blob: af1b4069936b66b0e46f613e561a46ec95f8ccf0 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Daniel Dunbara8dfb792010-02-13 09:27:52 +000017#include "X86FixupKinds.h"
Chris Lattner45762472010-02-03 21:24:49 +000018#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000019#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000020#include "llvm/MC/MCInst.h"
21#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000022using namespace llvm;
23
24namespace {
25class X86MCCodeEmitter : public MCCodeEmitter {
26 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
27 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000028 const TargetMachine &TM;
29 const TargetInstrInfo &TII;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000030 MCContext &Ctx;
Chris Lattner1ac23b12010-02-05 02:18:40 +000031 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000032public:
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000033 X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
34 : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000035 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000036 }
37
38 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000039
40 unsigned getNumFixupKinds() const {
Chris Lattner9fc05222010-07-07 22:27:31 +000041 return 5;
Daniel Dunbar73c55742010-02-09 22:59:55 +000042 }
43
Chris Lattner8d31de62010-02-11 21:27:18 +000044 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
45 const static MCFixupKindInfo Infos[] = {
Daniel Dunbarb36052f2010-03-19 10:43:23 +000046 { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
47 { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel },
Chris Lattner9fc05222010-07-07 22:27:31 +000048 { "reloc_pcrel_2byte", 0, 2 * 8, MCFixupKindInfo::FKF_IsPCRel },
Daniel Dunbarb36052f2010-03-19 10:43:23 +000049 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
50 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }
Daniel Dunbar73c55742010-02-09 22:59:55 +000051 };
Chris Lattner8d31de62010-02-11 21:27:18 +000052
53 if (Kind < FirstTargetFixupKind)
54 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000055
Chris Lattner8d31de62010-02-11 21:27:18 +000056 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000057 "Invalid kind!");
58 return Infos[Kind - FirstTargetFixupKind];
59 }
Chris Lattner45762472010-02-03 21:24:49 +000060
Chris Lattner28249d92010-02-05 01:53:19 +000061 static unsigned GetX86RegNum(const MCOperand &MO) {
62 return X86RegisterInfo::getX86RegNum(MO.getReg());
63 }
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000064
65 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
66 // 0-7 and the difference between the 2 groups is given by the REX prefix.
67 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
68 // in 1's complement form, example:
69 //
70 // ModRM field => XMM9 => 1
71 // VEX.VVVV => XMM9 => ~9
72 //
73 // See table 4-35 of Intel AVX Programming Reference for details.
74 static unsigned char getVEXRegisterEncoding(const MCInst &MI,
75 unsigned OpNum) {
76 unsigned SrcReg = MI.getOperand(OpNum).getReg();
77 unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
78 if (SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15)
79 SrcRegNum += 8;
80
81 // The registers represented through VEX_VVVV should
82 // be encoded in 1's complement form.
83 return (~SrcRegNum) & 0xf;
84 }
Chris Lattner28249d92010-02-05 01:53:19 +000085
Chris Lattner37ce80e2010-02-10 06:41:02 +000086 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000087 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000088 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000089 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000090
Chris Lattner37ce80e2010-02-10 06:41:02 +000091 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
92 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000093 // Output the constant in little endian byte order.
94 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000095 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000096 Val >>= 8;
97 }
98 }
Chris Lattner0e73c392010-02-05 06:16:07 +000099
Chris Lattnercf653392010-02-12 22:36:47 +0000100 void EmitImmediate(const MCOperand &Disp,
101 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000102 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000103 SmallVectorImpl<MCFixup> &Fixups,
104 int ImmOffset = 0) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000105
106 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
107 unsigned RM) {
108 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
109 return RM | (RegOpcode << 3) | (Mod << 6);
110 }
111
112 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000113 unsigned &CurByte, raw_ostream &OS) const {
114 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000115 }
116
Chris Lattner0e73c392010-02-05 06:16:07 +0000117 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000118 unsigned &CurByte, raw_ostream &OS) const {
119 // SIB byte is in the same format as the ModRMByte.
120 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000121 }
122
123
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000124 void EmitSegmentOverridePrefix(const MCOperand &Op, unsigned TSFlags,
125 unsigned &CurByte, raw_ostream &OS) const;
126
Chris Lattner1ac23b12010-02-05 02:18:40 +0000127 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Chris Lattner1b670602010-02-11 06:49:52 +0000128 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000129 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000130 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000131
Daniel Dunbar73c55742010-02-09 22:59:55 +0000132 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
133 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000134
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000135 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
136 const MCInst &MI, const TargetInstrDesc &Desc,
137 raw_ostream &OS) const;
138
139 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
140 const MCInst &MI, const TargetInstrDesc &Desc,
141 raw_ostream &OS) const;
Chris Lattner45762472010-02-03 21:24:49 +0000142};
143
144} // end anonymous namespace
145
146
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000147MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000148 TargetMachine &TM,
149 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000150 return new X86MCCodeEmitter(TM, Ctx, false);
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000151}
152
153MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000154 TargetMachine &TM,
155 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000156 return new X86MCCodeEmitter(TM, Ctx, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000157}
158
Chris Lattner1ac23b12010-02-05 02:18:40 +0000159/// isDisp8 - Return true if this signed displacement fits in a 8-bit
160/// sign-extended field.
161static bool isDisp8(int Value) {
162 return Value == (signed char)Value;
163}
164
Chris Lattnercf653392010-02-12 22:36:47 +0000165/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
166/// in an instruction with the specified TSFlags.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000167static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
Chris Lattnercf653392010-02-12 22:36:47 +0000168 unsigned Size = X86II::getSizeOfImm(TSFlags);
169 bool isPCRel = X86II::isImmPCRel(TSFlags);
170
Chris Lattnercf653392010-02-12 22:36:47 +0000171 switch (Size) {
172 default: assert(0 && "Unknown immediate size");
173 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
Chris Lattner9fc05222010-07-07 22:27:31 +0000174 case 2: return isPCRel ? MCFixupKind(X86::reloc_pcrel_2byte) : FK_Data_2;
Chris Lattnercf653392010-02-12 22:36:47 +0000175 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
Chris Lattnercf653392010-02-12 22:36:47 +0000176 case 8: assert(!isPCRel); return FK_Data_8;
177 }
178}
179
180
Chris Lattner0e73c392010-02-05 06:16:07 +0000181void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000182EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000183 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000184 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000185 // If this is a simple integer displacement that doesn't require a relocation,
186 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000187 if (DispOp.isImm()) {
Chris Lattnera08b5872010-02-16 05:03:17 +0000188 // FIXME: is this right for pc-rel encoding?? Probably need to emit this as
189 // a fixup if so.
Chris Lattner835acab2010-02-12 23:00:36 +0000190 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000191 return;
192 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000193
Chris Lattner835acab2010-02-12 23:00:36 +0000194 // If we have an immoffset, add it to the expression.
195 const MCExpr *Expr = DispOp.getExpr();
Chris Lattnera08b5872010-02-16 05:03:17 +0000196
197 // If the fixup is pc-relative, we need to bias the value to be relative to
198 // the start of the field, not the end of the field.
199 if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000200 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
201 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
Chris Lattnera08b5872010-02-16 05:03:17 +0000202 ImmOffset -= 4;
Chris Lattner9fc05222010-07-07 22:27:31 +0000203 if (FixupKind == MCFixupKind(X86::reloc_pcrel_2byte))
Chris Lattnerda3051a2010-07-07 22:35:13 +0000204 ImmOffset -= 2;
Chris Lattnera08b5872010-02-16 05:03:17 +0000205 if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
206 ImmOffset -= 1;
207
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000208 if (ImmOffset)
Chris Lattnera08b5872010-02-16 05:03:17 +0000209 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000210 Ctx);
Chris Lattner835acab2010-02-12 23:00:36 +0000211
Chris Lattner5dccfad2010-02-10 06:52:12 +0000212 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000213 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000214 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000215}
216
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000217void X86MCCodeEmitter::EmitSegmentOverridePrefix(const MCOperand &Op,
218 unsigned TSFlags,
219 unsigned &CurByte,
220 raw_ostream &OS) const {
221 // If no segment register is present, we don't need anything.
222 if (Op.getReg() == 0)
223 return;
224
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000225 // Check if we need an override.
226 switch (Op.getReg()) {
227 case X86::CS: EmitByte(0x2E, CurByte, OS); return;
228 case X86::SS: EmitByte(0x36, CurByte, OS); return;
229 case X86::DS: EmitByte(0x3E, CurByte, OS); return;
230 case X86::ES: EmitByte(0x26, CurByte, OS); return;
231 case X86::FS: EmitByte(0x64, CurByte, OS); return;
232 case X86::GS: EmitByte(0x65, CurByte, OS); return;
233 }
234
235 assert(0 && "Invalid segment register!");
236}
Chris Lattner0e73c392010-02-05 06:16:07 +0000237
Chris Lattner1ac23b12010-02-05 02:18:40 +0000238void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
239 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000240 uint64_t TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000241 raw_ostream &OS,
242 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000243 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000244 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000245 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000246 const MCOperand &IndexReg = MI.getOperand(Op+2);
247 unsigned BaseReg = Base.getReg();
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000248
249 // Handle %rip relative addressing.
250 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Eric Christopher497f1eb2010-06-08 22:57:33 +0000251 assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode");
252 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000253 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattner835acab2010-02-12 23:00:36 +0000254
Chris Lattner0f53cf22010-03-18 18:10:56 +0000255 unsigned FixupKind = X86::reloc_riprel_4byte;
256
257 // movq loads are handled with a special relocation form which allows the
258 // linker to eliminate some loads for GOT references which end up in the
259 // same linkage unit.
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000260 if (MI.getOpcode() == X86::MOV64rm ||
261 MI.getOpcode() == X86::MOV64rm_TC)
Chris Lattner0f53cf22010-03-18 18:10:56 +0000262 FixupKind = X86::reloc_riprel_4byte_movq_load;
263
Chris Lattner835acab2010-02-12 23:00:36 +0000264 // rip-relative addressing is actually relative to the *next* instruction.
265 // Since an immediate can follow the mod/rm byte for an instruction, this
266 // means that we need to bias the immediate field of the instruction with
267 // the size of the immediate field. If we have this case, add it into the
268 // expression to emit.
269 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
Chris Lattnera08b5872010-02-16 05:03:17 +0000270
Chris Lattner0f53cf22010-03-18 18:10:56 +0000271 EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
Chris Lattner835acab2010-02-12 23:00:36 +0000272 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000273 return;
274 }
275
276 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Chris Lattnerecfb3c32010-02-11 08:45:56 +0000277
Chris Lattnera8168ec2010-02-09 21:57:34 +0000278 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000279 // If no BaseReg, issue a RIP relative instruction only if the MCE can
280 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
281 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000282
Chris Lattnera8168ec2010-02-09 21:57:34 +0000283 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000284 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000285 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
286 // encode to an R/M value of 4, which indicates that a SIB byte is
287 // present.
288 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000289 // If there is no base register and we're in 64-bit mode, we need a SIB
290 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
291 (!Is64BitMode || BaseReg != 0)) {
292
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000293 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000294 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000295 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000296 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000297 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000298
Chris Lattnera8168ec2010-02-09 21:57:34 +0000299 // If the base is not EBP/ESP and there is no displacement, use simple
300 // indirect register encoding, this handles addresses like [EAX]. The
301 // encoding for [EBP] with no displacement means [disp32] so we handle it
302 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000303 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000304 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000305 return;
306 }
307
308 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000309 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000310 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000311 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000312 return;
313 }
314
315 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000316 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000317 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000318 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000319 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000320
321 // We need a SIB byte, so start by outputting the ModR/M byte first
322 assert(IndexReg.getReg() != X86::ESP &&
323 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
324
325 bool ForceDisp32 = false;
326 bool ForceDisp8 = false;
327 if (BaseReg == 0) {
328 // If there is no base register, we emit the special case SIB byte with
329 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000330 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000331 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000332 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000333 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000334 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000335 ForceDisp32 = true;
Chris Lattner618d0ed2010-03-18 20:04:36 +0000336 } else if (Disp.getImm() == 0 &&
337 // Base reg can't be anything that ends up with '5' as the base
338 // reg, it is the magic [*] nomenclature that indicates no base.
339 BaseRegNo != N86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000340 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000341 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000342 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000343 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000344 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000345 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
346 } else {
347 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000348 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000349 }
350
351 // Calculate what the SS field value should be...
352 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
353 unsigned SS = SSTable[Scale.getImm()];
354
355 if (BaseReg == 0) {
356 // Handle the SIB byte for the case where there is no base, see Intel
357 // Manual 2A, table 2-7. The displacement has already been output.
358 unsigned IndexRegNo;
359 if (IndexReg.getReg())
360 IndexRegNo = GetX86RegNum(IndexReg);
361 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
362 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000363 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000364 } else {
365 unsigned IndexRegNo;
366 if (IndexReg.getReg())
367 IndexRegNo = GetX86RegNum(IndexReg);
368 else
369 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000370 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000371 }
372
373 // Do we need to output a displacement?
374 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000375 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000376 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnercf653392010-02-12 22:36:47 +0000377 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000378}
379
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000380/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
381/// called VEX.
382void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
383 const MCInst &MI, const TargetInstrDesc &Desc,
384 raw_ostream &OS) const {
385
386 // Pseudo instructions never have a VEX prefix.
387 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
388 return;
389
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000390 bool HasVEX_4V = false;
391 if ((TSFlags >> 32) & X86II::VEX_4V)
392 HasVEX_4V = true;
393
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000394 // VEX_R: opcode externsion equivalent to REX.R in
395 // 1's complement (inverted) form
396 //
397 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
398 // 0: Same as REX_R=1 (64 bit mode only)
399 //
400 unsigned char VEX_R = 0x1;
401
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000402 // VEX_X: equivalent to REX.X, only used when a
403 // register is used for index in SIB Byte.
404 //
405 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
406 // 0: Same as REX.X=1 (64-bit mode only)
407 unsigned char VEX_X = 0x1;
408
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000409 // VEX_B:
410 //
411 // 1: Same as REX_B=0 (ignored in 32-bit mode)
412 // 0: Same as REX_B=1 (64 bit mode only)
413 //
414 unsigned char VEX_B = 0x1;
415
416 // VEX_W: opcode specific (use like REX.W, or used for
417 // opcode extension, or ignored, depending on the opcode byte)
418 unsigned char VEX_W = 0;
419
420 // VEX_5M (VEX m-mmmmm field):
421 //
422 // 0b00000: Reserved for future use
423 // 0b00001: implied 0F leading opcode
424 // 0b00010: implied 0F 38 leading opcode bytes
425 // 0b00011: implied 0F 3A leading opcode bytes
426 // 0b00100-0b11111: Reserved for future use
427 //
428 unsigned char VEX_5M = 0x1;
429
430 // VEX_4V (VEX vvvv field): a register specifier
431 // (in 1's complement form) or 1111 if unused.
432 unsigned char VEX_4V = 0xf;
433
434 // VEX_L (Vector Length):
435 //
436 // 0: scalar or 128-bit vector
437 // 1: 256-bit vector
438 //
439 unsigned char VEX_L = 0;
440
441 // VEX_PP: opcode extension providing equivalent
442 // functionality of a SIMD prefix
443 //
444 // 0b00: None
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000445 // 0b01: 66
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000446 // 0b10: F3
447 // 0b11: F2
448 //
449 unsigned char VEX_PP = 0;
450
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000451 // Encode the operand size opcode prefix as needed.
452 if (TSFlags & X86II::OpSize)
453 VEX_PP = 0x01;
454
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000455 if ((TSFlags >> 32) & X86II::VEX_W)
456 VEX_W = 1;
457
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000458 switch (TSFlags & X86II::Op0Mask) {
459 default: assert(0 && "Invalid prefix!");
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000460 case X86II::T8: // 0F 38
461 VEX_5M = 0x2;
462 break;
463 case X86II::TA: // 0F 3A
464 VEX_5M = 0x3;
465 break;
466 case X86II::TF: // F2 0F 38
467 VEX_PP = 0x3;
468 VEX_5M = 0x2;
469 break;
470 case X86II::XS: // F3 0F
471 VEX_PP = 0x2;
472 break;
473 case X86II::XD: // F2 0F
474 VEX_PP = 0x3;
475 break;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000476 case X86II::TB: // Bypass: Not used by VEX
477 case 0:
478 break; // No prefix!
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000479 }
480
481 unsigned NumOps = MI.getNumOperands();
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000482 unsigned CurOp = 0;
483
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000484 switch (TSFlags & X86II::FormMask) {
485 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000486 case X86II::MRM0m: case X86II::MRM1m:
487 case X86II::MRM2m: case X86II::MRM3m:
488 case X86II::MRM4m: case X86II::MRM5m:
489 case X86II::MRM6m: case X86II::MRM7m:
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000490 case X86II::MRMDestMem:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000491 NumOps = CurOp = X86AddrNumOperands;
492 case X86II::MRMSrcMem:
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000493 case X86II::MRMSrcReg:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000494 if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000495 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000496 VEX_R = 0x0;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000497
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000498 // CurOp and NumOps are equal when VEX_R represents a register used
499 // to index a memory destination (which is the last operand)
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000500 CurOp = (CurOp == NumOps) ? 0 : CurOp+1;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000501
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000502 if (HasVEX_4V) {
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000503 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000504 CurOp++;
505 }
506
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000507 // If the last register should be encoded in the immediate field
Bruno Cardoso Lopes01066802010-07-06 22:38:32 +0000508 // do not use any bit from VEX prefix to this register, ignore it
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000509 if ((TSFlags >> 32) & X86II::VEX_I8IMM)
510 NumOps--;
511
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000512 for (; CurOp != NumOps; ++CurOp) {
513 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000514 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
515 VEX_B = 0x0;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000516 if (!VEX_B && MO.isReg() &&
517 ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000518 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
519 VEX_X = 0x0;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000520 }
521 break;
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000522 default: // MRMDestReg, MRM0r-MRM7r
523 if (MI.getOperand(CurOp).isReg() &&
524 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
525 VEX_B = 0;
526
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000527 if (HasVEX_4V)
528 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
529
530 CurOp++;
531 for (; CurOp != NumOps; ++CurOp) {
532 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000533 if (MO.isReg() && !HasVEX_4V &&
534 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
535 VEX_R = 0x0;
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000536 }
537 break;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000538 assert(0 && "Not implemented!");
539 }
540
541 // VEX opcode prefix can have 2 or 3 bytes
542 //
543 // 3 bytes:
544 // +-----+ +--------------+ +-------------------+
545 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
546 // +-----+ +--------------+ +-------------------+
547 // 2 bytes:
548 // +-----+ +-------------------+
549 // | C5h | | R | vvvv | L | pp |
550 // +-----+ +-------------------+
551 //
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000552 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
553
Bruno Cardoso Lopesf5cd8c52010-07-02 22:06:54 +0000554 if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000555 EmitByte(0xC5, CurByte, OS);
556 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
557 return;
558 }
559
560 // 3 byte VEX prefix
561 EmitByte(0xC4, CurByte, OS);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000562 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000563 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
564}
565
Chris Lattner39a612e2010-02-05 22:10:22 +0000566/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
567/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
568/// size, and 3) use of X86-64 extended registers.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000569static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
Chris Lattner39a612e2010-02-05 22:10:22 +0000570 const TargetInstrDesc &Desc) {
Chris Lattner1cea10a2010-02-13 19:16:53 +0000571 // Pseudo instructions never have a rex byte.
572 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
573 return 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000574
Chris Lattner7e851802010-02-11 22:39:10 +0000575 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000576 if (TSFlags & X86II::REX_W)
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000577 REX |= 1 << 3; // set REX.W
Chris Lattner39a612e2010-02-05 22:10:22 +0000578
579 if (MI.getNumOperands() == 0) return REX;
580
581 unsigned NumOps = MI.getNumOperands();
582 // FIXME: MCInst should explicitize the two-addrness.
583 bool isTwoAddr = NumOps > 1 &&
584 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
585
586 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
587 unsigned i = isTwoAddr ? 1 : 0;
588 for (; i != NumOps; ++i) {
589 const MCOperand &MO = MI.getOperand(i);
590 if (!MO.isReg()) continue;
591 unsigned Reg = MO.getReg();
592 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000593 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
594 // that returns non-zero.
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000595 REX |= 0x40; // REX fixed encoding prefix
Chris Lattner39a612e2010-02-05 22:10:22 +0000596 break;
597 }
598
599 switch (TSFlags & X86II::FormMask) {
600 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
601 case X86II::MRMSrcReg:
602 if (MI.getOperand(0).isReg() &&
603 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000604 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000605 i = isTwoAddr ? 2 : 1;
606 for (; i != NumOps; ++i) {
607 const MCOperand &MO = MI.getOperand(i);
608 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000609 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000610 }
611 break;
612 case X86II::MRMSrcMem: {
613 if (MI.getOperand(0).isReg() &&
614 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000615 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000616 unsigned Bit = 0;
617 i = isTwoAddr ? 2 : 1;
618 for (; i != NumOps; ++i) {
619 const MCOperand &MO = MI.getOperand(i);
620 if (MO.isReg()) {
621 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000622 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000623 Bit++;
624 }
625 }
626 break;
627 }
628 case X86II::MRM0m: case X86II::MRM1m:
629 case X86II::MRM2m: case X86II::MRM3m:
630 case X86II::MRM4m: case X86II::MRM5m:
631 case X86II::MRM6m: case X86II::MRM7m:
632 case X86II::MRMDestMem: {
633 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
634 i = isTwoAddr ? 1 : 0;
635 if (NumOps > e && MI.getOperand(e).isReg() &&
636 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000637 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000638 unsigned Bit = 0;
639 for (; i != e; ++i) {
640 const MCOperand &MO = MI.getOperand(i);
641 if (MO.isReg()) {
642 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000643 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000644 Bit++;
645 }
646 }
647 break;
648 }
649 default:
650 if (MI.getOperand(0).isReg() &&
651 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000652 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000653 i = isTwoAddr ? 2 : 1;
654 for (unsigned e = NumOps; i != e; ++i) {
655 const MCOperand &MO = MI.getOperand(i);
656 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000657 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000658 }
659 break;
660 }
661 return REX;
662}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000663
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000664/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
665void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
Chris Lattner9d199892010-07-04 22:56:10 +0000666 const MCInst &MI,
667 const TargetInstrDesc &Desc,
668 raw_ostream &OS) const {
Chris Lattner1e80f402010-02-03 21:57:59 +0000669
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000670 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000671 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000672 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000673
674 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000675 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000676 default: assert(0 && "Invalid segment!");
677 case 0: break; // No segment override!
678 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000679 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000680 break;
681 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000682 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000683 break;
684 }
685
Chris Lattner1e80f402010-02-03 21:57:59 +0000686 // Emit the repeat opcode prefix as needed.
687 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000688 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000689
Chris Lattner1e80f402010-02-03 21:57:59 +0000690 // Emit the operand size opcode prefix as needed.
691 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000692 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000693
694 // Emit the address size opcode prefix as needed.
695 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000696 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000697
698 bool Need0FPrefix = false;
699 switch (TSFlags & X86II::Op0Mask) {
700 default: assert(0 && "Invalid prefix!");
701 case 0: break; // No prefix!
702 case X86II::REP: break; // already handled.
703 case X86II::TB: // Two-byte opcode prefix
704 case X86II::T8: // 0F 38
705 case X86II::TA: // 0F 3A
706 Need0FPrefix = true;
707 break;
708 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000709 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000710 Need0FPrefix = true;
711 break;
712 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000713 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000714 Need0FPrefix = true;
715 break;
716 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000717 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000718 Need0FPrefix = true;
719 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000720 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
721 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
722 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
723 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
724 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
725 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
726 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
727 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000728 }
729
730 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000731 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000732 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000733 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000734 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000735 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000736
737 // 0x0F escape code must be emitted just before the opcode.
738 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000739 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000740
741 // FIXME: Pull this up into previous switch if REX can be moved earlier.
742 switch (TSFlags & X86II::Op0Mask) {
743 case X86II::TF: // F2 0F 38
744 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000745 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000746 break;
747 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000748 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000749 break;
750 }
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000751}
752
753void X86MCCodeEmitter::
754EncodeInstruction(const MCInst &MI, raw_ostream &OS,
755 SmallVectorImpl<MCFixup> &Fixups) const {
756 unsigned Opcode = MI.getOpcode();
757 const TargetInstrDesc &Desc = TII.get(Opcode);
758 uint64_t TSFlags = Desc.TSFlags;
759
760 // Keep track of the current byte being emitted.
761 unsigned CurByte = 0;
762
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000763 // Is this instruction encoded using the AVX VEX prefix?
764 bool HasVEXPrefix = false;
765
766 // It uses the VEX.VVVV field?
767 bool HasVEX_4V = false;
768
769 if ((TSFlags >> 32) & X86II::VEX)
770 HasVEXPrefix = true;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000771 if ((TSFlags >> 32) & X86II::VEX_4V)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000772 HasVEX_4V = true;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000773
774 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
775 // in order to provide diffability.
776
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000777 if (!HasVEXPrefix)
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000778 EmitOpcodePrefix(TSFlags, CurByte, MI, Desc, OS);
779 else
780 EmitVEXOpcodePrefix(TSFlags, CurByte, MI, Desc, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000781
782 // If this is a two-address instruction, skip one of the register operands.
783 unsigned NumOps = Desc.getNumOperands();
784 unsigned CurOp = 0;
785 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
786 ++CurOp;
787 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
788 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
789 --NumOps;
790
Chris Lattner74a21512010-02-05 19:24:13 +0000791 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000792 unsigned SrcRegNum = 0;
Chris Lattner1e80f402010-02-03 21:57:59 +0000793 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000794 case X86II::MRMInitReg:
795 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000796 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000797 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner1cea10a2010-02-13 19:16:53 +0000798 case X86II::Pseudo: return; // Pseudo instructions encode to nothing.
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000799 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000800 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000801 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000802
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000803 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000804 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000805 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000806
807 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000808 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000809 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000810 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000811 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000812 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000813
814 case X86II::MRMDestMem:
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000815 EmitSegmentOverridePrefix(MI.getOperand(CurOp + 4), TSFlags, CurByte, OS);
Chris Lattner37ce80e2010-02-10 06:41:02 +0000816 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000817 EmitMemModRMByte(MI, CurOp,
818 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner835acab2010-02-12 23:00:36 +0000819 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000820 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000821 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000822
823 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000824 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000825 SrcRegNum = CurOp + 1;
826
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000827 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000828 SrcRegNum++;
829
830 EmitRegModRMByte(MI.getOperand(SrcRegNum),
831 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
832 CurOp = SrcRegNum + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000833 break;
834
835 case X86II::MRMSrcMem: {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000836 int AddrOperands = X86AddrNumOperands;
837 unsigned FirstMemOp = CurOp+1;
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000838 if (HasVEX_4V) {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000839 ++AddrOperands;
840 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
841 }
Chris Lattnerdaa45552010-02-05 19:04:37 +0000842
843 // FIXME: Maybe lea should have its own form? This is a horrible hack.
Chris Lattnerdaa45552010-02-05 19:04:37 +0000844 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
845 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000846 --AddrOperands; // No segment register
Chris Lattnerdaa45552010-02-05 19:04:37 +0000847 else
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000848 EmitSegmentOverridePrefix(MI.getOperand(FirstMemOp+4),
849 TSFlags, CurByte, OS);
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000850
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000851 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000852
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000853
854 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000855 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000856 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000857 break;
858 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000859
860 case X86II::MRM0r: case X86II::MRM1r:
861 case X86II::MRM2r: case X86II::MRM3r:
862 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000863 case X86II::MRM6r: case X86II::MRM7r:
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000864 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
865 CurOp++;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000866 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000867 EmitRegModRMByte(MI.getOperand(CurOp++),
868 (TSFlags & X86II::FormMask)-X86II::MRM0r,
869 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000870 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000871 case X86II::MRM0m: case X86II::MRM1m:
872 case X86II::MRM2m: case X86II::MRM3m:
873 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000874 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000875 EmitSegmentOverridePrefix(MI.getOperand(CurOp+4), TSFlags, CurByte, OS);
Chris Lattner37ce80e2010-02-10 06:41:02 +0000876 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000877 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000878 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000879 CurOp += X86AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000880 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000881 case X86II::MRM_C1:
882 EmitByte(BaseOpcode, CurByte, OS);
883 EmitByte(0xC1, CurByte, OS);
884 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000885 case X86II::MRM_C2:
886 EmitByte(BaseOpcode, CurByte, OS);
887 EmitByte(0xC2, CurByte, OS);
888 break;
889 case X86II::MRM_C3:
890 EmitByte(BaseOpcode, CurByte, OS);
891 EmitByte(0xC3, CurByte, OS);
892 break;
893 case X86II::MRM_C4:
894 EmitByte(BaseOpcode, CurByte, OS);
895 EmitByte(0xC4, CurByte, OS);
896 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000897 case X86II::MRM_C8:
898 EmitByte(BaseOpcode, CurByte, OS);
899 EmitByte(0xC8, CurByte, OS);
900 break;
901 case X86II::MRM_C9:
902 EmitByte(BaseOpcode, CurByte, OS);
903 EmitByte(0xC9, CurByte, OS);
904 break;
905 case X86II::MRM_E8:
906 EmitByte(BaseOpcode, CurByte, OS);
907 EmitByte(0xE8, CurByte, OS);
908 break;
909 case X86II::MRM_F0:
910 EmitByte(BaseOpcode, CurByte, OS);
911 EmitByte(0xF0, CurByte, OS);
912 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000913 case X86II::MRM_F8:
914 EmitByte(BaseOpcode, CurByte, OS);
915 EmitByte(0xF8, CurByte, OS);
916 break;
Chris Lattnerb7790332010-02-13 03:42:24 +0000917 case X86II::MRM_F9:
918 EmitByte(BaseOpcode, CurByte, OS);
919 EmitByte(0xF9, CurByte, OS);
920 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000921 }
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000922
923 // If there is a remaining operand, it must be a trailing immediate. Emit it
924 // according to the right size for the instruction.
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000925 if (CurOp != NumOps) {
926 // The last source register of a 4 operand instruction in AVX is encoded
927 // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
928 if ((TSFlags >> 32) & X86II::VEX_I8IMM) {
929 const MCOperand &MO = MI.getOperand(CurOp++);
930 bool IsExtReg =
931 X86InstrInfo::isX86_64ExtendedReg(MO.getReg());
932 unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
933 RegNum |= GetX86RegNum(MO) << 4;
934 EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
935 Fixups);
936 } else
937 EmitImmediate(MI.getOperand(CurOp++),
938 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
939 CurByte, OS, Fixups);
940 }
941
942
Chris Lattner28249d92010-02-05 01:53:19 +0000943#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000944 // FIXME: Verify.
945 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000946 errs() << "Cannot encode all operands of: ";
947 MI.dump();
948 errs() << '\n';
949 abort();
950 }
951#endif
Chris Lattner45762472010-02-03 21:24:49 +0000952}