case Instruction::SetGT: return PPC32::BGT;
948 case Instruction::SetLE: return PPC32::BLE;
949 }
950}
951
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000952/// emitUCOM - emits an unordered FP compare.
953void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
954 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000955 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000956}
957
Misha Brukmanbebde752004-07-16 21:06:24 +0000958/// EmitComparison - emits a comparison of the two operands, returning the
959/// extended setcc code to use. The result is in CR0.
960///
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000961unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
962 MachineBasicBlock *MBB,
963 MachineBasicBlock::iterator IP) {
964 // The arguments are already supposed to be of the same type.
965 const Type *CompTy = Op0->getType();
966 unsigned Class = getClassB(CompTy);
967 unsigned Op0r = getReg(Op0, MBB, IP);
Misha Brukman47225442004-07-23 22:35:49 +0000968
Misha Brukmanb097f212004-07-26 18:13:24 +0000969 // Before we do a comparison, we have to make sure that we're truncating our
970 // registers appropriately.
971 if (Class == cByte) {
972 unsigned TmpReg = makeAnotherReg(CompTy);
973 if (CompTy->isSigned())
974 BuildMI(*MBB, IP, PPC32::EXTSB, 1, TmpReg).addReg(Op0r);
975 else
976 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
977 .addImm(24).addImm(31);
978 Op0r = TmpReg;
979 } else if (Class == cShort) {
980 unsigned TmpReg = makeAnotherReg(CompTy);
981 if (CompTy->isSigned())
982 BuildMI(*MBB, IP, PPC32::EXTSH, 1, TmpReg).addReg(Op0r);
983 else
984 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
985 .addImm(16).addImm(31);
986 Op0r = TmpReg;
987 }
988
Misha Brukman1013ef52004-07-21 20:09:08 +0000989 // Use crand for lt, gt and crandc for le, ge
990 unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC32::CRAND : PPC32::CRANDC;
991 // ? cr1[lt] : cr1[gt]
992 unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 4 : 5;
993 // ? cr0[lt] : cr0[gt]
994 unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1;
Misha Brukman2ed17ca2004-07-22 15:58:04 +0000995 unsigned Opcode = CompTy->isSigned() ? PPC32::CMPW : PPC32::CMPLW;
996 unsigned OpcodeImm = CompTy->isSigned() ? PPC32::CMPWI : PPC32::CMPLWI;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000997
998 // Special case handling of: cmp R, i
Misha Brukman2ed17ca2004-07-22 15:58:04 +0000999 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001000 if (Class == cByte || Class == cShort || Class == cInt) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001001 unsigned Op1v = CI->getRawValue() & 0xFFFF;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001002
Misha Brukman1013ef52004-07-21 20:09:08 +00001003 // Treat compare like ADDI for the purposes of immediate suitability
1004 if (canUseAsImmediateForOpcode(CI, 0)) {
1005 BuildMI(*MBB, IP, OpcodeImm, 2, PPC32::CR0).addReg(Op0r).addSImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +00001006 } else {
1007 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00001008 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +00001009 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001010 return OpNum;
1011 } else {
1012 assert(Class == cLong && "Unknown integer class!");
1013 unsigned LowCst = CI->getRawValue();
1014 unsigned HiCst = CI->getRawValue() >> 32;
1015 if (OpNum < 2) { // seteq, setne
Misha Brukman1013ef52004-07-21 20:09:08 +00001016 unsigned LoLow = makeAnotherReg(Type::IntTy);
1017 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1018 unsigned HiLow = makeAnotherReg(Type::IntTy);
1019 unsigned HiTmp = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001020 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Misha Brukman47225442004-07-23 22:35:49 +00001021
Misha Brukman1013ef52004-07-21 20:09:08 +00001022 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r+1)
1023 .addImm(LowCst & 0xFFFF);
1024 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
1025 .addImm(LowCst >> 16);
1026 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r)
1027 .addImm(HiCst & 0xFFFF);
1028 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
1029 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001030 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001031 return OpNum;
1032 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001033 unsigned ConstReg = makeAnotherReg(CompTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00001034 copyConstantToRegister(MBB, IP, CI, ConstReg);
Misha Brukman47225442004-07-23 22:35:49 +00001035
Misha Brukman1013ef52004-07-21 20:09:08 +00001036 // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001037 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r)
Misha Brukmanbebde752004-07-16 21:06:24 +00001038 .addReg(ConstReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001039 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR1).addReg(Op0r+1)
Misha Brukman1013ef52004-07-21 20:09:08 +00001040 .addReg(ConstReg+1);
1041 BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
1042 BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
1043 .addImm(2);
Misha Brukman422791f2004-06-21 17:41:12 +00001044 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001045 }
1046 }
1047 }
1048
1049 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00001050
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001051 switch (Class) {
1052 default: assert(0 && "Unknown type class!");
1053 case cByte:
1054 case cShort:
1055 case cInt:
Misha Brukman1013ef52004-07-21 20:09:08 +00001056 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001057 break;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001058
Misha Brukman7e898c32004-07-20 00:41:46 +00001059 case cFP32:
1060 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001061 emitUCOM(MBB, IP, Op0r, Op1r);
1062 break;
1063
1064 case cLong:
1065 if (OpNum < 2) { // seteq, setne
1066 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1067 unsigned HiTmp = makeAnotherReg(Type::IntTy);
1068 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001069 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r);
1070 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001071 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001072 break; // Allow the sete or setne to be generated from flags set by OR
1073 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001074 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1075 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001076
1077 // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001078 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
1079 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001080 BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
1081 BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
1082 .addImm(2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001083 return OpNum;
1084 }
1085 }
1086 return OpNum;
1087}
1088
Misha Brukmand18a31d2004-07-06 22:51:53 +00001089/// visitSetCondInst - emit code to calculate the condition via
1090/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001091///
1092void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001093 if (canFoldSetCCIntoBranchOrSelect(&I))
Misha Brukmane9c65512004-07-06 15:32:44 +00001094 return;
Misha Brukmanbebde752004-07-16 21:06:24 +00001095
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001096 unsigned DestReg = getReg(I);
Misha Brukman2834a4d2004-07-07 20:07:22 +00001097 unsigned OpNum = I.getOpcode();
Misha Brukman425ff242004-07-01 21:34:10 +00001098 const Type *Ty = I.getOperand (0)->getType();
Misha Brukman47225442004-07-23 22:35:49 +00001099
Misha Brukmand18a31d2004-07-06 22:51:53 +00001100 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
Misha Brukman47225442004-07-23 22:35:49 +00001101
Misha Brukmand18a31d2004-07-06 22:51:53 +00001102 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
Misha Brukman425ff242004-07-01 21:34:10 +00001103 MachineBasicBlock *thisMBB = BB;
1104 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001105 ilist<MachineBasicBlock>::iterator It = BB;
1106 ++It;
1107
Misha Brukman425ff242004-07-01 21:34:10 +00001108 // thisMBB:
1109 // ...
1110 // cmpTY cr0, r1, r2
1111 // bCC copy1MBB
1112 // b copy0MBB
1113
1114 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1115 // if we could insert other, non-terminator instructions after the
1116 // bCC. But MBB->getFirstTerminator() can't understand this.
1117 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001118 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001119 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1120 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001121 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001122 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
Misha Brukman1013ef52004-07-21 20:09:08 +00001123 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1124 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001125 // Update machine-CFG edges
1126 BB->addSuccessor(copy1MBB);
1127 BB->addSuccessor(copy0MBB);
1128
Misha Brukman425ff242004-07-01 21:34:10 +00001129 // copy1MBB:
1130 // %TrueValue = li 1
Misha Brukmane9c65512004-07-06 15:32:44 +00001131 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +00001132 BB = copy1MBB;
Misha Brukmane2eceb52004-07-23 16:08:20 +00001133 unsigned TrueValue = makeAnotherReg(I.getType());
Misha Brukman1013ef52004-07-21 20:09:08 +00001134 BuildMI(BB, PPC32::LI, 1, TrueValue).addSImm(1);
Misha Brukman425ff242004-07-01 21:34:10 +00001135 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1136 // Update machine-CFG edges
1137 BB->addSuccessor(sinkMBB);
1138
Misha Brukman1013ef52004-07-21 20:09:08 +00001139 // copy0MBB:
1140 // %FalseValue = li 0
1141 // fallthrough
1142 BB = copy0MBB;
1143 unsigned FalseValue = makeAnotherReg(I.getType());
1144 BuildMI(BB, PPC32::LI, 1, FalseValue).addSImm(0);
1145 // Update machine-CFG edges
1146 BB->addSuccessor(sinkMBB);
1147
Misha Brukman425ff242004-07-01 21:34:10 +00001148 // sinkMBB:
1149 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1150 // ...
1151 BB = sinkMBB;
1152 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1153 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001154}
1155
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001156void ISel::visitSelectInst(SelectInst &SI) {
1157 unsigned DestReg = getReg(SI);
1158 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001159 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1160 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001161}
1162
1163/// emitSelect - Common code shared between visitSelectInst and the constant
1164/// expression support.
1165/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
1166/// no select instruction. FSEL only works for comparisons against zero.
1167void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1168 MachineBasicBlock::iterator IP,
1169 Value *Cond, Value *TrueVal, Value *FalseVal,
1170 unsigned DestReg) {
1171 unsigned SelectClass = getClassB(TrueVal->getType());
Misha Brukman7e898c32004-07-20 00:41:46 +00001172 unsigned Opcode;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001173
Misha Brukmanbebde752004-07-16 21:06:24 +00001174 // See if we can fold the setcc into the select instruction, or if we have
1175 // to get the register of the Cond value
Misha Brukmanbebde752004-07-16 21:06:24 +00001176 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1177 // We successfully folded the setcc into the select instruction.
Misha Brukmanbebde752004-07-16 21:06:24 +00001178 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukman47225442004-07-23 22:35:49 +00001179 OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
Misha Brukmanbebde752004-07-16 21:06:24 +00001180 Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
1181 } else {
1182 unsigned CondReg = getReg(Cond, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00001183 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(CondReg).addSImm(0);
Misha Brukmanbebde752004-07-16 21:06:24 +00001184 Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001185 }
Misha Brukmanbebde752004-07-16 21:06:24 +00001186
1187 // thisMBB:
1188 // ...
1189 // cmpTY cr0, r1, r2
1190 // bCC copy1MBB
1191 // b copy0MBB
1192
1193 MachineBasicBlock *thisMBB = BB;
1194 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001195 ilist<MachineBasicBlock>::iterator It = BB;
1196 ++It;
Misha Brukmanbebde752004-07-16 21:06:24 +00001197
1198 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1199 // if we could insert other, non-terminator instructions after the
1200 // bCC. But MBB->getFirstTerminator() can't understand this.
1201 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001202 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001203 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1204 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001205 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001206 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
Misha Brukman1013ef52004-07-21 20:09:08 +00001207 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1208 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001209 // Update machine-CFG edges
1210 BB->addSuccessor(copy1MBB);
1211 BB->addSuccessor(copy0MBB);
1212
Misha Brukmanbebde752004-07-16 21:06:24 +00001213 // copy1MBB:
1214 // %TrueValue = ...
1215 // b sinkMBB
1216 BB = copy1MBB;
1217 unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
1218 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1219 // Update machine-CFG edges
1220 BB->addSuccessor(sinkMBB);
1221
Misha Brukman1013ef52004-07-21 20:09:08 +00001222 // copy0MBB:
1223 // %FalseValue = ...
1224 // fallthrough
1225 BB = copy0MBB;
1226 unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
1227 // Update machine-CFG edges
1228 BB->addSuccessor(sinkMBB);
1229
Misha Brukmanbebde752004-07-16 21:06:24 +00001230 // sinkMBB:
1231 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1232 // ...
1233 BB = sinkMBB;
1234 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1235 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukmana31f1f72004-07-21 20:30:18 +00001236 // For a register pair representing a long value, define the second reg
1237 if (getClass(TrueVal->getType()) == cLong)
1238 BuildMI(BB, PPC32::LI, 1, DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001239 return;
1240}
1241
1242
1243
1244/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1245/// operand, in the specified target register.
1246///
1247void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1248 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1249
1250 Value *Val = VR.Val;
1251 const Type *Ty = VR.Ty;
1252 if (Val) {
1253 if (Constant *C = dyn_cast<Constant>(Val)) {
1254 Val = ConstantExpr::getCast(C, Type::IntTy);
1255 Ty = Type::IntTy;
1256 }
1257
Misha Brukman2fec9902004-06-21 20:22:03 +00001258 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001259 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1260 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1261
1262 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001263 BuildMI(BB, PPC32::LI, 1, targetReg).addSImm(TheVal);
Misha Brukman422791f2004-06-21 17:41:12 +00001264 } else {
1265 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001266 BuildMI(BB, PPC32::LIS, 1, TmpReg).addSImm(TheVal >> 16);
Misha Brukman2fec9902004-06-21 20:22:03 +00001267 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1268 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001269 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001270 return;
1271 }
1272 }
1273
1274 // Make sure we have the register number for this value...
1275 unsigned Reg = Val ? getReg(Val) : VR.Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001276 switch (getClassB(Ty)) {
1277 case cByte:
1278 // Extend value into target register (8->32)
1279 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001280 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1281 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001282 else
1283 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1284 break;
1285 case cShort:
1286 // Extend value into target register (16->32)
1287 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001288 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1289 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001290 else
1291 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1292 break;
1293 case cInt:
1294 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001295 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001296 break;
1297 default:
1298 assert(0 && "Unpromotable operand class in promote32");
1299 }
1300}
1301
Misha Brukman2fec9902004-06-21 20:22:03 +00001302/// visitReturnInst - implemented with BLR
1303///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001304void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001305 // Only do the processing if this is a non-void return
1306 if (I.getNumOperands() > 0) {
1307 Value *RetVal = I.getOperand(0);
1308 switch (getClassB(RetVal->getType())) {
1309 case cByte: // integral return values: extend or move into r3 and return
1310 case cShort:
1311 case cInt:
1312 promote32(PPC32::R3, ValueRecord(RetVal));
1313 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001314 case cFP32:
1315 case cFP64: { // Floats & Doubles: Return in f1
Misha Brukmand47bbf72004-06-25 19:04:27 +00001316 unsigned RetReg = getReg(RetVal);
1317 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1318 break;
1319 }
1320 case cLong: {
1321 unsigned RetReg = getReg(RetVal);
1322 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1323 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1324 break;
1325 }
1326 default:
1327 visitInstruction(I);
1328 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001329 }
1330 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1331}
1332
1333// getBlockAfter - Return the basic block which occurs lexically after the
1334// specified one.
1335static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1336 Function::iterator I = BB; ++I; // Get iterator to next block
1337 return I != BB->getParent()->end() ? &*I : 0;
1338}
1339
1340/// visitBranchInst - Handle conditional and unconditional branches here. Note
1341/// that since code layout is frozen at this point, that if we are trying to
1342/// jump to a block that is the immediate successor of the current block, we can
1343/// just make a fall-through (but we don't currently).
1344///
1345void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001346 // Update machine-CFG edges
Misha Brukmane2eceb52004-07-23 16:08:20 +00001347 BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001348 if (BI.isConditional())
Misha Brukmane2eceb52004-07-23 16:08:20 +00001349 BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001350
1351 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
Misha Brukmane9c65512004-07-06 15:32:44 +00001352
Misha Brukman2fec9902004-06-21 20:22:03 +00001353 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmane9c65512004-07-06 15:32:44 +00001354 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001355 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1356 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001357 }
1358
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001359 // See if we can fold the setcc into the branch itself...
1360 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1361 if (SCI == 0) {
1362 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1363 // computed some other way...
1364 unsigned condReg = getReg(BI.getCondition());
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001365 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(condReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00001366 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001367 if (BI.getSuccessor(1) == NextBB) {
1368 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001369 BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(PPC32::BNE)
1370 .addMBB(MBBMap[BI.getSuccessor(0)])
1371 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001372 } else {
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001373 BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(PPC32::BEQ)
1374 .addMBB(MBBMap[BI.getSuccessor(1)])
1375 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001376 if (BI.getSuccessor(0) != NextBB)
1377 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1378 }
1379 return;
1380 }
1381
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001382 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukmane9c65512004-07-06 15:32:44 +00001383 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001384 MachineBasicBlock::iterator MII = BB->end();
1385 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001386
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001387 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001388 BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(Opcode)
1389 .addMBB(MBBMap[BI.getSuccessor(0)])
1390 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001391 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001392 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001393 } else {
1394 // Change to the inverse condition...
1395 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001396 Opcode = PowerPCInstrInfo::invertPPCBranchOpcode(Opcode);
1397 BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(Opcode)
1398 .addMBB(MBBMap[BI.getSuccessor(1)])
1399 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001400 }
1401 }
1402}
1403
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001404/// doCall - This emits an abstract call instruction, setting up the arguments
1405/// and the return value as appropriate. For the actual function call itself,
1406/// it inserts the specified CallMI instruction into the stream.
1407///
1408/// FIXME: See Documentation at the following URL for "correct" behavior
1409/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1410void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +00001411 const std::vector<ValueRecord> &Args, bool isVarArg) {
Chris Lattner3ea93462004-08-06 06:58:50 +00001412 // Count how many bytes are to be pushed on the stack, including the linkage
1413 // area, and parameter passing area.
1414 unsigned NumBytes = 24;
1415 unsigned ArgOffset = 24;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001416
1417 if (!Args.empty()) {
1418 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1419 switch (getClassB(Args[i].Ty)) {
1420 case cByte: case cShort: case cInt:
1421 NumBytes += 4; break;
1422 case cLong:
1423 NumBytes += 8; break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001424 case cFP32:
1425 NumBytes += 4; break;
1426 case cFP64:
1427 NumBytes += 8; break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001428 break;
1429 default: assert(0 && "Unknown class!");
1430 }
1431
Chris Lattner3ea93462004-08-06 06:58:50 +00001432 // Just to be safe, we'll always reserve the full 32 bytes worth of
1433 // argument passing space in case any called code gets funky on us.
1434 if (NumBytes < 24 + 32) NumBytes = 24 + 32;
1435
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001436 // Adjust the stack pointer for the new arguments...
Chris Lattner3ea93462004-08-06 06:58:50 +00001437 // These functions are automatically eliminated by the prolog/epilog pass
1438 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001439
1440 // Arguments go on the stack in reverse order, as specified by the ABI.
Misha Brukman7e898c32004-07-20 00:41:46 +00001441 // Offset to the paramater area on the stack is 24.
Misha Brukmand18a31d2004-07-06 22:51:53 +00001442 int GPR_remaining = 8, FPR_remaining = 13;
Misha Brukmanfc879c32004-07-08 18:02:38 +00001443 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001444 static const unsigned GPR[] = {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001445 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1446 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1447 };
Misha Brukmand18a31d2004-07-06 22:51:53 +00001448 static const unsigned FPR[] = {
Misha Brukman2834a4d2004-07-07 20:07:22 +00001449 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6,
1450 PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12,
1451 PPC32::F13
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001452 };
Misha Brukman422791f2004-06-21 17:41:12 +00001453
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001454 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1455 unsigned ArgReg;
1456 switch (getClassB(Args[i].Ty)) {
1457 case cByte:
1458 case cShort:
1459 // Promote arg to 32 bits wide into a temporary register...
1460 ArgReg = makeAnotherReg(Type::UIntTy);
1461 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001462
1463 // Reg or stack?
1464 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001465 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001466 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001467 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukmanb097f212004-07-26 18:13:24 +00001468 }
1469 if (GPR_remaining <= 0 || isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001470 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001471 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001472 }
1473 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001474 case cInt:
1475 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1476
Misha Brukman422791f2004-06-21 17:41:12 +00001477 // Reg or stack?
1478 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001479 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001480 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001481 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukmanb097f212004-07-26 18:13:24 +00001482 }
1483 if (GPR_remaining <= 0 || isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001484 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001485 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001486 }
1487 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001488 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001489 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001490
Misha Brukmanec6319a2004-07-20 15:51:37 +00001491 // Reg or stack? Note that PPC calling conventions state that long args
1492 // are passed rN = hi, rN+1 = lo, opposite of LLVM.
Misha Brukman422791f2004-06-21 17:41:12 +00001493 if (GPR_remaining > 1) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001494 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanec6319a2004-07-20 15:51:37 +00001495 .addReg(ArgReg);
Misha Brukman1013ef52004-07-21 20:09:08 +00001496 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
1497 .addReg(ArgReg+1);
Misha Brukman7e898c32004-07-20 00:41:46 +00001498 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1499 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
Misha Brukmanb097f212004-07-26 18:13:24 +00001500 }
1501 if (GPR_remaining <= 1 || isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001502 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001503 .addReg(PPC32::R1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001504 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001505 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001506 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001507
1508 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001509 GPR_remaining -= 1; // uses up 2 GPRs
1510 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001511 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001512 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001513 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman7e898c32004-07-20 00:41:46 +00001514 // Reg or stack?
1515 if (FPR_remaining > 0) {
1516 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1517 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1518 FPR_remaining--;
1519 FPR_idx++;
1520
1521 // If this is a vararg function, and there are GPRs left, also
1522 // pass the float in an int. Otherwise, put it on the stack.
1523 if (isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001524 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001525 .addReg(PPC32::R1);
1526 if (GPR_remaining > 0) {
1527 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx])
Misha Brukman1013ef52004-07-21 20:09:08 +00001528 .addSImm(ArgOffset).addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001529 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1530 }
Misha Brukman1916bf92004-06-24 21:56:15 +00001531 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001532 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001533 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001534 .addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001535 }
1536 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001537 case cFP64:
1538 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1539 // Reg or stack?
1540 if (FPR_remaining > 0) {
1541 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1542 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1543 FPR_remaining--;
1544 FPR_idx++;
1545 // For vararg functions, must pass doubles via int regs as well
1546 if (isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001547 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001548 .addReg(PPC32::R1);
1549
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001550 // Doubles can be split across reg + stack for varargs
1551 if (GPR_remaining > 0) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001552 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001553 .addReg(PPC32::R1);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001554 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1555 }
1556 if (GPR_remaining > 1) {
Misha Brukman7e898c32004-07-20 00:41:46 +00001557 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx+1])
Misha Brukman1013ef52004-07-21 20:09:08 +00001558 .addSImm(ArgOffset+4).addReg(PPC32::R1);
Misha Brukman7e898c32004-07-20 00:41:46 +00001559 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
1560 }
1561 }
1562 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001563 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001564 .addReg(PPC32::R1);
1565 }
1566 // Doubles use 8 bytes, and 2 GPRs worth of param space
1567 ArgOffset += 4;
1568 GPR_remaining--;
1569 GPR_idx++;
1570 break;
1571
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001572 default: assert(0 && "Unknown class!");
1573 }
1574 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001575 GPR_remaining--;
1576 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001577 }
1578 } else {
Chris Lattner3ea93462004-08-06 06:58:50 +00001579 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001580 }
1581
Misha Brukman435c7852004-07-27 17:13:58 +00001582 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, PPC32::LR);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001583 BB->push_back(CallMI);
Chris Lattner3ea93462004-08-06 06:58:50 +00001584
1585 // These functions are automatically eliminated by the prolog/epilog pass
1586 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001587
1588 // If there is a return value, scavenge the result from the location the call
1589 // leaves it in...
1590 //
1591 if (Ret.Ty != Type::VoidTy) {
1592 unsigned DestClass = getClassB(Ret.Ty);
1593 switch (DestClass) {
1594 case cByte:
1595 case cShort:
1596 case cInt:
1597 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001598 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001599 break;
Chris Lattner3ea93462004-08-06 06:58:50 +00001600 case cFP32: // Floating-point return values live in f1
Misha Brukman7e898c32004-07-20 00:41:46 +00001601 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001602 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1603 break;
Chris Lattner3ea93462004-08-06 06:58:50 +00001604 case cLong: // Long values are in r3:r4
Misha Brukman1013ef52004-07-21 20:09:08 +00001605 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1606 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001607 break;
1608 default: assert(0 && "Unknown class!");
1609 }
1610 }
1611}
1612
1613
1614/// visitCallInst - Push args on stack and do a procedure call instruction.
1615void ISel::visitCallInst(CallInst &CI) {
1616 MachineInstr *TheCall;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001617 Function *F = CI.getCalledFunction();
1618 if (F) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001619 // Is it an intrinsic function call?
1620 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1621 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1622 return;
1623 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001624 // Emit a CALL instruction with PC-relative displacement.
1625 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
Misha Brukmane2eceb52004-07-23 16:08:20 +00001626 // Add it to the set of functions called to be used by the Printer
1627 TM.CalledFunctions.insert(F);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001628 } else { // Emit an indirect call through the CTR
1629 unsigned Reg = getReg(CI.getCalledValue());
Misha Brukman7e898c32004-07-20 00:41:46 +00001630 BuildMI(BB, PPC32::MTCTR, 1).addReg(Reg);
1631 TheCall = BuildMI(PPC32::CALLindirect, 2).addZImm(20).addZImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001632 }
1633
1634 std::vector<ValueRecord> Args;
1635 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1636 Args.push_back(ValueRecord(CI.getOperand(i)));
1637
1638 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001639 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1640 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001641}
1642
1643
1644/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1645///
1646static Value *dyncastIsNan(Value *V) {
1647 if (CallInst *CI = dyn_cast<CallInst>(V))
1648 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001649 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001650 return CI->getOperand(1);
1651 return 0;
1652}
1653
1654/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1655/// or's whos operands are all calls to the isnan predicate.
1656static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1657 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1658
1659 // Check all uses, which will be or's of isnans if this predicate is true.
1660 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1661 Instruction *I = cast<Instruction>(*UI);
1662 if (I->getOpcode() != Instruction::Or) return false;
1663 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1664 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1665 }
1666
1667 return true;
1668}
1669
1670/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1671/// function, lowering any calls to unknown intrinsic functions into the
1672/// equivalent LLVM code.
1673///
1674void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1675 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1676 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1677 if (CallInst *CI = dyn_cast<CallInst>(I++))
1678 if (Function *F = CI->getCalledFunction())
1679 switch (F->getIntrinsicID()) {
1680 case Intrinsic::not_intrinsic:
1681 case Intrinsic::vastart:
1682 case Intrinsic::vacopy:
1683 case Intrinsic::vaend:
1684 case Intrinsic::returnaddress:
1685 case Intrinsic::frameaddress:
Misha Brukmanb097f212004-07-26 18:13:24 +00001686 // FIXME: should lower these ourselves
Misha Brukmana2916ce2004-06-21 17:58:36 +00001687 // case Intrinsic::isunordered:
Misha Brukmanb097f212004-07-26 18:13:24 +00001688 // case Intrinsic::memcpy: -> doCall(). system memcpy almost
1689 // guaranteed to be faster than anything we generate ourselves
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001690 // We directly implement these intrinsics
1691 break;
1692 case Intrinsic::readio: {
1693 // On PPC, memory operations are in-order. Lower this intrinsic
1694 // into a volatile load.
1695 Instruction *Before = CI->getPrev();
1696 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1697 CI->replaceAllUsesWith(LI);
1698 BB->getInstList().erase(CI);
1699 break;
1700 }
1701 case Intrinsic::writeio: {
1702 // On PPC, memory operations are in-order. Lower this intrinsic
1703 // into a volatile store.
1704 Instruction *Before = CI->getPrev();
Misha Brukman8d442c22004-07-14 15:29:51 +00001705 StoreInst *SI = new StoreInst(CI->getOperand(1),
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001706 CI->getOperand(2), true, CI);
Misha Brukman8d442c22004-07-14 15:29:51 +00001707 CI->replaceAllUsesWith(SI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001708 BB->getInstList().erase(CI);
1709 break;
1710 }
1711 default:
1712 // All other intrinsic calls we must lower.
1713 Instruction *Before = CI->getPrev();
1714 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1715 if (Before) { // Move iterator to instruction after call
1716 I = Before; ++I;
1717 } else {
1718 I = BB->begin();
1719 }
1720 }
1721}
1722
1723void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1724 unsigned TmpReg1, TmpReg2, TmpReg3;
1725 switch (ID) {
1726 case Intrinsic::vastart:
1727 // Get the address of the first vararg value...
1728 TmpReg1 = getReg(CI);
Misha Brukmanec6319a2004-07-20 15:51:37 +00001729 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex,
1730 0, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001731 return;
1732
1733 case Intrinsic::vacopy:
1734 TmpReg1 = getReg(CI);
1735 TmpReg2 = getReg(CI.getOperand(1));
1736 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1737 return;
1738 case Intrinsic::vaend: return;
1739
1740 case Intrinsic::returnaddress:
Misha Brukmanec6319a2004-07-20 15:51:37 +00001741 TmpReg1 = getReg(CI);
1742 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1743 MachineFrameInfo *MFI = F->getFrameInfo();
1744 unsigned NumBytes = MFI->getStackSize();
1745
Misha Brukman1013ef52004-07-21 20:09:08 +00001746 BuildMI(BB, PPC32::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
Misha Brukmanec6319a2004-07-20 15:51:37 +00001747 .addReg(PPC32::R1);
1748 } else {
1749 // Values other than zero are not implemented yet.
Misha Brukman1013ef52004-07-21 20:09:08 +00001750 BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
Misha Brukmanec6319a2004-07-20 15:51:37 +00001751 }
1752 return;
1753
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001754 case Intrinsic::frameaddress:
1755 TmpReg1 = getReg(CI);
1756 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00001757 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(PPC32::R1).addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001758 } else {
1759 // Values other than zero are not implemented yet.
Misha Brukman1013ef52004-07-21 20:09:08 +00001760 BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001761 }
1762 return;
Misha Brukmanb097f212004-07-26 18:13:24 +00001763
Misha Brukmana2916ce2004-06-21 17:58:36 +00001764#if 0
1765 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001766 case Intrinsic::isnan:
1767 // If this is only used by 'isunordered' style comparisons, don't emit it.
1768 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1769 TmpReg1 = getReg(CI.getOperand(1));
1770 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001771 TmpReg2 = makeAnotherReg(Type::IntTy);
1772 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001773 TmpReg3 = getReg(CI);
1774 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1775 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001776#endif
1777
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001778 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1779 }
1780}
1781
1782/// visitSimpleBinary - Implement simple binary operators for integral types...
1783/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1784/// Xor.
1785///
1786void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1787 unsigned DestReg = getReg(B);
1788 MachineBasicBlock::iterator MI = BB->end();
1789 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1790 unsigned Class = getClassB(B.getType());
1791
1792 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1793}
1794
1795/// emitBinaryFPOperation - This method handles emission of floating point
1796/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1797void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1798 MachineBasicBlock::iterator IP,
1799 Value *Op0, Value *Op1,
1800 unsigned OperatorClass, unsigned DestReg) {
1801
1802 // Special case: op Reg, <const fp>
1803 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001804 // Create a constant pool entry for this constant.
1805 MachineConstantPool *CP = F->getConstantPool();
1806 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1807 const Type *Ty = Op1->getType();
Misha Brukmand9aa7832004-07-12 23:49:47 +00001808 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001809
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001810 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001811 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1812 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001813 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001814
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001815 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001816 unsigned Op1Reg = getReg(Op1C, BB, IP);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001817 unsigned Op0r = getReg(Op0, BB, IP);
Misha Brukmana596f8c2004-07-13 15:35:45 +00001818 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001819 return;
1820 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001821
1822 // Special case: R1 = op <const fp>, R2
Misha Brukmana596f8c2004-07-13 15:35:45 +00001823 if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
1824 if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001825 // -0.0 - X === -X
1826 unsigned op1Reg = getReg(Op1, BB, IP);
1827 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1828 return;
1829 } else {
1830 // R1 = op CST, R2 --> R1 = opr R2, CST
1831
1832 // Create a constant pool entry for this constant.
1833 MachineConstantPool *CP = F->getConstantPool();
Misha Brukmana596f8c2004-07-13 15:35:45 +00001834 unsigned CPI = CP->getConstantPoolIndex(Op0C);
1835 const Type *Ty = Op0C->getType();
1836 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001837
1838 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001839 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1840 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001841 };
1842
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001843 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001844 unsigned Op0Reg = getReg(Op0C, BB, IP);
1845 unsigned Op1Reg = getReg(Op1, BB, IP);
1846 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001847 return;
1848 }
1849
1850 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001851 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001852 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1853 };
1854
1855 unsigned Opcode = OpcodeTab[OperatorClass];
1856 unsigned Op0r = getReg(Op0, BB, IP);
1857 unsigned Op1r = getReg(Op1, BB, IP);
1858 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1859}
1860
1861/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1862/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1863/// Or, 4 for Xor.
1864///
1865/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1866/// and constant expression support.
1867///
1868void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1869 MachineBasicBlock::iterator IP,
1870 Value *Op0, Value *Op1,
1871 unsigned OperatorClass, unsigned DestReg) {
1872 unsigned Class = getClassB(Op0->getType());
1873
Misha Brukman422791f2004-06-21 17:41:12 +00001874 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001875 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001876 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1877 };
Misha Brukman1013ef52004-07-21 20:09:08 +00001878 static const unsigned ImmOpcodeTab[] = {
1879 PPC32::ADDI, PPC32::SUBI, PPC32::ANDIo, PPC32::ORI, PPC32::XORI
1880 };
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001881 static const unsigned RImmOpcodeTab[] = {
1882 PPC32::ADDI, PPC32::SUBFIC, PPC32::ANDIo, PPC32::ORI, PPC32::XORI
1883 };
Misha Brukman1013ef52004-07-21 20:09:08 +00001884
Misha Brukman422791f2004-06-21 17:41:12 +00001885 // Otherwise, code generate the full operation with a constant.
1886 static const unsigned BottomTab[] = {
1887 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1888 };
1889 static const unsigned TopTab[] = {
1890 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1891 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001892
Misha Brukman7e898c32004-07-20 00:41:46 +00001893 if (Class == cFP32 || Class == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001894 assert(OperatorClass < 2 && "No logical ops for FP!");
1895 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1896 return;
1897 }
1898
1899 if (Op0->getType() == Type::BoolTy) {
1900 if (OperatorClass == 3)
1901 // If this is an or of two isnan's, emit an FP comparison directly instead
1902 // of or'ing two isnan's together.
1903 if (Value *LHS = dyncastIsNan(Op0))
1904 if (Value *RHS = dyncastIsNan(Op1)) {
1905 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001906 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001907 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001908 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001909 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1910 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001911 return;
1912 }
1913 }
1914
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001915 // Special case: op <const int>, Reg
Misha Brukman1013ef52004-07-21 20:09:08 +00001916 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001917 // sub 0, X -> subfic
1918 if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001919 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001920 int imm = CI->getRawValue() & 0xFFFF;
Misha Brukman1013ef52004-07-21 20:09:08 +00001921
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001922 if (Class == cLong) {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001923 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, DestReg+1).addReg(Op1r+1)
1924 .addSImm(imm);
Misha Brukman1013ef52004-07-21 20:09:08 +00001925 BuildMI(*MBB, IP, PPC32::SUBFZE, 1, DestReg).addReg(Op1r);
1926 } else {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001927 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001928 }
1929 return;
1930 }
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001931
1932 // If it is easy to do, swap the operands and emit an immediate op
1933 if (Class != cLong && OperatorClass != 1 &&
1934 canUseAsImmediateForOpcode(CI, OperatorClass)) {
1935 unsigned Op1r = getReg(Op1, MBB, IP);
1936 int imm = CI->getRawValue() & 0xFFFF;
1937
1938 if (OperatorClass < 2)
1939 BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
1940 .addSImm(imm);
1941 else
1942 BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
1943 .addZImm(imm);
1944 return;
1945 }
Misha Brukman1013ef52004-07-21 20:09:08 +00001946 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001947
1948 // Special case: op Reg, <const int>
1949 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1950 unsigned Op0r = getReg(Op0, MBB, IP);
1951
1952 // xor X, -1 -> not X
1953 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1954 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
Misha Brukman1013ef52004-07-21 20:09:08 +00001955 if (Class == cLong) // Invert the low part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001956 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1957 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001958 return;
1959 }
Misha Brukman1013ef52004-07-21 20:09:08 +00001960
Misha Brukman1013ef52004-07-21 20:09:08 +00001961 if (Class != cLong) {
1962 if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
1963 int immediate = Op1C->getRawValue() & 0xFFFF;
1964
1965 if (OperatorClass < 2)
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001966 BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
Misha Brukman1013ef52004-07-21 20:09:08 +00001967 .addSImm(immediate);
1968 else
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001969 BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
Misha Brukman1013ef52004-07-21 20:09:08 +00001970 .addZImm(immediate);
1971 } else {
1972 unsigned Op1r = getReg(Op1, MBB, IP);
1973 BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
1974 .addReg(Op1r);
1975 }
1976 return;
1977 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001978
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001979 unsigned Op1r = getReg(Op1, MBB, IP);
1980
Misha Brukman1013ef52004-07-21 20:09:08 +00001981 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001982 .addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001983 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
1984 .addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001985 return;
1986 }
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001987
1988 // We couldn't generate an immediate variant of the op, load both halves into
1989 // registers and emit the appropriate opcode.
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001990 unsigned Op0r = getReg(Op0, MBB, IP);
1991 unsigned Op1r = getReg(Op1, MBB, IP);
1992
1993 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001994 unsigned Opcode = OpcodeTab[OperatorClass];
1995 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001996 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001997 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001998 .addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001999 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
2000 .addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002001 }
2002 return;
2003}
2004
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002005// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
2006// returns zero when the input is not exactly a power of two.
2007static unsigned ExactLog2(unsigned Val) {
2008 if (Val == 0 || (Val & (Val-1))) return 0;
2009 unsigned Count = 0;
2010 while (Val != 1) {
2011 Val >>= 1;
2012 ++Count;
2013 }
Misha Brukman1013ef52004-07-21 20:09:08 +00002014 return Count;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002015}
2016
Misha Brukman1013ef52004-07-21 20:09:08 +00002017/// doMultiply - Emit appropriate instructions to multiply together the
2018/// Values Op0 and Op1, and put the result in DestReg.
Misha Brukman2fec9902004-06-21 20:22:03 +00002019///
Misha Brukman1013ef52004-07-21 20:09:08 +00002020void ISel::doMultiply(MachineBasicBlock *MBB,
2021 MachineBasicBlock::iterator IP,
2022 unsigned DestReg, Value *Op0, Value *Op1) {
2023 unsigned Class0 = getClass(Op0->getType());
2024 unsigned Class1 = getClass(Op1->getType());
2025
2026 unsigned Op0r = getReg(Op0, MBB, IP);
2027 unsigned Op1r = getReg(Op1, MBB, IP);
2028
2029 // 64 x 64 -> 64
2030 if (Class0 == cLong && Class1 == cLong) {
2031 unsigned Tmp1 = makeAnotherReg(Type::IntTy);
2032 unsigned Tmp2 = makeAnotherReg(Type::IntTy);
2033 unsigned Tmp3 = makeAnotherReg(Type::IntTy);
2034 unsigned Tmp4 = makeAnotherReg(Type::IntTy);
2035 BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
2036 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
2037 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
2038 BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
2039 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
2040 BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
2041 return;
2042 }
2043
2044 // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
2045 if (Class0 == cLong && Class1 <= cInt) {
2046 unsigned Tmp0 = makeAnotherReg(Type::IntTy);
2047 unsigned Tmp1 = makeAnotherReg(Type::IntTy);
2048 unsigned Tmp2 = makeAnotherReg(Type::IntTy);
2049 unsigned Tmp3 = makeAnotherReg(Type::IntTy);
2050 unsigned Tmp4 = makeAnotherReg(Type::IntTy);
2051 if (Op1->getType()->isSigned())
2052 BuildMI(*MBB, IP, PPC32::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
2053 else
2054 BuildMI(*MBB, IP, PPC32::LI, 2, Tmp0).addSImm(0);
2055 BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
2056 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
2057 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
2058 BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
2059 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
2060 BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
2061 return;
2062 }
2063
2064 // 32 x 32 -> 32
2065 if (Class0 <= cInt && Class1 <= cInt) {
2066 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
2067 return;
2068 }
2069
2070 assert(0 && "doMultiply cannot operate on unknown type!");
2071}
2072
2073/// doMultiplyConst - This method will multiply the value in Op0 by the
2074/// value of the ContantInt *CI
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002075void ISel::doMultiplyConst(MachineBasicBlock *MBB,
2076 MachineBasicBlock::iterator IP,
Misha Brukman1013ef52004-07-21 20:09:08 +00002077 unsigned DestReg, Value *Op0, ConstantInt *CI) {
2078 unsigned Class = getClass(Op0->getType());
2079
2080 // Mul op0, 0 ==> 0
2081 if (CI->isNullValue()) {
2082 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
2083 if (Class == cLong)
2084 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002085 return;
Misha Brukman1013ef52004-07-21 20:09:08 +00002086 }
2087
2088 // Mul op0, 1 ==> op0
2089 if (CI->equalsInt(1)) {
2090 unsigned Op0r = getReg(Op0, MBB, IP);
2091 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
2092 if (Class == cLong)
2093 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002094 return;
2095 }
2096
2097 // If the element size is exactly a power of 2, use a shift to get it.
Misha Brukman1013ef52004-07-21 20:09:08 +00002098 if (unsigned Shift = ExactLog2(CI->getRawValue())) {
2099 ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
2100 emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
2101 return;
2102 }
2103
2104 // If 32 bits or less and immediate is in right range, emit mul by immediate
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002105 if (Class == cByte || Class == cShort || Class == cInt) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002106 if (canUseAsImmediateForOpcode(CI, 0)) {
2107 unsigned Op0r = getReg(Op0, MBB, IP);
2108 unsigned imm = CI->getRawValue() & 0xFFFF;
2109 BuildMI(*MBB, IP, PPC32::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002110 return;
2111 }
2112 }
2113
Misha Brukman1013ef52004-07-21 20:09:08 +00002114 doMultiply(MBB, IP, DestReg, Op0, CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002115}
2116
2117void ISel::visitMul(BinaryOperator &I) {
2118 unsigned ResultReg = getReg(I);
2119
2120 Value *Op0 = I.getOperand(0);
2121 Value *Op1 = I.getOperand(1);
2122
2123 MachineBasicBlock::iterator IP = BB->end();
2124 emitMultiply(BB, IP, Op0, Op1, ResultReg);
2125}
2126
2127void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
2128 Value *Op0, Value *Op1, unsigned DestReg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002129 TypeClass Class = getClass(Op0->getType());
2130
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002131 switch (Class) {
2132 case cByte:
2133 case cShort:
2134 case cInt:
Misha Brukman1013ef52004-07-21 20:09:08 +00002135 case cLong:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002136 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002137 doMultiplyConst(MBB, IP, DestReg, Op0, CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002138 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00002139 doMultiply(MBB, IP, DestReg, Op0, Op1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002140 }
2141 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002142 case cFP32:
2143 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002144 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2145 return;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002146 break;
2147 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002148}
2149
2150
2151/// visitDivRem - Handle division and remainder instructions... these
2152/// instruction both require the same instructions to be generated, they just
2153/// select the result from a different register. Note that both of these
2154/// instructions work differently for signed and unsigned operands.
2155///
2156void ISel::visitDivRem(BinaryOperator &I) {
2157 unsigned ResultReg = getReg(I);
2158 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2159
2160 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00002161 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
2162 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002163}
2164
2165void ISel::emitDivRemOperation(MachineBasicBlock *BB,
2166 MachineBasicBlock::iterator IP,
2167 Value *Op0, Value *Op1, bool isDiv,
2168 unsigned ResultReg) {
2169 const Type *Ty = Op0->getType();
2170 unsigned Class = getClass(Ty);
2171 switch (Class) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002172 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002173 if (isDiv) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002174 // Floating point divide...
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002175 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2176 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002177 } else {
2178 // Floating point remainder via fmodf(float x, float y);
2179 unsigned Op0Reg = getReg(Op0, BB, IP);
2180 unsigned Op1Reg = getReg(Op1, BB, IP);
2181 MachineInstr *TheCall =
2182 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
2183 std::vector<ValueRecord> Args;
2184 Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
2185 Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
2186 doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002187 TM.CalledFunctions.insert(fmodfFn);
Misha Brukman7e898c32004-07-20 00:41:46 +00002188 }
2189 return;
2190 case cFP64:
2191 if (isDiv) {
2192 // Floating point divide...
2193 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2194 return;
2195 } else {
2196 // Floating point remainder via fmod(double x, double y);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002197 unsigned Op0Reg = getReg(Op0, BB, IP);
2198 unsigned Op1Reg = getReg(Op1, BB, IP);
2199 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002200 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002201 std::vector<ValueRecord> Args;
2202 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2203 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002204 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002205 TM.CalledFunctions.insert(fmodFn);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002206 }
2207 return;
2208 case cLong: {
Misha Brukman7e898c32004-07-20 00:41:46 +00002209 static Function* const Funcs[] =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002210 { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002211 unsigned Op0Reg = getReg(Op0, BB, IP);
2212 unsigned Op1Reg = getReg(Op1, BB, IP);
2213 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2214 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002215 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002216
2217 std::vector<ValueRecord> Args;
2218 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2219 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002220 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002221 TM.CalledFunctions.insert(Funcs[NameIdx]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002222 return;
2223 }
2224 case cByte: case cShort: case cInt:
2225 break; // Small integrals, handled below...
2226 default: assert(0 && "Unknown class!");
2227 }
2228
2229 // Special case signed division by power of 2.
2230 if (isDiv)
2231 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2232 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2233 int V = CI->getValue();
2234
2235 if (V == 1) { // X /s 1 => X
2236 unsigned Op0Reg = getReg(Op0, BB, IP);
2237 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
2238 return;
2239 }
2240
2241 if (V == -1) { // X /s -1 => -X
2242 unsigned Op0Reg = getReg(Op0, BB, IP);
2243 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
2244 return;
2245 }
2246
Misha Brukmanec6319a2004-07-20 15:51:37 +00002247 unsigned log2V = ExactLog2(V);
2248 if (log2V != 0 && Ty->isSigned()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002249 unsigned Op0Reg = getReg(Op0, BB, IP);
2250 unsigned TmpReg = makeAnotherReg(Op0->getType());
Misha Brukmanec6319a2004-07-20 15:51:37 +00002251
Misha Brukman1013ef52004-07-21 20:09:08 +00002252 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
Misha Brukmanec6319a2004-07-20 15:51:37 +00002253 BuildMI(*BB, IP, PPC32::ADDZE, 1, ResultReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002254 return;
2255 }
2256 }
2257
2258 unsigned Op0Reg = getReg(Op0, BB, IP);
2259 unsigned Op1Reg = getReg(Op1, BB, IP);
Misha Brukmanec6319a2004-07-20 15:51:37 +00002260 unsigned Opcode = Ty->isSigned() ? PPC32::DIVW : PPC32::DIVWU;
2261
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002262 if (isDiv) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00002263 BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002264 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002265 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2266 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2267
Misha Brukmanec6319a2004-07-20 15:51:37 +00002268 BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002269 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2270 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002271 }
2272}
2273
2274
2275/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2276/// for constant immediate shift values, and for constant immediate
2277/// shift values equal to 1. Even the general case is sort of special,
2278/// because the shift amount has to be in CL, not just any old register.
2279///
2280void ISel::visitShiftInst(ShiftInst &I) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00002281 MachineBasicBlock::iterator IP = BB->end();
2282 emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
2283 I.getOpcode() == Instruction::Shl, I.getType(),
2284 getReg(I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002285}
2286
2287/// emitShiftOperation - Common code shared between visitShiftInst and
2288/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002289///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002290void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2291 MachineBasicBlock::iterator IP,
2292 Value *Op, Value *ShiftAmount, bool isLeftShift,
2293 const Type *ResultTy, unsigned DestReg) {
2294 unsigned SrcReg = getReg (Op, MBB, IP);
2295 bool isSigned = ResultTy->isSigned ();
2296 unsigned Class = getClass (ResultTy);
2297
2298 // Longs, as usual, are handled specially...
2299 if (Class == cLong) {
2300 // If we have a constant shift, we can generate much more efficient code
2301 // than otherwise...
2302 //
2303 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2304 unsigned Amount = CUI->getValue();
2305 if (Amount < 32) {
2306 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002307 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002308 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2309 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman1013ef52004-07-21 20:09:08 +00002310 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2311 .addImm(Amount).addImm(32-Amount).addImm(31);
2312 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2313 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002314 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002315 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002316 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2317 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman1013ef52004-07-21 20:09:08 +00002318 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2319 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2320 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2321 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002322 }
2323 } else { // Shifting more than 32 bits
2324 Amount -= 32;
2325 if (isLeftShift) {
2326 if (Amount != 0) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002327 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002328 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002329 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002330 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2331 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002332 }
Misha Brukman1013ef52004-07-21 20:09:08 +00002333 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
2334 } else {
2335 if (Amount != 0) {
2336 if (isSigned)
2337 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(SrcReg)
2338 .addImm(Amount);
2339 else
2340 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2341 .addImm(32-Amount).addImm(Amount).addImm(31);
2342 } else {
2343 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2344 .addReg(SrcReg);
2345 }
2346 BuildMI(*MBB, IP,PPC32::LI, 1, DestReg).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002347 }
2348 }
2349 } else {
2350 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2351 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002352 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2353 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2354 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2355 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2356 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2357
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002358 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002359 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002360 .addSImm(32);
2361 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002362 .addReg(ShiftAmountReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002363 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg3).addReg(SrcReg+1)
2364 .addReg(TmpReg1);
2365 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
Misha Brukman2fec9902004-06-21 20:22:03 +00002366 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002367 .addSImm(-32);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002368 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg6).addReg(SrcReg+1)
2369 .addReg(TmpReg5);
Misha Brukman1013ef52004-07-21 20:09:08 +00002370 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
Misha Brukman2fec9902004-06-21 20:22:03 +00002371 .addReg(TmpReg6);
Misha Brukman1013ef52004-07-21 20:09:08 +00002372 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg+1).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002373 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002374 } else {
2375 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002376 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002377 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukmanb097f212004-07-26 18:13:24 +00002378 std::cerr << "ERROR: Unimplemented: signed right shift of long\n";
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002379 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002380 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002381 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002382 .addSImm(32);
2383 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002384 .addReg(ShiftAmountReg);
Misha Brukman1013ef52004-07-21 20:09:08 +00002385 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002386 .addReg(TmpReg1);
2387 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2388 .addReg(TmpReg3);
2389 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002390 .addSImm(-32);
2391 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002392 .addReg(TmpReg5);
Misha Brukman1013ef52004-07-21 20:09:08 +00002393 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
Misha Brukman2fec9902004-06-21 20:22:03 +00002394 .addReg(TmpReg6);
Misha Brukman1013ef52004-07-21 20:09:08 +00002395 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002396 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002397 }
2398 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002399 }
2400 return;
2401 }
2402
2403 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2404 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2405 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2406 unsigned Amount = CUI->getValue();
2407
Misha Brukman422791f2004-06-21 17:41:12 +00002408 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002409 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2410 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002411 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002412 if (isSigned) {
2413 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2414 } else {
2415 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2416 .addImm(32-Amount).addImm(Amount).addImm(31);
2417 }
Misha Brukman422791f2004-06-21 17:41:12 +00002418 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002419 } else { // The shift amount is non-constant.
2420 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2421
Misha Brukman422791f2004-06-21 17:41:12 +00002422 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002423 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2424 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002425 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002426 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2427 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002428 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002429 }
2430}
2431
2432
Misha Brukmanb097f212004-07-26 18:13:24 +00002433/// visitLoadInst - Implement LLVM load instructions. Pretty straightforward
2434/// mapping of LLVM classes to PPC load instructions, with the exception of
2435/// signed byte loads, which need a sign extension following them.
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002436///
2437void ISel::visitLoadInst(LoadInst &I) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002438 // Immediate opcodes, for reg+imm addressing
2439 static const unsigned ImmOpcodes[] = {
2440 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ,
2441 PPC32::LFS, PPC32::LFD, PPC32::LWZ
2442 };
2443 // Indexed opcodes, for reg+reg addressing
2444 static const unsigned IdxOpcodes[] = {
2445 PPC32::LBZX, PPC32::LHZX, PPC32::LWZX,
2446 PPC32::LFSX, PPC32::LFDX, PPC32::LWZX
Misha Brukman2fec9902004-06-21 20:22:03 +00002447 };
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002448
Misha Brukmanb097f212004-07-26 18:13:24 +00002449 unsigned Class = getClassB(I.getType());
2450 unsigned ImmOpcode = ImmOpcodes[Class];
2451 unsigned IdxOpcode = IdxOpcodes[Class];
2452 unsigned DestReg = getReg(I);
2453 Value *SourceAddr = I.getOperand(0);
2454
2455 if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC32::LHA;
2456 if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC32::LHAX;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002457
Misha Brukmanb097f212004-07-26 18:13:24 +00002458 if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
Misha Brukman422791f2004-06-21 17:41:12 +00002459 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002460 if (Class == cLong) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002461 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
2462 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg+1), FI, 4);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002463 } else if (Class == cByte && I.getType()->isSigned()) {
2464 unsigned TmpReg = makeAnotherReg(I.getType());
Misha Brukmanb097f212004-07-26 18:13:24 +00002465 addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002466 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002467 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00002468 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002469 }
Misha Brukmanb097f212004-07-26 18:13:24 +00002470 return;
2471 }
2472
2473 // If this load is the only use of the GEP instruction that is its address,
2474 // then we can fold the GEP directly into the load instruction.
2475 // emitGEPOperation with a second to last arg of 'true' will place the
2476 // base register for the GEP into baseReg, and the constant offset from that
2477 // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
2478 // otherwise, we copy the offset into another reg, and use reg+reg addressing.
2479 if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
2480 unsigned baseReg = getReg(GEPI);
2481 ConstantSInt *offset;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002482
Misha Brukmanb097f212004-07-26 18:13:24 +00002483 emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
2484 GEPI->op_end(), baseReg, true, &offset);
2485
2486 if (Class != cLong && canUseAsImmediateForOpcode(offset, 0)) {
2487 if (Class == cByte && I.getType()->isSigned()) {
2488 unsigned TmpReg = makeAnotherReg(I.getType());
2489 BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
2490 .addReg(baseReg);
2491 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
2492 } else {
2493 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue())
2494 .addReg(baseReg);
2495 }
2496 return;
2497 }
2498
2499 unsigned indexReg = getReg(offset);
2500
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002501 if (Class == cLong) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002502 unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
2503 BuildMI(BB, PPC32::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
2504 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
2505 BuildMI(BB, IdxOpcode, 2, DestReg+1).addReg(indexPlus4).addReg(baseReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002506 } else if (Class == cByte && I.getType()->isSigned()) {
2507 unsigned TmpReg = makeAnotherReg(I.getType());
Misha Brukmanb097f212004-07-26 18:13:24 +00002508 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002509 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002510 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00002511 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002512 }
Misha Brukmanb097f212004-07-26 18:13:24 +00002513 return;
2514 }
2515
2516 // The fallback case, where the load was from a source that could not be
2517 // folded into the load instruction.
2518 unsigned SrcAddrReg = getReg(SourceAddr);
2519
2520 if (Class == cLong) {
2521 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
2522 BuildMI(BB, ImmOpcode, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg);
2523 } else if (Class == cByte && I.getType()->isSigned()) {
2524 unsigned TmpReg = makeAnotherReg(I.getType());
2525 BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
2526 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
2527 } else {
2528 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002529 }
2530}
2531
2532/// visitStoreInst - Implement LLVM store instructions
2533///
2534void ISel::visitStoreInst(StoreInst &I) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002535 // Immediate opcodes, for reg+imm addressing
2536 static const unsigned ImmOpcodes[] = {
2537 PPC32::STB, PPC32::STH, PPC32::STW,
2538 PPC32::STFS, PPC32::STFD, PPC32::STW
2539 };
2540 // Indexed opcodes, for reg+reg addressing
2541 static const unsigned IdxOpcodes[] = {
2542 PPC32::STBX, PPC32::STHX, PPC32::STWX,
2543 PPC32::STFSX, PPC32::STDX, PPC32::STWX
2544 };
2545
2546 Value *SourceAddr = I.getOperand(1);
2547 const Type *ValTy = I.getOperand(0)->getType();
2548 unsigned Class = getClassB(ValTy);
2549 unsigned ImmOpcode = ImmOpcodes[Class];
2550 unsigned IdxOpcode = IdxOpcodes[Class];
2551 unsigned ValReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002552
Misha Brukmanb097f212004-07-26 18:13:24 +00002553 // If this store is the only use of the GEP instruction that is its address,
2554 // then we can fold the GEP directly into the store instruction.
2555 // emitGEPOperation with a second to last arg of 'true' will place the
2556 // base register for the GEP into baseReg, and the constant offset from that
2557 // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
2558 // otherwise, we copy the offset into another reg, and use reg+reg addressing.
2559 if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
2560 unsigned baseReg = getReg(GEPI);
2561 ConstantSInt *offset;
2562
2563 emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
2564 GEPI->op_end(), baseReg, true, &offset);
2565
2566 if (Class != cLong && canUseAsImmediateForOpcode(offset, 0)) {
2567 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
2568 .addReg(baseReg);
2569 return;
2570 }
2571
2572 unsigned indexReg = getReg(offset);
2573
2574 if (Class == cLong) {
2575 unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
2576 BuildMI(BB, PPC32::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
2577 BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
2578 BuildMI(BB, IdxOpcode, 3).addReg(ValReg+1).addReg(indexPlus4)
2579 .addReg(baseReg);
2580 return;
2581 }
2582 BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002583 return;
2584 }
Misha Brukmanb097f212004-07-26 18:13:24 +00002585
2586 // If the store address wasn't the only use of a GEP, we fall back to the
2587 // standard path: store the ValReg at the value in AddressReg.
2588 unsigned AddressReg = getReg(I.getOperand(1));
2589 if (Class == cLong) {
2590 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
2591 BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg);
2592 return;
2593 }
2594 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002595}
2596
2597
2598/// visitCastInst - Here we have various kinds of copying with or without sign
2599/// extension going on.
2600///
2601void ISel::visitCastInst(CastInst &CI) {
2602 Value *Op = CI.getOperand(0);
2603
2604 unsigned SrcClass = getClassB(Op->getType());
2605 unsigned DestClass = getClassB(CI.getType());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002606
2607 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2608 // of the case are GEP instructions, then the cast does not need to be
2609 // generated explicitly, it will be folded into the GEP.
2610 if (DestClass == cLong && SrcClass == cInt) {
2611 bool AllUsesAreGEPs = true;
2612 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2613 if (!isa<GetElementPtrInst>(*I)) {
2614 AllUsesAreGEPs = false;
2615 break;
2616 }
2617
2618 // No need to codegen this cast if all users are getelementptr instrs...
2619 if (AllUsesAreGEPs) return;
2620 }
2621
2622 unsigned DestReg = getReg(CI);
2623 MachineBasicBlock::iterator MI = BB->end();
2624 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2625}
2626
2627/// emitCastOperation - Common code shared between visitCastInst and constant
2628/// expression cast support.
2629///
Misha Brukman7e898c32004-07-20 00:41:46 +00002630void ISel::emitCastOperation(MachineBasicBlock *MBB,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002631 MachineBasicBlock::iterator IP,
2632 Value *Src, const Type *DestTy,
2633 unsigned DestReg) {
2634 const Type *SrcTy = Src->getType();
2635 unsigned SrcClass = getClassB(SrcTy);
2636 unsigned DestClass = getClassB(DestTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002637 unsigned SrcReg = getReg(Src, MBB, IP);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002638
2639 // Implement casts to bool by using compare on the operand followed by set if
2640 // not zero on the result.
2641 if (DestTy == Type::BoolTy) {
2642 switch (SrcClass) {
2643 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002644 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002645 case cInt: {
2646 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00002647 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
Misha Brukman7e898c32004-07-20 00:41:46 +00002648 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002649 break;
2650 }
2651 case cLong: {
2652 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2653 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002654 BuildMI(*MBB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00002655 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1);
Misha Brukmanbf417a62004-07-20 20:43:05 +00002656 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg)
2657 .addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002658 break;
2659 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002660 case cFP32:
2661 case cFP64:
2662 // FSEL perhaps?
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002663 std::cerr << "ERROR: Cast fp-to-bool not implemented!\n";
Misha Brukmand18a31d2004-07-06 22:51:53 +00002664 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002665 }
2666 return;
2667 }
2668
Misha Brukman7e898c32004-07-20 00:41:46 +00002669 // Handle cast of Float -> Double
2670 if (SrcClass == cFP32 && DestClass == cFP64) {
2671 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2672 return;
2673 }
2674
2675 // Handle cast of Double -> Float
2676 if (SrcClass == cFP64 && DestClass == cFP32) {
2677 BuildMI(*MBB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
2678 return;
2679 }
2680
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002681 // Handle casts from integer to floating point now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002682 if (DestClass == cFP32 || DestClass == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002683
Misha Brukman422791f2004-06-21 17:41:12 +00002684 // Emit a library call for long to float conversion
2685 if (SrcClass == cLong) {
2686 std::vector<ValueRecord> Args;
2687 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002688 Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002689 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002690 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002691 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002692 TM.CalledFunctions.insert(floatFn);
Misha Brukman422791f2004-06-21 17:41:12 +00002693 return;
2694 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002695
Misha Brukman7e898c32004-07-20 00:41:46 +00002696 // Make sure we're dealing with a full 32 bits
2697 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2698 promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
2699
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002700 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002701
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002702 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002703 // Also spill room for a special conversion constant
2704 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002705 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2706 int ValueFrameIdx =
2707 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2708
Misha Brukman422791f2004-06-21 17:41:12 +00002709 unsigned constantHi = makeAnotherReg(Type::IntTy);
2710 unsigned constantLo = makeAnotherReg(Type::IntTy);
2711 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2712 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2713
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002714 if (!SrcTy->isSigned()) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002715 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
2716 BuildMI(*BB, IP, PPC32::LI, 1, constantLo).addSImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002717 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2718 ConstantFrameIndex);
2719 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2720 ConstantFrameIndex, 4);
2721 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2722 ValueFrameIdx);
2723 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2724 ValueFrameIdx, 4);
2725 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2726 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002727 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2728 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2729 } else {
2730 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00002731 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
2732 BuildMI(*BB, IP, PPC32::LIS, 1, constantLo).addSImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002733 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2734 ConstantFrameIndex);
2735 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2736 ConstantFrameIndex, 4);
2737 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2738 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002739 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002740 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2741 ValueFrameIdx, 4);
2742 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2743 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002744 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukmanb097f212004-07-26 18:13:24 +00002745 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002746 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002747 return;
2748 }
2749
2750 // Handle casts from floating point to integer now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002751 if (SrcClass == cFP32 || SrcClass == cFP64) {
Misha Brukman422791f2004-06-21 17:41:12 +00002752 // emit library call
2753 if (DestClass == cLong) {
2754 std::vector<ValueRecord> Args;
2755 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002756 Function *floatFn = (DestClass == cFP32) ? __fixsfdiFn : __fixdfdiFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002757 MachineInstr *TheCall =
Misha Brukman7e898c32004-07-20 00:41:46 +00002758 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002759 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002760 TM.CalledFunctions.insert(floatFn);
Misha Brukman422791f2004-06-21 17:41:12 +00002761 return;
2762 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002763
2764 int ValueFrameIdx =
Misha Brukman7e898c32004-07-20 00:41:46 +00002765 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002766
Misha Brukman7e898c32004-07-20 00:41:46 +00002767 if (DestTy->isSigned()) {
Misha Brukman4c14f332004-07-23 01:11:19 +00002768 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2769
2770 // Convert to integer in the FP reg and store it to a stack slot
2771 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
2772 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2773 .addReg(TempReg), ValueFrameIdx);
Misha Brukmanb097f212004-07-26 18:13:24 +00002774
2775 // There is no load signed byte opcode, so we must emit a sign extend for
2776 // that particular size. Make sure to source the new integer from the
2777 // correct offset.
Misha Brukman4c14f332004-07-23 01:11:19 +00002778 if (DestClass == cByte) {
2779 unsigned TempReg2 = makeAnotherReg(DestTy);
Misha Brukmanb097f212004-07-26 18:13:24 +00002780 addFrameReference(BuildMI(*BB, IP, PPC32::LBZ, 2, TempReg2),
2781 ValueFrameIdx, 7);
Misha Brukman4c14f332004-07-23 01:11:19 +00002782 BuildMI(*MBB, IP, PPC32::EXTSB, DestReg).addReg(TempReg2);
2783 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00002784 int offset = (DestClass == cShort) ? 6 : 4;
2785 unsigned LoadOp = (DestClass == cShort) ? PPC32::LHA : PPC32::LWZ;
Misha Brukman4c14f332004-07-23 01:11:19 +00002786 addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg),
Misha Brukmanb097f212004-07-26 18:13:24 +00002787 ValueFrameIdx, offset);
Misha Brukman4c14f332004-07-23 01:11:19 +00002788 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002789 } else {
Misha Brukmanb160d1f2004-07-23 20:32:59 +00002790 unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
2791 double maxInt = (1LL << 32) - 1;
2792 unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
2793 double border = 1LL << 31;
2794 unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
2795 unsigned UseZero = makeAnotherReg(Type::DoubleTy);
2796 unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
2797 unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
2798 unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
2799 unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
2800 unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
2801 unsigned IntTmp = makeAnotherReg(Type::IntTy);
2802 unsigned XorReg = makeAnotherReg(Type::IntTy);
2803 int FrameIdx =
2804 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
2805 // Update machine-CFG edges
2806 MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
2807 MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
2808 MachineBasicBlock *OldMBB = BB;
2809 ilist<MachineBasicBlock>::iterator It = BB; ++It;
2810 F->getBasicBlockList().insert(It, XorMBB);
2811 F->getBasicBlockList().insert(It, PhiMBB);
2812 BB->addSuccessor(XorMBB);
2813 BB->addSuccessor(PhiMBB);
2814
2815 // Convert from floating point to unsigned 32-bit value
2816 // Use 0 if incoming value is < 0.0
2817 BuildMI(*BB, IP, PPC32::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
2818 .addReg(Zero);
2819 // Use 2**32 - 1 if incoming value is >= 2**32
2820 BuildMI(*BB, IP, PPC32::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
2821 BuildMI(*BB, IP, PPC32::FSEL, 3, UseChoice).addReg(UseMaxInt)
2822 .addReg(UseZero).addReg(MaxInt);
2823 // Subtract 2**31
2824 BuildMI(*BB, IP, PPC32::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
2825 // Use difference if >= 2**31
2826 BuildMI(*BB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(UseChoice)
2827 .addReg(Border);
2828 BuildMI(*BB, IP, PPC32::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
2829 .addReg(UseChoice);
2830 // Convert to integer
2831 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
2832 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3).addReg(ConvReg),
2833 FrameIdx);
Misha Brukmanb097f212004-07-26 18:13:24 +00002834 if (DestClass == cByte) {
2835 addFrameReference(BuildMI(*BB, IP, PPC32::LBZ, 2, DestReg),
2836 FrameIdx, 7);
2837 } else if (DestClass == cShort) {
2838 addFrameReference(BuildMI(*BB, IP, PPC32::LHZ, 2, DestReg),
2839 FrameIdx, 6);
2840 } if (DestClass == cInt) {
2841 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, IntTmp),
2842 FrameIdx, 4);
2843 BuildMI(*BB, IP, PPC32::BLT, 2).addReg(PPC32::CR0).addMBB(PhiMBB);
2844 BuildMI(*BB, IP, PPC32::B, 1).addMBB(XorMBB);
Misha Brukmanb160d1f2004-07-23 20:32:59 +00002845
Misha Brukmanb097f212004-07-26 18:13:24 +00002846 // XorMBB:
2847 // add 2**31 if input was >= 2**31
2848 BB = XorMBB;
2849 BuildMI(BB, PPC32::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
2850 XorMBB->addSuccessor(PhiMBB);
Misha Brukmanb160d1f2004-07-23 20:32:59 +00002851
Misha Brukmanb097f212004-07-26 18:13:24 +00002852 // PhiMBB:
2853 // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
2854 BB = PhiMBB;
2855 BuildMI(BB, PPC32::PHI, 2, DestReg).addReg(IntTmp).addMBB(OldMBB)
2856 .addReg(XorReg).addMBB(XorMBB);
2857 }
2858 }
2859 return;
2860 }
2861
2862 // Check our invariants
2863 assert((SrcClass <= cInt || SrcClass == cLong) &&
2864 "Unhandled source class for cast operation!");
2865 assert((DestClass <= cInt || DestClass == cLong) &&
2866 "Unhandled destination class for cast operation!");
2867
2868 bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2869 bool destUnsigned = DestTy->isUnsigned();
2870
2871 // Unsigned -> Unsigned, clear if larger,
2872 if (sourceUnsigned && destUnsigned) {
2873 // handle long dest class now to keep switch clean
2874 if (DestClass == cLong) {
2875 if (SrcClass == cLong) {
2876 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2877 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2878 .addReg(SrcReg+1);
2879 } else {
2880 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
2881 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2882 .addReg(SrcReg);
2883 }
2884 return;
2885 }
2886
2887 // handle u{ byte, short, int } x u{ byte, short, int }
2888 unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
2889 switch (SrcClass) {
2890 case cByte:
2891 case cShort:
2892 if (SrcClass == DestClass)
2893 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2894 else
2895 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2896 .addImm(0).addImm(clearBits).addImm(31);
2897 break;
2898 case cLong:
2899 ++SrcReg;
2900 // Fall through
2901 case cInt:
2902 if (DestClass == cInt)
2903 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2904 else
2905 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2906 .addImm(0).addImm(clearBits).addImm(31);
2907 break;
2908 }
2909 return;
2910 }
2911
2912 // Signed -> Signed
2913 if (!sourceUnsigned && !destUnsigned) {
2914 // handle long dest class now to keep switch clean
2915 if (DestClass == cLong) {
2916 if (SrcClass == cLong) {
2917 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2918 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2919 .addReg(SrcReg+1);
2920 } else {
2921 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
2922 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2923 .addReg(SrcReg);
2924 }
2925 return;
2926 }
2927
2928 // handle { byte, short, int } x { byte, short, int }
2929 switch (SrcClass) {
2930 case cByte:
2931 if (DestClass == cByte)
2932 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2933 else
2934 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2935 break;
2936 case cShort:
2937 if (DestClass == cByte)
2938 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2939 else if (DestClass == cShort)
2940 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2941 else
2942 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2943 break;
2944 case cLong:
2945 ++SrcReg;
2946 // Fall through
2947 case cInt:
2948 if (DestClass == cByte)
2949 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2950 else if (DestClass == cShort)
2951 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2952 else
2953 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2954 break;
2955 }
2956 return;
2957 }
2958
2959 // Unsigned -> Signed
2960 if (sourceUnsigned && !destUnsigned) {
2961 // handle long dest class now to keep switch clean
2962 if (DestClass == cLong) {
2963 if (SrcClass == cLong) {
2964 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2965 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1).
2966 addReg(SrcReg+1);
2967 } else {
2968 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
2969 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2970 .addReg(SrcReg);
2971 }
2972 return;
2973 }
2974
2975 // handle u{ byte, short, int } -> { byte, short, int }
2976 switch (SrcClass) {
2977 case cByte:
2978 if (DestClass == cByte)
2979 // uByte 255 -> signed byte == -1
2980 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2981 else
2982 // uByte 255 -> signed short/int == 255
2983 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
2984 .addImm(24).addImm(31);
2985 break;
2986 case cShort:
2987 if (DestClass == cByte)
2988 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2989 else if (DestClass == cShort)
2990 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2991 else
2992 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
2993 .addImm(16).addImm(31);
2994 break;
2995 case cLong:
2996 ++SrcReg;
2997 // Fall through
2998 case cInt:
2999 if (DestClass == cByte)
3000 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
3001 else if (DestClass == cShort)
3002 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
3003 else
3004 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3005 break;
3006 }
3007 return;
3008 }
3009
3010 // Signed -> Unsigned
3011 if (!sourceUnsigned && destUnsigned) {
3012 // handle long dest class now to keep switch clean
3013 if (DestClass == cLong) {
3014 if (SrcClass == cLong) {
3015 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3016 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
3017 .addReg(SrcReg+1);
3018 } else {
3019 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
3020 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
3021 .addReg(SrcReg);
3022 }
3023 return;
3024 }
3025
3026 // handle { byte, short, int } -> u{ byte, short, int }
3027 unsigned clearBits = (DestClass == cByte) ? 24 : 16;
3028 switch (SrcClass) {
3029 case cByte:
3030 case cShort:
3031 if (DestClass == cByte || DestClass == cShort)
3032 // sbyte -1 -> ubyte 0x000000FF
3033 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
3034 .addImm(0).addImm(clearBits).addImm(31);
3035 else
3036 // sbyte -1 -> ubyte 0xFFFFFFFF
3037 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3038 break;
3039 case cLong:
3040 ++SrcReg;
3041 // Fall through
3042 case cInt:
3043 if (DestClass == cInt)
3044 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3045 else
3046 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
3047 .addImm(0).addImm(clearBits).addImm(31);
3048 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00003049 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003050 return;
3051 }
3052
3053 // Anything we haven't handled already, we can't (yet) handle at all.
Misha Brukmanb097f212004-07-26 18:13:24 +00003054 std::cerr << "Unhandled cast from " << SrcTy->getDescription()
3055 << "to " << DestTy->getDescription() << '\n';
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003056 abort();
3057}
3058
3059/// visitVANextInst - Implement the va_next instruction...
3060///
3061void ISel::visitVANextInst(VANextInst &I) {
3062 unsigned VAList = getReg(I.getOperand(0));
3063 unsigned DestReg = getReg(I);
3064
3065 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00003066 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003067 default:
3068 std::cerr << I;
3069 assert(0 && "Error: bad type for va_next instruction!");
3070 return;
3071 case Type::PointerTyID:
3072 case Type::UIntTyID:
3073 case Type::IntTyID:
3074 Size = 4;
3075 break;
3076 case Type::ULongTyID:
3077 case Type::LongTyID:
3078 case Type::DoubleTyID:
3079 Size = 8;
3080 break;
3081 }
3082
3083 // Increment the VAList pointer...
Misha Brukman1013ef52004-07-21 20:09:08 +00003084 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003085}
3086
3087void ISel::visitVAArgInst(VAArgInst &I) {
3088 unsigned VAList = getReg(I.getOperand(0));
3089 unsigned DestReg = getReg(I);
3090
Misha Brukman358829f2004-06-21 17:25:55 +00003091 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003092 default:
3093 std::cerr << I;
3094 assert(0 && "Error: bad type for va_next instruction!");
3095 return;
3096 case Type::PointerTyID:
3097 case Type::UIntTyID:
3098 case Type::IntTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00003099 BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003100 break;
3101 case Type::ULongTyID:
3102 case Type::LongTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00003103 BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
3104 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003105 break;
Misha Brukmanb097f212004-07-26 18:13:24 +00003106 case Type::FloatTyID:
3107 BuildMI(BB, PPC32::LFS, 2, DestReg).addSImm(0).addReg(VAList);
3108 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003109 case Type::DoubleTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00003110 BuildMI(BB, PPC32::LFD, 2, DestReg).addSImm(0).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003111 break;
3112 }
3113}
3114
3115/// visitGetElementPtrInst - instruction-select GEP instructions
3116///
3117void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
Misha Brukmanb097f212004-07-26 18:13:24 +00003118 if (canFoldGEPIntoLoadOrStore(&I))
3119 return;
3120
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003121 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00003122 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
Misha Brukmanb097f212004-07-26 18:13:24 +00003123 outputReg, false, 0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003124}
3125
Misha Brukman1013ef52004-07-21 20:09:08 +00003126/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
3127/// constant expression GEP support.
3128///
Misha Brukman17a90002004-07-21 20:22:06 +00003129void ISel::emitGEPOperation(MachineBasicBlock *MBB,
3130 MachineBasicBlock::iterator IP,
3131 Value *Src, User::op_iterator IdxBegin,
Misha Brukmanb097f212004-07-26 18:13:24 +00003132 User::op_iterator IdxEnd, unsigned TargetReg,
3133 bool GEPIsFolded, ConstantSInt **RemainderPtr) {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003134 const TargetData &TD = TM.getTargetData();
3135 const Type *Ty = Src->getType();
3136 unsigned basePtrReg = getReg(Src, MBB, IP);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003137 int64_t constValue = 0;
Misha Brukmane2eceb52004-07-23 16:08:20 +00003138
3139 // Record the operations to emit the GEP in a vector so that we can emit them
3140 // after having analyzed the entire instruction.
Misha Brukmanb097f212004-07-26 18:13:24 +00003141 std::vector<CollapsedGepOp> ops;
Misha Brukmane2eceb52004-07-23 16:08:20 +00003142
Misha Brukman1013ef52004-07-21 20:09:08 +00003143 // GEPs have zero or more indices; we must perform a struct access
3144 // or array access for each one.
3145 for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
3146 ++oi) {
3147 Value *idx = *oi;
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003148 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00003149 // It's a struct access. idx is the index into the structure,
3150 // which names the field. Use the TargetData structure to
3151 // pick out what the layout of the structure is in memory.
3152 // Use the (constant) structure index's value to find the
3153 // right byte offset from the StructLayout class's list of
3154 // structure member offsets.
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003155 unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
Misha Brukman1013ef52004-07-21 20:09:08 +00003156 unsigned memberOffset =
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003157 TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
Misha Brukmane2eceb52004-07-23 16:08:20 +00003158
3159 // StructType member offsets are always constant values. Add it to the
3160 // running total.
3161 constValue += memberOffset;
3162
3163 // The next type is the member of the structure selected by the
3164 // index.
3165 Ty = StTy->getElementType (fieldIndex);
3166 } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
Misha Brukman313efcb2004-07-09 15:45:07 +00003167 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
3168 // operand. Handle this case directly now...
3169 if (CastInst *CI = dyn_cast<CastInst>(idx))
3170 if (CI->getOperand(0)->getType() == Type::IntTy ||
3171 CI->getOperand(0)->getType() == Type::UIntTy)
3172 idx = CI->getOperand(0);
Misha Brukman1013ef52004-07-21 20:09:08 +00003173
Misha Brukmane2eceb52004-07-23 16:08:20 +00003174 // It's an array or pointer access: [ArraySize x ElementType].
3175 // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
3176 // must find the size of the pointed-to type (Not coincidentally, the next
3177 // type is the type of the elements in the array).
Misha Brukman1013ef52004-07-21 20:09:08 +00003178 Ty = SqTy->getElementType();
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003179 unsigned elementSize = TD.getTypeSize(Ty);
Misha Brukman1013ef52004-07-21 20:09:08 +00003180
Misha Brukmane2eceb52004-07-23 16:08:20 +00003181 if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003182 if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
3183 constValue += CS->getValue() * elementSize;
3184 else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
3185 constValue += CU->getValue() * elementSize;
3186 else
3187 assert(0 && "Invalid ConstantInt GEP index type!");
3188 } else {
3189 // Push current gep state to this point as an add
Misha Brukmanb097f212004-07-26 18:13:24 +00003190 ops.push_back(CollapsedGepOp(false, 0,
3191 ConstantSInt::get(Type::IntTy,constValue)));
Misha Brukmane2eceb52004-07-23 16:08:20 +00003192
3193 // Push multiply gep op and reset constant value
Misha Brukmanb097f212004-07-26 18:13:24 +00003194 ops.push_back(CollapsedGepOp(true, idx,
3195 ConstantSInt::get(Type::IntTy, elementSize)));
Misha Brukmane2eceb52004-07-23 16:08:20 +00003196
3197 constValue = 0;
Misha Brukman313efcb2004-07-09 15:45:07 +00003198 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003199 }
Misha Brukmane2eceb52004-07-23 16:08:20 +00003200 }
Misha Brukmane2eceb52004-07-23 16:08:20 +00003201 // Emit instructions for all the collapsed ops
Misha Brukmanb097f212004-07-26 18:13:24 +00003202 for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
Misha Brukmane2eceb52004-07-23 16:08:20 +00003203 cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
Misha Brukmanb097f212004-07-26 18:13:24 +00003204 CollapsedGepOp& cgo = *cgo_i;
Misha Brukmane2eceb52004-07-23 16:08:20 +00003205 unsigned nextBasePtrReg = makeAnotherReg (Type::IntTy);
3206
Misha Brukmanb097f212004-07-26 18:13:24 +00003207 if (cgo.isMul) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003208 // We know the elementSize is a constant, so we can emit a constant mul
3209 // and then add it to the current base reg
3210 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanb097f212004-07-26 18:13:24 +00003211 doMultiplyConst(MBB, IP, TmpReg, cgo.index, cgo.size);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003212 BuildMI(*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
3213 .addReg(TmpReg);
3214 } else {
3215 // Try and generate an immediate addition if possible
Misha Brukmanb097f212004-07-26 18:13:24 +00003216 if (cgo.size->isNullValue()) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003217 BuildMI(*MBB, IP, PPC32::OR, 2, nextBasePtrReg).addReg(basePtrReg)
3218 .addReg(basePtrReg);
Misha Brukmanb097f212004-07-26 18:13:24 +00003219 } else if (canUseAsImmediateForOpcode(cgo.size, 0)) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003220 BuildMI(*MBB, IP, PPC32::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
Misha Brukmanb097f212004-07-26 18:13:24 +00003221 .addSImm(cgo.size->getValue());
Misha Brukmane2eceb52004-07-23 16:08:20 +00003222 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00003223 unsigned Op1r = getReg(cgo.size, MBB, IP);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003224 BuildMI(*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
3225 .addReg(Op1r);
3226 }
3227 }
3228
Misha Brukman1013ef52004-07-21 20:09:08 +00003229 basePtrReg = nextBasePtrReg;
Misha Brukman2fec9902004-06-21 20:22:03 +00003230 }
Misha Brukmane2eceb52004-07-23 16:08:20 +00003231 // Add the current base register plus any accumulated constant value
3232 ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
3233
Misha Brukmanb097f212004-07-26 18:13:24 +00003234 // If we are emitting this during a fold, copy the current base register to
3235 // the target, and save the current constant offset so the folding load or
3236 // store can try and use it as an immediate.
3237 if (GEPIsFolded) {
3238 BuildMI (BB, PPC32::OR, 2, TargetReg).addReg(basePtrReg).addReg(basePtrReg);
3239 *RemainderPtr = remainder;
3240 return;
3241 }
3242
Misha Brukman1013ef52004-07-21 20:09:08 +00003243 // After we have processed all the indices, the result is left in
3244 // basePtrReg. Move it to the register where we were expected to
3245 // put the answer.
Misha Brukmane2eceb52004-07-23 16:08:20 +00003246 if (remainder->isNullValue()) {
3247 BuildMI (BB, PPC32::OR, 2, TargetReg).addReg(basePtrReg).addReg(basePtrReg);
3248 } else if (canUseAsImmediateForOpcode(remainder, 0)) {
3249 BuildMI(*MBB, IP, PPC32::ADDI, 2, TargetReg).addReg(basePtrReg)
3250 .addSImm(remainder->getValue());
3251 } else {
3252 unsigned Op1r = getReg(remainder, MBB, IP);
3253 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r);
3254 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003255}
3256
3257/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
3258/// frame manager, otherwise do it the hard way.
3259///
3260void ISel::visitAllocaInst(AllocaInst &I) {
3261 // If this is a fixed size alloca in the entry block for the function, we
3262 // statically stack allocate the space, so we don't need to do anything here.
3263 //
3264 if (dyn_castFixedAlloca(&I)) return;
3265
3266 // Find the data size of the alloca inst's getAllocatedType.
3267 const Type *Ty = I.getAllocatedType();
3268 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
3269
3270 // Create a register to hold the temporary result of multiplying the type size
3271 // constant by the variable amount.
3272 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003273
3274 // TotalSizeReg = mul <numelements>, <TypeSize>
3275 MachineBasicBlock::iterator MBBI = BB->end();
Misha Brukman1013ef52004-07-21 20:09:08 +00003276 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
3277 doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003278
3279 // AddedSize = add <TotalSizeReg>, 15
3280 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00003281 BuildMI(BB, PPC32::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003282
3283 // AlignedSize = and <AddedSize>, ~15
3284 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukmana31f1f72004-07-21 20:30:18 +00003285 BuildMI(BB, PPC32::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
Misha Brukman2fec9902004-06-21 20:22:03 +00003286 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003287
3288 // Subtract size from stack pointer, thereby allocating some space.
3289 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
3290
3291 // Put a pointer to the space into the result register, by copying
3292 // the stack pointer.
3293 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
3294
3295 // Inform the Frame Information that we have just allocated a variable-sized
3296 // object.
3297 F->getFrameInfo()->CreateVariableSizedObject();
3298}
3299
3300/// visitMallocInst - Malloc instructions are code generated into direct calls
3301/// to the library malloc.
3302///
3303void ISel::visitMallocInst(MallocInst &I) {
3304 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
3305 unsigned Arg;
3306
3307 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
3308 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
3309 } else {
3310 Arg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003311 MachineBasicBlock::iterator MBBI = BB->end();
Misha Brukman1013ef52004-07-21 20:09:08 +00003312 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
3313 doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003314 }
3315
3316 std::vector<ValueRecord> Args;
3317 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00003318 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00003319 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00003320 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003321 TM.CalledFunctions.insert(mallocFn);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003322}
3323
3324
3325/// visitFreeInst - Free instructions are code gen'd to call the free libc
3326/// function.
3327///
3328void ISel::visitFreeInst(FreeInst &I) {
3329 std::vector<ValueRecord> Args;
3330 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00003331 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00003332 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(freeFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00003333 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003334 TM.CalledFunctions.insert(freeFn);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003335}
3336
3337/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
3338/// into a machine code representation is a very simple peep-hole fashion. The
3339/// generated code sucks but the implementation is nice and simple.
3340///
3341FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
3342 return new ISel(TM);
3343}