blob: 790aab42c55fcedb27f3ecf90bc0347c6d13d670 [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
Misha Brukmane2eceb52004-07-23 16:08:20 +000014#include "PowerPCTargetMachine.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000015#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Function.h"
18#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000019#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000020#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000021#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/SSARegMap.h"
25#include "llvm/Target/MRegisterInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000029#include "Support/Debug.h"
Misha Brukmane2eceb52004-07-23 16:08:20 +000030#include "Support/Statistic.h"
Misha Brukman98649d12004-06-24 21:54:47 +000031#include <vector>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000032using namespace llvm;
33
34namespace {
Misha Brukmanb097f212004-07-26 18:13:24 +000035 Statistic<> GEPFolds("ppc-codegen", "Number of GEPs folded");
Misha Brukmane2eceb52004-07-23 16:08:20 +000036
Misha Brukman422791f2004-06-21 17:41:12 +000037 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
38 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000039 ///
40 enum TypeClass {
Misha Brukman7e898c32004-07-20 00:41:46 +000041 cByte, cShort, cInt, cFP32, cFP64, cLong
Misha Brukman5dfe3a92004-06-21 16:55:25 +000042 };
43}
44
45/// getClass - Turn a primitive type into a "class" number which is based on the
46/// size of the type, and whether or not it is floating point.
47///
48static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000049 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000050 case Type::SByteTyID:
51 case Type::UByteTyID: return cByte; // Byte operands are class #0
52 case Type::ShortTyID:
53 case Type::UShortTyID: return cShort; // Short operands are class #1
54 case Type::IntTyID:
55 case Type::UIntTyID:
Misha Brukman2834a4d2004-07-07 20:07:22 +000056 case Type::PointerTyID: return cInt; // Ints and pointers are class #2
Misha Brukman5dfe3a92004-06-21 16:55:25 +000057
Misha Brukman7e898c32004-07-20 00:41:46 +000058 case Type::FloatTyID: return cFP32; // Single float is #3
59 case Type::DoubleTyID: return cFP64; // Double Point is #4
Misha Brukman5dfe3a92004-06-21 16:55:25 +000060
61 case Type::LongTyID:
Misha Brukman7e898c32004-07-20 00:41:46 +000062 case Type::ULongTyID: return cLong; // Longs are class #5
Misha Brukman5dfe3a92004-06-21 16:55:25 +000063 default:
64 assert(0 && "Invalid type to getClass!");
65 return cByte; // not reached
66 }
67}
68
69// getClassB - Just like getClass, but treat boolean values as ints.
70static inline TypeClass getClassB(const Type *Ty) {
Misha Brukman4c14f332004-07-23 01:11:19 +000071 if (Ty == Type::BoolTy) return cInt;
Misha Brukman5dfe3a92004-06-21 16:55:25 +000072 return getClass(Ty);
73}
74
75namespace {
76 struct ISel : public FunctionPass, InstVisitor<ISel> {
Misha Brukmane2eceb52004-07-23 16:08:20 +000077 PowerPCTargetMachine &TM;
Misha Brukman5dfe3a92004-06-21 16:55:25 +000078 MachineFunction *F; // The function we are compiling into
79 MachineBasicBlock *BB; // The current MBB we are compiling
80 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Misha Brukmanb097f212004-07-26 18:13:24 +000081
Misha Brukman313efcb2004-07-09 15:45:07 +000082 std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
Misha Brukman5dfe3a92004-06-21 16:55:25 +000083
Misha Brukman2834a4d2004-07-07 20:07:22 +000084 // External functions used in the Module
Misha Brukman7e898c32004-07-20 00:41:46 +000085 Function *fmodfFn, *fmodFn, *__moddi3Fn, *__divdi3Fn, *__umoddi3Fn,
86 *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__floatdisfFn, *__floatdidfFn,
87 *mallocFn, *freeFn;
Misha Brukman2834a4d2004-07-07 20:07:22 +000088
Misha Brukman5dfe3a92004-06-21 16:55:25 +000089 // MBBMap - Mapping between LLVM BB -> Machine BB
90 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
91
92 // AllocaMap - Mapping from fixed sized alloca instructions to the
93 // FrameIndex for the alloca.
94 std::map<AllocaInst*, unsigned> AllocaMap;
95
Misha Brukmanb097f212004-07-26 18:13:24 +000096 // A Reg to hold the base address used for global loads and stores, and a
97 // flag to set whether or not we need to emit it for this function.
98 unsigned GlobalBaseReg;
99 bool GlobalBaseInitialized;
100
Misha Brukmane2eceb52004-07-23 16:08:20 +0000101 ISel(TargetMachine &tm) : TM(reinterpret_cast<PowerPCTargetMachine&>(tm)),
102 F(0), BB(0) {}
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000103
Misha Brukman2834a4d2004-07-07 20:07:22 +0000104 bool doInitialization(Module &M) {
Misha Brukmanb0932592004-07-07 15:36:18 +0000105 // Add external functions that we may call
Misha Brukman2834a4d2004-07-07 20:07:22 +0000106 Type *d = Type::DoubleTy;
Misha Brukmanf3f63822004-07-08 19:41:16 +0000107 Type *f = Type::FloatTy;
Misha Brukman2834a4d2004-07-07 20:07:22 +0000108 Type *l = Type::LongTy;
109 Type *ul = Type::ULongTy;
Misha Brukman313efcb2004-07-09 15:45:07 +0000110 Type *voidPtr = PointerType::get(Type::SByteTy);
Misha Brukman7e898c32004-07-20 00:41:46 +0000111 // float fmodf(float, float);
112 fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000113 // double fmod(double, double);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000114 fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000115 // long __moddi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000116 __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000117 // long __divdi3(long, long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000118 __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000119 // unsigned long __umoddi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000120 __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000121 // unsigned long __udivdi3(unsigned long, unsigned long);
Misha Brukman0aa97c62004-07-08 18:27:59 +0000122 __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
Misha Brukman7e898c32004-07-20 00:41:46 +0000123 // long __fixsfdi(float)
124 __fixdfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
Misha Brukmanf3f63822004-07-08 19:41:16 +0000125 // long __fixdfdi(double)
126 __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
127 // float __floatdisf(long)
128 __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
129 // double __floatdidf(long)
130 __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
Misha Brukman313efcb2004-07-09 15:45:07 +0000131 // void* malloc(size_t)
132 mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
133 // void free(void*)
134 freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000135 return false;
136 }
Misha Brukmand18a31d2004-07-06 22:51:53 +0000137
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000138 /// runOnFunction - Top level implementation of instruction selection for
139 /// the entire function.
140 ///
141 bool runOnFunction(Function &Fn) {
142 // First pass over the function, lower any unknown intrinsic functions
143 // with the IntrinsicLowering class.
144 LowerUnknownIntrinsicFunctionCalls(Fn);
145
146 F = &MachineFunction::construct(&Fn, TM);
147
148 // Create all of the machine basic blocks for the function...
149 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
150 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
151
152 BB = &F->front();
153
Misha Brukmanb097f212004-07-26 18:13:24 +0000154 // Make sure we re-emit a set of the global base reg if necessary
155 GlobalBaseInitialized = false;
156
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000157 // Copy incoming arguments off of the stack...
158 LoadArgumentsToVirtualRegs(Fn);
159
160 // Instruction select everything except PHI nodes
161 visit(Fn);
162
163 // Select the PHI nodes
164 SelectPHINodes();
165
166 RegMap.clear();
167 MBBMap.clear();
168 AllocaMap.clear();
169 F = 0;
170 // We always build a machine code representation for the function
171 return true;
172 }
173
174 virtual const char *getPassName() const {
175 return "PowerPC Simple Instruction Selection";
176 }
177
178 /// visitBasicBlock - This method is called when we are visiting a new basic
179 /// block. This simply creates a new MachineBasicBlock to emit code into
180 /// and adds it to the current MachineFunction. Subsequent visit* for
181 /// instructions will be invoked for all instructions in the basic block.
182 ///
183 void visitBasicBlock(BasicBlock &LLVM_BB) {
184 BB = MBBMap[&LLVM_BB];
185 }
186
187 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
188 /// function, lowering any calls to unknown intrinsic functions into the
189 /// equivalent LLVM code.
190 ///
191 void LowerUnknownIntrinsicFunctionCalls(Function &F);
192
193 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
194 /// from the stack into virtual registers.
195 ///
196 void LoadArgumentsToVirtualRegs(Function &F);
197
198 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
199 /// because we have to generate our sources into the source basic blocks,
200 /// not the current one.
201 ///
202 void SelectPHINodes();
203
204 // Visitation methods for various instructions. These methods simply emit
205 // fixed PowerPC code for each instruction.
206
207 // Control flow operators
208 void visitReturnInst(ReturnInst &RI);
209 void visitBranchInst(BranchInst &BI);
210
211 struct ValueRecord {
212 Value *Val;
213 unsigned Reg;
214 const Type *Ty;
215 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
216 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
217 };
Misha Brukmanb097f212004-07-26 18:13:24 +0000218
219 // This struct is for recording the necessary operations to emit the GEP
220 struct CollapsedGepOp {
221 bool isMul;
222 Value *index;
223 ConstantSInt *size;
224 CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
225 isMul(mul), index(i), size(s) {}
226 };
227
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000228 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +0000229 const std::vector<ValueRecord> &Args, bool isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000230 void visitCallInst(CallInst &I);
231 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
232
233 // Arithmetic operators
234 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
235 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
236 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
237 void visitMul(BinaryOperator &B);
238
239 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
240 void visitRem(BinaryOperator &B) { visitDivRem(B); }
241 void visitDivRem(BinaryOperator &B);
242
243 // Bitwise operators
244 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
245 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
246 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
247
248 // Comparison operators...
249 void visitSetCondInst(SetCondInst &I);
250 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
251 MachineBasicBlock *MBB,
252 MachineBasicBlock::iterator MBBI);
253 void visitSelectInst(SelectInst &SI);
254
255
256 // Memory Instructions
257 void visitLoadInst(LoadInst &I);
258 void visitStoreInst(StoreInst &I);
259 void visitGetElementPtrInst(GetElementPtrInst &I);
260 void visitAllocaInst(AllocaInst &I);
261 void visitMallocInst(MallocInst &I);
262 void visitFreeInst(FreeInst &I);
263
264 // Other operators
265 void visitShiftInst(ShiftInst &I);
266 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
267 void visitCastInst(CastInst &I);
268 void visitVANextInst(VANextInst &I);
269 void visitVAArgInst(VAArgInst &I);
270
271 void visitInstruction(Instruction &I) {
272 std::cerr << "Cannot instruction select: " << I;
273 abort();
274 }
275
276 /// promote32 - Make a value 32-bits wide, and put it somewhere.
277 ///
278 void promote32(unsigned targetReg, const ValueRecord &VR);
279
280 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
281 /// constant expression GEP support.
282 ///
283 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
284 Value *Src, User::op_iterator IdxBegin,
Misha Brukmanb097f212004-07-26 18:13:24 +0000285 User::op_iterator IdxEnd, unsigned TargetReg,
286 bool CollapseRemainder, ConstantSInt **Remainder);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000287
288 /// emitCastOperation - Common code shared between visitCastInst and
289 /// constant expression cast support.
290 ///
291 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
292 Value *Src, const Type *DestTy, unsigned TargetReg);
293
294 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
295 /// and constant expression support.
296 ///
297 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
298 MachineBasicBlock::iterator IP,
299 Value *Op0, Value *Op1,
300 unsigned OperatorClass, unsigned TargetReg);
301
302 /// emitBinaryFPOperation - This method handles emission of floating point
303 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
304 void emitBinaryFPOperation(MachineBasicBlock *BB,
305 MachineBasicBlock::iterator IP,
306 Value *Op0, Value *Op1,
307 unsigned OperatorClass, unsigned TargetReg);
308
309 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
310 Value *Op0, Value *Op1, unsigned TargetReg);
311
Misha Brukman1013ef52004-07-21 20:09:08 +0000312 void doMultiply(MachineBasicBlock *MBB,
313 MachineBasicBlock::iterator IP,
314 unsigned DestReg, Value *Op0, Value *Op1);
315
316 /// doMultiplyConst - This method will multiply the value in Op0Reg by the
317 /// value of the ContantInt *CI
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000318 void doMultiplyConst(MachineBasicBlock *MBB,
Misha Brukman1013ef52004-07-21 20:09:08 +0000319 MachineBasicBlock::iterator IP,
320 unsigned DestReg, Value *Op0, ConstantInt *CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000321
322 void emitDivRemOperation(MachineBasicBlock *BB,
323 MachineBasicBlock::iterator IP,
324 Value *Op0, Value *Op1, bool isDiv,
325 unsigned TargetReg);
326
327 /// emitSetCCOperation - Common code shared between visitSetCondInst and
328 /// constant expression support.
329 ///
330 void emitSetCCOperation(MachineBasicBlock *BB,
331 MachineBasicBlock::iterator IP,
332 Value *Op0, Value *Op1, unsigned Opcode,
333 unsigned TargetReg);
334
335 /// emitShiftOperation - Common code shared between visitShiftInst and
336 /// constant expression support.
337 ///
338 void emitShiftOperation(MachineBasicBlock *MBB,
339 MachineBasicBlock::iterator IP,
340 Value *Op, Value *ShiftAmount, bool isLeftShift,
341 const Type *ResultTy, unsigned DestReg);
342
343 /// emitSelectOperation - Common code shared between visitSelectInst and the
344 /// constant expression support.
Misha Brukmanb097f212004-07-26 18:13:24 +0000345 ///
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000346 void emitSelectOperation(MachineBasicBlock *MBB,
347 MachineBasicBlock::iterator IP,
348 Value *Cond, Value *TrueVal, Value *FalseVal,
349 unsigned DestReg);
350
Misha Brukmanb097f212004-07-26 18:13:24 +0000351 /// copyGlobalBaseToRegister - Output the instructions required to put the
352 /// base address to use for accessing globals into a register.
353 ///
354 void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
355 MachineBasicBlock::iterator IP,
356 unsigned R);
357
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000358 /// copyConstantToRegister - Output the instructions required to put the
359 /// specified constant into the specified register.
360 ///
361 void copyConstantToRegister(MachineBasicBlock *MBB,
362 MachineBasicBlock::iterator MBBI,
363 Constant *C, unsigned Reg);
364
365 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
366 unsigned LHS, unsigned RHS);
367
368 /// makeAnotherReg - This method returns the next register number we haven't
369 /// yet used.
370 ///
371 /// Long values are handled somewhat specially. They are always allocated
372 /// as pairs of 32 bit integer values. The register number returned is the
Misha Brukman1013ef52004-07-21 20:09:08 +0000373 /// high 32 bits of the long value, and the regNum+1 is the low 32 bits.
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000374 ///
375 unsigned makeAnotherReg(const Type *Ty) {
376 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
377 "Current target doesn't have PPC reg info??");
378 const PowerPCRegisterInfo *MRI =
379 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
380 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
381 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
382 // Create the lower part
383 F->getSSARegMap()->createVirtualRegister(RC);
384 // Create the upper part.
385 return F->getSSARegMap()->createVirtualRegister(RC)-1;
386 }
387
388 // Add the mapping of regnumber => reg class to MachineFunction
389 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
390 return F->getSSARegMap()->createVirtualRegister(RC);
391 }
392
393 /// getReg - This method turns an LLVM value into a register number.
394 ///
395 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
396 unsigned getReg(Value *V) {
397 // Just append to the end of the current bb.
398 MachineBasicBlock::iterator It = BB->end();
399 return getReg(V, BB, It);
400 }
401 unsigned getReg(Value *V, MachineBasicBlock *MBB,
402 MachineBasicBlock::iterator IPt);
Misha Brukman1013ef52004-07-21 20:09:08 +0000403
404 /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
405 /// is okay to use as an immediate argument to a certain binary operation
406 bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000407
408 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
409 /// that is to be statically allocated with the initial stack frame
410 /// adjustment.
411 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
412 };
413}
414
415/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
416/// instruction in the entry block, return it. Otherwise, return a null
417/// pointer.
418static AllocaInst *dyn_castFixedAlloca(Value *V) {
419 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
420 BasicBlock *BB = AI->getParent();
421 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
422 return AI;
423 }
424 return 0;
425}
426
427/// getReg - This method turns an LLVM value into a register number.
428///
429unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
430 MachineBasicBlock::iterator IPt) {
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000431 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattnera51e4f62004-07-18 18:45:01 +0000432 unsigned Reg = makeAnotherReg(V->getType());
433 copyConstantToRegister(MBB, IPt, C, Reg);
434 return Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000435 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
436 unsigned Reg = makeAnotherReg(V->getType());
437 unsigned FI = getFixedSizedAllocaFI(AI);
438 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
439 return Reg;
440 }
441
442 unsigned &Reg = RegMap[V];
443 if (Reg == 0) {
444 Reg = makeAnotherReg(V->getType());
445 RegMap[V] = Reg;
446 }
447
448 return Reg;
449}
450
Misha Brukman1013ef52004-07-21 20:09:08 +0000451/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
452/// is okay to use as an immediate argument to a certain binary operator.
453///
454/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
Misha Brukman47225442004-07-23 22:35:49 +0000455bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000456 ConstantSInt *Op1Cs;
457 ConstantUInt *Op1Cu;
458
459 // ADDI, Compare, and non-indexed Load take SIMM
Misha Brukman17a90002004-07-21 20:22:06 +0000460 bool cond1 = (Operator == 0)
461 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
Misha Brukman1013ef52004-07-21 20:09:08 +0000462 && (Op1Cs->getValue() <= 32767)
Misha Brukman17a90002004-07-21 20:22:06 +0000463 && (Op1Cs->getValue() >= -32768);
Misha Brukman1013ef52004-07-21 20:09:08 +0000464
465 // SUBI takes -SIMM since it is a mnemonic for ADDI
Misha Brukman17a90002004-07-21 20:22:06 +0000466 bool cond2 = (Operator == 1)
467 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
Misha Brukman1013ef52004-07-21 20:09:08 +0000468 && (Op1Cs->getValue() <= 32768)
Misha Brukman17a90002004-07-21 20:22:06 +0000469 && (Op1Cs->getValue() >= -32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000470
471 // ANDIo, ORI, and XORI take unsigned values
Misha Brukman17a90002004-07-21 20:22:06 +0000472 bool cond3 = (Operator >= 2)
Misha Brukman2ed17ca2004-07-22 15:58:04 +0000473 && (Op1Cs = dyn_cast<ConstantSInt>(CI))
474 && (Op1Cs->getValue() >= 0)
Misha Brukman17a90002004-07-21 20:22:06 +0000475 && (Op1Cs->getValue() <= 32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000476
477 // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
Misha Brukman17a90002004-07-21 20:22:06 +0000478 bool cond4 = (Operator < 2)
479 && (Op1Cu = dyn_cast<ConstantUInt>(CI))
480 && (Op1Cu->getValue() <= 32767);
Misha Brukman1013ef52004-07-21 20:09:08 +0000481
482 // ANDIo, ORI, and XORI take UIMMs, so they can be larger
Misha Brukman17a90002004-07-21 20:22:06 +0000483 bool cond5 = (Operator >= 2)
484 && (Op1Cu = dyn_cast<ConstantUInt>(CI))
485 && (Op1Cu->getValue() <= 65535);
Misha Brukman1013ef52004-07-21 20:09:08 +0000486
487 if (cond1 || cond2 || cond3 || cond4 || cond5)
488 return true;
489
490 return false;
491}
492
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000493/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
494/// that is to be statically allocated with the initial stack frame
495/// adjustment.
496unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
497 // Already computed this?
498 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
499 if (I != AllocaMap.end() && I->first == AI) return I->second;
500
501 const Type *Ty = AI->getAllocatedType();
502 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
503 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
504 TySize *= CUI->getValue(); // Get total allocated size...
505 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
506
507 // Create a new stack object using the frame manager...
508 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
509 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
510 return FrameIdx;
511}
512
513
Misha Brukmanb097f212004-07-26 18:13:24 +0000514/// copyGlobalBaseToRegister - Output the instructions required to put the
515/// base address to use for accessing globals into a register.
516///
517void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
518 MachineBasicBlock::iterator IP,
519 unsigned R) {
520 if (!GlobalBaseInitialized) {
521 // Insert the set of GlobalBaseReg into the first MBB of the function
522 MachineBasicBlock &FirstMBB = F->front();
523 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
524 GlobalBaseReg = makeAnotherReg(Type::IntTy);
Misha Brukman435c7852004-07-27 17:13:58 +0000525 BuildMI(FirstMBB, MBBI, PPC32::IMPLICIT_DEF, 0, PPC32::LR);
Misha Brukmanb097f212004-07-26 18:13:24 +0000526 BuildMI(FirstMBB, MBBI, PPC32::MovePCtoLR, 0, GlobalBaseReg);
527 GlobalBaseInitialized = true;
528 }
529 // Emit our copy of GlobalBaseReg to the destination register in the
530 // current MBB
531 BuildMI(*MBB, IP, PPC32::OR, 2, R).addReg(GlobalBaseReg)
532 .addReg(GlobalBaseReg);
533}
534
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000535/// copyConstantToRegister - Output the instructions required to put the
536/// specified constant into the specified register.
537///
538void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
539 MachineBasicBlock::iterator IP,
540 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000541 if (C->getType()->isIntegral()) {
542 unsigned Class = getClassB(C->getType());
543
544 if (Class == cLong) {
545 // Copy the value into the register pair.
546 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman7e898c32004-07-20 00:41:46 +0000547
548 if (Val < (1ULL << 16)) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000549 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
550 BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addSImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000551 } else if (Val < (1ULL << 32)) {
552 unsigned Temp = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +0000553 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
554 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm((Val >> 16) & 0xFFFF);
555 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(Temp).addImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000556 } else if (Val < (1ULL << 48)) {
557 unsigned Temp = makeAnotherReg(Type::IntTy);
Misha Brukman8b297762004-07-28 00:56:04 +0000558 int HiBits = (Val >> 32) & 0xFFFF;
559 if (HiBits > 32767) {
560 BuildMI(*MBB, IP, PPC32::LI, 1, PPC32::R0).addImm(0);
561 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0).addSImm(HiBits);
562 } else {
563 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(HiBits);
564 }
Misha Brukman1013ef52004-07-21 20:09:08 +0000565 BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm((Val >> 16) & 0xFFFF);
566 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(Temp).addImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000567 } else {
568 unsigned TempLo = makeAnotherReg(Type::IntTy);
569 unsigned TempHi = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +0000570 BuildMI(*MBB, IP, PPC32::LIS, 1, TempHi).addSImm((Val >> 48) & 0xFFFF);
571 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TempHi)
Misha Brukman7e898c32004-07-20 00:41:46 +0000572 .addImm((Val >> 32) & 0xFFFF);
Misha Brukman1013ef52004-07-21 20:09:08 +0000573 BuildMI(*MBB, IP, PPC32::LIS, 1, TempLo).addSImm((Val >> 16) & 0xFFFF);
574 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(TempLo)
575 .addImm(Val & 0xFFFF);
Misha Brukman7e898c32004-07-20 00:41:46 +0000576 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000577 return;
578 }
579
580 assert(Class <= cInt && "Type not handled yet!");
581
582 if (C->getType() == Type::BoolTy) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000583 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000584 } else if (Class == cByte || Class == cShort) {
585 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukman1013ef52004-07-21 20:09:08 +0000586 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000587 } else {
588 ConstantInt *CI = cast<ConstantInt>(C);
589 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
590 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000591 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000592 } else {
593 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanbebde752004-07-16 21:06:24 +0000594 BuildMI(*MBB, IP, PPC32::LIS, 1, TmpReg)
Misha Brukman1013ef52004-07-21 20:09:08 +0000595 .addSImm(CI->getRawValue() >> 16);
Misha Brukman911afde2004-06-25 14:50:41 +0000596 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
597 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000598 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000599 }
600 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000601 // We need to spill the constant to memory...
602 MachineConstantPool *CP = F->getConstantPool();
603 unsigned CPI = CP->getConstantPoolIndex(CFP);
604 const Type *Ty = CFP->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000605
Misha Brukmand18a31d2004-07-06 22:51:53 +0000606 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukmanfc879c32004-07-08 18:02:38 +0000607
Misha Brukmanb097f212004-07-26 18:13:24 +0000608 // Load addr of constant to reg; constant is located at base + distance
609 unsigned GlobalBase = makeAnotherReg(Type::IntTy);
Misha Brukmanfc879c32004-07-08 18:02:38 +0000610 unsigned Reg1 = makeAnotherReg(Type::IntTy);
611 unsigned Reg2 = makeAnotherReg(Type::IntTy);
Misha Brukmanb097f212004-07-26 18:13:24 +0000612 // Move value at base + distance into return reg
613 copyGlobalBaseToRegister(MBB, IP, GlobalBase);
614 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, Reg1).addReg(GlobalBase)
Misha Brukmanfc879c32004-07-08 18:02:38 +0000615 .addConstantPoolIndex(CPI);
Misha Brukmanec6319a2004-07-20 15:51:37 +0000616 BuildMI(*MBB, IP, PPC32::LOADLoDirect, 2, Reg2).addReg(Reg1)
Misha Brukmanfc879c32004-07-08 18:02:38 +0000617 .addConstantPoolIndex(CPI);
618
Misha Brukmand18a31d2004-07-06 22:51:53 +0000619 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukman1013ef52004-07-21 20:09:08 +0000620 BuildMI(*MBB, IP, LoadOpcode, 2, R).addSImm(0).addReg(Reg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000621 } else if (isa<ConstantPointerNull>(C)) {
622 // Copy zero (null pointer) to the register.
Misha Brukman1013ef52004-07-21 20:09:08 +0000623 BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
Chris Lattner67910e12004-07-18 07:29:35 +0000624 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
Misha Brukmanb097f212004-07-26 18:13:24 +0000625 // GV is located at base + distance
626 unsigned GlobalBase = makeAnotherReg(Type::IntTy);
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000627 unsigned TmpReg = makeAnotherReg(GV->getType());
Misha Brukmanbf417a62004-07-20 20:43:05 +0000628 unsigned Opcode = (GV->hasWeakLinkage() || GV->isExternal()) ?
629 PPC32::LOADLoIndirect : PPC32::LOADLoDirect;
Misha Brukmanb097f212004-07-26 18:13:24 +0000630
631 // Move value at base + distance into return reg
632 copyGlobalBaseToRegister(MBB, IP, GlobalBase);
633 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, TmpReg).addReg(GlobalBase)
Misha Brukmanba1c1da2004-07-20 00:59:38 +0000634 .addGlobalAddress(GV);
Misha Brukmanec6319a2004-07-20 15:51:37 +0000635 BuildMI(*MBB, IP, Opcode, 2, R).addReg(TmpReg).addGlobalAddress(GV);
Misha Brukmane2eceb52004-07-23 16:08:20 +0000636
637 // Add the GV to the list of things whose addresses have been taken.
638 TM.AddressTaken.insert(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000639 } else {
Chris Lattner76e2df22004-07-15 02:14:30 +0000640 std::cerr << "Offending constant: " << *C << "\n";
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000641 assert(0 && "Type not handled yet!");
642 }
643}
644
645/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
646/// the stack into virtual registers.
647///
648/// FIXME: When we can calculate which args are coming in via registers
649/// source them from there instead.
650void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000651 unsigned ArgOffset = 20; // FIXME why is this not 24?
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000652 unsigned GPR_remaining = 8;
653 unsigned FPR_remaining = 13;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000654 unsigned GPR_idx = 0, FPR_idx = 0;
655 static const unsigned GPR[] = {
656 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
657 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
658 };
659 static const unsigned FPR[] = {
Misha Brukman32caa8d2004-07-14 17:57:04 +0000660 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7,
Misha Brukman2834a4d2004-07-07 20:07:22 +0000661 PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13
Misha Brukmand18a31d2004-07-06 22:51:53 +0000662 };
Misha Brukman422791f2004-06-21 17:41:12 +0000663
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000664 MachineFrameInfo *MFI = F->getFrameInfo();
Misha Brukmand18a31d2004-07-06 22:51:53 +0000665
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000666 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
667 bool ArgLive = !I->use_empty();
668 unsigned Reg = ArgLive ? getReg(*I) : 0;
669 int FI; // Frame object index
670
671 switch (getClassB(I->getType())) {
672 case cByte:
673 if (ArgLive) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000674 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000675 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000676 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000677 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
678 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000679 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000680 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000681 }
682 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000683 break;
684 case cShort:
685 if (ArgLive) {
Misha Brukmanec6319a2004-07-20 15:51:37 +0000686 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000687 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000688 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000689 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
690 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000691 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000692 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000693 }
694 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000695 break;
696 case cInt:
697 if (ArgLive) {
698 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000699 if (GPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000700 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000701 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
702 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000703 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000704 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000705 }
706 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000707 break;
708 case cLong:
709 if (ArgLive) {
710 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000711 if (GPR_remaining > 1) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000712 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx]);
713 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, GPR[GPR_idx+1]);
Misha Brukman313efcb2004-07-09 15:45:07 +0000714 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
715 .addReg(GPR[GPR_idx]);
716 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
717 .addReg(GPR[GPR_idx+1]);
Misha Brukman422791f2004-06-21 17:41:12 +0000718 } else {
Misha Brukman313efcb2004-07-09 15:45:07 +0000719 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
720 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
Misha Brukman422791f2004-06-21 17:41:12 +0000721 }
722 }
Misha Brukman1013ef52004-07-21 20:09:08 +0000723 // longs require 4 additional bytes and use 2 GPRs
724 ArgOffset += 4;
Misha Brukman422791f2004-06-21 17:41:12 +0000725 if (GPR_remaining > 1) {
Misha Brukman1013ef52004-07-21 20:09:08 +0000726 GPR_remaining--;
Misha Brukman422791f2004-06-21 17:41:12 +0000727 GPR_idx++;
728 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000729 break;
Misha Brukman7e898c32004-07-20 00:41:46 +0000730 case cFP32:
731 if (ArgLive) {
732 FI = MFI->CreateFixedObject(4, ArgOffset);
733
Misha Brukman422791f2004-06-21 17:41:12 +0000734 if (FPR_remaining > 0) {
Misha Brukmanbebde752004-07-16 21:06:24 +0000735 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000736 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
737 FPR_remaining--;
738 FPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000739 } else {
Misha Brukman7e898c32004-07-20 00:41:46 +0000740 addFrameReference(BuildMI(BB, PPC32::LFS, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000741 }
742 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000743 break;
744 case cFP64:
745 if (ArgLive) {
746 FI = MFI->CreateFixedObject(8, ArgOffset);
747
748 if (FPR_remaining > 0) {
749 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, FPR[FPR_idx]);
750 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
751 FPR_remaining--;
752 FPR_idx++;
753 } else {
754 addFrameReference(BuildMI(BB, PPC32::LFD, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000755 }
756 }
Misha Brukman7e898c32004-07-20 00:41:46 +0000757
758 // doubles require 4 additional bytes and use 2 GPRs of param space
759 ArgOffset += 4;
760 if (GPR_remaining > 0) {
761 GPR_remaining--;
762 GPR_idx++;
763 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000764 break;
765 default:
766 assert(0 && "Unhandled argument type!");
767 }
768 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000769 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000770 GPR_remaining--; // uses up 2 GPRs
771 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000772 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000773 }
774
775 // If the function takes variable number of arguments, add a frame offset for
776 // the start of the first vararg value... this is used to expand
777 // llvm.va_start.
778 if (Fn.getFunctionType()->isVarArg())
Misha Brukmanb097f212004-07-26 18:13:24 +0000779 VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000780}
781
782
783/// SelectPHINodes - Insert machine code to generate phis. This is tricky
784/// because we have to generate our sources into the source basic blocks, not
785/// the current one.
786///
787void ISel::SelectPHINodes() {
788 const TargetInstrInfo &TII = *TM.getInstrInfo();
789 const Function &LF = *F->getFunction(); // The LLVM function...
790 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
791 const BasicBlock *BB = I;
792 MachineBasicBlock &MBB = *MBBMap[I];
793
794 // Loop over all of the PHI nodes in the LLVM basic block...
795 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
796 for (BasicBlock::const_iterator I = BB->begin();
797 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
798
799 // Create a new machine instr PHI node, and insert it.
800 unsigned PHIReg = getReg(*PN);
801 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
802 PPC32::PHI, PN->getNumOperands(), PHIReg);
803
804 MachineInstr *LongPhiMI = 0;
805 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
806 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
807 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
808
809 // PHIValues - Map of blocks to incoming virtual registers. We use this
810 // so that we only initialize one incoming value for a particular block,
811 // even if the block has multiple entries in the PHI node.
812 //
813 std::map<MachineBasicBlock*, unsigned> PHIValues;
814
815 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Misha Brukman313efcb2004-07-09 15:45:07 +0000816 MachineBasicBlock *PredMBB = 0;
817 for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
818 PE = MBB.pred_end (); PI != PE; ++PI)
819 if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
820 PredMBB = *PI;
821 break;
822 }
823 assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
824
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000825 unsigned ValReg;
826 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
827 PHIValues.lower_bound(PredMBB);
828
829 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
830 // We already inserted an initialization of the register for this
831 // predecessor. Recycle it.
832 ValReg = EntryIt->second;
Misha Brukman47225442004-07-23 22:35:49 +0000833 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000834 // Get the incoming value into a virtual register.
835 //
836 Value *Val = PN->getIncomingValue(i);
837
838 // If this is a constant or GlobalValue, we may have to insert code
839 // into the basic block to compute it into a virtual register.
840 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
841 isa<GlobalValue>(Val)) {
842 // Simple constants get emitted at the end of the basic block,
843 // before any terminator instructions. We "know" that the code to
844 // move a constant into a register will never clobber any flags.
845 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
846 } else {
847 // Because we don't want to clobber any values which might be in
848 // physical registers with the computation of this constant (which
849 // might be arbitrarily complex if it is a constant expression),
850 // just insert the computation at the top of the basic block.
851 MachineBasicBlock::iterator PI = PredMBB->begin();
Misha Brukman47225442004-07-23 22:35:49 +0000852
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000853 // Skip over any PHI nodes though!
854 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
855 ++PI;
Misha Brukman47225442004-07-23 22:35:49 +0000856
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000857 ValReg = getReg(Val, PredMBB, PI);
858 }
859
860 // Remember that we inserted a value for this PHI for this predecessor
861 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
862 }
863
864 PhiMI->addRegOperand(ValReg);
865 PhiMI->addMachineBasicBlockOperand(PredMBB);
866 if (LongPhiMI) {
867 LongPhiMI->addRegOperand(ValReg+1);
868 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
869 }
870 }
871
872 // Now that we emitted all of the incoming values for the PHI node, make
873 // sure to reposition the InsertPoint after the PHI that we just added.
874 // This is needed because we might have inserted a constant into this
875 // block, right after the PHI's which is before the old insert point!
876 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
877 ++PHIInsertPoint;
878 }
879 }
880}
881
882
883// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
884// it into the conditional branch or select instruction which is the only user
885// of the cc instruction. This is the case if the conditional branch is the
886// only user of the setcc, and if the setcc is in the same basic block as the
Misha Brukman1013ef52004-07-21 20:09:08 +0000887// conditional branch.
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000888//
889static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
890 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
891 if (SCI->hasOneUse()) {
892 Instruction *User = cast<Instruction>(SCI->use_back());
893 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
Misha Brukmanbebde752004-07-16 21:06:24 +0000894 SCI->getParent() == User->getParent())
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000895 return SCI;
896 }
897 return 0;
898}
899
Misha Brukmanb097f212004-07-26 18:13:24 +0000900
901// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
902// the load or store instruction that is the only user of the GEP.
903//
904static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
905 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
906 if (GEPI->hasOneUse()) {
907 Instruction *User = cast<Instruction>(GEPI->use_back());
908 if (isa<StoreInst>(User) &&
909 GEPI->getParent() == User->getParent() &&
910 User->getOperand(0) != GEPI &&
911 User->getOperand(1) == GEPI) {
912 ++GEPFolds;
913 return GEPI;
914 }
915 if (isa<LoadInst>(User) &&
916 GEPI->getParent() == User->getParent() &&
917 User->getOperand(0) == GEPI) {
918 ++GEPFolds;
919 return GEPI;
920 }
921 }
922 return 0;
923}
924
925
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000926// Return a fixed numbering for setcc instructions which does not depend on the
927// order of the opcodes.
928//
929static unsigned getSetCCNumber(unsigned Opcode) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000930 switch (Opcode) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000931 default: assert(0 && "Unknown setcc instruction!");
932 case Instruction::SetEQ: return 0;
933 case Instruction::SetNE: return 1;
934 case Instruction::SetLT: return 2;
935 case Instruction::SetGE: return 3;
936 case Instruction::SetGT: return 4;
937 case Instruction::SetLE: return 5;
938 }
939}
940
Misha Brukmane9c65512004-07-06 15:32:44 +0000941static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
942 switch (Opcode) {
943 default: assert(0 && "Unknown setcc instruction!");
944 case Instruction::SetEQ: return PPC32::BEQ;
945 case Instruction::SetNE: return PPC32::BNE;
946 case Instruction::SetLT: return PPC32::BLT;
947 case Instruction::SetGE: return PPC32::BGE;
948 case Instruction::SetGT: return PPC32::BGT;
949 case Instruction::SetLE: return PPC32::BLE;
950 }
951}
952
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000953/// emitUCOM - emits an unordered FP compare.
954void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
955 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000956 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000957}
958
Misha Brukmanbebde752004-07-16 21:06:24 +0000959/// EmitComparison - emits a comparison of the two operands, returning the
960/// extended setcc code to use. The result is in CR0.
961///
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000962unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
963 MachineBasicBlock *MBB,
964 MachineBasicBlock::iterator IP) {
965 // The arguments are already supposed to be of the same type.
966 const Type *CompTy = Op0->getType();
967 unsigned Class = getClassB(CompTy);
968 unsigned Op0r = getReg(Op0, MBB, IP);
Misha Brukman47225442004-07-23 22:35:49 +0000969
Misha Brukmanb097f212004-07-26 18:13:24 +0000970 // Before we do a comparison, we have to make sure that we're truncating our
971 // registers appropriately.
972 if (Class == cByte) {
973 unsigned TmpReg = makeAnotherReg(CompTy);
974 if (CompTy->isSigned())
975 BuildMI(*MBB, IP, PPC32::EXTSB, 1, TmpReg).addReg(Op0r);
976 else
977 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
978 .addImm(24).addImm(31);
979 Op0r = TmpReg;
980 } else if (Class == cShort) {
981 unsigned TmpReg = makeAnotherReg(CompTy);
982 if (CompTy->isSigned())
983 BuildMI(*MBB, IP, PPC32::EXTSH, 1, TmpReg).addReg(Op0r);
984 else
985 BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
986 .addImm(16).addImm(31);
987 Op0r = TmpReg;
988 }
989
Misha Brukman1013ef52004-07-21 20:09:08 +0000990 // Use crand for lt, gt and crandc for le, ge
991 unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC32::CRAND : PPC32::CRANDC;
992 // ? cr1[lt] : cr1[gt]
993 unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 4 : 5;
994 // ? cr0[lt] : cr0[gt]
995 unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1;
Misha Brukman2ed17ca2004-07-22 15:58:04 +0000996 unsigned Opcode = CompTy->isSigned() ? PPC32::CMPW : PPC32::CMPLW;
997 unsigned OpcodeImm = CompTy->isSigned() ? PPC32::CMPWI : PPC32::CMPLWI;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000998
999 // Special case handling of: cmp R, i
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001000 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001001 if (Class == cByte || Class == cShort || Class == cInt) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001002 unsigned Op1v = CI->getRawValue() & 0xFFFF;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001003
Misha Brukman1013ef52004-07-21 20:09:08 +00001004 // Treat compare like ADDI for the purposes of immediate suitability
1005 if (canUseAsImmediateForOpcode(CI, 0)) {
1006 BuildMI(*MBB, IP, OpcodeImm, 2, PPC32::CR0).addReg(Op0r).addSImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +00001007 } else {
1008 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00001009 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +00001010 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001011 return OpNum;
1012 } else {
1013 assert(Class == cLong && "Unknown integer class!");
1014 unsigned LowCst = CI->getRawValue();
1015 unsigned HiCst = CI->getRawValue() >> 32;
1016 if (OpNum < 2) { // seteq, setne
Misha Brukman1013ef52004-07-21 20:09:08 +00001017 unsigned LoLow = makeAnotherReg(Type::IntTy);
1018 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1019 unsigned HiLow = makeAnotherReg(Type::IntTy);
1020 unsigned HiTmp = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001021 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Misha Brukman47225442004-07-23 22:35:49 +00001022
Misha Brukman1013ef52004-07-21 20:09:08 +00001023 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r+1)
1024 .addImm(LowCst & 0xFFFF);
1025 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
1026 .addImm(LowCst >> 16);
1027 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r)
1028 .addImm(HiCst & 0xFFFF);
1029 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
1030 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001031 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001032 return OpNum;
1033 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001034 unsigned ConstReg = makeAnotherReg(CompTy);
Misha Brukmanbebde752004-07-16 21:06:24 +00001035 copyConstantToRegister(MBB, IP, CI, ConstReg);
Misha Brukman47225442004-07-23 22:35:49 +00001036
Misha Brukman1013ef52004-07-21 20:09:08 +00001037 // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001038 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r)
Misha Brukmanbebde752004-07-16 21:06:24 +00001039 .addReg(ConstReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001040 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR1).addReg(Op0r+1)
Misha Brukman1013ef52004-07-21 20:09:08 +00001041 .addReg(ConstReg+1);
1042 BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
1043 BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
1044 .addImm(2);
Misha Brukman422791f2004-06-21 17:41:12 +00001045 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001046 }
1047 }
1048 }
1049
1050 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00001051
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001052 switch (Class) {
1053 default: assert(0 && "Unknown type class!");
1054 case cByte:
1055 case cShort:
1056 case cInt:
Misha Brukman1013ef52004-07-21 20:09:08 +00001057 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001058 break;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001059
Misha Brukman7e898c32004-07-20 00:41:46 +00001060 case cFP32:
1061 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001062 emitUCOM(MBB, IP, Op0r, Op1r);
1063 break;
1064
1065 case cLong:
1066 if (OpNum < 2) { // seteq, setne
1067 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1068 unsigned HiTmp = makeAnotherReg(Type::IntTy);
1069 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001070 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r);
1071 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001072 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001073 break; // Allow the sete or setne to be generated from flags set by OR
1074 } else {
Misha Brukmanbebde752004-07-16 21:06:24 +00001075 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1076 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001077
1078 // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001079 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
1080 BuildMI(*MBB, IP, Opcode, 2, PPC32::CR1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001081 BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
1082 BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
1083 .addImm(2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001084 return OpNum;
1085 }
1086 }
1087 return OpNum;
1088}
1089
Misha Brukmand18a31d2004-07-06 22:51:53 +00001090/// visitSetCondInst - emit code to calculate the condition via
1091/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001092///
1093void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001094 if (canFoldSetCCIntoBranchOrSelect(&I))
Misha Brukmane9c65512004-07-06 15:32:44 +00001095 return;
Misha Brukmanbebde752004-07-16 21:06:24 +00001096
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001097 unsigned DestReg = getReg(I);
Misha Brukman2834a4d2004-07-07 20:07:22 +00001098 unsigned OpNum = I.getOpcode();
Misha Brukman425ff242004-07-01 21:34:10 +00001099 const Type *Ty = I.getOperand (0)->getType();
Misha Brukman47225442004-07-23 22:35:49 +00001100
Misha Brukmand18a31d2004-07-06 22:51:53 +00001101 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
Misha Brukman47225442004-07-23 22:35:49 +00001102
Misha Brukmand18a31d2004-07-06 22:51:53 +00001103 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
Misha Brukman425ff242004-07-01 21:34:10 +00001104 MachineBasicBlock *thisMBB = BB;
1105 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001106 ilist<MachineBasicBlock>::iterator It = BB;
1107 ++It;
1108
Misha Brukman425ff242004-07-01 21:34:10 +00001109 // thisMBB:
1110 // ...
1111 // cmpTY cr0, r1, r2
1112 // bCC copy1MBB
1113 // b copy0MBB
1114
1115 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1116 // if we could insert other, non-terminator instructions after the
1117 // bCC. But MBB->getFirstTerminator() can't understand this.
1118 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001119 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001120 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1121 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001122 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001123 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
Misha Brukman1013ef52004-07-21 20:09:08 +00001124 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1125 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukman425ff242004-07-01 21:34:10 +00001126 // Update machine-CFG edges
1127 BB->addSuccessor(copy1MBB);
1128 BB->addSuccessor(copy0MBB);
1129
Misha Brukman425ff242004-07-01 21:34:10 +00001130 // copy1MBB:
1131 // %TrueValue = li 1
Misha Brukmane9c65512004-07-06 15:32:44 +00001132 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +00001133 BB = copy1MBB;
Misha Brukmane2eceb52004-07-23 16:08:20 +00001134 unsigned TrueValue = makeAnotherReg(I.getType());
Misha Brukman1013ef52004-07-21 20:09:08 +00001135 BuildMI(BB, PPC32::LI, 1, TrueValue).addSImm(1);
Misha Brukman425ff242004-07-01 21:34:10 +00001136 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1137 // Update machine-CFG edges
1138 BB->addSuccessor(sinkMBB);
1139
Misha Brukman1013ef52004-07-21 20:09:08 +00001140 // copy0MBB:
1141 // %FalseValue = li 0
1142 // fallthrough
1143 BB = copy0MBB;
1144 unsigned FalseValue = makeAnotherReg(I.getType());
1145 BuildMI(BB, PPC32::LI, 1, FalseValue).addSImm(0);
1146 // Update machine-CFG edges
1147 BB->addSuccessor(sinkMBB);
1148
Misha Brukman425ff242004-07-01 21:34:10 +00001149 // sinkMBB:
1150 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1151 // ...
1152 BB = sinkMBB;
1153 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1154 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001155}
1156
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001157void ISel::visitSelectInst(SelectInst &SI) {
1158 unsigned DestReg = getReg(SI);
1159 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001160 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1161 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001162}
1163
1164/// emitSelect - Common code shared between visitSelectInst and the constant
1165/// expression support.
1166/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
1167/// no select instruction. FSEL only works for comparisons against zero.
1168void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1169 MachineBasicBlock::iterator IP,
1170 Value *Cond, Value *TrueVal, Value *FalseVal,
1171 unsigned DestReg) {
1172 unsigned SelectClass = getClassB(TrueVal->getType());
Misha Brukman7e898c32004-07-20 00:41:46 +00001173 unsigned Opcode;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001174
Misha Brukmanbebde752004-07-16 21:06:24 +00001175 // See if we can fold the setcc into the select instruction, or if we have
1176 // to get the register of the Cond value
Misha Brukmanbebde752004-07-16 21:06:24 +00001177 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1178 // We successfully folded the setcc into the select instruction.
Misha Brukmanbebde752004-07-16 21:06:24 +00001179 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukman47225442004-07-23 22:35:49 +00001180 OpNum = EmitComparison(OpNum, SCI->getOperand(0),SCI->getOperand(1),MBB,IP);
Misha Brukmanbebde752004-07-16 21:06:24 +00001181 Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
1182 } else {
1183 unsigned CondReg = getReg(Cond, MBB, IP);
Misha Brukman1013ef52004-07-21 20:09:08 +00001184 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(CondReg).addSImm(0);
Misha Brukmanbebde752004-07-16 21:06:24 +00001185 Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001186 }
Misha Brukmanbebde752004-07-16 21:06:24 +00001187
1188 // thisMBB:
1189 // ...
1190 // cmpTY cr0, r1, r2
1191 // bCC copy1MBB
1192 // b copy0MBB
1193
1194 MachineBasicBlock *thisMBB = BB;
1195 const BasicBlock *LLVM_BB = BB->getBasicBlock();
Misha Brukman7e898c32004-07-20 00:41:46 +00001196 ilist<MachineBasicBlock>::iterator It = BB;
1197 ++It;
Misha Brukmanbebde752004-07-16 21:06:24 +00001198
1199 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
1200 // if we could insert other, non-terminator instructions after the
1201 // bCC. But MBB->getFirstTerminator() can't understand this.
1202 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001203 F->getBasicBlockList().insert(It, copy1MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001204 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
1205 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
Misha Brukman7e898c32004-07-20 00:41:46 +00001206 F->getBasicBlockList().insert(It, copy0MBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001207 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
Misha Brukman1013ef52004-07-21 20:09:08 +00001208 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
1209 F->getBasicBlockList().insert(It, sinkMBB);
Misha Brukmanbebde752004-07-16 21:06:24 +00001210 // Update machine-CFG edges
1211 BB->addSuccessor(copy1MBB);
1212 BB->addSuccessor(copy0MBB);
1213
Misha Brukmanbebde752004-07-16 21:06:24 +00001214 // copy1MBB:
1215 // %TrueValue = ...
1216 // b sinkMBB
1217 BB = copy1MBB;
1218 unsigned TrueValue = getReg(TrueVal, BB, BB->begin());
1219 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
1220 // Update machine-CFG edges
1221 BB->addSuccessor(sinkMBB);
1222
Misha Brukman1013ef52004-07-21 20:09:08 +00001223 // copy0MBB:
1224 // %FalseValue = ...
1225 // fallthrough
1226 BB = copy0MBB;
1227 unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
1228 // Update machine-CFG edges
1229 BB->addSuccessor(sinkMBB);
1230
Misha Brukmanbebde752004-07-16 21:06:24 +00001231 // sinkMBB:
1232 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
1233 // ...
1234 BB = sinkMBB;
1235 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
1236 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukmana31f1f72004-07-21 20:30:18 +00001237 // For a register pair representing a long value, define the second reg
1238 if (getClass(TrueVal->getType()) == cLong)
1239 BuildMI(BB, PPC32::LI, 1, DestReg+1).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001240 return;
1241}
1242
1243
1244
1245/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1246/// operand, in the specified target register.
1247///
1248void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1249 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1250
1251 Value *Val = VR.Val;
1252 const Type *Ty = VR.Ty;
1253 if (Val) {
1254 if (Constant *C = dyn_cast<Constant>(Val)) {
1255 Val = ConstantExpr::getCast(C, Type::IntTy);
1256 Ty = Type::IntTy;
1257 }
1258
Misha Brukman2fec9902004-06-21 20:22:03 +00001259 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001260 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1261 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1262
1263 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001264 BuildMI(BB, PPC32::LI, 1, targetReg).addSImm(TheVal);
Misha Brukman422791f2004-06-21 17:41:12 +00001265 } else {
1266 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00001267 BuildMI(BB, PPC32::LIS, 1, TmpReg).addSImm(TheVal >> 16);
Misha Brukman2fec9902004-06-21 20:22:03 +00001268 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1269 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001270 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001271 return;
1272 }
1273 }
1274
1275 // Make sure we have the register number for this value...
1276 unsigned Reg = Val ? getReg(Val) : VR.Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001277 switch (getClassB(Ty)) {
1278 case cByte:
1279 // Extend value into target register (8->32)
1280 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001281 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1282 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001283 else
1284 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1285 break;
1286 case cShort:
1287 // Extend value into target register (16->32)
1288 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001289 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1290 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001291 else
1292 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1293 break;
1294 case cInt:
1295 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001296 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001297 break;
1298 default:
1299 assert(0 && "Unpromotable operand class in promote32");
1300 }
1301}
1302
Misha Brukman2fec9902004-06-21 20:22:03 +00001303/// visitReturnInst - implemented with BLR
1304///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001305void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001306 // Only do the processing if this is a non-void return
1307 if (I.getNumOperands() > 0) {
1308 Value *RetVal = I.getOperand(0);
1309 switch (getClassB(RetVal->getType())) {
1310 case cByte: // integral return values: extend or move into r3 and return
1311 case cShort:
1312 case cInt:
1313 promote32(PPC32::R3, ValueRecord(RetVal));
1314 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001315 case cFP32:
1316 case cFP64: { // Floats & Doubles: Return in f1
Misha Brukmand47bbf72004-06-25 19:04:27 +00001317 unsigned RetReg = getReg(RetVal);
1318 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1319 break;
1320 }
1321 case cLong: {
1322 unsigned RetReg = getReg(RetVal);
1323 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1324 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1325 break;
1326 }
1327 default:
1328 visitInstruction(I);
1329 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001330 }
1331 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1332}
1333
1334// getBlockAfter - Return the basic block which occurs lexically after the
1335// specified one.
1336static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1337 Function::iterator I = BB; ++I; // Get iterator to next block
1338 return I != BB->getParent()->end() ? &*I : 0;
1339}
1340
1341/// visitBranchInst - Handle conditional and unconditional branches here. Note
1342/// that since code layout is frozen at this point, that if we are trying to
1343/// jump to a block that is the immediate successor of the current block, we can
1344/// just make a fall-through (but we don't currently).
1345///
1346void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001347 // Update machine-CFG edges
Misha Brukmane2eceb52004-07-23 16:08:20 +00001348 BB->addSuccessor(MBBMap[BI.getSuccessor(0)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001349 if (BI.isConditional())
Misha Brukmane2eceb52004-07-23 16:08:20 +00001350 BB->addSuccessor(MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001351
1352 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
Misha Brukmane9c65512004-07-06 15:32:44 +00001353
Misha Brukman2fec9902004-06-21 20:22:03 +00001354 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmane9c65512004-07-06 15:32:44 +00001355 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001356 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1357 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001358 }
1359
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001360 // See if we can fold the setcc into the branch itself...
1361 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1362 if (SCI == 0) {
1363 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1364 // computed some other way...
1365 unsigned condReg = getReg(BI.getCondition());
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001366 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(condReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00001367 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001368 if (BI.getSuccessor(1) == NextBB) {
1369 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001370 BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(PPC32::BNE)
1371 .addMBB(MBBMap[BI.getSuccessor(0)])
1372 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001373 } else {
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001374 BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(PPC32::BEQ)
1375 .addMBB(MBBMap[BI.getSuccessor(1)])
1376 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001377 if (BI.getSuccessor(0) != NextBB)
1378 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1379 }
1380 return;
1381 }
1382
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001383 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukmane9c65512004-07-06 15:32:44 +00001384 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001385 MachineBasicBlock::iterator MII = BB->end();
1386 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001387
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001388 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001389 BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(Opcode)
1390 .addMBB(MBBMap[BI.getSuccessor(0)])
1391 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001392 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001393 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001394 } else {
1395 // Change to the inverse condition...
1396 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmanfa20a6d2004-07-27 18:35:23 +00001397 Opcode = PowerPCInstrInfo::invertPPCBranchOpcode(Opcode);
1398 BuildMI(BB, PPC32::COND_BRANCH, 3).addReg(PPC32::CR0).addImm(Opcode)
1399 .addMBB(MBBMap[BI.getSuccessor(1)])
1400 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001401 }
1402 }
1403}
1404
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001405/// doCall - This emits an abstract call instruction, setting up the arguments
1406/// and the return value as appropriate. For the actual function call itself,
1407/// it inserts the specified CallMI instruction into the stream.
1408///
1409/// FIXME: See Documentation at the following URL for "correct" behavior
1410/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1411void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +00001412 const std::vector<ValueRecord> &Args, bool isVarArg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001413 // Count how many bytes are to be pushed on the stack...
1414 unsigned NumBytes = 0;
1415
1416 if (!Args.empty()) {
1417 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1418 switch (getClassB(Args[i].Ty)) {
1419 case cByte: case cShort: case cInt:
1420 NumBytes += 4; break;
1421 case cLong:
1422 NumBytes += 8; break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001423 case cFP32:
1424 NumBytes += 4; break;
1425 case cFP64:
1426 NumBytes += 8; break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001427 break;
1428 default: assert(0 && "Unknown class!");
1429 }
1430
1431 // Adjust the stack pointer for the new arguments...
Misha Brukman1013ef52004-07-21 20:09:08 +00001432 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addSImm(NumBytes);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001433
1434 // Arguments go on the stack in reverse order, as specified by the ABI.
Misha Brukman7e898c32004-07-20 00:41:46 +00001435 // Offset to the paramater area on the stack is 24.
1436 unsigned ArgOffset = 24;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001437 int GPR_remaining = 8, FPR_remaining = 13;
Misha Brukmanfc879c32004-07-08 18:02:38 +00001438 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001439 static const unsigned GPR[] = {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001440 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1441 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1442 };
Misha Brukmand18a31d2004-07-06 22:51:53 +00001443 static const unsigned FPR[] = {
Misha Brukman2834a4d2004-07-07 20:07:22 +00001444 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6,
1445 PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12,
1446 PPC32::F13
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001447 };
Misha Brukman422791f2004-06-21 17:41:12 +00001448
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001449 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1450 unsigned ArgReg;
1451 switch (getClassB(Args[i].Ty)) {
1452 case cByte:
1453 case cShort:
1454 // Promote arg to 32 bits wide into a temporary register...
1455 ArgReg = makeAnotherReg(Type::UIntTy);
1456 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001457
1458 // Reg or stack?
1459 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001460 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001461 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001462 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukmanb097f212004-07-26 18:13:24 +00001463 }
1464 if (GPR_remaining <= 0 || isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001465 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001466 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001467 }
1468 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001469 case cInt:
1470 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1471
Misha Brukman422791f2004-06-21 17:41:12 +00001472 // Reg or stack?
1473 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001474 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001475 .addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001476 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
Misha Brukmanb097f212004-07-26 18:13:24 +00001477 }
1478 if (GPR_remaining <= 0 || isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001479 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001480 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001481 }
1482 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001483 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001484 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001485
Misha Brukmanec6319a2004-07-20 15:51:37 +00001486 // Reg or stack? Note that PPC calling conventions state that long args
1487 // are passed rN = hi, rN+1 = lo, opposite of LLVM.
Misha Brukman422791f2004-06-21 17:41:12 +00001488 if (GPR_remaining > 1) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001489 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanec6319a2004-07-20 15:51:37 +00001490 .addReg(ArgReg);
Misha Brukman1013ef52004-07-21 20:09:08 +00001491 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
1492 .addReg(ArgReg+1);
Misha Brukman7e898c32004-07-20 00:41:46 +00001493 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1494 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
Misha Brukmanb097f212004-07-26 18:13:24 +00001495 }
1496 if (GPR_remaining <= 1 || isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001497 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001498 .addReg(PPC32::R1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001499 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001500 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001501 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001502
1503 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001504 GPR_remaining -= 1; // uses up 2 GPRs
1505 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001506 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001507 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001508 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman7e898c32004-07-20 00:41:46 +00001509 // Reg or stack?
1510 if (FPR_remaining > 0) {
1511 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1512 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1513 FPR_remaining--;
1514 FPR_idx++;
1515
1516 // If this is a vararg function, and there are GPRs left, also
1517 // pass the float in an int. Otherwise, put it on the stack.
1518 if (isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001519 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001520 .addReg(PPC32::R1);
1521 if (GPR_remaining > 0) {
1522 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx])
Misha Brukman1013ef52004-07-21 20:09:08 +00001523 .addSImm(ArgOffset).addReg(ArgReg);
Misha Brukman7e898c32004-07-20 00:41:46 +00001524 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1525 }
Misha Brukman1916bf92004-06-24 21:56:15 +00001526 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001527 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001528 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001529 .addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001530 }
1531 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001532 case cFP64:
1533 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1534 // Reg or stack?
1535 if (FPR_remaining > 0) {
1536 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
1537 CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use);
1538 FPR_remaining--;
1539 FPR_idx++;
1540 // For vararg functions, must pass doubles via int regs as well
1541 if (isVarArg) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001542 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001543 .addReg(PPC32::R1);
1544
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001545 // Doubles can be split across reg + stack for varargs
1546 if (GPR_remaining > 0) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001547 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001548 .addReg(PPC32::R1);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001549 CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
1550 }
1551 if (GPR_remaining > 1) {
Misha Brukman7e898c32004-07-20 00:41:46 +00001552 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx+1])
Misha Brukman1013ef52004-07-21 20:09:08 +00001553 .addSImm(ArgOffset+4).addReg(PPC32::R1);
Misha Brukman7e898c32004-07-20 00:41:46 +00001554 CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
1555 }
1556 }
1557 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001558 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
Misha Brukman7e898c32004-07-20 00:41:46 +00001559 .addReg(PPC32::R1);
1560 }
1561 // Doubles use 8 bytes, and 2 GPRs worth of param space
1562 ArgOffset += 4;
1563 GPR_remaining--;
1564 GPR_idx++;
1565 break;
1566
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001567 default: assert(0 && "Unknown class!");
1568 }
1569 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001570 GPR_remaining--;
1571 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001572 }
1573 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001574 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001575 }
1576
Misha Brukman435c7852004-07-27 17:13:58 +00001577 BuildMI(BB, PPC32::IMPLICIT_DEF, 0, PPC32::LR);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001578 BB->push_back(CallMI);
Misha Brukman1013ef52004-07-21 20:09:08 +00001579 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addSImm(NumBytes);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001580
1581 // If there is a return value, scavenge the result from the location the call
1582 // leaves it in...
1583 //
1584 if (Ret.Ty != Type::VoidTy) {
1585 unsigned DestClass = getClassB(Ret.Ty);
1586 switch (DestClass) {
1587 case cByte:
1588 case cShort:
1589 case cInt:
1590 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001591 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001592 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00001593 case cFP32: // Floating-point return values live in f1
1594 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001595 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1596 break;
Misha Brukmanec6319a2004-07-20 15:51:37 +00001597 case cLong: // Long values are in r3 hi:r4 lo
Misha Brukman1013ef52004-07-21 20:09:08 +00001598 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1599 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001600 break;
1601 default: assert(0 && "Unknown class!");
1602 }
1603 }
1604}
1605
1606
1607/// visitCallInst - Push args on stack and do a procedure call instruction.
1608void ISel::visitCallInst(CallInst &CI) {
1609 MachineInstr *TheCall;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001610 Function *F = CI.getCalledFunction();
1611 if (F) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001612 // Is it an intrinsic function call?
1613 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1614 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1615 return;
1616 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001617 // Emit a CALL instruction with PC-relative displacement.
1618 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
Misha Brukmane2eceb52004-07-23 16:08:20 +00001619 // Add it to the set of functions called to be used by the Printer
1620 TM.CalledFunctions.insert(F);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001621 } else { // Emit an indirect call through the CTR
1622 unsigned Reg = getReg(CI.getCalledValue());
Misha Brukman7e898c32004-07-20 00:41:46 +00001623 BuildMI(BB, PPC32::MTCTR, 1).addReg(Reg);
1624 TheCall = BuildMI(PPC32::CALLindirect, 2).addZImm(20).addZImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001625 }
1626
1627 std::vector<ValueRecord> Args;
1628 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1629 Args.push_back(ValueRecord(CI.getOperand(i)));
1630
1631 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001632 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1633 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001634}
1635
1636
1637/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1638///
1639static Value *dyncastIsNan(Value *V) {
1640 if (CallInst *CI = dyn_cast<CallInst>(V))
1641 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001642 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001643 return CI->getOperand(1);
1644 return 0;
1645}
1646
1647/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1648/// or's whos operands are all calls to the isnan predicate.
1649static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1650 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1651
1652 // Check all uses, which will be or's of isnans if this predicate is true.
1653 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1654 Instruction *I = cast<Instruction>(*UI);
1655 if (I->getOpcode() != Instruction::Or) return false;
1656 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1657 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1658 }
1659
1660 return true;
1661}
1662
1663/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1664/// function, lowering any calls to unknown intrinsic functions into the
1665/// equivalent LLVM code.
1666///
1667void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1668 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1669 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1670 if (CallInst *CI = dyn_cast<CallInst>(I++))
1671 if (Function *F = CI->getCalledFunction())
1672 switch (F->getIntrinsicID()) {
1673 case Intrinsic::not_intrinsic:
1674 case Intrinsic::vastart:
1675 case Intrinsic::vacopy:
1676 case Intrinsic::vaend:
1677 case Intrinsic::returnaddress:
1678 case Intrinsic::frameaddress:
Misha Brukmanb097f212004-07-26 18:13:24 +00001679 // FIXME: should lower these ourselves
Misha Brukmana2916ce2004-06-21 17:58:36 +00001680 // case Intrinsic::isunordered:
Misha Brukmanb097f212004-07-26 18:13:24 +00001681 // case Intrinsic::memcpy: -> doCall(). system memcpy almost
1682 // guaranteed to be faster than anything we generate ourselves
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001683 // We directly implement these intrinsics
1684 break;
1685 case Intrinsic::readio: {
1686 // On PPC, memory operations are in-order. Lower this intrinsic
1687 // into a volatile load.
1688 Instruction *Before = CI->getPrev();
1689 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1690 CI->replaceAllUsesWith(LI);
1691 BB->getInstList().erase(CI);
1692 break;
1693 }
1694 case Intrinsic::writeio: {
1695 // On PPC, memory operations are in-order. Lower this intrinsic
1696 // into a volatile store.
1697 Instruction *Before = CI->getPrev();
Misha Brukman8d442c22004-07-14 15:29:51 +00001698 StoreInst *SI = new StoreInst(CI->getOperand(1),
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001699 CI->getOperand(2), true, CI);
Misha Brukman8d442c22004-07-14 15:29:51 +00001700 CI->replaceAllUsesWith(SI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001701 BB->getInstList().erase(CI);
1702 break;
1703 }
1704 default:
1705 // All other intrinsic calls we must lower.
1706 Instruction *Before = CI->getPrev();
1707 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1708 if (Before) { // Move iterator to instruction after call
1709 I = Before; ++I;
1710 } else {
1711 I = BB->begin();
1712 }
1713 }
1714}
1715
1716void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1717 unsigned TmpReg1, TmpReg2, TmpReg3;
1718 switch (ID) {
1719 case Intrinsic::vastart:
1720 // Get the address of the first vararg value...
1721 TmpReg1 = getReg(CI);
Misha Brukmanec6319a2004-07-20 15:51:37 +00001722 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex,
1723 0, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001724 return;
1725
1726 case Intrinsic::vacopy:
1727 TmpReg1 = getReg(CI);
1728 TmpReg2 = getReg(CI.getOperand(1));
1729 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1730 return;
1731 case Intrinsic::vaend: return;
1732
1733 case Intrinsic::returnaddress:
Misha Brukmanec6319a2004-07-20 15:51:37 +00001734 TmpReg1 = getReg(CI);
1735 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1736 MachineFrameInfo *MFI = F->getFrameInfo();
1737 unsigned NumBytes = MFI->getStackSize();
1738
Misha Brukman1013ef52004-07-21 20:09:08 +00001739 BuildMI(BB, PPC32::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
Misha Brukmanec6319a2004-07-20 15:51:37 +00001740 .addReg(PPC32::R1);
1741 } else {
1742 // Values other than zero are not implemented yet.
Misha Brukman1013ef52004-07-21 20:09:08 +00001743 BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
Misha Brukmanec6319a2004-07-20 15:51:37 +00001744 }
1745 return;
1746
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001747 case Intrinsic::frameaddress:
1748 TmpReg1 = getReg(CI);
1749 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00001750 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(PPC32::R1).addReg(PPC32::R1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001751 } else {
1752 // Values other than zero are not implemented yet.
Misha Brukman1013ef52004-07-21 20:09:08 +00001753 BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001754 }
1755 return;
Misha Brukmanb097f212004-07-26 18:13:24 +00001756
Misha Brukmana2916ce2004-06-21 17:58:36 +00001757#if 0
1758 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001759 case Intrinsic::isnan:
1760 // If this is only used by 'isunordered' style comparisons, don't emit it.
1761 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1762 TmpReg1 = getReg(CI.getOperand(1));
1763 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001764 TmpReg2 = makeAnotherReg(Type::IntTy);
1765 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001766 TmpReg3 = getReg(CI);
1767 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1768 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001769#endif
1770
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001771 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1772 }
1773}
1774
1775/// visitSimpleBinary - Implement simple binary operators for integral types...
1776/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1777/// Xor.
1778///
1779void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1780 unsigned DestReg = getReg(B);
1781 MachineBasicBlock::iterator MI = BB->end();
1782 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1783 unsigned Class = getClassB(B.getType());
1784
1785 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1786}
1787
1788/// emitBinaryFPOperation - This method handles emission of floating point
1789/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1790void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1791 MachineBasicBlock::iterator IP,
1792 Value *Op0, Value *Op1,
1793 unsigned OperatorClass, unsigned DestReg) {
1794
1795 // Special case: op Reg, <const fp>
1796 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001797 // Create a constant pool entry for this constant.
1798 MachineConstantPool *CP = F->getConstantPool();
1799 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1800 const Type *Ty = Op1->getType();
Misha Brukmand9aa7832004-07-12 23:49:47 +00001801 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001802
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001803 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001804 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1805 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001806 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001807
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001808 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001809 unsigned Op1Reg = getReg(Op1C, BB, IP);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001810 unsigned Op0r = getReg(Op0, BB, IP);
Misha Brukmana596f8c2004-07-13 15:35:45 +00001811 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1Reg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001812 return;
1813 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001814
1815 // Special case: R1 = op <const fp>, R2
Misha Brukmana596f8c2004-07-13 15:35:45 +00001816 if (ConstantFP *Op0C = dyn_cast<ConstantFP>(Op0))
1817 if (Op0C->isExactlyValue(-0.0) && OperatorClass == 1) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001818 // -0.0 - X === -X
1819 unsigned op1Reg = getReg(Op1, BB, IP);
1820 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1821 return;
1822 } else {
1823 // R1 = op CST, R2 --> R1 = opr R2, CST
1824
1825 // Create a constant pool entry for this constant.
1826 MachineConstantPool *CP = F->getConstantPool();
Misha Brukmana596f8c2004-07-13 15:35:45 +00001827 unsigned CPI = CP->getConstantPoolIndex(Op0C);
1828 const Type *Ty = Op0C->getType();
1829 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001830
1831 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001832 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1833 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001834 };
1835
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001836 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
Misha Brukmana596f8c2004-07-13 15:35:45 +00001837 unsigned Op0Reg = getReg(Op0C, BB, IP);
1838 unsigned Op1Reg = getReg(Op1, BB, IP);
1839 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001840 return;
1841 }
1842
1843 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001844 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001845 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1846 };
1847
1848 unsigned Opcode = OpcodeTab[OperatorClass];
1849 unsigned Op0r = getReg(Op0, BB, IP);
1850 unsigned Op1r = getReg(Op1, BB, IP);
1851 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1852}
1853
1854/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1855/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1856/// Or, 4 for Xor.
1857///
1858/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1859/// and constant expression support.
1860///
1861void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1862 MachineBasicBlock::iterator IP,
1863 Value *Op0, Value *Op1,
1864 unsigned OperatorClass, unsigned DestReg) {
1865 unsigned Class = getClassB(Op0->getType());
1866
Misha Brukman422791f2004-06-21 17:41:12 +00001867 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001868 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001869 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1870 };
Misha Brukman1013ef52004-07-21 20:09:08 +00001871 static const unsigned ImmOpcodeTab[] = {
1872 PPC32::ADDI, PPC32::SUBI, PPC32::ANDIo, PPC32::ORI, PPC32::XORI
1873 };
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001874 static const unsigned RImmOpcodeTab[] = {
1875 PPC32::ADDI, PPC32::SUBFIC, PPC32::ANDIo, PPC32::ORI, PPC32::XORI
1876 };
Misha Brukman1013ef52004-07-21 20:09:08 +00001877
Misha Brukman422791f2004-06-21 17:41:12 +00001878 // Otherwise, code generate the full operation with a constant.
1879 static const unsigned BottomTab[] = {
1880 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1881 };
1882 static const unsigned TopTab[] = {
1883 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1884 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001885
Misha Brukman7e898c32004-07-20 00:41:46 +00001886 if (Class == cFP32 || Class == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001887 assert(OperatorClass < 2 && "No logical ops for FP!");
1888 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1889 return;
1890 }
1891
1892 if (Op0->getType() == Type::BoolTy) {
1893 if (OperatorClass == 3)
1894 // If this is an or of two isnan's, emit an FP comparison directly instead
1895 // of or'ing two isnan's together.
1896 if (Value *LHS = dyncastIsNan(Op0))
1897 if (Value *RHS = dyncastIsNan(Op1)) {
1898 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001899 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001900 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001901 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001902 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1903 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001904 return;
1905 }
1906 }
1907
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001908 // Special case: op <const int>, Reg
Misha Brukman1013ef52004-07-21 20:09:08 +00001909 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001910 // sub 0, X -> subfic
1911 if (OperatorClass == 1 && canUseAsImmediateForOpcode(CI, 0)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00001912 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001913 int imm = CI->getRawValue() & 0xFFFF;
Misha Brukman1013ef52004-07-21 20:09:08 +00001914
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001915 if (Class == cLong) {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001916 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, DestReg+1).addReg(Op1r+1)
1917 .addSImm(imm);
Misha Brukman1013ef52004-07-21 20:09:08 +00001918 BuildMI(*MBB, IP, PPC32::SUBFZE, 1, DestReg).addReg(Op1r);
1919 } else {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001920 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, DestReg).addReg(Op1r).addSImm(imm);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001921 }
1922 return;
1923 }
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001924
1925 // If it is easy to do, swap the operands and emit an immediate op
1926 if (Class != cLong && OperatorClass != 1 &&
1927 canUseAsImmediateForOpcode(CI, OperatorClass)) {
1928 unsigned Op1r = getReg(Op1, MBB, IP);
1929 int imm = CI->getRawValue() & 0xFFFF;
1930
1931 if (OperatorClass < 2)
1932 BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
1933 .addSImm(imm);
1934 else
1935 BuildMI(*MBB, IP, RImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op1r)
1936 .addZImm(imm);
1937 return;
1938 }
Misha Brukman1013ef52004-07-21 20:09:08 +00001939 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001940
1941 // Special case: op Reg, <const int>
1942 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1943 unsigned Op0r = getReg(Op0, MBB, IP);
1944
1945 // xor X, -1 -> not X
1946 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1947 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
Misha Brukman1013ef52004-07-21 20:09:08 +00001948 if (Class == cLong) // Invert the low part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001949 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1950 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001951 return;
1952 }
Misha Brukman1013ef52004-07-21 20:09:08 +00001953
Misha Brukman1013ef52004-07-21 20:09:08 +00001954 if (Class != cLong) {
1955 if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
1956 int immediate = Op1C->getRawValue() & 0xFFFF;
1957
1958 if (OperatorClass < 2)
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001959 BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
Misha Brukman1013ef52004-07-21 20:09:08 +00001960 .addSImm(immediate);
1961 else
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001962 BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2,DestReg).addReg(Op0r)
Misha Brukman1013ef52004-07-21 20:09:08 +00001963 .addZImm(immediate);
1964 } else {
1965 unsigned Op1r = getReg(Op1, MBB, IP);
1966 BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
1967 .addReg(Op1r);
1968 }
1969 return;
1970 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001971
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001972 unsigned Op1r = getReg(Op1, MBB, IP);
1973
Misha Brukman1013ef52004-07-21 20:09:08 +00001974 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001975 .addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001976 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
1977 .addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001978 return;
1979 }
Misha Brukman2ed17ca2004-07-22 15:58:04 +00001980
1981 // We couldn't generate an immediate variant of the op, load both halves into
1982 // registers and emit the appropriate opcode.
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001983 unsigned Op0r = getReg(Op0, MBB, IP);
1984 unsigned Op1r = getReg(Op1, MBB, IP);
1985
1986 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001987 unsigned Opcode = OpcodeTab[OperatorClass];
1988 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001989 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00001990 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
Misha Brukman7e898c32004-07-20 00:41:46 +00001991 .addReg(Op1r+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00001992 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
1993 .addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001994 }
1995 return;
1996}
1997
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001998// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1999// returns zero when the input is not exactly a power of two.
2000static unsigned ExactLog2(unsigned Val) {
2001 if (Val == 0 || (Val & (Val-1))) return 0;
2002 unsigned Count = 0;
2003 while (Val != 1) {
2004 Val >>= 1;
2005 ++Count;
2006 }
Misha Brukman1013ef52004-07-21 20:09:08 +00002007 return Count;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002008}
2009
Misha Brukman1013ef52004-07-21 20:09:08 +00002010/// doMultiply - Emit appropriate instructions to multiply together the
2011/// Values Op0 and Op1, and put the result in DestReg.
Misha Brukman2fec9902004-06-21 20:22:03 +00002012///
Misha Brukman1013ef52004-07-21 20:09:08 +00002013void ISel::doMultiply(MachineBasicBlock *MBB,
2014 MachineBasicBlock::iterator IP,
2015 unsigned DestReg, Value *Op0, Value *Op1) {
2016 unsigned Class0 = getClass(Op0->getType());
2017 unsigned Class1 = getClass(Op1->getType());
2018
2019 unsigned Op0r = getReg(Op0, MBB, IP);
2020 unsigned Op1r = getReg(Op1, MBB, IP);
2021
2022 // 64 x 64 -> 64
2023 if (Class0 == cLong && Class1 == cLong) {
2024 unsigned Tmp1 = makeAnotherReg(Type::IntTy);
2025 unsigned Tmp2 = makeAnotherReg(Type::IntTy);
2026 unsigned Tmp3 = makeAnotherReg(Type::IntTy);
2027 unsigned Tmp4 = makeAnotherReg(Type::IntTy);
2028 BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
2029 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
2030 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
2031 BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
2032 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
2033 BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
2034 return;
2035 }
2036
2037 // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
2038 if (Class0 == cLong && Class1 <= cInt) {
2039 unsigned Tmp0 = makeAnotherReg(Type::IntTy);
2040 unsigned Tmp1 = makeAnotherReg(Type::IntTy);
2041 unsigned Tmp2 = makeAnotherReg(Type::IntTy);
2042 unsigned Tmp3 = makeAnotherReg(Type::IntTy);
2043 unsigned Tmp4 = makeAnotherReg(Type::IntTy);
2044 if (Op1->getType()->isSigned())
2045 BuildMI(*MBB, IP, PPC32::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
2046 else
2047 BuildMI(*MBB, IP, PPC32::LI, 2, Tmp0).addSImm(0);
2048 BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
2049 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
2050 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
2051 BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
2052 BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
2053 BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
2054 return;
2055 }
2056
2057 // 32 x 32 -> 32
2058 if (Class0 <= cInt && Class1 <= cInt) {
2059 BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
2060 return;
2061 }
2062
2063 assert(0 && "doMultiply cannot operate on unknown type!");
2064}
2065
2066/// doMultiplyConst - This method will multiply the value in Op0 by the
2067/// value of the ContantInt *CI
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002068void ISel::doMultiplyConst(MachineBasicBlock *MBB,
2069 MachineBasicBlock::iterator IP,
Misha Brukman1013ef52004-07-21 20:09:08 +00002070 unsigned DestReg, Value *Op0, ConstantInt *CI) {
2071 unsigned Class = getClass(Op0->getType());
2072
2073 // Mul op0, 0 ==> 0
2074 if (CI->isNullValue()) {
2075 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
2076 if (Class == cLong)
2077 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002078 return;
Misha Brukman1013ef52004-07-21 20:09:08 +00002079 }
2080
2081 // Mul op0, 1 ==> op0
2082 if (CI->equalsInt(1)) {
2083 unsigned Op0r = getReg(Op0, MBB, IP);
2084 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
2085 if (Class == cLong)
2086 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002087 return;
2088 }
2089
2090 // If the element size is exactly a power of 2, use a shift to get it.
Misha Brukman1013ef52004-07-21 20:09:08 +00002091 if (unsigned Shift = ExactLog2(CI->getRawValue())) {
2092 ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
2093 emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
2094 return;
2095 }
2096
2097 // If 32 bits or less and immediate is in right range, emit mul by immediate
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002098 if (Class == cByte || Class == cShort || Class == cInt) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002099 if (canUseAsImmediateForOpcode(CI, 0)) {
2100 unsigned Op0r = getReg(Op0, MBB, IP);
2101 unsigned imm = CI->getRawValue() & 0xFFFF;
2102 BuildMI(*MBB, IP, PPC32::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002103 return;
2104 }
2105 }
2106
Misha Brukman1013ef52004-07-21 20:09:08 +00002107 doMultiply(MBB, IP, DestReg, Op0, CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002108}
2109
2110void ISel::visitMul(BinaryOperator &I) {
2111 unsigned ResultReg = getReg(I);
2112
2113 Value *Op0 = I.getOperand(0);
2114 Value *Op1 = I.getOperand(1);
2115
2116 MachineBasicBlock::iterator IP = BB->end();
2117 emitMultiply(BB, IP, Op0, Op1, ResultReg);
2118}
2119
2120void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
2121 Value *Op0, Value *Op1, unsigned DestReg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002122 TypeClass Class = getClass(Op0->getType());
2123
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002124 switch (Class) {
2125 case cByte:
2126 case cShort:
2127 case cInt:
Misha Brukman1013ef52004-07-21 20:09:08 +00002128 case cLong:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002129 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002130 doMultiplyConst(MBB, IP, DestReg, Op0, CI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002131 } else {
Misha Brukman1013ef52004-07-21 20:09:08 +00002132 doMultiply(MBB, IP, DestReg, Op0, Op1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002133 }
2134 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002135 case cFP32:
2136 case cFP64:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002137 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2138 return;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002139 break;
2140 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002141}
2142
2143
2144/// visitDivRem - Handle division and remainder instructions... these
2145/// instruction both require the same instructions to be generated, they just
2146/// select the result from a different register. Note that both of these
2147/// instructions work differently for signed and unsigned operands.
2148///
2149void ISel::visitDivRem(BinaryOperator &I) {
2150 unsigned ResultReg = getReg(I);
2151 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2152
2153 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00002154 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
2155 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002156}
2157
2158void ISel::emitDivRemOperation(MachineBasicBlock *BB,
2159 MachineBasicBlock::iterator IP,
2160 Value *Op0, Value *Op1, bool isDiv,
2161 unsigned ResultReg) {
2162 const Type *Ty = Op0->getType();
2163 unsigned Class = getClass(Ty);
2164 switch (Class) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002165 case cFP32:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002166 if (isDiv) {
Misha Brukman7e898c32004-07-20 00:41:46 +00002167 // Floating point divide...
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002168 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2169 return;
Misha Brukman7e898c32004-07-20 00:41:46 +00002170 } else {
2171 // Floating point remainder via fmodf(float x, float y);
2172 unsigned Op0Reg = getReg(Op0, BB, IP);
2173 unsigned Op1Reg = getReg(Op1, BB, IP);
2174 MachineInstr *TheCall =
2175 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodfFn, true);
2176 std::vector<ValueRecord> Args;
2177 Args.push_back(ValueRecord(Op0Reg, Type::FloatTy));
2178 Args.push_back(ValueRecord(Op1Reg, Type::FloatTy));
2179 doCall(ValueRecord(ResultReg, Type::FloatTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002180 TM.CalledFunctions.insert(fmodfFn);
Misha Brukman7e898c32004-07-20 00:41:46 +00002181 }
2182 return;
2183 case cFP64:
2184 if (isDiv) {
2185 // Floating point divide...
2186 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2187 return;
2188 } else {
2189 // Floating point remainder via fmod(double x, double y);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002190 unsigned Op0Reg = getReg(Op0, BB, IP);
2191 unsigned Op1Reg = getReg(Op1, BB, IP);
2192 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002193 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(fmodFn, true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002194 std::vector<ValueRecord> Args;
2195 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2196 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002197 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002198 TM.CalledFunctions.insert(fmodFn);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002199 }
2200 return;
2201 case cLong: {
Misha Brukman7e898c32004-07-20 00:41:46 +00002202 static Function* const Funcs[] =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002203 { __moddi3Fn, __divdi3Fn, __umoddi3Fn, __udivdi3Fn };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002204 unsigned Op0Reg = getReg(Op0, BB, IP);
2205 unsigned Op1Reg = getReg(Op1, BB, IP);
2206 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2207 MachineInstr *TheCall =
Misha Brukman0aa97c62004-07-08 18:27:59 +00002208 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(Funcs[NameIdx], true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002209
2210 std::vector<ValueRecord> Args;
2211 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2212 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002213 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002214 TM.CalledFunctions.insert(Funcs[NameIdx]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002215 return;
2216 }
2217 case cByte: case cShort: case cInt:
2218 break; // Small integrals, handled below...
2219 default: assert(0 && "Unknown class!");
2220 }
2221
2222 // Special case signed division by power of 2.
2223 if (isDiv)
2224 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2225 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2226 int V = CI->getValue();
2227
2228 if (V == 1) { // X /s 1 => X
2229 unsigned Op0Reg = getReg(Op0, BB, IP);
2230 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
2231 return;
2232 }
2233
2234 if (V == -1) { // X /s -1 => -X
2235 unsigned Op0Reg = getReg(Op0, BB, IP);
2236 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
2237 return;
2238 }
2239
Misha Brukmanec6319a2004-07-20 15:51:37 +00002240 unsigned log2V = ExactLog2(V);
2241 if (log2V != 0 && Ty->isSigned()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002242 unsigned Op0Reg = getReg(Op0, BB, IP);
2243 unsigned TmpReg = makeAnotherReg(Op0->getType());
Misha Brukmanec6319a2004-07-20 15:51:37 +00002244
Misha Brukman1013ef52004-07-21 20:09:08 +00002245 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
Misha Brukmanec6319a2004-07-20 15:51:37 +00002246 BuildMI(*BB, IP, PPC32::ADDZE, 1, ResultReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002247 return;
2248 }
2249 }
2250
2251 unsigned Op0Reg = getReg(Op0, BB, IP);
2252 unsigned Op1Reg = getReg(Op1, BB, IP);
Misha Brukmanec6319a2004-07-20 15:51:37 +00002253 unsigned Opcode = Ty->isSigned() ? PPC32::DIVW : PPC32::DIVWU;
2254
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002255 if (isDiv) {
Misha Brukmanec6319a2004-07-20 15:51:37 +00002256 BuildMI(*BB, IP, Opcode, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002257 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002258 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2259 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2260
Misha Brukmanec6319a2004-07-20 15:51:37 +00002261 BuildMI(*BB, IP, Opcode, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002262 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2263 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002264 }
2265}
2266
2267
2268/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2269/// for constant immediate shift values, and for constant immediate
2270/// shift values equal to 1. Even the general case is sort of special,
2271/// because the shift amount has to be in CL, not just any old register.
2272///
2273void ISel::visitShiftInst(ShiftInst &I) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00002274 MachineBasicBlock::iterator IP = BB->end();
2275 emitShiftOperation(BB, IP, I.getOperand(0), I.getOperand(1),
2276 I.getOpcode() == Instruction::Shl, I.getType(),
2277 getReg(I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002278}
2279
2280/// emitShiftOperation - Common code shared between visitShiftInst and
2281/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002282///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002283void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2284 MachineBasicBlock::iterator IP,
2285 Value *Op, Value *ShiftAmount, bool isLeftShift,
2286 const Type *ResultTy, unsigned DestReg) {
2287 unsigned SrcReg = getReg (Op, MBB, IP);
2288 bool isSigned = ResultTy->isSigned ();
2289 unsigned Class = getClass (ResultTy);
2290
2291 // Longs, as usual, are handled specially...
2292 if (Class == cLong) {
2293 // If we have a constant shift, we can generate much more efficient code
2294 // than otherwise...
2295 //
2296 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2297 unsigned Amount = CUI->getValue();
2298 if (Amount < 32) {
2299 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002300 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002301 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2302 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman1013ef52004-07-21 20:09:08 +00002303 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2304 .addImm(Amount).addImm(32-Amount).addImm(31);
2305 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2306 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002307 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002308 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002309 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2310 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman1013ef52004-07-21 20:09:08 +00002311 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2312 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2313 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2314 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002315 }
2316 } else { // Shifting more than 32 bits
2317 Amount -= 32;
2318 if (isLeftShift) {
2319 if (Amount != 0) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002320 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002321 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002322 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002323 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2324 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002325 }
Misha Brukman1013ef52004-07-21 20:09:08 +00002326 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
2327 } else {
2328 if (Amount != 0) {
2329 if (isSigned)
2330 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(SrcReg)
2331 .addImm(Amount);
2332 else
2333 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2334 .addImm(32-Amount).addImm(Amount).addImm(31);
2335 } else {
2336 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2337 .addReg(SrcReg);
2338 }
2339 BuildMI(*MBB, IP,PPC32::LI, 1, DestReg).addSImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002340 }
2341 }
2342 } else {
2343 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2344 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002345 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2346 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2347 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2348 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2349 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2350
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002351 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002352 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002353 .addSImm(32);
2354 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002355 .addReg(ShiftAmountReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002356 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg3).addReg(SrcReg+1)
2357 .addReg(TmpReg1);
2358 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
Misha Brukman2fec9902004-06-21 20:22:03 +00002359 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002360 .addSImm(-32);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002361 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg6).addReg(SrcReg+1)
2362 .addReg(TmpReg5);
Misha Brukman1013ef52004-07-21 20:09:08 +00002363 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
Misha Brukman2fec9902004-06-21 20:22:03 +00002364 .addReg(TmpReg6);
Misha Brukman1013ef52004-07-21 20:09:08 +00002365 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg+1).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002366 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002367 } else {
2368 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002369 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002370 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukmanb097f212004-07-26 18:13:24 +00002371 std::cerr << "ERROR: Unimplemented: signed right shift of long\n";
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002372 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002373 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002374 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002375 .addSImm(32);
2376 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg+1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002377 .addReg(ShiftAmountReg);
Misha Brukman1013ef52004-07-21 20:09:08 +00002378 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002379 .addReg(TmpReg1);
2380 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2381 .addReg(TmpReg3);
2382 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
Misha Brukman1013ef52004-07-21 20:09:08 +00002383 .addSImm(-32);
2384 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002385 .addReg(TmpReg5);
Misha Brukman1013ef52004-07-21 20:09:08 +00002386 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
Misha Brukman2fec9902004-06-21 20:22:03 +00002387 .addReg(TmpReg6);
Misha Brukman1013ef52004-07-21 20:09:08 +00002388 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg).addReg(SrcReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00002389 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002390 }
2391 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002392 }
2393 return;
2394 }
2395
2396 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2397 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2398 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2399 unsigned Amount = CUI->getValue();
2400
Misha Brukman422791f2004-06-21 17:41:12 +00002401 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002402 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2403 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002404 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002405 if (isSigned) {
2406 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2407 } else {
2408 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2409 .addImm(32-Amount).addImm(Amount).addImm(31);
2410 }
Misha Brukman422791f2004-06-21 17:41:12 +00002411 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002412 } else { // The shift amount is non-constant.
2413 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2414
Misha Brukman422791f2004-06-21 17:41:12 +00002415 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002416 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2417 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002418 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002419 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2420 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002421 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002422 }
2423}
2424
2425
Misha Brukmanb097f212004-07-26 18:13:24 +00002426/// visitLoadInst - Implement LLVM load instructions. Pretty straightforward
2427/// mapping of LLVM classes to PPC load instructions, with the exception of
2428/// signed byte loads, which need a sign extension following them.
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002429///
2430void ISel::visitLoadInst(LoadInst &I) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002431 // Immediate opcodes, for reg+imm addressing
2432 static const unsigned ImmOpcodes[] = {
2433 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ,
2434 PPC32::LFS, PPC32::LFD, PPC32::LWZ
2435 };
2436 // Indexed opcodes, for reg+reg addressing
2437 static const unsigned IdxOpcodes[] = {
2438 PPC32::LBZX, PPC32::LHZX, PPC32::LWZX,
2439 PPC32::LFSX, PPC32::LFDX, PPC32::LWZX
Misha Brukman2fec9902004-06-21 20:22:03 +00002440 };
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002441
Misha Brukmanb097f212004-07-26 18:13:24 +00002442 unsigned Class = getClassB(I.getType());
2443 unsigned ImmOpcode = ImmOpcodes[Class];
2444 unsigned IdxOpcode = IdxOpcodes[Class];
2445 unsigned DestReg = getReg(I);
2446 Value *SourceAddr = I.getOperand(0);
2447
2448 if (Class == cShort && I.getType()->isSigned()) ImmOpcode = PPC32::LHA;
2449 if (Class == cShort && I.getType()->isSigned()) IdxOpcode = PPC32::LHAX;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002450
Misha Brukmanb097f212004-07-26 18:13:24 +00002451 if (AllocaInst *AI = dyn_castFixedAlloca(SourceAddr)) {
Misha Brukman422791f2004-06-21 17:41:12 +00002452 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002453 if (Class == cLong) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002454 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
2455 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg+1), FI, 4);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002456 } else if (Class == cByte && I.getType()->isSigned()) {
2457 unsigned TmpReg = makeAnotherReg(I.getType());
Misha Brukmanb097f212004-07-26 18:13:24 +00002458 addFrameReference(BuildMI(BB, ImmOpcode, 2, TmpReg), FI);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002459 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002460 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00002461 addFrameReference(BuildMI(BB, ImmOpcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002462 }
Misha Brukmanb097f212004-07-26 18:13:24 +00002463 return;
2464 }
2465
2466 // If this load is the only use of the GEP instruction that is its address,
2467 // then we can fold the GEP directly into the load instruction.
2468 // emitGEPOperation with a second to last arg of 'true' will place the
2469 // base register for the GEP into baseReg, and the constant offset from that
2470 // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
2471 // otherwise, we copy the offset into another reg, and use reg+reg addressing.
2472 if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
2473 unsigned baseReg = getReg(GEPI);
2474 ConstantSInt *offset;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002475
Misha Brukmanb097f212004-07-26 18:13:24 +00002476 emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
2477 GEPI->op_end(), baseReg, true, &offset);
2478
2479 if (Class != cLong && canUseAsImmediateForOpcode(offset, 0)) {
2480 if (Class == cByte && I.getType()->isSigned()) {
2481 unsigned TmpReg = makeAnotherReg(I.getType());
2482 BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(offset->getValue())
2483 .addReg(baseReg);
2484 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
2485 } else {
2486 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(offset->getValue())
2487 .addReg(baseReg);
2488 }
2489 return;
2490 }
2491
2492 unsigned indexReg = getReg(offset);
2493
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002494 if (Class == cLong) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002495 unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
2496 BuildMI(BB, PPC32::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
2497 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
2498 BuildMI(BB, IdxOpcode, 2, DestReg+1).addReg(indexPlus4).addReg(baseReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002499 } else if (Class == cByte && I.getType()->isSigned()) {
2500 unsigned TmpReg = makeAnotherReg(I.getType());
Misha Brukmanb097f212004-07-26 18:13:24 +00002501 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002502 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002503 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00002504 BuildMI(BB, IdxOpcode, 2, DestReg).addReg(indexReg).addReg(baseReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002505 }
Misha Brukmanb097f212004-07-26 18:13:24 +00002506 return;
2507 }
2508
2509 // The fallback case, where the load was from a source that could not be
2510 // folded into the load instruction.
2511 unsigned SrcAddrReg = getReg(SourceAddr);
2512
2513 if (Class == cLong) {
2514 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
2515 BuildMI(BB, ImmOpcode, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg);
2516 } else if (Class == cByte && I.getType()->isSigned()) {
2517 unsigned TmpReg = makeAnotherReg(I.getType());
2518 BuildMI(BB, ImmOpcode, 2, TmpReg).addSImm(0).addReg(SrcAddrReg);
2519 BuildMI(BB, PPC32::EXTSB, 1, DestReg).addReg(TmpReg);
2520 } else {
2521 BuildMI(BB, ImmOpcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002522 }
2523}
2524
2525/// visitStoreInst - Implement LLVM store instructions
2526///
2527void ISel::visitStoreInst(StoreInst &I) {
Misha Brukmanb097f212004-07-26 18:13:24 +00002528 // Immediate opcodes, for reg+imm addressing
2529 static const unsigned ImmOpcodes[] = {
2530 PPC32::STB, PPC32::STH, PPC32::STW,
2531 PPC32::STFS, PPC32::STFD, PPC32::STW
2532 };
2533 // Indexed opcodes, for reg+reg addressing
2534 static const unsigned IdxOpcodes[] = {
2535 PPC32::STBX, PPC32::STHX, PPC32::STWX,
2536 PPC32::STFSX, PPC32::STDX, PPC32::STWX
2537 };
2538
2539 Value *SourceAddr = I.getOperand(1);
2540 const Type *ValTy = I.getOperand(0)->getType();
2541 unsigned Class = getClassB(ValTy);
2542 unsigned ImmOpcode = ImmOpcodes[Class];
2543 unsigned IdxOpcode = IdxOpcodes[Class];
2544 unsigned ValReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002545
Misha Brukmanb097f212004-07-26 18:13:24 +00002546 // If this store is the only use of the GEP instruction that is its address,
2547 // then we can fold the GEP directly into the store instruction.
2548 // emitGEPOperation with a second to last arg of 'true' will place the
2549 // base register for the GEP into baseReg, and the constant offset from that
2550 // into offset. If the offset fits in 16 bits, we can emit a reg+imm store
2551 // otherwise, we copy the offset into another reg, and use reg+reg addressing.
2552 if (GetElementPtrInst *GEPI = canFoldGEPIntoLoadOrStore(SourceAddr)) {
2553 unsigned baseReg = getReg(GEPI);
2554 ConstantSInt *offset;
2555
2556 emitGEPOperation(BB, BB->end(), GEPI->getOperand(0), GEPI->op_begin()+1,
2557 GEPI->op_end(), baseReg, true, &offset);
2558
2559 if (Class != cLong && canUseAsImmediateForOpcode(offset, 0)) {
2560 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(offset->getValue())
2561 .addReg(baseReg);
2562 return;
2563 }
2564
2565 unsigned indexReg = getReg(offset);
2566
2567 if (Class == cLong) {
2568 unsigned indexPlus4 = makeAnotherReg(Type::IntTy);
2569 BuildMI(BB, PPC32::ADDI, 2, indexPlus4).addReg(indexReg).addSImm(4);
2570 BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
2571 BuildMI(BB, IdxOpcode, 3).addReg(ValReg+1).addReg(indexPlus4)
2572 .addReg(baseReg);
2573 return;
2574 }
2575 BuildMI(BB, IdxOpcode, 3).addReg(ValReg).addReg(indexReg).addReg(baseReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002576 return;
2577 }
Misha Brukmanb097f212004-07-26 18:13:24 +00002578
2579 // If the store address wasn't the only use of a GEP, we fall back to the
2580 // standard path: store the ValReg at the value in AddressReg.
2581 unsigned AddressReg = getReg(I.getOperand(1));
2582 if (Class == cLong) {
2583 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
2584 BuildMI(BB, ImmOpcode, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg);
2585 return;
2586 }
2587 BuildMI(BB, ImmOpcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002588}
2589
2590
2591/// visitCastInst - Here we have various kinds of copying with or without sign
2592/// extension going on.
2593///
2594void ISel::visitCastInst(CastInst &CI) {
2595 Value *Op = CI.getOperand(0);
2596
2597 unsigned SrcClass = getClassB(Op->getType());
2598 unsigned DestClass = getClassB(CI.getType());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002599
2600 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2601 // of the case are GEP instructions, then the cast does not need to be
2602 // generated explicitly, it will be folded into the GEP.
2603 if (DestClass == cLong && SrcClass == cInt) {
2604 bool AllUsesAreGEPs = true;
2605 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2606 if (!isa<GetElementPtrInst>(*I)) {
2607 AllUsesAreGEPs = false;
2608 break;
2609 }
2610
2611 // No need to codegen this cast if all users are getelementptr instrs...
2612 if (AllUsesAreGEPs) return;
2613 }
2614
2615 unsigned DestReg = getReg(CI);
2616 MachineBasicBlock::iterator MI = BB->end();
2617 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2618}
2619
2620/// emitCastOperation - Common code shared between visitCastInst and constant
2621/// expression cast support.
2622///
Misha Brukman7e898c32004-07-20 00:41:46 +00002623void ISel::emitCastOperation(MachineBasicBlock *MBB,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002624 MachineBasicBlock::iterator IP,
2625 Value *Src, const Type *DestTy,
2626 unsigned DestReg) {
2627 const Type *SrcTy = Src->getType();
2628 unsigned SrcClass = getClassB(SrcTy);
2629 unsigned DestClass = getClassB(DestTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002630 unsigned SrcReg = getReg(Src, MBB, IP);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002631
2632 // Implement casts to bool by using compare on the operand followed by set if
2633 // not zero on the result.
2634 if (DestTy == Type::BoolTy) {
2635 switch (SrcClass) {
2636 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002637 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002638 case cInt: {
2639 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00002640 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
Misha Brukman7e898c32004-07-20 00:41:46 +00002641 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002642 break;
2643 }
2644 case cLong: {
2645 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2646 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman7e898c32004-07-20 00:41:46 +00002647 BuildMI(*MBB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman1013ef52004-07-21 20:09:08 +00002648 BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1);
Misha Brukmanbf417a62004-07-20 20:43:05 +00002649 BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg)
2650 .addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002651 break;
2652 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002653 case cFP32:
2654 case cFP64:
2655 // FSEL perhaps?
Misha Brukman2ed17ca2004-07-22 15:58:04 +00002656 std::cerr << "ERROR: Cast fp-to-bool not implemented!\n";
Misha Brukmand18a31d2004-07-06 22:51:53 +00002657 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002658 }
2659 return;
2660 }
2661
Misha Brukman7e898c32004-07-20 00:41:46 +00002662 // Handle cast of Float -> Double
2663 if (SrcClass == cFP32 && DestClass == cFP64) {
2664 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2665 return;
2666 }
2667
2668 // Handle cast of Double -> Float
2669 if (SrcClass == cFP64 && DestClass == cFP32) {
2670 BuildMI(*MBB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
2671 return;
2672 }
2673
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002674 // Handle casts from integer to floating point now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002675 if (DestClass == cFP32 || DestClass == cFP64) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002676
Misha Brukman422791f2004-06-21 17:41:12 +00002677 // Emit a library call for long to float conversion
2678 if (SrcClass == cLong) {
2679 std::vector<ValueRecord> Args;
2680 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002681 Function *floatFn = (DestClass == cFP32) ? __floatdisfFn : __floatdidfFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002682 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00002683 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002684 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002685 TM.CalledFunctions.insert(floatFn);
Misha Brukman422791f2004-06-21 17:41:12 +00002686 return;
2687 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002688
Misha Brukman7e898c32004-07-20 00:41:46 +00002689 // Make sure we're dealing with a full 32 bits
2690 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2691 promote32(TmpReg, ValueRecord(SrcReg, SrcTy));
2692
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002693 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002694
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002695 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002696 // Also spill room for a special conversion constant
2697 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002698 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2699 int ValueFrameIdx =
2700 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2701
Misha Brukman422791f2004-06-21 17:41:12 +00002702 unsigned constantHi = makeAnotherReg(Type::IntTy);
2703 unsigned constantLo = makeAnotherReg(Type::IntTy);
2704 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2705 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2706
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002707 if (!SrcTy->isSigned()) {
Misha Brukman1013ef52004-07-21 20:09:08 +00002708 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
2709 BuildMI(*BB, IP, PPC32::LI, 1, constantLo).addSImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002710 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2711 ConstantFrameIndex);
2712 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2713 ConstantFrameIndex, 4);
2714 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2715 ValueFrameIdx);
2716 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2717 ValueFrameIdx, 4);
2718 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2719 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002720 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2721 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2722 } else {
2723 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00002724 BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
2725 BuildMI(*BB, IP, PPC32::LIS, 1, constantLo).addSImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002726 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2727 ConstantFrameIndex);
2728 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2729 ConstantFrameIndex, 4);
2730 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2731 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002732 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002733 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2734 ValueFrameIdx, 4);
2735 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2736 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002737 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukmanb097f212004-07-26 18:13:24 +00002738 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002739 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002740 return;
2741 }
2742
2743 // Handle casts from floating point to integer now...
Misha Brukman7e898c32004-07-20 00:41:46 +00002744 if (SrcClass == cFP32 || SrcClass == cFP64) {
Misha Brukman422791f2004-06-21 17:41:12 +00002745 // emit library call
2746 if (DestClass == cLong) {
2747 std::vector<ValueRecord> Args;
2748 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman7e898c32004-07-20 00:41:46 +00002749 Function *floatFn = (DestClass == cFP32) ? __fixsfdiFn : __fixdfdiFn;
Misha Brukman2fec9902004-06-21 20:22:03 +00002750 MachineInstr *TheCall =
Misha Brukman7e898c32004-07-20 00:41:46 +00002751 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(floatFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002752 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00002753 TM.CalledFunctions.insert(floatFn);
Misha Brukman422791f2004-06-21 17:41:12 +00002754 return;
2755 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002756
2757 int ValueFrameIdx =
Misha Brukman7e898c32004-07-20 00:41:46 +00002758 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002759
Misha Brukman7e898c32004-07-20 00:41:46 +00002760 if (DestTy->isSigned()) {
Misha Brukman4c14f332004-07-23 01:11:19 +00002761 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2762
2763 // Convert to integer in the FP reg and store it to a stack slot
2764 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
2765 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2766 .addReg(TempReg), ValueFrameIdx);
Misha Brukmanb097f212004-07-26 18:13:24 +00002767
2768 // There is no load signed byte opcode, so we must emit a sign extend for
2769 // that particular size. Make sure to source the new integer from the
2770 // correct offset.
Misha Brukman4c14f332004-07-23 01:11:19 +00002771 if (DestClass == cByte) {
2772 unsigned TempReg2 = makeAnotherReg(DestTy);
Misha Brukmanb097f212004-07-26 18:13:24 +00002773 addFrameReference(BuildMI(*BB, IP, PPC32::LBZ, 2, TempReg2),
2774 ValueFrameIdx, 7);
Misha Brukman4c14f332004-07-23 01:11:19 +00002775 BuildMI(*MBB, IP, PPC32::EXTSB, DestReg).addReg(TempReg2);
2776 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00002777 int offset = (DestClass == cShort) ? 6 : 4;
2778 unsigned LoadOp = (DestClass == cShort) ? PPC32::LHA : PPC32::LWZ;
Misha Brukman4c14f332004-07-23 01:11:19 +00002779 addFrameReference(BuildMI(*BB, IP, LoadOp, 2, DestReg),
Misha Brukmanb097f212004-07-26 18:13:24 +00002780 ValueFrameIdx, offset);
Misha Brukman4c14f332004-07-23 01:11:19 +00002781 }
Misha Brukman7e898c32004-07-20 00:41:46 +00002782 } else {
Misha Brukmanb160d1f2004-07-23 20:32:59 +00002783 unsigned Zero = getReg(ConstantFP::get(Type::DoubleTy, 0.0f));
2784 double maxInt = (1LL << 32) - 1;
2785 unsigned MaxInt = getReg(ConstantFP::get(Type::DoubleTy, maxInt));
2786 double border = 1LL << 31;
2787 unsigned Border = getReg(ConstantFP::get(Type::DoubleTy, border));
2788 unsigned UseZero = makeAnotherReg(Type::DoubleTy);
2789 unsigned UseMaxInt = makeAnotherReg(Type::DoubleTy);
2790 unsigned UseChoice = makeAnotherReg(Type::DoubleTy);
2791 unsigned TmpReg = makeAnotherReg(Type::DoubleTy);
2792 unsigned TmpReg2 = makeAnotherReg(Type::DoubleTy);
2793 unsigned ConvReg = makeAnotherReg(Type::DoubleTy);
2794 unsigned IntTmp = makeAnotherReg(Type::IntTy);
2795 unsigned XorReg = makeAnotherReg(Type::IntTy);
2796 int FrameIdx =
2797 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
2798 // Update machine-CFG edges
2799 MachineBasicBlock *XorMBB = new MachineBasicBlock(BB->getBasicBlock());
2800 MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock());
2801 MachineBasicBlock *OldMBB = BB;
2802 ilist<MachineBasicBlock>::iterator It = BB; ++It;
2803 F->getBasicBlockList().insert(It, XorMBB);
2804 F->getBasicBlockList().insert(It, PhiMBB);
2805 BB->addSuccessor(XorMBB);
2806 BB->addSuccessor(PhiMBB);
2807
2808 // Convert from floating point to unsigned 32-bit value
2809 // Use 0 if incoming value is < 0.0
2810 BuildMI(*BB, IP, PPC32::FSEL, 3, UseZero).addReg(SrcReg).addReg(SrcReg)
2811 .addReg(Zero);
2812 // Use 2**32 - 1 if incoming value is >= 2**32
2813 BuildMI(*BB, IP, PPC32::FSUB, 2, UseMaxInt).addReg(MaxInt).addReg(SrcReg);
2814 BuildMI(*BB, IP, PPC32::FSEL, 3, UseChoice).addReg(UseMaxInt)
2815 .addReg(UseZero).addReg(MaxInt);
2816 // Subtract 2**31
2817 BuildMI(*BB, IP, PPC32::FSUB, 2, TmpReg).addReg(UseChoice).addReg(Border);
2818 // Use difference if >= 2**31
2819 BuildMI(*BB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(UseChoice)
2820 .addReg(Border);
2821 BuildMI(*BB, IP, PPC32::FSEL, 3, TmpReg2).addReg(TmpReg).addReg(TmpReg)
2822 .addReg(UseChoice);
2823 // Convert to integer
2824 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, ConvReg).addReg(TmpReg2);
2825 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3).addReg(ConvReg),
2826 FrameIdx);
Misha Brukmanb097f212004-07-26 18:13:24 +00002827 if (DestClass == cByte) {
2828 addFrameReference(BuildMI(*BB, IP, PPC32::LBZ, 2, DestReg),
2829 FrameIdx, 7);
2830 } else if (DestClass == cShort) {
2831 addFrameReference(BuildMI(*BB, IP, PPC32::LHZ, 2, DestReg),
2832 FrameIdx, 6);
2833 } if (DestClass == cInt) {
2834 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, IntTmp),
2835 FrameIdx, 4);
2836 BuildMI(*BB, IP, PPC32::BLT, 2).addReg(PPC32::CR0).addMBB(PhiMBB);
2837 BuildMI(*BB, IP, PPC32::B, 1).addMBB(XorMBB);
Misha Brukmanb160d1f2004-07-23 20:32:59 +00002838
Misha Brukmanb097f212004-07-26 18:13:24 +00002839 // XorMBB:
2840 // add 2**31 if input was >= 2**31
2841 BB = XorMBB;
2842 BuildMI(BB, PPC32::XORIS, 2, XorReg).addReg(IntTmp).addImm(0x8000);
2843 XorMBB->addSuccessor(PhiMBB);
Misha Brukmanb160d1f2004-07-23 20:32:59 +00002844
Misha Brukmanb097f212004-07-26 18:13:24 +00002845 // PhiMBB:
2846 // DestReg = phi [ IntTmp, OldMBB ], [ XorReg, XorMBB ]
2847 BB = PhiMBB;
2848 BuildMI(BB, PPC32::PHI, 2, DestReg).addReg(IntTmp).addMBB(OldMBB)
2849 .addReg(XorReg).addMBB(XorMBB);
2850 }
2851 }
2852 return;
2853 }
2854
2855 // Check our invariants
2856 assert((SrcClass <= cInt || SrcClass == cLong) &&
2857 "Unhandled source class for cast operation!");
2858 assert((DestClass <= cInt || DestClass == cLong) &&
2859 "Unhandled destination class for cast operation!");
2860
2861 bool sourceUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2862 bool destUnsigned = DestTy->isUnsigned();
2863
2864 // Unsigned -> Unsigned, clear if larger,
2865 if (sourceUnsigned && destUnsigned) {
2866 // handle long dest class now to keep switch clean
2867 if (DestClass == cLong) {
2868 if (SrcClass == cLong) {
2869 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2870 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2871 .addReg(SrcReg+1);
2872 } else {
2873 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
2874 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2875 .addReg(SrcReg);
2876 }
2877 return;
2878 }
2879
2880 // handle u{ byte, short, int } x u{ byte, short, int }
2881 unsigned clearBits = (SrcClass == cByte || DestClass == cByte) ? 24 : 16;
2882 switch (SrcClass) {
2883 case cByte:
2884 case cShort:
2885 if (SrcClass == DestClass)
2886 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2887 else
2888 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2889 .addImm(0).addImm(clearBits).addImm(31);
2890 break;
2891 case cLong:
2892 ++SrcReg;
2893 // Fall through
2894 case cInt:
2895 if (DestClass == cInt)
2896 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2897 else
2898 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2899 .addImm(0).addImm(clearBits).addImm(31);
2900 break;
2901 }
2902 return;
2903 }
2904
2905 // Signed -> Signed
2906 if (!sourceUnsigned && !destUnsigned) {
2907 // handle long dest class now to keep switch clean
2908 if (DestClass == cLong) {
2909 if (SrcClass == cLong) {
2910 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2911 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2912 .addReg(SrcReg+1);
2913 } else {
2914 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
2915 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2916 .addReg(SrcReg);
2917 }
2918 return;
2919 }
2920
2921 // handle { byte, short, int } x { byte, short, int }
2922 switch (SrcClass) {
2923 case cByte:
2924 if (DestClass == cByte)
2925 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2926 else
2927 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2928 break;
2929 case cShort:
2930 if (DestClass == cByte)
2931 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2932 else if (DestClass == cShort)
2933 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2934 else
2935 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2936 break;
2937 case cLong:
2938 ++SrcReg;
2939 // Fall through
2940 case cInt:
2941 if (DestClass == cByte)
2942 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2943 else if (DestClass == cShort)
2944 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2945 else
2946 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2947 break;
2948 }
2949 return;
2950 }
2951
2952 // Unsigned -> Signed
2953 if (sourceUnsigned && !destUnsigned) {
2954 // handle long dest class now to keep switch clean
2955 if (DestClass == cLong) {
2956 if (SrcClass == cLong) {
2957 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2958 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1).
2959 addReg(SrcReg+1);
2960 } else {
2961 BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
2962 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2963 .addReg(SrcReg);
2964 }
2965 return;
2966 }
2967
2968 // handle u{ byte, short, int } -> { byte, short, int }
2969 switch (SrcClass) {
2970 case cByte:
2971 if (DestClass == cByte)
2972 // uByte 255 -> signed byte == -1
2973 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2974 else
2975 // uByte 255 -> signed short/int == 255
2976 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
2977 .addImm(24).addImm(31);
2978 break;
2979 case cShort:
2980 if (DestClass == cByte)
2981 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2982 else if (DestClass == cShort)
2983 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2984 else
2985 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(0)
2986 .addImm(16).addImm(31);
2987 break;
2988 case cLong:
2989 ++SrcReg;
2990 // Fall through
2991 case cInt:
2992 if (DestClass == cByte)
2993 BuildMI(*MBB, IP, PPC32::EXTSB, 1, DestReg).addReg(SrcReg);
2994 else if (DestClass == cShort)
2995 BuildMI(*MBB, IP, PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
2996 else
2997 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2998 break;
2999 }
3000 return;
3001 }
3002
3003 // Signed -> Unsigned
3004 if (!sourceUnsigned && destUnsigned) {
3005 // handle long dest class now to keep switch clean
3006 if (DestClass == cLong) {
3007 if (SrcClass == cLong) {
3008 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3009 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
3010 .addReg(SrcReg+1);
3011 } else {
3012 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg).addImm(31);
3013 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
3014 .addReg(SrcReg);
3015 }
3016 return;
3017 }
3018
3019 // handle { byte, short, int } -> u{ byte, short, int }
3020 unsigned clearBits = (DestClass == cByte) ? 24 : 16;
3021 switch (SrcClass) {
3022 case cByte:
3023 case cShort:
3024 if (DestClass == cByte || DestClass == cShort)
3025 // sbyte -1 -> ubyte 0x000000FF
3026 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
3027 .addImm(0).addImm(clearBits).addImm(31);
3028 else
3029 // sbyte -1 -> ubyte 0xFFFFFFFF
3030 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3031 break;
3032 case cLong:
3033 ++SrcReg;
3034 // Fall through
3035 case cInt:
3036 if (DestClass == cInt)
3037 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
3038 else
3039 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
3040 .addImm(0).addImm(clearBits).addImm(31);
3041 break;
Misha Brukman7e898c32004-07-20 00:41:46 +00003042 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003043 return;
3044 }
3045
3046 // Anything we haven't handled already, we can't (yet) handle at all.
Misha Brukmanb097f212004-07-26 18:13:24 +00003047 std::cerr << "Unhandled cast from " << SrcTy->getDescription()
3048 << "to " << DestTy->getDescription() << '\n';
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003049 abort();
3050}
3051
3052/// visitVANextInst - Implement the va_next instruction...
3053///
3054void ISel::visitVANextInst(VANextInst &I) {
3055 unsigned VAList = getReg(I.getOperand(0));
3056 unsigned DestReg = getReg(I);
3057
3058 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00003059 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003060 default:
3061 std::cerr << I;
3062 assert(0 && "Error: bad type for va_next instruction!");
3063 return;
3064 case Type::PointerTyID:
3065 case Type::UIntTyID:
3066 case Type::IntTyID:
3067 Size = 4;
3068 break;
3069 case Type::ULongTyID:
3070 case Type::LongTyID:
3071 case Type::DoubleTyID:
3072 Size = 8;
3073 break;
3074 }
3075
3076 // Increment the VAList pointer...
Misha Brukman1013ef52004-07-21 20:09:08 +00003077 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003078}
3079
3080void ISel::visitVAArgInst(VAArgInst &I) {
3081 unsigned VAList = getReg(I.getOperand(0));
3082 unsigned DestReg = getReg(I);
3083
Misha Brukman358829f2004-06-21 17:25:55 +00003084 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003085 default:
3086 std::cerr << I;
3087 assert(0 && "Error: bad type for va_next instruction!");
3088 return;
3089 case Type::PointerTyID:
3090 case Type::UIntTyID:
3091 case Type::IntTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00003092 BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003093 break;
3094 case Type::ULongTyID:
3095 case Type::LongTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00003096 BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
3097 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003098 break;
Misha Brukmanb097f212004-07-26 18:13:24 +00003099 case Type::FloatTyID:
3100 BuildMI(BB, PPC32::LFS, 2, DestReg).addSImm(0).addReg(VAList);
3101 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003102 case Type::DoubleTyID:
Misha Brukman1013ef52004-07-21 20:09:08 +00003103 BuildMI(BB, PPC32::LFD, 2, DestReg).addSImm(0).addReg(VAList);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003104 break;
3105 }
3106}
3107
3108/// visitGetElementPtrInst - instruction-select GEP instructions
3109///
3110void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
Misha Brukmanb097f212004-07-26 18:13:24 +00003111 if (canFoldGEPIntoLoadOrStore(&I))
3112 return;
3113
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003114 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00003115 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
Misha Brukmanb097f212004-07-26 18:13:24 +00003116 outputReg, false, 0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003117}
3118
Misha Brukman1013ef52004-07-21 20:09:08 +00003119/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
3120/// constant expression GEP support.
3121///
Misha Brukman17a90002004-07-21 20:22:06 +00003122void ISel::emitGEPOperation(MachineBasicBlock *MBB,
3123 MachineBasicBlock::iterator IP,
3124 Value *Src, User::op_iterator IdxBegin,
Misha Brukmanb097f212004-07-26 18:13:24 +00003125 User::op_iterator IdxEnd, unsigned TargetReg,
3126 bool GEPIsFolded, ConstantSInt **RemainderPtr) {
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003127 const TargetData &TD = TM.getTargetData();
3128 const Type *Ty = Src->getType();
3129 unsigned basePtrReg = getReg(Src, MBB, IP);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003130 int64_t constValue = 0;
Misha Brukmane2eceb52004-07-23 16:08:20 +00003131
3132 // Record the operations to emit the GEP in a vector so that we can emit them
3133 // after having analyzed the entire instruction.
Misha Brukmanb097f212004-07-26 18:13:24 +00003134 std::vector<CollapsedGepOp> ops;
Misha Brukmane2eceb52004-07-23 16:08:20 +00003135
Misha Brukman1013ef52004-07-21 20:09:08 +00003136 // GEPs have zero or more indices; we must perform a struct access
3137 // or array access for each one.
3138 for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
3139 ++oi) {
3140 Value *idx = *oi;
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003141 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Misha Brukman1013ef52004-07-21 20:09:08 +00003142 // It's a struct access. idx is the index into the structure,
3143 // which names the field. Use the TargetData structure to
3144 // pick out what the layout of the structure is in memory.
3145 // Use the (constant) structure index's value to find the
3146 // right byte offset from the StructLayout class's list of
3147 // structure member offsets.
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003148 unsigned fieldIndex = cast<ConstantUInt>(idx)->getValue();
Misha Brukman1013ef52004-07-21 20:09:08 +00003149 unsigned memberOffset =
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003150 TD.getStructLayout(StTy)->MemberOffsets[fieldIndex];
Misha Brukmane2eceb52004-07-23 16:08:20 +00003151
3152 // StructType member offsets are always constant values. Add it to the
3153 // running total.
3154 constValue += memberOffset;
3155
3156 // The next type is the member of the structure selected by the
3157 // index.
3158 Ty = StTy->getElementType (fieldIndex);
3159 } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
Misha Brukman313efcb2004-07-09 15:45:07 +00003160 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
3161 // operand. Handle this case directly now...
3162 if (CastInst *CI = dyn_cast<CastInst>(idx))
3163 if (CI->getOperand(0)->getType() == Type::IntTy ||
3164 CI->getOperand(0)->getType() == Type::UIntTy)
3165 idx = CI->getOperand(0);
Misha Brukman1013ef52004-07-21 20:09:08 +00003166
Misha Brukmane2eceb52004-07-23 16:08:20 +00003167 // It's an array or pointer access: [ArraySize x ElementType].
3168 // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
3169 // must find the size of the pointed-to type (Not coincidentally, the next
3170 // type is the type of the elements in the array).
Misha Brukman1013ef52004-07-21 20:09:08 +00003171 Ty = SqTy->getElementType();
Misha Brukman2ed17ca2004-07-22 15:58:04 +00003172 unsigned elementSize = TD.getTypeSize(Ty);
Misha Brukman1013ef52004-07-21 20:09:08 +00003173
Misha Brukmane2eceb52004-07-23 16:08:20 +00003174 if (ConstantInt *C = dyn_cast<ConstantInt>(idx)) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003175 if (ConstantSInt *CS = dyn_cast<ConstantSInt>(C))
3176 constValue += CS->getValue() * elementSize;
3177 else if (ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
3178 constValue += CU->getValue() * elementSize;
3179 else
3180 assert(0 && "Invalid ConstantInt GEP index type!");
3181 } else {
3182 // Push current gep state to this point as an add
Misha Brukmanb097f212004-07-26 18:13:24 +00003183 ops.push_back(CollapsedGepOp(false, 0,
3184 ConstantSInt::get(Type::IntTy,constValue)));
Misha Brukmane2eceb52004-07-23 16:08:20 +00003185
3186 // Push multiply gep op and reset constant value
Misha Brukmanb097f212004-07-26 18:13:24 +00003187 ops.push_back(CollapsedGepOp(true, idx,
3188 ConstantSInt::get(Type::IntTy, elementSize)));
Misha Brukmane2eceb52004-07-23 16:08:20 +00003189
3190 constValue = 0;
Misha Brukman313efcb2004-07-09 15:45:07 +00003191 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003192 }
Misha Brukmane2eceb52004-07-23 16:08:20 +00003193 }
Misha Brukmane2eceb52004-07-23 16:08:20 +00003194 // Emit instructions for all the collapsed ops
Misha Brukmanb097f212004-07-26 18:13:24 +00003195 for(std::vector<CollapsedGepOp>::iterator cgo_i = ops.begin(),
Misha Brukmane2eceb52004-07-23 16:08:20 +00003196 cgo_e = ops.end(); cgo_i != cgo_e; ++cgo_i) {
Misha Brukmanb097f212004-07-26 18:13:24 +00003197 CollapsedGepOp& cgo = *cgo_i;
Misha Brukmane2eceb52004-07-23 16:08:20 +00003198 unsigned nextBasePtrReg = makeAnotherReg (Type::IntTy);
3199
Misha Brukmanb097f212004-07-26 18:13:24 +00003200 if (cgo.isMul) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003201 // We know the elementSize is a constant, so we can emit a constant mul
3202 // and then add it to the current base reg
3203 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukmanb097f212004-07-26 18:13:24 +00003204 doMultiplyConst(MBB, IP, TmpReg, cgo.index, cgo.size);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003205 BuildMI(*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
3206 .addReg(TmpReg);
3207 } else {
3208 // Try and generate an immediate addition if possible
Misha Brukmanb097f212004-07-26 18:13:24 +00003209 if (cgo.size->isNullValue()) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003210 BuildMI(*MBB, IP, PPC32::OR, 2, nextBasePtrReg).addReg(basePtrReg)
3211 .addReg(basePtrReg);
Misha Brukmanb097f212004-07-26 18:13:24 +00003212 } else if (canUseAsImmediateForOpcode(cgo.size, 0)) {
Misha Brukmane2eceb52004-07-23 16:08:20 +00003213 BuildMI(*MBB, IP, PPC32::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
Misha Brukmanb097f212004-07-26 18:13:24 +00003214 .addSImm(cgo.size->getValue());
Misha Brukmane2eceb52004-07-23 16:08:20 +00003215 } else {
Misha Brukmanb097f212004-07-26 18:13:24 +00003216 unsigned Op1r = getReg(cgo.size, MBB, IP);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003217 BuildMI(*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
3218 .addReg(Op1r);
3219 }
3220 }
3221
Misha Brukman1013ef52004-07-21 20:09:08 +00003222 basePtrReg = nextBasePtrReg;
Misha Brukman2fec9902004-06-21 20:22:03 +00003223 }
Misha Brukmane2eceb52004-07-23 16:08:20 +00003224 // Add the current base register plus any accumulated constant value
3225 ConstantSInt *remainder = ConstantSInt::get(Type::IntTy, constValue);
3226
Misha Brukmanb097f212004-07-26 18:13:24 +00003227 // If we are emitting this during a fold, copy the current base register to
3228 // the target, and save the current constant offset so the folding load or
3229 // store can try and use it as an immediate.
3230 if (GEPIsFolded) {
3231 BuildMI (BB, PPC32::OR, 2, TargetReg).addReg(basePtrReg).addReg(basePtrReg);
3232 *RemainderPtr = remainder;
3233 return;
3234 }
3235
Misha Brukman1013ef52004-07-21 20:09:08 +00003236 // After we have processed all the indices, the result is left in
3237 // basePtrReg. Move it to the register where we were expected to
3238 // put the answer.
Misha Brukmane2eceb52004-07-23 16:08:20 +00003239 if (remainder->isNullValue()) {
3240 BuildMI (BB, PPC32::OR, 2, TargetReg).addReg(basePtrReg).addReg(basePtrReg);
3241 } else if (canUseAsImmediateForOpcode(remainder, 0)) {
3242 BuildMI(*MBB, IP, PPC32::ADDI, 2, TargetReg).addReg(basePtrReg)
3243 .addSImm(remainder->getValue());
3244 } else {
3245 unsigned Op1r = getReg(remainder, MBB, IP);
3246 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(basePtrReg).addReg(Op1r);
3247 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003248}
3249
3250/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
3251/// frame manager, otherwise do it the hard way.
3252///
3253void ISel::visitAllocaInst(AllocaInst &I) {
3254 // If this is a fixed size alloca in the entry block for the function, we
3255 // statically stack allocate the space, so we don't need to do anything here.
3256 //
3257 if (dyn_castFixedAlloca(&I)) return;
3258
3259 // Find the data size of the alloca inst's getAllocatedType.
3260 const Type *Ty = I.getAllocatedType();
3261 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
3262
3263 // Create a register to hold the temporary result of multiplying the type size
3264 // constant by the variable amount.
3265 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003266
3267 // TotalSizeReg = mul <numelements>, <TypeSize>
3268 MachineBasicBlock::iterator MBBI = BB->end();
Misha Brukman1013ef52004-07-21 20:09:08 +00003269 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
3270 doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003271
3272 // AddedSize = add <TotalSizeReg>, 15
3273 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
Misha Brukman1013ef52004-07-21 20:09:08 +00003274 BuildMI(BB, PPC32::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003275
3276 // AlignedSize = and <AddedSize>, ~15
3277 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukmana31f1f72004-07-21 20:30:18 +00003278 BuildMI(BB, PPC32::RLWINM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
Misha Brukman2fec9902004-06-21 20:22:03 +00003279 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003280
3281 // Subtract size from stack pointer, thereby allocating some space.
3282 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
3283
3284 // Put a pointer to the space into the result register, by copying
3285 // the stack pointer.
3286 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
3287
3288 // Inform the Frame Information that we have just allocated a variable-sized
3289 // object.
3290 F->getFrameInfo()->CreateVariableSizedObject();
3291}
3292
3293/// visitMallocInst - Malloc instructions are code generated into direct calls
3294/// to the library malloc.
3295///
3296void ISel::visitMallocInst(MallocInst &I) {
3297 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
3298 unsigned Arg;
3299
3300 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
3301 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
3302 } else {
3303 Arg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003304 MachineBasicBlock::iterator MBBI = BB->end();
Misha Brukman1013ef52004-07-21 20:09:08 +00003305 ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
3306 doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003307 }
3308
3309 std::vector<ValueRecord> Args;
3310 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00003311 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00003312 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(mallocFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00003313 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003314 TM.CalledFunctions.insert(mallocFn);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003315}
3316
3317
3318/// visitFreeInst - Free instructions are code gen'd to call the free libc
3319/// function.
3320///
3321void ISel::visitFreeInst(FreeInst &I) {
3322 std::vector<ValueRecord> Args;
3323 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00003324 MachineInstr *TheCall =
Misha Brukman313efcb2004-07-09 15:45:07 +00003325 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(freeFn, true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00003326 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukmane2eceb52004-07-23 16:08:20 +00003327 TM.CalledFunctions.insert(freeFn);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00003328}
3329
3330/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
3331/// into a machine code representation is a very simple peep-hole fashion. The
3332/// generated code sucks but the implementation is nice and simple.
3333///
3334FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
3335 return new ISel(TM);
3336}