blob: ceec1bd5476d69fbca9c714fa832fe2f651ea1c9 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000443A symbol with ``internal`` or ``private`` linkage must have ``default``
444visibility.
445
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000446.. _namedtypes:
447
Nico Rieck7157bb72014-01-14 15:22:47 +0000448DLL Storage Classes
449-------------------
450
451All Global Variables, Functions and Aliases can have one of the following
452DLL storage class:
453
454``dllimport``
455 "``dllimport``" causes the compiler to reference a function or variable via
456 a global pointer to a pointer that is set up by the DLL exporting the
457 symbol. On Microsoft Windows targets, the pointer name is formed by
458 combining ``__imp_`` and the function or variable name.
459``dllexport``
460 "``dllexport``" causes the compiler to provide a global pointer to a pointer
461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
462 Microsoft Windows targets, the pointer name is formed by combining
463 ``__imp_`` and the function or variable name. Since this storage class
464 exists for defining a dll interface, the compiler, assembler and linker know
465 it is externally referenced and must refrain from deleting the symbol.
466
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000467Structure Types
468---------------
Sean Silvab084af42012-12-07 10:36:55 +0000469
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000470LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
471types <t_struct>`. Literal types are uniqued structurally, but identified types
472are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
473to forward declare a type which is not yet available.
474
475An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000476
477.. code-block:: llvm
478
479 %mytype = type { %mytype*, i32 }
480
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000481Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
482literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000483
484.. _globalvars:
485
486Global Variables
487----------------
488
489Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000490instead of run-time.
491
492Global variables definitions must be initialized, may have an explicit section
493to be placed in, and may have an optional explicit alignment specified.
494
495Global variables in other translation units can also be declared, in which
496case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000497
498A variable may be defined as ``thread_local``, which means that it will
499not be shared by threads (each thread will have a separated copy of the
500variable). Not all targets support thread-local variables. Optionally, a
501TLS model may be specified:
502
503``localdynamic``
504 For variables that are only used within the current shared library.
505``initialexec``
506 For variables in modules that will not be loaded dynamically.
507``localexec``
508 For variables defined in the executable and only used within it.
509
510The models correspond to the ELF TLS models; see `ELF Handling For
511Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
512more information on under which circumstances the different models may
513be used. The target may choose a different TLS model if the specified
514model is not supported, or if a better choice of model can be made.
515
Michael Gottesman006039c2013-01-31 05:48:48 +0000516A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000517the contents of the variable will **never** be modified (enabling better
518optimization, allowing the global data to be placed in the read-only
519section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000520initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000521variable.
522
523LLVM explicitly allows *declarations* of global variables to be marked
524constant, even if the final definition of the global is not. This
525capability can be used to enable slightly better optimization of the
526program, but requires the language definition to guarantee that
527optimizations based on the 'constantness' are valid for the translation
528units that do not include the definition.
529
530As SSA values, global variables define pointer values that are in scope
531(i.e. they dominate) all basic blocks in the program. Global variables
532always define a pointer to their "content" type because they describe a
533region of memory, and all memory objects in LLVM are accessed through
534pointers.
535
536Global variables can be marked with ``unnamed_addr`` which indicates
537that the address is not significant, only the content. Constants marked
538like this can be merged with other constants if they have the same
539initializer. Note that a constant with significant address *can* be
540merged with a ``unnamed_addr`` constant, the result being a constant
541whose address is significant.
542
543A global variable may be declared to reside in a target-specific
544numbered address space. For targets that support them, address spaces
545may affect how optimizations are performed and/or what target
546instructions are used to access the variable. The default address space
547is zero. The address space qualifier must precede any other attributes.
548
549LLVM allows an explicit section to be specified for globals. If the
550target supports it, it will emit globals to the section specified.
551
Michael Gottesmane743a302013-02-04 03:22:00 +0000552By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000553variables defined within the module are not modified from their
554initial values before the start of the global initializer. This is
555true even for variables potentially accessible from outside the
556module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000557``@llvm.used`` or dllexported variables. This assumption may be suppressed
558by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000559
Sean Silvab084af42012-12-07 10:36:55 +0000560An explicit alignment may be specified for a global, which must be a
561power of 2. If not present, or if the alignment is set to zero, the
562alignment of the global is set by the target to whatever it feels
563convenient. If an explicit alignment is specified, the global is forced
564to have exactly that alignment. Targets and optimizers are not allowed
565to over-align the global if the global has an assigned section. In this
566case, the extra alignment could be observable: for example, code could
567assume that the globals are densely packed in their section and try to
568iterate over them as an array, alignment padding would break this
569iteration.
570
Nico Rieck7157bb72014-01-14 15:22:47 +0000571Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
572
573Syntax::
574
575 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
576 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
577 <global | constant> <Type>
578 [, section "name"] [, align <Alignment>]
579
Sean Silvab084af42012-12-07 10:36:55 +0000580For example, the following defines a global in a numbered address space
581with an initializer, section, and alignment:
582
583.. code-block:: llvm
584
585 @G = addrspace(5) constant float 1.0, section "foo", align 4
586
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000587The following example just declares a global variable
588
589.. code-block:: llvm
590
591 @G = external global i32
592
Sean Silvab084af42012-12-07 10:36:55 +0000593The following example defines a thread-local global with the
594``initialexec`` TLS model:
595
596.. code-block:: llvm
597
598 @G = thread_local(initialexec) global i32 0, align 4
599
600.. _functionstructure:
601
602Functions
603---------
604
605LLVM function definitions consist of the "``define``" keyword, an
606optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000607style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
608an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000609an optional ``unnamed_addr`` attribute, a return type, an optional
610:ref:`parameter attribute <paramattrs>` for the return type, a function
611name, a (possibly empty) argument list (each with optional :ref:`parameter
612attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
613an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000614collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
615curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000616
617LLVM function declarations consist of the "``declare``" keyword, an
618optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000619style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
620an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000621an optional ``unnamed_addr`` attribute, a return type, an optional
622:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000623name, a possibly empty list of arguments, an optional alignment, an optional
624:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000625
Bill Wendling6822ecb2013-10-27 05:09:12 +0000626A function definition contains a list of basic blocks, forming the CFG (Control
627Flow Graph) for the function. Each basic block may optionally start with a label
628(giving the basic block a symbol table entry), contains a list of instructions,
629and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
630function return). If an explicit label is not provided, a block is assigned an
631implicit numbered label, using the next value from the same counter as used for
632unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
633entry block does not have an explicit label, it will be assigned label "%0",
634then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000635
636The first basic block in a function is special in two ways: it is
637immediately executed on entrance to the function, and it is not allowed
638to have predecessor basic blocks (i.e. there can not be any branches to
639the entry block of a function). Because the block can have no
640predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
641
642LLVM allows an explicit section to be specified for functions. If the
643target supports it, it will emit functions to the section specified.
644
645An explicit alignment may be specified for a function. If not present,
646or if the alignment is set to zero, the alignment of the function is set
647by the target to whatever it feels convenient. If an explicit alignment
648is specified, the function is forced to have at least that much
649alignment. All alignments must be a power of 2.
650
651If the ``unnamed_addr`` attribute is given, the address is know to not
652be significant and two identical functions can be merged.
653
654Syntax::
655
Nico Rieck7157bb72014-01-14 15:22:47 +0000656 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000657 [cconv] [ret attrs]
658 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola84c76ae2014-03-07 04:28:28 +0000659 [unnamed_addr] [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000660 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000661
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000662.. _langref_aliases:
663
Sean Silvab084af42012-12-07 10:36:55 +0000664Aliases
665-------
666
667Aliases act as "second name" for the aliasee value (which can be either
668function, global variable, another alias or bitcast of global value).
Nico Rieck7157bb72014-01-14 15:22:47 +0000669Aliases may have an optional :ref:`linkage type <linkage>`, an optional
670:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
671<dllstorageclass>`.
Sean Silvab084af42012-12-07 10:36:55 +0000672
673Syntax::
674
Nico Rieck7157bb72014-01-14 15:22:47 +0000675 @<Name> = [Visibility] [DLLStorageClass] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000676
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000677The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000678``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000679might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000680alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000681
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000682Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
683the aliasee.
684
685The aliasee must be a definition.
686
Rafael Espindola24a669d2014-03-27 15:26:56 +0000687Aliases are not allowed to point to aliases with linkages that can be
688overridden. Since they are only a second name, the possibility of the
689intermediate alias being overridden cannot be represented in an object file.
690
Sean Silvab084af42012-12-07 10:36:55 +0000691.. _namedmetadatastructure:
692
693Named Metadata
694--------------
695
696Named metadata is a collection of metadata. :ref:`Metadata
697nodes <metadata>` (but not metadata strings) are the only valid
698operands for a named metadata.
699
700Syntax::
701
702 ; Some unnamed metadata nodes, which are referenced by the named metadata.
703 !0 = metadata !{metadata !"zero"}
704 !1 = metadata !{metadata !"one"}
705 !2 = metadata !{metadata !"two"}
706 ; A named metadata.
707 !name = !{!0, !1, !2}
708
709.. _paramattrs:
710
711Parameter Attributes
712--------------------
713
714The return type and each parameter of a function type may have a set of
715*parameter attributes* associated with them. Parameter attributes are
716used to communicate additional information about the result or
717parameters of a function. Parameter attributes are considered to be part
718of the function, not of the function type, so functions with different
719parameter attributes can have the same function type.
720
721Parameter attributes are simple keywords that follow the type specified.
722If multiple parameter attributes are needed, they are space separated.
723For example:
724
725.. code-block:: llvm
726
727 declare i32 @printf(i8* noalias nocapture, ...)
728 declare i32 @atoi(i8 zeroext)
729 declare signext i8 @returns_signed_char()
730
731Note that any attributes for the function result (``nounwind``,
732``readonly``) come immediately after the argument list.
733
734Currently, only the following parameter attributes are defined:
735
736``zeroext``
737 This indicates to the code generator that the parameter or return
738 value should be zero-extended to the extent required by the target's
739 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
740 the caller (for a parameter) or the callee (for a return value).
741``signext``
742 This indicates to the code generator that the parameter or return
743 value should be sign-extended to the extent required by the target's
744 ABI (which is usually 32-bits) by the caller (for a parameter) or
745 the callee (for a return value).
746``inreg``
747 This indicates that this parameter or return value should be treated
748 in a special target-dependent fashion during while emitting code for
749 a function call or return (usually, by putting it in a register as
750 opposed to memory, though some targets use it to distinguish between
751 two different kinds of registers). Use of this attribute is
752 target-specific.
753``byval``
754 This indicates that the pointer parameter should really be passed by
755 value to the function. The attribute implies that a hidden copy of
756 the pointee is made between the caller and the callee, so the callee
757 is unable to modify the value in the caller. This attribute is only
758 valid on LLVM pointer arguments. It is generally used to pass
759 structs and arrays by value, but is also valid on pointers to
760 scalars. The copy is considered to belong to the caller not the
761 callee (for example, ``readonly`` functions should not write to
762 ``byval`` parameters). This is not a valid attribute for return
763 values.
764
765 The byval attribute also supports specifying an alignment with the
766 align attribute. It indicates the alignment of the stack slot to
767 form and the known alignment of the pointer specified to the call
768 site. If the alignment is not specified, then the code generator
769 makes a target-specific assumption.
770
Reid Klecknera534a382013-12-19 02:14:12 +0000771.. _attr_inalloca:
772
773``inalloca``
774
Reid Kleckner60d3a832014-01-16 22:59:24 +0000775 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000776 address of outgoing stack arguments. An ``inalloca`` argument must
777 be a pointer to stack memory produced by an ``alloca`` instruction.
778 The alloca, or argument allocation, must also be tagged with the
779 inalloca keyword. Only the past argument may have the ``inalloca``
780 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000781
Reid Kleckner436c42e2014-01-17 23:58:17 +0000782 An argument allocation may be used by a call at most once because
783 the call may deallocate it. The ``inalloca`` attribute cannot be
784 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000785 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
786 ``inalloca`` attribute also disables LLVM's implicit lowering of
787 large aggregate return values, which means that frontend authors
788 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000789
Reid Kleckner60d3a832014-01-16 22:59:24 +0000790 When the call site is reached, the argument allocation must have
791 been the most recent stack allocation that is still live, or the
792 results are undefined. It is possible to allocate additional stack
793 space after an argument allocation and before its call site, but it
794 must be cleared off with :ref:`llvm.stackrestore
795 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000796
797 See :doc:`InAlloca` for more information on how to use this
798 attribute.
799
Sean Silvab084af42012-12-07 10:36:55 +0000800``sret``
801 This indicates that the pointer parameter specifies the address of a
802 structure that is the return value of the function in the source
803 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000804 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000805 not to trap and to be properly aligned. This may only be applied to
806 the first parameter. This is not a valid attribute for return
807 values.
Sean Silva1703e702014-04-08 21:06:22 +0000808
809.. _noalias:
810
Sean Silvab084af42012-12-07 10:36:55 +0000811``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000812 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000813 the argument or return value do not alias pointer values which are
814 not *based* on it, ignoring certain "irrelevant" dependencies. For a
815 call to the parent function, dependencies between memory references
816 from before or after the call and from those during the call are
817 "irrelevant" to the ``noalias`` keyword for the arguments and return
818 value used in that call. The caller shares the responsibility with
819 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000820 details, please see the discussion of the NoAlias response in :ref:`alias
821 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000822
823 Note that this definition of ``noalias`` is intentionally similar
824 to the definition of ``restrict`` in C99 for function arguments,
825 though it is slightly weaker.
826
827 For function return values, C99's ``restrict`` is not meaningful,
828 while LLVM's ``noalias`` is.
829``nocapture``
830 This indicates that the callee does not make any copies of the
831 pointer that outlive the callee itself. This is not a valid
832 attribute for return values.
833
834.. _nest:
835
836``nest``
837 This indicates that the pointer parameter can be excised using the
838 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000839 attribute for return values and can only be applied to one parameter.
840
841``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000842 This indicates that the function always returns the argument as its return
843 value. This is an optimization hint to the code generator when generating
844 the caller, allowing tail call optimization and omission of register saves
845 and restores in some cases; it is not checked or enforced when generating
846 the callee. The parameter and the function return type must be valid
847 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
848 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000849
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000850``nonnull``
851 This indicates that the parameter or return pointer is not null. This
852 attribute may only be applied to pointer typed parameters. This is not
853 checked or enforced by LLVM, the caller must ensure that the pointer
854 passed in is non-null, or the callee must ensure that the returned pointer
855 is non-null.
856
Sean Silvab084af42012-12-07 10:36:55 +0000857.. _gc:
858
859Garbage Collector Names
860-----------------------
861
862Each function may specify a garbage collector name, which is simply a
863string:
864
865.. code-block:: llvm
866
867 define void @f() gc "name" { ... }
868
869The compiler declares the supported values of *name*. Specifying a
870collector which will cause the compiler to alter its output in order to
871support the named garbage collection algorithm.
872
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000873.. _prefixdata:
874
875Prefix Data
876-----------
877
878Prefix data is data associated with a function which the code generator
879will emit immediately before the function body. The purpose of this feature
880is to allow frontends to associate language-specific runtime metadata with
881specific functions and make it available through the function pointer while
882still allowing the function pointer to be called. To access the data for a
883given function, a program may bitcast the function pointer to a pointer to
884the constant's type. This implies that the IR symbol points to the start
885of the prefix data.
886
887To maintain the semantics of ordinary function calls, the prefix data must
888have a particular format. Specifically, it must begin with a sequence of
889bytes which decode to a sequence of machine instructions, valid for the
890module's target, which transfer control to the point immediately succeeding
891the prefix data, without performing any other visible action. This allows
892the inliner and other passes to reason about the semantics of the function
893definition without needing to reason about the prefix data. Obviously this
894makes the format of the prefix data highly target dependent.
895
Peter Collingbourne213358a2013-09-23 20:14:21 +0000896Prefix data is laid out as if it were an initializer for a global variable
897of the prefix data's type. No padding is automatically placed between the
898prefix data and the function body. If padding is required, it must be part
899of the prefix data.
900
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000901A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
902which encodes the ``nop`` instruction:
903
904.. code-block:: llvm
905
906 define void @f() prefix i8 144 { ... }
907
908Generally prefix data can be formed by encoding a relative branch instruction
909which skips the metadata, as in this example of valid prefix data for the
910x86_64 architecture, where the first two bytes encode ``jmp .+10``:
911
912.. code-block:: llvm
913
914 %0 = type <{ i8, i8, i8* }>
915
916 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
917
918A function may have prefix data but no body. This has similar semantics
919to the ``available_externally`` linkage in that the data may be used by the
920optimizers but will not be emitted in the object file.
921
Bill Wendling63b88192013-02-06 06:52:58 +0000922.. _attrgrp:
923
924Attribute Groups
925----------------
926
927Attribute groups are groups of attributes that are referenced by objects within
928the IR. They are important for keeping ``.ll`` files readable, because a lot of
929functions will use the same set of attributes. In the degenerative case of a
930``.ll`` file that corresponds to a single ``.c`` file, the single attribute
931group will capture the important command line flags used to build that file.
932
933An attribute group is a module-level object. To use an attribute group, an
934object references the attribute group's ID (e.g. ``#37``). An object may refer
935to more than one attribute group. In that situation, the attributes from the
936different groups are merged.
937
938Here is an example of attribute groups for a function that should always be
939inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
940
941.. code-block:: llvm
942
943 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000944 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000945
946 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000947 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000948
949 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
950 define void @f() #0 #1 { ... }
951
Sean Silvab084af42012-12-07 10:36:55 +0000952.. _fnattrs:
953
954Function Attributes
955-------------------
956
957Function attributes are set to communicate additional information about
958a function. Function attributes are considered to be part of the
959function, not of the function type, so functions with different function
960attributes can have the same function type.
961
962Function attributes are simple keywords that follow the type specified.
963If multiple attributes are needed, they are space separated. For
964example:
965
966.. code-block:: llvm
967
968 define void @f() noinline { ... }
969 define void @f() alwaysinline { ... }
970 define void @f() alwaysinline optsize { ... }
971 define void @f() optsize { ... }
972
Sean Silvab084af42012-12-07 10:36:55 +0000973``alignstack(<n>)``
974 This attribute indicates that, when emitting the prologue and
975 epilogue, the backend should forcibly align the stack pointer.
976 Specify the desired alignment, which must be a power of two, in
977 parentheses.
978``alwaysinline``
979 This attribute indicates that the inliner should attempt to inline
980 this function into callers whenever possible, ignoring any active
981 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000982``builtin``
983 This indicates that the callee function at a call site should be
984 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000985 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000986 direct calls to functions which are declared with the ``nobuiltin``
987 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000988``cold``
989 This attribute indicates that this function is rarely called. When
990 computing edge weights, basic blocks post-dominated by a cold
991 function call are also considered to be cold; and, thus, given low
992 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000993``inlinehint``
994 This attribute indicates that the source code contained a hint that
995 inlining this function is desirable (such as the "inline" keyword in
996 C/C++). It is just a hint; it imposes no requirements on the
997 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000998``minsize``
999 This attribute suggests that optimization passes and code generator
1000 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001001 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001002 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001003``naked``
1004 This attribute disables prologue / epilogue emission for the
1005 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001006``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001007 This indicates that the callee function at a call site is not recognized as
1008 a built-in function. LLVM will retain the original call and not replace it
1009 with equivalent code based on the semantics of the built-in function, unless
1010 the call site uses the ``builtin`` attribute. This is valid at call sites
1011 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001012``noduplicate``
1013 This attribute indicates that calls to the function cannot be
1014 duplicated. A call to a ``noduplicate`` function may be moved
1015 within its parent function, but may not be duplicated within
1016 its parent function.
1017
1018 A function containing a ``noduplicate`` call may still
1019 be an inlining candidate, provided that the call is not
1020 duplicated by inlining. That implies that the function has
1021 internal linkage and only has one call site, so the original
1022 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001023``noimplicitfloat``
1024 This attributes disables implicit floating point instructions.
1025``noinline``
1026 This attribute indicates that the inliner should never inline this
1027 function in any situation. This attribute may not be used together
1028 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001029``nonlazybind``
1030 This attribute suppresses lazy symbol binding for the function. This
1031 may make calls to the function faster, at the cost of extra program
1032 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001033``noredzone``
1034 This attribute indicates that the code generator should not use a
1035 red zone, even if the target-specific ABI normally permits it.
1036``noreturn``
1037 This function attribute indicates that the function never returns
1038 normally. This produces undefined behavior at runtime if the
1039 function ever does dynamically return.
1040``nounwind``
1041 This function attribute indicates that the function never returns
1042 with an unwind or exceptional control flow. If the function does
1043 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001044``optnone``
1045 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001046 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001047 exception of interprocedural optimization passes.
1048 This attribute cannot be used together with the ``alwaysinline``
1049 attribute; this attribute is also incompatible
1050 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001051
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001052 This attribute requires the ``noinline`` attribute to be specified on
1053 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001054 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001055 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001056``optsize``
1057 This attribute suggests that optimization passes and code generator
1058 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001059 and otherwise do optimizations specifically to reduce code size as
1060 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001061``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001062 On a function, this attribute indicates that the function computes its
1063 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001064 without dereferencing any pointer arguments or otherwise accessing
1065 any mutable state (e.g. memory, control registers, etc) visible to
1066 caller functions. It does not write through any pointer arguments
1067 (including ``byval`` arguments) and never changes any state visible
1068 to callers. This means that it cannot unwind exceptions by calling
1069 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001070
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001071 On an argument, this attribute indicates that the function does not
1072 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001073 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001074``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001075 On a function, this attribute indicates that the function does not write
1076 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001077 modify any state (e.g. memory, control registers, etc) visible to
1078 caller functions. It may dereference pointer arguments and read
1079 state that may be set in the caller. A readonly function always
1080 returns the same value (or unwinds an exception identically) when
1081 called with the same set of arguments and global state. It cannot
1082 unwind an exception by calling the ``C++`` exception throwing
1083 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001084
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001085 On an argument, this attribute indicates that the function does not write
1086 through this pointer argument, even though it may write to the memory that
1087 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001088``returns_twice``
1089 This attribute indicates that this function can return twice. The C
1090 ``setjmp`` is an example of such a function. The compiler disables
1091 some optimizations (like tail calls) in the caller of these
1092 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001093``sanitize_address``
1094 This attribute indicates that AddressSanitizer checks
1095 (dynamic address safety analysis) are enabled for this function.
1096``sanitize_memory``
1097 This attribute indicates that MemorySanitizer checks (dynamic detection
1098 of accesses to uninitialized memory) are enabled for this function.
1099``sanitize_thread``
1100 This attribute indicates that ThreadSanitizer checks
1101 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001102``ssp``
1103 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001104 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001105 placed on the stack before the local variables that's checked upon
1106 return from the function to see if it has been overwritten. A
1107 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001108 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001109
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001110 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1111 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1112 - Calls to alloca() with variable sizes or constant sizes greater than
1113 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001114
Josh Magee24c7f062014-02-01 01:36:16 +00001115 Variables that are identified as requiring a protector will be arranged
1116 on the stack such that they are adjacent to the stack protector guard.
1117
Sean Silvab084af42012-12-07 10:36:55 +00001118 If a function that has an ``ssp`` attribute is inlined into a
1119 function that doesn't have an ``ssp`` attribute, then the resulting
1120 function will have an ``ssp`` attribute.
1121``sspreq``
1122 This attribute indicates that the function should *always* emit a
1123 stack smashing protector. This overrides the ``ssp`` function
1124 attribute.
1125
Josh Magee24c7f062014-02-01 01:36:16 +00001126 Variables that are identified as requiring a protector will be arranged
1127 on the stack such that they are adjacent to the stack protector guard.
1128 The specific layout rules are:
1129
1130 #. Large arrays and structures containing large arrays
1131 (``>= ssp-buffer-size``) are closest to the stack protector.
1132 #. Small arrays and structures containing small arrays
1133 (``< ssp-buffer-size``) are 2nd closest to the protector.
1134 #. Variables that have had their address taken are 3rd closest to the
1135 protector.
1136
Sean Silvab084af42012-12-07 10:36:55 +00001137 If a function that has an ``sspreq`` attribute is inlined into a
1138 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001139 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1140 an ``sspreq`` attribute.
1141``sspstrong``
1142 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001143 protector. This attribute causes a strong heuristic to be used when
1144 determining if a function needs stack protectors. The strong heuristic
1145 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001146
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001147 - Arrays of any size and type
1148 - Aggregates containing an array of any size and type.
1149 - Calls to alloca().
1150 - Local variables that have had their address taken.
1151
Josh Magee24c7f062014-02-01 01:36:16 +00001152 Variables that are identified as requiring a protector will be arranged
1153 on the stack such that they are adjacent to the stack protector guard.
1154 The specific layout rules are:
1155
1156 #. Large arrays and structures containing large arrays
1157 (``>= ssp-buffer-size``) are closest to the stack protector.
1158 #. Small arrays and structures containing small arrays
1159 (``< ssp-buffer-size``) are 2nd closest to the protector.
1160 #. Variables that have had their address taken are 3rd closest to the
1161 protector.
1162
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001163 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001164
1165 If a function that has an ``sspstrong`` attribute is inlined into a
1166 function that doesn't have an ``sspstrong`` attribute, then the
1167 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001168``uwtable``
1169 This attribute indicates that the ABI being targeted requires that
1170 an unwind table entry be produce for this function even if we can
1171 show that no exceptions passes by it. This is normally the case for
1172 the ELF x86-64 abi, but it can be disabled for some compilation
1173 units.
Sean Silvab084af42012-12-07 10:36:55 +00001174
1175.. _moduleasm:
1176
1177Module-Level Inline Assembly
1178----------------------------
1179
1180Modules may contain "module-level inline asm" blocks, which corresponds
1181to the GCC "file scope inline asm" blocks. These blocks are internally
1182concatenated by LLVM and treated as a single unit, but may be separated
1183in the ``.ll`` file if desired. The syntax is very simple:
1184
1185.. code-block:: llvm
1186
1187 module asm "inline asm code goes here"
1188 module asm "more can go here"
1189
1190The strings can contain any character by escaping non-printable
1191characters. The escape sequence used is simply "\\xx" where "xx" is the
1192two digit hex code for the number.
1193
1194The inline asm code is simply printed to the machine code .s file when
1195assembly code is generated.
1196
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001197.. _langref_datalayout:
1198
Sean Silvab084af42012-12-07 10:36:55 +00001199Data Layout
1200-----------
1201
1202A module may specify a target specific data layout string that specifies
1203how data is to be laid out in memory. The syntax for the data layout is
1204simply:
1205
1206.. code-block:: llvm
1207
1208 target datalayout = "layout specification"
1209
1210The *layout specification* consists of a list of specifications
1211separated by the minus sign character ('-'). Each specification starts
1212with a letter and may include other information after the letter to
1213define some aspect of the data layout. The specifications accepted are
1214as follows:
1215
1216``E``
1217 Specifies that the target lays out data in big-endian form. That is,
1218 the bits with the most significance have the lowest address
1219 location.
1220``e``
1221 Specifies that the target lays out data in little-endian form. That
1222 is, the bits with the least significance have the lowest address
1223 location.
1224``S<size>``
1225 Specifies the natural alignment of the stack in bits. Alignment
1226 promotion of stack variables is limited to the natural stack
1227 alignment to avoid dynamic stack realignment. The stack alignment
1228 must be a multiple of 8-bits. If omitted, the natural stack
1229 alignment defaults to "unspecified", which does not prevent any
1230 alignment promotions.
1231``p[n]:<size>:<abi>:<pref>``
1232 This specifies the *size* of a pointer and its ``<abi>`` and
1233 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001234 bits. The address space, ``n`` is optional, and if not specified,
1235 denotes the default address space 0. The value of ``n`` must be
1236 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001237``i<size>:<abi>:<pref>``
1238 This specifies the alignment for an integer type of a given bit
1239 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1240``v<size>:<abi>:<pref>``
1241 This specifies the alignment for a vector type of a given bit
1242 ``<size>``.
1243``f<size>:<abi>:<pref>``
1244 This specifies the alignment for a floating point type of a given bit
1245 ``<size>``. Only values of ``<size>`` that are supported by the target
1246 will work. 32 (float) and 64 (double) are supported on all targets; 80
1247 or 128 (different flavors of long double) are also supported on some
1248 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001249``a:<abi>:<pref>``
1250 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001251``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001252 If present, specifies that llvm names are mangled in the output. The
1253 options are
1254
1255 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1256 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1257 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1258 symbols get a ``_`` prefix.
1259 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1260 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001261``n<size1>:<size2>:<size3>...``
1262 This specifies a set of native integer widths for the target CPU in
1263 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1264 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1265 this set are considered to support most general arithmetic operations
1266 efficiently.
1267
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001268On every specification that takes a ``<abi>:<pref>``, specifying the
1269``<pref>`` alignment is optional. If omitted, the preceding ``:``
1270should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1271
Sean Silvab084af42012-12-07 10:36:55 +00001272When constructing the data layout for a given target, LLVM starts with a
1273default set of specifications which are then (possibly) overridden by
1274the specifications in the ``datalayout`` keyword. The default
1275specifications are given in this list:
1276
1277- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001278- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1279- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1280 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001281- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001282- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1283- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1284- ``i16:16:16`` - i16 is 16-bit aligned
1285- ``i32:32:32`` - i32 is 32-bit aligned
1286- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1287 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001288- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001289- ``f32:32:32`` - float is 32-bit aligned
1290- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001291- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001292- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1293- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001294- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001295
1296When LLVM is determining the alignment for a given type, it uses the
1297following rules:
1298
1299#. If the type sought is an exact match for one of the specifications,
1300 that specification is used.
1301#. If no match is found, and the type sought is an integer type, then
1302 the smallest integer type that is larger than the bitwidth of the
1303 sought type is used. If none of the specifications are larger than
1304 the bitwidth then the largest integer type is used. For example,
1305 given the default specifications above, the i7 type will use the
1306 alignment of i8 (next largest) while both i65 and i256 will use the
1307 alignment of i64 (largest specified).
1308#. If no match is found, and the type sought is a vector type, then the
1309 largest vector type that is smaller than the sought vector type will
1310 be used as a fall back. This happens because <128 x double> can be
1311 implemented in terms of 64 <2 x double>, for example.
1312
1313The function of the data layout string may not be what you expect.
1314Notably, this is not a specification from the frontend of what alignment
1315the code generator should use.
1316
1317Instead, if specified, the target data layout is required to match what
1318the ultimate *code generator* expects. This string is used by the
1319mid-level optimizers to improve code, and this only works if it matches
1320what the ultimate code generator uses. If you would like to generate IR
1321that does not embed this target-specific detail into the IR, then you
1322don't have to specify the string. This will disable some optimizations
1323that require precise layout information, but this also prevents those
1324optimizations from introducing target specificity into the IR.
1325
Bill Wendling5cc90842013-10-18 23:41:25 +00001326.. _langref_triple:
1327
1328Target Triple
1329-------------
1330
1331A module may specify a target triple string that describes the target
1332host. The syntax for the target triple is simply:
1333
1334.. code-block:: llvm
1335
1336 target triple = "x86_64-apple-macosx10.7.0"
1337
1338The *target triple* string consists of a series of identifiers delimited
1339by the minus sign character ('-'). The canonical forms are:
1340
1341::
1342
1343 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1344 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1345
1346This information is passed along to the backend so that it generates
1347code for the proper architecture. It's possible to override this on the
1348command line with the ``-mtriple`` command line option.
1349
Sean Silvab084af42012-12-07 10:36:55 +00001350.. _pointeraliasing:
1351
1352Pointer Aliasing Rules
1353----------------------
1354
1355Any memory access must be done through a pointer value associated with
1356an address range of the memory access, otherwise the behavior is
1357undefined. Pointer values are associated with address ranges according
1358to the following rules:
1359
1360- A pointer value is associated with the addresses associated with any
1361 value it is *based* on.
1362- An address of a global variable is associated with the address range
1363 of the variable's storage.
1364- The result value of an allocation instruction is associated with the
1365 address range of the allocated storage.
1366- A null pointer in the default address-space is associated with no
1367 address.
1368- An integer constant other than zero or a pointer value returned from
1369 a function not defined within LLVM may be associated with address
1370 ranges allocated through mechanisms other than those provided by
1371 LLVM. Such ranges shall not overlap with any ranges of addresses
1372 allocated by mechanisms provided by LLVM.
1373
1374A pointer value is *based* on another pointer value according to the
1375following rules:
1376
1377- A pointer value formed from a ``getelementptr`` operation is *based*
1378 on the first operand of the ``getelementptr``.
1379- The result value of a ``bitcast`` is *based* on the operand of the
1380 ``bitcast``.
1381- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1382 values that contribute (directly or indirectly) to the computation of
1383 the pointer's value.
1384- The "*based* on" relationship is transitive.
1385
1386Note that this definition of *"based"* is intentionally similar to the
1387definition of *"based"* in C99, though it is slightly weaker.
1388
1389LLVM IR does not associate types with memory. The result type of a
1390``load`` merely indicates the size and alignment of the memory from
1391which to load, as well as the interpretation of the value. The first
1392operand type of a ``store`` similarly only indicates the size and
1393alignment of the store.
1394
1395Consequently, type-based alias analysis, aka TBAA, aka
1396``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1397:ref:`Metadata <metadata>` may be used to encode additional information
1398which specialized optimization passes may use to implement type-based
1399alias analysis.
1400
1401.. _volatile:
1402
1403Volatile Memory Accesses
1404------------------------
1405
1406Certain memory accesses, such as :ref:`load <i_load>`'s,
1407:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1408marked ``volatile``. The optimizers must not change the number of
1409volatile operations or change their order of execution relative to other
1410volatile operations. The optimizers *may* change the order of volatile
1411operations relative to non-volatile operations. This is not Java's
1412"volatile" and has no cross-thread synchronization behavior.
1413
Andrew Trick89fc5a62013-01-30 21:19:35 +00001414IR-level volatile loads and stores cannot safely be optimized into
1415llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1416flagged volatile. Likewise, the backend should never split or merge
1417target-legal volatile load/store instructions.
1418
Andrew Trick7e6f9282013-01-31 00:49:39 +00001419.. admonition:: Rationale
1420
1421 Platforms may rely on volatile loads and stores of natively supported
1422 data width to be executed as single instruction. For example, in C
1423 this holds for an l-value of volatile primitive type with native
1424 hardware support, but not necessarily for aggregate types. The
1425 frontend upholds these expectations, which are intentionally
1426 unspecified in the IR. The rules above ensure that IR transformation
1427 do not violate the frontend's contract with the language.
1428
Sean Silvab084af42012-12-07 10:36:55 +00001429.. _memmodel:
1430
1431Memory Model for Concurrent Operations
1432--------------------------------------
1433
1434The LLVM IR does not define any way to start parallel threads of
1435execution or to register signal handlers. Nonetheless, there are
1436platform-specific ways to create them, and we define LLVM IR's behavior
1437in their presence. This model is inspired by the C++0x memory model.
1438
1439For a more informal introduction to this model, see the :doc:`Atomics`.
1440
1441We define a *happens-before* partial order as the least partial order
1442that
1443
1444- Is a superset of single-thread program order, and
1445- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1446 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1447 techniques, like pthread locks, thread creation, thread joining,
1448 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1449 Constraints <ordering>`).
1450
1451Note that program order does not introduce *happens-before* edges
1452between a thread and signals executing inside that thread.
1453
1454Every (defined) read operation (load instructions, memcpy, atomic
1455loads/read-modify-writes, etc.) R reads a series of bytes written by
1456(defined) write operations (store instructions, atomic
1457stores/read-modify-writes, memcpy, etc.). For the purposes of this
1458section, initialized globals are considered to have a write of the
1459initializer which is atomic and happens before any other read or write
1460of the memory in question. For each byte of a read R, R\ :sub:`byte`
1461may see any write to the same byte, except:
1462
1463- If write\ :sub:`1` happens before write\ :sub:`2`, and
1464 write\ :sub:`2` happens before R\ :sub:`byte`, then
1465 R\ :sub:`byte` does not see write\ :sub:`1`.
1466- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1467 R\ :sub:`byte` does not see write\ :sub:`3`.
1468
1469Given that definition, R\ :sub:`byte` is defined as follows:
1470
1471- If R is volatile, the result is target-dependent. (Volatile is
1472 supposed to give guarantees which can support ``sig_atomic_t`` in
1473 C/C++, and may be used for accesses to addresses which do not behave
1474 like normal memory. It does not generally provide cross-thread
1475 synchronization.)
1476- Otherwise, if there is no write to the same byte that happens before
1477 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1478- Otherwise, if R\ :sub:`byte` may see exactly one write,
1479 R\ :sub:`byte` returns the value written by that write.
1480- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1481 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1482 Memory Ordering Constraints <ordering>` section for additional
1483 constraints on how the choice is made.
1484- Otherwise R\ :sub:`byte` returns ``undef``.
1485
1486R returns the value composed of the series of bytes it read. This
1487implies that some bytes within the value may be ``undef`` **without**
1488the entire value being ``undef``. Note that this only defines the
1489semantics of the operation; it doesn't mean that targets will emit more
1490than one instruction to read the series of bytes.
1491
1492Note that in cases where none of the atomic intrinsics are used, this
1493model places only one restriction on IR transformations on top of what
1494is required for single-threaded execution: introducing a store to a byte
1495which might not otherwise be stored is not allowed in general.
1496(Specifically, in the case where another thread might write to and read
1497from an address, introducing a store can change a load that may see
1498exactly one write into a load that may see multiple writes.)
1499
1500.. _ordering:
1501
1502Atomic Memory Ordering Constraints
1503----------------------------------
1504
1505Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1506:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1507:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001508ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001509the same address they *synchronize with*. These semantics are borrowed
1510from Java and C++0x, but are somewhat more colloquial. If these
1511descriptions aren't precise enough, check those specs (see spec
1512references in the :doc:`atomics guide <Atomics>`).
1513:ref:`fence <i_fence>` instructions treat these orderings somewhat
1514differently since they don't take an address. See that instruction's
1515documentation for details.
1516
1517For a simpler introduction to the ordering constraints, see the
1518:doc:`Atomics`.
1519
1520``unordered``
1521 The set of values that can be read is governed by the happens-before
1522 partial order. A value cannot be read unless some operation wrote
1523 it. This is intended to provide a guarantee strong enough to model
1524 Java's non-volatile shared variables. This ordering cannot be
1525 specified for read-modify-write operations; it is not strong enough
1526 to make them atomic in any interesting way.
1527``monotonic``
1528 In addition to the guarantees of ``unordered``, there is a single
1529 total order for modifications by ``monotonic`` operations on each
1530 address. All modification orders must be compatible with the
1531 happens-before order. There is no guarantee that the modification
1532 orders can be combined to a global total order for the whole program
1533 (and this often will not be possible). The read in an atomic
1534 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1535 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1536 order immediately before the value it writes. If one atomic read
1537 happens before another atomic read of the same address, the later
1538 read must see the same value or a later value in the address's
1539 modification order. This disallows reordering of ``monotonic`` (or
1540 stronger) operations on the same address. If an address is written
1541 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1542 read that address repeatedly, the other threads must eventually see
1543 the write. This corresponds to the C++0x/C1x
1544 ``memory_order_relaxed``.
1545``acquire``
1546 In addition to the guarantees of ``monotonic``, a
1547 *synchronizes-with* edge may be formed with a ``release`` operation.
1548 This is intended to model C++'s ``memory_order_acquire``.
1549``release``
1550 In addition to the guarantees of ``monotonic``, if this operation
1551 writes a value which is subsequently read by an ``acquire``
1552 operation, it *synchronizes-with* that operation. (This isn't a
1553 complete description; see the C++0x definition of a release
1554 sequence.) This corresponds to the C++0x/C1x
1555 ``memory_order_release``.
1556``acq_rel`` (acquire+release)
1557 Acts as both an ``acquire`` and ``release`` operation on its
1558 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1559``seq_cst`` (sequentially consistent)
1560 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1561 operation which only reads, ``release`` for an operation which only
1562 writes), there is a global total order on all
1563 sequentially-consistent operations on all addresses, which is
1564 consistent with the *happens-before* partial order and with the
1565 modification orders of all the affected addresses. Each
1566 sequentially-consistent read sees the last preceding write to the
1567 same address in this global order. This corresponds to the C++0x/C1x
1568 ``memory_order_seq_cst`` and Java volatile.
1569
1570.. _singlethread:
1571
1572If an atomic operation is marked ``singlethread``, it only *synchronizes
1573with* or participates in modification and seq\_cst total orderings with
1574other operations running in the same thread (for example, in signal
1575handlers).
1576
1577.. _fastmath:
1578
1579Fast-Math Flags
1580---------------
1581
1582LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1583:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1584:ref:`frem <i_frem>`) have the following flags that can set to enable
1585otherwise unsafe floating point operations
1586
1587``nnan``
1588 No NaNs - Allow optimizations to assume the arguments and result are not
1589 NaN. Such optimizations are required to retain defined behavior over
1590 NaNs, but the value of the result is undefined.
1591
1592``ninf``
1593 No Infs - Allow optimizations to assume the arguments and result are not
1594 +/-Inf. Such optimizations are required to retain defined behavior over
1595 +/-Inf, but the value of the result is undefined.
1596
1597``nsz``
1598 No Signed Zeros - Allow optimizations to treat the sign of a zero
1599 argument or result as insignificant.
1600
1601``arcp``
1602 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1603 argument rather than perform division.
1604
1605``fast``
1606 Fast - Allow algebraically equivalent transformations that may
1607 dramatically change results in floating point (e.g. reassociate). This
1608 flag implies all the others.
1609
1610.. _typesystem:
1611
1612Type System
1613===========
1614
1615The LLVM type system is one of the most important features of the
1616intermediate representation. Being typed enables a number of
1617optimizations to be performed on the intermediate representation
1618directly, without having to do extra analyses on the side before the
1619transformation. A strong type system makes it easier to read the
1620generated code and enables novel analyses and transformations that are
1621not feasible to perform on normal three address code representations.
1622
Rafael Espindola08013342013-12-07 19:34:20 +00001623.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001624
Rafael Espindola08013342013-12-07 19:34:20 +00001625Void Type
1626---------
Sean Silvab084af42012-12-07 10:36:55 +00001627
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001628:Overview:
1629
Rafael Espindola08013342013-12-07 19:34:20 +00001630
1631The void type does not represent any value and has no size.
1632
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001633:Syntax:
1634
Rafael Espindola08013342013-12-07 19:34:20 +00001635
1636::
1637
1638 void
Sean Silvab084af42012-12-07 10:36:55 +00001639
1640
Rafael Espindola08013342013-12-07 19:34:20 +00001641.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001642
Rafael Espindola08013342013-12-07 19:34:20 +00001643Function Type
1644-------------
Sean Silvab084af42012-12-07 10:36:55 +00001645
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001646:Overview:
1647
Sean Silvab084af42012-12-07 10:36:55 +00001648
Rafael Espindola08013342013-12-07 19:34:20 +00001649The function type can be thought of as a function signature. It consists of a
1650return type and a list of formal parameter types. The return type of a function
1651type is a void type or first class type --- except for :ref:`label <t_label>`
1652and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001653
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001654:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001655
Rafael Espindola08013342013-12-07 19:34:20 +00001656::
Sean Silvab084af42012-12-07 10:36:55 +00001657
Rafael Espindola08013342013-12-07 19:34:20 +00001658 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001659
Rafael Espindola08013342013-12-07 19:34:20 +00001660...where '``<parameter list>``' is a comma-separated list of type
1661specifiers. Optionally, the parameter list may include a type ``...``, which
1662indicates that the function takes a variable number of arguments. Variable
1663argument functions can access their arguments with the :ref:`variable argument
1664handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1665except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001666
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001667:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001668
Rafael Espindola08013342013-12-07 19:34:20 +00001669+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1670| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1671+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1672| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1673+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1674| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1675+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1676| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1677+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1678
1679.. _t_firstclass:
1680
1681First Class Types
1682-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001683
1684The :ref:`first class <t_firstclass>` types are perhaps the most important.
1685Values of these types are the only ones which can be produced by
1686instructions.
1687
Rafael Espindola08013342013-12-07 19:34:20 +00001688.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001689
Rafael Espindola08013342013-12-07 19:34:20 +00001690Single Value Types
1691^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001692
Rafael Espindola08013342013-12-07 19:34:20 +00001693These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001694
1695.. _t_integer:
1696
1697Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001698""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001699
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001700:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001701
1702The integer type is a very simple type that simply specifies an
1703arbitrary bit width for the integer type desired. Any bit width from 1
1704bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1705
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001706:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001707
1708::
1709
1710 iN
1711
1712The number of bits the integer will occupy is specified by the ``N``
1713value.
1714
1715Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001716*********
Sean Silvab084af42012-12-07 10:36:55 +00001717
1718+----------------+------------------------------------------------+
1719| ``i1`` | a single-bit integer. |
1720+----------------+------------------------------------------------+
1721| ``i32`` | a 32-bit integer. |
1722+----------------+------------------------------------------------+
1723| ``i1942652`` | a really big integer of over 1 million bits. |
1724+----------------+------------------------------------------------+
1725
1726.. _t_floating:
1727
1728Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001729""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001730
1731.. list-table::
1732 :header-rows: 1
1733
1734 * - Type
1735 - Description
1736
1737 * - ``half``
1738 - 16-bit floating point value
1739
1740 * - ``float``
1741 - 32-bit floating point value
1742
1743 * - ``double``
1744 - 64-bit floating point value
1745
1746 * - ``fp128``
1747 - 128-bit floating point value (112-bit mantissa)
1748
1749 * - ``x86_fp80``
1750 - 80-bit floating point value (X87)
1751
1752 * - ``ppc_fp128``
1753 - 128-bit floating point value (two 64-bits)
1754
Reid Kleckner9a16d082014-03-05 02:41:37 +00001755X86_mmx Type
1756""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001757
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001758:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001759
Reid Kleckner9a16d082014-03-05 02:41:37 +00001760The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001761machine. The operations allowed on it are quite limited: parameters and
1762return values, load and store, and bitcast. User-specified MMX
1763instructions are represented as intrinsic or asm calls with arguments
1764and/or results of this type. There are no arrays, vectors or constants
1765of this type.
1766
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001767:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001768
1769::
1770
Reid Kleckner9a16d082014-03-05 02:41:37 +00001771 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001772
Sean Silvab084af42012-12-07 10:36:55 +00001773
Rafael Espindola08013342013-12-07 19:34:20 +00001774.. _t_pointer:
1775
1776Pointer Type
1777""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001778
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001779:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001780
Rafael Espindola08013342013-12-07 19:34:20 +00001781The pointer type is used to specify memory locations. Pointers are
1782commonly used to reference objects in memory.
1783
1784Pointer types may have an optional address space attribute defining the
1785numbered address space where the pointed-to object resides. The default
1786address space is number zero. The semantics of non-zero address spaces
1787are target-specific.
1788
1789Note that LLVM does not permit pointers to void (``void*``) nor does it
1790permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001791
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001792:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001793
1794::
1795
Rafael Espindola08013342013-12-07 19:34:20 +00001796 <type> *
1797
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001798:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001799
1800+-------------------------+--------------------------------------------------------------------------------------------------------------+
1801| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1802+-------------------------+--------------------------------------------------------------------------------------------------------------+
1803| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1804+-------------------------+--------------------------------------------------------------------------------------------------------------+
1805| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1806+-------------------------+--------------------------------------------------------------------------------------------------------------+
1807
1808.. _t_vector:
1809
1810Vector Type
1811"""""""""""
1812
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001813:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001814
1815A vector type is a simple derived type that represents a vector of
1816elements. Vector types are used when multiple primitive data are
1817operated in parallel using a single instruction (SIMD). A vector type
1818requires a size (number of elements) and an underlying primitive data
1819type. Vector types are considered :ref:`first class <t_firstclass>`.
1820
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001821:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001822
1823::
1824
1825 < <# elements> x <elementtype> >
1826
1827The number of elements is a constant integer value larger than 0;
1828elementtype may be any integer or floating point type, or a pointer to
1829these types. Vectors of size zero are not allowed.
1830
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001831:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001832
1833+-------------------+--------------------------------------------------+
1834| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1835+-------------------+--------------------------------------------------+
1836| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1837+-------------------+--------------------------------------------------+
1838| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1839+-------------------+--------------------------------------------------+
1840| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1841+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001842
1843.. _t_label:
1844
1845Label Type
1846^^^^^^^^^^
1847
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001848:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001849
1850The label type represents code labels.
1851
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001852:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001853
1854::
1855
1856 label
1857
1858.. _t_metadata:
1859
1860Metadata Type
1861^^^^^^^^^^^^^
1862
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001863:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001864
1865The metadata type represents embedded metadata. No derived types may be
1866created from metadata except for :ref:`function <t_function>` arguments.
1867
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001868:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001869
1870::
1871
1872 metadata
1873
Sean Silvab084af42012-12-07 10:36:55 +00001874.. _t_aggregate:
1875
1876Aggregate Types
1877^^^^^^^^^^^^^^^
1878
1879Aggregate Types are a subset of derived types that can contain multiple
1880member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1881aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1882aggregate types.
1883
1884.. _t_array:
1885
1886Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001887""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001888
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001889:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001890
1891The array type is a very simple derived type that arranges elements
1892sequentially in memory. The array type requires a size (number of
1893elements) and an underlying data type.
1894
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001895:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001896
1897::
1898
1899 [<# elements> x <elementtype>]
1900
1901The number of elements is a constant integer value; ``elementtype`` may
1902be any type with a size.
1903
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001904:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001905
1906+------------------+--------------------------------------+
1907| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1908+------------------+--------------------------------------+
1909| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1910+------------------+--------------------------------------+
1911| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1912+------------------+--------------------------------------+
1913
1914Here are some examples of multidimensional arrays:
1915
1916+-----------------------------+----------------------------------------------------------+
1917| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1918+-----------------------------+----------------------------------------------------------+
1919| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1920+-----------------------------+----------------------------------------------------------+
1921| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1922+-----------------------------+----------------------------------------------------------+
1923
1924There is no restriction on indexing beyond the end of the array implied
1925by a static type (though there are restrictions on indexing beyond the
1926bounds of an allocated object in some cases). This means that
1927single-dimension 'variable sized array' addressing can be implemented in
1928LLVM with a zero length array type. An implementation of 'pascal style
1929arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1930example.
1931
Sean Silvab084af42012-12-07 10:36:55 +00001932.. _t_struct:
1933
1934Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001935""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001936
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001937:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001938
1939The structure type is used to represent a collection of data members
1940together in memory. The elements of a structure may be any type that has
1941a size.
1942
1943Structures in memory are accessed using '``load``' and '``store``' by
1944getting a pointer to a field with the '``getelementptr``' instruction.
1945Structures in registers are accessed using the '``extractvalue``' and
1946'``insertvalue``' instructions.
1947
1948Structures may optionally be "packed" structures, which indicate that
1949the alignment of the struct is one byte, and that there is no padding
1950between the elements. In non-packed structs, padding between field types
1951is inserted as defined by the DataLayout string in the module, which is
1952required to match what the underlying code generator expects.
1953
1954Structures can either be "literal" or "identified". A literal structure
1955is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1956identified types are always defined at the top level with a name.
1957Literal types are uniqued by their contents and can never be recursive
1958or opaque since there is no way to write one. Identified types can be
1959recursive, can be opaqued, and are never uniqued.
1960
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001961:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001962
1963::
1964
1965 %T1 = type { <type list> } ; Identified normal struct type
1966 %T2 = type <{ <type list> }> ; Identified packed struct type
1967
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001968:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001969
1970+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1971| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1972+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001973| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001974+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1975| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1976+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1977
1978.. _t_opaque:
1979
1980Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001981""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001982
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001983:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001984
1985Opaque structure types are used to represent named structure types that
1986do not have a body specified. This corresponds (for example) to the C
1987notion of a forward declared structure.
1988
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001989:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001990
1991::
1992
1993 %X = type opaque
1994 %52 = type opaque
1995
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001996:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001997
1998+--------------+-------------------+
1999| ``opaque`` | An opaque type. |
2000+--------------+-------------------+
2001
Sean Silva1703e702014-04-08 21:06:22 +00002002.. _constants:
2003
Sean Silvab084af42012-12-07 10:36:55 +00002004Constants
2005=========
2006
2007LLVM has several different basic types of constants. This section
2008describes them all and their syntax.
2009
2010Simple Constants
2011----------------
2012
2013**Boolean constants**
2014 The two strings '``true``' and '``false``' are both valid constants
2015 of the ``i1`` type.
2016**Integer constants**
2017 Standard integers (such as '4') are constants of the
2018 :ref:`integer <t_integer>` type. Negative numbers may be used with
2019 integer types.
2020**Floating point constants**
2021 Floating point constants use standard decimal notation (e.g.
2022 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2023 hexadecimal notation (see below). The assembler requires the exact
2024 decimal value of a floating-point constant. For example, the
2025 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2026 decimal in binary. Floating point constants must have a :ref:`floating
2027 point <t_floating>` type.
2028**Null pointer constants**
2029 The identifier '``null``' is recognized as a null pointer constant
2030 and must be of :ref:`pointer type <t_pointer>`.
2031
2032The one non-intuitive notation for constants is the hexadecimal form of
2033floating point constants. For example, the form
2034'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2035than) '``double 4.5e+15``'. The only time hexadecimal floating point
2036constants are required (and the only time that they are generated by the
2037disassembler) is when a floating point constant must be emitted but it
2038cannot be represented as a decimal floating point number in a reasonable
2039number of digits. For example, NaN's, infinities, and other special
2040values are represented in their IEEE hexadecimal format so that assembly
2041and disassembly do not cause any bits to change in the constants.
2042
2043When using the hexadecimal form, constants of types half, float, and
2044double are represented using the 16-digit form shown above (which
2045matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002046must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002047precision, respectively. Hexadecimal format is always used for long
2048double, and there are three forms of long double. The 80-bit format used
2049by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2050128-bit format used by PowerPC (two adjacent doubles) is represented by
2051``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002052represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2053will only work if they match the long double format on your target.
2054The IEEE 16-bit format (half precision) is represented by ``0xH``
2055followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2056(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002057
Reid Kleckner9a16d082014-03-05 02:41:37 +00002058There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002059
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002060.. _complexconstants:
2061
Sean Silvab084af42012-12-07 10:36:55 +00002062Complex Constants
2063-----------------
2064
2065Complex constants are a (potentially recursive) combination of simple
2066constants and smaller complex constants.
2067
2068**Structure constants**
2069 Structure constants are represented with notation similar to
2070 structure type definitions (a comma separated list of elements,
2071 surrounded by braces (``{}``)). For example:
2072 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2073 "``@G = external global i32``". Structure constants must have
2074 :ref:`structure type <t_struct>`, and the number and types of elements
2075 must match those specified by the type.
2076**Array constants**
2077 Array constants are represented with notation similar to array type
2078 definitions (a comma separated list of elements, surrounded by
2079 square brackets (``[]``)). For example:
2080 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2081 :ref:`array type <t_array>`, and the number and types of elements must
2082 match those specified by the type.
2083**Vector constants**
2084 Vector constants are represented with notation similar to vector
2085 type definitions (a comma separated list of elements, surrounded by
2086 less-than/greater-than's (``<>``)). For example:
2087 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2088 must have :ref:`vector type <t_vector>`, and the number and types of
2089 elements must match those specified by the type.
2090**Zero initialization**
2091 The string '``zeroinitializer``' can be used to zero initialize a
2092 value to zero of *any* type, including scalar and
2093 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2094 having to print large zero initializers (e.g. for large arrays) and
2095 is always exactly equivalent to using explicit zero initializers.
2096**Metadata node**
2097 A metadata node is a structure-like constant with :ref:`metadata
2098 type <t_metadata>`. For example:
2099 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2100 constants that are meant to be interpreted as part of the
2101 instruction stream, metadata is a place to attach additional
2102 information such as debug info.
2103
2104Global Variable and Function Addresses
2105--------------------------------------
2106
2107The addresses of :ref:`global variables <globalvars>` and
2108:ref:`functions <functionstructure>` are always implicitly valid
2109(link-time) constants. These constants are explicitly referenced when
2110the :ref:`identifier for the global <identifiers>` is used and always have
2111:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2112file:
2113
2114.. code-block:: llvm
2115
2116 @X = global i32 17
2117 @Y = global i32 42
2118 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2119
2120.. _undefvalues:
2121
2122Undefined Values
2123----------------
2124
2125The string '``undef``' can be used anywhere a constant is expected, and
2126indicates that the user of the value may receive an unspecified
2127bit-pattern. Undefined values may be of any type (other than '``label``'
2128or '``void``') and be used anywhere a constant is permitted.
2129
2130Undefined values are useful because they indicate to the compiler that
2131the program is well defined no matter what value is used. This gives the
2132compiler more freedom to optimize. Here are some examples of
2133(potentially surprising) transformations that are valid (in pseudo IR):
2134
2135.. code-block:: llvm
2136
2137 %A = add %X, undef
2138 %B = sub %X, undef
2139 %C = xor %X, undef
2140 Safe:
2141 %A = undef
2142 %B = undef
2143 %C = undef
2144
2145This is safe because all of the output bits are affected by the undef
2146bits. Any output bit can have a zero or one depending on the input bits.
2147
2148.. code-block:: llvm
2149
2150 %A = or %X, undef
2151 %B = and %X, undef
2152 Safe:
2153 %A = -1
2154 %B = 0
2155 Unsafe:
2156 %A = undef
2157 %B = undef
2158
2159These logical operations have bits that are not always affected by the
2160input. For example, if ``%X`` has a zero bit, then the output of the
2161'``and``' operation will always be a zero for that bit, no matter what
2162the corresponding bit from the '``undef``' is. As such, it is unsafe to
2163optimize or assume that the result of the '``and``' is '``undef``'.
2164However, it is safe to assume that all bits of the '``undef``' could be
21650, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2166all the bits of the '``undef``' operand to the '``or``' could be set,
2167allowing the '``or``' to be folded to -1.
2168
2169.. code-block:: llvm
2170
2171 %A = select undef, %X, %Y
2172 %B = select undef, 42, %Y
2173 %C = select %X, %Y, undef
2174 Safe:
2175 %A = %X (or %Y)
2176 %B = 42 (or %Y)
2177 %C = %Y
2178 Unsafe:
2179 %A = undef
2180 %B = undef
2181 %C = undef
2182
2183This set of examples shows that undefined '``select``' (and conditional
2184branch) conditions can go *either way*, but they have to come from one
2185of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2186both known to have a clear low bit, then ``%A`` would have to have a
2187cleared low bit. However, in the ``%C`` example, the optimizer is
2188allowed to assume that the '``undef``' operand could be the same as
2189``%Y``, allowing the whole '``select``' to be eliminated.
2190
2191.. code-block:: llvm
2192
2193 %A = xor undef, undef
2194
2195 %B = undef
2196 %C = xor %B, %B
2197
2198 %D = undef
2199 %E = icmp lt %D, 4
2200 %F = icmp gte %D, 4
2201
2202 Safe:
2203 %A = undef
2204 %B = undef
2205 %C = undef
2206 %D = undef
2207 %E = undef
2208 %F = undef
2209
2210This example points out that two '``undef``' operands are not
2211necessarily the same. This can be surprising to people (and also matches
2212C semantics) where they assume that "``X^X``" is always zero, even if
2213``X`` is undefined. This isn't true for a number of reasons, but the
2214short answer is that an '``undef``' "variable" can arbitrarily change
2215its value over its "live range". This is true because the variable
2216doesn't actually *have a live range*. Instead, the value is logically
2217read from arbitrary registers that happen to be around when needed, so
2218the value is not necessarily consistent over time. In fact, ``%A`` and
2219``%C`` need to have the same semantics or the core LLVM "replace all
2220uses with" concept would not hold.
2221
2222.. code-block:: llvm
2223
2224 %A = fdiv undef, %X
2225 %B = fdiv %X, undef
2226 Safe:
2227 %A = undef
2228 b: unreachable
2229
2230These examples show the crucial difference between an *undefined value*
2231and *undefined behavior*. An undefined value (like '``undef``') is
2232allowed to have an arbitrary bit-pattern. This means that the ``%A``
2233operation can be constant folded to '``undef``', because the '``undef``'
2234could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2235However, in the second example, we can make a more aggressive
2236assumption: because the ``undef`` is allowed to be an arbitrary value,
2237we are allowed to assume that it could be zero. Since a divide by zero
2238has *undefined behavior*, we are allowed to assume that the operation
2239does not execute at all. This allows us to delete the divide and all
2240code after it. Because the undefined operation "can't happen", the
2241optimizer can assume that it occurs in dead code.
2242
2243.. code-block:: llvm
2244
2245 a: store undef -> %X
2246 b: store %X -> undef
2247 Safe:
2248 a: <deleted>
2249 b: unreachable
2250
2251These examples reiterate the ``fdiv`` example: a store *of* an undefined
2252value can be assumed to not have any effect; we can assume that the
2253value is overwritten with bits that happen to match what was already
2254there. However, a store *to* an undefined location could clobber
2255arbitrary memory, therefore, it has undefined behavior.
2256
2257.. _poisonvalues:
2258
2259Poison Values
2260-------------
2261
2262Poison values are similar to :ref:`undef values <undefvalues>`, however
2263they also represent the fact that an instruction or constant expression
2264which cannot evoke side effects has nevertheless detected a condition
2265which results in undefined behavior.
2266
2267There is currently no way of representing a poison value in the IR; they
2268only exist when produced by operations such as :ref:`add <i_add>` with
2269the ``nsw`` flag.
2270
2271Poison value behavior is defined in terms of value *dependence*:
2272
2273- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2274- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2275 their dynamic predecessor basic block.
2276- Function arguments depend on the corresponding actual argument values
2277 in the dynamic callers of their functions.
2278- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2279 instructions that dynamically transfer control back to them.
2280- :ref:`Invoke <i_invoke>` instructions depend on the
2281 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2282 call instructions that dynamically transfer control back to them.
2283- Non-volatile loads and stores depend on the most recent stores to all
2284 of the referenced memory addresses, following the order in the IR
2285 (including loads and stores implied by intrinsics such as
2286 :ref:`@llvm.memcpy <int_memcpy>`.)
2287- An instruction with externally visible side effects depends on the
2288 most recent preceding instruction with externally visible side
2289 effects, following the order in the IR. (This includes :ref:`volatile
2290 operations <volatile>`.)
2291- An instruction *control-depends* on a :ref:`terminator
2292 instruction <terminators>` if the terminator instruction has
2293 multiple successors and the instruction is always executed when
2294 control transfers to one of the successors, and may not be executed
2295 when control is transferred to another.
2296- Additionally, an instruction also *control-depends* on a terminator
2297 instruction if the set of instructions it otherwise depends on would
2298 be different if the terminator had transferred control to a different
2299 successor.
2300- Dependence is transitive.
2301
2302Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2303with the additional affect that any instruction which has a *dependence*
2304on a poison value has undefined behavior.
2305
2306Here are some examples:
2307
2308.. code-block:: llvm
2309
2310 entry:
2311 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2312 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2313 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2314 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2315
2316 store i32 %poison, i32* @g ; Poison value stored to memory.
2317 %poison2 = load i32* @g ; Poison value loaded back from memory.
2318
2319 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2320
2321 %narrowaddr = bitcast i32* @g to i16*
2322 %wideaddr = bitcast i32* @g to i64*
2323 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2324 %poison4 = load i64* %wideaddr ; Returns a poison value.
2325
2326 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2327 br i1 %cmp, label %true, label %end ; Branch to either destination.
2328
2329 true:
2330 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2331 ; it has undefined behavior.
2332 br label %end
2333
2334 end:
2335 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2336 ; Both edges into this PHI are
2337 ; control-dependent on %cmp, so this
2338 ; always results in a poison value.
2339
2340 store volatile i32 0, i32* @g ; This would depend on the store in %true
2341 ; if %cmp is true, or the store in %entry
2342 ; otherwise, so this is undefined behavior.
2343
2344 br i1 %cmp, label %second_true, label %second_end
2345 ; The same branch again, but this time the
2346 ; true block doesn't have side effects.
2347
2348 second_true:
2349 ; No side effects!
2350 ret void
2351
2352 second_end:
2353 store volatile i32 0, i32* @g ; This time, the instruction always depends
2354 ; on the store in %end. Also, it is
2355 ; control-equivalent to %end, so this is
2356 ; well-defined (ignoring earlier undefined
2357 ; behavior in this example).
2358
2359.. _blockaddress:
2360
2361Addresses of Basic Blocks
2362-------------------------
2363
2364``blockaddress(@function, %block)``
2365
2366The '``blockaddress``' constant computes the address of the specified
2367basic block in the specified function, and always has an ``i8*`` type.
2368Taking the address of the entry block is illegal.
2369
2370This value only has defined behavior when used as an operand to the
2371':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2372against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002373undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002374no label is equal to the null pointer. This may be passed around as an
2375opaque pointer sized value as long as the bits are not inspected. This
2376allows ``ptrtoint`` and arithmetic to be performed on these values so
2377long as the original value is reconstituted before the ``indirectbr``
2378instruction.
2379
2380Finally, some targets may provide defined semantics when using the value
2381as the operand to an inline assembly, but that is target specific.
2382
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002383.. _constantexprs:
2384
Sean Silvab084af42012-12-07 10:36:55 +00002385Constant Expressions
2386--------------------
2387
2388Constant expressions are used to allow expressions involving other
2389constants to be used as constants. Constant expressions may be of any
2390:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2391that does not have side effects (e.g. load and call are not supported).
2392The following is the syntax for constant expressions:
2393
2394``trunc (CST to TYPE)``
2395 Truncate a constant to another type. The bit size of CST must be
2396 larger than the bit size of TYPE. Both types must be integers.
2397``zext (CST to TYPE)``
2398 Zero extend a constant to another type. The bit size of CST must be
2399 smaller than the bit size of TYPE. Both types must be integers.
2400``sext (CST to TYPE)``
2401 Sign extend a constant to another type. The bit size of CST must be
2402 smaller than the bit size of TYPE. Both types must be integers.
2403``fptrunc (CST to TYPE)``
2404 Truncate a floating point constant to another floating point type.
2405 The size of CST must be larger than the size of TYPE. Both types
2406 must be floating point.
2407``fpext (CST to TYPE)``
2408 Floating point extend a constant to another type. The size of CST
2409 must be smaller or equal to the size of TYPE. Both types must be
2410 floating point.
2411``fptoui (CST to TYPE)``
2412 Convert a floating point constant to the corresponding unsigned
2413 integer constant. TYPE must be a scalar or vector integer type. CST
2414 must be of scalar or vector floating point type. Both CST and TYPE
2415 must be scalars, or vectors of the same number of elements. If the
2416 value won't fit in the integer type, the results are undefined.
2417``fptosi (CST to TYPE)``
2418 Convert a floating point constant to the corresponding signed
2419 integer constant. TYPE must be a scalar or vector integer type. CST
2420 must be of scalar or vector floating point type. Both CST and TYPE
2421 must be scalars, or vectors of the same number of elements. If the
2422 value won't fit in the integer type, the results are undefined.
2423``uitofp (CST to TYPE)``
2424 Convert an unsigned integer constant to the corresponding floating
2425 point constant. TYPE must be a scalar or vector floating point type.
2426 CST must be of scalar or vector integer type. Both CST and TYPE must
2427 be scalars, or vectors of the same number of elements. If the value
2428 won't fit in the floating point type, the results are undefined.
2429``sitofp (CST to TYPE)``
2430 Convert a signed integer constant to the corresponding floating
2431 point constant. TYPE must be a scalar or vector floating point type.
2432 CST must be of scalar or vector integer type. Both CST and TYPE must
2433 be scalars, or vectors of the same number of elements. If the value
2434 won't fit in the floating point type, the results are undefined.
2435``ptrtoint (CST to TYPE)``
2436 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002437 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002438 pointer type. The ``CST`` value is zero extended, truncated, or
2439 unchanged to make it fit in ``TYPE``.
2440``inttoptr (CST to TYPE)``
2441 Convert an integer constant to a pointer constant. TYPE must be a
2442 pointer type. CST must be of integer type. The CST value is zero
2443 extended, truncated, or unchanged to make it fit in a pointer size.
2444 This one is *really* dangerous!
2445``bitcast (CST to TYPE)``
2446 Convert a constant, CST, to another TYPE. The constraints of the
2447 operands are the same as those for the :ref:`bitcast
2448 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002449``addrspacecast (CST to TYPE)``
2450 Convert a constant pointer or constant vector of pointer, CST, to another
2451 TYPE in a different address space. The constraints of the operands are the
2452 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002453``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2454 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2455 constants. As with the :ref:`getelementptr <i_getelementptr>`
2456 instruction, the index list may have zero or more indexes, which are
2457 required to make sense for the type of "CSTPTR".
2458``select (COND, VAL1, VAL2)``
2459 Perform the :ref:`select operation <i_select>` on constants.
2460``icmp COND (VAL1, VAL2)``
2461 Performs the :ref:`icmp operation <i_icmp>` on constants.
2462``fcmp COND (VAL1, VAL2)``
2463 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2464``extractelement (VAL, IDX)``
2465 Perform the :ref:`extractelement operation <i_extractelement>` on
2466 constants.
2467``insertelement (VAL, ELT, IDX)``
2468 Perform the :ref:`insertelement operation <i_insertelement>` on
2469 constants.
2470``shufflevector (VEC1, VEC2, IDXMASK)``
2471 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2472 constants.
2473``extractvalue (VAL, IDX0, IDX1, ...)``
2474 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2475 constants. The index list is interpreted in a similar manner as
2476 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2477 least one index value must be specified.
2478``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2479 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2480 The index list is interpreted in a similar manner as indices in a
2481 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2482 value must be specified.
2483``OPCODE (LHS, RHS)``
2484 Perform the specified operation of the LHS and RHS constants. OPCODE
2485 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2486 binary <bitwiseops>` operations. The constraints on operands are
2487 the same as those for the corresponding instruction (e.g. no bitwise
2488 operations on floating point values are allowed).
2489
2490Other Values
2491============
2492
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002493.. _inlineasmexprs:
2494
Sean Silvab084af42012-12-07 10:36:55 +00002495Inline Assembler Expressions
2496----------------------------
2497
2498LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2499Inline Assembly <moduleasm>`) through the use of a special value. This
2500value represents the inline assembler as a string (containing the
2501instructions to emit), a list of operand constraints (stored as a
2502string), a flag that indicates whether or not the inline asm expression
2503has side effects, and a flag indicating whether the function containing
2504the asm needs to align its stack conservatively. An example inline
2505assembler expression is:
2506
2507.. code-block:: llvm
2508
2509 i32 (i32) asm "bswap $0", "=r,r"
2510
2511Inline assembler expressions may **only** be used as the callee operand
2512of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2513Thus, typically we have:
2514
2515.. code-block:: llvm
2516
2517 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2518
2519Inline asms with side effects not visible in the constraint list must be
2520marked as having side effects. This is done through the use of the
2521'``sideeffect``' keyword, like so:
2522
2523.. code-block:: llvm
2524
2525 call void asm sideeffect "eieio", ""()
2526
2527In some cases inline asms will contain code that will not work unless
2528the stack is aligned in some way, such as calls or SSE instructions on
2529x86, yet will not contain code that does that alignment within the asm.
2530The compiler should make conservative assumptions about what the asm
2531might contain and should generate its usual stack alignment code in the
2532prologue if the '``alignstack``' keyword is present:
2533
2534.. code-block:: llvm
2535
2536 call void asm alignstack "eieio", ""()
2537
2538Inline asms also support using non-standard assembly dialects. The
2539assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2540the inline asm is using the Intel dialect. Currently, ATT and Intel are
2541the only supported dialects. An example is:
2542
2543.. code-block:: llvm
2544
2545 call void asm inteldialect "eieio", ""()
2546
2547If multiple keywords appear the '``sideeffect``' keyword must come
2548first, the '``alignstack``' keyword second and the '``inteldialect``'
2549keyword last.
2550
2551Inline Asm Metadata
2552^^^^^^^^^^^^^^^^^^^
2553
2554The call instructions that wrap inline asm nodes may have a
2555"``!srcloc``" MDNode attached to it that contains a list of constant
2556integers. If present, the code generator will use the integer as the
2557location cookie value when report errors through the ``LLVMContext``
2558error reporting mechanisms. This allows a front-end to correlate backend
2559errors that occur with inline asm back to the source code that produced
2560it. For example:
2561
2562.. code-block:: llvm
2563
2564 call void asm sideeffect "something bad", ""(), !srcloc !42
2565 ...
2566 !42 = !{ i32 1234567 }
2567
2568It is up to the front-end to make sense of the magic numbers it places
2569in the IR. If the MDNode contains multiple constants, the code generator
2570will use the one that corresponds to the line of the asm that the error
2571occurs on.
2572
2573.. _metadata:
2574
2575Metadata Nodes and Metadata Strings
2576-----------------------------------
2577
2578LLVM IR allows metadata to be attached to instructions in the program
2579that can convey extra information about the code to the optimizers and
2580code generator. One example application of metadata is source-level
2581debug information. There are two metadata primitives: strings and nodes.
2582All metadata has the ``metadata`` type and is identified in syntax by a
2583preceding exclamation point ('``!``').
2584
2585A metadata string is a string surrounded by double quotes. It can
2586contain any character by escaping non-printable characters with
2587"``\xx``" where "``xx``" is the two digit hex code. For example:
2588"``!"test\00"``".
2589
2590Metadata nodes are represented with notation similar to structure
2591constants (a comma separated list of elements, surrounded by braces and
2592preceded by an exclamation point). Metadata nodes can have any values as
2593their operand. For example:
2594
2595.. code-block:: llvm
2596
2597 !{ metadata !"test\00", i32 10}
2598
2599A :ref:`named metadata <namedmetadatastructure>` is a collection of
2600metadata nodes, which can be looked up in the module symbol table. For
2601example:
2602
2603.. code-block:: llvm
2604
2605 !foo = metadata !{!4, !3}
2606
2607Metadata can be used as function arguments. Here ``llvm.dbg.value``
2608function is using two metadata arguments:
2609
2610.. code-block:: llvm
2611
2612 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2613
2614Metadata can be attached with an instruction. Here metadata ``!21`` is
2615attached to the ``add`` instruction using the ``!dbg`` identifier:
2616
2617.. code-block:: llvm
2618
2619 %indvar.next = add i64 %indvar, 1, !dbg !21
2620
2621More information about specific metadata nodes recognized by the
2622optimizers and code generator is found below.
2623
2624'``tbaa``' Metadata
2625^^^^^^^^^^^^^^^^^^^
2626
2627In LLVM IR, memory does not have types, so LLVM's own type system is not
2628suitable for doing TBAA. Instead, metadata is added to the IR to
2629describe a type system of a higher level language. This can be used to
2630implement typical C/C++ TBAA, but it can also be used to implement
2631custom alias analysis behavior for other languages.
2632
2633The current metadata format is very simple. TBAA metadata nodes have up
2634to three fields, e.g.:
2635
2636.. code-block:: llvm
2637
2638 !0 = metadata !{ metadata !"an example type tree" }
2639 !1 = metadata !{ metadata !"int", metadata !0 }
2640 !2 = metadata !{ metadata !"float", metadata !0 }
2641 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2642
2643The first field is an identity field. It can be any value, usually a
2644metadata string, which uniquely identifies the type. The most important
2645name in the tree is the name of the root node. Two trees with different
2646root node names are entirely disjoint, even if they have leaves with
2647common names.
2648
2649The second field identifies the type's parent node in the tree, or is
2650null or omitted for a root node. A type is considered to alias all of
2651its descendants and all of its ancestors in the tree. Also, a type is
2652considered to alias all types in other trees, so that bitcode produced
2653from multiple front-ends is handled conservatively.
2654
2655If the third field is present, it's an integer which if equal to 1
2656indicates that the type is "constant" (meaning
2657``pointsToConstantMemory`` should return true; see `other useful
2658AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2659
2660'``tbaa.struct``' Metadata
2661^^^^^^^^^^^^^^^^^^^^^^^^^^
2662
2663The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2664aggregate assignment operations in C and similar languages, however it
2665is defined to copy a contiguous region of memory, which is more than
2666strictly necessary for aggregate types which contain holes due to
2667padding. Also, it doesn't contain any TBAA information about the fields
2668of the aggregate.
2669
2670``!tbaa.struct`` metadata can describe which memory subregions in a
2671memcpy are padding and what the TBAA tags of the struct are.
2672
2673The current metadata format is very simple. ``!tbaa.struct`` metadata
2674nodes are a list of operands which are in conceptual groups of three.
2675For each group of three, the first operand gives the byte offset of a
2676field in bytes, the second gives its size in bytes, and the third gives
2677its tbaa tag. e.g.:
2678
2679.. code-block:: llvm
2680
2681 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2682
2683This describes a struct with two fields. The first is at offset 0 bytes
2684with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2685and has size 4 bytes and has tbaa tag !2.
2686
2687Note that the fields need not be contiguous. In this example, there is a
26884 byte gap between the two fields. This gap represents padding which
2689does not carry useful data and need not be preserved.
2690
2691'``fpmath``' Metadata
2692^^^^^^^^^^^^^^^^^^^^^
2693
2694``fpmath`` metadata may be attached to any instruction of floating point
2695type. It can be used to express the maximum acceptable error in the
2696result of that instruction, in ULPs, thus potentially allowing the
2697compiler to use a more efficient but less accurate method of computing
2698it. ULP is defined as follows:
2699
2700 If ``x`` is a real number that lies between two finite consecutive
2701 floating-point numbers ``a`` and ``b``, without being equal to one
2702 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2703 distance between the two non-equal finite floating-point numbers
2704 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2705
2706The metadata node shall consist of a single positive floating point
2707number representing the maximum relative error, for example:
2708
2709.. code-block:: llvm
2710
2711 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2712
2713'``range``' Metadata
2714^^^^^^^^^^^^^^^^^^^^
2715
2716``range`` metadata may be attached only to loads of integer types. It
2717expresses the possible ranges the loaded value is in. The ranges are
2718represented with a flattened list of integers. The loaded value is known
2719to be in the union of the ranges defined by each consecutive pair. Each
2720pair has the following properties:
2721
2722- The type must match the type loaded by the instruction.
2723- The pair ``a,b`` represents the range ``[a,b)``.
2724- Both ``a`` and ``b`` are constants.
2725- The range is allowed to wrap.
2726- The range should not represent the full or empty set. That is,
2727 ``a!=b``.
2728
2729In addition, the pairs must be in signed order of the lower bound and
2730they must be non-contiguous.
2731
2732Examples:
2733
2734.. code-block:: llvm
2735
2736 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2737 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2738 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2739 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2740 ...
2741 !0 = metadata !{ i8 0, i8 2 }
2742 !1 = metadata !{ i8 255, i8 2 }
2743 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2744 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2745
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002746'``llvm.loop``'
2747^^^^^^^^^^^^^^^
2748
2749It is sometimes useful to attach information to loop constructs. Currently,
2750loop metadata is implemented as metadata attached to the branch instruction
2751in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002752guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002753specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002754
2755The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002756itself to avoid merging it with any other identifier metadata, e.g.,
2757during module linkage or function inlining. That is, each loop should refer
2758to their own identification metadata even if they reside in separate functions.
2759The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002760constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002761
2762.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002763
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002764 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002765 !1 = metadata !{ metadata !1 }
2766
Paul Redmond5fdf8362013-05-28 20:00:34 +00002767The loop identifier metadata can be used to specify additional per-loop
2768metadata. Any operands after the first operand can be treated as user-defined
2769metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2770by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002771
Paul Redmond5fdf8362013-05-28 20:00:34 +00002772.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002773
Paul Redmond5fdf8362013-05-28 20:00:34 +00002774 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2775 ...
2776 !0 = metadata !{ metadata !0, metadata !1 }
2777 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002778
2779'``llvm.mem``'
2780^^^^^^^^^^^^^^^
2781
2782Metadata types used to annotate memory accesses with information helpful
2783for optimizations are prefixed with ``llvm.mem``.
2784
2785'``llvm.mem.parallel_loop_access``' Metadata
2786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2787
2788For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002789the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002790also all of the memory accessing instructions in the loop body need to be
2791marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2792is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002793the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002794converted to sequential loops due to optimization passes that are unaware of
2795the parallel semantics and that insert new memory instructions to the loop
2796body.
2797
2798Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002799both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002800metadata types that refer to the same loop identifier metadata.
2801
2802.. code-block:: llvm
2803
2804 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002805 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002806 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002807 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002808 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002809 ...
2810 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002811
2812 for.end:
2813 ...
2814 !0 = metadata !{ metadata !0 }
2815
2816It is also possible to have nested parallel loops. In that case the
2817memory accesses refer to a list of loop identifier metadata nodes instead of
2818the loop identifier metadata node directly:
2819
2820.. code-block:: llvm
2821
2822 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002823 ...
2824 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
2825 ...
2826 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002827
2828 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002829 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002830 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002831 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002832 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002833 ...
2834 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002835
2836 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002837 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002838 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00002839 ...
2840 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002841
2842 outer.for.end: ; preds = %for.body
2843 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002844 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2845 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2846 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002847
Paul Redmond5fdf8362013-05-28 20:00:34 +00002848'``llvm.vectorizer``'
2849^^^^^^^^^^^^^^^^^^^^^
2850
2851Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2852vectorization parameters such as vectorization factor and unroll factor.
2853
2854``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2855loop identification metadata.
2856
2857'``llvm.vectorizer.unroll``' Metadata
2858^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2859
2860This metadata instructs the loop vectorizer to unroll the specified
2861loop exactly ``N`` times.
2862
2863The first operand is the string ``llvm.vectorizer.unroll`` and the second
2864operand is an integer specifying the unroll factor. For example:
2865
2866.. code-block:: llvm
2867
2868 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2869
2870Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2871loop.
2872
2873If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2874determined automatically.
2875
2876'``llvm.vectorizer.width``' Metadata
2877^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2878
Paul Redmondeccbb322013-05-30 17:22:46 +00002879This metadata sets the target width of the vectorizer to ``N``. Without
2880this metadata, the vectorizer will choose a width automatically.
2881Regardless of this metadata, the vectorizer will only vectorize loops if
2882it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002883
2884The first operand is the string ``llvm.vectorizer.width`` and the second
2885operand is an integer specifying the width. For example:
2886
2887.. code-block:: llvm
2888
2889 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2890
2891Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2892loop.
2893
2894If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2895automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002896
Sean Silvab084af42012-12-07 10:36:55 +00002897Module Flags Metadata
2898=====================
2899
2900Information about the module as a whole is difficult to convey to LLVM's
2901subsystems. The LLVM IR isn't sufficient to transmit this information.
2902The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002903this. These flags are in the form of key / value pairs --- much like a
2904dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002905look it up.
2906
2907The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2908Each triplet has the following form:
2909
2910- The first element is a *behavior* flag, which specifies the behavior
2911 when two (or more) modules are merged together, and it encounters two
2912 (or more) metadata with the same ID. The supported behaviors are
2913 described below.
2914- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002915 metadata. Each module may only have one flag entry for each unique ID (not
2916 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002917- The third element is the value of the flag.
2918
2919When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002920``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2921each unique metadata ID string, there will be exactly one entry in the merged
2922modules ``llvm.module.flags`` metadata table, and the value for that entry will
2923be determined by the merge behavior flag, as described below. The only exception
2924is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002925
2926The following behaviors are supported:
2927
2928.. list-table::
2929 :header-rows: 1
2930 :widths: 10 90
2931
2932 * - Value
2933 - Behavior
2934
2935 * - 1
2936 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002937 Emits an error if two values disagree, otherwise the resulting value
2938 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002939
2940 * - 2
2941 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002942 Emits a warning if two values disagree. The result value will be the
2943 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002944
2945 * - 3
2946 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002947 Adds a requirement that another module flag be present and have a
2948 specified value after linking is performed. The value must be a
2949 metadata pair, where the first element of the pair is the ID of the
2950 module flag to be restricted, and the second element of the pair is
2951 the value the module flag should be restricted to. This behavior can
2952 be used to restrict the allowable results (via triggering of an
2953 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002954
2955 * - 4
2956 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002957 Uses the specified value, regardless of the behavior or value of the
2958 other module. If both modules specify **Override**, but the values
2959 differ, an error will be emitted.
2960
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002961 * - 5
2962 - **Append**
2963 Appends the two values, which are required to be metadata nodes.
2964
2965 * - 6
2966 - **AppendUnique**
2967 Appends the two values, which are required to be metadata
2968 nodes. However, duplicate entries in the second list are dropped
2969 during the append operation.
2970
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002971It is an error for a particular unique flag ID to have multiple behaviors,
2972except in the case of **Require** (which adds restrictions on another metadata
2973value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002974
2975An example of module flags:
2976
2977.. code-block:: llvm
2978
2979 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2980 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2981 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2982 !3 = metadata !{ i32 3, metadata !"qux",
2983 metadata !{
2984 metadata !"foo", i32 1
2985 }
2986 }
2987 !llvm.module.flags = !{ !0, !1, !2, !3 }
2988
2989- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2990 if two or more ``!"foo"`` flags are seen is to emit an error if their
2991 values are not equal.
2992
2993- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2994 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002995 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002996
2997- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2998 behavior if two or more ``!"qux"`` flags are seen is to emit a
2999 warning if their values are not equal.
3000
3001- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3002
3003 ::
3004
3005 metadata !{ metadata !"foo", i32 1 }
3006
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003007 The behavior is to emit an error if the ``llvm.module.flags`` does not
3008 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3009 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003010
3011Objective-C Garbage Collection Module Flags Metadata
3012----------------------------------------------------
3013
3014On the Mach-O platform, Objective-C stores metadata about garbage
3015collection in a special section called "image info". The metadata
3016consists of a version number and a bitmask specifying what types of
3017garbage collection are supported (if any) by the file. If two or more
3018modules are linked together their garbage collection metadata needs to
3019be merged rather than appended together.
3020
3021The Objective-C garbage collection module flags metadata consists of the
3022following key-value pairs:
3023
3024.. list-table::
3025 :header-rows: 1
3026 :widths: 30 70
3027
3028 * - Key
3029 - Value
3030
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003031 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003032 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003033
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003034 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003035 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003036 always 0.
3037
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003038 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003039 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003040 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3041 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3042 Objective-C ABI version 2.
3043
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003044 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003045 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003046 not. Valid values are 0, for no garbage collection, and 2, for garbage
3047 collection supported.
3048
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003049 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003050 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003051 If present, its value must be 6. This flag requires that the
3052 ``Objective-C Garbage Collection`` flag have the value 2.
3053
3054Some important flag interactions:
3055
3056- If a module with ``Objective-C Garbage Collection`` set to 0 is
3057 merged with a module with ``Objective-C Garbage Collection`` set to
3058 2, then the resulting module has the
3059 ``Objective-C Garbage Collection`` flag set to 0.
3060- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3061 merged with a module with ``Objective-C GC Only`` set to 6.
3062
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003063Automatic Linker Flags Module Flags Metadata
3064--------------------------------------------
3065
3066Some targets support embedding flags to the linker inside individual object
3067files. Typically this is used in conjunction with language extensions which
3068allow source files to explicitly declare the libraries they depend on, and have
3069these automatically be transmitted to the linker via object files.
3070
3071These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003072using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003073to be ``AppendUnique``, and the value for the key is expected to be a metadata
3074node which should be a list of other metadata nodes, each of which should be a
3075list of metadata strings defining linker options.
3076
3077For example, the following metadata section specifies two separate sets of
3078linker options, presumably to link against ``libz`` and the ``Cocoa``
3079framework::
3080
Michael Liaoa7699082013-03-06 18:24:34 +00003081 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003082 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003083 metadata !{ metadata !"-lz" },
3084 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003085 !llvm.module.flags = !{ !0 }
3086
3087The metadata encoding as lists of lists of options, as opposed to a collapsed
3088list of options, is chosen so that the IR encoding can use multiple option
3089strings to specify e.g., a single library, while still having that specifier be
3090preserved as an atomic element that can be recognized by a target specific
3091assembly writer or object file emitter.
3092
3093Each individual option is required to be either a valid option for the target's
3094linker, or an option that is reserved by the target specific assembly writer or
3095object file emitter. No other aspect of these options is defined by the IR.
3096
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003097.. _intrinsicglobalvariables:
3098
Sean Silvab084af42012-12-07 10:36:55 +00003099Intrinsic Global Variables
3100==========================
3101
3102LLVM has a number of "magic" global variables that contain data that
3103affect code generation or other IR semantics. These are documented here.
3104All globals of this sort should have a section specified as
3105"``llvm.metadata``". This section and all globals that start with
3106"``llvm.``" are reserved for use by LLVM.
3107
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003108.. _gv_llvmused:
3109
Sean Silvab084af42012-12-07 10:36:55 +00003110The '``llvm.used``' Global Variable
3111-----------------------------------
3112
Rafael Espindola74f2e462013-04-22 14:58:02 +00003113The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003114:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003115pointers to named global variables, functions and aliases which may optionally
3116have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003117use of it is:
3118
3119.. code-block:: llvm
3120
3121 @X = global i8 4
3122 @Y = global i32 123
3123
3124 @llvm.used = appending global [2 x i8*] [
3125 i8* @X,
3126 i8* bitcast (i32* @Y to i8*)
3127 ], section "llvm.metadata"
3128
Rafael Espindola74f2e462013-04-22 14:58:02 +00003129If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3130and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003131symbol that it cannot see (which is why they have to be named). For example, if
3132a variable has internal linkage and no references other than that from the
3133``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3134references from inline asms and other things the compiler cannot "see", and
3135corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003136
3137On some targets, the code generator must emit a directive to the
3138assembler or object file to prevent the assembler and linker from
3139molesting the symbol.
3140
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003141.. _gv_llvmcompilerused:
3142
Sean Silvab084af42012-12-07 10:36:55 +00003143The '``llvm.compiler.used``' Global Variable
3144--------------------------------------------
3145
3146The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3147directive, except that it only prevents the compiler from touching the
3148symbol. On targets that support it, this allows an intelligent linker to
3149optimize references to the symbol without being impeded as it would be
3150by ``@llvm.used``.
3151
3152This is a rare construct that should only be used in rare circumstances,
3153and should not be exposed to source languages.
3154
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003155.. _gv_llvmglobalctors:
3156
Sean Silvab084af42012-12-07 10:36:55 +00003157The '``llvm.global_ctors``' Global Variable
3158-------------------------------------------
3159
3160.. code-block:: llvm
3161
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003162 %0 = type { i32, void ()*, i8* }
3163 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003164
3165The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003166functions, priorities, and an optional associated global or function.
3167The functions referenced by this array will be called in ascending order
3168of priority (i.e. lowest first) when the module is loaded. The order of
3169functions with the same priority is not defined.
3170
3171If the third field is present, non-null, and points to a global variable
3172or function, the initializer function will only run if the associated
3173data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003174
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003175.. _llvmglobaldtors:
3176
Sean Silvab084af42012-12-07 10:36:55 +00003177The '``llvm.global_dtors``' Global Variable
3178-------------------------------------------
3179
3180.. code-block:: llvm
3181
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003182 %0 = type { i32, void ()*, i8* }
3183 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003184
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003185The ``@llvm.global_dtors`` array contains a list of destructor
3186functions, priorities, and an optional associated global or function.
3187The functions referenced by this array will be called in descending
3188order of priority (i.e. highest first) when the module is loaded. The
3189order of functions with the same priority is not defined.
3190
3191If the third field is present, non-null, and points to a global variable
3192or function, the destructor function will only run if the associated
3193data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003194
3195Instruction Reference
3196=====================
3197
3198The LLVM instruction set consists of several different classifications
3199of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3200instructions <binaryops>`, :ref:`bitwise binary
3201instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3202:ref:`other instructions <otherops>`.
3203
3204.. _terminators:
3205
3206Terminator Instructions
3207-----------------------
3208
3209As mentioned :ref:`previously <functionstructure>`, every basic block in a
3210program ends with a "Terminator" instruction, which indicates which
3211block should be executed after the current block is finished. These
3212terminator instructions typically yield a '``void``' value: they produce
3213control flow, not values (the one exception being the
3214':ref:`invoke <i_invoke>`' instruction).
3215
3216The terminator instructions are: ':ref:`ret <i_ret>`',
3217':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3218':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3219':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3220
3221.. _i_ret:
3222
3223'``ret``' Instruction
3224^^^^^^^^^^^^^^^^^^^^^
3225
3226Syntax:
3227"""""""
3228
3229::
3230
3231 ret <type> <value> ; Return a value from a non-void function
3232 ret void ; Return from void function
3233
3234Overview:
3235"""""""""
3236
3237The '``ret``' instruction is used to return control flow (and optionally
3238a value) from a function back to the caller.
3239
3240There are two forms of the '``ret``' instruction: one that returns a
3241value and then causes control flow, and one that just causes control
3242flow to occur.
3243
3244Arguments:
3245""""""""""
3246
3247The '``ret``' instruction optionally accepts a single argument, the
3248return value. The type of the return value must be a ':ref:`first
3249class <t_firstclass>`' type.
3250
3251A function is not :ref:`well formed <wellformed>` if it it has a non-void
3252return type and contains a '``ret``' instruction with no return value or
3253a return value with a type that does not match its type, or if it has a
3254void return type and contains a '``ret``' instruction with a return
3255value.
3256
3257Semantics:
3258""""""""""
3259
3260When the '``ret``' instruction is executed, control flow returns back to
3261the calling function's context. If the caller is a
3262":ref:`call <i_call>`" instruction, execution continues at the
3263instruction after the call. If the caller was an
3264":ref:`invoke <i_invoke>`" instruction, execution continues at the
3265beginning of the "normal" destination block. If the instruction returns
3266a value, that value shall set the call or invoke instruction's return
3267value.
3268
3269Example:
3270""""""""
3271
3272.. code-block:: llvm
3273
3274 ret i32 5 ; Return an integer value of 5
3275 ret void ; Return from a void function
3276 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3277
3278.. _i_br:
3279
3280'``br``' Instruction
3281^^^^^^^^^^^^^^^^^^^^
3282
3283Syntax:
3284"""""""
3285
3286::
3287
3288 br i1 <cond>, label <iftrue>, label <iffalse>
3289 br label <dest> ; Unconditional branch
3290
3291Overview:
3292"""""""""
3293
3294The '``br``' instruction is used to cause control flow to transfer to a
3295different basic block in the current function. There are two forms of
3296this instruction, corresponding to a conditional branch and an
3297unconditional branch.
3298
3299Arguments:
3300""""""""""
3301
3302The conditional branch form of the '``br``' instruction takes a single
3303'``i1``' value and two '``label``' values. The unconditional form of the
3304'``br``' instruction takes a single '``label``' value as a target.
3305
3306Semantics:
3307""""""""""
3308
3309Upon execution of a conditional '``br``' instruction, the '``i1``'
3310argument is evaluated. If the value is ``true``, control flows to the
3311'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3312to the '``iffalse``' ``label`` argument.
3313
3314Example:
3315""""""""
3316
3317.. code-block:: llvm
3318
3319 Test:
3320 %cond = icmp eq i32 %a, %b
3321 br i1 %cond, label %IfEqual, label %IfUnequal
3322 IfEqual:
3323 ret i32 1
3324 IfUnequal:
3325 ret i32 0
3326
3327.. _i_switch:
3328
3329'``switch``' Instruction
3330^^^^^^^^^^^^^^^^^^^^^^^^
3331
3332Syntax:
3333"""""""
3334
3335::
3336
3337 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3338
3339Overview:
3340"""""""""
3341
3342The '``switch``' instruction is used to transfer control flow to one of
3343several different places. It is a generalization of the '``br``'
3344instruction, allowing a branch to occur to one of many possible
3345destinations.
3346
3347Arguments:
3348""""""""""
3349
3350The '``switch``' instruction uses three parameters: an integer
3351comparison value '``value``', a default '``label``' destination, and an
3352array of pairs of comparison value constants and '``label``'s. The table
3353is not allowed to contain duplicate constant entries.
3354
3355Semantics:
3356""""""""""
3357
3358The ``switch`` instruction specifies a table of values and destinations.
3359When the '``switch``' instruction is executed, this table is searched
3360for the given value. If the value is found, control flow is transferred
3361to the corresponding destination; otherwise, control flow is transferred
3362to the default destination.
3363
3364Implementation:
3365"""""""""""""""
3366
3367Depending on properties of the target machine and the particular
3368``switch`` instruction, this instruction may be code generated in
3369different ways. For example, it could be generated as a series of
3370chained conditional branches or with a lookup table.
3371
3372Example:
3373""""""""
3374
3375.. code-block:: llvm
3376
3377 ; Emulate a conditional br instruction
3378 %Val = zext i1 %value to i32
3379 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3380
3381 ; Emulate an unconditional br instruction
3382 switch i32 0, label %dest [ ]
3383
3384 ; Implement a jump table:
3385 switch i32 %val, label %otherwise [ i32 0, label %onzero
3386 i32 1, label %onone
3387 i32 2, label %ontwo ]
3388
3389.. _i_indirectbr:
3390
3391'``indirectbr``' Instruction
3392^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3393
3394Syntax:
3395"""""""
3396
3397::
3398
3399 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3400
3401Overview:
3402"""""""""
3403
3404The '``indirectbr``' instruction implements an indirect branch to a
3405label within the current function, whose address is specified by
3406"``address``". Address must be derived from a
3407:ref:`blockaddress <blockaddress>` constant.
3408
3409Arguments:
3410""""""""""
3411
3412The '``address``' argument is the address of the label to jump to. The
3413rest of the arguments indicate the full set of possible destinations
3414that the address may point to. Blocks are allowed to occur multiple
3415times in the destination list, though this isn't particularly useful.
3416
3417This destination list is required so that dataflow analysis has an
3418accurate understanding of the CFG.
3419
3420Semantics:
3421""""""""""
3422
3423Control transfers to the block specified in the address argument. All
3424possible destination blocks must be listed in the label list, otherwise
3425this instruction has undefined behavior. This implies that jumps to
3426labels defined in other functions have undefined behavior as well.
3427
3428Implementation:
3429"""""""""""""""
3430
3431This is typically implemented with a jump through a register.
3432
3433Example:
3434""""""""
3435
3436.. code-block:: llvm
3437
3438 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3439
3440.. _i_invoke:
3441
3442'``invoke``' Instruction
3443^^^^^^^^^^^^^^^^^^^^^^^^
3444
3445Syntax:
3446"""""""
3447
3448::
3449
3450 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3451 to label <normal label> unwind label <exception label>
3452
3453Overview:
3454"""""""""
3455
3456The '``invoke``' instruction causes control to transfer to a specified
3457function, with the possibility of control flow transfer to either the
3458'``normal``' label or the '``exception``' label. If the callee function
3459returns with the "``ret``" instruction, control flow will return to the
3460"normal" label. If the callee (or any indirect callees) returns via the
3461":ref:`resume <i_resume>`" instruction or other exception handling
3462mechanism, control is interrupted and continued at the dynamically
3463nearest "exception" label.
3464
3465The '``exception``' label is a `landing
3466pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3467'``exception``' label is required to have the
3468":ref:`landingpad <i_landingpad>`" instruction, which contains the
3469information about the behavior of the program after unwinding happens,
3470as its first non-PHI instruction. The restrictions on the
3471"``landingpad``" instruction's tightly couples it to the "``invoke``"
3472instruction, so that the important information contained within the
3473"``landingpad``" instruction can't be lost through normal code motion.
3474
3475Arguments:
3476""""""""""
3477
3478This instruction requires several arguments:
3479
3480#. The optional "cconv" marker indicates which :ref:`calling
3481 convention <callingconv>` the call should use. If none is
3482 specified, the call defaults to using C calling conventions.
3483#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3484 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3485 are valid here.
3486#. '``ptr to function ty``': shall be the signature of the pointer to
3487 function value being invoked. In most cases, this is a direct
3488 function invocation, but indirect ``invoke``'s are just as possible,
3489 branching off an arbitrary pointer to function value.
3490#. '``function ptr val``': An LLVM value containing a pointer to a
3491 function to be invoked.
3492#. '``function args``': argument list whose types match the function
3493 signature argument types and parameter attributes. All arguments must
3494 be of :ref:`first class <t_firstclass>` type. If the function signature
3495 indicates the function accepts a variable number of arguments, the
3496 extra arguments can be specified.
3497#. '``normal label``': the label reached when the called function
3498 executes a '``ret``' instruction.
3499#. '``exception label``': the label reached when a callee returns via
3500 the :ref:`resume <i_resume>` instruction or other exception handling
3501 mechanism.
3502#. The optional :ref:`function attributes <fnattrs>` list. Only
3503 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3504 attributes are valid here.
3505
3506Semantics:
3507""""""""""
3508
3509This instruction is designed to operate as a standard '``call``'
3510instruction in most regards. The primary difference is that it
3511establishes an association with a label, which is used by the runtime
3512library to unwind the stack.
3513
3514This instruction is used in languages with destructors to ensure that
3515proper cleanup is performed in the case of either a ``longjmp`` or a
3516thrown exception. Additionally, this is important for implementation of
3517'``catch``' clauses in high-level languages that support them.
3518
3519For the purposes of the SSA form, the definition of the value returned
3520by the '``invoke``' instruction is deemed to occur on the edge from the
3521current block to the "normal" label. If the callee unwinds then no
3522return value is available.
3523
3524Example:
3525""""""""
3526
3527.. code-block:: llvm
3528
3529 %retval = invoke i32 @Test(i32 15) to label %Continue
3530 unwind label %TestCleanup ; {i32}:retval set
3531 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3532 unwind label %TestCleanup ; {i32}:retval set
3533
3534.. _i_resume:
3535
3536'``resume``' Instruction
3537^^^^^^^^^^^^^^^^^^^^^^^^
3538
3539Syntax:
3540"""""""
3541
3542::
3543
3544 resume <type> <value>
3545
3546Overview:
3547"""""""""
3548
3549The '``resume``' instruction is a terminator instruction that has no
3550successors.
3551
3552Arguments:
3553""""""""""
3554
3555The '``resume``' instruction requires one argument, which must have the
3556same type as the result of any '``landingpad``' instruction in the same
3557function.
3558
3559Semantics:
3560""""""""""
3561
3562The '``resume``' instruction resumes propagation of an existing
3563(in-flight) exception whose unwinding was interrupted with a
3564:ref:`landingpad <i_landingpad>` instruction.
3565
3566Example:
3567""""""""
3568
3569.. code-block:: llvm
3570
3571 resume { i8*, i32 } %exn
3572
3573.. _i_unreachable:
3574
3575'``unreachable``' Instruction
3576^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3577
3578Syntax:
3579"""""""
3580
3581::
3582
3583 unreachable
3584
3585Overview:
3586"""""""""
3587
3588The '``unreachable``' instruction has no defined semantics. This
3589instruction is used to inform the optimizer that a particular portion of
3590the code is not reachable. This can be used to indicate that the code
3591after a no-return function cannot be reached, and other facts.
3592
3593Semantics:
3594""""""""""
3595
3596The '``unreachable``' instruction has no defined semantics.
3597
3598.. _binaryops:
3599
3600Binary Operations
3601-----------------
3602
3603Binary operators are used to do most of the computation in a program.
3604They require two operands of the same type, execute an operation on
3605them, and produce a single value. The operands might represent multiple
3606data, as is the case with the :ref:`vector <t_vector>` data type. The
3607result value has the same type as its operands.
3608
3609There are several different binary operators:
3610
3611.. _i_add:
3612
3613'``add``' Instruction
3614^^^^^^^^^^^^^^^^^^^^^
3615
3616Syntax:
3617"""""""
3618
3619::
3620
3621 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3622 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3623 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3624 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3625
3626Overview:
3627"""""""""
3628
3629The '``add``' instruction returns the sum of its two operands.
3630
3631Arguments:
3632""""""""""
3633
3634The two arguments to the '``add``' instruction must be
3635:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3636arguments must have identical types.
3637
3638Semantics:
3639""""""""""
3640
3641The value produced is the integer sum of the two operands.
3642
3643If the sum has unsigned overflow, the result returned is the
3644mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3645the result.
3646
3647Because LLVM integers use a two's complement representation, this
3648instruction is appropriate for both signed and unsigned integers.
3649
3650``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3651respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3652result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3653unsigned and/or signed overflow, respectively, occurs.
3654
3655Example:
3656""""""""
3657
3658.. code-block:: llvm
3659
3660 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3661
3662.. _i_fadd:
3663
3664'``fadd``' Instruction
3665^^^^^^^^^^^^^^^^^^^^^^
3666
3667Syntax:
3668"""""""
3669
3670::
3671
3672 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3673
3674Overview:
3675"""""""""
3676
3677The '``fadd``' instruction returns the sum of its two operands.
3678
3679Arguments:
3680""""""""""
3681
3682The two arguments to the '``fadd``' instruction must be :ref:`floating
3683point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3684Both arguments must have identical types.
3685
3686Semantics:
3687""""""""""
3688
3689The value produced is the floating point sum of the two operands. This
3690instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3691which are optimization hints to enable otherwise unsafe floating point
3692optimizations:
3693
3694Example:
3695""""""""
3696
3697.. code-block:: llvm
3698
3699 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3700
3701'``sub``' Instruction
3702^^^^^^^^^^^^^^^^^^^^^
3703
3704Syntax:
3705"""""""
3706
3707::
3708
3709 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3710 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3711 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3712 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3713
3714Overview:
3715"""""""""
3716
3717The '``sub``' instruction returns the difference of its two operands.
3718
3719Note that the '``sub``' instruction is used to represent the '``neg``'
3720instruction present in most other intermediate representations.
3721
3722Arguments:
3723""""""""""
3724
3725The two arguments to the '``sub``' instruction must be
3726:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3727arguments must have identical types.
3728
3729Semantics:
3730""""""""""
3731
3732The value produced is the integer difference of the two operands.
3733
3734If the difference has unsigned overflow, the result returned is the
3735mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3736the result.
3737
3738Because LLVM integers use a two's complement representation, this
3739instruction is appropriate for both signed and unsigned integers.
3740
3741``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3742respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3743result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3744unsigned and/or signed overflow, respectively, occurs.
3745
3746Example:
3747""""""""
3748
3749.. code-block:: llvm
3750
3751 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3752 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3753
3754.. _i_fsub:
3755
3756'``fsub``' Instruction
3757^^^^^^^^^^^^^^^^^^^^^^
3758
3759Syntax:
3760"""""""
3761
3762::
3763
3764 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3765
3766Overview:
3767"""""""""
3768
3769The '``fsub``' instruction returns the difference of its two operands.
3770
3771Note that the '``fsub``' instruction is used to represent the '``fneg``'
3772instruction present in most other intermediate representations.
3773
3774Arguments:
3775""""""""""
3776
3777The two arguments to the '``fsub``' instruction must be :ref:`floating
3778point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3779Both arguments must have identical types.
3780
3781Semantics:
3782""""""""""
3783
3784The value produced is the floating point difference of the two operands.
3785This instruction can also take any number of :ref:`fast-math
3786flags <fastmath>`, which are optimization hints to enable otherwise
3787unsafe floating point optimizations:
3788
3789Example:
3790""""""""
3791
3792.. code-block:: llvm
3793
3794 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3795 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3796
3797'``mul``' Instruction
3798^^^^^^^^^^^^^^^^^^^^^
3799
3800Syntax:
3801"""""""
3802
3803::
3804
3805 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3806 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3807 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3808 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3809
3810Overview:
3811"""""""""
3812
3813The '``mul``' instruction returns the product of its two operands.
3814
3815Arguments:
3816""""""""""
3817
3818The two arguments to the '``mul``' instruction must be
3819:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3820arguments must have identical types.
3821
3822Semantics:
3823""""""""""
3824
3825The value produced is the integer product of the two operands.
3826
3827If the result of the multiplication has unsigned overflow, the result
3828returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3829bit width of the result.
3830
3831Because LLVM integers use a two's complement representation, and the
3832result is the same width as the operands, this instruction returns the
3833correct result for both signed and unsigned integers. If a full product
3834(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3835sign-extended or zero-extended as appropriate to the width of the full
3836product.
3837
3838``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3839respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3840result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3841unsigned and/or signed overflow, respectively, occurs.
3842
3843Example:
3844""""""""
3845
3846.. code-block:: llvm
3847
3848 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3849
3850.. _i_fmul:
3851
3852'``fmul``' Instruction
3853^^^^^^^^^^^^^^^^^^^^^^
3854
3855Syntax:
3856"""""""
3857
3858::
3859
3860 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3861
3862Overview:
3863"""""""""
3864
3865The '``fmul``' instruction returns the product of its two operands.
3866
3867Arguments:
3868""""""""""
3869
3870The two arguments to the '``fmul``' instruction must be :ref:`floating
3871point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3872Both arguments must have identical types.
3873
3874Semantics:
3875""""""""""
3876
3877The value produced is the floating point product of the two operands.
3878This instruction can also take any number of :ref:`fast-math
3879flags <fastmath>`, which are optimization hints to enable otherwise
3880unsafe floating point optimizations:
3881
3882Example:
3883""""""""
3884
3885.. code-block:: llvm
3886
3887 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3888
3889'``udiv``' Instruction
3890^^^^^^^^^^^^^^^^^^^^^^
3891
3892Syntax:
3893"""""""
3894
3895::
3896
3897 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3898 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3899
3900Overview:
3901"""""""""
3902
3903The '``udiv``' instruction returns the quotient of its two operands.
3904
3905Arguments:
3906""""""""""
3907
3908The two arguments to the '``udiv``' instruction must be
3909:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3910arguments must have identical types.
3911
3912Semantics:
3913""""""""""
3914
3915The value produced is the unsigned integer quotient of the two operands.
3916
3917Note that unsigned integer division and signed integer division are
3918distinct operations; for signed integer division, use '``sdiv``'.
3919
3920Division by zero leads to undefined behavior.
3921
3922If the ``exact`` keyword is present, the result value of the ``udiv`` is
3923a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3924such, "((a udiv exact b) mul b) == a").
3925
3926Example:
3927""""""""
3928
3929.. code-block:: llvm
3930
3931 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3932
3933'``sdiv``' Instruction
3934^^^^^^^^^^^^^^^^^^^^^^
3935
3936Syntax:
3937"""""""
3938
3939::
3940
3941 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3942 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3943
3944Overview:
3945"""""""""
3946
3947The '``sdiv``' instruction returns the quotient of its two operands.
3948
3949Arguments:
3950""""""""""
3951
3952The two arguments to the '``sdiv``' instruction must be
3953:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3954arguments must have identical types.
3955
3956Semantics:
3957""""""""""
3958
3959The value produced is the signed integer quotient of the two operands
3960rounded towards zero.
3961
3962Note that signed integer division and unsigned integer division are
3963distinct operations; for unsigned integer division, use '``udiv``'.
3964
3965Division by zero leads to undefined behavior. Overflow also leads to
3966undefined behavior; this is a rare case, but can occur, for example, by
3967doing a 32-bit division of -2147483648 by -1.
3968
3969If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3970a :ref:`poison value <poisonvalues>` if the result would be rounded.
3971
3972Example:
3973""""""""
3974
3975.. code-block:: llvm
3976
3977 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3978
3979.. _i_fdiv:
3980
3981'``fdiv``' Instruction
3982^^^^^^^^^^^^^^^^^^^^^^
3983
3984Syntax:
3985"""""""
3986
3987::
3988
3989 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3990
3991Overview:
3992"""""""""
3993
3994The '``fdiv``' instruction returns the quotient of its two operands.
3995
3996Arguments:
3997""""""""""
3998
3999The two arguments to the '``fdiv``' instruction must be :ref:`floating
4000point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4001Both arguments must have identical types.
4002
4003Semantics:
4004""""""""""
4005
4006The value produced is the floating point quotient of the two operands.
4007This instruction can also take any number of :ref:`fast-math
4008flags <fastmath>`, which are optimization hints to enable otherwise
4009unsafe floating point optimizations:
4010
4011Example:
4012""""""""
4013
4014.. code-block:: llvm
4015
4016 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
4017
4018'``urem``' Instruction
4019^^^^^^^^^^^^^^^^^^^^^^
4020
4021Syntax:
4022"""""""
4023
4024::
4025
4026 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
4027
4028Overview:
4029"""""""""
4030
4031The '``urem``' instruction returns the remainder from the unsigned
4032division of its two arguments.
4033
4034Arguments:
4035""""""""""
4036
4037The two arguments to the '``urem``' instruction must be
4038:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4039arguments must have identical types.
4040
4041Semantics:
4042""""""""""
4043
4044This instruction returns the unsigned integer *remainder* of a division.
4045This instruction always performs an unsigned division to get the
4046remainder.
4047
4048Note that unsigned integer remainder and signed integer remainder are
4049distinct operations; for signed integer remainder, use '``srem``'.
4050
4051Taking the remainder of a division by zero leads to undefined behavior.
4052
4053Example:
4054""""""""
4055
4056.. code-block:: llvm
4057
4058 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4059
4060'``srem``' Instruction
4061^^^^^^^^^^^^^^^^^^^^^^
4062
4063Syntax:
4064"""""""
4065
4066::
4067
4068 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4069
4070Overview:
4071"""""""""
4072
4073The '``srem``' instruction returns the remainder from the signed
4074division of its two operands. This instruction can also take
4075:ref:`vector <t_vector>` versions of the values in which case the elements
4076must be integers.
4077
4078Arguments:
4079""""""""""
4080
4081The two arguments to the '``srem``' instruction must be
4082:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4083arguments must have identical types.
4084
4085Semantics:
4086""""""""""
4087
4088This instruction returns the *remainder* of a division (where the result
4089is either zero or has the same sign as the dividend, ``op1``), not the
4090*modulo* operator (where the result is either zero or has the same sign
4091as the divisor, ``op2``) of a value. For more information about the
4092difference, see `The Math
4093Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4094table of how this is implemented in various languages, please see
4095`Wikipedia: modulo
4096operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4097
4098Note that signed integer remainder and unsigned integer remainder are
4099distinct operations; for unsigned integer remainder, use '``urem``'.
4100
4101Taking the remainder of a division by zero leads to undefined behavior.
4102Overflow also leads to undefined behavior; this is a rare case, but can
4103occur, for example, by taking the remainder of a 32-bit division of
4104-2147483648 by -1. (The remainder doesn't actually overflow, but this
4105rule lets srem be implemented using instructions that return both the
4106result of the division and the remainder.)
4107
4108Example:
4109""""""""
4110
4111.. code-block:: llvm
4112
4113 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4114
4115.. _i_frem:
4116
4117'``frem``' Instruction
4118^^^^^^^^^^^^^^^^^^^^^^
4119
4120Syntax:
4121"""""""
4122
4123::
4124
4125 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4126
4127Overview:
4128"""""""""
4129
4130The '``frem``' instruction returns the remainder from the division of
4131its two operands.
4132
4133Arguments:
4134""""""""""
4135
4136The two arguments to the '``frem``' instruction must be :ref:`floating
4137point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4138Both arguments must have identical types.
4139
4140Semantics:
4141""""""""""
4142
4143This instruction returns the *remainder* of a division. The remainder
4144has the same sign as the dividend. This instruction can also take any
4145number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4146to enable otherwise unsafe floating point optimizations:
4147
4148Example:
4149""""""""
4150
4151.. code-block:: llvm
4152
4153 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4154
4155.. _bitwiseops:
4156
4157Bitwise Binary Operations
4158-------------------------
4159
4160Bitwise binary operators are used to do various forms of bit-twiddling
4161in a program. They are generally very efficient instructions and can
4162commonly be strength reduced from other instructions. They require two
4163operands of the same type, execute an operation on them, and produce a
4164single value. The resulting value is the same type as its operands.
4165
4166'``shl``' Instruction
4167^^^^^^^^^^^^^^^^^^^^^
4168
4169Syntax:
4170"""""""
4171
4172::
4173
4174 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4175 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4176 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4177 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4178
4179Overview:
4180"""""""""
4181
4182The '``shl``' instruction returns the first operand shifted to the left
4183a specified number of bits.
4184
4185Arguments:
4186""""""""""
4187
4188Both arguments to the '``shl``' instruction must be the same
4189:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4190'``op2``' is treated as an unsigned value.
4191
4192Semantics:
4193""""""""""
4194
4195The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4196where ``n`` is the width of the result. If ``op2`` is (statically or
4197dynamically) negative or equal to or larger than the number of bits in
4198``op1``, the result is undefined. If the arguments are vectors, each
4199vector element of ``op1`` is shifted by the corresponding shift amount
4200in ``op2``.
4201
4202If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4203value <poisonvalues>` if it shifts out any non-zero bits. If the
4204``nsw`` keyword is present, then the shift produces a :ref:`poison
4205value <poisonvalues>` if it shifts out any bits that disagree with the
4206resultant sign bit. As such, NUW/NSW have the same semantics as they
4207would if the shift were expressed as a mul instruction with the same
4208nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4209
4210Example:
4211""""""""
4212
4213.. code-block:: llvm
4214
4215 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4216 <result> = shl i32 4, 2 ; yields {i32}: 16
4217 <result> = shl i32 1, 10 ; yields {i32}: 1024
4218 <result> = shl i32 1, 32 ; undefined
4219 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4220
4221'``lshr``' Instruction
4222^^^^^^^^^^^^^^^^^^^^^^
4223
4224Syntax:
4225"""""""
4226
4227::
4228
4229 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4230 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4231
4232Overview:
4233"""""""""
4234
4235The '``lshr``' instruction (logical shift right) returns the first
4236operand shifted to the right a specified number of bits with zero fill.
4237
4238Arguments:
4239""""""""""
4240
4241Both arguments to the '``lshr``' instruction must be the same
4242:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4243'``op2``' is treated as an unsigned value.
4244
4245Semantics:
4246""""""""""
4247
4248This instruction always performs a logical shift right operation. The
4249most significant bits of the result will be filled with zero bits after
4250the shift. If ``op2`` is (statically or dynamically) equal to or larger
4251than the number of bits in ``op1``, the result is undefined. If the
4252arguments are vectors, each vector element of ``op1`` is shifted by the
4253corresponding shift amount in ``op2``.
4254
4255If the ``exact`` keyword is present, the result value of the ``lshr`` is
4256a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4257non-zero.
4258
4259Example:
4260""""""""
4261
4262.. code-block:: llvm
4263
4264 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4265 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4266 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004267 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004268 <result> = lshr i32 1, 32 ; undefined
4269 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4270
4271'``ashr``' Instruction
4272^^^^^^^^^^^^^^^^^^^^^^
4273
4274Syntax:
4275"""""""
4276
4277::
4278
4279 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4280 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4281
4282Overview:
4283"""""""""
4284
4285The '``ashr``' instruction (arithmetic shift right) returns the first
4286operand shifted to the right a specified number of bits with sign
4287extension.
4288
4289Arguments:
4290""""""""""
4291
4292Both arguments to the '``ashr``' instruction must be the same
4293:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4294'``op2``' is treated as an unsigned value.
4295
4296Semantics:
4297""""""""""
4298
4299This instruction always performs an arithmetic shift right operation,
4300The most significant bits of the result will be filled with the sign bit
4301of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4302than the number of bits in ``op1``, the result is undefined. If the
4303arguments are vectors, each vector element of ``op1`` is shifted by the
4304corresponding shift amount in ``op2``.
4305
4306If the ``exact`` keyword is present, the result value of the ``ashr`` is
4307a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4308non-zero.
4309
4310Example:
4311""""""""
4312
4313.. code-block:: llvm
4314
4315 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4316 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4317 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4318 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4319 <result> = ashr i32 1, 32 ; undefined
4320 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4321
4322'``and``' Instruction
4323^^^^^^^^^^^^^^^^^^^^^
4324
4325Syntax:
4326"""""""
4327
4328::
4329
4330 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4331
4332Overview:
4333"""""""""
4334
4335The '``and``' instruction returns the bitwise logical and of its two
4336operands.
4337
4338Arguments:
4339""""""""""
4340
4341The two arguments to the '``and``' instruction must be
4342:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4343arguments must have identical types.
4344
4345Semantics:
4346""""""""""
4347
4348The truth table used for the '``and``' instruction is:
4349
4350+-----+-----+-----+
4351| In0 | In1 | Out |
4352+-----+-----+-----+
4353| 0 | 0 | 0 |
4354+-----+-----+-----+
4355| 0 | 1 | 0 |
4356+-----+-----+-----+
4357| 1 | 0 | 0 |
4358+-----+-----+-----+
4359| 1 | 1 | 1 |
4360+-----+-----+-----+
4361
4362Example:
4363""""""""
4364
4365.. code-block:: llvm
4366
4367 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4368 <result> = and i32 15, 40 ; yields {i32}:result = 8
4369 <result> = and i32 4, 8 ; yields {i32}:result = 0
4370
4371'``or``' Instruction
4372^^^^^^^^^^^^^^^^^^^^
4373
4374Syntax:
4375"""""""
4376
4377::
4378
4379 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4380
4381Overview:
4382"""""""""
4383
4384The '``or``' instruction returns the bitwise logical inclusive or of its
4385two operands.
4386
4387Arguments:
4388""""""""""
4389
4390The two arguments to the '``or``' instruction must be
4391:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4392arguments must have identical types.
4393
4394Semantics:
4395""""""""""
4396
4397The truth table used for the '``or``' instruction is:
4398
4399+-----+-----+-----+
4400| In0 | In1 | Out |
4401+-----+-----+-----+
4402| 0 | 0 | 0 |
4403+-----+-----+-----+
4404| 0 | 1 | 1 |
4405+-----+-----+-----+
4406| 1 | 0 | 1 |
4407+-----+-----+-----+
4408| 1 | 1 | 1 |
4409+-----+-----+-----+
4410
4411Example:
4412""""""""
4413
4414::
4415
4416 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4417 <result> = or i32 15, 40 ; yields {i32}:result = 47
4418 <result> = or i32 4, 8 ; yields {i32}:result = 12
4419
4420'``xor``' Instruction
4421^^^^^^^^^^^^^^^^^^^^^
4422
4423Syntax:
4424"""""""
4425
4426::
4427
4428 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4429
4430Overview:
4431"""""""""
4432
4433The '``xor``' instruction returns the bitwise logical exclusive or of
4434its two operands. The ``xor`` is used to implement the "one's
4435complement" operation, which is the "~" operator in C.
4436
4437Arguments:
4438""""""""""
4439
4440The two arguments to the '``xor``' instruction must be
4441:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4442arguments must have identical types.
4443
4444Semantics:
4445""""""""""
4446
4447The truth table used for the '``xor``' instruction is:
4448
4449+-----+-----+-----+
4450| In0 | In1 | Out |
4451+-----+-----+-----+
4452| 0 | 0 | 0 |
4453+-----+-----+-----+
4454| 0 | 1 | 1 |
4455+-----+-----+-----+
4456| 1 | 0 | 1 |
4457+-----+-----+-----+
4458| 1 | 1 | 0 |
4459+-----+-----+-----+
4460
4461Example:
4462""""""""
4463
4464.. code-block:: llvm
4465
4466 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4467 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4468 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4469 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4470
4471Vector Operations
4472-----------------
4473
4474LLVM supports several instructions to represent vector operations in a
4475target-independent manner. These instructions cover the element-access
4476and vector-specific operations needed to process vectors effectively.
4477While LLVM does directly support these vector operations, many
4478sophisticated algorithms will want to use target-specific intrinsics to
4479take full advantage of a specific target.
4480
4481.. _i_extractelement:
4482
4483'``extractelement``' Instruction
4484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4485
4486Syntax:
4487"""""""
4488
4489::
4490
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004491 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004492
4493Overview:
4494"""""""""
4495
4496The '``extractelement``' instruction extracts a single scalar element
4497from a vector at a specified index.
4498
4499Arguments:
4500""""""""""
4501
4502The first operand of an '``extractelement``' instruction is a value of
4503:ref:`vector <t_vector>` type. The second operand is an index indicating
4504the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004505variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004506
4507Semantics:
4508""""""""""
4509
4510The result is a scalar of the same type as the element type of ``val``.
4511Its value is the value at position ``idx`` of ``val``. If ``idx``
4512exceeds the length of ``val``, the results are undefined.
4513
4514Example:
4515""""""""
4516
4517.. code-block:: llvm
4518
4519 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4520
4521.. _i_insertelement:
4522
4523'``insertelement``' Instruction
4524^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4525
4526Syntax:
4527"""""""
4528
4529::
4530
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004531 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004532
4533Overview:
4534"""""""""
4535
4536The '``insertelement``' instruction inserts a scalar element into a
4537vector at a specified index.
4538
4539Arguments:
4540""""""""""
4541
4542The first operand of an '``insertelement``' instruction is a value of
4543:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4544type must equal the element type of the first operand. The third operand
4545is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004546index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004547
4548Semantics:
4549""""""""""
4550
4551The result is a vector of the same type as ``val``. Its element values
4552are those of ``val`` except at position ``idx``, where it gets the value
4553``elt``. If ``idx`` exceeds the length of ``val``, the results are
4554undefined.
4555
4556Example:
4557""""""""
4558
4559.. code-block:: llvm
4560
4561 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4562
4563.. _i_shufflevector:
4564
4565'``shufflevector``' Instruction
4566^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4567
4568Syntax:
4569"""""""
4570
4571::
4572
4573 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4574
4575Overview:
4576"""""""""
4577
4578The '``shufflevector``' instruction constructs a permutation of elements
4579from two input vectors, returning a vector with the same element type as
4580the input and length that is the same as the shuffle mask.
4581
4582Arguments:
4583""""""""""
4584
4585The first two operands of a '``shufflevector``' instruction are vectors
4586with the same type. The third argument is a shuffle mask whose element
4587type is always 'i32'. The result of the instruction is a vector whose
4588length is the same as the shuffle mask and whose element type is the
4589same as the element type of the first two operands.
4590
4591The shuffle mask operand is required to be a constant vector with either
4592constant integer or undef values.
4593
4594Semantics:
4595""""""""""
4596
4597The elements of the two input vectors are numbered from left to right
4598across both of the vectors. The shuffle mask operand specifies, for each
4599element of the result vector, which element of the two input vectors the
4600result element gets. The element selector may be undef (meaning "don't
4601care") and the second operand may be undef if performing a shuffle from
4602only one vector.
4603
4604Example:
4605""""""""
4606
4607.. code-block:: llvm
4608
4609 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4610 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4611 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4612 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4613 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4614 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4615 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4616 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4617
4618Aggregate Operations
4619--------------------
4620
4621LLVM supports several instructions for working with
4622:ref:`aggregate <t_aggregate>` values.
4623
4624.. _i_extractvalue:
4625
4626'``extractvalue``' Instruction
4627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4628
4629Syntax:
4630"""""""
4631
4632::
4633
4634 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4635
4636Overview:
4637"""""""""
4638
4639The '``extractvalue``' instruction extracts the value of a member field
4640from an :ref:`aggregate <t_aggregate>` value.
4641
4642Arguments:
4643""""""""""
4644
4645The first operand of an '``extractvalue``' instruction is a value of
4646:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4647constant indices to specify which value to extract in a similar manner
4648as indices in a '``getelementptr``' instruction.
4649
4650The major differences to ``getelementptr`` indexing are:
4651
4652- Since the value being indexed is not a pointer, the first index is
4653 omitted and assumed to be zero.
4654- At least one index must be specified.
4655- Not only struct indices but also array indices must be in bounds.
4656
4657Semantics:
4658""""""""""
4659
4660The result is the value at the position in the aggregate specified by
4661the index operands.
4662
4663Example:
4664""""""""
4665
4666.. code-block:: llvm
4667
4668 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4669
4670.. _i_insertvalue:
4671
4672'``insertvalue``' Instruction
4673^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4674
4675Syntax:
4676"""""""
4677
4678::
4679
4680 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4681
4682Overview:
4683"""""""""
4684
4685The '``insertvalue``' instruction inserts a value into a member field in
4686an :ref:`aggregate <t_aggregate>` value.
4687
4688Arguments:
4689""""""""""
4690
4691The first operand of an '``insertvalue``' instruction is a value of
4692:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4693a first-class value to insert. The following operands are constant
4694indices indicating the position at which to insert the value in a
4695similar manner as indices in a '``extractvalue``' instruction. The value
4696to insert must have the same type as the value identified by the
4697indices.
4698
4699Semantics:
4700""""""""""
4701
4702The result is an aggregate of the same type as ``val``. Its value is
4703that of ``val`` except that the value at the position specified by the
4704indices is that of ``elt``.
4705
4706Example:
4707""""""""
4708
4709.. code-block:: llvm
4710
4711 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4712 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4713 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4714
4715.. _memoryops:
4716
4717Memory Access and Addressing Operations
4718---------------------------------------
4719
4720A key design point of an SSA-based representation is how it represents
4721memory. In LLVM, no memory locations are in SSA form, which makes things
4722very simple. This section describes how to read, write, and allocate
4723memory in LLVM.
4724
4725.. _i_alloca:
4726
4727'``alloca``' Instruction
4728^^^^^^^^^^^^^^^^^^^^^^^^
4729
4730Syntax:
4731"""""""
4732
4733::
4734
David Majnemerc4ab61c2014-03-09 06:41:58 +00004735 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields {type*}:result
Sean Silvab084af42012-12-07 10:36:55 +00004736
4737Overview:
4738"""""""""
4739
4740The '``alloca``' instruction allocates memory on the stack frame of the
4741currently executing function, to be automatically released when this
4742function returns to its caller. The object is always allocated in the
4743generic address space (address space zero).
4744
4745Arguments:
4746""""""""""
4747
4748The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4749bytes of memory on the runtime stack, returning a pointer of the
4750appropriate type to the program. If "NumElements" is specified, it is
4751the number of elements allocated, otherwise "NumElements" is defaulted
4752to be one. If a constant alignment is specified, the value result of the
4753allocation is guaranteed to be aligned to at least that boundary. If not
4754specified, or if zero, the target can choose to align the allocation on
4755any convenient boundary compatible with the type.
4756
4757'``type``' may be any sized type.
4758
4759Semantics:
4760""""""""""
4761
4762Memory is allocated; a pointer is returned. The operation is undefined
4763if there is insufficient stack space for the allocation. '``alloca``'d
4764memory is automatically released when the function returns. The
4765'``alloca``' instruction is commonly used to represent automatic
4766variables that must have an address available. When the function returns
4767(either with the ``ret`` or ``resume`` instructions), the memory is
4768reclaimed. Allocating zero bytes is legal, but the result is undefined.
4769The order in which memory is allocated (ie., which way the stack grows)
4770is not specified.
4771
4772Example:
4773""""""""
4774
4775.. code-block:: llvm
4776
4777 %ptr = alloca i32 ; yields {i32*}:ptr
4778 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4779 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4780 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4781
4782.. _i_load:
4783
4784'``load``' Instruction
4785^^^^^^^^^^^^^^^^^^^^^^
4786
4787Syntax:
4788"""""""
4789
4790::
4791
4792 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4793 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4794 !<index> = !{ i32 1 }
4795
4796Overview:
4797"""""""""
4798
4799The '``load``' instruction is used to read from memory.
4800
4801Arguments:
4802""""""""""
4803
Eli Bendersky239a78b2013-04-17 20:17:08 +00004804The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004805from which to load. The pointer must point to a :ref:`first
4806class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4807then the optimizer is not allowed to modify the number or order of
4808execution of this ``load`` with other :ref:`volatile
4809operations <volatile>`.
4810
4811If the ``load`` is marked as ``atomic``, it takes an extra
4812:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4813``release`` and ``acq_rel`` orderings are not valid on ``load``
4814instructions. Atomic loads produce :ref:`defined <memmodel>` results
4815when they may see multiple atomic stores. The type of the pointee must
4816be an integer type whose bit width is a power of two greater than or
4817equal to eight and less than or equal to a target-specific size limit.
4818``align`` must be explicitly specified on atomic loads, and the load has
4819undefined behavior if the alignment is not set to a value which is at
4820least the size in bytes of the pointee. ``!nontemporal`` does not have
4821any defined semantics for atomic loads.
4822
4823The optional constant ``align`` argument specifies the alignment of the
4824operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004825or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004826alignment for the target. It is the responsibility of the code emitter
4827to ensure that the alignment information is correct. Overestimating the
4828alignment results in undefined behavior. Underestimating the alignment
4829may produce less efficient code. An alignment of 1 is always safe.
4830
4831The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004832metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004833``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004834metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004835that this load is not expected to be reused in the cache. The code
4836generator may select special instructions to save cache bandwidth, such
4837as the ``MOVNT`` instruction on x86.
4838
4839The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004840metadata name ``<index>`` corresponding to a metadata node with no
4841entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004842instruction tells the optimizer and code generator that this load
4843address points to memory which does not change value during program
4844execution. The optimizer may then move this load around, for example, by
4845hoisting it out of loops using loop invariant code motion.
4846
4847Semantics:
4848""""""""""
4849
4850The location of memory pointed to is loaded. If the value being loaded
4851is of scalar type then the number of bytes read does not exceed the
4852minimum number of bytes needed to hold all bits of the type. For
4853example, loading an ``i24`` reads at most three bytes. When loading a
4854value of a type like ``i20`` with a size that is not an integral number
4855of bytes, the result is undefined if the value was not originally
4856written using a store of the same type.
4857
4858Examples:
4859"""""""""
4860
4861.. code-block:: llvm
4862
4863 %ptr = alloca i32 ; yields {i32*}:ptr
4864 store i32 3, i32* %ptr ; yields {void}
4865 %val = load i32* %ptr ; yields {i32}:val = i32 3
4866
4867.. _i_store:
4868
4869'``store``' Instruction
4870^^^^^^^^^^^^^^^^^^^^^^^
4871
4872Syntax:
4873"""""""
4874
4875::
4876
4877 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4878 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4879
4880Overview:
4881"""""""""
4882
4883The '``store``' instruction is used to write to memory.
4884
4885Arguments:
4886""""""""""
4887
Eli Benderskyca380842013-04-17 17:17:20 +00004888There are two arguments to the ``store`` instruction: a value to store
4889and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004890operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004891the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004892then the optimizer is not allowed to modify the number or order of
4893execution of this ``store`` with other :ref:`volatile
4894operations <volatile>`.
4895
4896If the ``store`` is marked as ``atomic``, it takes an extra
4897:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4898``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4899instructions. Atomic loads produce :ref:`defined <memmodel>` results
4900when they may see multiple atomic stores. The type of the pointee must
4901be an integer type whose bit width is a power of two greater than or
4902equal to eight and less than or equal to a target-specific size limit.
4903``align`` must be explicitly specified on atomic stores, and the store
4904has undefined behavior if the alignment is not set to a value which is
4905at least the size in bytes of the pointee. ``!nontemporal`` does not
4906have any defined semantics for atomic stores.
4907
Eli Benderskyca380842013-04-17 17:17:20 +00004908The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004909operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004910or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004911alignment for the target. It is the responsibility of the code emitter
4912to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004913alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004914alignment may produce less efficient code. An alignment of 1 is always
4915safe.
4916
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004917The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004918name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004919value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004920tells the optimizer and code generator that this load is not expected to
4921be reused in the cache. The code generator may select special
4922instructions to save cache bandwidth, such as the MOVNT instruction on
4923x86.
4924
4925Semantics:
4926""""""""""
4927
Eli Benderskyca380842013-04-17 17:17:20 +00004928The contents of memory are updated to contain ``<value>`` at the
4929location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004930of scalar type then the number of bytes written does not exceed the
4931minimum number of bytes needed to hold all bits of the type. For
4932example, storing an ``i24`` writes at most three bytes. When writing a
4933value of a type like ``i20`` with a size that is not an integral number
4934of bytes, it is unspecified what happens to the extra bits that do not
4935belong to the type, but they will typically be overwritten.
4936
4937Example:
4938""""""""
4939
4940.. code-block:: llvm
4941
4942 %ptr = alloca i32 ; yields {i32*}:ptr
4943 store i32 3, i32* %ptr ; yields {void}
4944 %val = load i32* %ptr ; yields {i32}:val = i32 3
4945
4946.. _i_fence:
4947
4948'``fence``' Instruction
4949^^^^^^^^^^^^^^^^^^^^^^^
4950
4951Syntax:
4952"""""""
4953
4954::
4955
4956 fence [singlethread] <ordering> ; yields {void}
4957
4958Overview:
4959"""""""""
4960
4961The '``fence``' instruction is used to introduce happens-before edges
4962between operations.
4963
4964Arguments:
4965""""""""""
4966
4967'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4968defines what *synchronizes-with* edges they add. They can only be given
4969``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4970
4971Semantics:
4972""""""""""
4973
4974A fence A which has (at least) ``release`` ordering semantics
4975*synchronizes with* a fence B with (at least) ``acquire`` ordering
4976semantics if and only if there exist atomic operations X and Y, both
4977operating on some atomic object M, such that A is sequenced before X, X
4978modifies M (either directly or through some side effect of a sequence
4979headed by X), Y is sequenced before B, and Y observes M. This provides a
4980*happens-before* dependency between A and B. Rather than an explicit
4981``fence``, one (but not both) of the atomic operations X or Y might
4982provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4983still *synchronize-with* the explicit ``fence`` and establish the
4984*happens-before* edge.
4985
4986A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4987``acquire`` and ``release`` semantics specified above, participates in
4988the global program order of other ``seq_cst`` operations and/or fences.
4989
4990The optional ":ref:`singlethread <singlethread>`" argument specifies
4991that the fence only synchronizes with other fences in the same thread.
4992(This is useful for interacting with signal handlers.)
4993
4994Example:
4995""""""""
4996
4997.. code-block:: llvm
4998
4999 fence acquire ; yields {void}
5000 fence singlethread seq_cst ; yields {void}
5001
5002.. _i_cmpxchg:
5003
5004'``cmpxchg``' Instruction
5005^^^^^^^^^^^^^^^^^^^^^^^^^
5006
5007Syntax:
5008"""""""
5009
5010::
5011
Tim Northovere94a5182014-03-11 10:48:52 +00005012 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields {ty}
Sean Silvab084af42012-12-07 10:36:55 +00005013
5014Overview:
5015"""""""""
5016
5017The '``cmpxchg``' instruction is used to atomically modify memory. It
5018loads a value in memory and compares it to a given value. If they are
5019equal, it stores a new value into the memory.
5020
5021Arguments:
5022""""""""""
5023
5024There are three arguments to the '``cmpxchg``' instruction: an address
5025to operate on, a value to compare to the value currently be at that
5026address, and a new value to place at that address if the compared values
5027are equal. The type of '<cmp>' must be an integer type whose bit width
5028is a power of two greater than or equal to eight and less than or equal
5029to a target-specific size limit. '<cmp>' and '<new>' must have the same
5030type, and the type of '<pointer>' must be a pointer to that type. If the
5031``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5032to modify the number or order of execution of this ``cmpxchg`` with
5033other :ref:`volatile operations <volatile>`.
5034
Tim Northovere94a5182014-03-11 10:48:52 +00005035The success and failure :ref:`ordering <ordering>` arguments specify how this
5036``cmpxchg`` synchronizes with other atomic operations. The both ordering
5037parameters must be at least ``monotonic``, the ordering constraint on failure
5038must be no stronger than that on success, and the failure ordering cannot be
5039either ``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005040
5041The optional "``singlethread``" argument declares that the ``cmpxchg``
5042is only atomic with respect to code (usually signal handlers) running in
5043the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5044respect to all other code in the system.
5045
5046The pointer passed into cmpxchg must have alignment greater than or
5047equal to the size in memory of the operand.
5048
5049Semantics:
5050""""""""""
5051
5052The contents of memory at the location specified by the '``<pointer>``'
5053operand is read and compared to '``<cmp>``'; if the read value is the
5054equal, '``<new>``' is written. The original value at the location is
5055returned.
5056
Tim Northovere94a5182014-03-11 10:48:52 +00005057A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5058identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5059load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005060
5061Example:
5062""""""""
5063
5064.. code-block:: llvm
5065
5066 entry:
5067 %orig = atomic load i32* %ptr unordered ; yields {i32}
5068 br label %loop
5069
5070 loop:
5071 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5072 %squared = mul i32 %cmp, %cmp
Tim Northovere94a5182014-03-11 10:48:52 +00005073 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields {i32}
Sean Silvab084af42012-12-07 10:36:55 +00005074 %success = icmp eq i32 %cmp, %old
5075 br i1 %success, label %done, label %loop
5076
5077 done:
5078 ...
5079
5080.. _i_atomicrmw:
5081
5082'``atomicrmw``' Instruction
5083^^^^^^^^^^^^^^^^^^^^^^^^^^^
5084
5085Syntax:
5086"""""""
5087
5088::
5089
5090 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5091
5092Overview:
5093"""""""""
5094
5095The '``atomicrmw``' instruction is used to atomically modify memory.
5096
5097Arguments:
5098""""""""""
5099
5100There are three arguments to the '``atomicrmw``' instruction: an
5101operation to apply, an address whose value to modify, an argument to the
5102operation. The operation must be one of the following keywords:
5103
5104- xchg
5105- add
5106- sub
5107- and
5108- nand
5109- or
5110- xor
5111- max
5112- min
5113- umax
5114- umin
5115
5116The type of '<value>' must be an integer type whose bit width is a power
5117of two greater than or equal to eight and less than or equal to a
5118target-specific size limit. The type of the '``<pointer>``' operand must
5119be a pointer to that type. If the ``atomicrmw`` is marked as
5120``volatile``, then the optimizer is not allowed to modify the number or
5121order of execution of this ``atomicrmw`` with other :ref:`volatile
5122operations <volatile>`.
5123
5124Semantics:
5125""""""""""
5126
5127The contents of memory at the location specified by the '``<pointer>``'
5128operand are atomically read, modified, and written back. The original
5129value at the location is returned. The modification is specified by the
5130operation argument:
5131
5132- xchg: ``*ptr = val``
5133- add: ``*ptr = *ptr + val``
5134- sub: ``*ptr = *ptr - val``
5135- and: ``*ptr = *ptr & val``
5136- nand: ``*ptr = ~(*ptr & val)``
5137- or: ``*ptr = *ptr | val``
5138- xor: ``*ptr = *ptr ^ val``
5139- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5140- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5141- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5142 comparison)
5143- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5144 comparison)
5145
5146Example:
5147""""""""
5148
5149.. code-block:: llvm
5150
5151 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5152
5153.. _i_getelementptr:
5154
5155'``getelementptr``' Instruction
5156^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5157
5158Syntax:
5159"""""""
5160
5161::
5162
5163 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5164 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5165 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5166
5167Overview:
5168"""""""""
5169
5170The '``getelementptr``' instruction is used to get the address of a
5171subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5172address calculation only and does not access memory.
5173
5174Arguments:
5175""""""""""
5176
5177The first argument is always a pointer or a vector of pointers, and
5178forms the basis of the calculation. The remaining arguments are indices
5179that indicate which of the elements of the aggregate object are indexed.
5180The interpretation of each index is dependent on the type being indexed
5181into. The first index always indexes the pointer value given as the
5182first argument, the second index indexes a value of the type pointed to
5183(not necessarily the value directly pointed to, since the first index
5184can be non-zero), etc. The first type indexed into must be a pointer
5185value, subsequent types can be arrays, vectors, and structs. Note that
5186subsequent types being indexed into can never be pointers, since that
5187would require loading the pointer before continuing calculation.
5188
5189The type of each index argument depends on the type it is indexing into.
5190When indexing into a (optionally packed) structure, only ``i32`` integer
5191**constants** are allowed (when using a vector of indices they must all
5192be the **same** ``i32`` integer constant). When indexing into an array,
5193pointer or vector, integers of any width are allowed, and they are not
5194required to be constant. These integers are treated as signed values
5195where relevant.
5196
5197For example, let's consider a C code fragment and how it gets compiled
5198to LLVM:
5199
5200.. code-block:: c
5201
5202 struct RT {
5203 char A;
5204 int B[10][20];
5205 char C;
5206 };
5207 struct ST {
5208 int X;
5209 double Y;
5210 struct RT Z;
5211 };
5212
5213 int *foo(struct ST *s) {
5214 return &s[1].Z.B[5][13];
5215 }
5216
5217The LLVM code generated by Clang is:
5218
5219.. code-block:: llvm
5220
5221 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5222 %struct.ST = type { i32, double, %struct.RT }
5223
5224 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5225 entry:
5226 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5227 ret i32* %arrayidx
5228 }
5229
5230Semantics:
5231""""""""""
5232
5233In the example above, the first index is indexing into the
5234'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5235= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5236indexes into the third element of the structure, yielding a
5237'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5238structure. The third index indexes into the second element of the
5239structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5240dimensions of the array are subscripted into, yielding an '``i32``'
5241type. The '``getelementptr``' instruction returns a pointer to this
5242element, thus computing a value of '``i32*``' type.
5243
5244Note that it is perfectly legal to index partially through a structure,
5245returning a pointer to an inner element. Because of this, the LLVM code
5246for the given testcase is equivalent to:
5247
5248.. code-block:: llvm
5249
5250 define i32* @foo(%struct.ST* %s) {
5251 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5252 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5253 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5254 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5255 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5256 ret i32* %t5
5257 }
5258
5259If the ``inbounds`` keyword is present, the result value of the
5260``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5261pointer is not an *in bounds* address of an allocated object, or if any
5262of the addresses that would be formed by successive addition of the
5263offsets implied by the indices to the base address with infinitely
5264precise signed arithmetic are not an *in bounds* address of that
5265allocated object. The *in bounds* addresses for an allocated object are
5266all the addresses that point into the object, plus the address one byte
5267past the end. In cases where the base is a vector of pointers the
5268``inbounds`` keyword applies to each of the computations element-wise.
5269
5270If the ``inbounds`` keyword is not present, the offsets are added to the
5271base address with silently-wrapping two's complement arithmetic. If the
5272offsets have a different width from the pointer, they are sign-extended
5273or truncated to the width of the pointer. The result value of the
5274``getelementptr`` may be outside the object pointed to by the base
5275pointer. The result value may not necessarily be used to access memory
5276though, even if it happens to point into allocated storage. See the
5277:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5278information.
5279
5280The getelementptr instruction is often confusing. For some more insight
5281into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5282
5283Example:
5284""""""""
5285
5286.. code-block:: llvm
5287
5288 ; yields [12 x i8]*:aptr
5289 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5290 ; yields i8*:vptr
5291 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5292 ; yields i8*:eptr
5293 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5294 ; yields i32*:iptr
5295 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5296
5297In cases where the pointer argument is a vector of pointers, each index
5298must be a vector with the same number of elements. For example:
5299
5300.. code-block:: llvm
5301
5302 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5303
5304Conversion Operations
5305---------------------
5306
5307The instructions in this category are the conversion instructions
5308(casting) which all take a single operand and a type. They perform
5309various bit conversions on the operand.
5310
5311'``trunc .. to``' Instruction
5312^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5313
5314Syntax:
5315"""""""
5316
5317::
5318
5319 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5320
5321Overview:
5322"""""""""
5323
5324The '``trunc``' instruction truncates its operand to the type ``ty2``.
5325
5326Arguments:
5327""""""""""
5328
5329The '``trunc``' instruction takes a value to trunc, and a type to trunc
5330it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5331of the same number of integers. The bit size of the ``value`` must be
5332larger than the bit size of the destination type, ``ty2``. Equal sized
5333types are not allowed.
5334
5335Semantics:
5336""""""""""
5337
5338The '``trunc``' instruction truncates the high order bits in ``value``
5339and converts the remaining bits to ``ty2``. Since the source size must
5340be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5341It will always truncate bits.
5342
5343Example:
5344""""""""
5345
5346.. code-block:: llvm
5347
5348 %X = trunc i32 257 to i8 ; yields i8:1
5349 %Y = trunc i32 123 to i1 ; yields i1:true
5350 %Z = trunc i32 122 to i1 ; yields i1:false
5351 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5352
5353'``zext .. to``' Instruction
5354^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5355
5356Syntax:
5357"""""""
5358
5359::
5360
5361 <result> = zext <ty> <value> to <ty2> ; yields ty2
5362
5363Overview:
5364"""""""""
5365
5366The '``zext``' instruction zero extends its operand to type ``ty2``.
5367
5368Arguments:
5369""""""""""
5370
5371The '``zext``' instruction takes a value to cast, and a type to cast it
5372to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5373the same number of integers. The bit size of the ``value`` must be
5374smaller than the bit size of the destination type, ``ty2``.
5375
5376Semantics:
5377""""""""""
5378
5379The ``zext`` fills the high order bits of the ``value`` with zero bits
5380until it reaches the size of the destination type, ``ty2``.
5381
5382When zero extending from i1, the result will always be either 0 or 1.
5383
5384Example:
5385""""""""
5386
5387.. code-block:: llvm
5388
5389 %X = zext i32 257 to i64 ; yields i64:257
5390 %Y = zext i1 true to i32 ; yields i32:1
5391 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5392
5393'``sext .. to``' Instruction
5394^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5395
5396Syntax:
5397"""""""
5398
5399::
5400
5401 <result> = sext <ty> <value> to <ty2> ; yields ty2
5402
5403Overview:
5404"""""""""
5405
5406The '``sext``' sign extends ``value`` to the type ``ty2``.
5407
5408Arguments:
5409""""""""""
5410
5411The '``sext``' instruction takes a value to cast, and a type to cast it
5412to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5413the same number of integers. The bit size of the ``value`` must be
5414smaller than the bit size of the destination type, ``ty2``.
5415
5416Semantics:
5417""""""""""
5418
5419The '``sext``' instruction performs a sign extension by copying the sign
5420bit (highest order bit) of the ``value`` until it reaches the bit size
5421of the type ``ty2``.
5422
5423When sign extending from i1, the extension always results in -1 or 0.
5424
5425Example:
5426""""""""
5427
5428.. code-block:: llvm
5429
5430 %X = sext i8 -1 to i16 ; yields i16 :65535
5431 %Y = sext i1 true to i32 ; yields i32:-1
5432 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5433
5434'``fptrunc .. to``' Instruction
5435^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5436
5437Syntax:
5438"""""""
5439
5440::
5441
5442 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5443
5444Overview:
5445"""""""""
5446
5447The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5448
5449Arguments:
5450""""""""""
5451
5452The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5453value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5454The size of ``value`` must be larger than the size of ``ty2``. This
5455implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5456
5457Semantics:
5458""""""""""
5459
5460The '``fptrunc``' instruction truncates a ``value`` from a larger
5461:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5462point <t_floating>` type. If the value cannot fit within the
5463destination type, ``ty2``, then the results are undefined.
5464
5465Example:
5466""""""""
5467
5468.. code-block:: llvm
5469
5470 %X = fptrunc double 123.0 to float ; yields float:123.0
5471 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5472
5473'``fpext .. to``' Instruction
5474^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5475
5476Syntax:
5477"""""""
5478
5479::
5480
5481 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5482
5483Overview:
5484"""""""""
5485
5486The '``fpext``' extends a floating point ``value`` to a larger floating
5487point value.
5488
5489Arguments:
5490""""""""""
5491
5492The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5493``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5494to. The source type must be smaller than the destination type.
5495
5496Semantics:
5497""""""""""
5498
5499The '``fpext``' instruction extends the ``value`` from a smaller
5500:ref:`floating point <t_floating>` type to a larger :ref:`floating
5501point <t_floating>` type. The ``fpext`` cannot be used to make a
5502*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5503*no-op cast* for a floating point cast.
5504
5505Example:
5506""""""""
5507
5508.. code-block:: llvm
5509
5510 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5511 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5512
5513'``fptoui .. to``' Instruction
5514^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5515
5516Syntax:
5517"""""""
5518
5519::
5520
5521 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5522
5523Overview:
5524"""""""""
5525
5526The '``fptoui``' converts a floating point ``value`` to its unsigned
5527integer equivalent of type ``ty2``.
5528
5529Arguments:
5530""""""""""
5531
5532The '``fptoui``' instruction takes a value to cast, which must be a
5533scalar or vector :ref:`floating point <t_floating>` value, and a type to
5534cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5535``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5536type with the same number of elements as ``ty``
5537
5538Semantics:
5539""""""""""
5540
5541The '``fptoui``' instruction converts its :ref:`floating
5542point <t_floating>` operand into the nearest (rounding towards zero)
5543unsigned integer value. If the value cannot fit in ``ty2``, the results
5544are undefined.
5545
5546Example:
5547""""""""
5548
5549.. code-block:: llvm
5550
5551 %X = fptoui double 123.0 to i32 ; yields i32:123
5552 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5553 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5554
5555'``fptosi .. to``' Instruction
5556^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5557
5558Syntax:
5559"""""""
5560
5561::
5562
5563 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5564
5565Overview:
5566"""""""""
5567
5568The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5569``value`` to type ``ty2``.
5570
5571Arguments:
5572""""""""""
5573
5574The '``fptosi``' instruction takes a value to cast, which must be a
5575scalar or vector :ref:`floating point <t_floating>` value, and a type to
5576cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5577``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5578type with the same number of elements as ``ty``
5579
5580Semantics:
5581""""""""""
5582
5583The '``fptosi``' instruction converts its :ref:`floating
5584point <t_floating>` operand into the nearest (rounding towards zero)
5585signed integer value. If the value cannot fit in ``ty2``, the results
5586are undefined.
5587
5588Example:
5589""""""""
5590
5591.. code-block:: llvm
5592
5593 %X = fptosi double -123.0 to i32 ; yields i32:-123
5594 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5595 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5596
5597'``uitofp .. to``' Instruction
5598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5599
5600Syntax:
5601"""""""
5602
5603::
5604
5605 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5606
5607Overview:
5608"""""""""
5609
5610The '``uitofp``' instruction regards ``value`` as an unsigned integer
5611and converts that value to the ``ty2`` type.
5612
5613Arguments:
5614""""""""""
5615
5616The '``uitofp``' instruction takes a value to cast, which must be a
5617scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5618``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5619``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5620type with the same number of elements as ``ty``
5621
5622Semantics:
5623""""""""""
5624
5625The '``uitofp``' instruction interprets its operand as an unsigned
5626integer quantity and converts it to the corresponding floating point
5627value. If the value cannot fit in the floating point value, the results
5628are undefined.
5629
5630Example:
5631""""""""
5632
5633.. code-block:: llvm
5634
5635 %X = uitofp i32 257 to float ; yields float:257.0
5636 %Y = uitofp i8 -1 to double ; yields double:255.0
5637
5638'``sitofp .. to``' Instruction
5639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5640
5641Syntax:
5642"""""""
5643
5644::
5645
5646 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5647
5648Overview:
5649"""""""""
5650
5651The '``sitofp``' instruction regards ``value`` as a signed integer and
5652converts that value to the ``ty2`` type.
5653
5654Arguments:
5655""""""""""
5656
5657The '``sitofp``' instruction takes a value to cast, which must be a
5658scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5659``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5660``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5661type with the same number of elements as ``ty``
5662
5663Semantics:
5664""""""""""
5665
5666The '``sitofp``' instruction interprets its operand as a signed integer
5667quantity and converts it to the corresponding floating point value. If
5668the value cannot fit in the floating point value, the results are
5669undefined.
5670
5671Example:
5672""""""""
5673
5674.. code-block:: llvm
5675
5676 %X = sitofp i32 257 to float ; yields float:257.0
5677 %Y = sitofp i8 -1 to double ; yields double:-1.0
5678
5679.. _i_ptrtoint:
5680
5681'``ptrtoint .. to``' Instruction
5682^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5683
5684Syntax:
5685"""""""
5686
5687::
5688
5689 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5690
5691Overview:
5692"""""""""
5693
5694The '``ptrtoint``' instruction converts the pointer or a vector of
5695pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5696
5697Arguments:
5698""""""""""
5699
5700The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5701a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5702type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5703a vector of integers type.
5704
5705Semantics:
5706""""""""""
5707
5708The '``ptrtoint``' instruction converts ``value`` to integer type
5709``ty2`` by interpreting the pointer value as an integer and either
5710truncating or zero extending that value to the size of the integer type.
5711If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5712``value`` is larger than ``ty2`` then a truncation is done. If they are
5713the same size, then nothing is done (*no-op cast*) other than a type
5714change.
5715
5716Example:
5717""""""""
5718
5719.. code-block:: llvm
5720
5721 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5722 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5723 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5724
5725.. _i_inttoptr:
5726
5727'``inttoptr .. to``' Instruction
5728^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5729
5730Syntax:
5731"""""""
5732
5733::
5734
5735 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5736
5737Overview:
5738"""""""""
5739
5740The '``inttoptr``' instruction converts an integer ``value`` to a
5741pointer type, ``ty2``.
5742
5743Arguments:
5744""""""""""
5745
5746The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5747cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5748type.
5749
5750Semantics:
5751""""""""""
5752
5753The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5754applying either a zero extension or a truncation depending on the size
5755of the integer ``value``. If ``value`` is larger than the size of a
5756pointer then a truncation is done. If ``value`` is smaller than the size
5757of a pointer then a zero extension is done. If they are the same size,
5758nothing is done (*no-op cast*).
5759
5760Example:
5761""""""""
5762
5763.. code-block:: llvm
5764
5765 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5766 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5767 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5768 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5769
5770.. _i_bitcast:
5771
5772'``bitcast .. to``' Instruction
5773^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5774
5775Syntax:
5776"""""""
5777
5778::
5779
5780 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5781
5782Overview:
5783"""""""""
5784
5785The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5786changing any bits.
5787
5788Arguments:
5789""""""""""
5790
5791The '``bitcast``' instruction takes a value to cast, which must be a
5792non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005793also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5794bit sizes of ``value`` and the destination type, ``ty2``, must be
5795identical. If the source type is a pointer, the destination type must
5796also be a pointer of the same size. This instruction supports bitwise
5797conversion of vectors to integers and to vectors of other types (as
5798long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005799
5800Semantics:
5801""""""""""
5802
Matt Arsenault24b49c42013-07-31 17:49:08 +00005803The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5804is always a *no-op cast* because no bits change with this
5805conversion. The conversion is done as if the ``value`` had been stored
5806to memory and read back as type ``ty2``. Pointer (or vector of
5807pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005808pointers) types with the same address space through this instruction.
5809To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5810or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005811
5812Example:
5813""""""""
5814
5815.. code-block:: llvm
5816
5817 %X = bitcast i8 255 to i8 ; yields i8 :-1
5818 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5819 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5820 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5821
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005822.. _i_addrspacecast:
5823
5824'``addrspacecast .. to``' Instruction
5825^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5826
5827Syntax:
5828"""""""
5829
5830::
5831
5832 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5833
5834Overview:
5835"""""""""
5836
5837The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5838address space ``n`` to type ``pty2`` in address space ``m``.
5839
5840Arguments:
5841""""""""""
5842
5843The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5844to cast and a pointer type to cast it to, which must have a different
5845address space.
5846
5847Semantics:
5848""""""""""
5849
5850The '``addrspacecast``' instruction converts the pointer value
5851``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005852value modification, depending on the target and the address space
5853pair. Pointer conversions within the same address space must be
5854performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005855conversion is legal then both result and operand refer to the same memory
5856location.
5857
5858Example:
5859""""""""
5860
5861.. code-block:: llvm
5862
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005863 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5864 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5865 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005866
Sean Silvab084af42012-12-07 10:36:55 +00005867.. _otherops:
5868
5869Other Operations
5870----------------
5871
5872The instructions in this category are the "miscellaneous" instructions,
5873which defy better classification.
5874
5875.. _i_icmp:
5876
5877'``icmp``' Instruction
5878^^^^^^^^^^^^^^^^^^^^^^
5879
5880Syntax:
5881"""""""
5882
5883::
5884
5885 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5886
5887Overview:
5888"""""""""
5889
5890The '``icmp``' instruction returns a boolean value or a vector of
5891boolean values based on comparison of its two integer, integer vector,
5892pointer, or pointer vector operands.
5893
5894Arguments:
5895""""""""""
5896
5897The '``icmp``' instruction takes three operands. The first operand is
5898the condition code indicating the kind of comparison to perform. It is
5899not a value, just a keyword. The possible condition code are:
5900
5901#. ``eq``: equal
5902#. ``ne``: not equal
5903#. ``ugt``: unsigned greater than
5904#. ``uge``: unsigned greater or equal
5905#. ``ult``: unsigned less than
5906#. ``ule``: unsigned less or equal
5907#. ``sgt``: signed greater than
5908#. ``sge``: signed greater or equal
5909#. ``slt``: signed less than
5910#. ``sle``: signed less or equal
5911
5912The remaining two arguments must be :ref:`integer <t_integer>` or
5913:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5914must also be identical types.
5915
5916Semantics:
5917""""""""""
5918
5919The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5920code given as ``cond``. The comparison performed always yields either an
5921:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5922
5923#. ``eq``: yields ``true`` if the operands are equal, ``false``
5924 otherwise. No sign interpretation is necessary or performed.
5925#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5926 otherwise. No sign interpretation is necessary or performed.
5927#. ``ugt``: interprets the operands as unsigned values and yields
5928 ``true`` if ``op1`` is greater than ``op2``.
5929#. ``uge``: interprets the operands as unsigned values and yields
5930 ``true`` if ``op1`` is greater than or equal to ``op2``.
5931#. ``ult``: interprets the operands as unsigned values and yields
5932 ``true`` if ``op1`` is less than ``op2``.
5933#. ``ule``: interprets the operands as unsigned values and yields
5934 ``true`` if ``op1`` is less than or equal to ``op2``.
5935#. ``sgt``: interprets the operands as signed values and yields ``true``
5936 if ``op1`` is greater than ``op2``.
5937#. ``sge``: interprets the operands as signed values and yields ``true``
5938 if ``op1`` is greater than or equal to ``op2``.
5939#. ``slt``: interprets the operands as signed values and yields ``true``
5940 if ``op1`` is less than ``op2``.
5941#. ``sle``: interprets the operands as signed values and yields ``true``
5942 if ``op1`` is less than or equal to ``op2``.
5943
5944If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5945are compared as if they were integers.
5946
5947If the operands are integer vectors, then they are compared element by
5948element. The result is an ``i1`` vector with the same number of elements
5949as the values being compared. Otherwise, the result is an ``i1``.
5950
5951Example:
5952""""""""
5953
5954.. code-block:: llvm
5955
5956 <result> = icmp eq i32 4, 5 ; yields: result=false
5957 <result> = icmp ne float* %X, %X ; yields: result=false
5958 <result> = icmp ult i16 4, 5 ; yields: result=true
5959 <result> = icmp sgt i16 4, 5 ; yields: result=false
5960 <result> = icmp ule i16 -4, 5 ; yields: result=false
5961 <result> = icmp sge i16 4, 5 ; yields: result=false
5962
5963Note that the code generator does not yet support vector types with the
5964``icmp`` instruction.
5965
5966.. _i_fcmp:
5967
5968'``fcmp``' Instruction
5969^^^^^^^^^^^^^^^^^^^^^^
5970
5971Syntax:
5972"""""""
5973
5974::
5975
5976 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5977
5978Overview:
5979"""""""""
5980
5981The '``fcmp``' instruction returns a boolean value or vector of boolean
5982values based on comparison of its operands.
5983
5984If the operands are floating point scalars, then the result type is a
5985boolean (:ref:`i1 <t_integer>`).
5986
5987If the operands are floating point vectors, then the result type is a
5988vector of boolean with the same number of elements as the operands being
5989compared.
5990
5991Arguments:
5992""""""""""
5993
5994The '``fcmp``' instruction takes three operands. The first operand is
5995the condition code indicating the kind of comparison to perform. It is
5996not a value, just a keyword. The possible condition code are:
5997
5998#. ``false``: no comparison, always returns false
5999#. ``oeq``: ordered and equal
6000#. ``ogt``: ordered and greater than
6001#. ``oge``: ordered and greater than or equal
6002#. ``olt``: ordered and less than
6003#. ``ole``: ordered and less than or equal
6004#. ``one``: ordered and not equal
6005#. ``ord``: ordered (no nans)
6006#. ``ueq``: unordered or equal
6007#. ``ugt``: unordered or greater than
6008#. ``uge``: unordered or greater than or equal
6009#. ``ult``: unordered or less than
6010#. ``ule``: unordered or less than or equal
6011#. ``une``: unordered or not equal
6012#. ``uno``: unordered (either nans)
6013#. ``true``: no comparison, always returns true
6014
6015*Ordered* means that neither operand is a QNAN while *unordered* means
6016that either operand may be a QNAN.
6017
6018Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6019point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6020type. They must have identical types.
6021
6022Semantics:
6023""""""""""
6024
6025The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6026condition code given as ``cond``. If the operands are vectors, then the
6027vectors are compared element by element. Each comparison performed
6028always yields an :ref:`i1 <t_integer>` result, as follows:
6029
6030#. ``false``: always yields ``false``, regardless of operands.
6031#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6032 is equal to ``op2``.
6033#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6034 is greater than ``op2``.
6035#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6036 is greater than or equal to ``op2``.
6037#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6038 is less than ``op2``.
6039#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6040 is less than or equal to ``op2``.
6041#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6042 is not equal to ``op2``.
6043#. ``ord``: yields ``true`` if both operands are not a QNAN.
6044#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6045 equal to ``op2``.
6046#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6047 greater than ``op2``.
6048#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6049 greater than or equal to ``op2``.
6050#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6051 less than ``op2``.
6052#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6053 less than or equal to ``op2``.
6054#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6055 not equal to ``op2``.
6056#. ``uno``: yields ``true`` if either operand is a QNAN.
6057#. ``true``: always yields ``true``, regardless of operands.
6058
6059Example:
6060""""""""
6061
6062.. code-block:: llvm
6063
6064 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6065 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6066 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6067 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6068
6069Note that the code generator does not yet support vector types with the
6070``fcmp`` instruction.
6071
6072.. _i_phi:
6073
6074'``phi``' Instruction
6075^^^^^^^^^^^^^^^^^^^^^
6076
6077Syntax:
6078"""""""
6079
6080::
6081
6082 <result> = phi <ty> [ <val0>, <label0>], ...
6083
6084Overview:
6085"""""""""
6086
6087The '``phi``' instruction is used to implement the φ node in the SSA
6088graph representing the function.
6089
6090Arguments:
6091""""""""""
6092
6093The type of the incoming values is specified with the first type field.
6094After this, the '``phi``' instruction takes a list of pairs as
6095arguments, with one pair for each predecessor basic block of the current
6096block. Only values of :ref:`first class <t_firstclass>` type may be used as
6097the value arguments to the PHI node. Only labels may be used as the
6098label arguments.
6099
6100There must be no non-phi instructions between the start of a basic block
6101and the PHI instructions: i.e. PHI instructions must be first in a basic
6102block.
6103
6104For the purposes of the SSA form, the use of each incoming value is
6105deemed to occur on the edge from the corresponding predecessor block to
6106the current block (but after any definition of an '``invoke``'
6107instruction's return value on the same edge).
6108
6109Semantics:
6110""""""""""
6111
6112At runtime, the '``phi``' instruction logically takes on the value
6113specified by the pair corresponding to the predecessor basic block that
6114executed just prior to the current block.
6115
6116Example:
6117""""""""
6118
6119.. code-block:: llvm
6120
6121 Loop: ; Infinite loop that counts from 0 on up...
6122 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6123 %nextindvar = add i32 %indvar, 1
6124 br label %Loop
6125
6126.. _i_select:
6127
6128'``select``' Instruction
6129^^^^^^^^^^^^^^^^^^^^^^^^
6130
6131Syntax:
6132"""""""
6133
6134::
6135
6136 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6137
6138 selty is either i1 or {<N x i1>}
6139
6140Overview:
6141"""""""""
6142
6143The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006144condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006145
6146Arguments:
6147""""""""""
6148
6149The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6150values indicating the condition, and two values of the same :ref:`first
6151class <t_firstclass>` type. If the val1/val2 are vectors and the
6152condition is a scalar, then entire vectors are selected, not individual
6153elements.
6154
6155Semantics:
6156""""""""""
6157
6158If the condition is an i1 and it evaluates to 1, the instruction returns
6159the first value argument; otherwise, it returns the second value
6160argument.
6161
6162If the condition is a vector of i1, then the value arguments must be
6163vectors of the same size, and the selection is done element by element.
6164
6165Example:
6166""""""""
6167
6168.. code-block:: llvm
6169
6170 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6171
6172.. _i_call:
6173
6174'``call``' Instruction
6175^^^^^^^^^^^^^^^^^^^^^^
6176
6177Syntax:
6178"""""""
6179
6180::
6181
Reid Kleckner5772b772014-04-24 20:14:34 +00006182 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006183
6184Overview:
6185"""""""""
6186
6187The '``call``' instruction represents a simple function call.
6188
6189Arguments:
6190""""""""""
6191
6192This instruction requires several arguments:
6193
Reid Kleckner5772b772014-04-24 20:14:34 +00006194#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6195 should perform tail call optimization. The ``tail`` marker is a hint that
6196 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6197 means that the call must be tail call optimized in order for the program to
6198 be correct. The ``musttail`` marker provides these guarantees:
6199
6200 #. The call will not cause unbounded stack growth if it is part of a
6201 recursive cycle in the call graph.
6202 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6203 forwarded in place.
6204
6205 Both markers imply that the callee does not access allocas or varargs from
6206 the caller. Calls marked ``musttail`` must obey the following additional
6207 rules:
6208
6209 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6210 or a pointer bitcast followed by a ret instruction.
6211 - The ret instruction must return the (possibly bitcasted) value
6212 produced by the call or void.
6213 - The caller and callee prototypes must match. Pointer types of
6214 parameters or return types may differ in pointee type, but not
6215 in address space.
6216 - The calling conventions of the caller and callee must match.
6217 - All ABI-impacting function attributes, such as sret, byval, inreg,
6218 returned, and inalloca, must match.
6219
6220 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6221 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006222
6223 - Caller and callee both have the calling convention ``fastcc``.
6224 - The call is in tail position (ret immediately follows call and ret
6225 uses value of call or is void).
6226 - Option ``-tailcallopt`` is enabled, or
6227 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6228 - `Platform specific constraints are
6229 met. <CodeGenerator.html#tailcallopt>`_
6230
6231#. The optional "cconv" marker indicates which :ref:`calling
6232 convention <callingconv>` the call should use. If none is
6233 specified, the call defaults to using C calling conventions. The
6234 calling convention of the call must match the calling convention of
6235 the target function, or else the behavior is undefined.
6236#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6237 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6238 are valid here.
6239#. '``ty``': the type of the call instruction itself which is also the
6240 type of the return value. Functions that return no value are marked
6241 ``void``.
6242#. '``fnty``': shall be the signature of the pointer to function value
6243 being invoked. The argument types must match the types implied by
6244 this signature. This type can be omitted if the function is not
6245 varargs and if the function type does not return a pointer to a
6246 function.
6247#. '``fnptrval``': An LLVM value containing a pointer to a function to
6248 be invoked. In most cases, this is a direct function invocation, but
6249 indirect ``call``'s are just as possible, calling an arbitrary pointer
6250 to function value.
6251#. '``function args``': argument list whose types match the function
6252 signature argument types and parameter attributes. All arguments must
6253 be of :ref:`first class <t_firstclass>` type. If the function signature
6254 indicates the function accepts a variable number of arguments, the
6255 extra arguments can be specified.
6256#. The optional :ref:`function attributes <fnattrs>` list. Only
6257 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6258 attributes are valid here.
6259
6260Semantics:
6261""""""""""
6262
6263The '``call``' instruction is used to cause control flow to transfer to
6264a specified function, with its incoming arguments bound to the specified
6265values. Upon a '``ret``' instruction in the called function, control
6266flow continues with the instruction after the function call, and the
6267return value of the function is bound to the result argument.
6268
6269Example:
6270""""""""
6271
6272.. code-block:: llvm
6273
6274 %retval = call i32 @test(i32 %argc)
6275 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6276 %X = tail call i32 @foo() ; yields i32
6277 %Y = tail call fastcc i32 @foo() ; yields i32
6278 call void %foo(i8 97 signext)
6279
6280 %struct.A = type { i32, i8 }
6281 %r = call %struct.A @foo() ; yields { 32, i8 }
6282 %gr = extractvalue %struct.A %r, 0 ; yields i32
6283 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6284 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6285 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6286
6287llvm treats calls to some functions with names and arguments that match
6288the standard C99 library as being the C99 library functions, and may
6289perform optimizations or generate code for them under that assumption.
6290This is something we'd like to change in the future to provide better
6291support for freestanding environments and non-C-based languages.
6292
6293.. _i_va_arg:
6294
6295'``va_arg``' Instruction
6296^^^^^^^^^^^^^^^^^^^^^^^^
6297
6298Syntax:
6299"""""""
6300
6301::
6302
6303 <resultval> = va_arg <va_list*> <arglist>, <argty>
6304
6305Overview:
6306"""""""""
6307
6308The '``va_arg``' instruction is used to access arguments passed through
6309the "variable argument" area of a function call. It is used to implement
6310the ``va_arg`` macro in C.
6311
6312Arguments:
6313""""""""""
6314
6315This instruction takes a ``va_list*`` value and the type of the
6316argument. It returns a value of the specified argument type and
6317increments the ``va_list`` to point to the next argument. The actual
6318type of ``va_list`` is target specific.
6319
6320Semantics:
6321""""""""""
6322
6323The '``va_arg``' instruction loads an argument of the specified type
6324from the specified ``va_list`` and causes the ``va_list`` to point to
6325the next argument. For more information, see the variable argument
6326handling :ref:`Intrinsic Functions <int_varargs>`.
6327
6328It is legal for this instruction to be called in a function which does
6329not take a variable number of arguments, for example, the ``vfprintf``
6330function.
6331
6332``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6333function <intrinsics>` because it takes a type as an argument.
6334
6335Example:
6336""""""""
6337
6338See the :ref:`variable argument processing <int_varargs>` section.
6339
6340Note that the code generator does not yet fully support va\_arg on many
6341targets. Also, it does not currently support va\_arg with aggregate
6342types on any target.
6343
6344.. _i_landingpad:
6345
6346'``landingpad``' Instruction
6347^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6348
6349Syntax:
6350"""""""
6351
6352::
6353
6354 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6355 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6356
6357 <clause> := catch <type> <value>
6358 <clause> := filter <array constant type> <array constant>
6359
6360Overview:
6361"""""""""
6362
6363The '``landingpad``' instruction is used by `LLVM's exception handling
6364system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006365is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006366code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6367defines values supplied by the personality function (``pers_fn``) upon
6368re-entry to the function. The ``resultval`` has the type ``resultty``.
6369
6370Arguments:
6371""""""""""
6372
6373This instruction takes a ``pers_fn`` value. This is the personality
6374function associated with the unwinding mechanism. The optional
6375``cleanup`` flag indicates that the landing pad block is a cleanup.
6376
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006377A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006378contains the global variable representing the "type" that may be caught
6379or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6380clause takes an array constant as its argument. Use
6381"``[0 x i8**] undef``" for a filter which cannot throw. The
6382'``landingpad``' instruction must contain *at least* one ``clause`` or
6383the ``cleanup`` flag.
6384
6385Semantics:
6386""""""""""
6387
6388The '``landingpad``' instruction defines the values which are set by the
6389personality function (``pers_fn``) upon re-entry to the function, and
6390therefore the "result type" of the ``landingpad`` instruction. As with
6391calling conventions, how the personality function results are
6392represented in LLVM IR is target specific.
6393
6394The clauses are applied in order from top to bottom. If two
6395``landingpad`` instructions are merged together through inlining, the
6396clauses from the calling function are appended to the list of clauses.
6397When the call stack is being unwound due to an exception being thrown,
6398the exception is compared against each ``clause`` in turn. If it doesn't
6399match any of the clauses, and the ``cleanup`` flag is not set, then
6400unwinding continues further up the call stack.
6401
6402The ``landingpad`` instruction has several restrictions:
6403
6404- A landing pad block is a basic block which is the unwind destination
6405 of an '``invoke``' instruction.
6406- A landing pad block must have a '``landingpad``' instruction as its
6407 first non-PHI instruction.
6408- There can be only one '``landingpad``' instruction within the landing
6409 pad block.
6410- A basic block that is not a landing pad block may not include a
6411 '``landingpad``' instruction.
6412- All '``landingpad``' instructions in a function must have the same
6413 personality function.
6414
6415Example:
6416""""""""
6417
6418.. code-block:: llvm
6419
6420 ;; A landing pad which can catch an integer.
6421 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6422 catch i8** @_ZTIi
6423 ;; A landing pad that is a cleanup.
6424 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6425 cleanup
6426 ;; A landing pad which can catch an integer and can only throw a double.
6427 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6428 catch i8** @_ZTIi
6429 filter [1 x i8**] [@_ZTId]
6430
6431.. _intrinsics:
6432
6433Intrinsic Functions
6434===================
6435
6436LLVM supports the notion of an "intrinsic function". These functions
6437have well known names and semantics and are required to follow certain
6438restrictions. Overall, these intrinsics represent an extension mechanism
6439for the LLVM language that does not require changing all of the
6440transformations in LLVM when adding to the language (or the bitcode
6441reader/writer, the parser, etc...).
6442
6443Intrinsic function names must all start with an "``llvm.``" prefix. This
6444prefix is reserved in LLVM for intrinsic names; thus, function names may
6445not begin with this prefix. Intrinsic functions must always be external
6446functions: you cannot define the body of intrinsic functions. Intrinsic
6447functions may only be used in call or invoke instructions: it is illegal
6448to take the address of an intrinsic function. Additionally, because
6449intrinsic functions are part of the LLVM language, it is required if any
6450are added that they be documented here.
6451
6452Some intrinsic functions can be overloaded, i.e., the intrinsic
6453represents a family of functions that perform the same operation but on
6454different data types. Because LLVM can represent over 8 million
6455different integer types, overloading is used commonly to allow an
6456intrinsic function to operate on any integer type. One or more of the
6457argument types or the result type can be overloaded to accept any
6458integer type. Argument types may also be defined as exactly matching a
6459previous argument's type or the result type. This allows an intrinsic
6460function which accepts multiple arguments, but needs all of them to be
6461of the same type, to only be overloaded with respect to a single
6462argument or the result.
6463
6464Overloaded intrinsics will have the names of its overloaded argument
6465types encoded into its function name, each preceded by a period. Only
6466those types which are overloaded result in a name suffix. Arguments
6467whose type is matched against another type do not. For example, the
6468``llvm.ctpop`` function can take an integer of any width and returns an
6469integer of exactly the same integer width. This leads to a family of
6470functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6471``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6472overloaded, and only one type suffix is required. Because the argument's
6473type is matched against the return type, it does not require its own
6474name suffix.
6475
6476To learn how to add an intrinsic function, please see the `Extending
6477LLVM Guide <ExtendingLLVM.html>`_.
6478
6479.. _int_varargs:
6480
6481Variable Argument Handling Intrinsics
6482-------------------------------------
6483
6484Variable argument support is defined in LLVM with the
6485:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6486functions. These functions are related to the similarly named macros
6487defined in the ``<stdarg.h>`` header file.
6488
6489All of these functions operate on arguments that use a target-specific
6490value type "``va_list``". The LLVM assembly language reference manual
6491does not define what this type is, so all transformations should be
6492prepared to handle these functions regardless of the type used.
6493
6494This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6495variable argument handling intrinsic functions are used.
6496
6497.. code-block:: llvm
6498
6499 define i32 @test(i32 %X, ...) {
6500 ; Initialize variable argument processing
6501 %ap = alloca i8*
6502 %ap2 = bitcast i8** %ap to i8*
6503 call void @llvm.va_start(i8* %ap2)
6504
6505 ; Read a single integer argument
6506 %tmp = va_arg i8** %ap, i32
6507
6508 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6509 %aq = alloca i8*
6510 %aq2 = bitcast i8** %aq to i8*
6511 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6512 call void @llvm.va_end(i8* %aq2)
6513
6514 ; Stop processing of arguments.
6515 call void @llvm.va_end(i8* %ap2)
6516 ret i32 %tmp
6517 }
6518
6519 declare void @llvm.va_start(i8*)
6520 declare void @llvm.va_copy(i8*, i8*)
6521 declare void @llvm.va_end(i8*)
6522
6523.. _int_va_start:
6524
6525'``llvm.va_start``' Intrinsic
6526^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6527
6528Syntax:
6529"""""""
6530
6531::
6532
Nick Lewycky04f6de02013-09-11 22:04:52 +00006533 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006534
6535Overview:
6536"""""""""
6537
6538The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6539subsequent use by ``va_arg``.
6540
6541Arguments:
6542""""""""""
6543
6544The argument is a pointer to a ``va_list`` element to initialize.
6545
6546Semantics:
6547""""""""""
6548
6549The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6550available in C. In a target-dependent way, it initializes the
6551``va_list`` element to which the argument points, so that the next call
6552to ``va_arg`` will produce the first variable argument passed to the
6553function. Unlike the C ``va_start`` macro, this intrinsic does not need
6554to know the last argument of the function as the compiler can figure
6555that out.
6556
6557'``llvm.va_end``' Intrinsic
6558^^^^^^^^^^^^^^^^^^^^^^^^^^^
6559
6560Syntax:
6561"""""""
6562
6563::
6564
6565 declare void @llvm.va_end(i8* <arglist>)
6566
6567Overview:
6568"""""""""
6569
6570The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6571initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6572
6573Arguments:
6574""""""""""
6575
6576The argument is a pointer to a ``va_list`` to destroy.
6577
6578Semantics:
6579""""""""""
6580
6581The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6582available in C. In a target-dependent way, it destroys the ``va_list``
6583element to which the argument points. Calls to
6584:ref:`llvm.va_start <int_va_start>` and
6585:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6586``llvm.va_end``.
6587
6588.. _int_va_copy:
6589
6590'``llvm.va_copy``' Intrinsic
6591^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6592
6593Syntax:
6594"""""""
6595
6596::
6597
6598 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6599
6600Overview:
6601"""""""""
6602
6603The '``llvm.va_copy``' intrinsic copies the current argument position
6604from the source argument list to the destination argument list.
6605
6606Arguments:
6607""""""""""
6608
6609The first argument is a pointer to a ``va_list`` element to initialize.
6610The second argument is a pointer to a ``va_list`` element to copy from.
6611
6612Semantics:
6613""""""""""
6614
6615The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6616available in C. In a target-dependent way, it copies the source
6617``va_list`` element into the destination ``va_list`` element. This
6618intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6619arbitrarily complex and require, for example, memory allocation.
6620
6621Accurate Garbage Collection Intrinsics
6622--------------------------------------
6623
6624LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6625(GC) requires the implementation and generation of these intrinsics.
6626These intrinsics allow identification of :ref:`GC roots on the
6627stack <int_gcroot>`, as well as garbage collector implementations that
6628require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6629Front-ends for type-safe garbage collected languages should generate
6630these intrinsics to make use of the LLVM garbage collectors. For more
6631details, see `Accurate Garbage Collection with
6632LLVM <GarbageCollection.html>`_.
6633
6634The garbage collection intrinsics only operate on objects in the generic
6635address space (address space zero).
6636
6637.. _int_gcroot:
6638
6639'``llvm.gcroot``' Intrinsic
6640^^^^^^^^^^^^^^^^^^^^^^^^^^^
6641
6642Syntax:
6643"""""""
6644
6645::
6646
6647 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6648
6649Overview:
6650"""""""""
6651
6652The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6653the code generator, and allows some metadata to be associated with it.
6654
6655Arguments:
6656""""""""""
6657
6658The first argument specifies the address of a stack object that contains
6659the root pointer. The second pointer (which must be either a constant or
6660a global value address) contains the meta-data to be associated with the
6661root.
6662
6663Semantics:
6664""""""""""
6665
6666At runtime, a call to this intrinsic stores a null pointer into the
6667"ptrloc" location. At compile-time, the code generator generates
6668information to allow the runtime to find the pointer at GC safe points.
6669The '``llvm.gcroot``' intrinsic may only be used in a function which
6670:ref:`specifies a GC algorithm <gc>`.
6671
6672.. _int_gcread:
6673
6674'``llvm.gcread``' Intrinsic
6675^^^^^^^^^^^^^^^^^^^^^^^^^^^
6676
6677Syntax:
6678"""""""
6679
6680::
6681
6682 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6683
6684Overview:
6685"""""""""
6686
6687The '``llvm.gcread``' intrinsic identifies reads of references from heap
6688locations, allowing garbage collector implementations that require read
6689barriers.
6690
6691Arguments:
6692""""""""""
6693
6694The second argument is the address to read from, which should be an
6695address allocated from the garbage collector. The first object is a
6696pointer to the start of the referenced object, if needed by the language
6697runtime (otherwise null).
6698
6699Semantics:
6700""""""""""
6701
6702The '``llvm.gcread``' intrinsic has the same semantics as a load
6703instruction, but may be replaced with substantially more complex code by
6704the garbage collector runtime, as needed. The '``llvm.gcread``'
6705intrinsic may only be used in a function which :ref:`specifies a GC
6706algorithm <gc>`.
6707
6708.. _int_gcwrite:
6709
6710'``llvm.gcwrite``' Intrinsic
6711^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6712
6713Syntax:
6714"""""""
6715
6716::
6717
6718 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6719
6720Overview:
6721"""""""""
6722
6723The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6724locations, allowing garbage collector implementations that require write
6725barriers (such as generational or reference counting collectors).
6726
6727Arguments:
6728""""""""""
6729
6730The first argument is the reference to store, the second is the start of
6731the object to store it to, and the third is the address of the field of
6732Obj to store to. If the runtime does not require a pointer to the
6733object, Obj may be null.
6734
6735Semantics:
6736""""""""""
6737
6738The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6739instruction, but may be replaced with substantially more complex code by
6740the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6741intrinsic may only be used in a function which :ref:`specifies a GC
6742algorithm <gc>`.
6743
6744Code Generator Intrinsics
6745-------------------------
6746
6747These intrinsics are provided by LLVM to expose special features that
6748may only be implemented with code generator support.
6749
6750'``llvm.returnaddress``' Intrinsic
6751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6752
6753Syntax:
6754"""""""
6755
6756::
6757
6758 declare i8 *@llvm.returnaddress(i32 <level>)
6759
6760Overview:
6761"""""""""
6762
6763The '``llvm.returnaddress``' intrinsic attempts to compute a
6764target-specific value indicating the return address of the current
6765function or one of its callers.
6766
6767Arguments:
6768""""""""""
6769
6770The argument to this intrinsic indicates which function to return the
6771address for. Zero indicates the calling function, one indicates its
6772caller, etc. The argument is **required** to be a constant integer
6773value.
6774
6775Semantics:
6776""""""""""
6777
6778The '``llvm.returnaddress``' intrinsic either returns a pointer
6779indicating the return address of the specified call frame, or zero if it
6780cannot be identified. The value returned by this intrinsic is likely to
6781be incorrect or 0 for arguments other than zero, so it should only be
6782used for debugging purposes.
6783
6784Note that calling this intrinsic does not prevent function inlining or
6785other aggressive transformations, so the value returned may not be that
6786of the obvious source-language caller.
6787
6788'``llvm.frameaddress``' Intrinsic
6789^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6790
6791Syntax:
6792"""""""
6793
6794::
6795
6796 declare i8* @llvm.frameaddress(i32 <level>)
6797
6798Overview:
6799"""""""""
6800
6801The '``llvm.frameaddress``' intrinsic attempts to return the
6802target-specific frame pointer value for the specified stack frame.
6803
6804Arguments:
6805""""""""""
6806
6807The argument to this intrinsic indicates which function to return the
6808frame pointer for. Zero indicates the calling function, one indicates
6809its caller, etc. The argument is **required** to be a constant integer
6810value.
6811
6812Semantics:
6813""""""""""
6814
6815The '``llvm.frameaddress``' intrinsic either returns a pointer
6816indicating the frame address of the specified call frame, or zero if it
6817cannot be identified. The value returned by this intrinsic is likely to
6818be incorrect or 0 for arguments other than zero, so it should only be
6819used for debugging purposes.
6820
6821Note that calling this intrinsic does not prevent function inlining or
6822other aggressive transformations, so the value returned may not be that
6823of the obvious source-language caller.
6824
Renato Golinc7aea402014-05-06 16:51:25 +00006825.. _int_read_register:
6826.. _int_write_register:
6827
6828'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
6829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6830
6831Syntax:
6832"""""""
6833
6834::
6835
6836 declare i32 @llvm.read_register.i32(metadata)
6837 declare i64 @llvm.read_register.i64(metadata)
6838 declare void @llvm.write_register.i32(metadata, i32 @value)
6839 declare void @llvm.write_register.i64(metadata, i64 @value)
6840 !0 = metadata !{metadata !"sp\00"}
6841
6842Overview:
6843"""""""""
6844
6845The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
6846provides access to the named register. The register must be valid on
6847the architecture being compiled to. The type needs to be compatible
6848with the register being read.
6849
6850Semantics:
6851""""""""""
6852
6853The '``llvm.read_register``' intrinsic returns the current value of the
6854register, where possible. The '``llvm.write_register``' intrinsic sets
6855the current value of the register, where possible.
6856
6857This is useful to implement named register global variables that need
6858to always be mapped to a specific register, as is common practice on
6859bare-metal programs including OS kernels.
6860
6861The compiler doesn't check for register availability or use of the used
6862register in surrounding code, including inline assembly. Because of that,
6863allocatable registers are not supported.
6864
6865Warning: So far it only works with the stack pointer on selected
Hal Finkel0d8db462014-05-11 19:29:11 +00006866architectures (ARM, ARM64, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00006867work is needed to support other registers and even more so, allocatable
6868registers.
6869
Sean Silvab084af42012-12-07 10:36:55 +00006870.. _int_stacksave:
6871
6872'``llvm.stacksave``' Intrinsic
6873^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6874
6875Syntax:
6876"""""""
6877
6878::
6879
6880 declare i8* @llvm.stacksave()
6881
6882Overview:
6883"""""""""
6884
6885The '``llvm.stacksave``' intrinsic is used to remember the current state
6886of the function stack, for use with
6887:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6888implementing language features like scoped automatic variable sized
6889arrays in C99.
6890
6891Semantics:
6892""""""""""
6893
6894This intrinsic returns a opaque pointer value that can be passed to
6895:ref:`llvm.stackrestore <int_stackrestore>`. When an
6896``llvm.stackrestore`` intrinsic is executed with a value saved from
6897``llvm.stacksave``, it effectively restores the state of the stack to
6898the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6899practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6900were allocated after the ``llvm.stacksave`` was executed.
6901
6902.. _int_stackrestore:
6903
6904'``llvm.stackrestore``' Intrinsic
6905^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6906
6907Syntax:
6908"""""""
6909
6910::
6911
6912 declare void @llvm.stackrestore(i8* %ptr)
6913
6914Overview:
6915"""""""""
6916
6917The '``llvm.stackrestore``' intrinsic is used to restore the state of
6918the function stack to the state it was in when the corresponding
6919:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6920useful for implementing language features like scoped automatic variable
6921sized arrays in C99.
6922
6923Semantics:
6924""""""""""
6925
6926See the description for :ref:`llvm.stacksave <int_stacksave>`.
6927
6928'``llvm.prefetch``' Intrinsic
6929^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6930
6931Syntax:
6932"""""""
6933
6934::
6935
6936 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6937
6938Overview:
6939"""""""""
6940
6941The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6942insert a prefetch instruction if supported; otherwise, it is a noop.
6943Prefetches have no effect on the behavior of the program but can change
6944its performance characteristics.
6945
6946Arguments:
6947""""""""""
6948
6949``address`` is the address to be prefetched, ``rw`` is the specifier
6950determining if the fetch should be for a read (0) or write (1), and
6951``locality`` is a temporal locality specifier ranging from (0) - no
6952locality, to (3) - extremely local keep in cache. The ``cache type``
6953specifies whether the prefetch is performed on the data (1) or
6954instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6955arguments must be constant integers.
6956
6957Semantics:
6958""""""""""
6959
6960This intrinsic does not modify the behavior of the program. In
6961particular, prefetches cannot trap and do not produce a value. On
6962targets that support this intrinsic, the prefetch can provide hints to
6963the processor cache for better performance.
6964
6965'``llvm.pcmarker``' Intrinsic
6966^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6967
6968Syntax:
6969"""""""
6970
6971::
6972
6973 declare void @llvm.pcmarker(i32 <id>)
6974
6975Overview:
6976"""""""""
6977
6978The '``llvm.pcmarker``' intrinsic is a method to export a Program
6979Counter (PC) in a region of code to simulators and other tools. The
6980method is target specific, but it is expected that the marker will use
6981exported symbols to transmit the PC of the marker. The marker makes no
6982guarantees that it will remain with any specific instruction after
6983optimizations. It is possible that the presence of a marker will inhibit
6984optimizations. The intended use is to be inserted after optimizations to
6985allow correlations of simulation runs.
6986
6987Arguments:
6988""""""""""
6989
6990``id`` is a numerical id identifying the marker.
6991
6992Semantics:
6993""""""""""
6994
6995This intrinsic does not modify the behavior of the program. Backends
6996that do not support this intrinsic may ignore it.
6997
6998'``llvm.readcyclecounter``' Intrinsic
6999^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7000
7001Syntax:
7002"""""""
7003
7004::
7005
7006 declare i64 @llvm.readcyclecounter()
7007
7008Overview:
7009"""""""""
7010
7011The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7012counter register (or similar low latency, high accuracy clocks) on those
7013targets that support it. On X86, it should map to RDTSC. On Alpha, it
7014should map to RPCC. As the backing counters overflow quickly (on the
7015order of 9 seconds on alpha), this should only be used for small
7016timings.
7017
7018Semantics:
7019""""""""""
7020
7021When directly supported, reading the cycle counter should not modify any
7022memory. Implementations are allowed to either return a application
7023specific value or a system wide value. On backends without support, this
7024is lowered to a constant 0.
7025
Tim Northoverbc933082013-05-23 19:11:20 +00007026Note that runtime support may be conditional on the privilege-level code is
7027running at and the host platform.
7028
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007029'``llvm.clear_cache``' Intrinsic
7030^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7031
7032Syntax:
7033"""""""
7034
7035::
7036
7037 declare void @llvm.clear_cache(i8*, i8*)
7038
7039Overview:
7040"""""""""
7041
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007042The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7043in the specified range to the execution unit of the processor. On
7044targets with non-unified instruction and data cache, the implementation
7045flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007046
7047Semantics:
7048""""""""""
7049
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007050On platforms with coherent instruction and data caches (e.g. x86), this
7051intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007052cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007053instructions or a system call, if cache flushing requires special
7054privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007055
Sean Silvad02bf3e2014-04-07 22:29:53 +00007056The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007057time library.
Renato Golin93010e62014-03-26 14:01:32 +00007058
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007059This instrinsic does *not* empty the instruction pipeline. Modifications
7060of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007061
Sean Silvab084af42012-12-07 10:36:55 +00007062Standard C Library Intrinsics
7063-----------------------------
7064
7065LLVM provides intrinsics for a few important standard C library
7066functions. These intrinsics allow source-language front-ends to pass
7067information about the alignment of the pointer arguments to the code
7068generator, providing opportunity for more efficient code generation.
7069
7070.. _int_memcpy:
7071
7072'``llvm.memcpy``' Intrinsic
7073^^^^^^^^^^^^^^^^^^^^^^^^^^^
7074
7075Syntax:
7076"""""""
7077
7078This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7079integer bit width and for different address spaces. Not all targets
7080support all bit widths however.
7081
7082::
7083
7084 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7085 i32 <len>, i32 <align>, i1 <isvolatile>)
7086 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7087 i64 <len>, i32 <align>, i1 <isvolatile>)
7088
7089Overview:
7090"""""""""
7091
7092The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7093source location to the destination location.
7094
7095Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7096intrinsics do not return a value, takes extra alignment/isvolatile
7097arguments and the pointers can be in specified address spaces.
7098
7099Arguments:
7100""""""""""
7101
7102The first argument is a pointer to the destination, the second is a
7103pointer to the source. The third argument is an integer argument
7104specifying the number of bytes to copy, the fourth argument is the
7105alignment of the source and destination locations, and the fifth is a
7106boolean indicating a volatile access.
7107
7108If the call to this intrinsic has an alignment value that is not 0 or 1,
7109then the caller guarantees that both the source and destination pointers
7110are aligned to that boundary.
7111
7112If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7113a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7114very cleanly specified and it is unwise to depend on it.
7115
7116Semantics:
7117""""""""""
7118
7119The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7120source location to the destination location, which are not allowed to
7121overlap. It copies "len" bytes of memory over. If the argument is known
7122to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007123argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007124
7125'``llvm.memmove``' Intrinsic
7126^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7127
7128Syntax:
7129"""""""
7130
7131This is an overloaded intrinsic. You can use llvm.memmove on any integer
7132bit width and for different address space. Not all targets support all
7133bit widths however.
7134
7135::
7136
7137 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7138 i32 <len>, i32 <align>, i1 <isvolatile>)
7139 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7140 i64 <len>, i32 <align>, i1 <isvolatile>)
7141
7142Overview:
7143"""""""""
7144
7145The '``llvm.memmove.*``' intrinsics move a block of memory from the
7146source location to the destination location. It is similar to the
7147'``llvm.memcpy``' intrinsic but allows the two memory locations to
7148overlap.
7149
7150Note that, unlike the standard libc function, the ``llvm.memmove.*``
7151intrinsics do not return a value, takes extra alignment/isvolatile
7152arguments and the pointers can be in specified address spaces.
7153
7154Arguments:
7155""""""""""
7156
7157The first argument is a pointer to the destination, the second is a
7158pointer to the source. The third argument is an integer argument
7159specifying the number of bytes to copy, the fourth argument is the
7160alignment of the source and destination locations, and the fifth is a
7161boolean indicating a volatile access.
7162
7163If the call to this intrinsic has an alignment value that is not 0 or 1,
7164then the caller guarantees that the source and destination pointers are
7165aligned to that boundary.
7166
7167If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7168is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7169not very cleanly specified and it is unwise to depend on it.
7170
7171Semantics:
7172""""""""""
7173
7174The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7175source location to the destination location, which may overlap. It
7176copies "len" bytes of memory over. If the argument is known to be
7177aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007178otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007179
7180'``llvm.memset.*``' Intrinsics
7181^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7182
7183Syntax:
7184"""""""
7185
7186This is an overloaded intrinsic. You can use llvm.memset on any integer
7187bit width and for different address spaces. However, not all targets
7188support all bit widths.
7189
7190::
7191
7192 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7193 i32 <len>, i32 <align>, i1 <isvolatile>)
7194 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7195 i64 <len>, i32 <align>, i1 <isvolatile>)
7196
7197Overview:
7198"""""""""
7199
7200The '``llvm.memset.*``' intrinsics fill a block of memory with a
7201particular byte value.
7202
7203Note that, unlike the standard libc function, the ``llvm.memset``
7204intrinsic does not return a value and takes extra alignment/volatile
7205arguments. Also, the destination can be in an arbitrary address space.
7206
7207Arguments:
7208""""""""""
7209
7210The first argument is a pointer to the destination to fill, the second
7211is the byte value with which to fill it, the third argument is an
7212integer argument specifying the number of bytes to fill, and the fourth
7213argument is the known alignment of the destination location.
7214
7215If the call to this intrinsic has an alignment value that is not 0 or 1,
7216then the caller guarantees that the destination pointer is aligned to
7217that boundary.
7218
7219If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7220a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7221very cleanly specified and it is unwise to depend on it.
7222
7223Semantics:
7224""""""""""
7225
7226The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7227at the destination location. If the argument is known to be aligned to
7228some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007229it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007230
7231'``llvm.sqrt.*``' Intrinsic
7232^^^^^^^^^^^^^^^^^^^^^^^^^^^
7233
7234Syntax:
7235"""""""
7236
7237This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7238floating point or vector of floating point type. Not all targets support
7239all types however.
7240
7241::
7242
7243 declare float @llvm.sqrt.f32(float %Val)
7244 declare double @llvm.sqrt.f64(double %Val)
7245 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7246 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7247 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7248
7249Overview:
7250"""""""""
7251
7252The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7253returning the same value as the libm '``sqrt``' functions would. Unlike
7254``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7255negative numbers other than -0.0 (which allows for better optimization,
7256because there is no need to worry about errno being set).
7257``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7258
7259Arguments:
7260""""""""""
7261
7262The argument and return value are floating point numbers of the same
7263type.
7264
7265Semantics:
7266""""""""""
7267
7268This function returns the sqrt of the specified operand if it is a
7269nonnegative floating point number.
7270
7271'``llvm.powi.*``' Intrinsic
7272^^^^^^^^^^^^^^^^^^^^^^^^^^^
7273
7274Syntax:
7275"""""""
7276
7277This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7278floating point or vector of floating point type. Not all targets support
7279all types however.
7280
7281::
7282
7283 declare float @llvm.powi.f32(float %Val, i32 %power)
7284 declare double @llvm.powi.f64(double %Val, i32 %power)
7285 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7286 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7287 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7288
7289Overview:
7290"""""""""
7291
7292The '``llvm.powi.*``' intrinsics return the first operand raised to the
7293specified (positive or negative) power. The order of evaluation of
7294multiplications is not defined. When a vector of floating point type is
7295used, the second argument remains a scalar integer value.
7296
7297Arguments:
7298""""""""""
7299
7300The second argument is an integer power, and the first is a value to
7301raise to that power.
7302
7303Semantics:
7304""""""""""
7305
7306This function returns the first value raised to the second power with an
7307unspecified sequence of rounding operations.
7308
7309'``llvm.sin.*``' Intrinsic
7310^^^^^^^^^^^^^^^^^^^^^^^^^^
7311
7312Syntax:
7313"""""""
7314
7315This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7316floating point or vector of floating point type. Not all targets support
7317all types however.
7318
7319::
7320
7321 declare float @llvm.sin.f32(float %Val)
7322 declare double @llvm.sin.f64(double %Val)
7323 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7324 declare fp128 @llvm.sin.f128(fp128 %Val)
7325 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7326
7327Overview:
7328"""""""""
7329
7330The '``llvm.sin.*``' intrinsics return the sine of the operand.
7331
7332Arguments:
7333""""""""""
7334
7335The argument and return value are floating point numbers of the same
7336type.
7337
7338Semantics:
7339""""""""""
7340
7341This function returns the sine of the specified operand, returning the
7342same values as the libm ``sin`` functions would, and handles error
7343conditions in the same way.
7344
7345'``llvm.cos.*``' Intrinsic
7346^^^^^^^^^^^^^^^^^^^^^^^^^^
7347
7348Syntax:
7349"""""""
7350
7351This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7352floating point or vector of floating point type. Not all targets support
7353all types however.
7354
7355::
7356
7357 declare float @llvm.cos.f32(float %Val)
7358 declare double @llvm.cos.f64(double %Val)
7359 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7360 declare fp128 @llvm.cos.f128(fp128 %Val)
7361 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7362
7363Overview:
7364"""""""""
7365
7366The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7367
7368Arguments:
7369""""""""""
7370
7371The argument and return value are floating point numbers of the same
7372type.
7373
7374Semantics:
7375""""""""""
7376
7377This function returns the cosine of the specified operand, returning the
7378same values as the libm ``cos`` functions would, and handles error
7379conditions in the same way.
7380
7381'``llvm.pow.*``' Intrinsic
7382^^^^^^^^^^^^^^^^^^^^^^^^^^
7383
7384Syntax:
7385"""""""
7386
7387This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7388floating point or vector of floating point type. Not all targets support
7389all types however.
7390
7391::
7392
7393 declare float @llvm.pow.f32(float %Val, float %Power)
7394 declare double @llvm.pow.f64(double %Val, double %Power)
7395 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7396 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7397 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7398
7399Overview:
7400"""""""""
7401
7402The '``llvm.pow.*``' intrinsics return the first operand raised to the
7403specified (positive or negative) power.
7404
7405Arguments:
7406""""""""""
7407
7408The second argument is a floating point power, and the first is a value
7409to raise to that power.
7410
7411Semantics:
7412""""""""""
7413
7414This function returns the first value raised to the second power,
7415returning the same values as the libm ``pow`` functions would, and
7416handles error conditions in the same way.
7417
7418'``llvm.exp.*``' Intrinsic
7419^^^^^^^^^^^^^^^^^^^^^^^^^^
7420
7421Syntax:
7422"""""""
7423
7424This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7425floating point or vector of floating point type. Not all targets support
7426all types however.
7427
7428::
7429
7430 declare float @llvm.exp.f32(float %Val)
7431 declare double @llvm.exp.f64(double %Val)
7432 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7433 declare fp128 @llvm.exp.f128(fp128 %Val)
7434 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7435
7436Overview:
7437"""""""""
7438
7439The '``llvm.exp.*``' intrinsics perform the exp function.
7440
7441Arguments:
7442""""""""""
7443
7444The argument and return value are floating point numbers of the same
7445type.
7446
7447Semantics:
7448""""""""""
7449
7450This function returns the same values as the libm ``exp`` functions
7451would, and handles error conditions in the same way.
7452
7453'``llvm.exp2.*``' Intrinsic
7454^^^^^^^^^^^^^^^^^^^^^^^^^^^
7455
7456Syntax:
7457"""""""
7458
7459This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7460floating point or vector of floating point type. Not all targets support
7461all types however.
7462
7463::
7464
7465 declare float @llvm.exp2.f32(float %Val)
7466 declare double @llvm.exp2.f64(double %Val)
7467 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7468 declare fp128 @llvm.exp2.f128(fp128 %Val)
7469 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7470
7471Overview:
7472"""""""""
7473
7474The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7475
7476Arguments:
7477""""""""""
7478
7479The argument and return value are floating point numbers of the same
7480type.
7481
7482Semantics:
7483""""""""""
7484
7485This function returns the same values as the libm ``exp2`` functions
7486would, and handles error conditions in the same way.
7487
7488'``llvm.log.*``' Intrinsic
7489^^^^^^^^^^^^^^^^^^^^^^^^^^
7490
7491Syntax:
7492"""""""
7493
7494This is an overloaded intrinsic. You can use ``llvm.log`` on any
7495floating point or vector of floating point type. Not all targets support
7496all types however.
7497
7498::
7499
7500 declare float @llvm.log.f32(float %Val)
7501 declare double @llvm.log.f64(double %Val)
7502 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7503 declare fp128 @llvm.log.f128(fp128 %Val)
7504 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7505
7506Overview:
7507"""""""""
7508
7509The '``llvm.log.*``' intrinsics perform the log function.
7510
7511Arguments:
7512""""""""""
7513
7514The argument and return value are floating point numbers of the same
7515type.
7516
7517Semantics:
7518""""""""""
7519
7520This function returns the same values as the libm ``log`` functions
7521would, and handles error conditions in the same way.
7522
7523'``llvm.log10.*``' Intrinsic
7524^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7525
7526Syntax:
7527"""""""
7528
7529This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7530floating point or vector of floating point type. Not all targets support
7531all types however.
7532
7533::
7534
7535 declare float @llvm.log10.f32(float %Val)
7536 declare double @llvm.log10.f64(double %Val)
7537 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7538 declare fp128 @llvm.log10.f128(fp128 %Val)
7539 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7540
7541Overview:
7542"""""""""
7543
7544The '``llvm.log10.*``' intrinsics perform the log10 function.
7545
7546Arguments:
7547""""""""""
7548
7549The argument and return value are floating point numbers of the same
7550type.
7551
7552Semantics:
7553""""""""""
7554
7555This function returns the same values as the libm ``log10`` functions
7556would, and handles error conditions in the same way.
7557
7558'``llvm.log2.*``' Intrinsic
7559^^^^^^^^^^^^^^^^^^^^^^^^^^^
7560
7561Syntax:
7562"""""""
7563
7564This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7565floating point or vector of floating point type. Not all targets support
7566all types however.
7567
7568::
7569
7570 declare float @llvm.log2.f32(float %Val)
7571 declare double @llvm.log2.f64(double %Val)
7572 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7573 declare fp128 @llvm.log2.f128(fp128 %Val)
7574 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7575
7576Overview:
7577"""""""""
7578
7579The '``llvm.log2.*``' intrinsics perform the log2 function.
7580
7581Arguments:
7582""""""""""
7583
7584The argument and return value are floating point numbers of the same
7585type.
7586
7587Semantics:
7588""""""""""
7589
7590This function returns the same values as the libm ``log2`` functions
7591would, and handles error conditions in the same way.
7592
7593'``llvm.fma.*``' Intrinsic
7594^^^^^^^^^^^^^^^^^^^^^^^^^^
7595
7596Syntax:
7597"""""""
7598
7599This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7600floating point or vector of floating point type. Not all targets support
7601all types however.
7602
7603::
7604
7605 declare float @llvm.fma.f32(float %a, float %b, float %c)
7606 declare double @llvm.fma.f64(double %a, double %b, double %c)
7607 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7608 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7609 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7610
7611Overview:
7612"""""""""
7613
7614The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7615operation.
7616
7617Arguments:
7618""""""""""
7619
7620The argument and return value are floating point numbers of the same
7621type.
7622
7623Semantics:
7624""""""""""
7625
7626This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007627would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007628
7629'``llvm.fabs.*``' Intrinsic
7630^^^^^^^^^^^^^^^^^^^^^^^^^^^
7631
7632Syntax:
7633"""""""
7634
7635This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7636floating point or vector of floating point type. Not all targets support
7637all types however.
7638
7639::
7640
7641 declare float @llvm.fabs.f32(float %Val)
7642 declare double @llvm.fabs.f64(double %Val)
7643 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7644 declare fp128 @llvm.fabs.f128(fp128 %Val)
7645 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7646
7647Overview:
7648"""""""""
7649
7650The '``llvm.fabs.*``' intrinsics return the absolute value of the
7651operand.
7652
7653Arguments:
7654""""""""""
7655
7656The argument and return value are floating point numbers of the same
7657type.
7658
7659Semantics:
7660""""""""""
7661
7662This function returns the same values as the libm ``fabs`` functions
7663would, and handles error conditions in the same way.
7664
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007665'``llvm.copysign.*``' Intrinsic
7666^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7667
7668Syntax:
7669"""""""
7670
7671This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7672floating point or vector of floating point type. Not all targets support
7673all types however.
7674
7675::
7676
7677 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7678 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7679 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7680 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7681 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7682
7683Overview:
7684"""""""""
7685
7686The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7687first operand and the sign of the second operand.
7688
7689Arguments:
7690""""""""""
7691
7692The arguments and return value are floating point numbers of the same
7693type.
7694
7695Semantics:
7696""""""""""
7697
7698This function returns the same values as the libm ``copysign``
7699functions would, and handles error conditions in the same way.
7700
Sean Silvab084af42012-12-07 10:36:55 +00007701'``llvm.floor.*``' Intrinsic
7702^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7703
7704Syntax:
7705"""""""
7706
7707This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7708floating point or vector of floating point type. Not all targets support
7709all types however.
7710
7711::
7712
7713 declare float @llvm.floor.f32(float %Val)
7714 declare double @llvm.floor.f64(double %Val)
7715 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7716 declare fp128 @llvm.floor.f128(fp128 %Val)
7717 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7718
7719Overview:
7720"""""""""
7721
7722The '``llvm.floor.*``' intrinsics return the floor of the operand.
7723
7724Arguments:
7725""""""""""
7726
7727The argument and return value are floating point numbers of the same
7728type.
7729
7730Semantics:
7731""""""""""
7732
7733This function returns the same values as the libm ``floor`` functions
7734would, and handles error conditions in the same way.
7735
7736'``llvm.ceil.*``' Intrinsic
7737^^^^^^^^^^^^^^^^^^^^^^^^^^^
7738
7739Syntax:
7740"""""""
7741
7742This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7743floating point or vector of floating point type. Not all targets support
7744all types however.
7745
7746::
7747
7748 declare float @llvm.ceil.f32(float %Val)
7749 declare double @llvm.ceil.f64(double %Val)
7750 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7751 declare fp128 @llvm.ceil.f128(fp128 %Val)
7752 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7753
7754Overview:
7755"""""""""
7756
7757The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7758
7759Arguments:
7760""""""""""
7761
7762The argument and return value are floating point numbers of the same
7763type.
7764
7765Semantics:
7766""""""""""
7767
7768This function returns the same values as the libm ``ceil`` functions
7769would, and handles error conditions in the same way.
7770
7771'``llvm.trunc.*``' Intrinsic
7772^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7773
7774Syntax:
7775"""""""
7776
7777This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7778floating point or vector of floating point type. Not all targets support
7779all types however.
7780
7781::
7782
7783 declare float @llvm.trunc.f32(float %Val)
7784 declare double @llvm.trunc.f64(double %Val)
7785 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7786 declare fp128 @llvm.trunc.f128(fp128 %Val)
7787 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7788
7789Overview:
7790"""""""""
7791
7792The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7793nearest integer not larger in magnitude than the operand.
7794
7795Arguments:
7796""""""""""
7797
7798The argument and return value are floating point numbers of the same
7799type.
7800
7801Semantics:
7802""""""""""
7803
7804This function returns the same values as the libm ``trunc`` functions
7805would, and handles error conditions in the same way.
7806
7807'``llvm.rint.*``' Intrinsic
7808^^^^^^^^^^^^^^^^^^^^^^^^^^^
7809
7810Syntax:
7811"""""""
7812
7813This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7814floating point or vector of floating point type. Not all targets support
7815all types however.
7816
7817::
7818
7819 declare float @llvm.rint.f32(float %Val)
7820 declare double @llvm.rint.f64(double %Val)
7821 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7822 declare fp128 @llvm.rint.f128(fp128 %Val)
7823 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7824
7825Overview:
7826"""""""""
7827
7828The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7829nearest integer. It may raise an inexact floating-point exception if the
7830operand isn't an integer.
7831
7832Arguments:
7833""""""""""
7834
7835The argument and return value are floating point numbers of the same
7836type.
7837
7838Semantics:
7839""""""""""
7840
7841This function returns the same values as the libm ``rint`` functions
7842would, and handles error conditions in the same way.
7843
7844'``llvm.nearbyint.*``' Intrinsic
7845^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7846
7847Syntax:
7848"""""""
7849
7850This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7851floating point or vector of floating point type. Not all targets support
7852all types however.
7853
7854::
7855
7856 declare float @llvm.nearbyint.f32(float %Val)
7857 declare double @llvm.nearbyint.f64(double %Val)
7858 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7859 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7860 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7861
7862Overview:
7863"""""""""
7864
7865The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7866nearest integer.
7867
7868Arguments:
7869""""""""""
7870
7871The argument and return value are floating point numbers of the same
7872type.
7873
7874Semantics:
7875""""""""""
7876
7877This function returns the same values as the libm ``nearbyint``
7878functions would, and handles error conditions in the same way.
7879
Hal Finkel171817e2013-08-07 22:49:12 +00007880'``llvm.round.*``' Intrinsic
7881^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7882
7883Syntax:
7884"""""""
7885
7886This is an overloaded intrinsic. You can use ``llvm.round`` on any
7887floating point or vector of floating point type. Not all targets support
7888all types however.
7889
7890::
7891
7892 declare float @llvm.round.f32(float %Val)
7893 declare double @llvm.round.f64(double %Val)
7894 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7895 declare fp128 @llvm.round.f128(fp128 %Val)
7896 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7897
7898Overview:
7899"""""""""
7900
7901The '``llvm.round.*``' intrinsics returns the operand rounded to the
7902nearest integer.
7903
7904Arguments:
7905""""""""""
7906
7907The argument and return value are floating point numbers of the same
7908type.
7909
7910Semantics:
7911""""""""""
7912
7913This function returns the same values as the libm ``round``
7914functions would, and handles error conditions in the same way.
7915
Sean Silvab084af42012-12-07 10:36:55 +00007916Bit Manipulation Intrinsics
7917---------------------------
7918
7919LLVM provides intrinsics for a few important bit manipulation
7920operations. These allow efficient code generation for some algorithms.
7921
7922'``llvm.bswap.*``' Intrinsics
7923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7924
7925Syntax:
7926"""""""
7927
7928This is an overloaded intrinsic function. You can use bswap on any
7929integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7930
7931::
7932
7933 declare i16 @llvm.bswap.i16(i16 <id>)
7934 declare i32 @llvm.bswap.i32(i32 <id>)
7935 declare i64 @llvm.bswap.i64(i64 <id>)
7936
7937Overview:
7938"""""""""
7939
7940The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7941values with an even number of bytes (positive multiple of 16 bits).
7942These are useful for performing operations on data that is not in the
7943target's native byte order.
7944
7945Semantics:
7946""""""""""
7947
7948The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7949and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7950intrinsic returns an i32 value that has the four bytes of the input i32
7951swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7952returned i32 will have its bytes in 3, 2, 1, 0 order. The
7953``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7954concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7955respectively).
7956
7957'``llvm.ctpop.*``' Intrinsic
7958^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7959
7960Syntax:
7961"""""""
7962
7963This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7964bit width, or on any vector with integer elements. Not all targets
7965support all bit widths or vector types, however.
7966
7967::
7968
7969 declare i8 @llvm.ctpop.i8(i8 <src>)
7970 declare i16 @llvm.ctpop.i16(i16 <src>)
7971 declare i32 @llvm.ctpop.i32(i32 <src>)
7972 declare i64 @llvm.ctpop.i64(i64 <src>)
7973 declare i256 @llvm.ctpop.i256(i256 <src>)
7974 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7975
7976Overview:
7977"""""""""
7978
7979The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7980in a value.
7981
7982Arguments:
7983""""""""""
7984
7985The only argument is the value to be counted. The argument may be of any
7986integer type, or a vector with integer elements. The return type must
7987match the argument type.
7988
7989Semantics:
7990""""""""""
7991
7992The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7993each element of a vector.
7994
7995'``llvm.ctlz.*``' Intrinsic
7996^^^^^^^^^^^^^^^^^^^^^^^^^^^
7997
7998Syntax:
7999"""""""
8000
8001This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8002integer bit width, or any vector whose elements are integers. Not all
8003targets support all bit widths or vector types, however.
8004
8005::
8006
8007 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8008 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8009 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8010 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8011 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8012 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8013
8014Overview:
8015"""""""""
8016
8017The '``llvm.ctlz``' family of intrinsic functions counts the number of
8018leading zeros in a variable.
8019
8020Arguments:
8021""""""""""
8022
8023The first argument is the value to be counted. This argument may be of
8024any integer type, or a vectory with integer element type. The return
8025type must match the first argument type.
8026
8027The second argument must be a constant and is a flag to indicate whether
8028the intrinsic should ensure that a zero as the first argument produces a
8029defined result. Historically some architectures did not provide a
8030defined result for zero values as efficiently, and many algorithms are
8031now predicated on avoiding zero-value inputs.
8032
8033Semantics:
8034""""""""""
8035
8036The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8037zeros in a variable, or within each element of the vector. If
8038``src == 0`` then the result is the size in bits of the type of ``src``
8039if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8040``llvm.ctlz(i32 2) = 30``.
8041
8042'``llvm.cttz.*``' Intrinsic
8043^^^^^^^^^^^^^^^^^^^^^^^^^^^
8044
8045Syntax:
8046"""""""
8047
8048This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8049integer bit width, or any vector of integer elements. Not all targets
8050support all bit widths or vector types, however.
8051
8052::
8053
8054 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8055 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8056 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8057 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8058 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8059 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8060
8061Overview:
8062"""""""""
8063
8064The '``llvm.cttz``' family of intrinsic functions counts the number of
8065trailing zeros.
8066
8067Arguments:
8068""""""""""
8069
8070The first argument is the value to be counted. This argument may be of
8071any integer type, or a vectory with integer element type. The return
8072type must match the first argument type.
8073
8074The second argument must be a constant and is a flag to indicate whether
8075the intrinsic should ensure that a zero as the first argument produces a
8076defined result. Historically some architectures did not provide a
8077defined result for zero values as efficiently, and many algorithms are
8078now predicated on avoiding zero-value inputs.
8079
8080Semantics:
8081""""""""""
8082
8083The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8084zeros in a variable, or within each element of a vector. If ``src == 0``
8085then the result is the size in bits of the type of ``src`` if
8086``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8087``llvm.cttz(2) = 1``.
8088
8089Arithmetic with Overflow Intrinsics
8090-----------------------------------
8091
8092LLVM provides intrinsics for some arithmetic with overflow operations.
8093
8094'``llvm.sadd.with.overflow.*``' Intrinsics
8095^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8096
8097Syntax:
8098"""""""
8099
8100This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8101on any integer bit width.
8102
8103::
8104
8105 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8106 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8107 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8108
8109Overview:
8110"""""""""
8111
8112The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8113a signed addition of the two arguments, and indicate whether an overflow
8114occurred during the signed summation.
8115
8116Arguments:
8117""""""""""
8118
8119The arguments (%a and %b) and the first element of the result structure
8120may be of integer types of any bit width, but they must have the same
8121bit width. The second element of the result structure must be of type
8122``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8123addition.
8124
8125Semantics:
8126""""""""""
8127
8128The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008129a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008130first element of which is the signed summation, and the second element
8131of which is a bit specifying if the signed summation resulted in an
8132overflow.
8133
8134Examples:
8135"""""""""
8136
8137.. code-block:: llvm
8138
8139 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8140 %sum = extractvalue {i32, i1} %res, 0
8141 %obit = extractvalue {i32, i1} %res, 1
8142 br i1 %obit, label %overflow, label %normal
8143
8144'``llvm.uadd.with.overflow.*``' Intrinsics
8145^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8146
8147Syntax:
8148"""""""
8149
8150This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8151on any integer bit width.
8152
8153::
8154
8155 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8156 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8157 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8158
8159Overview:
8160"""""""""
8161
8162The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8163an unsigned addition of the two arguments, and indicate whether a carry
8164occurred during the unsigned summation.
8165
8166Arguments:
8167""""""""""
8168
8169The arguments (%a and %b) and the first element of the result structure
8170may be of integer types of any bit width, but they must have the same
8171bit width. The second element of the result structure must be of type
8172``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8173addition.
8174
8175Semantics:
8176""""""""""
8177
8178The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008179an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008180first element of which is the sum, and the second element of which is a
8181bit specifying if the unsigned summation resulted in a carry.
8182
8183Examples:
8184"""""""""
8185
8186.. code-block:: llvm
8187
8188 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8189 %sum = extractvalue {i32, i1} %res, 0
8190 %obit = extractvalue {i32, i1} %res, 1
8191 br i1 %obit, label %carry, label %normal
8192
8193'``llvm.ssub.with.overflow.*``' Intrinsics
8194^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8195
8196Syntax:
8197"""""""
8198
8199This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8200on any integer bit width.
8201
8202::
8203
8204 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8205 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8206 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8207
8208Overview:
8209"""""""""
8210
8211The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8212a signed subtraction of the two arguments, and indicate whether an
8213overflow occurred during the signed subtraction.
8214
8215Arguments:
8216""""""""""
8217
8218The arguments (%a and %b) and the first element of the result structure
8219may be of integer types of any bit width, but they must have the same
8220bit width. The second element of the result structure must be of type
8221``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8222subtraction.
8223
8224Semantics:
8225""""""""""
8226
8227The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008228a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008229first element of which is the subtraction, and the second element of
8230which is a bit specifying if the signed subtraction resulted in an
8231overflow.
8232
8233Examples:
8234"""""""""
8235
8236.. code-block:: llvm
8237
8238 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8239 %sum = extractvalue {i32, i1} %res, 0
8240 %obit = extractvalue {i32, i1} %res, 1
8241 br i1 %obit, label %overflow, label %normal
8242
8243'``llvm.usub.with.overflow.*``' Intrinsics
8244^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8245
8246Syntax:
8247"""""""
8248
8249This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8250on any integer bit width.
8251
8252::
8253
8254 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8255 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8256 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8257
8258Overview:
8259"""""""""
8260
8261The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8262an unsigned subtraction of the two arguments, and indicate whether an
8263overflow occurred during the unsigned subtraction.
8264
8265Arguments:
8266""""""""""
8267
8268The arguments (%a and %b) and the first element of the result structure
8269may be of integer types of any bit width, but they must have the same
8270bit width. The second element of the result structure must be of type
8271``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8272subtraction.
8273
8274Semantics:
8275""""""""""
8276
8277The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008278an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008279the first element of which is the subtraction, and the second element of
8280which is a bit specifying if the unsigned subtraction resulted in an
8281overflow.
8282
8283Examples:
8284"""""""""
8285
8286.. code-block:: llvm
8287
8288 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8289 %sum = extractvalue {i32, i1} %res, 0
8290 %obit = extractvalue {i32, i1} %res, 1
8291 br i1 %obit, label %overflow, label %normal
8292
8293'``llvm.smul.with.overflow.*``' Intrinsics
8294^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8295
8296Syntax:
8297"""""""
8298
8299This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8300on any integer bit width.
8301
8302::
8303
8304 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8305 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8306 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8307
8308Overview:
8309"""""""""
8310
8311The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8312a signed multiplication of the two arguments, and indicate whether an
8313overflow occurred during the signed multiplication.
8314
8315Arguments:
8316""""""""""
8317
8318The arguments (%a and %b) and the first element of the result structure
8319may be of integer types of any bit width, but they must have the same
8320bit width. The second element of the result structure must be of type
8321``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8322multiplication.
8323
8324Semantics:
8325""""""""""
8326
8327The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008328a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008329the first element of which is the multiplication, and the second element
8330of which is a bit specifying if the signed multiplication resulted in an
8331overflow.
8332
8333Examples:
8334"""""""""
8335
8336.. code-block:: llvm
8337
8338 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8339 %sum = extractvalue {i32, i1} %res, 0
8340 %obit = extractvalue {i32, i1} %res, 1
8341 br i1 %obit, label %overflow, label %normal
8342
8343'``llvm.umul.with.overflow.*``' Intrinsics
8344^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8345
8346Syntax:
8347"""""""
8348
8349This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8350on any integer bit width.
8351
8352::
8353
8354 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8355 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8356 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8357
8358Overview:
8359"""""""""
8360
8361The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8362a unsigned multiplication of the two arguments, and indicate whether an
8363overflow occurred during the unsigned multiplication.
8364
8365Arguments:
8366""""""""""
8367
8368The arguments (%a and %b) and the first element of the result structure
8369may be of integer types of any bit width, but they must have the same
8370bit width. The second element of the result structure must be of type
8371``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8372multiplication.
8373
8374Semantics:
8375""""""""""
8376
8377The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008378an unsigned multiplication of the two arguments. They return a structure ---
8379the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008380element of which is a bit specifying if the unsigned multiplication
8381resulted in an overflow.
8382
8383Examples:
8384"""""""""
8385
8386.. code-block:: llvm
8387
8388 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8389 %sum = extractvalue {i32, i1} %res, 0
8390 %obit = extractvalue {i32, i1} %res, 1
8391 br i1 %obit, label %overflow, label %normal
8392
8393Specialised Arithmetic Intrinsics
8394---------------------------------
8395
8396'``llvm.fmuladd.*``' Intrinsic
8397^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8398
8399Syntax:
8400"""""""
8401
8402::
8403
8404 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8405 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8406
8407Overview:
8408"""""""""
8409
8410The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008411expressions that can be fused if the code generator determines that (a) the
8412target instruction set has support for a fused operation, and (b) that the
8413fused operation is more efficient than the equivalent, separate pair of mul
8414and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008415
8416Arguments:
8417""""""""""
8418
8419The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8420multiplicands, a and b, and an addend c.
8421
8422Semantics:
8423""""""""""
8424
8425The expression:
8426
8427::
8428
8429 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8430
8431is equivalent to the expression a \* b + c, except that rounding will
8432not be performed between the multiplication and addition steps if the
8433code generator fuses the operations. Fusion is not guaranteed, even if
8434the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008435corresponding llvm.fma.\* intrinsic function should be used
8436instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008437
8438Examples:
8439"""""""""
8440
8441.. code-block:: llvm
8442
8443 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8444
8445Half Precision Floating Point Intrinsics
8446----------------------------------------
8447
8448For most target platforms, half precision floating point is a
8449storage-only format. This means that it is a dense encoding (in memory)
8450but does not support computation in the format.
8451
8452This means that code must first load the half-precision floating point
8453value as an i16, then convert it to float with
8454:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8455then be performed on the float value (including extending to double
8456etc). To store the value back to memory, it is first converted to float
8457if needed, then converted to i16 with
8458:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8459i16 value.
8460
8461.. _int_convert_to_fp16:
8462
8463'``llvm.convert.to.fp16``' Intrinsic
8464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8465
8466Syntax:
8467"""""""
8468
8469::
8470
8471 declare i16 @llvm.convert.to.fp16(f32 %a)
8472
8473Overview:
8474"""""""""
8475
8476The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8477from single precision floating point format to half precision floating
8478point format.
8479
8480Arguments:
8481""""""""""
8482
8483The intrinsic function contains single argument - the value to be
8484converted.
8485
8486Semantics:
8487""""""""""
8488
8489The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8490from single precision floating point format to half precision floating
8491point format. The return value is an ``i16`` which contains the
8492converted number.
8493
8494Examples:
8495"""""""""
8496
8497.. code-block:: llvm
8498
8499 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8500 store i16 %res, i16* @x, align 2
8501
8502.. _int_convert_from_fp16:
8503
8504'``llvm.convert.from.fp16``' Intrinsic
8505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8506
8507Syntax:
8508"""""""
8509
8510::
8511
8512 declare f32 @llvm.convert.from.fp16(i16 %a)
8513
8514Overview:
8515"""""""""
8516
8517The '``llvm.convert.from.fp16``' intrinsic function performs a
8518conversion from half precision floating point format to single precision
8519floating point format.
8520
8521Arguments:
8522""""""""""
8523
8524The intrinsic function contains single argument - the value to be
8525converted.
8526
8527Semantics:
8528""""""""""
8529
8530The '``llvm.convert.from.fp16``' intrinsic function performs a
8531conversion from half single precision floating point format to single
8532precision floating point format. The input half-float value is
8533represented by an ``i16`` value.
8534
8535Examples:
8536"""""""""
8537
8538.. code-block:: llvm
8539
8540 %a = load i16* @x, align 2
8541 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8542
8543Debugger Intrinsics
8544-------------------
8545
8546The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8547prefix), are described in the `LLVM Source Level
8548Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8549document.
8550
8551Exception Handling Intrinsics
8552-----------------------------
8553
8554The LLVM exception handling intrinsics (which all start with
8555``llvm.eh.`` prefix), are described in the `LLVM Exception
8556Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8557
8558.. _int_trampoline:
8559
8560Trampoline Intrinsics
8561---------------------
8562
8563These intrinsics make it possible to excise one parameter, marked with
8564the :ref:`nest <nest>` attribute, from a function. The result is a
8565callable function pointer lacking the nest parameter - the caller does
8566not need to provide a value for it. Instead, the value to use is stored
8567in advance in a "trampoline", a block of memory usually allocated on the
8568stack, which also contains code to splice the nest value into the
8569argument list. This is used to implement the GCC nested function address
8570extension.
8571
8572For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8573then the resulting function pointer has signature ``i32 (i32, i32)*``.
8574It can be created as follows:
8575
8576.. code-block:: llvm
8577
8578 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8579 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8580 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8581 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8582 %fp = bitcast i8* %p to i32 (i32, i32)*
8583
8584The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8585``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8586
8587.. _int_it:
8588
8589'``llvm.init.trampoline``' Intrinsic
8590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8591
8592Syntax:
8593"""""""
8594
8595::
8596
8597 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8598
8599Overview:
8600"""""""""
8601
8602This fills the memory pointed to by ``tramp`` with executable code,
8603turning it into a trampoline.
8604
8605Arguments:
8606""""""""""
8607
8608The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8609pointers. The ``tramp`` argument must point to a sufficiently large and
8610sufficiently aligned block of memory; this memory is written to by the
8611intrinsic. Note that the size and the alignment are target-specific -
8612LLVM currently provides no portable way of determining them, so a
8613front-end that generates this intrinsic needs to have some
8614target-specific knowledge. The ``func`` argument must hold a function
8615bitcast to an ``i8*``.
8616
8617Semantics:
8618""""""""""
8619
8620The block of memory pointed to by ``tramp`` is filled with target
8621dependent code, turning it into a function. Then ``tramp`` needs to be
8622passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8623be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8624function's signature is the same as that of ``func`` with any arguments
8625marked with the ``nest`` attribute removed. At most one such ``nest``
8626argument is allowed, and it must be of pointer type. Calling the new
8627function is equivalent to calling ``func`` with the same argument list,
8628but with ``nval`` used for the missing ``nest`` argument. If, after
8629calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8630modified, then the effect of any later call to the returned function
8631pointer is undefined.
8632
8633.. _int_at:
8634
8635'``llvm.adjust.trampoline``' Intrinsic
8636^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8637
8638Syntax:
8639"""""""
8640
8641::
8642
8643 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8644
8645Overview:
8646"""""""""
8647
8648This performs any required machine-specific adjustment to the address of
8649a trampoline (passed as ``tramp``).
8650
8651Arguments:
8652""""""""""
8653
8654``tramp`` must point to a block of memory which already has trampoline
8655code filled in by a previous call to
8656:ref:`llvm.init.trampoline <int_it>`.
8657
8658Semantics:
8659""""""""""
8660
8661On some architectures the address of the code to be executed needs to be
8662different to the address where the trampoline is actually stored. This
8663intrinsic returns the executable address corresponding to ``tramp``
8664after performing the required machine specific adjustments. The pointer
8665returned can then be :ref:`bitcast and executed <int_trampoline>`.
8666
8667Memory Use Markers
8668------------------
8669
8670This class of intrinsics exists to information about the lifetime of
8671memory objects and ranges where variables are immutable.
8672
Reid Klecknera534a382013-12-19 02:14:12 +00008673.. _int_lifestart:
8674
Sean Silvab084af42012-12-07 10:36:55 +00008675'``llvm.lifetime.start``' Intrinsic
8676^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8677
8678Syntax:
8679"""""""
8680
8681::
8682
8683 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8684
8685Overview:
8686"""""""""
8687
8688The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8689object's lifetime.
8690
8691Arguments:
8692""""""""""
8693
8694The first argument is a constant integer representing the size of the
8695object, or -1 if it is variable sized. The second argument is a pointer
8696to the object.
8697
8698Semantics:
8699""""""""""
8700
8701This intrinsic indicates that before this point in the code, the value
8702of the memory pointed to by ``ptr`` is dead. This means that it is known
8703to never be used and has an undefined value. A load from the pointer
8704that precedes this intrinsic can be replaced with ``'undef'``.
8705
Reid Klecknera534a382013-12-19 02:14:12 +00008706.. _int_lifeend:
8707
Sean Silvab084af42012-12-07 10:36:55 +00008708'``llvm.lifetime.end``' Intrinsic
8709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8710
8711Syntax:
8712"""""""
8713
8714::
8715
8716 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8717
8718Overview:
8719"""""""""
8720
8721The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8722object's lifetime.
8723
8724Arguments:
8725""""""""""
8726
8727The first argument is a constant integer representing the size of the
8728object, or -1 if it is variable sized. The second argument is a pointer
8729to the object.
8730
8731Semantics:
8732""""""""""
8733
8734This intrinsic indicates that after this point in the code, the value of
8735the memory pointed to by ``ptr`` is dead. This means that it is known to
8736never be used and has an undefined value. Any stores into the memory
8737object following this intrinsic may be removed as dead.
8738
8739'``llvm.invariant.start``' Intrinsic
8740^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8741
8742Syntax:
8743"""""""
8744
8745::
8746
8747 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8748
8749Overview:
8750"""""""""
8751
8752The '``llvm.invariant.start``' intrinsic specifies that the contents of
8753a memory object will not change.
8754
8755Arguments:
8756""""""""""
8757
8758The first argument is a constant integer representing the size of the
8759object, or -1 if it is variable sized. The second argument is a pointer
8760to the object.
8761
8762Semantics:
8763""""""""""
8764
8765This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8766the return value, the referenced memory location is constant and
8767unchanging.
8768
8769'``llvm.invariant.end``' Intrinsic
8770^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8771
8772Syntax:
8773"""""""
8774
8775::
8776
8777 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8778
8779Overview:
8780"""""""""
8781
8782The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8783memory object are mutable.
8784
8785Arguments:
8786""""""""""
8787
8788The first argument is the matching ``llvm.invariant.start`` intrinsic.
8789The second argument is a constant integer representing the size of the
8790object, or -1 if it is variable sized and the third argument is a
8791pointer to the object.
8792
8793Semantics:
8794""""""""""
8795
8796This intrinsic indicates that the memory is mutable again.
8797
8798General Intrinsics
8799------------------
8800
8801This class of intrinsics is designed to be generic and has no specific
8802purpose.
8803
8804'``llvm.var.annotation``' Intrinsic
8805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8806
8807Syntax:
8808"""""""
8809
8810::
8811
8812 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8813
8814Overview:
8815"""""""""
8816
8817The '``llvm.var.annotation``' intrinsic.
8818
8819Arguments:
8820""""""""""
8821
8822The first argument is a pointer to a value, the second is a pointer to a
8823global string, the third is a pointer to a global string which is the
8824source file name, and the last argument is the line number.
8825
8826Semantics:
8827""""""""""
8828
8829This intrinsic allows annotation of local variables with arbitrary
8830strings. This can be useful for special purpose optimizations that want
8831to look for these annotations. These have no other defined use; they are
8832ignored by code generation and optimization.
8833
Michael Gottesman88d18832013-03-26 00:34:27 +00008834'``llvm.ptr.annotation.*``' Intrinsic
8835^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8836
8837Syntax:
8838"""""""
8839
8840This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8841pointer to an integer of any width. *NOTE* you must specify an address space for
8842the pointer. The identifier for the default address space is the integer
8843'``0``'.
8844
8845::
8846
8847 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8848 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8849 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8850 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8851 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8852
8853Overview:
8854"""""""""
8855
8856The '``llvm.ptr.annotation``' intrinsic.
8857
8858Arguments:
8859""""""""""
8860
8861The first argument is a pointer to an integer value of arbitrary bitwidth
8862(result of some expression), the second is a pointer to a global string, the
8863third is a pointer to a global string which is the source file name, and the
8864last argument is the line number. It returns the value of the first argument.
8865
8866Semantics:
8867""""""""""
8868
8869This intrinsic allows annotation of a pointer to an integer with arbitrary
8870strings. This can be useful for special purpose optimizations that want to look
8871for these annotations. These have no other defined use; they are ignored by code
8872generation and optimization.
8873
Sean Silvab084af42012-12-07 10:36:55 +00008874'``llvm.annotation.*``' Intrinsic
8875^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8876
8877Syntax:
8878"""""""
8879
8880This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8881any integer bit width.
8882
8883::
8884
8885 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8886 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8887 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8888 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8889 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8890
8891Overview:
8892"""""""""
8893
8894The '``llvm.annotation``' intrinsic.
8895
8896Arguments:
8897""""""""""
8898
8899The first argument is an integer value (result of some expression), the
8900second is a pointer to a global string, the third is a pointer to a
8901global string which is the source file name, and the last argument is
8902the line number. It returns the value of the first argument.
8903
8904Semantics:
8905""""""""""
8906
8907This intrinsic allows annotations to be put on arbitrary expressions
8908with arbitrary strings. This can be useful for special purpose
8909optimizations that want to look for these annotations. These have no
8910other defined use; they are ignored by code generation and optimization.
8911
8912'``llvm.trap``' Intrinsic
8913^^^^^^^^^^^^^^^^^^^^^^^^^
8914
8915Syntax:
8916"""""""
8917
8918::
8919
8920 declare void @llvm.trap() noreturn nounwind
8921
8922Overview:
8923"""""""""
8924
8925The '``llvm.trap``' intrinsic.
8926
8927Arguments:
8928""""""""""
8929
8930None.
8931
8932Semantics:
8933""""""""""
8934
8935This intrinsic is lowered to the target dependent trap instruction. If
8936the target does not have a trap instruction, this intrinsic will be
8937lowered to a call of the ``abort()`` function.
8938
8939'``llvm.debugtrap``' Intrinsic
8940^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8941
8942Syntax:
8943"""""""
8944
8945::
8946
8947 declare void @llvm.debugtrap() nounwind
8948
8949Overview:
8950"""""""""
8951
8952The '``llvm.debugtrap``' intrinsic.
8953
8954Arguments:
8955""""""""""
8956
8957None.
8958
8959Semantics:
8960""""""""""
8961
8962This intrinsic is lowered to code which is intended to cause an
8963execution trap with the intention of requesting the attention of a
8964debugger.
8965
8966'``llvm.stackprotector``' Intrinsic
8967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8968
8969Syntax:
8970"""""""
8971
8972::
8973
8974 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8975
8976Overview:
8977"""""""""
8978
8979The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8980onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8981is placed on the stack before local variables.
8982
8983Arguments:
8984""""""""""
8985
8986The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8987The first argument is the value loaded from the stack guard
8988``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8989enough space to hold the value of the guard.
8990
8991Semantics:
8992""""""""""
8993
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008994This intrinsic causes the prologue/epilogue inserter to force the position of
8995the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8996to ensure that if a local variable on the stack is overwritten, it will destroy
8997the value of the guard. When the function exits, the guard on the stack is
8998checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8999different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9000calling the ``__stack_chk_fail()`` function.
9001
9002'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009003^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009004
9005Syntax:
9006"""""""
9007
9008::
9009
9010 declare void @llvm.stackprotectorcheck(i8** <guard>)
9011
9012Overview:
9013"""""""""
9014
9015The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009016created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009017``__stack_chk_fail()`` function.
9018
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009019Arguments:
9020""""""""""
9021
9022The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9023the variable ``@__stack_chk_guard``.
9024
9025Semantics:
9026""""""""""
9027
9028This intrinsic is provided to perform the stack protector check by comparing
9029``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9030values do not match call the ``__stack_chk_fail()`` function.
9031
9032The reason to provide this as an IR level intrinsic instead of implementing it
9033via other IR operations is that in order to perform this operation at the IR
9034level without an intrinsic, one would need to create additional basic blocks to
9035handle the success/failure cases. This makes it difficult to stop the stack
9036protector check from disrupting sibling tail calls in Codegen. With this
9037intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009038codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009039
Sean Silvab084af42012-12-07 10:36:55 +00009040'``llvm.objectsize``' Intrinsic
9041^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9042
9043Syntax:
9044"""""""
9045
9046::
9047
9048 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9049 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9050
9051Overview:
9052"""""""""
9053
9054The ``llvm.objectsize`` intrinsic is designed to provide information to
9055the optimizers to determine at compile time whether a) an operation
9056(like memcpy) will overflow a buffer that corresponds to an object, or
9057b) that a runtime check for overflow isn't necessary. An object in this
9058context means an allocation of a specific class, structure, array, or
9059other object.
9060
9061Arguments:
9062""""""""""
9063
9064The ``llvm.objectsize`` intrinsic takes two arguments. The first
9065argument is a pointer to or into the ``object``. The second argument is
9066a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9067or -1 (if false) when the object size is unknown. The second argument
9068only accepts constants.
9069
9070Semantics:
9071""""""""""
9072
9073The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9074the size of the object concerned. If the size cannot be determined at
9075compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9076on the ``min`` argument).
9077
9078'``llvm.expect``' Intrinsic
9079^^^^^^^^^^^^^^^^^^^^^^^^^^^
9080
9081Syntax:
9082"""""""
9083
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009084This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9085integer bit width.
9086
Sean Silvab084af42012-12-07 10:36:55 +00009087::
9088
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009089 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009090 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9091 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9092
9093Overview:
9094"""""""""
9095
9096The ``llvm.expect`` intrinsic provides information about expected (the
9097most probable) value of ``val``, which can be used by optimizers.
9098
9099Arguments:
9100""""""""""
9101
9102The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9103a value. The second argument is an expected value, this needs to be a
9104constant value, variables are not allowed.
9105
9106Semantics:
9107""""""""""
9108
9109This intrinsic is lowered to the ``val``.
9110
9111'``llvm.donothing``' Intrinsic
9112^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9113
9114Syntax:
9115"""""""
9116
9117::
9118
9119 declare void @llvm.donothing() nounwind readnone
9120
9121Overview:
9122"""""""""
9123
9124The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9125only intrinsic that can be called with an invoke instruction.
9126
9127Arguments:
9128""""""""""
9129
9130None.
9131
9132Semantics:
9133""""""""""
9134
9135This intrinsic does nothing, and it's removed by optimizers and ignored
9136by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009137
9138Stack Map Intrinsics
9139--------------------
9140
9141LLVM provides experimental intrinsics to support runtime patching
9142mechanisms commonly desired in dynamic language JITs. These intrinsics
9143are described in :doc:`StackMaps`.