blob: 9b72eca7de5d28728bb82079df1854d4e146977a [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000443A symbol with ``internal`` or ``private`` linkage must have ``default``
444visibility.
445
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000446.. _namedtypes:
447
Nico Rieck7157bb72014-01-14 15:22:47 +0000448DLL Storage Classes
449-------------------
450
451All Global Variables, Functions and Aliases can have one of the following
452DLL storage class:
453
454``dllimport``
455 "``dllimport``" causes the compiler to reference a function or variable via
456 a global pointer to a pointer that is set up by the DLL exporting the
457 symbol. On Microsoft Windows targets, the pointer name is formed by
458 combining ``__imp_`` and the function or variable name.
459``dllexport``
460 "``dllexport``" causes the compiler to provide a global pointer to a pointer
461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
462 Microsoft Windows targets, the pointer name is formed by combining
463 ``__imp_`` and the function or variable name. Since this storage class
464 exists for defining a dll interface, the compiler, assembler and linker know
465 it is externally referenced and must refrain from deleting the symbol.
466
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000467Structure Types
468---------------
Sean Silvab084af42012-12-07 10:36:55 +0000469
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000470LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
471types <t_struct>`. Literal types are uniqued structurally, but identified types
472are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
473to forward declare a type which is not yet available.
474
475An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000476
477.. code-block:: llvm
478
479 %mytype = type { %mytype*, i32 }
480
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000481Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
482literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000483
484.. _globalvars:
485
486Global Variables
487----------------
488
489Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000490instead of run-time.
491
492Global variables definitions must be initialized, may have an explicit section
493to be placed in, and may have an optional explicit alignment specified.
494
495Global variables in other translation units can also be declared, in which
496case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000497
498A variable may be defined as ``thread_local``, which means that it will
499not be shared by threads (each thread will have a separated copy of the
500variable). Not all targets support thread-local variables. Optionally, a
501TLS model may be specified:
502
503``localdynamic``
504 For variables that are only used within the current shared library.
505``initialexec``
506 For variables in modules that will not be loaded dynamically.
507``localexec``
508 For variables defined in the executable and only used within it.
509
510The models correspond to the ELF TLS models; see `ELF Handling For
511Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
512more information on under which circumstances the different models may
513be used. The target may choose a different TLS model if the specified
514model is not supported, or if a better choice of model can be made.
515
Michael Gottesman006039c2013-01-31 05:48:48 +0000516A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000517the contents of the variable will **never** be modified (enabling better
518optimization, allowing the global data to be placed in the read-only
519section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000520initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000521variable.
522
523LLVM explicitly allows *declarations* of global variables to be marked
524constant, even if the final definition of the global is not. This
525capability can be used to enable slightly better optimization of the
526program, but requires the language definition to guarantee that
527optimizations based on the 'constantness' are valid for the translation
528units that do not include the definition.
529
530As SSA values, global variables define pointer values that are in scope
531(i.e. they dominate) all basic blocks in the program. Global variables
532always define a pointer to their "content" type because they describe a
533region of memory, and all memory objects in LLVM are accessed through
534pointers.
535
536Global variables can be marked with ``unnamed_addr`` which indicates
537that the address is not significant, only the content. Constants marked
538like this can be merged with other constants if they have the same
539initializer. Note that a constant with significant address *can* be
540merged with a ``unnamed_addr`` constant, the result being a constant
541whose address is significant.
542
543A global variable may be declared to reside in a target-specific
544numbered address space. For targets that support them, address spaces
545may affect how optimizations are performed and/or what target
546instructions are used to access the variable. The default address space
547is zero. The address space qualifier must precede any other attributes.
548
549LLVM allows an explicit section to be specified for globals. If the
550target supports it, it will emit globals to the section specified.
551
Michael Gottesmane743a302013-02-04 03:22:00 +0000552By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000553variables defined within the module are not modified from their
554initial values before the start of the global initializer. This is
555true even for variables potentially accessible from outside the
556module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000557``@llvm.used`` or dllexported variables. This assumption may be suppressed
558by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000559
Sean Silvab084af42012-12-07 10:36:55 +0000560An explicit alignment may be specified for a global, which must be a
561power of 2. If not present, or if the alignment is set to zero, the
562alignment of the global is set by the target to whatever it feels
563convenient. If an explicit alignment is specified, the global is forced
564to have exactly that alignment. Targets and optimizers are not allowed
565to over-align the global if the global has an assigned section. In this
566case, the extra alignment could be observable: for example, code could
567assume that the globals are densely packed in their section and try to
568iterate over them as an array, alignment padding would break this
569iteration.
570
Nico Rieck7157bb72014-01-14 15:22:47 +0000571Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
572
573Syntax::
574
575 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
576 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
577 <global | constant> <Type>
578 [, section "name"] [, align <Alignment>]
579
Sean Silvab084af42012-12-07 10:36:55 +0000580For example, the following defines a global in a numbered address space
581with an initializer, section, and alignment:
582
583.. code-block:: llvm
584
585 @G = addrspace(5) constant float 1.0, section "foo", align 4
586
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000587The following example just declares a global variable
588
589.. code-block:: llvm
590
591 @G = external global i32
592
Sean Silvab084af42012-12-07 10:36:55 +0000593The following example defines a thread-local global with the
594``initialexec`` TLS model:
595
596.. code-block:: llvm
597
598 @G = thread_local(initialexec) global i32 0, align 4
599
600.. _functionstructure:
601
602Functions
603---------
604
605LLVM function definitions consist of the "``define``" keyword, an
606optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000607style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
608an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000609an optional ``unnamed_addr`` attribute, a return type, an optional
610:ref:`parameter attribute <paramattrs>` for the return type, a function
611name, a (possibly empty) argument list (each with optional :ref:`parameter
612attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
613an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000614collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
615curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000616
617LLVM function declarations consist of the "``declare``" keyword, an
618optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000619style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
620an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000621an optional ``unnamed_addr`` attribute, a return type, an optional
622:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000623name, a possibly empty list of arguments, an optional alignment, an optional
624:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000625
Bill Wendling6822ecb2013-10-27 05:09:12 +0000626A function definition contains a list of basic blocks, forming the CFG (Control
627Flow Graph) for the function. Each basic block may optionally start with a label
628(giving the basic block a symbol table entry), contains a list of instructions,
629and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
630function return). If an explicit label is not provided, a block is assigned an
631implicit numbered label, using the next value from the same counter as used for
632unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
633entry block does not have an explicit label, it will be assigned label "%0",
634then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000635
636The first basic block in a function is special in two ways: it is
637immediately executed on entrance to the function, and it is not allowed
638to have predecessor basic blocks (i.e. there can not be any branches to
639the entry block of a function). Because the block can have no
640predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
641
642LLVM allows an explicit section to be specified for functions. If the
643target supports it, it will emit functions to the section specified.
644
645An explicit alignment may be specified for a function. If not present,
646or if the alignment is set to zero, the alignment of the function is set
647by the target to whatever it feels convenient. If an explicit alignment
648is specified, the function is forced to have at least that much
649alignment. All alignments must be a power of 2.
650
651If the ``unnamed_addr`` attribute is given, the address is know to not
652be significant and two identical functions can be merged.
653
654Syntax::
655
Nico Rieck7157bb72014-01-14 15:22:47 +0000656 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000657 [cconv] [ret attrs]
658 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola84c76ae2014-03-07 04:28:28 +0000659 [unnamed_addr] [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000660 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000661
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000662.. _langref_aliases:
663
Sean Silvab084af42012-12-07 10:36:55 +0000664Aliases
665-------
666
667Aliases act as "second name" for the aliasee value (which can be either
668function, global variable, another alias or bitcast of global value).
Nico Rieck7157bb72014-01-14 15:22:47 +0000669Aliases may have an optional :ref:`linkage type <linkage>`, an optional
670:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
671<dllstorageclass>`.
Sean Silvab084af42012-12-07 10:36:55 +0000672
673Syntax::
674
Nico Rieck7157bb72014-01-14 15:22:47 +0000675 @<Name> = [Visibility] [DLLStorageClass] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000676
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000677The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000678``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000679might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000680alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000681
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000682Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
683the aliasee.
684
685The aliasee must be a definition.
686
Rafael Espindola24a669d2014-03-27 15:26:56 +0000687Aliases are not allowed to point to aliases with linkages that can be
688overridden. Since they are only a second name, the possibility of the
689intermediate alias being overridden cannot be represented in an object file.
690
Sean Silvab084af42012-12-07 10:36:55 +0000691.. _namedmetadatastructure:
692
693Named Metadata
694--------------
695
696Named metadata is a collection of metadata. :ref:`Metadata
697nodes <metadata>` (but not metadata strings) are the only valid
698operands for a named metadata.
699
700Syntax::
701
702 ; Some unnamed metadata nodes, which are referenced by the named metadata.
703 !0 = metadata !{metadata !"zero"}
704 !1 = metadata !{metadata !"one"}
705 !2 = metadata !{metadata !"two"}
706 ; A named metadata.
707 !name = !{!0, !1, !2}
708
709.. _paramattrs:
710
711Parameter Attributes
712--------------------
713
714The return type and each parameter of a function type may have a set of
715*parameter attributes* associated with them. Parameter attributes are
716used to communicate additional information about the result or
717parameters of a function. Parameter attributes are considered to be part
718of the function, not of the function type, so functions with different
719parameter attributes can have the same function type.
720
721Parameter attributes are simple keywords that follow the type specified.
722If multiple parameter attributes are needed, they are space separated.
723For example:
724
725.. code-block:: llvm
726
727 declare i32 @printf(i8* noalias nocapture, ...)
728 declare i32 @atoi(i8 zeroext)
729 declare signext i8 @returns_signed_char()
730
731Note that any attributes for the function result (``nounwind``,
732``readonly``) come immediately after the argument list.
733
734Currently, only the following parameter attributes are defined:
735
736``zeroext``
737 This indicates to the code generator that the parameter or return
738 value should be zero-extended to the extent required by the target's
739 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
740 the caller (for a parameter) or the callee (for a return value).
741``signext``
742 This indicates to the code generator that the parameter or return
743 value should be sign-extended to the extent required by the target's
744 ABI (which is usually 32-bits) by the caller (for a parameter) or
745 the callee (for a return value).
746``inreg``
747 This indicates that this parameter or return value should be treated
748 in a special target-dependent fashion during while emitting code for
749 a function call or return (usually, by putting it in a register as
750 opposed to memory, though some targets use it to distinguish between
751 two different kinds of registers). Use of this attribute is
752 target-specific.
753``byval``
754 This indicates that the pointer parameter should really be passed by
755 value to the function. The attribute implies that a hidden copy of
756 the pointee is made between the caller and the callee, so the callee
757 is unable to modify the value in the caller. This attribute is only
758 valid on LLVM pointer arguments. It is generally used to pass
759 structs and arrays by value, but is also valid on pointers to
760 scalars. The copy is considered to belong to the caller not the
761 callee (for example, ``readonly`` functions should not write to
762 ``byval`` parameters). This is not a valid attribute for return
763 values.
764
765 The byval attribute also supports specifying an alignment with the
766 align attribute. It indicates the alignment of the stack slot to
767 form and the known alignment of the pointer specified to the call
768 site. If the alignment is not specified, then the code generator
769 makes a target-specific assumption.
770
Reid Klecknera534a382013-12-19 02:14:12 +0000771.. _attr_inalloca:
772
773``inalloca``
774
Reid Kleckner60d3a832014-01-16 22:59:24 +0000775 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000776 address of outgoing stack arguments. An ``inalloca`` argument must
777 be a pointer to stack memory produced by an ``alloca`` instruction.
778 The alloca, or argument allocation, must also be tagged with the
779 inalloca keyword. Only the past argument may have the ``inalloca``
780 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000781
Reid Kleckner436c42e2014-01-17 23:58:17 +0000782 An argument allocation may be used by a call at most once because
783 the call may deallocate it. The ``inalloca`` attribute cannot be
784 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000785 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
786 ``inalloca`` attribute also disables LLVM's implicit lowering of
787 large aggregate return values, which means that frontend authors
788 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000789
Reid Kleckner60d3a832014-01-16 22:59:24 +0000790 When the call site is reached, the argument allocation must have
791 been the most recent stack allocation that is still live, or the
792 results are undefined. It is possible to allocate additional stack
793 space after an argument allocation and before its call site, but it
794 must be cleared off with :ref:`llvm.stackrestore
795 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000796
797 See :doc:`InAlloca` for more information on how to use this
798 attribute.
799
Sean Silvab084af42012-12-07 10:36:55 +0000800``sret``
801 This indicates that the pointer parameter specifies the address of a
802 structure that is the return value of the function in the source
803 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000804 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000805 not to trap and to be properly aligned. This may only be applied to
806 the first parameter. This is not a valid attribute for return
807 values.
Sean Silva1703e702014-04-08 21:06:22 +0000808
809.. _noalias:
810
Sean Silvab084af42012-12-07 10:36:55 +0000811``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000812 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000813 the argument or return value do not alias pointer values which are
814 not *based* on it, ignoring certain "irrelevant" dependencies. For a
815 call to the parent function, dependencies between memory references
816 from before or after the call and from those during the call are
817 "irrelevant" to the ``noalias`` keyword for the arguments and return
818 value used in that call. The caller shares the responsibility with
819 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000820 details, please see the discussion of the NoAlias response in :ref:`alias
821 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000822
823 Note that this definition of ``noalias`` is intentionally similar
824 to the definition of ``restrict`` in C99 for function arguments,
825 though it is slightly weaker.
826
827 For function return values, C99's ``restrict`` is not meaningful,
828 while LLVM's ``noalias`` is.
829``nocapture``
830 This indicates that the callee does not make any copies of the
831 pointer that outlive the callee itself. This is not a valid
832 attribute for return values.
833
834.. _nest:
835
836``nest``
837 This indicates that the pointer parameter can be excised using the
838 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000839 attribute for return values and can only be applied to one parameter.
840
841``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000842 This indicates that the function always returns the argument as its return
843 value. This is an optimization hint to the code generator when generating
844 the caller, allowing tail call optimization and omission of register saves
845 and restores in some cases; it is not checked or enforced when generating
846 the callee. The parameter and the function return type must be valid
847 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
848 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000849
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000850``nonnull``
851 This indicates that the parameter or return pointer is not null. This
852 attribute may only be applied to pointer typed parameters. This is not
853 checked or enforced by LLVM, the caller must ensure that the pointer
854 passed in is non-null, or the callee must ensure that the returned pointer
855 is non-null.
856
Sean Silvab084af42012-12-07 10:36:55 +0000857.. _gc:
858
859Garbage Collector Names
860-----------------------
861
862Each function may specify a garbage collector name, which is simply a
863string:
864
865.. code-block:: llvm
866
867 define void @f() gc "name" { ... }
868
869The compiler declares the supported values of *name*. Specifying a
870collector which will cause the compiler to alter its output in order to
871support the named garbage collection algorithm.
872
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000873.. _prefixdata:
874
875Prefix Data
876-----------
877
878Prefix data is data associated with a function which the code generator
879will emit immediately before the function body. The purpose of this feature
880is to allow frontends to associate language-specific runtime metadata with
881specific functions and make it available through the function pointer while
882still allowing the function pointer to be called. To access the data for a
883given function, a program may bitcast the function pointer to a pointer to
884the constant's type. This implies that the IR symbol points to the start
885of the prefix data.
886
887To maintain the semantics of ordinary function calls, the prefix data must
888have a particular format. Specifically, it must begin with a sequence of
889bytes which decode to a sequence of machine instructions, valid for the
890module's target, which transfer control to the point immediately succeeding
891the prefix data, without performing any other visible action. This allows
892the inliner and other passes to reason about the semantics of the function
893definition without needing to reason about the prefix data. Obviously this
894makes the format of the prefix data highly target dependent.
895
Peter Collingbourne213358a2013-09-23 20:14:21 +0000896Prefix data is laid out as if it were an initializer for a global variable
897of the prefix data's type. No padding is automatically placed between the
898prefix data and the function body. If padding is required, it must be part
899of the prefix data.
900
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000901A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
902which encodes the ``nop`` instruction:
903
904.. code-block:: llvm
905
906 define void @f() prefix i8 144 { ... }
907
908Generally prefix data can be formed by encoding a relative branch instruction
909which skips the metadata, as in this example of valid prefix data for the
910x86_64 architecture, where the first two bytes encode ``jmp .+10``:
911
912.. code-block:: llvm
913
914 %0 = type <{ i8, i8, i8* }>
915
916 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
917
918A function may have prefix data but no body. This has similar semantics
919to the ``available_externally`` linkage in that the data may be used by the
920optimizers but will not be emitted in the object file.
921
Bill Wendling63b88192013-02-06 06:52:58 +0000922.. _attrgrp:
923
924Attribute Groups
925----------------
926
927Attribute groups are groups of attributes that are referenced by objects within
928the IR. They are important for keeping ``.ll`` files readable, because a lot of
929functions will use the same set of attributes. In the degenerative case of a
930``.ll`` file that corresponds to a single ``.c`` file, the single attribute
931group will capture the important command line flags used to build that file.
932
933An attribute group is a module-level object. To use an attribute group, an
934object references the attribute group's ID (e.g. ``#37``). An object may refer
935to more than one attribute group. In that situation, the attributes from the
936different groups are merged.
937
938Here is an example of attribute groups for a function that should always be
939inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
940
941.. code-block:: llvm
942
943 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000944 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000945
946 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000947 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000948
949 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
950 define void @f() #0 #1 { ... }
951
Sean Silvab084af42012-12-07 10:36:55 +0000952.. _fnattrs:
953
954Function Attributes
955-------------------
956
957Function attributes are set to communicate additional information about
958a function. Function attributes are considered to be part of the
959function, not of the function type, so functions with different function
960attributes can have the same function type.
961
962Function attributes are simple keywords that follow the type specified.
963If multiple attributes are needed, they are space separated. For
964example:
965
966.. code-block:: llvm
967
968 define void @f() noinline { ... }
969 define void @f() alwaysinline { ... }
970 define void @f() alwaysinline optsize { ... }
971 define void @f() optsize { ... }
972
Sean Silvab084af42012-12-07 10:36:55 +0000973``alignstack(<n>)``
974 This attribute indicates that, when emitting the prologue and
975 epilogue, the backend should forcibly align the stack pointer.
976 Specify the desired alignment, which must be a power of two, in
977 parentheses.
978``alwaysinline``
979 This attribute indicates that the inliner should attempt to inline
980 this function into callers whenever possible, ignoring any active
981 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000982``builtin``
983 This indicates that the callee function at a call site should be
984 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000985 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000986 direct calls to functions which are declared with the ``nobuiltin``
987 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000988``cold``
989 This attribute indicates that this function is rarely called. When
990 computing edge weights, basic blocks post-dominated by a cold
991 function call are also considered to be cold; and, thus, given low
992 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000993``inlinehint``
994 This attribute indicates that the source code contained a hint that
995 inlining this function is desirable (such as the "inline" keyword in
996 C/C++). It is just a hint; it imposes no requirements on the
997 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000998``minsize``
999 This attribute suggests that optimization passes and code generator
1000 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001001 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001002 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001003``naked``
1004 This attribute disables prologue / epilogue emission for the
1005 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001006``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001007 This indicates that the callee function at a call site is not recognized as
1008 a built-in function. LLVM will retain the original call and not replace it
1009 with equivalent code based on the semantics of the built-in function, unless
1010 the call site uses the ``builtin`` attribute. This is valid at call sites
1011 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001012``noduplicate``
1013 This attribute indicates that calls to the function cannot be
1014 duplicated. A call to a ``noduplicate`` function may be moved
1015 within its parent function, but may not be duplicated within
1016 its parent function.
1017
1018 A function containing a ``noduplicate`` call may still
1019 be an inlining candidate, provided that the call is not
1020 duplicated by inlining. That implies that the function has
1021 internal linkage and only has one call site, so the original
1022 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001023``noimplicitfloat``
1024 This attributes disables implicit floating point instructions.
1025``noinline``
1026 This attribute indicates that the inliner should never inline this
1027 function in any situation. This attribute may not be used together
1028 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001029``nonlazybind``
1030 This attribute suppresses lazy symbol binding for the function. This
1031 may make calls to the function faster, at the cost of extra program
1032 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001033``noredzone``
1034 This attribute indicates that the code generator should not use a
1035 red zone, even if the target-specific ABI normally permits it.
1036``noreturn``
1037 This function attribute indicates that the function never returns
1038 normally. This produces undefined behavior at runtime if the
1039 function ever does dynamically return.
1040``nounwind``
1041 This function attribute indicates that the function never returns
1042 with an unwind or exceptional control flow. If the function does
1043 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001044``optnone``
1045 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001046 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001047 exception of interprocedural optimization passes.
1048 This attribute cannot be used together with the ``alwaysinline``
1049 attribute; this attribute is also incompatible
1050 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001051
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001052 This attribute requires the ``noinline`` attribute to be specified on
1053 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001054 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001055 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001056``optsize``
1057 This attribute suggests that optimization passes and code generator
1058 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001059 and otherwise do optimizations specifically to reduce code size as
1060 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001061``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001062 On a function, this attribute indicates that the function computes its
1063 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001064 without dereferencing any pointer arguments or otherwise accessing
1065 any mutable state (e.g. memory, control registers, etc) visible to
1066 caller functions. It does not write through any pointer arguments
1067 (including ``byval`` arguments) and never changes any state visible
1068 to callers. This means that it cannot unwind exceptions by calling
1069 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001070
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001071 On an argument, this attribute indicates that the function does not
1072 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001073 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001074``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001075 On a function, this attribute indicates that the function does not write
1076 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001077 modify any state (e.g. memory, control registers, etc) visible to
1078 caller functions. It may dereference pointer arguments and read
1079 state that may be set in the caller. A readonly function always
1080 returns the same value (or unwinds an exception identically) when
1081 called with the same set of arguments and global state. It cannot
1082 unwind an exception by calling the ``C++`` exception throwing
1083 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001084
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001085 On an argument, this attribute indicates that the function does not write
1086 through this pointer argument, even though it may write to the memory that
1087 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001088``returns_twice``
1089 This attribute indicates that this function can return twice. The C
1090 ``setjmp`` is an example of such a function. The compiler disables
1091 some optimizations (like tail calls) in the caller of these
1092 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001093``sanitize_address``
1094 This attribute indicates that AddressSanitizer checks
1095 (dynamic address safety analysis) are enabled for this function.
1096``sanitize_memory``
1097 This attribute indicates that MemorySanitizer checks (dynamic detection
1098 of accesses to uninitialized memory) are enabled for this function.
1099``sanitize_thread``
1100 This attribute indicates that ThreadSanitizer checks
1101 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001102``ssp``
1103 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001104 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001105 placed on the stack before the local variables that's checked upon
1106 return from the function to see if it has been overwritten. A
1107 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001108 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001109
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001110 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1111 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1112 - Calls to alloca() with variable sizes or constant sizes greater than
1113 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001114
Josh Magee24c7f062014-02-01 01:36:16 +00001115 Variables that are identified as requiring a protector will be arranged
1116 on the stack such that they are adjacent to the stack protector guard.
1117
Sean Silvab084af42012-12-07 10:36:55 +00001118 If a function that has an ``ssp`` attribute is inlined into a
1119 function that doesn't have an ``ssp`` attribute, then the resulting
1120 function will have an ``ssp`` attribute.
1121``sspreq``
1122 This attribute indicates that the function should *always* emit a
1123 stack smashing protector. This overrides the ``ssp`` function
1124 attribute.
1125
Josh Magee24c7f062014-02-01 01:36:16 +00001126 Variables that are identified as requiring a protector will be arranged
1127 on the stack such that they are adjacent to the stack protector guard.
1128 The specific layout rules are:
1129
1130 #. Large arrays and structures containing large arrays
1131 (``>= ssp-buffer-size``) are closest to the stack protector.
1132 #. Small arrays and structures containing small arrays
1133 (``< ssp-buffer-size``) are 2nd closest to the protector.
1134 #. Variables that have had their address taken are 3rd closest to the
1135 protector.
1136
Sean Silvab084af42012-12-07 10:36:55 +00001137 If a function that has an ``sspreq`` attribute is inlined into a
1138 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001139 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1140 an ``sspreq`` attribute.
1141``sspstrong``
1142 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001143 protector. This attribute causes a strong heuristic to be used when
1144 determining if a function needs stack protectors. The strong heuristic
1145 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001146
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001147 - Arrays of any size and type
1148 - Aggregates containing an array of any size and type.
1149 - Calls to alloca().
1150 - Local variables that have had their address taken.
1151
Josh Magee24c7f062014-02-01 01:36:16 +00001152 Variables that are identified as requiring a protector will be arranged
1153 on the stack such that they are adjacent to the stack protector guard.
1154 The specific layout rules are:
1155
1156 #. Large arrays and structures containing large arrays
1157 (``>= ssp-buffer-size``) are closest to the stack protector.
1158 #. Small arrays and structures containing small arrays
1159 (``< ssp-buffer-size``) are 2nd closest to the protector.
1160 #. Variables that have had their address taken are 3rd closest to the
1161 protector.
1162
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001163 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001164
1165 If a function that has an ``sspstrong`` attribute is inlined into a
1166 function that doesn't have an ``sspstrong`` attribute, then the
1167 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001168``uwtable``
1169 This attribute indicates that the ABI being targeted requires that
1170 an unwind table entry be produce for this function even if we can
1171 show that no exceptions passes by it. This is normally the case for
1172 the ELF x86-64 abi, but it can be disabled for some compilation
1173 units.
Sean Silvab084af42012-12-07 10:36:55 +00001174
1175.. _moduleasm:
1176
1177Module-Level Inline Assembly
1178----------------------------
1179
1180Modules may contain "module-level inline asm" blocks, which corresponds
1181to the GCC "file scope inline asm" blocks. These blocks are internally
1182concatenated by LLVM and treated as a single unit, but may be separated
1183in the ``.ll`` file if desired. The syntax is very simple:
1184
1185.. code-block:: llvm
1186
1187 module asm "inline asm code goes here"
1188 module asm "more can go here"
1189
1190The strings can contain any character by escaping non-printable
1191characters. The escape sequence used is simply "\\xx" where "xx" is the
1192two digit hex code for the number.
1193
1194The inline asm code is simply printed to the machine code .s file when
1195assembly code is generated.
1196
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001197.. _langref_datalayout:
1198
Sean Silvab084af42012-12-07 10:36:55 +00001199Data Layout
1200-----------
1201
1202A module may specify a target specific data layout string that specifies
1203how data is to be laid out in memory. The syntax for the data layout is
1204simply:
1205
1206.. code-block:: llvm
1207
1208 target datalayout = "layout specification"
1209
1210The *layout specification* consists of a list of specifications
1211separated by the minus sign character ('-'). Each specification starts
1212with a letter and may include other information after the letter to
1213define some aspect of the data layout. The specifications accepted are
1214as follows:
1215
1216``E``
1217 Specifies that the target lays out data in big-endian form. That is,
1218 the bits with the most significance have the lowest address
1219 location.
1220``e``
1221 Specifies that the target lays out data in little-endian form. That
1222 is, the bits with the least significance have the lowest address
1223 location.
1224``S<size>``
1225 Specifies the natural alignment of the stack in bits. Alignment
1226 promotion of stack variables is limited to the natural stack
1227 alignment to avoid dynamic stack realignment. The stack alignment
1228 must be a multiple of 8-bits. If omitted, the natural stack
1229 alignment defaults to "unspecified", which does not prevent any
1230 alignment promotions.
1231``p[n]:<size>:<abi>:<pref>``
1232 This specifies the *size* of a pointer and its ``<abi>`` and
1233 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001234 bits. The address space, ``n`` is optional, and if not specified,
1235 denotes the default address space 0. The value of ``n`` must be
1236 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001237``i<size>:<abi>:<pref>``
1238 This specifies the alignment for an integer type of a given bit
1239 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1240``v<size>:<abi>:<pref>``
1241 This specifies the alignment for a vector type of a given bit
1242 ``<size>``.
1243``f<size>:<abi>:<pref>``
1244 This specifies the alignment for a floating point type of a given bit
1245 ``<size>``. Only values of ``<size>`` that are supported by the target
1246 will work. 32 (float) and 64 (double) are supported on all targets; 80
1247 or 128 (different flavors of long double) are also supported on some
1248 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001249``a:<abi>:<pref>``
1250 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001251``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001252 If present, specifies that llvm names are mangled in the output. The
1253 options are
1254
1255 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1256 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1257 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1258 symbols get a ``_`` prefix.
1259 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1260 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001261``n<size1>:<size2>:<size3>...``
1262 This specifies a set of native integer widths for the target CPU in
1263 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1264 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1265 this set are considered to support most general arithmetic operations
1266 efficiently.
1267
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001268On every specification that takes a ``<abi>:<pref>``, specifying the
1269``<pref>`` alignment is optional. If omitted, the preceding ``:``
1270should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1271
Sean Silvab084af42012-12-07 10:36:55 +00001272When constructing the data layout for a given target, LLVM starts with a
1273default set of specifications which are then (possibly) overridden by
1274the specifications in the ``datalayout`` keyword. The default
1275specifications are given in this list:
1276
1277- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001278- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1279- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1280 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001281- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001282- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1283- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1284- ``i16:16:16`` - i16 is 16-bit aligned
1285- ``i32:32:32`` - i32 is 32-bit aligned
1286- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1287 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001288- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001289- ``f32:32:32`` - float is 32-bit aligned
1290- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001291- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001292- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1293- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001294- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001295
1296When LLVM is determining the alignment for a given type, it uses the
1297following rules:
1298
1299#. If the type sought is an exact match for one of the specifications,
1300 that specification is used.
1301#. If no match is found, and the type sought is an integer type, then
1302 the smallest integer type that is larger than the bitwidth of the
1303 sought type is used. If none of the specifications are larger than
1304 the bitwidth then the largest integer type is used. For example,
1305 given the default specifications above, the i7 type will use the
1306 alignment of i8 (next largest) while both i65 and i256 will use the
1307 alignment of i64 (largest specified).
1308#. If no match is found, and the type sought is a vector type, then the
1309 largest vector type that is smaller than the sought vector type will
1310 be used as a fall back. This happens because <128 x double> can be
1311 implemented in terms of 64 <2 x double>, for example.
1312
1313The function of the data layout string may not be what you expect.
1314Notably, this is not a specification from the frontend of what alignment
1315the code generator should use.
1316
1317Instead, if specified, the target data layout is required to match what
1318the ultimate *code generator* expects. This string is used by the
1319mid-level optimizers to improve code, and this only works if it matches
1320what the ultimate code generator uses. If you would like to generate IR
1321that does not embed this target-specific detail into the IR, then you
1322don't have to specify the string. This will disable some optimizations
1323that require precise layout information, but this also prevents those
1324optimizations from introducing target specificity into the IR.
1325
Bill Wendling5cc90842013-10-18 23:41:25 +00001326.. _langref_triple:
1327
1328Target Triple
1329-------------
1330
1331A module may specify a target triple string that describes the target
1332host. The syntax for the target triple is simply:
1333
1334.. code-block:: llvm
1335
1336 target triple = "x86_64-apple-macosx10.7.0"
1337
1338The *target triple* string consists of a series of identifiers delimited
1339by the minus sign character ('-'). The canonical forms are:
1340
1341::
1342
1343 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1344 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1345
1346This information is passed along to the backend so that it generates
1347code for the proper architecture. It's possible to override this on the
1348command line with the ``-mtriple`` command line option.
1349
Sean Silvab084af42012-12-07 10:36:55 +00001350.. _pointeraliasing:
1351
1352Pointer Aliasing Rules
1353----------------------
1354
1355Any memory access must be done through a pointer value associated with
1356an address range of the memory access, otherwise the behavior is
1357undefined. Pointer values are associated with address ranges according
1358to the following rules:
1359
1360- A pointer value is associated with the addresses associated with any
1361 value it is *based* on.
1362- An address of a global variable is associated with the address range
1363 of the variable's storage.
1364- The result value of an allocation instruction is associated with the
1365 address range of the allocated storage.
1366- A null pointer in the default address-space is associated with no
1367 address.
1368- An integer constant other than zero or a pointer value returned from
1369 a function not defined within LLVM may be associated with address
1370 ranges allocated through mechanisms other than those provided by
1371 LLVM. Such ranges shall not overlap with any ranges of addresses
1372 allocated by mechanisms provided by LLVM.
1373
1374A pointer value is *based* on another pointer value according to the
1375following rules:
1376
1377- A pointer value formed from a ``getelementptr`` operation is *based*
1378 on the first operand of the ``getelementptr``.
1379- The result value of a ``bitcast`` is *based* on the operand of the
1380 ``bitcast``.
1381- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1382 values that contribute (directly or indirectly) to the computation of
1383 the pointer's value.
1384- The "*based* on" relationship is transitive.
1385
1386Note that this definition of *"based"* is intentionally similar to the
1387definition of *"based"* in C99, though it is slightly weaker.
1388
1389LLVM IR does not associate types with memory. The result type of a
1390``load`` merely indicates the size and alignment of the memory from
1391which to load, as well as the interpretation of the value. The first
1392operand type of a ``store`` similarly only indicates the size and
1393alignment of the store.
1394
1395Consequently, type-based alias analysis, aka TBAA, aka
1396``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1397:ref:`Metadata <metadata>` may be used to encode additional information
1398which specialized optimization passes may use to implement type-based
1399alias analysis.
1400
1401.. _volatile:
1402
1403Volatile Memory Accesses
1404------------------------
1405
1406Certain memory accesses, such as :ref:`load <i_load>`'s,
1407:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1408marked ``volatile``. The optimizers must not change the number of
1409volatile operations or change their order of execution relative to other
1410volatile operations. The optimizers *may* change the order of volatile
1411operations relative to non-volatile operations. This is not Java's
1412"volatile" and has no cross-thread synchronization behavior.
1413
Andrew Trick89fc5a62013-01-30 21:19:35 +00001414IR-level volatile loads and stores cannot safely be optimized into
1415llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1416flagged volatile. Likewise, the backend should never split or merge
1417target-legal volatile load/store instructions.
1418
Andrew Trick7e6f9282013-01-31 00:49:39 +00001419.. admonition:: Rationale
1420
1421 Platforms may rely on volatile loads and stores of natively supported
1422 data width to be executed as single instruction. For example, in C
1423 this holds for an l-value of volatile primitive type with native
1424 hardware support, but not necessarily for aggregate types. The
1425 frontend upholds these expectations, which are intentionally
1426 unspecified in the IR. The rules above ensure that IR transformation
1427 do not violate the frontend's contract with the language.
1428
Sean Silvab084af42012-12-07 10:36:55 +00001429.. _memmodel:
1430
1431Memory Model for Concurrent Operations
1432--------------------------------------
1433
1434The LLVM IR does not define any way to start parallel threads of
1435execution or to register signal handlers. Nonetheless, there are
1436platform-specific ways to create them, and we define LLVM IR's behavior
1437in their presence. This model is inspired by the C++0x memory model.
1438
1439For a more informal introduction to this model, see the :doc:`Atomics`.
1440
1441We define a *happens-before* partial order as the least partial order
1442that
1443
1444- Is a superset of single-thread program order, and
1445- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1446 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1447 techniques, like pthread locks, thread creation, thread joining,
1448 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1449 Constraints <ordering>`).
1450
1451Note that program order does not introduce *happens-before* edges
1452between a thread and signals executing inside that thread.
1453
1454Every (defined) read operation (load instructions, memcpy, atomic
1455loads/read-modify-writes, etc.) R reads a series of bytes written by
1456(defined) write operations (store instructions, atomic
1457stores/read-modify-writes, memcpy, etc.). For the purposes of this
1458section, initialized globals are considered to have a write of the
1459initializer which is atomic and happens before any other read or write
1460of the memory in question. For each byte of a read R, R\ :sub:`byte`
1461may see any write to the same byte, except:
1462
1463- If write\ :sub:`1` happens before write\ :sub:`2`, and
1464 write\ :sub:`2` happens before R\ :sub:`byte`, then
1465 R\ :sub:`byte` does not see write\ :sub:`1`.
1466- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1467 R\ :sub:`byte` does not see write\ :sub:`3`.
1468
1469Given that definition, R\ :sub:`byte` is defined as follows:
1470
1471- If R is volatile, the result is target-dependent. (Volatile is
1472 supposed to give guarantees which can support ``sig_atomic_t`` in
1473 C/C++, and may be used for accesses to addresses which do not behave
1474 like normal memory. It does not generally provide cross-thread
1475 synchronization.)
1476- Otherwise, if there is no write to the same byte that happens before
1477 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1478- Otherwise, if R\ :sub:`byte` may see exactly one write,
1479 R\ :sub:`byte` returns the value written by that write.
1480- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1481 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1482 Memory Ordering Constraints <ordering>` section for additional
1483 constraints on how the choice is made.
1484- Otherwise R\ :sub:`byte` returns ``undef``.
1485
1486R returns the value composed of the series of bytes it read. This
1487implies that some bytes within the value may be ``undef`` **without**
1488the entire value being ``undef``. Note that this only defines the
1489semantics of the operation; it doesn't mean that targets will emit more
1490than one instruction to read the series of bytes.
1491
1492Note that in cases where none of the atomic intrinsics are used, this
1493model places only one restriction on IR transformations on top of what
1494is required for single-threaded execution: introducing a store to a byte
1495which might not otherwise be stored is not allowed in general.
1496(Specifically, in the case where another thread might write to and read
1497from an address, introducing a store can change a load that may see
1498exactly one write into a load that may see multiple writes.)
1499
1500.. _ordering:
1501
1502Atomic Memory Ordering Constraints
1503----------------------------------
1504
1505Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1506:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1507:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001508ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001509the same address they *synchronize with*. These semantics are borrowed
1510from Java and C++0x, but are somewhat more colloquial. If these
1511descriptions aren't precise enough, check those specs (see spec
1512references in the :doc:`atomics guide <Atomics>`).
1513:ref:`fence <i_fence>` instructions treat these orderings somewhat
1514differently since they don't take an address. See that instruction's
1515documentation for details.
1516
1517For a simpler introduction to the ordering constraints, see the
1518:doc:`Atomics`.
1519
1520``unordered``
1521 The set of values that can be read is governed by the happens-before
1522 partial order. A value cannot be read unless some operation wrote
1523 it. This is intended to provide a guarantee strong enough to model
1524 Java's non-volatile shared variables. This ordering cannot be
1525 specified for read-modify-write operations; it is not strong enough
1526 to make them atomic in any interesting way.
1527``monotonic``
1528 In addition to the guarantees of ``unordered``, there is a single
1529 total order for modifications by ``monotonic`` operations on each
1530 address. All modification orders must be compatible with the
1531 happens-before order. There is no guarantee that the modification
1532 orders can be combined to a global total order for the whole program
1533 (and this often will not be possible). The read in an atomic
1534 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1535 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1536 order immediately before the value it writes. If one atomic read
1537 happens before another atomic read of the same address, the later
1538 read must see the same value or a later value in the address's
1539 modification order. This disallows reordering of ``monotonic`` (or
1540 stronger) operations on the same address. If an address is written
1541 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1542 read that address repeatedly, the other threads must eventually see
1543 the write. This corresponds to the C++0x/C1x
1544 ``memory_order_relaxed``.
1545``acquire``
1546 In addition to the guarantees of ``monotonic``, a
1547 *synchronizes-with* edge may be formed with a ``release`` operation.
1548 This is intended to model C++'s ``memory_order_acquire``.
1549``release``
1550 In addition to the guarantees of ``monotonic``, if this operation
1551 writes a value which is subsequently read by an ``acquire``
1552 operation, it *synchronizes-with* that operation. (This isn't a
1553 complete description; see the C++0x definition of a release
1554 sequence.) This corresponds to the C++0x/C1x
1555 ``memory_order_release``.
1556``acq_rel`` (acquire+release)
1557 Acts as both an ``acquire`` and ``release`` operation on its
1558 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1559``seq_cst`` (sequentially consistent)
1560 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1561 operation which only reads, ``release`` for an operation which only
1562 writes), there is a global total order on all
1563 sequentially-consistent operations on all addresses, which is
1564 consistent with the *happens-before* partial order and with the
1565 modification orders of all the affected addresses. Each
1566 sequentially-consistent read sees the last preceding write to the
1567 same address in this global order. This corresponds to the C++0x/C1x
1568 ``memory_order_seq_cst`` and Java volatile.
1569
1570.. _singlethread:
1571
1572If an atomic operation is marked ``singlethread``, it only *synchronizes
1573with* or participates in modification and seq\_cst total orderings with
1574other operations running in the same thread (for example, in signal
1575handlers).
1576
1577.. _fastmath:
1578
1579Fast-Math Flags
1580---------------
1581
1582LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1583:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1584:ref:`frem <i_frem>`) have the following flags that can set to enable
1585otherwise unsafe floating point operations
1586
1587``nnan``
1588 No NaNs - Allow optimizations to assume the arguments and result are not
1589 NaN. Such optimizations are required to retain defined behavior over
1590 NaNs, but the value of the result is undefined.
1591
1592``ninf``
1593 No Infs - Allow optimizations to assume the arguments and result are not
1594 +/-Inf. Such optimizations are required to retain defined behavior over
1595 +/-Inf, but the value of the result is undefined.
1596
1597``nsz``
1598 No Signed Zeros - Allow optimizations to treat the sign of a zero
1599 argument or result as insignificant.
1600
1601``arcp``
1602 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1603 argument rather than perform division.
1604
1605``fast``
1606 Fast - Allow algebraically equivalent transformations that may
1607 dramatically change results in floating point (e.g. reassociate). This
1608 flag implies all the others.
1609
1610.. _typesystem:
1611
1612Type System
1613===========
1614
1615The LLVM type system is one of the most important features of the
1616intermediate representation. Being typed enables a number of
1617optimizations to be performed on the intermediate representation
1618directly, without having to do extra analyses on the side before the
1619transformation. A strong type system makes it easier to read the
1620generated code and enables novel analyses and transformations that are
1621not feasible to perform on normal three address code representations.
1622
Rafael Espindola08013342013-12-07 19:34:20 +00001623.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001624
Rafael Espindola08013342013-12-07 19:34:20 +00001625Void Type
1626---------
Sean Silvab084af42012-12-07 10:36:55 +00001627
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001628:Overview:
1629
Rafael Espindola08013342013-12-07 19:34:20 +00001630
1631The void type does not represent any value and has no size.
1632
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001633:Syntax:
1634
Rafael Espindola08013342013-12-07 19:34:20 +00001635
1636::
1637
1638 void
Sean Silvab084af42012-12-07 10:36:55 +00001639
1640
Rafael Espindola08013342013-12-07 19:34:20 +00001641.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001642
Rafael Espindola08013342013-12-07 19:34:20 +00001643Function Type
1644-------------
Sean Silvab084af42012-12-07 10:36:55 +00001645
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001646:Overview:
1647
Sean Silvab084af42012-12-07 10:36:55 +00001648
Rafael Espindola08013342013-12-07 19:34:20 +00001649The function type can be thought of as a function signature. It consists of a
1650return type and a list of formal parameter types. The return type of a function
1651type is a void type or first class type --- except for :ref:`label <t_label>`
1652and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001653
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001654:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001655
Rafael Espindola08013342013-12-07 19:34:20 +00001656::
Sean Silvab084af42012-12-07 10:36:55 +00001657
Rafael Espindola08013342013-12-07 19:34:20 +00001658 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001659
Rafael Espindola08013342013-12-07 19:34:20 +00001660...where '``<parameter list>``' is a comma-separated list of type
1661specifiers. Optionally, the parameter list may include a type ``...``, which
1662indicates that the function takes a variable number of arguments. Variable
1663argument functions can access their arguments with the :ref:`variable argument
1664handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1665except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001666
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001667:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001668
Rafael Espindola08013342013-12-07 19:34:20 +00001669+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1670| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1671+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1672| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1673+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1674| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1675+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1676| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1677+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1678
1679.. _t_firstclass:
1680
1681First Class Types
1682-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001683
1684The :ref:`first class <t_firstclass>` types are perhaps the most important.
1685Values of these types are the only ones which can be produced by
1686instructions.
1687
Rafael Espindola08013342013-12-07 19:34:20 +00001688.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001689
Rafael Espindola08013342013-12-07 19:34:20 +00001690Single Value Types
1691^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001692
Rafael Espindola08013342013-12-07 19:34:20 +00001693These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001694
1695.. _t_integer:
1696
1697Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001698""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001699
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001700:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001701
1702The integer type is a very simple type that simply specifies an
1703arbitrary bit width for the integer type desired. Any bit width from 1
1704bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1705
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001706:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001707
1708::
1709
1710 iN
1711
1712The number of bits the integer will occupy is specified by the ``N``
1713value.
1714
1715Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001716*********
Sean Silvab084af42012-12-07 10:36:55 +00001717
1718+----------------+------------------------------------------------+
1719| ``i1`` | a single-bit integer. |
1720+----------------+------------------------------------------------+
1721| ``i32`` | a 32-bit integer. |
1722+----------------+------------------------------------------------+
1723| ``i1942652`` | a really big integer of over 1 million bits. |
1724+----------------+------------------------------------------------+
1725
1726.. _t_floating:
1727
1728Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001729""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001730
1731.. list-table::
1732 :header-rows: 1
1733
1734 * - Type
1735 - Description
1736
1737 * - ``half``
1738 - 16-bit floating point value
1739
1740 * - ``float``
1741 - 32-bit floating point value
1742
1743 * - ``double``
1744 - 64-bit floating point value
1745
1746 * - ``fp128``
1747 - 128-bit floating point value (112-bit mantissa)
1748
1749 * - ``x86_fp80``
1750 - 80-bit floating point value (X87)
1751
1752 * - ``ppc_fp128``
1753 - 128-bit floating point value (two 64-bits)
1754
Reid Kleckner9a16d082014-03-05 02:41:37 +00001755X86_mmx Type
1756""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001757
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001758:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001759
Reid Kleckner9a16d082014-03-05 02:41:37 +00001760The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001761machine. The operations allowed on it are quite limited: parameters and
1762return values, load and store, and bitcast. User-specified MMX
1763instructions are represented as intrinsic or asm calls with arguments
1764and/or results of this type. There are no arrays, vectors or constants
1765of this type.
1766
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001767:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001768
1769::
1770
Reid Kleckner9a16d082014-03-05 02:41:37 +00001771 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001772
Sean Silvab084af42012-12-07 10:36:55 +00001773
Rafael Espindola08013342013-12-07 19:34:20 +00001774.. _t_pointer:
1775
1776Pointer Type
1777""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001778
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001779:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001780
Rafael Espindola08013342013-12-07 19:34:20 +00001781The pointer type is used to specify memory locations. Pointers are
1782commonly used to reference objects in memory.
1783
1784Pointer types may have an optional address space attribute defining the
1785numbered address space where the pointed-to object resides. The default
1786address space is number zero. The semantics of non-zero address spaces
1787are target-specific.
1788
1789Note that LLVM does not permit pointers to void (``void*``) nor does it
1790permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001791
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001792:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001793
1794::
1795
Rafael Espindola08013342013-12-07 19:34:20 +00001796 <type> *
1797
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001798:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001799
1800+-------------------------+--------------------------------------------------------------------------------------------------------------+
1801| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1802+-------------------------+--------------------------------------------------------------------------------------------------------------+
1803| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1804+-------------------------+--------------------------------------------------------------------------------------------------------------+
1805| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1806+-------------------------+--------------------------------------------------------------------------------------------------------------+
1807
1808.. _t_vector:
1809
1810Vector Type
1811"""""""""""
1812
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001813:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001814
1815A vector type is a simple derived type that represents a vector of
1816elements. Vector types are used when multiple primitive data are
1817operated in parallel using a single instruction (SIMD). A vector type
1818requires a size (number of elements) and an underlying primitive data
1819type. Vector types are considered :ref:`first class <t_firstclass>`.
1820
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001821:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001822
1823::
1824
1825 < <# elements> x <elementtype> >
1826
1827The number of elements is a constant integer value larger than 0;
1828elementtype may be any integer or floating point type, or a pointer to
1829these types. Vectors of size zero are not allowed.
1830
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001831:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001832
1833+-------------------+--------------------------------------------------+
1834| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1835+-------------------+--------------------------------------------------+
1836| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1837+-------------------+--------------------------------------------------+
1838| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1839+-------------------+--------------------------------------------------+
1840| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1841+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001842
1843.. _t_label:
1844
1845Label Type
1846^^^^^^^^^^
1847
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001848:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001849
1850The label type represents code labels.
1851
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001852:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001853
1854::
1855
1856 label
1857
1858.. _t_metadata:
1859
1860Metadata Type
1861^^^^^^^^^^^^^
1862
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001863:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001864
1865The metadata type represents embedded metadata. No derived types may be
1866created from metadata except for :ref:`function <t_function>` arguments.
1867
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001868:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001869
1870::
1871
1872 metadata
1873
Sean Silvab084af42012-12-07 10:36:55 +00001874.. _t_aggregate:
1875
1876Aggregate Types
1877^^^^^^^^^^^^^^^
1878
1879Aggregate Types are a subset of derived types that can contain multiple
1880member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1881aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1882aggregate types.
1883
1884.. _t_array:
1885
1886Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001887""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001888
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001889:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001890
1891The array type is a very simple derived type that arranges elements
1892sequentially in memory. The array type requires a size (number of
1893elements) and an underlying data type.
1894
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001895:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001896
1897::
1898
1899 [<# elements> x <elementtype>]
1900
1901The number of elements is a constant integer value; ``elementtype`` may
1902be any type with a size.
1903
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001904:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001905
1906+------------------+--------------------------------------+
1907| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1908+------------------+--------------------------------------+
1909| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1910+------------------+--------------------------------------+
1911| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1912+------------------+--------------------------------------+
1913
1914Here are some examples of multidimensional arrays:
1915
1916+-----------------------------+----------------------------------------------------------+
1917| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1918+-----------------------------+----------------------------------------------------------+
1919| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1920+-----------------------------+----------------------------------------------------------+
1921| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1922+-----------------------------+----------------------------------------------------------+
1923
1924There is no restriction on indexing beyond the end of the array implied
1925by a static type (though there are restrictions on indexing beyond the
1926bounds of an allocated object in some cases). This means that
1927single-dimension 'variable sized array' addressing can be implemented in
1928LLVM with a zero length array type. An implementation of 'pascal style
1929arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1930example.
1931
Sean Silvab084af42012-12-07 10:36:55 +00001932.. _t_struct:
1933
1934Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001935""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001936
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001937:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001938
1939The structure type is used to represent a collection of data members
1940together in memory. The elements of a structure may be any type that has
1941a size.
1942
1943Structures in memory are accessed using '``load``' and '``store``' by
1944getting a pointer to a field with the '``getelementptr``' instruction.
1945Structures in registers are accessed using the '``extractvalue``' and
1946'``insertvalue``' instructions.
1947
1948Structures may optionally be "packed" structures, which indicate that
1949the alignment of the struct is one byte, and that there is no padding
1950between the elements. In non-packed structs, padding between field types
1951is inserted as defined by the DataLayout string in the module, which is
1952required to match what the underlying code generator expects.
1953
1954Structures can either be "literal" or "identified". A literal structure
1955is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1956identified types are always defined at the top level with a name.
1957Literal types are uniqued by their contents and can never be recursive
1958or opaque since there is no way to write one. Identified types can be
1959recursive, can be opaqued, and are never uniqued.
1960
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001961:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001962
1963::
1964
1965 %T1 = type { <type list> } ; Identified normal struct type
1966 %T2 = type <{ <type list> }> ; Identified packed struct type
1967
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001968:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001969
1970+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1971| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1972+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001973| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001974+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1975| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1976+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1977
1978.. _t_opaque:
1979
1980Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001981""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001982
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001983:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001984
1985Opaque structure types are used to represent named structure types that
1986do not have a body specified. This corresponds (for example) to the C
1987notion of a forward declared structure.
1988
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001989:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001990
1991::
1992
1993 %X = type opaque
1994 %52 = type opaque
1995
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001996:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001997
1998+--------------+-------------------+
1999| ``opaque`` | An opaque type. |
2000+--------------+-------------------+
2001
Sean Silva1703e702014-04-08 21:06:22 +00002002.. _constants:
2003
Sean Silvab084af42012-12-07 10:36:55 +00002004Constants
2005=========
2006
2007LLVM has several different basic types of constants. This section
2008describes them all and their syntax.
2009
2010Simple Constants
2011----------------
2012
2013**Boolean constants**
2014 The two strings '``true``' and '``false``' are both valid constants
2015 of the ``i1`` type.
2016**Integer constants**
2017 Standard integers (such as '4') are constants of the
2018 :ref:`integer <t_integer>` type. Negative numbers may be used with
2019 integer types.
2020**Floating point constants**
2021 Floating point constants use standard decimal notation (e.g.
2022 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2023 hexadecimal notation (see below). The assembler requires the exact
2024 decimal value of a floating-point constant. For example, the
2025 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2026 decimal in binary. Floating point constants must have a :ref:`floating
2027 point <t_floating>` type.
2028**Null pointer constants**
2029 The identifier '``null``' is recognized as a null pointer constant
2030 and must be of :ref:`pointer type <t_pointer>`.
2031
2032The one non-intuitive notation for constants is the hexadecimal form of
2033floating point constants. For example, the form
2034'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2035than) '``double 4.5e+15``'. The only time hexadecimal floating point
2036constants are required (and the only time that they are generated by the
2037disassembler) is when a floating point constant must be emitted but it
2038cannot be represented as a decimal floating point number in a reasonable
2039number of digits. For example, NaN's, infinities, and other special
2040values are represented in their IEEE hexadecimal format so that assembly
2041and disassembly do not cause any bits to change in the constants.
2042
2043When using the hexadecimal form, constants of types half, float, and
2044double are represented using the 16-digit form shown above (which
2045matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002046must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002047precision, respectively. Hexadecimal format is always used for long
2048double, and there are three forms of long double. The 80-bit format used
2049by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2050128-bit format used by PowerPC (two adjacent doubles) is represented by
2051``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002052represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2053will only work if they match the long double format on your target.
2054The IEEE 16-bit format (half precision) is represented by ``0xH``
2055followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2056(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002057
Reid Kleckner9a16d082014-03-05 02:41:37 +00002058There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002059
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002060.. _complexconstants:
2061
Sean Silvab084af42012-12-07 10:36:55 +00002062Complex Constants
2063-----------------
2064
2065Complex constants are a (potentially recursive) combination of simple
2066constants and smaller complex constants.
2067
2068**Structure constants**
2069 Structure constants are represented with notation similar to
2070 structure type definitions (a comma separated list of elements,
2071 surrounded by braces (``{}``)). For example:
2072 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2073 "``@G = external global i32``". Structure constants must have
2074 :ref:`structure type <t_struct>`, and the number and types of elements
2075 must match those specified by the type.
2076**Array constants**
2077 Array constants are represented with notation similar to array type
2078 definitions (a comma separated list of elements, surrounded by
2079 square brackets (``[]``)). For example:
2080 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2081 :ref:`array type <t_array>`, and the number and types of elements must
2082 match those specified by the type.
2083**Vector constants**
2084 Vector constants are represented with notation similar to vector
2085 type definitions (a comma separated list of elements, surrounded by
2086 less-than/greater-than's (``<>``)). For example:
2087 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2088 must have :ref:`vector type <t_vector>`, and the number and types of
2089 elements must match those specified by the type.
2090**Zero initialization**
2091 The string '``zeroinitializer``' can be used to zero initialize a
2092 value to zero of *any* type, including scalar and
2093 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2094 having to print large zero initializers (e.g. for large arrays) and
2095 is always exactly equivalent to using explicit zero initializers.
2096**Metadata node**
2097 A metadata node is a structure-like constant with :ref:`metadata
2098 type <t_metadata>`. For example:
2099 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2100 constants that are meant to be interpreted as part of the
2101 instruction stream, metadata is a place to attach additional
2102 information such as debug info.
2103
2104Global Variable and Function Addresses
2105--------------------------------------
2106
2107The addresses of :ref:`global variables <globalvars>` and
2108:ref:`functions <functionstructure>` are always implicitly valid
2109(link-time) constants. These constants are explicitly referenced when
2110the :ref:`identifier for the global <identifiers>` is used and always have
2111:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2112file:
2113
2114.. code-block:: llvm
2115
2116 @X = global i32 17
2117 @Y = global i32 42
2118 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2119
2120.. _undefvalues:
2121
2122Undefined Values
2123----------------
2124
2125The string '``undef``' can be used anywhere a constant is expected, and
2126indicates that the user of the value may receive an unspecified
2127bit-pattern. Undefined values may be of any type (other than '``label``'
2128or '``void``') and be used anywhere a constant is permitted.
2129
2130Undefined values are useful because they indicate to the compiler that
2131the program is well defined no matter what value is used. This gives the
2132compiler more freedom to optimize. Here are some examples of
2133(potentially surprising) transformations that are valid (in pseudo IR):
2134
2135.. code-block:: llvm
2136
2137 %A = add %X, undef
2138 %B = sub %X, undef
2139 %C = xor %X, undef
2140 Safe:
2141 %A = undef
2142 %B = undef
2143 %C = undef
2144
2145This is safe because all of the output bits are affected by the undef
2146bits. Any output bit can have a zero or one depending on the input bits.
2147
2148.. code-block:: llvm
2149
2150 %A = or %X, undef
2151 %B = and %X, undef
2152 Safe:
2153 %A = -1
2154 %B = 0
2155 Unsafe:
2156 %A = undef
2157 %B = undef
2158
2159These logical operations have bits that are not always affected by the
2160input. For example, if ``%X`` has a zero bit, then the output of the
2161'``and``' operation will always be a zero for that bit, no matter what
2162the corresponding bit from the '``undef``' is. As such, it is unsafe to
2163optimize or assume that the result of the '``and``' is '``undef``'.
2164However, it is safe to assume that all bits of the '``undef``' could be
21650, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2166all the bits of the '``undef``' operand to the '``or``' could be set,
2167allowing the '``or``' to be folded to -1.
2168
2169.. code-block:: llvm
2170
2171 %A = select undef, %X, %Y
2172 %B = select undef, 42, %Y
2173 %C = select %X, %Y, undef
2174 Safe:
2175 %A = %X (or %Y)
2176 %B = 42 (or %Y)
2177 %C = %Y
2178 Unsafe:
2179 %A = undef
2180 %B = undef
2181 %C = undef
2182
2183This set of examples shows that undefined '``select``' (and conditional
2184branch) conditions can go *either way*, but they have to come from one
2185of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2186both known to have a clear low bit, then ``%A`` would have to have a
2187cleared low bit. However, in the ``%C`` example, the optimizer is
2188allowed to assume that the '``undef``' operand could be the same as
2189``%Y``, allowing the whole '``select``' to be eliminated.
2190
2191.. code-block:: llvm
2192
2193 %A = xor undef, undef
2194
2195 %B = undef
2196 %C = xor %B, %B
2197
2198 %D = undef
2199 %E = icmp lt %D, 4
2200 %F = icmp gte %D, 4
2201
2202 Safe:
2203 %A = undef
2204 %B = undef
2205 %C = undef
2206 %D = undef
2207 %E = undef
2208 %F = undef
2209
2210This example points out that two '``undef``' operands are not
2211necessarily the same. This can be surprising to people (and also matches
2212C semantics) where they assume that "``X^X``" is always zero, even if
2213``X`` is undefined. This isn't true for a number of reasons, but the
2214short answer is that an '``undef``' "variable" can arbitrarily change
2215its value over its "live range". This is true because the variable
2216doesn't actually *have a live range*. Instead, the value is logically
2217read from arbitrary registers that happen to be around when needed, so
2218the value is not necessarily consistent over time. In fact, ``%A`` and
2219``%C`` need to have the same semantics or the core LLVM "replace all
2220uses with" concept would not hold.
2221
2222.. code-block:: llvm
2223
2224 %A = fdiv undef, %X
2225 %B = fdiv %X, undef
2226 Safe:
2227 %A = undef
2228 b: unreachable
2229
2230These examples show the crucial difference between an *undefined value*
2231and *undefined behavior*. An undefined value (like '``undef``') is
2232allowed to have an arbitrary bit-pattern. This means that the ``%A``
2233operation can be constant folded to '``undef``', because the '``undef``'
2234could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2235However, in the second example, we can make a more aggressive
2236assumption: because the ``undef`` is allowed to be an arbitrary value,
2237we are allowed to assume that it could be zero. Since a divide by zero
2238has *undefined behavior*, we are allowed to assume that the operation
2239does not execute at all. This allows us to delete the divide and all
2240code after it. Because the undefined operation "can't happen", the
2241optimizer can assume that it occurs in dead code.
2242
2243.. code-block:: llvm
2244
2245 a: store undef -> %X
2246 b: store %X -> undef
2247 Safe:
2248 a: <deleted>
2249 b: unreachable
2250
2251These examples reiterate the ``fdiv`` example: a store *of* an undefined
2252value can be assumed to not have any effect; we can assume that the
2253value is overwritten with bits that happen to match what was already
2254there. However, a store *to* an undefined location could clobber
2255arbitrary memory, therefore, it has undefined behavior.
2256
2257.. _poisonvalues:
2258
2259Poison Values
2260-------------
2261
2262Poison values are similar to :ref:`undef values <undefvalues>`, however
2263they also represent the fact that an instruction or constant expression
2264which cannot evoke side effects has nevertheless detected a condition
2265which results in undefined behavior.
2266
2267There is currently no way of representing a poison value in the IR; they
2268only exist when produced by operations such as :ref:`add <i_add>` with
2269the ``nsw`` flag.
2270
2271Poison value behavior is defined in terms of value *dependence*:
2272
2273- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2274- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2275 their dynamic predecessor basic block.
2276- Function arguments depend on the corresponding actual argument values
2277 in the dynamic callers of their functions.
2278- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2279 instructions that dynamically transfer control back to them.
2280- :ref:`Invoke <i_invoke>` instructions depend on the
2281 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2282 call instructions that dynamically transfer control back to them.
2283- Non-volatile loads and stores depend on the most recent stores to all
2284 of the referenced memory addresses, following the order in the IR
2285 (including loads and stores implied by intrinsics such as
2286 :ref:`@llvm.memcpy <int_memcpy>`.)
2287- An instruction with externally visible side effects depends on the
2288 most recent preceding instruction with externally visible side
2289 effects, following the order in the IR. (This includes :ref:`volatile
2290 operations <volatile>`.)
2291- An instruction *control-depends* on a :ref:`terminator
2292 instruction <terminators>` if the terminator instruction has
2293 multiple successors and the instruction is always executed when
2294 control transfers to one of the successors, and may not be executed
2295 when control is transferred to another.
2296- Additionally, an instruction also *control-depends* on a terminator
2297 instruction if the set of instructions it otherwise depends on would
2298 be different if the terminator had transferred control to a different
2299 successor.
2300- Dependence is transitive.
2301
2302Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2303with the additional affect that any instruction which has a *dependence*
2304on a poison value has undefined behavior.
2305
2306Here are some examples:
2307
2308.. code-block:: llvm
2309
2310 entry:
2311 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2312 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2313 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2314 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2315
2316 store i32 %poison, i32* @g ; Poison value stored to memory.
2317 %poison2 = load i32* @g ; Poison value loaded back from memory.
2318
2319 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2320
2321 %narrowaddr = bitcast i32* @g to i16*
2322 %wideaddr = bitcast i32* @g to i64*
2323 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2324 %poison4 = load i64* %wideaddr ; Returns a poison value.
2325
2326 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2327 br i1 %cmp, label %true, label %end ; Branch to either destination.
2328
2329 true:
2330 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2331 ; it has undefined behavior.
2332 br label %end
2333
2334 end:
2335 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2336 ; Both edges into this PHI are
2337 ; control-dependent on %cmp, so this
2338 ; always results in a poison value.
2339
2340 store volatile i32 0, i32* @g ; This would depend on the store in %true
2341 ; if %cmp is true, or the store in %entry
2342 ; otherwise, so this is undefined behavior.
2343
2344 br i1 %cmp, label %second_true, label %second_end
2345 ; The same branch again, but this time the
2346 ; true block doesn't have side effects.
2347
2348 second_true:
2349 ; No side effects!
2350 ret void
2351
2352 second_end:
2353 store volatile i32 0, i32* @g ; This time, the instruction always depends
2354 ; on the store in %end. Also, it is
2355 ; control-equivalent to %end, so this is
2356 ; well-defined (ignoring earlier undefined
2357 ; behavior in this example).
2358
2359.. _blockaddress:
2360
2361Addresses of Basic Blocks
2362-------------------------
2363
2364``blockaddress(@function, %block)``
2365
2366The '``blockaddress``' constant computes the address of the specified
2367basic block in the specified function, and always has an ``i8*`` type.
2368Taking the address of the entry block is illegal.
2369
2370This value only has defined behavior when used as an operand to the
2371':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2372against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002373undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002374no label is equal to the null pointer. This may be passed around as an
2375opaque pointer sized value as long as the bits are not inspected. This
2376allows ``ptrtoint`` and arithmetic to be performed on these values so
2377long as the original value is reconstituted before the ``indirectbr``
2378instruction.
2379
2380Finally, some targets may provide defined semantics when using the value
2381as the operand to an inline assembly, but that is target specific.
2382
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002383.. _constantexprs:
2384
Sean Silvab084af42012-12-07 10:36:55 +00002385Constant Expressions
2386--------------------
2387
2388Constant expressions are used to allow expressions involving other
2389constants to be used as constants. Constant expressions may be of any
2390:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2391that does not have side effects (e.g. load and call are not supported).
2392The following is the syntax for constant expressions:
2393
2394``trunc (CST to TYPE)``
2395 Truncate a constant to another type. The bit size of CST must be
2396 larger than the bit size of TYPE. Both types must be integers.
2397``zext (CST to TYPE)``
2398 Zero extend a constant to another type. The bit size of CST must be
2399 smaller than the bit size of TYPE. Both types must be integers.
2400``sext (CST to TYPE)``
2401 Sign extend a constant to another type. The bit size of CST must be
2402 smaller than the bit size of TYPE. Both types must be integers.
2403``fptrunc (CST to TYPE)``
2404 Truncate a floating point constant to another floating point type.
2405 The size of CST must be larger than the size of TYPE. Both types
2406 must be floating point.
2407``fpext (CST to TYPE)``
2408 Floating point extend a constant to another type. The size of CST
2409 must be smaller or equal to the size of TYPE. Both types must be
2410 floating point.
2411``fptoui (CST to TYPE)``
2412 Convert a floating point constant to the corresponding unsigned
2413 integer constant. TYPE must be a scalar or vector integer type. CST
2414 must be of scalar or vector floating point type. Both CST and TYPE
2415 must be scalars, or vectors of the same number of elements. If the
2416 value won't fit in the integer type, the results are undefined.
2417``fptosi (CST to TYPE)``
2418 Convert a floating point constant to the corresponding signed
2419 integer constant. TYPE must be a scalar or vector integer type. CST
2420 must be of scalar or vector floating point type. Both CST and TYPE
2421 must be scalars, or vectors of the same number of elements. If the
2422 value won't fit in the integer type, the results are undefined.
2423``uitofp (CST to TYPE)``
2424 Convert an unsigned integer constant to the corresponding floating
2425 point constant. TYPE must be a scalar or vector floating point type.
2426 CST must be of scalar or vector integer type. Both CST and TYPE must
2427 be scalars, or vectors of the same number of elements. If the value
2428 won't fit in the floating point type, the results are undefined.
2429``sitofp (CST to TYPE)``
2430 Convert a signed integer constant to the corresponding floating
2431 point constant. TYPE must be a scalar or vector floating point type.
2432 CST must be of scalar or vector integer type. Both CST and TYPE must
2433 be scalars, or vectors of the same number of elements. If the value
2434 won't fit in the floating point type, the results are undefined.
2435``ptrtoint (CST to TYPE)``
2436 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002437 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002438 pointer type. The ``CST`` value is zero extended, truncated, or
2439 unchanged to make it fit in ``TYPE``.
2440``inttoptr (CST to TYPE)``
2441 Convert an integer constant to a pointer constant. TYPE must be a
2442 pointer type. CST must be of integer type. The CST value is zero
2443 extended, truncated, or unchanged to make it fit in a pointer size.
2444 This one is *really* dangerous!
2445``bitcast (CST to TYPE)``
2446 Convert a constant, CST, to another TYPE. The constraints of the
2447 operands are the same as those for the :ref:`bitcast
2448 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002449``addrspacecast (CST to TYPE)``
2450 Convert a constant pointer or constant vector of pointer, CST, to another
2451 TYPE in a different address space. The constraints of the operands are the
2452 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002453``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2454 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2455 constants. As with the :ref:`getelementptr <i_getelementptr>`
2456 instruction, the index list may have zero or more indexes, which are
2457 required to make sense for the type of "CSTPTR".
2458``select (COND, VAL1, VAL2)``
2459 Perform the :ref:`select operation <i_select>` on constants.
2460``icmp COND (VAL1, VAL2)``
2461 Performs the :ref:`icmp operation <i_icmp>` on constants.
2462``fcmp COND (VAL1, VAL2)``
2463 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2464``extractelement (VAL, IDX)``
2465 Perform the :ref:`extractelement operation <i_extractelement>` on
2466 constants.
2467``insertelement (VAL, ELT, IDX)``
2468 Perform the :ref:`insertelement operation <i_insertelement>` on
2469 constants.
2470``shufflevector (VEC1, VEC2, IDXMASK)``
2471 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2472 constants.
2473``extractvalue (VAL, IDX0, IDX1, ...)``
2474 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2475 constants. The index list is interpreted in a similar manner as
2476 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2477 least one index value must be specified.
2478``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2479 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2480 The index list is interpreted in a similar manner as indices in a
2481 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2482 value must be specified.
2483``OPCODE (LHS, RHS)``
2484 Perform the specified operation of the LHS and RHS constants. OPCODE
2485 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2486 binary <bitwiseops>` operations. The constraints on operands are
2487 the same as those for the corresponding instruction (e.g. no bitwise
2488 operations on floating point values are allowed).
2489
2490Other Values
2491============
2492
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002493.. _inlineasmexprs:
2494
Sean Silvab084af42012-12-07 10:36:55 +00002495Inline Assembler Expressions
2496----------------------------
2497
2498LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2499Inline Assembly <moduleasm>`) through the use of a special value. This
2500value represents the inline assembler as a string (containing the
2501instructions to emit), a list of operand constraints (stored as a
2502string), a flag that indicates whether or not the inline asm expression
2503has side effects, and a flag indicating whether the function containing
2504the asm needs to align its stack conservatively. An example inline
2505assembler expression is:
2506
2507.. code-block:: llvm
2508
2509 i32 (i32) asm "bswap $0", "=r,r"
2510
2511Inline assembler expressions may **only** be used as the callee operand
2512of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2513Thus, typically we have:
2514
2515.. code-block:: llvm
2516
2517 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2518
2519Inline asms with side effects not visible in the constraint list must be
2520marked as having side effects. This is done through the use of the
2521'``sideeffect``' keyword, like so:
2522
2523.. code-block:: llvm
2524
2525 call void asm sideeffect "eieio", ""()
2526
2527In some cases inline asms will contain code that will not work unless
2528the stack is aligned in some way, such as calls or SSE instructions on
2529x86, yet will not contain code that does that alignment within the asm.
2530The compiler should make conservative assumptions about what the asm
2531might contain and should generate its usual stack alignment code in the
2532prologue if the '``alignstack``' keyword is present:
2533
2534.. code-block:: llvm
2535
2536 call void asm alignstack "eieio", ""()
2537
2538Inline asms also support using non-standard assembly dialects. The
2539assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2540the inline asm is using the Intel dialect. Currently, ATT and Intel are
2541the only supported dialects. An example is:
2542
2543.. code-block:: llvm
2544
2545 call void asm inteldialect "eieio", ""()
2546
2547If multiple keywords appear the '``sideeffect``' keyword must come
2548first, the '``alignstack``' keyword second and the '``inteldialect``'
2549keyword last.
2550
2551Inline Asm Metadata
2552^^^^^^^^^^^^^^^^^^^
2553
2554The call instructions that wrap inline asm nodes may have a
2555"``!srcloc``" MDNode attached to it that contains a list of constant
2556integers. If present, the code generator will use the integer as the
2557location cookie value when report errors through the ``LLVMContext``
2558error reporting mechanisms. This allows a front-end to correlate backend
2559errors that occur with inline asm back to the source code that produced
2560it. For example:
2561
2562.. code-block:: llvm
2563
2564 call void asm sideeffect "something bad", ""(), !srcloc !42
2565 ...
2566 !42 = !{ i32 1234567 }
2567
2568It is up to the front-end to make sense of the magic numbers it places
2569in the IR. If the MDNode contains multiple constants, the code generator
2570will use the one that corresponds to the line of the asm that the error
2571occurs on.
2572
2573.. _metadata:
2574
2575Metadata Nodes and Metadata Strings
2576-----------------------------------
2577
2578LLVM IR allows metadata to be attached to instructions in the program
2579that can convey extra information about the code to the optimizers and
2580code generator. One example application of metadata is source-level
2581debug information. There are two metadata primitives: strings and nodes.
2582All metadata has the ``metadata`` type and is identified in syntax by a
2583preceding exclamation point ('``!``').
2584
2585A metadata string is a string surrounded by double quotes. It can
2586contain any character by escaping non-printable characters with
2587"``\xx``" where "``xx``" is the two digit hex code. For example:
2588"``!"test\00"``".
2589
2590Metadata nodes are represented with notation similar to structure
2591constants (a comma separated list of elements, surrounded by braces and
2592preceded by an exclamation point). Metadata nodes can have any values as
2593their operand. For example:
2594
2595.. code-block:: llvm
2596
2597 !{ metadata !"test\00", i32 10}
2598
2599A :ref:`named metadata <namedmetadatastructure>` is a collection of
2600metadata nodes, which can be looked up in the module symbol table. For
2601example:
2602
2603.. code-block:: llvm
2604
2605 !foo = metadata !{!4, !3}
2606
2607Metadata can be used as function arguments. Here ``llvm.dbg.value``
2608function is using two metadata arguments:
2609
2610.. code-block:: llvm
2611
2612 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2613
2614Metadata can be attached with an instruction. Here metadata ``!21`` is
2615attached to the ``add`` instruction using the ``!dbg`` identifier:
2616
2617.. code-block:: llvm
2618
2619 %indvar.next = add i64 %indvar, 1, !dbg !21
2620
2621More information about specific metadata nodes recognized by the
2622optimizers and code generator is found below.
2623
2624'``tbaa``' Metadata
2625^^^^^^^^^^^^^^^^^^^
2626
2627In LLVM IR, memory does not have types, so LLVM's own type system is not
2628suitable for doing TBAA. Instead, metadata is added to the IR to
2629describe a type system of a higher level language. This can be used to
2630implement typical C/C++ TBAA, but it can also be used to implement
2631custom alias analysis behavior for other languages.
2632
2633The current metadata format is very simple. TBAA metadata nodes have up
2634to three fields, e.g.:
2635
2636.. code-block:: llvm
2637
2638 !0 = metadata !{ metadata !"an example type tree" }
2639 !1 = metadata !{ metadata !"int", metadata !0 }
2640 !2 = metadata !{ metadata !"float", metadata !0 }
2641 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2642
2643The first field is an identity field. It can be any value, usually a
2644metadata string, which uniquely identifies the type. The most important
2645name in the tree is the name of the root node. Two trees with different
2646root node names are entirely disjoint, even if they have leaves with
2647common names.
2648
2649The second field identifies the type's parent node in the tree, or is
2650null or omitted for a root node. A type is considered to alias all of
2651its descendants and all of its ancestors in the tree. Also, a type is
2652considered to alias all types in other trees, so that bitcode produced
2653from multiple front-ends is handled conservatively.
2654
2655If the third field is present, it's an integer which if equal to 1
2656indicates that the type is "constant" (meaning
2657``pointsToConstantMemory`` should return true; see `other useful
2658AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2659
2660'``tbaa.struct``' Metadata
2661^^^^^^^^^^^^^^^^^^^^^^^^^^
2662
2663The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2664aggregate assignment operations in C and similar languages, however it
2665is defined to copy a contiguous region of memory, which is more than
2666strictly necessary for aggregate types which contain holes due to
2667padding. Also, it doesn't contain any TBAA information about the fields
2668of the aggregate.
2669
2670``!tbaa.struct`` metadata can describe which memory subregions in a
2671memcpy are padding and what the TBAA tags of the struct are.
2672
2673The current metadata format is very simple. ``!tbaa.struct`` metadata
2674nodes are a list of operands which are in conceptual groups of three.
2675For each group of three, the first operand gives the byte offset of a
2676field in bytes, the second gives its size in bytes, and the third gives
2677its tbaa tag. e.g.:
2678
2679.. code-block:: llvm
2680
2681 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2682
2683This describes a struct with two fields. The first is at offset 0 bytes
2684with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2685and has size 4 bytes and has tbaa tag !2.
2686
2687Note that the fields need not be contiguous. In this example, there is a
26884 byte gap between the two fields. This gap represents padding which
2689does not carry useful data and need not be preserved.
2690
2691'``fpmath``' Metadata
2692^^^^^^^^^^^^^^^^^^^^^
2693
2694``fpmath`` metadata may be attached to any instruction of floating point
2695type. It can be used to express the maximum acceptable error in the
2696result of that instruction, in ULPs, thus potentially allowing the
2697compiler to use a more efficient but less accurate method of computing
2698it. ULP is defined as follows:
2699
2700 If ``x`` is a real number that lies between two finite consecutive
2701 floating-point numbers ``a`` and ``b``, without being equal to one
2702 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2703 distance between the two non-equal finite floating-point numbers
2704 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2705
2706The metadata node shall consist of a single positive floating point
2707number representing the maximum relative error, for example:
2708
2709.. code-block:: llvm
2710
2711 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2712
2713'``range``' Metadata
2714^^^^^^^^^^^^^^^^^^^^
2715
2716``range`` metadata may be attached only to loads of integer types. It
2717expresses the possible ranges the loaded value is in. The ranges are
2718represented with a flattened list of integers. The loaded value is known
2719to be in the union of the ranges defined by each consecutive pair. Each
2720pair has the following properties:
2721
2722- The type must match the type loaded by the instruction.
2723- The pair ``a,b`` represents the range ``[a,b)``.
2724- Both ``a`` and ``b`` are constants.
2725- The range is allowed to wrap.
2726- The range should not represent the full or empty set. That is,
2727 ``a!=b``.
2728
2729In addition, the pairs must be in signed order of the lower bound and
2730they must be non-contiguous.
2731
2732Examples:
2733
2734.. code-block:: llvm
2735
2736 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2737 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2738 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2739 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2740 ...
2741 !0 = metadata !{ i8 0, i8 2 }
2742 !1 = metadata !{ i8 255, i8 2 }
2743 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2744 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2745
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002746'``llvm.loop``'
2747^^^^^^^^^^^^^^^
2748
2749It is sometimes useful to attach information to loop constructs. Currently,
2750loop metadata is implemented as metadata attached to the branch instruction
2751in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002752guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002753specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002754
2755The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002756itself to avoid merging it with any other identifier metadata, e.g.,
2757during module linkage or function inlining. That is, each loop should refer
2758to their own identification metadata even if they reside in separate functions.
2759The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002760constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002761
2762.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002763
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002764 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002765 !1 = metadata !{ metadata !1 }
2766
Paul Redmond5fdf8362013-05-28 20:00:34 +00002767The loop identifier metadata can be used to specify additional per-loop
2768metadata. Any operands after the first operand can be treated as user-defined
2769metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2770by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002771
Paul Redmond5fdf8362013-05-28 20:00:34 +00002772.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002773
Paul Redmond5fdf8362013-05-28 20:00:34 +00002774 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2775 ...
2776 !0 = metadata !{ metadata !0, metadata !1 }
2777 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002778
2779'``llvm.mem``'
2780^^^^^^^^^^^^^^^
2781
2782Metadata types used to annotate memory accesses with information helpful
2783for optimizations are prefixed with ``llvm.mem``.
2784
2785'``llvm.mem.parallel_loop_access``' Metadata
2786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2787
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00002788The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
2789or metadata containing a list of loop identifiers for nested loops.
2790The metadata is attached to memory accessing instructions and denotes that
2791no loop carried memory dependence exist between it and other instructions denoted
2792with the same loop identifier.
2793
2794Precisely, given two instructions ``m1`` and ``m2`` that both have the
2795``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
2796set of loops associated with that metadata, respectively, then there is no loop
2797carried dependence between ``m1`` and ``m2`` for loops ``L1`` or
2798``L2``.
2799
2800As a special case, if all memory accessing instructions in a loop have
2801``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
2802loop has no loop carried memory dependences and is considered to be a parallel
2803loop.
2804
2805Note that if not all memory access instructions have such metadata referring to
2806the loop, then the loop is considered not being trivially parallel. Additional
2807memory dependence analysis is required to make that determination. As a fail
2808safe mechanism, this causes loops that were originally parallel to be considered
2809sequential (if optimization passes that are unaware of the parallel semantics
2810insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002811
2812Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002813both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002814metadata types that refer to the same loop identifier metadata.
2815
2816.. code-block:: llvm
2817
2818 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002819 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002820 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002821 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002822 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002823 ...
2824 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002825
2826 for.end:
2827 ...
2828 !0 = metadata !{ metadata !0 }
2829
2830It is also possible to have nested parallel loops. In that case the
2831memory accesses refer to a list of loop identifier metadata nodes instead of
2832the loop identifier metadata node directly:
2833
2834.. code-block:: llvm
2835
2836 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002837 ...
2838 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
2839 ...
2840 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002841
2842 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002843 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002844 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002845 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002846 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002847 ...
2848 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002849
2850 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002851 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002852 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00002853 ...
2854 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002855
2856 outer.for.end: ; preds = %for.body
2857 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002858 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2859 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2860 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002861
Paul Redmond5fdf8362013-05-28 20:00:34 +00002862'``llvm.vectorizer``'
2863^^^^^^^^^^^^^^^^^^^^^
2864
2865Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2866vectorization parameters such as vectorization factor and unroll factor.
2867
2868``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2869loop identification metadata.
2870
2871'``llvm.vectorizer.unroll``' Metadata
2872^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2873
2874This metadata instructs the loop vectorizer to unroll the specified
2875loop exactly ``N`` times.
2876
2877The first operand is the string ``llvm.vectorizer.unroll`` and the second
2878operand is an integer specifying the unroll factor. For example:
2879
2880.. code-block:: llvm
2881
2882 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2883
2884Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2885loop.
2886
2887If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2888determined automatically.
2889
2890'``llvm.vectorizer.width``' Metadata
2891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2892
Paul Redmondeccbb322013-05-30 17:22:46 +00002893This metadata sets the target width of the vectorizer to ``N``. Without
2894this metadata, the vectorizer will choose a width automatically.
2895Regardless of this metadata, the vectorizer will only vectorize loops if
2896it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002897
2898The first operand is the string ``llvm.vectorizer.width`` and the second
2899operand is an integer specifying the width. For example:
2900
2901.. code-block:: llvm
2902
2903 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2904
2905Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2906loop.
2907
2908If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2909automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002910
Sean Silvab084af42012-12-07 10:36:55 +00002911Module Flags Metadata
2912=====================
2913
2914Information about the module as a whole is difficult to convey to LLVM's
2915subsystems. The LLVM IR isn't sufficient to transmit this information.
2916The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002917this. These flags are in the form of key / value pairs --- much like a
2918dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002919look it up.
2920
2921The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2922Each triplet has the following form:
2923
2924- The first element is a *behavior* flag, which specifies the behavior
2925 when two (or more) modules are merged together, and it encounters two
2926 (or more) metadata with the same ID. The supported behaviors are
2927 described below.
2928- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002929 metadata. Each module may only have one flag entry for each unique ID (not
2930 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002931- The third element is the value of the flag.
2932
2933When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002934``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2935each unique metadata ID string, there will be exactly one entry in the merged
2936modules ``llvm.module.flags`` metadata table, and the value for that entry will
2937be determined by the merge behavior flag, as described below. The only exception
2938is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002939
2940The following behaviors are supported:
2941
2942.. list-table::
2943 :header-rows: 1
2944 :widths: 10 90
2945
2946 * - Value
2947 - Behavior
2948
2949 * - 1
2950 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002951 Emits an error if two values disagree, otherwise the resulting value
2952 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002953
2954 * - 2
2955 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002956 Emits a warning if two values disagree. The result value will be the
2957 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002958
2959 * - 3
2960 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002961 Adds a requirement that another module flag be present and have a
2962 specified value after linking is performed. The value must be a
2963 metadata pair, where the first element of the pair is the ID of the
2964 module flag to be restricted, and the second element of the pair is
2965 the value the module flag should be restricted to. This behavior can
2966 be used to restrict the allowable results (via triggering of an
2967 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002968
2969 * - 4
2970 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002971 Uses the specified value, regardless of the behavior or value of the
2972 other module. If both modules specify **Override**, but the values
2973 differ, an error will be emitted.
2974
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002975 * - 5
2976 - **Append**
2977 Appends the two values, which are required to be metadata nodes.
2978
2979 * - 6
2980 - **AppendUnique**
2981 Appends the two values, which are required to be metadata
2982 nodes. However, duplicate entries in the second list are dropped
2983 during the append operation.
2984
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002985It is an error for a particular unique flag ID to have multiple behaviors,
2986except in the case of **Require** (which adds restrictions on another metadata
2987value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002988
2989An example of module flags:
2990
2991.. code-block:: llvm
2992
2993 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2994 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2995 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2996 !3 = metadata !{ i32 3, metadata !"qux",
2997 metadata !{
2998 metadata !"foo", i32 1
2999 }
3000 }
3001 !llvm.module.flags = !{ !0, !1, !2, !3 }
3002
3003- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3004 if two or more ``!"foo"`` flags are seen is to emit an error if their
3005 values are not equal.
3006
3007- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3008 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003009 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003010
3011- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3012 behavior if two or more ``!"qux"`` flags are seen is to emit a
3013 warning if their values are not equal.
3014
3015- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3016
3017 ::
3018
3019 metadata !{ metadata !"foo", i32 1 }
3020
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003021 The behavior is to emit an error if the ``llvm.module.flags`` does not
3022 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3023 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003024
3025Objective-C Garbage Collection Module Flags Metadata
3026----------------------------------------------------
3027
3028On the Mach-O platform, Objective-C stores metadata about garbage
3029collection in a special section called "image info". The metadata
3030consists of a version number and a bitmask specifying what types of
3031garbage collection are supported (if any) by the file. If two or more
3032modules are linked together their garbage collection metadata needs to
3033be merged rather than appended together.
3034
3035The Objective-C garbage collection module flags metadata consists of the
3036following key-value pairs:
3037
3038.. list-table::
3039 :header-rows: 1
3040 :widths: 30 70
3041
3042 * - Key
3043 - Value
3044
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003045 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003046 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003047
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003048 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003049 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003050 always 0.
3051
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003052 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003053 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003054 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3055 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3056 Objective-C ABI version 2.
3057
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003058 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003059 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003060 not. Valid values are 0, for no garbage collection, and 2, for garbage
3061 collection supported.
3062
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003063 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003064 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003065 If present, its value must be 6. This flag requires that the
3066 ``Objective-C Garbage Collection`` flag have the value 2.
3067
3068Some important flag interactions:
3069
3070- If a module with ``Objective-C Garbage Collection`` set to 0 is
3071 merged with a module with ``Objective-C Garbage Collection`` set to
3072 2, then the resulting module has the
3073 ``Objective-C Garbage Collection`` flag set to 0.
3074- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3075 merged with a module with ``Objective-C GC Only`` set to 6.
3076
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003077Automatic Linker Flags Module Flags Metadata
3078--------------------------------------------
3079
3080Some targets support embedding flags to the linker inside individual object
3081files. Typically this is used in conjunction with language extensions which
3082allow source files to explicitly declare the libraries they depend on, and have
3083these automatically be transmitted to the linker via object files.
3084
3085These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003086using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003087to be ``AppendUnique``, and the value for the key is expected to be a metadata
3088node which should be a list of other metadata nodes, each of which should be a
3089list of metadata strings defining linker options.
3090
3091For example, the following metadata section specifies two separate sets of
3092linker options, presumably to link against ``libz`` and the ``Cocoa``
3093framework::
3094
Michael Liaoa7699082013-03-06 18:24:34 +00003095 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003096 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003097 metadata !{ metadata !"-lz" },
3098 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003099 !llvm.module.flags = !{ !0 }
3100
3101The metadata encoding as lists of lists of options, as opposed to a collapsed
3102list of options, is chosen so that the IR encoding can use multiple option
3103strings to specify e.g., a single library, while still having that specifier be
3104preserved as an atomic element that can be recognized by a target specific
3105assembly writer or object file emitter.
3106
3107Each individual option is required to be either a valid option for the target's
3108linker, or an option that is reserved by the target specific assembly writer or
3109object file emitter. No other aspect of these options is defined by the IR.
3110
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003111.. _intrinsicglobalvariables:
3112
Sean Silvab084af42012-12-07 10:36:55 +00003113Intrinsic Global Variables
3114==========================
3115
3116LLVM has a number of "magic" global variables that contain data that
3117affect code generation or other IR semantics. These are documented here.
3118All globals of this sort should have a section specified as
3119"``llvm.metadata``". This section and all globals that start with
3120"``llvm.``" are reserved for use by LLVM.
3121
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003122.. _gv_llvmused:
3123
Sean Silvab084af42012-12-07 10:36:55 +00003124The '``llvm.used``' Global Variable
3125-----------------------------------
3126
Rafael Espindola74f2e462013-04-22 14:58:02 +00003127The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003128:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003129pointers to named global variables, functions and aliases which may optionally
3130have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003131use of it is:
3132
3133.. code-block:: llvm
3134
3135 @X = global i8 4
3136 @Y = global i32 123
3137
3138 @llvm.used = appending global [2 x i8*] [
3139 i8* @X,
3140 i8* bitcast (i32* @Y to i8*)
3141 ], section "llvm.metadata"
3142
Rafael Espindola74f2e462013-04-22 14:58:02 +00003143If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3144and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003145symbol that it cannot see (which is why they have to be named). For example, if
3146a variable has internal linkage and no references other than that from the
3147``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3148references from inline asms and other things the compiler cannot "see", and
3149corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003150
3151On some targets, the code generator must emit a directive to the
3152assembler or object file to prevent the assembler and linker from
3153molesting the symbol.
3154
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003155.. _gv_llvmcompilerused:
3156
Sean Silvab084af42012-12-07 10:36:55 +00003157The '``llvm.compiler.used``' Global Variable
3158--------------------------------------------
3159
3160The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3161directive, except that it only prevents the compiler from touching the
3162symbol. On targets that support it, this allows an intelligent linker to
3163optimize references to the symbol without being impeded as it would be
3164by ``@llvm.used``.
3165
3166This is a rare construct that should only be used in rare circumstances,
3167and should not be exposed to source languages.
3168
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003169.. _gv_llvmglobalctors:
3170
Sean Silvab084af42012-12-07 10:36:55 +00003171The '``llvm.global_ctors``' Global Variable
3172-------------------------------------------
3173
3174.. code-block:: llvm
3175
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003176 %0 = type { i32, void ()*, i8* }
3177 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003178
3179The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003180functions, priorities, and an optional associated global or function.
3181The functions referenced by this array will be called in ascending order
3182of priority (i.e. lowest first) when the module is loaded. The order of
3183functions with the same priority is not defined.
3184
3185If the third field is present, non-null, and points to a global variable
3186or function, the initializer function will only run if the associated
3187data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003188
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003189.. _llvmglobaldtors:
3190
Sean Silvab084af42012-12-07 10:36:55 +00003191The '``llvm.global_dtors``' Global Variable
3192-------------------------------------------
3193
3194.. code-block:: llvm
3195
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003196 %0 = type { i32, void ()*, i8* }
3197 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003198
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003199The ``@llvm.global_dtors`` array contains a list of destructor
3200functions, priorities, and an optional associated global or function.
3201The functions referenced by this array will be called in descending
3202order of priority (i.e. highest first) when the module is loaded. The
3203order of functions with the same priority is not defined.
3204
3205If the third field is present, non-null, and points to a global variable
3206or function, the destructor function will only run if the associated
3207data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003208
3209Instruction Reference
3210=====================
3211
3212The LLVM instruction set consists of several different classifications
3213of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3214instructions <binaryops>`, :ref:`bitwise binary
3215instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3216:ref:`other instructions <otherops>`.
3217
3218.. _terminators:
3219
3220Terminator Instructions
3221-----------------------
3222
3223As mentioned :ref:`previously <functionstructure>`, every basic block in a
3224program ends with a "Terminator" instruction, which indicates which
3225block should be executed after the current block is finished. These
3226terminator instructions typically yield a '``void``' value: they produce
3227control flow, not values (the one exception being the
3228':ref:`invoke <i_invoke>`' instruction).
3229
3230The terminator instructions are: ':ref:`ret <i_ret>`',
3231':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3232':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3233':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3234
3235.. _i_ret:
3236
3237'``ret``' Instruction
3238^^^^^^^^^^^^^^^^^^^^^
3239
3240Syntax:
3241"""""""
3242
3243::
3244
3245 ret <type> <value> ; Return a value from a non-void function
3246 ret void ; Return from void function
3247
3248Overview:
3249"""""""""
3250
3251The '``ret``' instruction is used to return control flow (and optionally
3252a value) from a function back to the caller.
3253
3254There are two forms of the '``ret``' instruction: one that returns a
3255value and then causes control flow, and one that just causes control
3256flow to occur.
3257
3258Arguments:
3259""""""""""
3260
3261The '``ret``' instruction optionally accepts a single argument, the
3262return value. The type of the return value must be a ':ref:`first
3263class <t_firstclass>`' type.
3264
3265A function is not :ref:`well formed <wellformed>` if it it has a non-void
3266return type and contains a '``ret``' instruction with no return value or
3267a return value with a type that does not match its type, or if it has a
3268void return type and contains a '``ret``' instruction with a return
3269value.
3270
3271Semantics:
3272""""""""""
3273
3274When the '``ret``' instruction is executed, control flow returns back to
3275the calling function's context. If the caller is a
3276":ref:`call <i_call>`" instruction, execution continues at the
3277instruction after the call. If the caller was an
3278":ref:`invoke <i_invoke>`" instruction, execution continues at the
3279beginning of the "normal" destination block. If the instruction returns
3280a value, that value shall set the call or invoke instruction's return
3281value.
3282
3283Example:
3284""""""""
3285
3286.. code-block:: llvm
3287
3288 ret i32 5 ; Return an integer value of 5
3289 ret void ; Return from a void function
3290 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3291
3292.. _i_br:
3293
3294'``br``' Instruction
3295^^^^^^^^^^^^^^^^^^^^
3296
3297Syntax:
3298"""""""
3299
3300::
3301
3302 br i1 <cond>, label <iftrue>, label <iffalse>
3303 br label <dest> ; Unconditional branch
3304
3305Overview:
3306"""""""""
3307
3308The '``br``' instruction is used to cause control flow to transfer to a
3309different basic block in the current function. There are two forms of
3310this instruction, corresponding to a conditional branch and an
3311unconditional branch.
3312
3313Arguments:
3314""""""""""
3315
3316The conditional branch form of the '``br``' instruction takes a single
3317'``i1``' value and two '``label``' values. The unconditional form of the
3318'``br``' instruction takes a single '``label``' value as a target.
3319
3320Semantics:
3321""""""""""
3322
3323Upon execution of a conditional '``br``' instruction, the '``i1``'
3324argument is evaluated. If the value is ``true``, control flows to the
3325'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3326to the '``iffalse``' ``label`` argument.
3327
3328Example:
3329""""""""
3330
3331.. code-block:: llvm
3332
3333 Test:
3334 %cond = icmp eq i32 %a, %b
3335 br i1 %cond, label %IfEqual, label %IfUnequal
3336 IfEqual:
3337 ret i32 1
3338 IfUnequal:
3339 ret i32 0
3340
3341.. _i_switch:
3342
3343'``switch``' Instruction
3344^^^^^^^^^^^^^^^^^^^^^^^^
3345
3346Syntax:
3347"""""""
3348
3349::
3350
3351 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3352
3353Overview:
3354"""""""""
3355
3356The '``switch``' instruction is used to transfer control flow to one of
3357several different places. It is a generalization of the '``br``'
3358instruction, allowing a branch to occur to one of many possible
3359destinations.
3360
3361Arguments:
3362""""""""""
3363
3364The '``switch``' instruction uses three parameters: an integer
3365comparison value '``value``', a default '``label``' destination, and an
3366array of pairs of comparison value constants and '``label``'s. The table
3367is not allowed to contain duplicate constant entries.
3368
3369Semantics:
3370""""""""""
3371
3372The ``switch`` instruction specifies a table of values and destinations.
3373When the '``switch``' instruction is executed, this table is searched
3374for the given value. If the value is found, control flow is transferred
3375to the corresponding destination; otherwise, control flow is transferred
3376to the default destination.
3377
3378Implementation:
3379"""""""""""""""
3380
3381Depending on properties of the target machine and the particular
3382``switch`` instruction, this instruction may be code generated in
3383different ways. For example, it could be generated as a series of
3384chained conditional branches or with a lookup table.
3385
3386Example:
3387""""""""
3388
3389.. code-block:: llvm
3390
3391 ; Emulate a conditional br instruction
3392 %Val = zext i1 %value to i32
3393 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3394
3395 ; Emulate an unconditional br instruction
3396 switch i32 0, label %dest [ ]
3397
3398 ; Implement a jump table:
3399 switch i32 %val, label %otherwise [ i32 0, label %onzero
3400 i32 1, label %onone
3401 i32 2, label %ontwo ]
3402
3403.. _i_indirectbr:
3404
3405'``indirectbr``' Instruction
3406^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3407
3408Syntax:
3409"""""""
3410
3411::
3412
3413 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3414
3415Overview:
3416"""""""""
3417
3418The '``indirectbr``' instruction implements an indirect branch to a
3419label within the current function, whose address is specified by
3420"``address``". Address must be derived from a
3421:ref:`blockaddress <blockaddress>` constant.
3422
3423Arguments:
3424""""""""""
3425
3426The '``address``' argument is the address of the label to jump to. The
3427rest of the arguments indicate the full set of possible destinations
3428that the address may point to. Blocks are allowed to occur multiple
3429times in the destination list, though this isn't particularly useful.
3430
3431This destination list is required so that dataflow analysis has an
3432accurate understanding of the CFG.
3433
3434Semantics:
3435""""""""""
3436
3437Control transfers to the block specified in the address argument. All
3438possible destination blocks must be listed in the label list, otherwise
3439this instruction has undefined behavior. This implies that jumps to
3440labels defined in other functions have undefined behavior as well.
3441
3442Implementation:
3443"""""""""""""""
3444
3445This is typically implemented with a jump through a register.
3446
3447Example:
3448""""""""
3449
3450.. code-block:: llvm
3451
3452 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3453
3454.. _i_invoke:
3455
3456'``invoke``' Instruction
3457^^^^^^^^^^^^^^^^^^^^^^^^
3458
3459Syntax:
3460"""""""
3461
3462::
3463
3464 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3465 to label <normal label> unwind label <exception label>
3466
3467Overview:
3468"""""""""
3469
3470The '``invoke``' instruction causes control to transfer to a specified
3471function, with the possibility of control flow transfer to either the
3472'``normal``' label or the '``exception``' label. If the callee function
3473returns with the "``ret``" instruction, control flow will return to the
3474"normal" label. If the callee (or any indirect callees) returns via the
3475":ref:`resume <i_resume>`" instruction or other exception handling
3476mechanism, control is interrupted and continued at the dynamically
3477nearest "exception" label.
3478
3479The '``exception``' label is a `landing
3480pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3481'``exception``' label is required to have the
3482":ref:`landingpad <i_landingpad>`" instruction, which contains the
3483information about the behavior of the program after unwinding happens,
3484as its first non-PHI instruction. The restrictions on the
3485"``landingpad``" instruction's tightly couples it to the "``invoke``"
3486instruction, so that the important information contained within the
3487"``landingpad``" instruction can't be lost through normal code motion.
3488
3489Arguments:
3490""""""""""
3491
3492This instruction requires several arguments:
3493
3494#. The optional "cconv" marker indicates which :ref:`calling
3495 convention <callingconv>` the call should use. If none is
3496 specified, the call defaults to using C calling conventions.
3497#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3498 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3499 are valid here.
3500#. '``ptr to function ty``': shall be the signature of the pointer to
3501 function value being invoked. In most cases, this is a direct
3502 function invocation, but indirect ``invoke``'s are just as possible,
3503 branching off an arbitrary pointer to function value.
3504#. '``function ptr val``': An LLVM value containing a pointer to a
3505 function to be invoked.
3506#. '``function args``': argument list whose types match the function
3507 signature argument types and parameter attributes. All arguments must
3508 be of :ref:`first class <t_firstclass>` type. If the function signature
3509 indicates the function accepts a variable number of arguments, the
3510 extra arguments can be specified.
3511#. '``normal label``': the label reached when the called function
3512 executes a '``ret``' instruction.
3513#. '``exception label``': the label reached when a callee returns via
3514 the :ref:`resume <i_resume>` instruction or other exception handling
3515 mechanism.
3516#. The optional :ref:`function attributes <fnattrs>` list. Only
3517 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3518 attributes are valid here.
3519
3520Semantics:
3521""""""""""
3522
3523This instruction is designed to operate as a standard '``call``'
3524instruction in most regards. The primary difference is that it
3525establishes an association with a label, which is used by the runtime
3526library to unwind the stack.
3527
3528This instruction is used in languages with destructors to ensure that
3529proper cleanup is performed in the case of either a ``longjmp`` or a
3530thrown exception. Additionally, this is important for implementation of
3531'``catch``' clauses in high-level languages that support them.
3532
3533For the purposes of the SSA form, the definition of the value returned
3534by the '``invoke``' instruction is deemed to occur on the edge from the
3535current block to the "normal" label. If the callee unwinds then no
3536return value is available.
3537
3538Example:
3539""""""""
3540
3541.. code-block:: llvm
3542
3543 %retval = invoke i32 @Test(i32 15) to label %Continue
3544 unwind label %TestCleanup ; {i32}:retval set
3545 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3546 unwind label %TestCleanup ; {i32}:retval set
3547
3548.. _i_resume:
3549
3550'``resume``' Instruction
3551^^^^^^^^^^^^^^^^^^^^^^^^
3552
3553Syntax:
3554"""""""
3555
3556::
3557
3558 resume <type> <value>
3559
3560Overview:
3561"""""""""
3562
3563The '``resume``' instruction is a terminator instruction that has no
3564successors.
3565
3566Arguments:
3567""""""""""
3568
3569The '``resume``' instruction requires one argument, which must have the
3570same type as the result of any '``landingpad``' instruction in the same
3571function.
3572
3573Semantics:
3574""""""""""
3575
3576The '``resume``' instruction resumes propagation of an existing
3577(in-flight) exception whose unwinding was interrupted with a
3578:ref:`landingpad <i_landingpad>` instruction.
3579
3580Example:
3581""""""""
3582
3583.. code-block:: llvm
3584
3585 resume { i8*, i32 } %exn
3586
3587.. _i_unreachable:
3588
3589'``unreachable``' Instruction
3590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3591
3592Syntax:
3593"""""""
3594
3595::
3596
3597 unreachable
3598
3599Overview:
3600"""""""""
3601
3602The '``unreachable``' instruction has no defined semantics. This
3603instruction is used to inform the optimizer that a particular portion of
3604the code is not reachable. This can be used to indicate that the code
3605after a no-return function cannot be reached, and other facts.
3606
3607Semantics:
3608""""""""""
3609
3610The '``unreachable``' instruction has no defined semantics.
3611
3612.. _binaryops:
3613
3614Binary Operations
3615-----------------
3616
3617Binary operators are used to do most of the computation in a program.
3618They require two operands of the same type, execute an operation on
3619them, and produce a single value. The operands might represent multiple
3620data, as is the case with the :ref:`vector <t_vector>` data type. The
3621result value has the same type as its operands.
3622
3623There are several different binary operators:
3624
3625.. _i_add:
3626
3627'``add``' Instruction
3628^^^^^^^^^^^^^^^^^^^^^
3629
3630Syntax:
3631"""""""
3632
3633::
3634
3635 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3636 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3637 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3638 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3639
3640Overview:
3641"""""""""
3642
3643The '``add``' instruction returns the sum of its two operands.
3644
3645Arguments:
3646""""""""""
3647
3648The two arguments to the '``add``' instruction must be
3649:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3650arguments must have identical types.
3651
3652Semantics:
3653""""""""""
3654
3655The value produced is the integer sum of the two operands.
3656
3657If the sum has unsigned overflow, the result returned is the
3658mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3659the result.
3660
3661Because LLVM integers use a two's complement representation, this
3662instruction is appropriate for both signed and unsigned integers.
3663
3664``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3665respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3666result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3667unsigned and/or signed overflow, respectively, occurs.
3668
3669Example:
3670""""""""
3671
3672.. code-block:: llvm
3673
3674 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3675
3676.. _i_fadd:
3677
3678'``fadd``' Instruction
3679^^^^^^^^^^^^^^^^^^^^^^
3680
3681Syntax:
3682"""""""
3683
3684::
3685
3686 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3687
3688Overview:
3689"""""""""
3690
3691The '``fadd``' instruction returns the sum of its two operands.
3692
3693Arguments:
3694""""""""""
3695
3696The two arguments to the '``fadd``' instruction must be :ref:`floating
3697point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3698Both arguments must have identical types.
3699
3700Semantics:
3701""""""""""
3702
3703The value produced is the floating point sum of the two operands. This
3704instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3705which are optimization hints to enable otherwise unsafe floating point
3706optimizations:
3707
3708Example:
3709""""""""
3710
3711.. code-block:: llvm
3712
3713 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3714
3715'``sub``' Instruction
3716^^^^^^^^^^^^^^^^^^^^^
3717
3718Syntax:
3719"""""""
3720
3721::
3722
3723 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3724 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3725 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3726 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3727
3728Overview:
3729"""""""""
3730
3731The '``sub``' instruction returns the difference of its two operands.
3732
3733Note that the '``sub``' instruction is used to represent the '``neg``'
3734instruction present in most other intermediate representations.
3735
3736Arguments:
3737""""""""""
3738
3739The two arguments to the '``sub``' instruction must be
3740:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3741arguments must have identical types.
3742
3743Semantics:
3744""""""""""
3745
3746The value produced is the integer difference of the two operands.
3747
3748If the difference has unsigned overflow, the result returned is the
3749mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3750the result.
3751
3752Because LLVM integers use a two's complement representation, this
3753instruction is appropriate for both signed and unsigned integers.
3754
3755``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3756respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3757result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3758unsigned and/or signed overflow, respectively, occurs.
3759
3760Example:
3761""""""""
3762
3763.. code-block:: llvm
3764
3765 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3766 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3767
3768.. _i_fsub:
3769
3770'``fsub``' Instruction
3771^^^^^^^^^^^^^^^^^^^^^^
3772
3773Syntax:
3774"""""""
3775
3776::
3777
3778 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3779
3780Overview:
3781"""""""""
3782
3783The '``fsub``' instruction returns the difference of its two operands.
3784
3785Note that the '``fsub``' instruction is used to represent the '``fneg``'
3786instruction present in most other intermediate representations.
3787
3788Arguments:
3789""""""""""
3790
3791The two arguments to the '``fsub``' instruction must be :ref:`floating
3792point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3793Both arguments must have identical types.
3794
3795Semantics:
3796""""""""""
3797
3798The value produced is the floating point difference of the two operands.
3799This instruction can also take any number of :ref:`fast-math
3800flags <fastmath>`, which are optimization hints to enable otherwise
3801unsafe floating point optimizations:
3802
3803Example:
3804""""""""
3805
3806.. code-block:: llvm
3807
3808 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3809 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3810
3811'``mul``' Instruction
3812^^^^^^^^^^^^^^^^^^^^^
3813
3814Syntax:
3815"""""""
3816
3817::
3818
3819 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3820 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3821 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3822 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3823
3824Overview:
3825"""""""""
3826
3827The '``mul``' instruction returns the product of its two operands.
3828
3829Arguments:
3830""""""""""
3831
3832The two arguments to the '``mul``' instruction must be
3833:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3834arguments must have identical types.
3835
3836Semantics:
3837""""""""""
3838
3839The value produced is the integer product of the two operands.
3840
3841If the result of the multiplication has unsigned overflow, the result
3842returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3843bit width of the result.
3844
3845Because LLVM integers use a two's complement representation, and the
3846result is the same width as the operands, this instruction returns the
3847correct result for both signed and unsigned integers. If a full product
3848(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3849sign-extended or zero-extended as appropriate to the width of the full
3850product.
3851
3852``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3853respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3854result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3855unsigned and/or signed overflow, respectively, occurs.
3856
3857Example:
3858""""""""
3859
3860.. code-block:: llvm
3861
3862 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3863
3864.. _i_fmul:
3865
3866'``fmul``' Instruction
3867^^^^^^^^^^^^^^^^^^^^^^
3868
3869Syntax:
3870"""""""
3871
3872::
3873
3874 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3875
3876Overview:
3877"""""""""
3878
3879The '``fmul``' instruction returns the product of its two operands.
3880
3881Arguments:
3882""""""""""
3883
3884The two arguments to the '``fmul``' instruction must be :ref:`floating
3885point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3886Both arguments must have identical types.
3887
3888Semantics:
3889""""""""""
3890
3891The value produced is the floating point product of the two operands.
3892This instruction can also take any number of :ref:`fast-math
3893flags <fastmath>`, which are optimization hints to enable otherwise
3894unsafe floating point optimizations:
3895
3896Example:
3897""""""""
3898
3899.. code-block:: llvm
3900
3901 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3902
3903'``udiv``' Instruction
3904^^^^^^^^^^^^^^^^^^^^^^
3905
3906Syntax:
3907"""""""
3908
3909::
3910
3911 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3912 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3913
3914Overview:
3915"""""""""
3916
3917The '``udiv``' instruction returns the quotient of its two operands.
3918
3919Arguments:
3920""""""""""
3921
3922The two arguments to the '``udiv``' instruction must be
3923:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3924arguments must have identical types.
3925
3926Semantics:
3927""""""""""
3928
3929The value produced is the unsigned integer quotient of the two operands.
3930
3931Note that unsigned integer division and signed integer division are
3932distinct operations; for signed integer division, use '``sdiv``'.
3933
3934Division by zero leads to undefined behavior.
3935
3936If the ``exact`` keyword is present, the result value of the ``udiv`` is
3937a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3938such, "((a udiv exact b) mul b) == a").
3939
3940Example:
3941""""""""
3942
3943.. code-block:: llvm
3944
3945 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3946
3947'``sdiv``' Instruction
3948^^^^^^^^^^^^^^^^^^^^^^
3949
3950Syntax:
3951"""""""
3952
3953::
3954
3955 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3956 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3957
3958Overview:
3959"""""""""
3960
3961The '``sdiv``' instruction returns the quotient of its two operands.
3962
3963Arguments:
3964""""""""""
3965
3966The two arguments to the '``sdiv``' instruction must be
3967:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3968arguments must have identical types.
3969
3970Semantics:
3971""""""""""
3972
3973The value produced is the signed integer quotient of the two operands
3974rounded towards zero.
3975
3976Note that signed integer division and unsigned integer division are
3977distinct operations; for unsigned integer division, use '``udiv``'.
3978
3979Division by zero leads to undefined behavior. Overflow also leads to
3980undefined behavior; this is a rare case, but can occur, for example, by
3981doing a 32-bit division of -2147483648 by -1.
3982
3983If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3984a :ref:`poison value <poisonvalues>` if the result would be rounded.
3985
3986Example:
3987""""""""
3988
3989.. code-block:: llvm
3990
3991 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3992
3993.. _i_fdiv:
3994
3995'``fdiv``' Instruction
3996^^^^^^^^^^^^^^^^^^^^^^
3997
3998Syntax:
3999"""""""
4000
4001::
4002
4003 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4004
4005Overview:
4006"""""""""
4007
4008The '``fdiv``' instruction returns the quotient of its two operands.
4009
4010Arguments:
4011""""""""""
4012
4013The two arguments to the '``fdiv``' instruction must be :ref:`floating
4014point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4015Both arguments must have identical types.
4016
4017Semantics:
4018""""""""""
4019
4020The value produced is the floating point quotient of the two operands.
4021This instruction can also take any number of :ref:`fast-math
4022flags <fastmath>`, which are optimization hints to enable otherwise
4023unsafe floating point optimizations:
4024
4025Example:
4026""""""""
4027
4028.. code-block:: llvm
4029
4030 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
4031
4032'``urem``' Instruction
4033^^^^^^^^^^^^^^^^^^^^^^
4034
4035Syntax:
4036"""""""
4037
4038::
4039
4040 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
4041
4042Overview:
4043"""""""""
4044
4045The '``urem``' instruction returns the remainder from the unsigned
4046division of its two arguments.
4047
4048Arguments:
4049""""""""""
4050
4051The two arguments to the '``urem``' instruction must be
4052:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4053arguments must have identical types.
4054
4055Semantics:
4056""""""""""
4057
4058This instruction returns the unsigned integer *remainder* of a division.
4059This instruction always performs an unsigned division to get the
4060remainder.
4061
4062Note that unsigned integer remainder and signed integer remainder are
4063distinct operations; for signed integer remainder, use '``srem``'.
4064
4065Taking the remainder of a division by zero leads to undefined behavior.
4066
4067Example:
4068""""""""
4069
4070.. code-block:: llvm
4071
4072 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4073
4074'``srem``' Instruction
4075^^^^^^^^^^^^^^^^^^^^^^
4076
4077Syntax:
4078"""""""
4079
4080::
4081
4082 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4083
4084Overview:
4085"""""""""
4086
4087The '``srem``' instruction returns the remainder from the signed
4088division of its two operands. This instruction can also take
4089:ref:`vector <t_vector>` versions of the values in which case the elements
4090must be integers.
4091
4092Arguments:
4093""""""""""
4094
4095The two arguments to the '``srem``' instruction must be
4096:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4097arguments must have identical types.
4098
4099Semantics:
4100""""""""""
4101
4102This instruction returns the *remainder* of a division (where the result
4103is either zero or has the same sign as the dividend, ``op1``), not the
4104*modulo* operator (where the result is either zero or has the same sign
4105as the divisor, ``op2``) of a value. For more information about the
4106difference, see `The Math
4107Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4108table of how this is implemented in various languages, please see
4109`Wikipedia: modulo
4110operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4111
4112Note that signed integer remainder and unsigned integer remainder are
4113distinct operations; for unsigned integer remainder, use '``urem``'.
4114
4115Taking the remainder of a division by zero leads to undefined behavior.
4116Overflow also leads to undefined behavior; this is a rare case, but can
4117occur, for example, by taking the remainder of a 32-bit division of
4118-2147483648 by -1. (The remainder doesn't actually overflow, but this
4119rule lets srem be implemented using instructions that return both the
4120result of the division and the remainder.)
4121
4122Example:
4123""""""""
4124
4125.. code-block:: llvm
4126
4127 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4128
4129.. _i_frem:
4130
4131'``frem``' Instruction
4132^^^^^^^^^^^^^^^^^^^^^^
4133
4134Syntax:
4135"""""""
4136
4137::
4138
4139 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4140
4141Overview:
4142"""""""""
4143
4144The '``frem``' instruction returns the remainder from the division of
4145its two operands.
4146
4147Arguments:
4148""""""""""
4149
4150The two arguments to the '``frem``' instruction must be :ref:`floating
4151point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4152Both arguments must have identical types.
4153
4154Semantics:
4155""""""""""
4156
4157This instruction returns the *remainder* of a division. The remainder
4158has the same sign as the dividend. This instruction can also take any
4159number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4160to enable otherwise unsafe floating point optimizations:
4161
4162Example:
4163""""""""
4164
4165.. code-block:: llvm
4166
4167 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4168
4169.. _bitwiseops:
4170
4171Bitwise Binary Operations
4172-------------------------
4173
4174Bitwise binary operators are used to do various forms of bit-twiddling
4175in a program. They are generally very efficient instructions and can
4176commonly be strength reduced from other instructions. They require two
4177operands of the same type, execute an operation on them, and produce a
4178single value. The resulting value is the same type as its operands.
4179
4180'``shl``' Instruction
4181^^^^^^^^^^^^^^^^^^^^^
4182
4183Syntax:
4184"""""""
4185
4186::
4187
4188 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4189 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4190 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4191 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4192
4193Overview:
4194"""""""""
4195
4196The '``shl``' instruction returns the first operand shifted to the left
4197a specified number of bits.
4198
4199Arguments:
4200""""""""""
4201
4202Both arguments to the '``shl``' instruction must be the same
4203:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4204'``op2``' is treated as an unsigned value.
4205
4206Semantics:
4207""""""""""
4208
4209The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4210where ``n`` is the width of the result. If ``op2`` is (statically or
4211dynamically) negative or equal to or larger than the number of bits in
4212``op1``, the result is undefined. If the arguments are vectors, each
4213vector element of ``op1`` is shifted by the corresponding shift amount
4214in ``op2``.
4215
4216If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4217value <poisonvalues>` if it shifts out any non-zero bits. If the
4218``nsw`` keyword is present, then the shift produces a :ref:`poison
4219value <poisonvalues>` if it shifts out any bits that disagree with the
4220resultant sign bit. As such, NUW/NSW have the same semantics as they
4221would if the shift were expressed as a mul instruction with the same
4222nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4223
4224Example:
4225""""""""
4226
4227.. code-block:: llvm
4228
4229 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4230 <result> = shl i32 4, 2 ; yields {i32}: 16
4231 <result> = shl i32 1, 10 ; yields {i32}: 1024
4232 <result> = shl i32 1, 32 ; undefined
4233 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4234
4235'``lshr``' Instruction
4236^^^^^^^^^^^^^^^^^^^^^^
4237
4238Syntax:
4239"""""""
4240
4241::
4242
4243 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4244 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4245
4246Overview:
4247"""""""""
4248
4249The '``lshr``' instruction (logical shift right) returns the first
4250operand shifted to the right a specified number of bits with zero fill.
4251
4252Arguments:
4253""""""""""
4254
4255Both arguments to the '``lshr``' instruction must be the same
4256:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4257'``op2``' is treated as an unsigned value.
4258
4259Semantics:
4260""""""""""
4261
4262This instruction always performs a logical shift right operation. The
4263most significant bits of the result will be filled with zero bits after
4264the shift. If ``op2`` is (statically or dynamically) equal to or larger
4265than the number of bits in ``op1``, the result is undefined. If the
4266arguments are vectors, each vector element of ``op1`` is shifted by the
4267corresponding shift amount in ``op2``.
4268
4269If the ``exact`` keyword is present, the result value of the ``lshr`` is
4270a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4271non-zero.
4272
4273Example:
4274""""""""
4275
4276.. code-block:: llvm
4277
4278 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4279 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4280 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004281 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004282 <result> = lshr i32 1, 32 ; undefined
4283 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4284
4285'``ashr``' Instruction
4286^^^^^^^^^^^^^^^^^^^^^^
4287
4288Syntax:
4289"""""""
4290
4291::
4292
4293 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4294 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4295
4296Overview:
4297"""""""""
4298
4299The '``ashr``' instruction (arithmetic shift right) returns the first
4300operand shifted to the right a specified number of bits with sign
4301extension.
4302
4303Arguments:
4304""""""""""
4305
4306Both arguments to the '``ashr``' instruction must be the same
4307:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4308'``op2``' is treated as an unsigned value.
4309
4310Semantics:
4311""""""""""
4312
4313This instruction always performs an arithmetic shift right operation,
4314The most significant bits of the result will be filled with the sign bit
4315of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4316than the number of bits in ``op1``, the result is undefined. If the
4317arguments are vectors, each vector element of ``op1`` is shifted by the
4318corresponding shift amount in ``op2``.
4319
4320If the ``exact`` keyword is present, the result value of the ``ashr`` is
4321a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4322non-zero.
4323
4324Example:
4325""""""""
4326
4327.. code-block:: llvm
4328
4329 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4330 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4331 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4332 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4333 <result> = ashr i32 1, 32 ; undefined
4334 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4335
4336'``and``' Instruction
4337^^^^^^^^^^^^^^^^^^^^^
4338
4339Syntax:
4340"""""""
4341
4342::
4343
4344 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4345
4346Overview:
4347"""""""""
4348
4349The '``and``' instruction returns the bitwise logical and of its two
4350operands.
4351
4352Arguments:
4353""""""""""
4354
4355The two arguments to the '``and``' instruction must be
4356:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4357arguments must have identical types.
4358
4359Semantics:
4360""""""""""
4361
4362The truth table used for the '``and``' instruction is:
4363
4364+-----+-----+-----+
4365| In0 | In1 | Out |
4366+-----+-----+-----+
4367| 0 | 0 | 0 |
4368+-----+-----+-----+
4369| 0 | 1 | 0 |
4370+-----+-----+-----+
4371| 1 | 0 | 0 |
4372+-----+-----+-----+
4373| 1 | 1 | 1 |
4374+-----+-----+-----+
4375
4376Example:
4377""""""""
4378
4379.. code-block:: llvm
4380
4381 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4382 <result> = and i32 15, 40 ; yields {i32}:result = 8
4383 <result> = and i32 4, 8 ; yields {i32}:result = 0
4384
4385'``or``' Instruction
4386^^^^^^^^^^^^^^^^^^^^
4387
4388Syntax:
4389"""""""
4390
4391::
4392
4393 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4394
4395Overview:
4396"""""""""
4397
4398The '``or``' instruction returns the bitwise logical inclusive or of its
4399two operands.
4400
4401Arguments:
4402""""""""""
4403
4404The two arguments to the '``or``' instruction must be
4405:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4406arguments must have identical types.
4407
4408Semantics:
4409""""""""""
4410
4411The truth table used for the '``or``' instruction is:
4412
4413+-----+-----+-----+
4414| In0 | In1 | Out |
4415+-----+-----+-----+
4416| 0 | 0 | 0 |
4417+-----+-----+-----+
4418| 0 | 1 | 1 |
4419+-----+-----+-----+
4420| 1 | 0 | 1 |
4421+-----+-----+-----+
4422| 1 | 1 | 1 |
4423+-----+-----+-----+
4424
4425Example:
4426""""""""
4427
4428::
4429
4430 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4431 <result> = or i32 15, 40 ; yields {i32}:result = 47
4432 <result> = or i32 4, 8 ; yields {i32}:result = 12
4433
4434'``xor``' Instruction
4435^^^^^^^^^^^^^^^^^^^^^
4436
4437Syntax:
4438"""""""
4439
4440::
4441
4442 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4443
4444Overview:
4445"""""""""
4446
4447The '``xor``' instruction returns the bitwise logical exclusive or of
4448its two operands. The ``xor`` is used to implement the "one's
4449complement" operation, which is the "~" operator in C.
4450
4451Arguments:
4452""""""""""
4453
4454The two arguments to the '``xor``' instruction must be
4455:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4456arguments must have identical types.
4457
4458Semantics:
4459""""""""""
4460
4461The truth table used for the '``xor``' instruction is:
4462
4463+-----+-----+-----+
4464| In0 | In1 | Out |
4465+-----+-----+-----+
4466| 0 | 0 | 0 |
4467+-----+-----+-----+
4468| 0 | 1 | 1 |
4469+-----+-----+-----+
4470| 1 | 0 | 1 |
4471+-----+-----+-----+
4472| 1 | 1 | 0 |
4473+-----+-----+-----+
4474
4475Example:
4476""""""""
4477
4478.. code-block:: llvm
4479
4480 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4481 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4482 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4483 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4484
4485Vector Operations
4486-----------------
4487
4488LLVM supports several instructions to represent vector operations in a
4489target-independent manner. These instructions cover the element-access
4490and vector-specific operations needed to process vectors effectively.
4491While LLVM does directly support these vector operations, many
4492sophisticated algorithms will want to use target-specific intrinsics to
4493take full advantage of a specific target.
4494
4495.. _i_extractelement:
4496
4497'``extractelement``' Instruction
4498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4499
4500Syntax:
4501"""""""
4502
4503::
4504
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004505 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004506
4507Overview:
4508"""""""""
4509
4510The '``extractelement``' instruction extracts a single scalar element
4511from a vector at a specified index.
4512
4513Arguments:
4514""""""""""
4515
4516The first operand of an '``extractelement``' instruction is a value of
4517:ref:`vector <t_vector>` type. The second operand is an index indicating
4518the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004519variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004520
4521Semantics:
4522""""""""""
4523
4524The result is a scalar of the same type as the element type of ``val``.
4525Its value is the value at position ``idx`` of ``val``. If ``idx``
4526exceeds the length of ``val``, the results are undefined.
4527
4528Example:
4529""""""""
4530
4531.. code-block:: llvm
4532
4533 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4534
4535.. _i_insertelement:
4536
4537'``insertelement``' Instruction
4538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4539
4540Syntax:
4541"""""""
4542
4543::
4544
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004545 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004546
4547Overview:
4548"""""""""
4549
4550The '``insertelement``' instruction inserts a scalar element into a
4551vector at a specified index.
4552
4553Arguments:
4554""""""""""
4555
4556The first operand of an '``insertelement``' instruction is a value of
4557:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4558type must equal the element type of the first operand. The third operand
4559is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004560index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004561
4562Semantics:
4563""""""""""
4564
4565The result is a vector of the same type as ``val``. Its element values
4566are those of ``val`` except at position ``idx``, where it gets the value
4567``elt``. If ``idx`` exceeds the length of ``val``, the results are
4568undefined.
4569
4570Example:
4571""""""""
4572
4573.. code-block:: llvm
4574
4575 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4576
4577.. _i_shufflevector:
4578
4579'``shufflevector``' Instruction
4580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4581
4582Syntax:
4583"""""""
4584
4585::
4586
4587 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4588
4589Overview:
4590"""""""""
4591
4592The '``shufflevector``' instruction constructs a permutation of elements
4593from two input vectors, returning a vector with the same element type as
4594the input and length that is the same as the shuffle mask.
4595
4596Arguments:
4597""""""""""
4598
4599The first two operands of a '``shufflevector``' instruction are vectors
4600with the same type. The third argument is a shuffle mask whose element
4601type is always 'i32'. The result of the instruction is a vector whose
4602length is the same as the shuffle mask and whose element type is the
4603same as the element type of the first two operands.
4604
4605The shuffle mask operand is required to be a constant vector with either
4606constant integer or undef values.
4607
4608Semantics:
4609""""""""""
4610
4611The elements of the two input vectors are numbered from left to right
4612across both of the vectors. The shuffle mask operand specifies, for each
4613element of the result vector, which element of the two input vectors the
4614result element gets. The element selector may be undef (meaning "don't
4615care") and the second operand may be undef if performing a shuffle from
4616only one vector.
4617
4618Example:
4619""""""""
4620
4621.. code-block:: llvm
4622
4623 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4624 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4625 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4626 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4627 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4628 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4629 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4630 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4631
4632Aggregate Operations
4633--------------------
4634
4635LLVM supports several instructions for working with
4636:ref:`aggregate <t_aggregate>` values.
4637
4638.. _i_extractvalue:
4639
4640'``extractvalue``' Instruction
4641^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4642
4643Syntax:
4644"""""""
4645
4646::
4647
4648 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4649
4650Overview:
4651"""""""""
4652
4653The '``extractvalue``' instruction extracts the value of a member field
4654from an :ref:`aggregate <t_aggregate>` value.
4655
4656Arguments:
4657""""""""""
4658
4659The first operand of an '``extractvalue``' instruction is a value of
4660:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4661constant indices to specify which value to extract in a similar manner
4662as indices in a '``getelementptr``' instruction.
4663
4664The major differences to ``getelementptr`` indexing are:
4665
4666- Since the value being indexed is not a pointer, the first index is
4667 omitted and assumed to be zero.
4668- At least one index must be specified.
4669- Not only struct indices but also array indices must be in bounds.
4670
4671Semantics:
4672""""""""""
4673
4674The result is the value at the position in the aggregate specified by
4675the index operands.
4676
4677Example:
4678""""""""
4679
4680.. code-block:: llvm
4681
4682 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4683
4684.. _i_insertvalue:
4685
4686'``insertvalue``' Instruction
4687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4688
4689Syntax:
4690"""""""
4691
4692::
4693
4694 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4695
4696Overview:
4697"""""""""
4698
4699The '``insertvalue``' instruction inserts a value into a member field in
4700an :ref:`aggregate <t_aggregate>` value.
4701
4702Arguments:
4703""""""""""
4704
4705The first operand of an '``insertvalue``' instruction is a value of
4706:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4707a first-class value to insert. The following operands are constant
4708indices indicating the position at which to insert the value in a
4709similar manner as indices in a '``extractvalue``' instruction. The value
4710to insert must have the same type as the value identified by the
4711indices.
4712
4713Semantics:
4714""""""""""
4715
4716The result is an aggregate of the same type as ``val``. Its value is
4717that of ``val`` except that the value at the position specified by the
4718indices is that of ``elt``.
4719
4720Example:
4721""""""""
4722
4723.. code-block:: llvm
4724
4725 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4726 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4727 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4728
4729.. _memoryops:
4730
4731Memory Access and Addressing Operations
4732---------------------------------------
4733
4734A key design point of an SSA-based representation is how it represents
4735memory. In LLVM, no memory locations are in SSA form, which makes things
4736very simple. This section describes how to read, write, and allocate
4737memory in LLVM.
4738
4739.. _i_alloca:
4740
4741'``alloca``' Instruction
4742^^^^^^^^^^^^^^^^^^^^^^^^
4743
4744Syntax:
4745"""""""
4746
4747::
4748
David Majnemerc4ab61c2014-03-09 06:41:58 +00004749 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields {type*}:result
Sean Silvab084af42012-12-07 10:36:55 +00004750
4751Overview:
4752"""""""""
4753
4754The '``alloca``' instruction allocates memory on the stack frame of the
4755currently executing function, to be automatically released when this
4756function returns to its caller. The object is always allocated in the
4757generic address space (address space zero).
4758
4759Arguments:
4760""""""""""
4761
4762The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4763bytes of memory on the runtime stack, returning a pointer of the
4764appropriate type to the program. If "NumElements" is specified, it is
4765the number of elements allocated, otherwise "NumElements" is defaulted
4766to be one. If a constant alignment is specified, the value result of the
4767allocation is guaranteed to be aligned to at least that boundary. If not
4768specified, or if zero, the target can choose to align the allocation on
4769any convenient boundary compatible with the type.
4770
4771'``type``' may be any sized type.
4772
4773Semantics:
4774""""""""""
4775
4776Memory is allocated; a pointer is returned. The operation is undefined
4777if there is insufficient stack space for the allocation. '``alloca``'d
4778memory is automatically released when the function returns. The
4779'``alloca``' instruction is commonly used to represent automatic
4780variables that must have an address available. When the function returns
4781(either with the ``ret`` or ``resume`` instructions), the memory is
4782reclaimed. Allocating zero bytes is legal, but the result is undefined.
4783The order in which memory is allocated (ie., which way the stack grows)
4784is not specified.
4785
4786Example:
4787""""""""
4788
4789.. code-block:: llvm
4790
4791 %ptr = alloca i32 ; yields {i32*}:ptr
4792 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4793 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4794 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4795
4796.. _i_load:
4797
4798'``load``' Instruction
4799^^^^^^^^^^^^^^^^^^^^^^
4800
4801Syntax:
4802"""""""
4803
4804::
4805
4806 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4807 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4808 !<index> = !{ i32 1 }
4809
4810Overview:
4811"""""""""
4812
4813The '``load``' instruction is used to read from memory.
4814
4815Arguments:
4816""""""""""
4817
Eli Bendersky239a78b2013-04-17 20:17:08 +00004818The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004819from which to load. The pointer must point to a :ref:`first
4820class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4821then the optimizer is not allowed to modify the number or order of
4822execution of this ``load`` with other :ref:`volatile
4823operations <volatile>`.
4824
4825If the ``load`` is marked as ``atomic``, it takes an extra
4826:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4827``release`` and ``acq_rel`` orderings are not valid on ``load``
4828instructions. Atomic loads produce :ref:`defined <memmodel>` results
4829when they may see multiple atomic stores. The type of the pointee must
4830be an integer type whose bit width is a power of two greater than or
4831equal to eight and less than or equal to a target-specific size limit.
4832``align`` must be explicitly specified on atomic loads, and the load has
4833undefined behavior if the alignment is not set to a value which is at
4834least the size in bytes of the pointee. ``!nontemporal`` does not have
4835any defined semantics for atomic loads.
4836
4837The optional constant ``align`` argument specifies the alignment of the
4838operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004839or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004840alignment for the target. It is the responsibility of the code emitter
4841to ensure that the alignment information is correct. Overestimating the
4842alignment results in undefined behavior. Underestimating the alignment
4843may produce less efficient code. An alignment of 1 is always safe.
4844
4845The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004846metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004847``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004848metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004849that this load is not expected to be reused in the cache. The code
4850generator may select special instructions to save cache bandwidth, such
4851as the ``MOVNT`` instruction on x86.
4852
4853The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004854metadata name ``<index>`` corresponding to a metadata node with no
4855entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004856instruction tells the optimizer and code generator that this load
4857address points to memory which does not change value during program
4858execution. The optimizer may then move this load around, for example, by
4859hoisting it out of loops using loop invariant code motion.
4860
4861Semantics:
4862""""""""""
4863
4864The location of memory pointed to is loaded. If the value being loaded
4865is of scalar type then the number of bytes read does not exceed the
4866minimum number of bytes needed to hold all bits of the type. For
4867example, loading an ``i24`` reads at most three bytes. When loading a
4868value of a type like ``i20`` with a size that is not an integral number
4869of bytes, the result is undefined if the value was not originally
4870written using a store of the same type.
4871
4872Examples:
4873"""""""""
4874
4875.. code-block:: llvm
4876
4877 %ptr = alloca i32 ; yields {i32*}:ptr
4878 store i32 3, i32* %ptr ; yields {void}
4879 %val = load i32* %ptr ; yields {i32}:val = i32 3
4880
4881.. _i_store:
4882
4883'``store``' Instruction
4884^^^^^^^^^^^^^^^^^^^^^^^
4885
4886Syntax:
4887"""""""
4888
4889::
4890
4891 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4892 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4893
4894Overview:
4895"""""""""
4896
4897The '``store``' instruction is used to write to memory.
4898
4899Arguments:
4900""""""""""
4901
Eli Benderskyca380842013-04-17 17:17:20 +00004902There are two arguments to the ``store`` instruction: a value to store
4903and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004904operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004905the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004906then the optimizer is not allowed to modify the number or order of
4907execution of this ``store`` with other :ref:`volatile
4908operations <volatile>`.
4909
4910If the ``store`` is marked as ``atomic``, it takes an extra
4911:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4912``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4913instructions. Atomic loads produce :ref:`defined <memmodel>` results
4914when they may see multiple atomic stores. The type of the pointee must
4915be an integer type whose bit width is a power of two greater than or
4916equal to eight and less than or equal to a target-specific size limit.
4917``align`` must be explicitly specified on atomic stores, and the store
4918has undefined behavior if the alignment is not set to a value which is
4919at least the size in bytes of the pointee. ``!nontemporal`` does not
4920have any defined semantics for atomic stores.
4921
Eli Benderskyca380842013-04-17 17:17:20 +00004922The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004923operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004924or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004925alignment for the target. It is the responsibility of the code emitter
4926to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004927alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004928alignment may produce less efficient code. An alignment of 1 is always
4929safe.
4930
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004931The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004932name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004933value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004934tells the optimizer and code generator that this load is not expected to
4935be reused in the cache. The code generator may select special
4936instructions to save cache bandwidth, such as the MOVNT instruction on
4937x86.
4938
4939Semantics:
4940""""""""""
4941
Eli Benderskyca380842013-04-17 17:17:20 +00004942The contents of memory are updated to contain ``<value>`` at the
4943location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004944of scalar type then the number of bytes written does not exceed the
4945minimum number of bytes needed to hold all bits of the type. For
4946example, storing an ``i24`` writes at most three bytes. When writing a
4947value of a type like ``i20`` with a size that is not an integral number
4948of bytes, it is unspecified what happens to the extra bits that do not
4949belong to the type, but they will typically be overwritten.
4950
4951Example:
4952""""""""
4953
4954.. code-block:: llvm
4955
4956 %ptr = alloca i32 ; yields {i32*}:ptr
4957 store i32 3, i32* %ptr ; yields {void}
4958 %val = load i32* %ptr ; yields {i32}:val = i32 3
4959
4960.. _i_fence:
4961
4962'``fence``' Instruction
4963^^^^^^^^^^^^^^^^^^^^^^^
4964
4965Syntax:
4966"""""""
4967
4968::
4969
4970 fence [singlethread] <ordering> ; yields {void}
4971
4972Overview:
4973"""""""""
4974
4975The '``fence``' instruction is used to introduce happens-before edges
4976between operations.
4977
4978Arguments:
4979""""""""""
4980
4981'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4982defines what *synchronizes-with* edges they add. They can only be given
4983``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4984
4985Semantics:
4986""""""""""
4987
4988A fence A which has (at least) ``release`` ordering semantics
4989*synchronizes with* a fence B with (at least) ``acquire`` ordering
4990semantics if and only if there exist atomic operations X and Y, both
4991operating on some atomic object M, such that A is sequenced before X, X
4992modifies M (either directly or through some side effect of a sequence
4993headed by X), Y is sequenced before B, and Y observes M. This provides a
4994*happens-before* dependency between A and B. Rather than an explicit
4995``fence``, one (but not both) of the atomic operations X or Y might
4996provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4997still *synchronize-with* the explicit ``fence`` and establish the
4998*happens-before* edge.
4999
5000A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5001``acquire`` and ``release`` semantics specified above, participates in
5002the global program order of other ``seq_cst`` operations and/or fences.
5003
5004The optional ":ref:`singlethread <singlethread>`" argument specifies
5005that the fence only synchronizes with other fences in the same thread.
5006(This is useful for interacting with signal handlers.)
5007
5008Example:
5009""""""""
5010
5011.. code-block:: llvm
5012
5013 fence acquire ; yields {void}
5014 fence singlethread seq_cst ; yields {void}
5015
5016.. _i_cmpxchg:
5017
5018'``cmpxchg``' Instruction
5019^^^^^^^^^^^^^^^^^^^^^^^^^
5020
5021Syntax:
5022"""""""
5023
5024::
5025
Tim Northovere94a5182014-03-11 10:48:52 +00005026 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields {ty}
Sean Silvab084af42012-12-07 10:36:55 +00005027
5028Overview:
5029"""""""""
5030
5031The '``cmpxchg``' instruction is used to atomically modify memory. It
5032loads a value in memory and compares it to a given value. If they are
5033equal, it stores a new value into the memory.
5034
5035Arguments:
5036""""""""""
5037
5038There are three arguments to the '``cmpxchg``' instruction: an address
5039to operate on, a value to compare to the value currently be at that
5040address, and a new value to place at that address if the compared values
5041are equal. The type of '<cmp>' must be an integer type whose bit width
5042is a power of two greater than or equal to eight and less than or equal
5043to a target-specific size limit. '<cmp>' and '<new>' must have the same
5044type, and the type of '<pointer>' must be a pointer to that type. If the
5045``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5046to modify the number or order of execution of this ``cmpxchg`` with
5047other :ref:`volatile operations <volatile>`.
5048
Tim Northovere94a5182014-03-11 10:48:52 +00005049The success and failure :ref:`ordering <ordering>` arguments specify how this
5050``cmpxchg`` synchronizes with other atomic operations. The both ordering
5051parameters must be at least ``monotonic``, the ordering constraint on failure
5052must be no stronger than that on success, and the failure ordering cannot be
5053either ``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005054
5055The optional "``singlethread``" argument declares that the ``cmpxchg``
5056is only atomic with respect to code (usually signal handlers) running in
5057the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5058respect to all other code in the system.
5059
5060The pointer passed into cmpxchg must have alignment greater than or
5061equal to the size in memory of the operand.
5062
5063Semantics:
5064""""""""""
5065
5066The contents of memory at the location specified by the '``<pointer>``'
5067operand is read and compared to '``<cmp>``'; if the read value is the
5068equal, '``<new>``' is written. The original value at the location is
5069returned.
5070
Tim Northovere94a5182014-03-11 10:48:52 +00005071A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5072identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5073load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005074
5075Example:
5076""""""""
5077
5078.. code-block:: llvm
5079
5080 entry:
5081 %orig = atomic load i32* %ptr unordered ; yields {i32}
5082 br label %loop
5083
5084 loop:
5085 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5086 %squared = mul i32 %cmp, %cmp
Tim Northovere94a5182014-03-11 10:48:52 +00005087 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields {i32}
Sean Silvab084af42012-12-07 10:36:55 +00005088 %success = icmp eq i32 %cmp, %old
5089 br i1 %success, label %done, label %loop
5090
5091 done:
5092 ...
5093
5094.. _i_atomicrmw:
5095
5096'``atomicrmw``' Instruction
5097^^^^^^^^^^^^^^^^^^^^^^^^^^^
5098
5099Syntax:
5100"""""""
5101
5102::
5103
5104 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5105
5106Overview:
5107"""""""""
5108
5109The '``atomicrmw``' instruction is used to atomically modify memory.
5110
5111Arguments:
5112""""""""""
5113
5114There are three arguments to the '``atomicrmw``' instruction: an
5115operation to apply, an address whose value to modify, an argument to the
5116operation. The operation must be one of the following keywords:
5117
5118- xchg
5119- add
5120- sub
5121- and
5122- nand
5123- or
5124- xor
5125- max
5126- min
5127- umax
5128- umin
5129
5130The type of '<value>' must be an integer type whose bit width is a power
5131of two greater than or equal to eight and less than or equal to a
5132target-specific size limit. The type of the '``<pointer>``' operand must
5133be a pointer to that type. If the ``atomicrmw`` is marked as
5134``volatile``, then the optimizer is not allowed to modify the number or
5135order of execution of this ``atomicrmw`` with other :ref:`volatile
5136operations <volatile>`.
5137
5138Semantics:
5139""""""""""
5140
5141The contents of memory at the location specified by the '``<pointer>``'
5142operand are atomically read, modified, and written back. The original
5143value at the location is returned. The modification is specified by the
5144operation argument:
5145
5146- xchg: ``*ptr = val``
5147- add: ``*ptr = *ptr + val``
5148- sub: ``*ptr = *ptr - val``
5149- and: ``*ptr = *ptr & val``
5150- nand: ``*ptr = ~(*ptr & val)``
5151- or: ``*ptr = *ptr | val``
5152- xor: ``*ptr = *ptr ^ val``
5153- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5154- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5155- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5156 comparison)
5157- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5158 comparison)
5159
5160Example:
5161""""""""
5162
5163.. code-block:: llvm
5164
5165 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5166
5167.. _i_getelementptr:
5168
5169'``getelementptr``' Instruction
5170^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5171
5172Syntax:
5173"""""""
5174
5175::
5176
5177 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5178 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5179 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5180
5181Overview:
5182"""""""""
5183
5184The '``getelementptr``' instruction is used to get the address of a
5185subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5186address calculation only and does not access memory.
5187
5188Arguments:
5189""""""""""
5190
5191The first argument is always a pointer or a vector of pointers, and
5192forms the basis of the calculation. The remaining arguments are indices
5193that indicate which of the elements of the aggregate object are indexed.
5194The interpretation of each index is dependent on the type being indexed
5195into. The first index always indexes the pointer value given as the
5196first argument, the second index indexes a value of the type pointed to
5197(not necessarily the value directly pointed to, since the first index
5198can be non-zero), etc. The first type indexed into must be a pointer
5199value, subsequent types can be arrays, vectors, and structs. Note that
5200subsequent types being indexed into can never be pointers, since that
5201would require loading the pointer before continuing calculation.
5202
5203The type of each index argument depends on the type it is indexing into.
5204When indexing into a (optionally packed) structure, only ``i32`` integer
5205**constants** are allowed (when using a vector of indices they must all
5206be the **same** ``i32`` integer constant). When indexing into an array,
5207pointer or vector, integers of any width are allowed, and they are not
5208required to be constant. These integers are treated as signed values
5209where relevant.
5210
5211For example, let's consider a C code fragment and how it gets compiled
5212to LLVM:
5213
5214.. code-block:: c
5215
5216 struct RT {
5217 char A;
5218 int B[10][20];
5219 char C;
5220 };
5221 struct ST {
5222 int X;
5223 double Y;
5224 struct RT Z;
5225 };
5226
5227 int *foo(struct ST *s) {
5228 return &s[1].Z.B[5][13];
5229 }
5230
5231The LLVM code generated by Clang is:
5232
5233.. code-block:: llvm
5234
5235 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5236 %struct.ST = type { i32, double, %struct.RT }
5237
5238 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5239 entry:
5240 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5241 ret i32* %arrayidx
5242 }
5243
5244Semantics:
5245""""""""""
5246
5247In the example above, the first index is indexing into the
5248'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5249= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5250indexes into the third element of the structure, yielding a
5251'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5252structure. The third index indexes into the second element of the
5253structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5254dimensions of the array are subscripted into, yielding an '``i32``'
5255type. The '``getelementptr``' instruction returns a pointer to this
5256element, thus computing a value of '``i32*``' type.
5257
5258Note that it is perfectly legal to index partially through a structure,
5259returning a pointer to an inner element. Because of this, the LLVM code
5260for the given testcase is equivalent to:
5261
5262.. code-block:: llvm
5263
5264 define i32* @foo(%struct.ST* %s) {
5265 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5266 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5267 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5268 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5269 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5270 ret i32* %t5
5271 }
5272
5273If the ``inbounds`` keyword is present, the result value of the
5274``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5275pointer is not an *in bounds* address of an allocated object, or if any
5276of the addresses that would be formed by successive addition of the
5277offsets implied by the indices to the base address with infinitely
5278precise signed arithmetic are not an *in bounds* address of that
5279allocated object. The *in bounds* addresses for an allocated object are
5280all the addresses that point into the object, plus the address one byte
5281past the end. In cases where the base is a vector of pointers the
5282``inbounds`` keyword applies to each of the computations element-wise.
5283
5284If the ``inbounds`` keyword is not present, the offsets are added to the
5285base address with silently-wrapping two's complement arithmetic. If the
5286offsets have a different width from the pointer, they are sign-extended
5287or truncated to the width of the pointer. The result value of the
5288``getelementptr`` may be outside the object pointed to by the base
5289pointer. The result value may not necessarily be used to access memory
5290though, even if it happens to point into allocated storage. See the
5291:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5292information.
5293
5294The getelementptr instruction is often confusing. For some more insight
5295into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5296
5297Example:
5298""""""""
5299
5300.. code-block:: llvm
5301
5302 ; yields [12 x i8]*:aptr
5303 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5304 ; yields i8*:vptr
5305 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5306 ; yields i8*:eptr
5307 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5308 ; yields i32*:iptr
5309 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5310
5311In cases where the pointer argument is a vector of pointers, each index
5312must be a vector with the same number of elements. For example:
5313
5314.. code-block:: llvm
5315
5316 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5317
5318Conversion Operations
5319---------------------
5320
5321The instructions in this category are the conversion instructions
5322(casting) which all take a single operand and a type. They perform
5323various bit conversions on the operand.
5324
5325'``trunc .. to``' Instruction
5326^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5327
5328Syntax:
5329"""""""
5330
5331::
5332
5333 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5334
5335Overview:
5336"""""""""
5337
5338The '``trunc``' instruction truncates its operand to the type ``ty2``.
5339
5340Arguments:
5341""""""""""
5342
5343The '``trunc``' instruction takes a value to trunc, and a type to trunc
5344it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5345of the same number of integers. The bit size of the ``value`` must be
5346larger than the bit size of the destination type, ``ty2``. Equal sized
5347types are not allowed.
5348
5349Semantics:
5350""""""""""
5351
5352The '``trunc``' instruction truncates the high order bits in ``value``
5353and converts the remaining bits to ``ty2``. Since the source size must
5354be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5355It will always truncate bits.
5356
5357Example:
5358""""""""
5359
5360.. code-block:: llvm
5361
5362 %X = trunc i32 257 to i8 ; yields i8:1
5363 %Y = trunc i32 123 to i1 ; yields i1:true
5364 %Z = trunc i32 122 to i1 ; yields i1:false
5365 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5366
5367'``zext .. to``' Instruction
5368^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5369
5370Syntax:
5371"""""""
5372
5373::
5374
5375 <result> = zext <ty> <value> to <ty2> ; yields ty2
5376
5377Overview:
5378"""""""""
5379
5380The '``zext``' instruction zero extends its operand to type ``ty2``.
5381
5382Arguments:
5383""""""""""
5384
5385The '``zext``' instruction takes a value to cast, and a type to cast it
5386to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5387the same number of integers. The bit size of the ``value`` must be
5388smaller than the bit size of the destination type, ``ty2``.
5389
5390Semantics:
5391""""""""""
5392
5393The ``zext`` fills the high order bits of the ``value`` with zero bits
5394until it reaches the size of the destination type, ``ty2``.
5395
5396When zero extending from i1, the result will always be either 0 or 1.
5397
5398Example:
5399""""""""
5400
5401.. code-block:: llvm
5402
5403 %X = zext i32 257 to i64 ; yields i64:257
5404 %Y = zext i1 true to i32 ; yields i32:1
5405 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5406
5407'``sext .. to``' Instruction
5408^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5409
5410Syntax:
5411"""""""
5412
5413::
5414
5415 <result> = sext <ty> <value> to <ty2> ; yields ty2
5416
5417Overview:
5418"""""""""
5419
5420The '``sext``' sign extends ``value`` to the type ``ty2``.
5421
5422Arguments:
5423""""""""""
5424
5425The '``sext``' instruction takes a value to cast, and a type to cast it
5426to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5427the same number of integers. The bit size of the ``value`` must be
5428smaller than the bit size of the destination type, ``ty2``.
5429
5430Semantics:
5431""""""""""
5432
5433The '``sext``' instruction performs a sign extension by copying the sign
5434bit (highest order bit) of the ``value`` until it reaches the bit size
5435of the type ``ty2``.
5436
5437When sign extending from i1, the extension always results in -1 or 0.
5438
5439Example:
5440""""""""
5441
5442.. code-block:: llvm
5443
5444 %X = sext i8 -1 to i16 ; yields i16 :65535
5445 %Y = sext i1 true to i32 ; yields i32:-1
5446 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5447
5448'``fptrunc .. to``' Instruction
5449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5450
5451Syntax:
5452"""""""
5453
5454::
5455
5456 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5457
5458Overview:
5459"""""""""
5460
5461The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5462
5463Arguments:
5464""""""""""
5465
5466The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5467value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5468The size of ``value`` must be larger than the size of ``ty2``. This
5469implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5470
5471Semantics:
5472""""""""""
5473
5474The '``fptrunc``' instruction truncates a ``value`` from a larger
5475:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5476point <t_floating>` type. If the value cannot fit within the
5477destination type, ``ty2``, then the results are undefined.
5478
5479Example:
5480""""""""
5481
5482.. code-block:: llvm
5483
5484 %X = fptrunc double 123.0 to float ; yields float:123.0
5485 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5486
5487'``fpext .. to``' Instruction
5488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5489
5490Syntax:
5491"""""""
5492
5493::
5494
5495 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5496
5497Overview:
5498"""""""""
5499
5500The '``fpext``' extends a floating point ``value`` to a larger floating
5501point value.
5502
5503Arguments:
5504""""""""""
5505
5506The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5507``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5508to. The source type must be smaller than the destination type.
5509
5510Semantics:
5511""""""""""
5512
5513The '``fpext``' instruction extends the ``value`` from a smaller
5514:ref:`floating point <t_floating>` type to a larger :ref:`floating
5515point <t_floating>` type. The ``fpext`` cannot be used to make a
5516*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5517*no-op cast* for a floating point cast.
5518
5519Example:
5520""""""""
5521
5522.. code-block:: llvm
5523
5524 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5525 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5526
5527'``fptoui .. to``' Instruction
5528^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5529
5530Syntax:
5531"""""""
5532
5533::
5534
5535 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5536
5537Overview:
5538"""""""""
5539
5540The '``fptoui``' converts a floating point ``value`` to its unsigned
5541integer equivalent of type ``ty2``.
5542
5543Arguments:
5544""""""""""
5545
5546The '``fptoui``' instruction takes a value to cast, which must be a
5547scalar or vector :ref:`floating point <t_floating>` value, and a type to
5548cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5549``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5550type with the same number of elements as ``ty``
5551
5552Semantics:
5553""""""""""
5554
5555The '``fptoui``' instruction converts its :ref:`floating
5556point <t_floating>` operand into the nearest (rounding towards zero)
5557unsigned integer value. If the value cannot fit in ``ty2``, the results
5558are undefined.
5559
5560Example:
5561""""""""
5562
5563.. code-block:: llvm
5564
5565 %X = fptoui double 123.0 to i32 ; yields i32:123
5566 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5567 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5568
5569'``fptosi .. to``' Instruction
5570^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5571
5572Syntax:
5573"""""""
5574
5575::
5576
5577 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5578
5579Overview:
5580"""""""""
5581
5582The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5583``value`` to type ``ty2``.
5584
5585Arguments:
5586""""""""""
5587
5588The '``fptosi``' instruction takes a value to cast, which must be a
5589scalar or vector :ref:`floating point <t_floating>` value, and a type to
5590cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5591``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5592type with the same number of elements as ``ty``
5593
5594Semantics:
5595""""""""""
5596
5597The '``fptosi``' instruction converts its :ref:`floating
5598point <t_floating>` operand into the nearest (rounding towards zero)
5599signed integer value. If the value cannot fit in ``ty2``, the results
5600are undefined.
5601
5602Example:
5603""""""""
5604
5605.. code-block:: llvm
5606
5607 %X = fptosi double -123.0 to i32 ; yields i32:-123
5608 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5609 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5610
5611'``uitofp .. to``' Instruction
5612^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5613
5614Syntax:
5615"""""""
5616
5617::
5618
5619 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5620
5621Overview:
5622"""""""""
5623
5624The '``uitofp``' instruction regards ``value`` as an unsigned integer
5625and converts that value to the ``ty2`` type.
5626
5627Arguments:
5628""""""""""
5629
5630The '``uitofp``' instruction takes a value to cast, which must be a
5631scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5632``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5633``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5634type with the same number of elements as ``ty``
5635
5636Semantics:
5637""""""""""
5638
5639The '``uitofp``' instruction interprets its operand as an unsigned
5640integer quantity and converts it to the corresponding floating point
5641value. If the value cannot fit in the floating point value, the results
5642are undefined.
5643
5644Example:
5645""""""""
5646
5647.. code-block:: llvm
5648
5649 %X = uitofp i32 257 to float ; yields float:257.0
5650 %Y = uitofp i8 -1 to double ; yields double:255.0
5651
5652'``sitofp .. to``' Instruction
5653^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5654
5655Syntax:
5656"""""""
5657
5658::
5659
5660 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5661
5662Overview:
5663"""""""""
5664
5665The '``sitofp``' instruction regards ``value`` as a signed integer and
5666converts that value to the ``ty2`` type.
5667
5668Arguments:
5669""""""""""
5670
5671The '``sitofp``' instruction takes a value to cast, which must be a
5672scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5673``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5674``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5675type with the same number of elements as ``ty``
5676
5677Semantics:
5678""""""""""
5679
5680The '``sitofp``' instruction interprets its operand as a signed integer
5681quantity and converts it to the corresponding floating point value. If
5682the value cannot fit in the floating point value, the results are
5683undefined.
5684
5685Example:
5686""""""""
5687
5688.. code-block:: llvm
5689
5690 %X = sitofp i32 257 to float ; yields float:257.0
5691 %Y = sitofp i8 -1 to double ; yields double:-1.0
5692
5693.. _i_ptrtoint:
5694
5695'``ptrtoint .. to``' Instruction
5696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5697
5698Syntax:
5699"""""""
5700
5701::
5702
5703 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5704
5705Overview:
5706"""""""""
5707
5708The '``ptrtoint``' instruction converts the pointer or a vector of
5709pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5710
5711Arguments:
5712""""""""""
5713
5714The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5715a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5716type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5717a vector of integers type.
5718
5719Semantics:
5720""""""""""
5721
5722The '``ptrtoint``' instruction converts ``value`` to integer type
5723``ty2`` by interpreting the pointer value as an integer and either
5724truncating or zero extending that value to the size of the integer type.
5725If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5726``value`` is larger than ``ty2`` then a truncation is done. If they are
5727the same size, then nothing is done (*no-op cast*) other than a type
5728change.
5729
5730Example:
5731""""""""
5732
5733.. code-block:: llvm
5734
5735 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5736 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5737 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5738
5739.. _i_inttoptr:
5740
5741'``inttoptr .. to``' Instruction
5742^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5743
5744Syntax:
5745"""""""
5746
5747::
5748
5749 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5750
5751Overview:
5752"""""""""
5753
5754The '``inttoptr``' instruction converts an integer ``value`` to a
5755pointer type, ``ty2``.
5756
5757Arguments:
5758""""""""""
5759
5760The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5761cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5762type.
5763
5764Semantics:
5765""""""""""
5766
5767The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5768applying either a zero extension or a truncation depending on the size
5769of the integer ``value``. If ``value`` is larger than the size of a
5770pointer then a truncation is done. If ``value`` is smaller than the size
5771of a pointer then a zero extension is done. If they are the same size,
5772nothing is done (*no-op cast*).
5773
5774Example:
5775""""""""
5776
5777.. code-block:: llvm
5778
5779 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5780 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5781 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5782 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5783
5784.. _i_bitcast:
5785
5786'``bitcast .. to``' Instruction
5787^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5788
5789Syntax:
5790"""""""
5791
5792::
5793
5794 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5795
5796Overview:
5797"""""""""
5798
5799The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5800changing any bits.
5801
5802Arguments:
5803""""""""""
5804
5805The '``bitcast``' instruction takes a value to cast, which must be a
5806non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005807also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5808bit sizes of ``value`` and the destination type, ``ty2``, must be
5809identical. If the source type is a pointer, the destination type must
5810also be a pointer of the same size. This instruction supports bitwise
5811conversion of vectors to integers and to vectors of other types (as
5812long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005813
5814Semantics:
5815""""""""""
5816
Matt Arsenault24b49c42013-07-31 17:49:08 +00005817The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5818is always a *no-op cast* because no bits change with this
5819conversion. The conversion is done as if the ``value`` had been stored
5820to memory and read back as type ``ty2``. Pointer (or vector of
5821pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005822pointers) types with the same address space through this instruction.
5823To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5824or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005825
5826Example:
5827""""""""
5828
5829.. code-block:: llvm
5830
5831 %X = bitcast i8 255 to i8 ; yields i8 :-1
5832 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5833 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5834 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5835
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005836.. _i_addrspacecast:
5837
5838'``addrspacecast .. to``' Instruction
5839^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5840
5841Syntax:
5842"""""""
5843
5844::
5845
5846 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5847
5848Overview:
5849"""""""""
5850
5851The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5852address space ``n`` to type ``pty2`` in address space ``m``.
5853
5854Arguments:
5855""""""""""
5856
5857The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5858to cast and a pointer type to cast it to, which must have a different
5859address space.
5860
5861Semantics:
5862""""""""""
5863
5864The '``addrspacecast``' instruction converts the pointer value
5865``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005866value modification, depending on the target and the address space
5867pair. Pointer conversions within the same address space must be
5868performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005869conversion is legal then both result and operand refer to the same memory
5870location.
5871
5872Example:
5873""""""""
5874
5875.. code-block:: llvm
5876
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005877 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5878 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5879 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005880
Sean Silvab084af42012-12-07 10:36:55 +00005881.. _otherops:
5882
5883Other Operations
5884----------------
5885
5886The instructions in this category are the "miscellaneous" instructions,
5887which defy better classification.
5888
5889.. _i_icmp:
5890
5891'``icmp``' Instruction
5892^^^^^^^^^^^^^^^^^^^^^^
5893
5894Syntax:
5895"""""""
5896
5897::
5898
5899 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5900
5901Overview:
5902"""""""""
5903
5904The '``icmp``' instruction returns a boolean value or a vector of
5905boolean values based on comparison of its two integer, integer vector,
5906pointer, or pointer vector operands.
5907
5908Arguments:
5909""""""""""
5910
5911The '``icmp``' instruction takes three operands. The first operand is
5912the condition code indicating the kind of comparison to perform. It is
5913not a value, just a keyword. The possible condition code are:
5914
5915#. ``eq``: equal
5916#. ``ne``: not equal
5917#. ``ugt``: unsigned greater than
5918#. ``uge``: unsigned greater or equal
5919#. ``ult``: unsigned less than
5920#. ``ule``: unsigned less or equal
5921#. ``sgt``: signed greater than
5922#. ``sge``: signed greater or equal
5923#. ``slt``: signed less than
5924#. ``sle``: signed less or equal
5925
5926The remaining two arguments must be :ref:`integer <t_integer>` or
5927:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5928must also be identical types.
5929
5930Semantics:
5931""""""""""
5932
5933The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5934code given as ``cond``. The comparison performed always yields either an
5935:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5936
5937#. ``eq``: yields ``true`` if the operands are equal, ``false``
5938 otherwise. No sign interpretation is necessary or performed.
5939#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5940 otherwise. No sign interpretation is necessary or performed.
5941#. ``ugt``: interprets the operands as unsigned values and yields
5942 ``true`` if ``op1`` is greater than ``op2``.
5943#. ``uge``: interprets the operands as unsigned values and yields
5944 ``true`` if ``op1`` is greater than or equal to ``op2``.
5945#. ``ult``: interprets the operands as unsigned values and yields
5946 ``true`` if ``op1`` is less than ``op2``.
5947#. ``ule``: interprets the operands as unsigned values and yields
5948 ``true`` if ``op1`` is less than or equal to ``op2``.
5949#. ``sgt``: interprets the operands as signed values and yields ``true``
5950 if ``op1`` is greater than ``op2``.
5951#. ``sge``: interprets the operands as signed values and yields ``true``
5952 if ``op1`` is greater than or equal to ``op2``.
5953#. ``slt``: interprets the operands as signed values and yields ``true``
5954 if ``op1`` is less than ``op2``.
5955#. ``sle``: interprets the operands as signed values and yields ``true``
5956 if ``op1`` is less than or equal to ``op2``.
5957
5958If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5959are compared as if they were integers.
5960
5961If the operands are integer vectors, then they are compared element by
5962element. The result is an ``i1`` vector with the same number of elements
5963as the values being compared. Otherwise, the result is an ``i1``.
5964
5965Example:
5966""""""""
5967
5968.. code-block:: llvm
5969
5970 <result> = icmp eq i32 4, 5 ; yields: result=false
5971 <result> = icmp ne float* %X, %X ; yields: result=false
5972 <result> = icmp ult i16 4, 5 ; yields: result=true
5973 <result> = icmp sgt i16 4, 5 ; yields: result=false
5974 <result> = icmp ule i16 -4, 5 ; yields: result=false
5975 <result> = icmp sge i16 4, 5 ; yields: result=false
5976
5977Note that the code generator does not yet support vector types with the
5978``icmp`` instruction.
5979
5980.. _i_fcmp:
5981
5982'``fcmp``' Instruction
5983^^^^^^^^^^^^^^^^^^^^^^
5984
5985Syntax:
5986"""""""
5987
5988::
5989
5990 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5991
5992Overview:
5993"""""""""
5994
5995The '``fcmp``' instruction returns a boolean value or vector of boolean
5996values based on comparison of its operands.
5997
5998If the operands are floating point scalars, then the result type is a
5999boolean (:ref:`i1 <t_integer>`).
6000
6001If the operands are floating point vectors, then the result type is a
6002vector of boolean with the same number of elements as the operands being
6003compared.
6004
6005Arguments:
6006""""""""""
6007
6008The '``fcmp``' instruction takes three operands. The first operand is
6009the condition code indicating the kind of comparison to perform. It is
6010not a value, just a keyword. The possible condition code are:
6011
6012#. ``false``: no comparison, always returns false
6013#. ``oeq``: ordered and equal
6014#. ``ogt``: ordered and greater than
6015#. ``oge``: ordered and greater than or equal
6016#. ``olt``: ordered and less than
6017#. ``ole``: ordered and less than or equal
6018#. ``one``: ordered and not equal
6019#. ``ord``: ordered (no nans)
6020#. ``ueq``: unordered or equal
6021#. ``ugt``: unordered or greater than
6022#. ``uge``: unordered or greater than or equal
6023#. ``ult``: unordered or less than
6024#. ``ule``: unordered or less than or equal
6025#. ``une``: unordered or not equal
6026#. ``uno``: unordered (either nans)
6027#. ``true``: no comparison, always returns true
6028
6029*Ordered* means that neither operand is a QNAN while *unordered* means
6030that either operand may be a QNAN.
6031
6032Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6033point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6034type. They must have identical types.
6035
6036Semantics:
6037""""""""""
6038
6039The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6040condition code given as ``cond``. If the operands are vectors, then the
6041vectors are compared element by element. Each comparison performed
6042always yields an :ref:`i1 <t_integer>` result, as follows:
6043
6044#. ``false``: always yields ``false``, regardless of operands.
6045#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6046 is equal to ``op2``.
6047#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6048 is greater than ``op2``.
6049#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6050 is greater than or equal to ``op2``.
6051#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6052 is less than ``op2``.
6053#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6054 is less than or equal to ``op2``.
6055#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6056 is not equal to ``op2``.
6057#. ``ord``: yields ``true`` if both operands are not a QNAN.
6058#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6059 equal to ``op2``.
6060#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6061 greater than ``op2``.
6062#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6063 greater than or equal to ``op2``.
6064#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6065 less than ``op2``.
6066#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6067 less than or equal to ``op2``.
6068#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6069 not equal to ``op2``.
6070#. ``uno``: yields ``true`` if either operand is a QNAN.
6071#. ``true``: always yields ``true``, regardless of operands.
6072
6073Example:
6074""""""""
6075
6076.. code-block:: llvm
6077
6078 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6079 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6080 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6081 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6082
6083Note that the code generator does not yet support vector types with the
6084``fcmp`` instruction.
6085
6086.. _i_phi:
6087
6088'``phi``' Instruction
6089^^^^^^^^^^^^^^^^^^^^^
6090
6091Syntax:
6092"""""""
6093
6094::
6095
6096 <result> = phi <ty> [ <val0>, <label0>], ...
6097
6098Overview:
6099"""""""""
6100
6101The '``phi``' instruction is used to implement the φ node in the SSA
6102graph representing the function.
6103
6104Arguments:
6105""""""""""
6106
6107The type of the incoming values is specified with the first type field.
6108After this, the '``phi``' instruction takes a list of pairs as
6109arguments, with one pair for each predecessor basic block of the current
6110block. Only values of :ref:`first class <t_firstclass>` type may be used as
6111the value arguments to the PHI node. Only labels may be used as the
6112label arguments.
6113
6114There must be no non-phi instructions between the start of a basic block
6115and the PHI instructions: i.e. PHI instructions must be first in a basic
6116block.
6117
6118For the purposes of the SSA form, the use of each incoming value is
6119deemed to occur on the edge from the corresponding predecessor block to
6120the current block (but after any definition of an '``invoke``'
6121instruction's return value on the same edge).
6122
6123Semantics:
6124""""""""""
6125
6126At runtime, the '``phi``' instruction logically takes on the value
6127specified by the pair corresponding to the predecessor basic block that
6128executed just prior to the current block.
6129
6130Example:
6131""""""""
6132
6133.. code-block:: llvm
6134
6135 Loop: ; Infinite loop that counts from 0 on up...
6136 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6137 %nextindvar = add i32 %indvar, 1
6138 br label %Loop
6139
6140.. _i_select:
6141
6142'``select``' Instruction
6143^^^^^^^^^^^^^^^^^^^^^^^^
6144
6145Syntax:
6146"""""""
6147
6148::
6149
6150 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6151
6152 selty is either i1 or {<N x i1>}
6153
6154Overview:
6155"""""""""
6156
6157The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006158condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006159
6160Arguments:
6161""""""""""
6162
6163The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6164values indicating the condition, and two values of the same :ref:`first
6165class <t_firstclass>` type. If the val1/val2 are vectors and the
6166condition is a scalar, then entire vectors are selected, not individual
6167elements.
6168
6169Semantics:
6170""""""""""
6171
6172If the condition is an i1 and it evaluates to 1, the instruction returns
6173the first value argument; otherwise, it returns the second value
6174argument.
6175
6176If the condition is a vector of i1, then the value arguments must be
6177vectors of the same size, and the selection is done element by element.
6178
6179Example:
6180""""""""
6181
6182.. code-block:: llvm
6183
6184 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6185
6186.. _i_call:
6187
6188'``call``' Instruction
6189^^^^^^^^^^^^^^^^^^^^^^
6190
6191Syntax:
6192"""""""
6193
6194::
6195
Reid Kleckner5772b772014-04-24 20:14:34 +00006196 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006197
6198Overview:
6199"""""""""
6200
6201The '``call``' instruction represents a simple function call.
6202
6203Arguments:
6204""""""""""
6205
6206This instruction requires several arguments:
6207
Reid Kleckner5772b772014-04-24 20:14:34 +00006208#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6209 should perform tail call optimization. The ``tail`` marker is a hint that
6210 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6211 means that the call must be tail call optimized in order for the program to
6212 be correct. The ``musttail`` marker provides these guarantees:
6213
6214 #. The call will not cause unbounded stack growth if it is part of a
6215 recursive cycle in the call graph.
6216 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6217 forwarded in place.
6218
6219 Both markers imply that the callee does not access allocas or varargs from
6220 the caller. Calls marked ``musttail`` must obey the following additional
6221 rules:
6222
6223 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6224 or a pointer bitcast followed by a ret instruction.
6225 - The ret instruction must return the (possibly bitcasted) value
6226 produced by the call or void.
6227 - The caller and callee prototypes must match. Pointer types of
6228 parameters or return types may differ in pointee type, but not
6229 in address space.
6230 - The calling conventions of the caller and callee must match.
6231 - All ABI-impacting function attributes, such as sret, byval, inreg,
6232 returned, and inalloca, must match.
6233
6234 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6235 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006236
6237 - Caller and callee both have the calling convention ``fastcc``.
6238 - The call is in tail position (ret immediately follows call and ret
6239 uses value of call or is void).
6240 - Option ``-tailcallopt`` is enabled, or
6241 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6242 - `Platform specific constraints are
6243 met. <CodeGenerator.html#tailcallopt>`_
6244
6245#. The optional "cconv" marker indicates which :ref:`calling
6246 convention <callingconv>` the call should use. If none is
6247 specified, the call defaults to using C calling conventions. The
6248 calling convention of the call must match the calling convention of
6249 the target function, or else the behavior is undefined.
6250#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6251 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6252 are valid here.
6253#. '``ty``': the type of the call instruction itself which is also the
6254 type of the return value. Functions that return no value are marked
6255 ``void``.
6256#. '``fnty``': shall be the signature of the pointer to function value
6257 being invoked. The argument types must match the types implied by
6258 this signature. This type can be omitted if the function is not
6259 varargs and if the function type does not return a pointer to a
6260 function.
6261#. '``fnptrval``': An LLVM value containing a pointer to a function to
6262 be invoked. In most cases, this is a direct function invocation, but
6263 indirect ``call``'s are just as possible, calling an arbitrary pointer
6264 to function value.
6265#. '``function args``': argument list whose types match the function
6266 signature argument types and parameter attributes. All arguments must
6267 be of :ref:`first class <t_firstclass>` type. If the function signature
6268 indicates the function accepts a variable number of arguments, the
6269 extra arguments can be specified.
6270#. The optional :ref:`function attributes <fnattrs>` list. Only
6271 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6272 attributes are valid here.
6273
6274Semantics:
6275""""""""""
6276
6277The '``call``' instruction is used to cause control flow to transfer to
6278a specified function, with its incoming arguments bound to the specified
6279values. Upon a '``ret``' instruction in the called function, control
6280flow continues with the instruction after the function call, and the
6281return value of the function is bound to the result argument.
6282
6283Example:
6284""""""""
6285
6286.. code-block:: llvm
6287
6288 %retval = call i32 @test(i32 %argc)
6289 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6290 %X = tail call i32 @foo() ; yields i32
6291 %Y = tail call fastcc i32 @foo() ; yields i32
6292 call void %foo(i8 97 signext)
6293
6294 %struct.A = type { i32, i8 }
6295 %r = call %struct.A @foo() ; yields { 32, i8 }
6296 %gr = extractvalue %struct.A %r, 0 ; yields i32
6297 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6298 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6299 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6300
6301llvm treats calls to some functions with names and arguments that match
6302the standard C99 library as being the C99 library functions, and may
6303perform optimizations or generate code for them under that assumption.
6304This is something we'd like to change in the future to provide better
6305support for freestanding environments and non-C-based languages.
6306
6307.. _i_va_arg:
6308
6309'``va_arg``' Instruction
6310^^^^^^^^^^^^^^^^^^^^^^^^
6311
6312Syntax:
6313"""""""
6314
6315::
6316
6317 <resultval> = va_arg <va_list*> <arglist>, <argty>
6318
6319Overview:
6320"""""""""
6321
6322The '``va_arg``' instruction is used to access arguments passed through
6323the "variable argument" area of a function call. It is used to implement
6324the ``va_arg`` macro in C.
6325
6326Arguments:
6327""""""""""
6328
6329This instruction takes a ``va_list*`` value and the type of the
6330argument. It returns a value of the specified argument type and
6331increments the ``va_list`` to point to the next argument. The actual
6332type of ``va_list`` is target specific.
6333
6334Semantics:
6335""""""""""
6336
6337The '``va_arg``' instruction loads an argument of the specified type
6338from the specified ``va_list`` and causes the ``va_list`` to point to
6339the next argument. For more information, see the variable argument
6340handling :ref:`Intrinsic Functions <int_varargs>`.
6341
6342It is legal for this instruction to be called in a function which does
6343not take a variable number of arguments, for example, the ``vfprintf``
6344function.
6345
6346``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6347function <intrinsics>` because it takes a type as an argument.
6348
6349Example:
6350""""""""
6351
6352See the :ref:`variable argument processing <int_varargs>` section.
6353
6354Note that the code generator does not yet fully support va\_arg on many
6355targets. Also, it does not currently support va\_arg with aggregate
6356types on any target.
6357
6358.. _i_landingpad:
6359
6360'``landingpad``' Instruction
6361^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6362
6363Syntax:
6364"""""""
6365
6366::
6367
6368 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6369 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6370
6371 <clause> := catch <type> <value>
6372 <clause> := filter <array constant type> <array constant>
6373
6374Overview:
6375"""""""""
6376
6377The '``landingpad``' instruction is used by `LLVM's exception handling
6378system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006379is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006380code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6381defines values supplied by the personality function (``pers_fn``) upon
6382re-entry to the function. The ``resultval`` has the type ``resultty``.
6383
6384Arguments:
6385""""""""""
6386
6387This instruction takes a ``pers_fn`` value. This is the personality
6388function associated with the unwinding mechanism. The optional
6389``cleanup`` flag indicates that the landing pad block is a cleanup.
6390
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006391A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006392contains the global variable representing the "type" that may be caught
6393or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6394clause takes an array constant as its argument. Use
6395"``[0 x i8**] undef``" for a filter which cannot throw. The
6396'``landingpad``' instruction must contain *at least* one ``clause`` or
6397the ``cleanup`` flag.
6398
6399Semantics:
6400""""""""""
6401
6402The '``landingpad``' instruction defines the values which are set by the
6403personality function (``pers_fn``) upon re-entry to the function, and
6404therefore the "result type" of the ``landingpad`` instruction. As with
6405calling conventions, how the personality function results are
6406represented in LLVM IR is target specific.
6407
6408The clauses are applied in order from top to bottom. If two
6409``landingpad`` instructions are merged together through inlining, the
6410clauses from the calling function are appended to the list of clauses.
6411When the call stack is being unwound due to an exception being thrown,
6412the exception is compared against each ``clause`` in turn. If it doesn't
6413match any of the clauses, and the ``cleanup`` flag is not set, then
6414unwinding continues further up the call stack.
6415
6416The ``landingpad`` instruction has several restrictions:
6417
6418- A landing pad block is a basic block which is the unwind destination
6419 of an '``invoke``' instruction.
6420- A landing pad block must have a '``landingpad``' instruction as its
6421 first non-PHI instruction.
6422- There can be only one '``landingpad``' instruction within the landing
6423 pad block.
6424- A basic block that is not a landing pad block may not include a
6425 '``landingpad``' instruction.
6426- All '``landingpad``' instructions in a function must have the same
6427 personality function.
6428
6429Example:
6430""""""""
6431
6432.. code-block:: llvm
6433
6434 ;; A landing pad which can catch an integer.
6435 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6436 catch i8** @_ZTIi
6437 ;; A landing pad that is a cleanup.
6438 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6439 cleanup
6440 ;; A landing pad which can catch an integer and can only throw a double.
6441 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6442 catch i8** @_ZTIi
6443 filter [1 x i8**] [@_ZTId]
6444
6445.. _intrinsics:
6446
6447Intrinsic Functions
6448===================
6449
6450LLVM supports the notion of an "intrinsic function". These functions
6451have well known names and semantics and are required to follow certain
6452restrictions. Overall, these intrinsics represent an extension mechanism
6453for the LLVM language that does not require changing all of the
6454transformations in LLVM when adding to the language (or the bitcode
6455reader/writer, the parser, etc...).
6456
6457Intrinsic function names must all start with an "``llvm.``" prefix. This
6458prefix is reserved in LLVM for intrinsic names; thus, function names may
6459not begin with this prefix. Intrinsic functions must always be external
6460functions: you cannot define the body of intrinsic functions. Intrinsic
6461functions may only be used in call or invoke instructions: it is illegal
6462to take the address of an intrinsic function. Additionally, because
6463intrinsic functions are part of the LLVM language, it is required if any
6464are added that they be documented here.
6465
6466Some intrinsic functions can be overloaded, i.e., the intrinsic
6467represents a family of functions that perform the same operation but on
6468different data types. Because LLVM can represent over 8 million
6469different integer types, overloading is used commonly to allow an
6470intrinsic function to operate on any integer type. One or more of the
6471argument types or the result type can be overloaded to accept any
6472integer type. Argument types may also be defined as exactly matching a
6473previous argument's type or the result type. This allows an intrinsic
6474function which accepts multiple arguments, but needs all of them to be
6475of the same type, to only be overloaded with respect to a single
6476argument or the result.
6477
6478Overloaded intrinsics will have the names of its overloaded argument
6479types encoded into its function name, each preceded by a period. Only
6480those types which are overloaded result in a name suffix. Arguments
6481whose type is matched against another type do not. For example, the
6482``llvm.ctpop`` function can take an integer of any width and returns an
6483integer of exactly the same integer width. This leads to a family of
6484functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6485``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6486overloaded, and only one type suffix is required. Because the argument's
6487type is matched against the return type, it does not require its own
6488name suffix.
6489
6490To learn how to add an intrinsic function, please see the `Extending
6491LLVM Guide <ExtendingLLVM.html>`_.
6492
6493.. _int_varargs:
6494
6495Variable Argument Handling Intrinsics
6496-------------------------------------
6497
6498Variable argument support is defined in LLVM with the
6499:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6500functions. These functions are related to the similarly named macros
6501defined in the ``<stdarg.h>`` header file.
6502
6503All of these functions operate on arguments that use a target-specific
6504value type "``va_list``". The LLVM assembly language reference manual
6505does not define what this type is, so all transformations should be
6506prepared to handle these functions regardless of the type used.
6507
6508This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6509variable argument handling intrinsic functions are used.
6510
6511.. code-block:: llvm
6512
6513 define i32 @test(i32 %X, ...) {
6514 ; Initialize variable argument processing
6515 %ap = alloca i8*
6516 %ap2 = bitcast i8** %ap to i8*
6517 call void @llvm.va_start(i8* %ap2)
6518
6519 ; Read a single integer argument
6520 %tmp = va_arg i8** %ap, i32
6521
6522 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6523 %aq = alloca i8*
6524 %aq2 = bitcast i8** %aq to i8*
6525 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6526 call void @llvm.va_end(i8* %aq2)
6527
6528 ; Stop processing of arguments.
6529 call void @llvm.va_end(i8* %ap2)
6530 ret i32 %tmp
6531 }
6532
6533 declare void @llvm.va_start(i8*)
6534 declare void @llvm.va_copy(i8*, i8*)
6535 declare void @llvm.va_end(i8*)
6536
6537.. _int_va_start:
6538
6539'``llvm.va_start``' Intrinsic
6540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6541
6542Syntax:
6543"""""""
6544
6545::
6546
Nick Lewycky04f6de02013-09-11 22:04:52 +00006547 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006548
6549Overview:
6550"""""""""
6551
6552The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6553subsequent use by ``va_arg``.
6554
6555Arguments:
6556""""""""""
6557
6558The argument is a pointer to a ``va_list`` element to initialize.
6559
6560Semantics:
6561""""""""""
6562
6563The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6564available in C. In a target-dependent way, it initializes the
6565``va_list`` element to which the argument points, so that the next call
6566to ``va_arg`` will produce the first variable argument passed to the
6567function. Unlike the C ``va_start`` macro, this intrinsic does not need
6568to know the last argument of the function as the compiler can figure
6569that out.
6570
6571'``llvm.va_end``' Intrinsic
6572^^^^^^^^^^^^^^^^^^^^^^^^^^^
6573
6574Syntax:
6575"""""""
6576
6577::
6578
6579 declare void @llvm.va_end(i8* <arglist>)
6580
6581Overview:
6582"""""""""
6583
6584The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6585initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6586
6587Arguments:
6588""""""""""
6589
6590The argument is a pointer to a ``va_list`` to destroy.
6591
6592Semantics:
6593""""""""""
6594
6595The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6596available in C. In a target-dependent way, it destroys the ``va_list``
6597element to which the argument points. Calls to
6598:ref:`llvm.va_start <int_va_start>` and
6599:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6600``llvm.va_end``.
6601
6602.. _int_va_copy:
6603
6604'``llvm.va_copy``' Intrinsic
6605^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6606
6607Syntax:
6608"""""""
6609
6610::
6611
6612 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6613
6614Overview:
6615"""""""""
6616
6617The '``llvm.va_copy``' intrinsic copies the current argument position
6618from the source argument list to the destination argument list.
6619
6620Arguments:
6621""""""""""
6622
6623The first argument is a pointer to a ``va_list`` element to initialize.
6624The second argument is a pointer to a ``va_list`` element to copy from.
6625
6626Semantics:
6627""""""""""
6628
6629The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6630available in C. In a target-dependent way, it copies the source
6631``va_list`` element into the destination ``va_list`` element. This
6632intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6633arbitrarily complex and require, for example, memory allocation.
6634
6635Accurate Garbage Collection Intrinsics
6636--------------------------------------
6637
6638LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6639(GC) requires the implementation and generation of these intrinsics.
6640These intrinsics allow identification of :ref:`GC roots on the
6641stack <int_gcroot>`, as well as garbage collector implementations that
6642require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6643Front-ends for type-safe garbage collected languages should generate
6644these intrinsics to make use of the LLVM garbage collectors. For more
6645details, see `Accurate Garbage Collection with
6646LLVM <GarbageCollection.html>`_.
6647
6648The garbage collection intrinsics only operate on objects in the generic
6649address space (address space zero).
6650
6651.. _int_gcroot:
6652
6653'``llvm.gcroot``' Intrinsic
6654^^^^^^^^^^^^^^^^^^^^^^^^^^^
6655
6656Syntax:
6657"""""""
6658
6659::
6660
6661 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6662
6663Overview:
6664"""""""""
6665
6666The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6667the code generator, and allows some metadata to be associated with it.
6668
6669Arguments:
6670""""""""""
6671
6672The first argument specifies the address of a stack object that contains
6673the root pointer. The second pointer (which must be either a constant or
6674a global value address) contains the meta-data to be associated with the
6675root.
6676
6677Semantics:
6678""""""""""
6679
6680At runtime, a call to this intrinsic stores a null pointer into the
6681"ptrloc" location. At compile-time, the code generator generates
6682information to allow the runtime to find the pointer at GC safe points.
6683The '``llvm.gcroot``' intrinsic may only be used in a function which
6684:ref:`specifies a GC algorithm <gc>`.
6685
6686.. _int_gcread:
6687
6688'``llvm.gcread``' Intrinsic
6689^^^^^^^^^^^^^^^^^^^^^^^^^^^
6690
6691Syntax:
6692"""""""
6693
6694::
6695
6696 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6697
6698Overview:
6699"""""""""
6700
6701The '``llvm.gcread``' intrinsic identifies reads of references from heap
6702locations, allowing garbage collector implementations that require read
6703barriers.
6704
6705Arguments:
6706""""""""""
6707
6708The second argument is the address to read from, which should be an
6709address allocated from the garbage collector. The first object is a
6710pointer to the start of the referenced object, if needed by the language
6711runtime (otherwise null).
6712
6713Semantics:
6714""""""""""
6715
6716The '``llvm.gcread``' intrinsic has the same semantics as a load
6717instruction, but may be replaced with substantially more complex code by
6718the garbage collector runtime, as needed. The '``llvm.gcread``'
6719intrinsic may only be used in a function which :ref:`specifies a GC
6720algorithm <gc>`.
6721
6722.. _int_gcwrite:
6723
6724'``llvm.gcwrite``' Intrinsic
6725^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6726
6727Syntax:
6728"""""""
6729
6730::
6731
6732 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6733
6734Overview:
6735"""""""""
6736
6737The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6738locations, allowing garbage collector implementations that require write
6739barriers (such as generational or reference counting collectors).
6740
6741Arguments:
6742""""""""""
6743
6744The first argument is the reference to store, the second is the start of
6745the object to store it to, and the third is the address of the field of
6746Obj to store to. If the runtime does not require a pointer to the
6747object, Obj may be null.
6748
6749Semantics:
6750""""""""""
6751
6752The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6753instruction, but may be replaced with substantially more complex code by
6754the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6755intrinsic may only be used in a function which :ref:`specifies a GC
6756algorithm <gc>`.
6757
6758Code Generator Intrinsics
6759-------------------------
6760
6761These intrinsics are provided by LLVM to expose special features that
6762may only be implemented with code generator support.
6763
6764'``llvm.returnaddress``' Intrinsic
6765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6766
6767Syntax:
6768"""""""
6769
6770::
6771
6772 declare i8 *@llvm.returnaddress(i32 <level>)
6773
6774Overview:
6775"""""""""
6776
6777The '``llvm.returnaddress``' intrinsic attempts to compute a
6778target-specific value indicating the return address of the current
6779function or one of its callers.
6780
6781Arguments:
6782""""""""""
6783
6784The argument to this intrinsic indicates which function to return the
6785address for. Zero indicates the calling function, one indicates its
6786caller, etc. The argument is **required** to be a constant integer
6787value.
6788
6789Semantics:
6790""""""""""
6791
6792The '``llvm.returnaddress``' intrinsic either returns a pointer
6793indicating the return address of the specified call frame, or zero if it
6794cannot be identified. The value returned by this intrinsic is likely to
6795be incorrect or 0 for arguments other than zero, so it should only be
6796used for debugging purposes.
6797
6798Note that calling this intrinsic does not prevent function inlining or
6799other aggressive transformations, so the value returned may not be that
6800of the obvious source-language caller.
6801
6802'``llvm.frameaddress``' Intrinsic
6803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6804
6805Syntax:
6806"""""""
6807
6808::
6809
6810 declare i8* @llvm.frameaddress(i32 <level>)
6811
6812Overview:
6813"""""""""
6814
6815The '``llvm.frameaddress``' intrinsic attempts to return the
6816target-specific frame pointer value for the specified stack frame.
6817
6818Arguments:
6819""""""""""
6820
6821The argument to this intrinsic indicates which function to return the
6822frame pointer for. Zero indicates the calling function, one indicates
6823its caller, etc. The argument is **required** to be a constant integer
6824value.
6825
6826Semantics:
6827""""""""""
6828
6829The '``llvm.frameaddress``' intrinsic either returns a pointer
6830indicating the frame address of the specified call frame, or zero if it
6831cannot be identified. The value returned by this intrinsic is likely to
6832be incorrect or 0 for arguments other than zero, so it should only be
6833used for debugging purposes.
6834
6835Note that calling this intrinsic does not prevent function inlining or
6836other aggressive transformations, so the value returned may not be that
6837of the obvious source-language caller.
6838
Renato Golinc7aea402014-05-06 16:51:25 +00006839.. _int_read_register:
6840.. _int_write_register:
6841
6842'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
6843^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6844
6845Syntax:
6846"""""""
6847
6848::
6849
6850 declare i32 @llvm.read_register.i32(metadata)
6851 declare i64 @llvm.read_register.i64(metadata)
6852 declare void @llvm.write_register.i32(metadata, i32 @value)
6853 declare void @llvm.write_register.i64(metadata, i64 @value)
6854 !0 = metadata !{metadata !"sp\00"}
6855
6856Overview:
6857"""""""""
6858
6859The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
6860provides access to the named register. The register must be valid on
6861the architecture being compiled to. The type needs to be compatible
6862with the register being read.
6863
6864Semantics:
6865""""""""""
6866
6867The '``llvm.read_register``' intrinsic returns the current value of the
6868register, where possible. The '``llvm.write_register``' intrinsic sets
6869the current value of the register, where possible.
6870
6871This is useful to implement named register global variables that need
6872to always be mapped to a specific register, as is common practice on
6873bare-metal programs including OS kernels.
6874
6875The compiler doesn't check for register availability or use of the used
6876register in surrounding code, including inline assembly. Because of that,
6877allocatable registers are not supported.
6878
6879Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00006880architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00006881work is needed to support other registers and even more so, allocatable
6882registers.
6883
Sean Silvab084af42012-12-07 10:36:55 +00006884.. _int_stacksave:
6885
6886'``llvm.stacksave``' Intrinsic
6887^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6888
6889Syntax:
6890"""""""
6891
6892::
6893
6894 declare i8* @llvm.stacksave()
6895
6896Overview:
6897"""""""""
6898
6899The '``llvm.stacksave``' intrinsic is used to remember the current state
6900of the function stack, for use with
6901:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6902implementing language features like scoped automatic variable sized
6903arrays in C99.
6904
6905Semantics:
6906""""""""""
6907
6908This intrinsic returns a opaque pointer value that can be passed to
6909:ref:`llvm.stackrestore <int_stackrestore>`. When an
6910``llvm.stackrestore`` intrinsic is executed with a value saved from
6911``llvm.stacksave``, it effectively restores the state of the stack to
6912the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6913practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6914were allocated after the ``llvm.stacksave`` was executed.
6915
6916.. _int_stackrestore:
6917
6918'``llvm.stackrestore``' Intrinsic
6919^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6920
6921Syntax:
6922"""""""
6923
6924::
6925
6926 declare void @llvm.stackrestore(i8* %ptr)
6927
6928Overview:
6929"""""""""
6930
6931The '``llvm.stackrestore``' intrinsic is used to restore the state of
6932the function stack to the state it was in when the corresponding
6933:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6934useful for implementing language features like scoped automatic variable
6935sized arrays in C99.
6936
6937Semantics:
6938""""""""""
6939
6940See the description for :ref:`llvm.stacksave <int_stacksave>`.
6941
6942'``llvm.prefetch``' Intrinsic
6943^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6944
6945Syntax:
6946"""""""
6947
6948::
6949
6950 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6951
6952Overview:
6953"""""""""
6954
6955The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6956insert a prefetch instruction if supported; otherwise, it is a noop.
6957Prefetches have no effect on the behavior of the program but can change
6958its performance characteristics.
6959
6960Arguments:
6961""""""""""
6962
6963``address`` is the address to be prefetched, ``rw`` is the specifier
6964determining if the fetch should be for a read (0) or write (1), and
6965``locality`` is a temporal locality specifier ranging from (0) - no
6966locality, to (3) - extremely local keep in cache. The ``cache type``
6967specifies whether the prefetch is performed on the data (1) or
6968instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6969arguments must be constant integers.
6970
6971Semantics:
6972""""""""""
6973
6974This intrinsic does not modify the behavior of the program. In
6975particular, prefetches cannot trap and do not produce a value. On
6976targets that support this intrinsic, the prefetch can provide hints to
6977the processor cache for better performance.
6978
6979'``llvm.pcmarker``' Intrinsic
6980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6981
6982Syntax:
6983"""""""
6984
6985::
6986
6987 declare void @llvm.pcmarker(i32 <id>)
6988
6989Overview:
6990"""""""""
6991
6992The '``llvm.pcmarker``' intrinsic is a method to export a Program
6993Counter (PC) in a region of code to simulators and other tools. The
6994method is target specific, but it is expected that the marker will use
6995exported symbols to transmit the PC of the marker. The marker makes no
6996guarantees that it will remain with any specific instruction after
6997optimizations. It is possible that the presence of a marker will inhibit
6998optimizations. The intended use is to be inserted after optimizations to
6999allow correlations of simulation runs.
7000
7001Arguments:
7002""""""""""
7003
7004``id`` is a numerical id identifying the marker.
7005
7006Semantics:
7007""""""""""
7008
7009This intrinsic does not modify the behavior of the program. Backends
7010that do not support this intrinsic may ignore it.
7011
7012'``llvm.readcyclecounter``' Intrinsic
7013^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7014
7015Syntax:
7016"""""""
7017
7018::
7019
7020 declare i64 @llvm.readcyclecounter()
7021
7022Overview:
7023"""""""""
7024
7025The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7026counter register (or similar low latency, high accuracy clocks) on those
7027targets that support it. On X86, it should map to RDTSC. On Alpha, it
7028should map to RPCC. As the backing counters overflow quickly (on the
7029order of 9 seconds on alpha), this should only be used for small
7030timings.
7031
7032Semantics:
7033""""""""""
7034
7035When directly supported, reading the cycle counter should not modify any
7036memory. Implementations are allowed to either return a application
7037specific value or a system wide value. On backends without support, this
7038is lowered to a constant 0.
7039
Tim Northoverbc933082013-05-23 19:11:20 +00007040Note that runtime support may be conditional on the privilege-level code is
7041running at and the host platform.
7042
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007043'``llvm.clear_cache``' Intrinsic
7044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7045
7046Syntax:
7047"""""""
7048
7049::
7050
7051 declare void @llvm.clear_cache(i8*, i8*)
7052
7053Overview:
7054"""""""""
7055
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007056The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7057in the specified range to the execution unit of the processor. On
7058targets with non-unified instruction and data cache, the implementation
7059flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007060
7061Semantics:
7062""""""""""
7063
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007064On platforms with coherent instruction and data caches (e.g. x86), this
7065intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007066cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007067instructions or a system call, if cache flushing requires special
7068privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007069
Sean Silvad02bf3e2014-04-07 22:29:53 +00007070The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007071time library.
Renato Golin93010e62014-03-26 14:01:32 +00007072
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007073This instrinsic does *not* empty the instruction pipeline. Modifications
7074of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007075
Sean Silvab084af42012-12-07 10:36:55 +00007076Standard C Library Intrinsics
7077-----------------------------
7078
7079LLVM provides intrinsics for a few important standard C library
7080functions. These intrinsics allow source-language front-ends to pass
7081information about the alignment of the pointer arguments to the code
7082generator, providing opportunity for more efficient code generation.
7083
7084.. _int_memcpy:
7085
7086'``llvm.memcpy``' Intrinsic
7087^^^^^^^^^^^^^^^^^^^^^^^^^^^
7088
7089Syntax:
7090"""""""
7091
7092This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7093integer bit width and for different address spaces. Not all targets
7094support all bit widths however.
7095
7096::
7097
7098 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7099 i32 <len>, i32 <align>, i1 <isvolatile>)
7100 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7101 i64 <len>, i32 <align>, i1 <isvolatile>)
7102
7103Overview:
7104"""""""""
7105
7106The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7107source location to the destination location.
7108
7109Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7110intrinsics do not return a value, takes extra alignment/isvolatile
7111arguments and the pointers can be in specified address spaces.
7112
7113Arguments:
7114""""""""""
7115
7116The first argument is a pointer to the destination, the second is a
7117pointer to the source. The third argument is an integer argument
7118specifying the number of bytes to copy, the fourth argument is the
7119alignment of the source and destination locations, and the fifth is a
7120boolean indicating a volatile access.
7121
7122If the call to this intrinsic has an alignment value that is not 0 or 1,
7123then the caller guarantees that both the source and destination pointers
7124are aligned to that boundary.
7125
7126If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7127a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7128very cleanly specified and it is unwise to depend on it.
7129
7130Semantics:
7131""""""""""
7132
7133The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7134source location to the destination location, which are not allowed to
7135overlap. It copies "len" bytes of memory over. If the argument is known
7136to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007137argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007138
7139'``llvm.memmove``' Intrinsic
7140^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7141
7142Syntax:
7143"""""""
7144
7145This is an overloaded intrinsic. You can use llvm.memmove on any integer
7146bit width and for different address space. Not all targets support all
7147bit widths however.
7148
7149::
7150
7151 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7152 i32 <len>, i32 <align>, i1 <isvolatile>)
7153 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7154 i64 <len>, i32 <align>, i1 <isvolatile>)
7155
7156Overview:
7157"""""""""
7158
7159The '``llvm.memmove.*``' intrinsics move a block of memory from the
7160source location to the destination location. It is similar to the
7161'``llvm.memcpy``' intrinsic but allows the two memory locations to
7162overlap.
7163
7164Note that, unlike the standard libc function, the ``llvm.memmove.*``
7165intrinsics do not return a value, takes extra alignment/isvolatile
7166arguments and the pointers can be in specified address spaces.
7167
7168Arguments:
7169""""""""""
7170
7171The first argument is a pointer to the destination, the second is a
7172pointer to the source. The third argument is an integer argument
7173specifying the number of bytes to copy, the fourth argument is the
7174alignment of the source and destination locations, and the fifth is a
7175boolean indicating a volatile access.
7176
7177If the call to this intrinsic has an alignment value that is not 0 or 1,
7178then the caller guarantees that the source and destination pointers are
7179aligned to that boundary.
7180
7181If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7182is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7183not very cleanly specified and it is unwise to depend on it.
7184
7185Semantics:
7186""""""""""
7187
7188The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7189source location to the destination location, which may overlap. It
7190copies "len" bytes of memory over. If the argument is known to be
7191aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007192otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007193
7194'``llvm.memset.*``' Intrinsics
7195^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7196
7197Syntax:
7198"""""""
7199
7200This is an overloaded intrinsic. You can use llvm.memset on any integer
7201bit width and for different address spaces. However, not all targets
7202support all bit widths.
7203
7204::
7205
7206 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7207 i32 <len>, i32 <align>, i1 <isvolatile>)
7208 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7209 i64 <len>, i32 <align>, i1 <isvolatile>)
7210
7211Overview:
7212"""""""""
7213
7214The '``llvm.memset.*``' intrinsics fill a block of memory with a
7215particular byte value.
7216
7217Note that, unlike the standard libc function, the ``llvm.memset``
7218intrinsic does not return a value and takes extra alignment/volatile
7219arguments. Also, the destination can be in an arbitrary address space.
7220
7221Arguments:
7222""""""""""
7223
7224The first argument is a pointer to the destination to fill, the second
7225is the byte value with which to fill it, the third argument is an
7226integer argument specifying the number of bytes to fill, and the fourth
7227argument is the known alignment of the destination location.
7228
7229If the call to this intrinsic has an alignment value that is not 0 or 1,
7230then the caller guarantees that the destination pointer is aligned to
7231that boundary.
7232
7233If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7234a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7235very cleanly specified and it is unwise to depend on it.
7236
7237Semantics:
7238""""""""""
7239
7240The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7241at the destination location. If the argument is known to be aligned to
7242some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007243it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007244
7245'``llvm.sqrt.*``' Intrinsic
7246^^^^^^^^^^^^^^^^^^^^^^^^^^^
7247
7248Syntax:
7249"""""""
7250
7251This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7252floating point or vector of floating point type. Not all targets support
7253all types however.
7254
7255::
7256
7257 declare float @llvm.sqrt.f32(float %Val)
7258 declare double @llvm.sqrt.f64(double %Val)
7259 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7260 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7261 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7262
7263Overview:
7264"""""""""
7265
7266The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7267returning the same value as the libm '``sqrt``' functions would. Unlike
7268``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7269negative numbers other than -0.0 (which allows for better optimization,
7270because there is no need to worry about errno being set).
7271``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7272
7273Arguments:
7274""""""""""
7275
7276The argument and return value are floating point numbers of the same
7277type.
7278
7279Semantics:
7280""""""""""
7281
7282This function returns the sqrt of the specified operand if it is a
7283nonnegative floating point number.
7284
7285'``llvm.powi.*``' Intrinsic
7286^^^^^^^^^^^^^^^^^^^^^^^^^^^
7287
7288Syntax:
7289"""""""
7290
7291This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7292floating point or vector of floating point type. Not all targets support
7293all types however.
7294
7295::
7296
7297 declare float @llvm.powi.f32(float %Val, i32 %power)
7298 declare double @llvm.powi.f64(double %Val, i32 %power)
7299 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7300 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7301 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7302
7303Overview:
7304"""""""""
7305
7306The '``llvm.powi.*``' intrinsics return the first operand raised to the
7307specified (positive or negative) power. The order of evaluation of
7308multiplications is not defined. When a vector of floating point type is
7309used, the second argument remains a scalar integer value.
7310
7311Arguments:
7312""""""""""
7313
7314The second argument is an integer power, and the first is a value to
7315raise to that power.
7316
7317Semantics:
7318""""""""""
7319
7320This function returns the first value raised to the second power with an
7321unspecified sequence of rounding operations.
7322
7323'``llvm.sin.*``' Intrinsic
7324^^^^^^^^^^^^^^^^^^^^^^^^^^
7325
7326Syntax:
7327"""""""
7328
7329This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7330floating point or vector of floating point type. Not all targets support
7331all types however.
7332
7333::
7334
7335 declare float @llvm.sin.f32(float %Val)
7336 declare double @llvm.sin.f64(double %Val)
7337 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7338 declare fp128 @llvm.sin.f128(fp128 %Val)
7339 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7340
7341Overview:
7342"""""""""
7343
7344The '``llvm.sin.*``' intrinsics return the sine of the operand.
7345
7346Arguments:
7347""""""""""
7348
7349The argument and return value are floating point numbers of the same
7350type.
7351
7352Semantics:
7353""""""""""
7354
7355This function returns the sine of the specified operand, returning the
7356same values as the libm ``sin`` functions would, and handles error
7357conditions in the same way.
7358
7359'``llvm.cos.*``' Intrinsic
7360^^^^^^^^^^^^^^^^^^^^^^^^^^
7361
7362Syntax:
7363"""""""
7364
7365This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7366floating point or vector of floating point type. Not all targets support
7367all types however.
7368
7369::
7370
7371 declare float @llvm.cos.f32(float %Val)
7372 declare double @llvm.cos.f64(double %Val)
7373 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7374 declare fp128 @llvm.cos.f128(fp128 %Val)
7375 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7376
7377Overview:
7378"""""""""
7379
7380The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7381
7382Arguments:
7383""""""""""
7384
7385The argument and return value are floating point numbers of the same
7386type.
7387
7388Semantics:
7389""""""""""
7390
7391This function returns the cosine of the specified operand, returning the
7392same values as the libm ``cos`` functions would, and handles error
7393conditions in the same way.
7394
7395'``llvm.pow.*``' Intrinsic
7396^^^^^^^^^^^^^^^^^^^^^^^^^^
7397
7398Syntax:
7399"""""""
7400
7401This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7402floating point or vector of floating point type. Not all targets support
7403all types however.
7404
7405::
7406
7407 declare float @llvm.pow.f32(float %Val, float %Power)
7408 declare double @llvm.pow.f64(double %Val, double %Power)
7409 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7410 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7411 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7412
7413Overview:
7414"""""""""
7415
7416The '``llvm.pow.*``' intrinsics return the first operand raised to the
7417specified (positive or negative) power.
7418
7419Arguments:
7420""""""""""
7421
7422The second argument is a floating point power, and the first is a value
7423to raise to that power.
7424
7425Semantics:
7426""""""""""
7427
7428This function returns the first value raised to the second power,
7429returning the same values as the libm ``pow`` functions would, and
7430handles error conditions in the same way.
7431
7432'``llvm.exp.*``' Intrinsic
7433^^^^^^^^^^^^^^^^^^^^^^^^^^
7434
7435Syntax:
7436"""""""
7437
7438This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7439floating point or vector of floating point type. Not all targets support
7440all types however.
7441
7442::
7443
7444 declare float @llvm.exp.f32(float %Val)
7445 declare double @llvm.exp.f64(double %Val)
7446 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7447 declare fp128 @llvm.exp.f128(fp128 %Val)
7448 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7449
7450Overview:
7451"""""""""
7452
7453The '``llvm.exp.*``' intrinsics perform the exp function.
7454
7455Arguments:
7456""""""""""
7457
7458The argument and return value are floating point numbers of the same
7459type.
7460
7461Semantics:
7462""""""""""
7463
7464This function returns the same values as the libm ``exp`` functions
7465would, and handles error conditions in the same way.
7466
7467'``llvm.exp2.*``' Intrinsic
7468^^^^^^^^^^^^^^^^^^^^^^^^^^^
7469
7470Syntax:
7471"""""""
7472
7473This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7474floating point or vector of floating point type. Not all targets support
7475all types however.
7476
7477::
7478
7479 declare float @llvm.exp2.f32(float %Val)
7480 declare double @llvm.exp2.f64(double %Val)
7481 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7482 declare fp128 @llvm.exp2.f128(fp128 %Val)
7483 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7484
7485Overview:
7486"""""""""
7487
7488The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7489
7490Arguments:
7491""""""""""
7492
7493The argument and return value are floating point numbers of the same
7494type.
7495
7496Semantics:
7497""""""""""
7498
7499This function returns the same values as the libm ``exp2`` functions
7500would, and handles error conditions in the same way.
7501
7502'``llvm.log.*``' Intrinsic
7503^^^^^^^^^^^^^^^^^^^^^^^^^^
7504
7505Syntax:
7506"""""""
7507
7508This is an overloaded intrinsic. You can use ``llvm.log`` on any
7509floating point or vector of floating point type. Not all targets support
7510all types however.
7511
7512::
7513
7514 declare float @llvm.log.f32(float %Val)
7515 declare double @llvm.log.f64(double %Val)
7516 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7517 declare fp128 @llvm.log.f128(fp128 %Val)
7518 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7519
7520Overview:
7521"""""""""
7522
7523The '``llvm.log.*``' intrinsics perform the log function.
7524
7525Arguments:
7526""""""""""
7527
7528The argument and return value are floating point numbers of the same
7529type.
7530
7531Semantics:
7532""""""""""
7533
7534This function returns the same values as the libm ``log`` functions
7535would, and handles error conditions in the same way.
7536
7537'``llvm.log10.*``' Intrinsic
7538^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7539
7540Syntax:
7541"""""""
7542
7543This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7544floating point or vector of floating point type. Not all targets support
7545all types however.
7546
7547::
7548
7549 declare float @llvm.log10.f32(float %Val)
7550 declare double @llvm.log10.f64(double %Val)
7551 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7552 declare fp128 @llvm.log10.f128(fp128 %Val)
7553 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7554
7555Overview:
7556"""""""""
7557
7558The '``llvm.log10.*``' intrinsics perform the log10 function.
7559
7560Arguments:
7561""""""""""
7562
7563The argument and return value are floating point numbers of the same
7564type.
7565
7566Semantics:
7567""""""""""
7568
7569This function returns the same values as the libm ``log10`` functions
7570would, and handles error conditions in the same way.
7571
7572'``llvm.log2.*``' Intrinsic
7573^^^^^^^^^^^^^^^^^^^^^^^^^^^
7574
7575Syntax:
7576"""""""
7577
7578This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7579floating point or vector of floating point type. Not all targets support
7580all types however.
7581
7582::
7583
7584 declare float @llvm.log2.f32(float %Val)
7585 declare double @llvm.log2.f64(double %Val)
7586 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7587 declare fp128 @llvm.log2.f128(fp128 %Val)
7588 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7589
7590Overview:
7591"""""""""
7592
7593The '``llvm.log2.*``' intrinsics perform the log2 function.
7594
7595Arguments:
7596""""""""""
7597
7598The argument and return value are floating point numbers of the same
7599type.
7600
7601Semantics:
7602""""""""""
7603
7604This function returns the same values as the libm ``log2`` functions
7605would, and handles error conditions in the same way.
7606
7607'``llvm.fma.*``' Intrinsic
7608^^^^^^^^^^^^^^^^^^^^^^^^^^
7609
7610Syntax:
7611"""""""
7612
7613This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7614floating point or vector of floating point type. Not all targets support
7615all types however.
7616
7617::
7618
7619 declare float @llvm.fma.f32(float %a, float %b, float %c)
7620 declare double @llvm.fma.f64(double %a, double %b, double %c)
7621 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7622 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7623 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7624
7625Overview:
7626"""""""""
7627
7628The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7629operation.
7630
7631Arguments:
7632""""""""""
7633
7634The argument and return value are floating point numbers of the same
7635type.
7636
7637Semantics:
7638""""""""""
7639
7640This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007641would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007642
7643'``llvm.fabs.*``' Intrinsic
7644^^^^^^^^^^^^^^^^^^^^^^^^^^^
7645
7646Syntax:
7647"""""""
7648
7649This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7650floating point or vector of floating point type. Not all targets support
7651all types however.
7652
7653::
7654
7655 declare float @llvm.fabs.f32(float %Val)
7656 declare double @llvm.fabs.f64(double %Val)
7657 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7658 declare fp128 @llvm.fabs.f128(fp128 %Val)
7659 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7660
7661Overview:
7662"""""""""
7663
7664The '``llvm.fabs.*``' intrinsics return the absolute value of the
7665operand.
7666
7667Arguments:
7668""""""""""
7669
7670The argument and return value are floating point numbers of the same
7671type.
7672
7673Semantics:
7674""""""""""
7675
7676This function returns the same values as the libm ``fabs`` functions
7677would, and handles error conditions in the same way.
7678
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007679'``llvm.copysign.*``' Intrinsic
7680^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7681
7682Syntax:
7683"""""""
7684
7685This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7686floating point or vector of floating point type. Not all targets support
7687all types however.
7688
7689::
7690
7691 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7692 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7693 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7694 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7695 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7696
7697Overview:
7698"""""""""
7699
7700The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7701first operand and the sign of the second operand.
7702
7703Arguments:
7704""""""""""
7705
7706The arguments and return value are floating point numbers of the same
7707type.
7708
7709Semantics:
7710""""""""""
7711
7712This function returns the same values as the libm ``copysign``
7713functions would, and handles error conditions in the same way.
7714
Sean Silvab084af42012-12-07 10:36:55 +00007715'``llvm.floor.*``' Intrinsic
7716^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7717
7718Syntax:
7719"""""""
7720
7721This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7722floating point or vector of floating point type. Not all targets support
7723all types however.
7724
7725::
7726
7727 declare float @llvm.floor.f32(float %Val)
7728 declare double @llvm.floor.f64(double %Val)
7729 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7730 declare fp128 @llvm.floor.f128(fp128 %Val)
7731 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7732
7733Overview:
7734"""""""""
7735
7736The '``llvm.floor.*``' intrinsics return the floor of the operand.
7737
7738Arguments:
7739""""""""""
7740
7741The argument and return value are floating point numbers of the same
7742type.
7743
7744Semantics:
7745""""""""""
7746
7747This function returns the same values as the libm ``floor`` functions
7748would, and handles error conditions in the same way.
7749
7750'``llvm.ceil.*``' Intrinsic
7751^^^^^^^^^^^^^^^^^^^^^^^^^^^
7752
7753Syntax:
7754"""""""
7755
7756This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7757floating point or vector of floating point type. Not all targets support
7758all types however.
7759
7760::
7761
7762 declare float @llvm.ceil.f32(float %Val)
7763 declare double @llvm.ceil.f64(double %Val)
7764 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7765 declare fp128 @llvm.ceil.f128(fp128 %Val)
7766 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7767
7768Overview:
7769"""""""""
7770
7771The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7772
7773Arguments:
7774""""""""""
7775
7776The argument and return value are floating point numbers of the same
7777type.
7778
7779Semantics:
7780""""""""""
7781
7782This function returns the same values as the libm ``ceil`` functions
7783would, and handles error conditions in the same way.
7784
7785'``llvm.trunc.*``' Intrinsic
7786^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7787
7788Syntax:
7789"""""""
7790
7791This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7792floating point or vector of floating point type. Not all targets support
7793all types however.
7794
7795::
7796
7797 declare float @llvm.trunc.f32(float %Val)
7798 declare double @llvm.trunc.f64(double %Val)
7799 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7800 declare fp128 @llvm.trunc.f128(fp128 %Val)
7801 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7802
7803Overview:
7804"""""""""
7805
7806The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7807nearest integer not larger in magnitude than the operand.
7808
7809Arguments:
7810""""""""""
7811
7812The argument and return value are floating point numbers of the same
7813type.
7814
7815Semantics:
7816""""""""""
7817
7818This function returns the same values as the libm ``trunc`` functions
7819would, and handles error conditions in the same way.
7820
7821'``llvm.rint.*``' Intrinsic
7822^^^^^^^^^^^^^^^^^^^^^^^^^^^
7823
7824Syntax:
7825"""""""
7826
7827This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7828floating point or vector of floating point type. Not all targets support
7829all types however.
7830
7831::
7832
7833 declare float @llvm.rint.f32(float %Val)
7834 declare double @llvm.rint.f64(double %Val)
7835 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7836 declare fp128 @llvm.rint.f128(fp128 %Val)
7837 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7838
7839Overview:
7840"""""""""
7841
7842The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7843nearest integer. It may raise an inexact floating-point exception if the
7844operand isn't an integer.
7845
7846Arguments:
7847""""""""""
7848
7849The argument and return value are floating point numbers of the same
7850type.
7851
7852Semantics:
7853""""""""""
7854
7855This function returns the same values as the libm ``rint`` functions
7856would, and handles error conditions in the same way.
7857
7858'``llvm.nearbyint.*``' Intrinsic
7859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7860
7861Syntax:
7862"""""""
7863
7864This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7865floating point or vector of floating point type. Not all targets support
7866all types however.
7867
7868::
7869
7870 declare float @llvm.nearbyint.f32(float %Val)
7871 declare double @llvm.nearbyint.f64(double %Val)
7872 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7873 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7874 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7875
7876Overview:
7877"""""""""
7878
7879The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7880nearest integer.
7881
7882Arguments:
7883""""""""""
7884
7885The argument and return value are floating point numbers of the same
7886type.
7887
7888Semantics:
7889""""""""""
7890
7891This function returns the same values as the libm ``nearbyint``
7892functions would, and handles error conditions in the same way.
7893
Hal Finkel171817e2013-08-07 22:49:12 +00007894'``llvm.round.*``' Intrinsic
7895^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7896
7897Syntax:
7898"""""""
7899
7900This is an overloaded intrinsic. You can use ``llvm.round`` on any
7901floating point or vector of floating point type. Not all targets support
7902all types however.
7903
7904::
7905
7906 declare float @llvm.round.f32(float %Val)
7907 declare double @llvm.round.f64(double %Val)
7908 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7909 declare fp128 @llvm.round.f128(fp128 %Val)
7910 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7911
7912Overview:
7913"""""""""
7914
7915The '``llvm.round.*``' intrinsics returns the operand rounded to the
7916nearest integer.
7917
7918Arguments:
7919""""""""""
7920
7921The argument and return value are floating point numbers of the same
7922type.
7923
7924Semantics:
7925""""""""""
7926
7927This function returns the same values as the libm ``round``
7928functions would, and handles error conditions in the same way.
7929
Sean Silvab084af42012-12-07 10:36:55 +00007930Bit Manipulation Intrinsics
7931---------------------------
7932
7933LLVM provides intrinsics for a few important bit manipulation
7934operations. These allow efficient code generation for some algorithms.
7935
7936'``llvm.bswap.*``' Intrinsics
7937^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7938
7939Syntax:
7940"""""""
7941
7942This is an overloaded intrinsic function. You can use bswap on any
7943integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7944
7945::
7946
7947 declare i16 @llvm.bswap.i16(i16 <id>)
7948 declare i32 @llvm.bswap.i32(i32 <id>)
7949 declare i64 @llvm.bswap.i64(i64 <id>)
7950
7951Overview:
7952"""""""""
7953
7954The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7955values with an even number of bytes (positive multiple of 16 bits).
7956These are useful for performing operations on data that is not in the
7957target's native byte order.
7958
7959Semantics:
7960""""""""""
7961
7962The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7963and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7964intrinsic returns an i32 value that has the four bytes of the input i32
7965swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7966returned i32 will have its bytes in 3, 2, 1, 0 order. The
7967``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7968concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7969respectively).
7970
7971'``llvm.ctpop.*``' Intrinsic
7972^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7973
7974Syntax:
7975"""""""
7976
7977This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7978bit width, or on any vector with integer elements. Not all targets
7979support all bit widths or vector types, however.
7980
7981::
7982
7983 declare i8 @llvm.ctpop.i8(i8 <src>)
7984 declare i16 @llvm.ctpop.i16(i16 <src>)
7985 declare i32 @llvm.ctpop.i32(i32 <src>)
7986 declare i64 @llvm.ctpop.i64(i64 <src>)
7987 declare i256 @llvm.ctpop.i256(i256 <src>)
7988 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7989
7990Overview:
7991"""""""""
7992
7993The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7994in a value.
7995
7996Arguments:
7997""""""""""
7998
7999The only argument is the value to be counted. The argument may be of any
8000integer type, or a vector with integer elements. The return type must
8001match the argument type.
8002
8003Semantics:
8004""""""""""
8005
8006The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8007each element of a vector.
8008
8009'``llvm.ctlz.*``' Intrinsic
8010^^^^^^^^^^^^^^^^^^^^^^^^^^^
8011
8012Syntax:
8013"""""""
8014
8015This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8016integer bit width, or any vector whose elements are integers. Not all
8017targets support all bit widths or vector types, however.
8018
8019::
8020
8021 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8022 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8023 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8024 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8025 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8026 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8027
8028Overview:
8029"""""""""
8030
8031The '``llvm.ctlz``' family of intrinsic functions counts the number of
8032leading zeros in a variable.
8033
8034Arguments:
8035""""""""""
8036
8037The first argument is the value to be counted. This argument may be of
8038any integer type, or a vectory with integer element type. The return
8039type must match the first argument type.
8040
8041The second argument must be a constant and is a flag to indicate whether
8042the intrinsic should ensure that a zero as the first argument produces a
8043defined result. Historically some architectures did not provide a
8044defined result for zero values as efficiently, and many algorithms are
8045now predicated on avoiding zero-value inputs.
8046
8047Semantics:
8048""""""""""
8049
8050The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8051zeros in a variable, or within each element of the vector. If
8052``src == 0`` then the result is the size in bits of the type of ``src``
8053if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8054``llvm.ctlz(i32 2) = 30``.
8055
8056'``llvm.cttz.*``' Intrinsic
8057^^^^^^^^^^^^^^^^^^^^^^^^^^^
8058
8059Syntax:
8060"""""""
8061
8062This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8063integer bit width, or any vector of integer elements. Not all targets
8064support all bit widths or vector types, however.
8065
8066::
8067
8068 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8069 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8070 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8071 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8072 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8073 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8074
8075Overview:
8076"""""""""
8077
8078The '``llvm.cttz``' family of intrinsic functions counts the number of
8079trailing zeros.
8080
8081Arguments:
8082""""""""""
8083
8084The first argument is the value to be counted. This argument may be of
8085any integer type, or a vectory with integer element type. The return
8086type must match the first argument type.
8087
8088The second argument must be a constant and is a flag to indicate whether
8089the intrinsic should ensure that a zero as the first argument produces a
8090defined result. Historically some architectures did not provide a
8091defined result for zero values as efficiently, and many algorithms are
8092now predicated on avoiding zero-value inputs.
8093
8094Semantics:
8095""""""""""
8096
8097The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8098zeros in a variable, or within each element of a vector. If ``src == 0``
8099then the result is the size in bits of the type of ``src`` if
8100``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8101``llvm.cttz(2) = 1``.
8102
8103Arithmetic with Overflow Intrinsics
8104-----------------------------------
8105
8106LLVM provides intrinsics for some arithmetic with overflow operations.
8107
8108'``llvm.sadd.with.overflow.*``' Intrinsics
8109^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8110
8111Syntax:
8112"""""""
8113
8114This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8115on any integer bit width.
8116
8117::
8118
8119 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8120 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8121 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8122
8123Overview:
8124"""""""""
8125
8126The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8127a signed addition of the two arguments, and indicate whether an overflow
8128occurred during the signed summation.
8129
8130Arguments:
8131""""""""""
8132
8133The arguments (%a and %b) and the first element of the result structure
8134may be of integer types of any bit width, but they must have the same
8135bit width. The second element of the result structure must be of type
8136``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8137addition.
8138
8139Semantics:
8140""""""""""
8141
8142The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008143a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008144first element of which is the signed summation, and the second element
8145of which is a bit specifying if the signed summation resulted in an
8146overflow.
8147
8148Examples:
8149"""""""""
8150
8151.. code-block:: llvm
8152
8153 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8154 %sum = extractvalue {i32, i1} %res, 0
8155 %obit = extractvalue {i32, i1} %res, 1
8156 br i1 %obit, label %overflow, label %normal
8157
8158'``llvm.uadd.with.overflow.*``' Intrinsics
8159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8160
8161Syntax:
8162"""""""
8163
8164This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8165on any integer bit width.
8166
8167::
8168
8169 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8170 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8171 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8172
8173Overview:
8174"""""""""
8175
8176The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8177an unsigned addition of the two arguments, and indicate whether a carry
8178occurred during the unsigned summation.
8179
8180Arguments:
8181""""""""""
8182
8183The arguments (%a and %b) and the first element of the result structure
8184may be of integer types of any bit width, but they must have the same
8185bit width. The second element of the result structure must be of type
8186``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8187addition.
8188
8189Semantics:
8190""""""""""
8191
8192The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008193an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008194first element of which is the sum, and the second element of which is a
8195bit specifying if the unsigned summation resulted in a carry.
8196
8197Examples:
8198"""""""""
8199
8200.. code-block:: llvm
8201
8202 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8203 %sum = extractvalue {i32, i1} %res, 0
8204 %obit = extractvalue {i32, i1} %res, 1
8205 br i1 %obit, label %carry, label %normal
8206
8207'``llvm.ssub.with.overflow.*``' Intrinsics
8208^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8209
8210Syntax:
8211"""""""
8212
8213This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8214on any integer bit width.
8215
8216::
8217
8218 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8219 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8220 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8221
8222Overview:
8223"""""""""
8224
8225The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8226a signed subtraction of the two arguments, and indicate whether an
8227overflow occurred during the signed subtraction.
8228
8229Arguments:
8230""""""""""
8231
8232The arguments (%a and %b) and the first element of the result structure
8233may be of integer types of any bit width, but they must have the same
8234bit width. The second element of the result structure must be of type
8235``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8236subtraction.
8237
8238Semantics:
8239""""""""""
8240
8241The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008242a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008243first element of which is the subtraction, and the second element of
8244which is a bit specifying if the signed subtraction resulted in an
8245overflow.
8246
8247Examples:
8248"""""""""
8249
8250.. code-block:: llvm
8251
8252 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8253 %sum = extractvalue {i32, i1} %res, 0
8254 %obit = extractvalue {i32, i1} %res, 1
8255 br i1 %obit, label %overflow, label %normal
8256
8257'``llvm.usub.with.overflow.*``' Intrinsics
8258^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8259
8260Syntax:
8261"""""""
8262
8263This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8264on any integer bit width.
8265
8266::
8267
8268 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8269 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8270 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8271
8272Overview:
8273"""""""""
8274
8275The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8276an unsigned subtraction of the two arguments, and indicate whether an
8277overflow occurred during the unsigned subtraction.
8278
8279Arguments:
8280""""""""""
8281
8282The arguments (%a and %b) and the first element of the result structure
8283may be of integer types of any bit width, but they must have the same
8284bit width. The second element of the result structure must be of type
8285``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8286subtraction.
8287
8288Semantics:
8289""""""""""
8290
8291The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008292an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008293the first element of which is the subtraction, and the second element of
8294which is a bit specifying if the unsigned subtraction resulted in an
8295overflow.
8296
8297Examples:
8298"""""""""
8299
8300.. code-block:: llvm
8301
8302 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8303 %sum = extractvalue {i32, i1} %res, 0
8304 %obit = extractvalue {i32, i1} %res, 1
8305 br i1 %obit, label %overflow, label %normal
8306
8307'``llvm.smul.with.overflow.*``' Intrinsics
8308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8309
8310Syntax:
8311"""""""
8312
8313This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8314on any integer bit width.
8315
8316::
8317
8318 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8319 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8320 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8321
8322Overview:
8323"""""""""
8324
8325The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8326a signed multiplication of the two arguments, and indicate whether an
8327overflow occurred during the signed multiplication.
8328
8329Arguments:
8330""""""""""
8331
8332The arguments (%a and %b) and the first element of the result structure
8333may be of integer types of any bit width, but they must have the same
8334bit width. The second element of the result structure must be of type
8335``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8336multiplication.
8337
8338Semantics:
8339""""""""""
8340
8341The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008342a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008343the first element of which is the multiplication, and the second element
8344of which is a bit specifying if the signed multiplication resulted in an
8345overflow.
8346
8347Examples:
8348"""""""""
8349
8350.. code-block:: llvm
8351
8352 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8353 %sum = extractvalue {i32, i1} %res, 0
8354 %obit = extractvalue {i32, i1} %res, 1
8355 br i1 %obit, label %overflow, label %normal
8356
8357'``llvm.umul.with.overflow.*``' Intrinsics
8358^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8359
8360Syntax:
8361"""""""
8362
8363This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8364on any integer bit width.
8365
8366::
8367
8368 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8369 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8370 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8371
8372Overview:
8373"""""""""
8374
8375The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8376a unsigned multiplication of the two arguments, and indicate whether an
8377overflow occurred during the unsigned multiplication.
8378
8379Arguments:
8380""""""""""
8381
8382The arguments (%a and %b) and the first element of the result structure
8383may be of integer types of any bit width, but they must have the same
8384bit width. The second element of the result structure must be of type
8385``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8386multiplication.
8387
8388Semantics:
8389""""""""""
8390
8391The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008392an unsigned multiplication of the two arguments. They return a structure ---
8393the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008394element of which is a bit specifying if the unsigned multiplication
8395resulted in an overflow.
8396
8397Examples:
8398"""""""""
8399
8400.. code-block:: llvm
8401
8402 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8403 %sum = extractvalue {i32, i1} %res, 0
8404 %obit = extractvalue {i32, i1} %res, 1
8405 br i1 %obit, label %overflow, label %normal
8406
8407Specialised Arithmetic Intrinsics
8408---------------------------------
8409
8410'``llvm.fmuladd.*``' Intrinsic
8411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8412
8413Syntax:
8414"""""""
8415
8416::
8417
8418 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8419 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8420
8421Overview:
8422"""""""""
8423
8424The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008425expressions that can be fused if the code generator determines that (a) the
8426target instruction set has support for a fused operation, and (b) that the
8427fused operation is more efficient than the equivalent, separate pair of mul
8428and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008429
8430Arguments:
8431""""""""""
8432
8433The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8434multiplicands, a and b, and an addend c.
8435
8436Semantics:
8437""""""""""
8438
8439The expression:
8440
8441::
8442
8443 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8444
8445is equivalent to the expression a \* b + c, except that rounding will
8446not be performed between the multiplication and addition steps if the
8447code generator fuses the operations. Fusion is not guaranteed, even if
8448the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008449corresponding llvm.fma.\* intrinsic function should be used
8450instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008451
8452Examples:
8453"""""""""
8454
8455.. code-block:: llvm
8456
8457 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8458
8459Half Precision Floating Point Intrinsics
8460----------------------------------------
8461
8462For most target platforms, half precision floating point is a
8463storage-only format. This means that it is a dense encoding (in memory)
8464but does not support computation in the format.
8465
8466This means that code must first load the half-precision floating point
8467value as an i16, then convert it to float with
8468:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8469then be performed on the float value (including extending to double
8470etc). To store the value back to memory, it is first converted to float
8471if needed, then converted to i16 with
8472:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8473i16 value.
8474
8475.. _int_convert_to_fp16:
8476
8477'``llvm.convert.to.fp16``' Intrinsic
8478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8479
8480Syntax:
8481"""""""
8482
8483::
8484
8485 declare i16 @llvm.convert.to.fp16(f32 %a)
8486
8487Overview:
8488"""""""""
8489
8490The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8491from single precision floating point format to half precision floating
8492point format.
8493
8494Arguments:
8495""""""""""
8496
8497The intrinsic function contains single argument - the value to be
8498converted.
8499
8500Semantics:
8501""""""""""
8502
8503The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8504from single precision floating point format to half precision floating
8505point format. The return value is an ``i16`` which contains the
8506converted number.
8507
8508Examples:
8509"""""""""
8510
8511.. code-block:: llvm
8512
8513 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8514 store i16 %res, i16* @x, align 2
8515
8516.. _int_convert_from_fp16:
8517
8518'``llvm.convert.from.fp16``' Intrinsic
8519^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8520
8521Syntax:
8522"""""""
8523
8524::
8525
8526 declare f32 @llvm.convert.from.fp16(i16 %a)
8527
8528Overview:
8529"""""""""
8530
8531The '``llvm.convert.from.fp16``' intrinsic function performs a
8532conversion from half precision floating point format to single precision
8533floating point format.
8534
8535Arguments:
8536""""""""""
8537
8538The intrinsic function contains single argument - the value to be
8539converted.
8540
8541Semantics:
8542""""""""""
8543
8544The '``llvm.convert.from.fp16``' intrinsic function performs a
8545conversion from half single precision floating point format to single
8546precision floating point format. The input half-float value is
8547represented by an ``i16`` value.
8548
8549Examples:
8550"""""""""
8551
8552.. code-block:: llvm
8553
8554 %a = load i16* @x, align 2
8555 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8556
8557Debugger Intrinsics
8558-------------------
8559
8560The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8561prefix), are described in the `LLVM Source Level
8562Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8563document.
8564
8565Exception Handling Intrinsics
8566-----------------------------
8567
8568The LLVM exception handling intrinsics (which all start with
8569``llvm.eh.`` prefix), are described in the `LLVM Exception
8570Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8571
8572.. _int_trampoline:
8573
8574Trampoline Intrinsics
8575---------------------
8576
8577These intrinsics make it possible to excise one parameter, marked with
8578the :ref:`nest <nest>` attribute, from a function. The result is a
8579callable function pointer lacking the nest parameter - the caller does
8580not need to provide a value for it. Instead, the value to use is stored
8581in advance in a "trampoline", a block of memory usually allocated on the
8582stack, which also contains code to splice the nest value into the
8583argument list. This is used to implement the GCC nested function address
8584extension.
8585
8586For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8587then the resulting function pointer has signature ``i32 (i32, i32)*``.
8588It can be created as follows:
8589
8590.. code-block:: llvm
8591
8592 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8593 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8594 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8595 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8596 %fp = bitcast i8* %p to i32 (i32, i32)*
8597
8598The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8599``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8600
8601.. _int_it:
8602
8603'``llvm.init.trampoline``' Intrinsic
8604^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8605
8606Syntax:
8607"""""""
8608
8609::
8610
8611 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8612
8613Overview:
8614"""""""""
8615
8616This fills the memory pointed to by ``tramp`` with executable code,
8617turning it into a trampoline.
8618
8619Arguments:
8620""""""""""
8621
8622The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8623pointers. The ``tramp`` argument must point to a sufficiently large and
8624sufficiently aligned block of memory; this memory is written to by the
8625intrinsic. Note that the size and the alignment are target-specific -
8626LLVM currently provides no portable way of determining them, so a
8627front-end that generates this intrinsic needs to have some
8628target-specific knowledge. The ``func`` argument must hold a function
8629bitcast to an ``i8*``.
8630
8631Semantics:
8632""""""""""
8633
8634The block of memory pointed to by ``tramp`` is filled with target
8635dependent code, turning it into a function. Then ``tramp`` needs to be
8636passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8637be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8638function's signature is the same as that of ``func`` with any arguments
8639marked with the ``nest`` attribute removed. At most one such ``nest``
8640argument is allowed, and it must be of pointer type. Calling the new
8641function is equivalent to calling ``func`` with the same argument list,
8642but with ``nval`` used for the missing ``nest`` argument. If, after
8643calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8644modified, then the effect of any later call to the returned function
8645pointer is undefined.
8646
8647.. _int_at:
8648
8649'``llvm.adjust.trampoline``' Intrinsic
8650^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8651
8652Syntax:
8653"""""""
8654
8655::
8656
8657 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8658
8659Overview:
8660"""""""""
8661
8662This performs any required machine-specific adjustment to the address of
8663a trampoline (passed as ``tramp``).
8664
8665Arguments:
8666""""""""""
8667
8668``tramp`` must point to a block of memory which already has trampoline
8669code filled in by a previous call to
8670:ref:`llvm.init.trampoline <int_it>`.
8671
8672Semantics:
8673""""""""""
8674
8675On some architectures the address of the code to be executed needs to be
8676different to the address where the trampoline is actually stored. This
8677intrinsic returns the executable address corresponding to ``tramp``
8678after performing the required machine specific adjustments. The pointer
8679returned can then be :ref:`bitcast and executed <int_trampoline>`.
8680
8681Memory Use Markers
8682------------------
8683
8684This class of intrinsics exists to information about the lifetime of
8685memory objects and ranges where variables are immutable.
8686
Reid Klecknera534a382013-12-19 02:14:12 +00008687.. _int_lifestart:
8688
Sean Silvab084af42012-12-07 10:36:55 +00008689'``llvm.lifetime.start``' Intrinsic
8690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8691
8692Syntax:
8693"""""""
8694
8695::
8696
8697 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8698
8699Overview:
8700"""""""""
8701
8702The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8703object's lifetime.
8704
8705Arguments:
8706""""""""""
8707
8708The first argument is a constant integer representing the size of the
8709object, or -1 if it is variable sized. The second argument is a pointer
8710to the object.
8711
8712Semantics:
8713""""""""""
8714
8715This intrinsic indicates that before this point in the code, the value
8716of the memory pointed to by ``ptr`` is dead. This means that it is known
8717to never be used and has an undefined value. A load from the pointer
8718that precedes this intrinsic can be replaced with ``'undef'``.
8719
Reid Klecknera534a382013-12-19 02:14:12 +00008720.. _int_lifeend:
8721
Sean Silvab084af42012-12-07 10:36:55 +00008722'``llvm.lifetime.end``' Intrinsic
8723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8724
8725Syntax:
8726"""""""
8727
8728::
8729
8730 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8731
8732Overview:
8733"""""""""
8734
8735The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8736object's lifetime.
8737
8738Arguments:
8739""""""""""
8740
8741The first argument is a constant integer representing the size of the
8742object, or -1 if it is variable sized. The second argument is a pointer
8743to the object.
8744
8745Semantics:
8746""""""""""
8747
8748This intrinsic indicates that after this point in the code, the value of
8749the memory pointed to by ``ptr`` is dead. This means that it is known to
8750never be used and has an undefined value. Any stores into the memory
8751object following this intrinsic may be removed as dead.
8752
8753'``llvm.invariant.start``' Intrinsic
8754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8755
8756Syntax:
8757"""""""
8758
8759::
8760
8761 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8762
8763Overview:
8764"""""""""
8765
8766The '``llvm.invariant.start``' intrinsic specifies that the contents of
8767a memory object will not change.
8768
8769Arguments:
8770""""""""""
8771
8772The first argument is a constant integer representing the size of the
8773object, or -1 if it is variable sized. The second argument is a pointer
8774to the object.
8775
8776Semantics:
8777""""""""""
8778
8779This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8780the return value, the referenced memory location is constant and
8781unchanging.
8782
8783'``llvm.invariant.end``' Intrinsic
8784^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8785
8786Syntax:
8787"""""""
8788
8789::
8790
8791 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8792
8793Overview:
8794"""""""""
8795
8796The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8797memory object are mutable.
8798
8799Arguments:
8800""""""""""
8801
8802The first argument is the matching ``llvm.invariant.start`` intrinsic.
8803The second argument is a constant integer representing the size of the
8804object, or -1 if it is variable sized and the third argument is a
8805pointer to the object.
8806
8807Semantics:
8808""""""""""
8809
8810This intrinsic indicates that the memory is mutable again.
8811
8812General Intrinsics
8813------------------
8814
8815This class of intrinsics is designed to be generic and has no specific
8816purpose.
8817
8818'``llvm.var.annotation``' Intrinsic
8819^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8820
8821Syntax:
8822"""""""
8823
8824::
8825
8826 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8827
8828Overview:
8829"""""""""
8830
8831The '``llvm.var.annotation``' intrinsic.
8832
8833Arguments:
8834""""""""""
8835
8836The first argument is a pointer to a value, the second is a pointer to a
8837global string, the third is a pointer to a global string which is the
8838source file name, and the last argument is the line number.
8839
8840Semantics:
8841""""""""""
8842
8843This intrinsic allows annotation of local variables with arbitrary
8844strings. This can be useful for special purpose optimizations that want
8845to look for these annotations. These have no other defined use; they are
8846ignored by code generation and optimization.
8847
Michael Gottesman88d18832013-03-26 00:34:27 +00008848'``llvm.ptr.annotation.*``' Intrinsic
8849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8850
8851Syntax:
8852"""""""
8853
8854This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8855pointer to an integer of any width. *NOTE* you must specify an address space for
8856the pointer. The identifier for the default address space is the integer
8857'``0``'.
8858
8859::
8860
8861 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8862 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8863 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8864 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8865 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8866
8867Overview:
8868"""""""""
8869
8870The '``llvm.ptr.annotation``' intrinsic.
8871
8872Arguments:
8873""""""""""
8874
8875The first argument is a pointer to an integer value of arbitrary bitwidth
8876(result of some expression), the second is a pointer to a global string, the
8877third is a pointer to a global string which is the source file name, and the
8878last argument is the line number. It returns the value of the first argument.
8879
8880Semantics:
8881""""""""""
8882
8883This intrinsic allows annotation of a pointer to an integer with arbitrary
8884strings. This can be useful for special purpose optimizations that want to look
8885for these annotations. These have no other defined use; they are ignored by code
8886generation and optimization.
8887
Sean Silvab084af42012-12-07 10:36:55 +00008888'``llvm.annotation.*``' Intrinsic
8889^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8890
8891Syntax:
8892"""""""
8893
8894This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8895any integer bit width.
8896
8897::
8898
8899 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8900 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8901 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8902 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8903 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8904
8905Overview:
8906"""""""""
8907
8908The '``llvm.annotation``' intrinsic.
8909
8910Arguments:
8911""""""""""
8912
8913The first argument is an integer value (result of some expression), the
8914second is a pointer to a global string, the third is a pointer to a
8915global string which is the source file name, and the last argument is
8916the line number. It returns the value of the first argument.
8917
8918Semantics:
8919""""""""""
8920
8921This intrinsic allows annotations to be put on arbitrary expressions
8922with arbitrary strings. This can be useful for special purpose
8923optimizations that want to look for these annotations. These have no
8924other defined use; they are ignored by code generation and optimization.
8925
8926'``llvm.trap``' Intrinsic
8927^^^^^^^^^^^^^^^^^^^^^^^^^
8928
8929Syntax:
8930"""""""
8931
8932::
8933
8934 declare void @llvm.trap() noreturn nounwind
8935
8936Overview:
8937"""""""""
8938
8939The '``llvm.trap``' intrinsic.
8940
8941Arguments:
8942""""""""""
8943
8944None.
8945
8946Semantics:
8947""""""""""
8948
8949This intrinsic is lowered to the target dependent trap instruction. If
8950the target does not have a trap instruction, this intrinsic will be
8951lowered to a call of the ``abort()`` function.
8952
8953'``llvm.debugtrap``' Intrinsic
8954^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8955
8956Syntax:
8957"""""""
8958
8959::
8960
8961 declare void @llvm.debugtrap() nounwind
8962
8963Overview:
8964"""""""""
8965
8966The '``llvm.debugtrap``' intrinsic.
8967
8968Arguments:
8969""""""""""
8970
8971None.
8972
8973Semantics:
8974""""""""""
8975
8976This intrinsic is lowered to code which is intended to cause an
8977execution trap with the intention of requesting the attention of a
8978debugger.
8979
8980'``llvm.stackprotector``' Intrinsic
8981^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8982
8983Syntax:
8984"""""""
8985
8986::
8987
8988 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8989
8990Overview:
8991"""""""""
8992
8993The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8994onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8995is placed on the stack before local variables.
8996
8997Arguments:
8998""""""""""
8999
9000The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9001The first argument is the value loaded from the stack guard
9002``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9003enough space to hold the value of the guard.
9004
9005Semantics:
9006""""""""""
9007
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009008This intrinsic causes the prologue/epilogue inserter to force the position of
9009the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9010to ensure that if a local variable on the stack is overwritten, it will destroy
9011the value of the guard. When the function exits, the guard on the stack is
9012checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9013different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9014calling the ``__stack_chk_fail()`` function.
9015
9016'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009017^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009018
9019Syntax:
9020"""""""
9021
9022::
9023
9024 declare void @llvm.stackprotectorcheck(i8** <guard>)
9025
9026Overview:
9027"""""""""
9028
9029The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009030created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009031``__stack_chk_fail()`` function.
9032
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009033Arguments:
9034""""""""""
9035
9036The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9037the variable ``@__stack_chk_guard``.
9038
9039Semantics:
9040""""""""""
9041
9042This intrinsic is provided to perform the stack protector check by comparing
9043``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9044values do not match call the ``__stack_chk_fail()`` function.
9045
9046The reason to provide this as an IR level intrinsic instead of implementing it
9047via other IR operations is that in order to perform this operation at the IR
9048level without an intrinsic, one would need to create additional basic blocks to
9049handle the success/failure cases. This makes it difficult to stop the stack
9050protector check from disrupting sibling tail calls in Codegen. With this
9051intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009052codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009053
Sean Silvab084af42012-12-07 10:36:55 +00009054'``llvm.objectsize``' Intrinsic
9055^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9056
9057Syntax:
9058"""""""
9059
9060::
9061
9062 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9063 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9064
9065Overview:
9066"""""""""
9067
9068The ``llvm.objectsize`` intrinsic is designed to provide information to
9069the optimizers to determine at compile time whether a) an operation
9070(like memcpy) will overflow a buffer that corresponds to an object, or
9071b) that a runtime check for overflow isn't necessary. An object in this
9072context means an allocation of a specific class, structure, array, or
9073other object.
9074
9075Arguments:
9076""""""""""
9077
9078The ``llvm.objectsize`` intrinsic takes two arguments. The first
9079argument is a pointer to or into the ``object``. The second argument is
9080a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9081or -1 (if false) when the object size is unknown. The second argument
9082only accepts constants.
9083
9084Semantics:
9085""""""""""
9086
9087The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9088the size of the object concerned. If the size cannot be determined at
9089compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9090on the ``min`` argument).
9091
9092'``llvm.expect``' Intrinsic
9093^^^^^^^^^^^^^^^^^^^^^^^^^^^
9094
9095Syntax:
9096"""""""
9097
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009098This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9099integer bit width.
9100
Sean Silvab084af42012-12-07 10:36:55 +00009101::
9102
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009103 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009104 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9105 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9106
9107Overview:
9108"""""""""
9109
9110The ``llvm.expect`` intrinsic provides information about expected (the
9111most probable) value of ``val``, which can be used by optimizers.
9112
9113Arguments:
9114""""""""""
9115
9116The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9117a value. The second argument is an expected value, this needs to be a
9118constant value, variables are not allowed.
9119
9120Semantics:
9121""""""""""
9122
9123This intrinsic is lowered to the ``val``.
9124
9125'``llvm.donothing``' Intrinsic
9126^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9127
9128Syntax:
9129"""""""
9130
9131::
9132
9133 declare void @llvm.donothing() nounwind readnone
9134
9135Overview:
9136"""""""""
9137
9138The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9139only intrinsic that can be called with an invoke instruction.
9140
9141Arguments:
9142""""""""""
9143
9144None.
9145
9146Semantics:
9147""""""""""
9148
9149This intrinsic does nothing, and it's removed by optimizers and ignored
9150by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009151
9152Stack Map Intrinsics
9153--------------------
9154
9155LLVM provides experimental intrinsics to support runtime patching
9156mechanisms commonly desired in dynamic language JITs. These intrinsics
9157are described in :doc:`StackMaps`.