blob: ed640acfda5ce924ac87dff56b2a2b1310abe079 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Sanjoy Dasc88f5d32015-10-28 21:27:14 +000086#include "llvm/IR/PatternMatch.h"
Chris Lattner996795b2006-06-28 23:17:24 +000087#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000088#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000089#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000090#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000091#include "llvm/Support/raw_ostream.h"
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +000092#include "llvm/Support/SaveAndRestore.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000093#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000094using namespace llvm;
95
Chandler Carruthf1221bd2014-04-22 02:48:03 +000096#define DEBUG_TYPE "scalar-evolution"
97
Chris Lattner57ef9422006-12-19 22:30:33 +000098STATISTIC(NumArrayLenItCounts,
99 "Number of trip counts computed with array length");
100STATISTIC(NumTripCountsComputed,
101 "Number of loops with predictable loop counts");
102STATISTIC(NumTripCountsNotComputed,
103 "Number of loops without predictable loop counts");
104STATISTIC(NumBruteForceTripCountsComputed,
105 "Number of loops with trip counts computed by force");
106
Dan Gohmand78c4002008-05-13 00:00:25 +0000107static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000108MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000110 "symbolically execute a constant "
111 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000112 cl::init(100));
113
Benjamin Kramer214935e2012-10-26 17:31:32 +0000114// FIXME: Enable this with XDEBUG when the test suite is clean.
115static cl::opt<bool>
116VerifySCEV("verify-scev",
117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
118
Chris Lattnerd934c702004-04-02 20:23:17 +0000119//===----------------------------------------------------------------------===//
120// SCEV class definitions
121//===----------------------------------------------------------------------===//
122
123//===----------------------------------------------------------------------===//
124// Implementation of the SCEV class.
125//
Dan Gohman3423e722009-06-30 20:13:32 +0000126
Davide Italiano2071f4c2015-10-25 19:55:24 +0000127LLVM_DUMP_METHOD
128void SCEV::dump() const {
129 print(dbgs());
130 dbgs() << '\n';
131}
132
Dan Gohman534749b2010-11-17 22:27:42 +0000133void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000134 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000135 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000137 return;
138 case scTruncate: {
139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
140 const SCEV *Op = Trunc->getOperand();
141 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
142 << *Trunc->getType() << ")";
143 return;
144 }
145 case scZeroExtend: {
146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
147 const SCEV *Op = ZExt->getOperand();
148 OS << "(zext " << *Op->getType() << " " << *Op << " to "
149 << *ZExt->getType() << ")";
150 return;
151 }
152 case scSignExtend: {
153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
154 const SCEV *Op = SExt->getOperand();
155 OS << "(sext " << *Op->getType() << " " << *Op << " to "
156 << *SExt->getType() << ")";
157 return;
158 }
159 case scAddRecExpr: {
160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
161 OS << "{" << *AR->getOperand(0);
162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
163 OS << ",+," << *AR->getOperand(i);
164 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000165 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000166 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000167 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000168 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000169 if (AR->getNoWrapFlags(FlagNW) &&
170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
171 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000173 OS << ">";
174 return;
175 }
176 case scAddExpr:
177 case scMulExpr:
178 case scUMaxExpr:
179 case scSMaxExpr: {
180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000181 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000182 switch (NAry->getSCEVType()) {
183 case scAddExpr: OpStr = " + "; break;
184 case scMulExpr: OpStr = " * "; break;
185 case scUMaxExpr: OpStr = " umax "; break;
186 case scSMaxExpr: OpStr = " smax "; break;
187 }
188 OS << "(";
189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
190 I != E; ++I) {
191 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000192 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000193 OS << OpStr;
194 }
195 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000196 switch (NAry->getSCEVType()) {
197 case scAddExpr:
198 case scMulExpr:
199 if (NAry->getNoWrapFlags(FlagNUW))
200 OS << "<nuw>";
201 if (NAry->getNoWrapFlags(FlagNSW))
202 OS << "<nsw>";
203 }
Dan Gohman534749b2010-11-17 22:27:42 +0000204 return;
205 }
206 case scUDivExpr: {
207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
209 return;
210 }
211 case scUnknown: {
212 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000213 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000214 if (U->isSizeOf(AllocTy)) {
215 OS << "sizeof(" << *AllocTy << ")";
216 return;
217 }
218 if (U->isAlignOf(AllocTy)) {
219 OS << "alignof(" << *AllocTy << ")";
220 return;
221 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000222
Chris Lattner229907c2011-07-18 04:54:35 +0000223 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000224 Constant *FieldNo;
225 if (U->isOffsetOf(CTy, FieldNo)) {
226 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000227 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000228 OS << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Dan Gohman534749b2010-11-17 22:27:42 +0000232 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000233 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000234 return;
235 }
236 case scCouldNotCompute:
237 OS << "***COULDNOTCOMPUTE***";
238 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000239 }
240 llvm_unreachable("Unknown SCEV kind!");
241}
242
Chris Lattner229907c2011-07-18 04:54:35 +0000243Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000244 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000245 case scConstant:
246 return cast<SCEVConstant>(this)->getType();
247 case scTruncate:
248 case scZeroExtend:
249 case scSignExtend:
250 return cast<SCEVCastExpr>(this)->getType();
251 case scAddRecExpr:
252 case scMulExpr:
253 case scUMaxExpr:
254 case scSMaxExpr:
255 return cast<SCEVNAryExpr>(this)->getType();
256 case scAddExpr:
257 return cast<SCEVAddExpr>(this)->getType();
258 case scUDivExpr:
259 return cast<SCEVUDivExpr>(this)->getType();
260 case scUnknown:
261 return cast<SCEVUnknown>(this)->getType();
262 case scCouldNotCompute:
263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000264 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000265 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000266}
267
Dan Gohmanbe928e32008-06-18 16:23:07 +0000268bool SCEV::isZero() const {
269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270 return SC->getValue()->isZero();
271 return false;
272}
273
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000274bool SCEV::isOne() const {
275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
276 return SC->getValue()->isOne();
277 return false;
278}
Chris Lattnerd934c702004-04-02 20:23:17 +0000279
Dan Gohman18a96bb2009-06-24 00:30:26 +0000280bool SCEV::isAllOnesValue() const {
281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
282 return SC->getValue()->isAllOnesValue();
283 return false;
284}
285
Andrew Trick881a7762012-01-07 00:27:31 +0000286/// isNonConstantNegative - Return true if the specified scev is negated, but
287/// not a constant.
288bool SCEV::isNonConstantNegative() const {
289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
290 if (!Mul) return false;
291
292 // If there is a constant factor, it will be first.
293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
294 if (!SC) return false;
295
296 // Return true if the value is negative, this matches things like (-42 * V).
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000297 return SC->getAPInt().isNegative();
Andrew Trick881a7762012-01-07 00:27:31 +0000298}
299
Owen Anderson04052ec2009-06-22 21:57:23 +0000300SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000302
Chris Lattnerd934c702004-04-02 20:23:17 +0000303bool SCEVCouldNotCompute::classof(const SCEV *S) {
304 return S->getSCEVType() == scCouldNotCompute;
305}
306
Dan Gohmanaf752342009-07-07 17:06:11 +0000307const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000308 FoldingSetNodeID ID;
309 ID.AddInteger(scConstant);
310 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000311 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000314 UniqueSCEVs.InsertNode(S, IP);
315 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000316}
Chris Lattnerd934c702004-04-02 20:23:17 +0000317
Nick Lewycky31eaca52014-01-27 10:04:03 +0000318const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000319 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000320}
321
Dan Gohmanaf752342009-07-07 17:06:11 +0000322const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000323ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000325 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000326}
327
Dan Gohman24ceda82010-06-18 19:54:20 +0000328SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000329 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000331
Dan Gohman24ceda82010-06-18 19:54:20 +0000332SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000333 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000334 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
336 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000337 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000338}
Chris Lattnerd934c702004-04-02 20:23:17 +0000339
Dan Gohman24ceda82010-06-18 19:54:20 +0000340SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000341 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000342 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
344 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000345 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346}
347
Dan Gohman24ceda82010-06-18 19:54:20 +0000348SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000349 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000350 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
352 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000353 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000354}
355
Dan Gohman7cac9572010-08-02 23:49:30 +0000356void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000357 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000358 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000359
360 // Remove this SCEVUnknown from the uniquing map.
361 SE->UniqueSCEVs.RemoveNode(this);
362
363 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000364 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000365}
366
367void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000368 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000369 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000370
371 // Remove this SCEVUnknown from the uniquing map.
372 SE->UniqueSCEVs.RemoveNode(this);
373
374 // Update this SCEVUnknown to point to the new value. This is needed
375 // because there may still be outstanding SCEVs which still point to
376 // this SCEVUnknown.
377 setValPtr(New);
378}
379
Chris Lattner229907c2011-07-18 04:54:35 +0000380bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000382 if (VCE->getOpcode() == Instruction::PtrToInt)
383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000384 if (CE->getOpcode() == Instruction::GetElementPtr &&
385 CE->getOperand(0)->isNullValue() &&
386 CE->getNumOperands() == 2)
387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
388 if (CI->isOne()) {
389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
390 ->getElementType();
391 return true;
392 }
Dan Gohmancf913832010-01-28 02:15:55 +0000393
394 return false;
395}
396
Chris Lattner229907c2011-07-18 04:54:35 +0000397bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000399 if (VCE->getOpcode() == Instruction::PtrToInt)
400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000401 if (CE->getOpcode() == Instruction::GetElementPtr &&
402 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000403 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000405 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000406 if (!STy->isPacked() &&
407 CE->getNumOperands() == 3 &&
408 CE->getOperand(1)->isNullValue()) {
409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
410 if (CI->isOne() &&
411 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000412 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 AllocTy = STy->getElementType(1);
414 return true;
415 }
416 }
417 }
Dan Gohmancf913832010-01-28 02:15:55 +0000418
419 return false;
420}
421
Chris Lattner229907c2011-07-18 04:54:35 +0000422bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000424 if (VCE->getOpcode() == Instruction::PtrToInt)
425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
426 if (CE->getOpcode() == Instruction::GetElementPtr &&
427 CE->getNumOperands() == 3 &&
428 CE->getOperand(0)->isNullValue() &&
429 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000430 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
432 // Ignore vector types here so that ScalarEvolutionExpander doesn't
433 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000434 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000435 CTy = Ty;
436 FieldNo = CE->getOperand(2);
437 return true;
438 }
439 }
440
441 return false;
442}
443
Chris Lattnereb3e8402004-06-20 06:23:15 +0000444//===----------------------------------------------------------------------===//
445// SCEV Utilities
446//===----------------------------------------------------------------------===//
447
448namespace {
Sanjoy Das7881abd2015-12-08 04:32:51 +0000449/// SCEVComplexityCompare - Return true if the complexity of the LHS is less
450/// than the complexity of the RHS. This comparator is used to canonicalize
451/// expressions.
452class SCEVComplexityCompare {
453 const LoopInfo *const LI;
454public:
455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000456
Sanjoy Das7881abd2015-12-08 04:32:51 +0000457 // Return true or false if LHS is less than, or at least RHS, respectively.
458 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
459 return compare(LHS, RHS) < 0;
460 }
Dan Gohman27065672010-08-27 15:26:01 +0000461
Sanjoy Das7881abd2015-12-08 04:32:51 +0000462 // Return negative, zero, or positive, if LHS is less than, equal to, or
463 // greater than RHS, respectively. A three-way result allows recursive
464 // comparisons to be more efficient.
465 int compare(const SCEV *LHS, const SCEV *RHS) const {
466 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
467 if (LHS == RHS)
468 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000469
Sanjoy Das7881abd2015-12-08 04:32:51 +0000470 // Primarily, sort the SCEVs by their getSCEVType().
471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
472 if (LType != RType)
473 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000474
Sanjoy Das7881abd2015-12-08 04:32:51 +0000475 // Aside from the getSCEVType() ordering, the particular ordering
476 // isn't very important except that it's beneficial to be consistent,
477 // so that (a + b) and (b + a) don't end up as different expressions.
478 switch (static_cast<SCEVTypes>(LType)) {
479 case scUnknown: {
480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000482
Sanjoy Das7881abd2015-12-08 04:32:51 +0000483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
484 // not as complete as it could be.
485 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000486
Sanjoy Das7881abd2015-12-08 04:32:51 +0000487 // Order pointer values after integer values. This helps SCEVExpander
488 // form GEPs.
489 bool LIsPointer = LV->getType()->isPointerTy(),
490 RIsPointer = RV->getType()->isPointerTy();
491 if (LIsPointer != RIsPointer)
492 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000493
Sanjoy Das7881abd2015-12-08 04:32:51 +0000494 // Compare getValueID values.
495 unsigned LID = LV->getValueID(),
496 RID = RV->getValueID();
497 if (LID != RID)
498 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000499
Sanjoy Das7881abd2015-12-08 04:32:51 +0000500 // Sort arguments by their position.
501 if (const Argument *LA = dyn_cast<Argument>(LV)) {
502 const Argument *RA = cast<Argument>(RV);
503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
504 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000505 }
506
Sanjoy Das7881abd2015-12-08 04:32:51 +0000507 // For instructions, compare their loop depth, and their operand
508 // count. This is pretty loose.
509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
510 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000511
Sanjoy Das7881abd2015-12-08 04:32:51 +0000512 // Compare loop depths.
513 const BasicBlock *LParent = LInst->getParent(),
514 *RParent = RInst->getParent();
515 if (LParent != RParent) {
516 unsigned LDepth = LI->getLoopDepth(LParent),
517 RDepth = LI->getLoopDepth(RParent);
Dan Gohman0c436ab2010-08-13 21:24:58 +0000518 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000519 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000520 }
Dan Gohman27065672010-08-27 15:26:01 +0000521
Sanjoy Das7881abd2015-12-08 04:32:51 +0000522 // Compare the number of operands.
523 unsigned LNumOps = LInst->getNumOperands(),
524 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000525 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000526 }
527
Sanjoy Das7881abd2015-12-08 04:32:51 +0000528 return 0;
529 }
Dan Gohman27065672010-08-27 15:26:01 +0000530
Sanjoy Das7881abd2015-12-08 04:32:51 +0000531 case scConstant: {
532 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
533 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
534
535 // Compare constant values.
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000536 const APInt &LA = LC->getAPInt();
537 const APInt &RA = RC->getAPInt();
Sanjoy Das7881abd2015-12-08 04:32:51 +0000538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
539 if (LBitWidth != RBitWidth)
540 return (int)LBitWidth - (int)RBitWidth;
541 return LA.ult(RA) ? -1 : 1;
542 }
543
544 case scAddRecExpr: {
545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
547
548 // Compare addrec loop depths.
549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
550 if (LLoop != RLoop) {
551 unsigned LDepth = LLoop->getLoopDepth(),
552 RDepth = RLoop->getLoopDepth();
553 if (LDepth != RDepth)
554 return (int)LDepth - (int)RDepth;
555 }
556
557 // Addrec complexity grows with operand count.
558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
559 if (LNumOps != RNumOps)
560 return (int)LNumOps - (int)RNumOps;
561
562 // Lexicographically compare.
563 for (unsigned i = 0; i != LNumOps; ++i) {
564 long X = compare(LA->getOperand(i), RA->getOperand(i));
Dan Gohman27065672010-08-27 15:26:01 +0000565 if (X != 0)
566 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000567 }
568
Sanjoy Das7881abd2015-12-08 04:32:51 +0000569 return 0;
Chris Lattnereb3e8402004-06-20 06:23:15 +0000570 }
Sanjoy Das7881abd2015-12-08 04:32:51 +0000571
572 case scAddExpr:
573 case scMulExpr:
574 case scSMaxExpr:
575 case scUMaxExpr: {
576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
578
579 // Lexicographically compare n-ary expressions.
580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
581 if (LNumOps != RNumOps)
582 return (int)LNumOps - (int)RNumOps;
583
584 for (unsigned i = 0; i != LNumOps; ++i) {
585 if (i >= RNumOps)
586 return 1;
587 long X = compare(LC->getOperand(i), RC->getOperand(i));
588 if (X != 0)
589 return X;
590 }
591 return (int)LNumOps - (int)RNumOps;
592 }
593
594 case scUDivExpr: {
595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
597
598 // Lexicographically compare udiv expressions.
599 long X = compare(LC->getLHS(), RC->getLHS());
600 if (X != 0)
601 return X;
602 return compare(LC->getRHS(), RC->getRHS());
603 }
604
605 case scTruncate:
606 case scZeroExtend:
607 case scSignExtend: {
608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
610
611 // Compare cast expressions by operand.
612 return compare(LC->getOperand(), RC->getOperand());
613 }
614
615 case scCouldNotCompute:
616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
617 }
618 llvm_unreachable("Unknown SCEV kind!");
619 }
620};
621} // end anonymous namespace
Chris Lattnereb3e8402004-06-20 06:23:15 +0000622
623/// GroupByComplexity - Given a list of SCEV objects, order them by their
624/// complexity, and group objects of the same complexity together by value.
625/// When this routine is finished, we know that any duplicates in the vector are
626/// consecutive and that complexity is monotonically increasing.
627///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000628/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000629/// results from this routine. In other words, we don't want the results of
630/// this to depend on where the addresses of various SCEV objects happened to
631/// land in memory.
632///
Dan Gohmanaf752342009-07-07 17:06:11 +0000633static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000634 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000635 if (Ops.size() < 2) return; // Noop
636 if (Ops.size() == 2) {
637 // This is the common case, which also happens to be trivially simple.
638 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
640 if (SCEVComplexityCompare(LI)(RHS, LHS))
641 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000642 return;
643 }
644
Dan Gohman24ceda82010-06-18 19:54:20 +0000645 // Do the rough sort by complexity.
646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
647
648 // Now that we are sorted by complexity, group elements of the same
649 // complexity. Note that this is, at worst, N^2, but the vector is likely to
650 // be extremely short in practice. Note that we take this approach because we
651 // do not want to depend on the addresses of the objects we are grouping.
652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
653 const SCEV *S = Ops[i];
654 unsigned Complexity = S->getSCEVType();
655
656 // If there are any objects of the same complexity and same value as this
657 // one, group them.
658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
659 if (Ops[j] == S) { // Found a duplicate.
660 // Move it to immediately after i'th element.
661 std::swap(Ops[i+1], Ops[j]);
662 ++i; // no need to rescan it.
663 if (i == e-2) return; // Done!
664 }
665 }
666 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000667}
668
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000669// Returns the size of the SCEV S.
670static inline int sizeOfSCEV(const SCEV *S) {
Sanjoy Das7d752672015-12-08 04:32:54 +0000671 struct FindSCEVSize {
672 int Size;
673 FindSCEVSize() : Size(0) {}
674
675 bool follow(const SCEV *S) {
676 ++Size;
677 // Keep looking at all operands of S.
678 return true;
679 }
680 bool isDone() const {
681 return false;
682 }
683 };
684
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000685 FindSCEVSize F;
686 SCEVTraversal<FindSCEVSize> ST(F);
687 ST.visitAll(S);
688 return F.Size;
689}
690
691namespace {
692
David Majnemer4e879362014-12-14 09:12:33 +0000693struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000694public:
695 // Computes the Quotient and Remainder of the division of Numerator by
696 // Denominator.
697 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
698 const SCEV *Denominator, const SCEV **Quotient,
699 const SCEV **Remainder) {
700 assert(Numerator && Denominator && "Uninitialized SCEV");
701
David Majnemer4e879362014-12-14 09:12:33 +0000702 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000703
704 // Check for the trivial case here to avoid having to check for it in the
705 // rest of the code.
706 if (Numerator == Denominator) {
707 *Quotient = D.One;
708 *Remainder = D.Zero;
709 return;
710 }
711
712 if (Numerator->isZero()) {
713 *Quotient = D.Zero;
714 *Remainder = D.Zero;
715 return;
716 }
717
Brendon Cahoona57cc8b2015-04-20 16:03:28 +0000718 // A simple case when N/1. The quotient is N.
719 if (Denominator->isOne()) {
720 *Quotient = Numerator;
721 *Remainder = D.Zero;
722 return;
723 }
724
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000725 // Split the Denominator when it is a product.
726 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
727 const SCEV *Q, *R;
728 *Quotient = Numerator;
729 for (const SCEV *Op : T->operands()) {
730 divide(SE, *Quotient, Op, &Q, &R);
731 *Quotient = Q;
732
733 // Bail out when the Numerator is not divisible by one of the terms of
734 // the Denominator.
735 if (!R->isZero()) {
736 *Quotient = D.Zero;
737 *Remainder = Numerator;
738 return;
739 }
740 }
741 *Remainder = D.Zero;
742 return;
743 }
744
745 D.visit(Numerator);
746 *Quotient = D.Quotient;
747 *Remainder = D.Remainder;
748 }
749
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000750 // Except in the trivial case described above, we do not know how to divide
751 // Expr by Denominator for the following functions with empty implementation.
752 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
753 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
754 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
755 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
756 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
757 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
758 void visitUnknown(const SCEVUnknown *Numerator) {}
759 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
760
David Majnemer4e879362014-12-14 09:12:33 +0000761 void visitConstant(const SCEVConstant *Numerator) {
762 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +0000763 APInt NumeratorVal = Numerator->getAPInt();
764 APInt DenominatorVal = D->getAPInt();
David Majnemer4e879362014-12-14 09:12:33 +0000765 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
766 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
767
768 if (NumeratorBW > DenominatorBW)
769 DenominatorVal = DenominatorVal.sext(NumeratorBW);
770 else if (NumeratorBW < DenominatorBW)
771 NumeratorVal = NumeratorVal.sext(DenominatorBW);
772
773 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
774 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
775 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
776 Quotient = SE.getConstant(QuotientVal);
777 Remainder = SE.getConstant(RemainderVal);
778 return;
779 }
780 }
781
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000782 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
783 const SCEV *StartQ, *StartR, *StepQ, *StepR;
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000784 if (!Numerator->isAffine())
785 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000786 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
787 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
Brendon Cahoonf9751ad2015-04-22 15:06:40 +0000788 // Bail out if the types do not match.
789 Type *Ty = Denominator->getType();
790 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000791 Ty != StepQ->getType() || Ty != StepR->getType())
792 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000793 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
794 Numerator->getNoWrapFlags());
795 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
796 Numerator->getNoWrapFlags());
797 }
798
799 void visitAddExpr(const SCEVAddExpr *Numerator) {
800 SmallVector<const SCEV *, 2> Qs, Rs;
801 Type *Ty = Denominator->getType();
802
803 for (const SCEV *Op : Numerator->operands()) {
804 const SCEV *Q, *R;
805 divide(SE, Op, Denominator, &Q, &R);
806
807 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000808 if (Ty != Q->getType() || Ty != R->getType())
809 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000810
811 Qs.push_back(Q);
812 Rs.push_back(R);
813 }
814
815 if (Qs.size() == 1) {
816 Quotient = Qs[0];
817 Remainder = Rs[0];
818 return;
819 }
820
821 Quotient = SE.getAddExpr(Qs);
822 Remainder = SE.getAddExpr(Rs);
823 }
824
825 void visitMulExpr(const SCEVMulExpr *Numerator) {
826 SmallVector<const SCEV *, 2> Qs;
827 Type *Ty = Denominator->getType();
828
829 bool FoundDenominatorTerm = false;
830 for (const SCEV *Op : Numerator->operands()) {
831 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000832 if (Ty != Op->getType())
833 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000834
835 if (FoundDenominatorTerm) {
836 Qs.push_back(Op);
837 continue;
838 }
839
840 // Check whether Denominator divides one of the product operands.
841 const SCEV *Q, *R;
842 divide(SE, Op, Denominator, &Q, &R);
843 if (!R->isZero()) {
844 Qs.push_back(Op);
845 continue;
846 }
847
848 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000849 if (Ty != Q->getType())
850 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000851
852 FoundDenominatorTerm = true;
853 Qs.push_back(Q);
854 }
855
856 if (FoundDenominatorTerm) {
857 Remainder = Zero;
858 if (Qs.size() == 1)
859 Quotient = Qs[0];
860 else
861 Quotient = SE.getMulExpr(Qs);
862 return;
863 }
864
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000865 if (!isa<SCEVUnknown>(Denominator))
866 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000867
868 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
869 ValueToValueMap RewriteMap;
870 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
871 cast<SCEVConstant>(Zero)->getValue();
872 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
873
874 if (Remainder->isZero()) {
875 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
876 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
877 cast<SCEVConstant>(One)->getValue();
878 Quotient =
879 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
880 return;
881 }
882
883 // Quotient is (Numerator - Remainder) divided by Denominator.
884 const SCEV *Q, *R;
885 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000886 // This SCEV does not seem to simplify: fail the division here.
887 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
888 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000889 divide(SE, Diff, Denominator, &Q, &R);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000890 if (R != Zero)
891 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000892 Quotient = Q;
893 }
894
895private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000896 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
897 const SCEV *Denominator)
898 : SE(S), Denominator(Denominator) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +0000899 Zero = SE.getZero(Denominator->getType());
900 One = SE.getOne(Denominator->getType());
David Majnemer5d2670c2014-11-17 11:27:45 +0000901
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000902 // We generally do not know how to divide Expr by Denominator. We
903 // initialize the division to a "cannot divide" state to simplify the rest
904 // of the code.
905 cannotDivide(Numerator);
906 }
907
908 // Convenience function for giving up on the division. We set the quotient to
909 // be equal to zero and the remainder to be equal to the numerator.
910 void cannotDivide(const SCEV *Numerator) {
David Majnemer5d2670c2014-11-17 11:27:45 +0000911 Quotient = Zero;
912 Remainder = Numerator;
913 }
914
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000915 ScalarEvolution &SE;
916 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000917};
918
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000919}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000920
Chris Lattnerd934c702004-04-02 20:23:17 +0000921//===----------------------------------------------------------------------===//
922// Simple SCEV method implementations
923//===----------------------------------------------------------------------===//
924
Eli Friedman61f67622008-08-04 23:49:06 +0000925/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000926/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000927static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000928 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000929 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000930 // Handle the simplest case efficiently.
931 if (K == 1)
932 return SE.getTruncateOrZeroExtend(It, ResultTy);
933
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000934 // We are using the following formula for BC(It, K):
935 //
936 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
937 //
Eli Friedman61f67622008-08-04 23:49:06 +0000938 // Suppose, W is the bitwidth of the return value. We must be prepared for
939 // overflow. Hence, we must assure that the result of our computation is
940 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
941 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000942 //
Eli Friedman61f67622008-08-04 23:49:06 +0000943 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000944 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000945 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
946 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000947 //
Eli Friedman61f67622008-08-04 23:49:06 +0000948 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000949 //
Eli Friedman61f67622008-08-04 23:49:06 +0000950 // This formula is trivially equivalent to the previous formula. However,
951 // this formula can be implemented much more efficiently. The trick is that
952 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
953 // arithmetic. To do exact division in modular arithmetic, all we have
954 // to do is multiply by the inverse. Therefore, this step can be done at
955 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000956 //
Eli Friedman61f67622008-08-04 23:49:06 +0000957 // The next issue is how to safely do the division by 2^T. The way this
958 // is done is by doing the multiplication step at a width of at least W + T
959 // bits. This way, the bottom W+T bits of the product are accurate. Then,
960 // when we perform the division by 2^T (which is equivalent to a right shift
961 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
962 // truncated out after the division by 2^T.
963 //
964 // In comparison to just directly using the first formula, this technique
965 // is much more efficient; using the first formula requires W * K bits,
966 // but this formula less than W + K bits. Also, the first formula requires
967 // a division step, whereas this formula only requires multiplies and shifts.
968 //
969 // It doesn't matter whether the subtraction step is done in the calculation
970 // width or the input iteration count's width; if the subtraction overflows,
971 // the result must be zero anyway. We prefer here to do it in the width of
972 // the induction variable because it helps a lot for certain cases; CodeGen
973 // isn't smart enough to ignore the overflow, which leads to much less
974 // efficient code if the width of the subtraction is wider than the native
975 // register width.
976 //
977 // (It's possible to not widen at all by pulling out factors of 2 before
978 // the multiplication; for example, K=2 can be calculated as
979 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
980 // extra arithmetic, so it's not an obvious win, and it gets
981 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000982
Eli Friedman61f67622008-08-04 23:49:06 +0000983 // Protection from insane SCEVs; this bound is conservative,
984 // but it probably doesn't matter.
985 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000986 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000987
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000988 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000989
Eli Friedman61f67622008-08-04 23:49:06 +0000990 // Calculate K! / 2^T and T; we divide out the factors of two before
991 // multiplying for calculating K! / 2^T to avoid overflow.
992 // Other overflow doesn't matter because we only care about the bottom
993 // W bits of the result.
994 APInt OddFactorial(W, 1);
995 unsigned T = 1;
996 for (unsigned i = 3; i <= K; ++i) {
997 APInt Mult(W, i);
998 unsigned TwoFactors = Mult.countTrailingZeros();
999 T += TwoFactors;
1000 Mult = Mult.lshr(TwoFactors);
1001 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001002 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001003
Eli Friedman61f67622008-08-04 23:49:06 +00001004 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001005 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001006
Dan Gohman8b0a4192010-03-01 17:49:51 +00001007 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001008 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001009
1010 // Calculate the multiplicative inverse of K! / 2^T;
1011 // this multiplication factor will perform the exact division by
1012 // K! / 2^T.
1013 APInt Mod = APInt::getSignedMinValue(W+1);
1014 APInt MultiplyFactor = OddFactorial.zext(W+1);
1015 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1016 MultiplyFactor = MultiplyFactor.trunc(W);
1017
1018 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001019 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001020 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001021 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001022 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001023 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001024 Dividend = SE.getMulExpr(Dividend,
1025 SE.getTruncateOrZeroExtend(S, CalculationTy));
1026 }
1027
1028 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001029 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001030
1031 // Truncate the result, and divide by K! / 2^T.
1032
1033 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1034 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001035}
1036
Chris Lattnerd934c702004-04-02 20:23:17 +00001037/// evaluateAtIteration - Return the value of this chain of recurrences at
1038/// the specified iteration number. We can evaluate this recurrence by
1039/// multiplying each element in the chain by the binomial coefficient
1040/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1041///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001042/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001043///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001044/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001045///
Dan Gohmanaf752342009-07-07 17:06:11 +00001046const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001047 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001048 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001049 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001050 // The computation is correct in the face of overflow provided that the
1051 // multiplication is performed _after_ the evaluation of the binomial
1052 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001053 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001054 if (isa<SCEVCouldNotCompute>(Coeff))
1055 return Coeff;
1056
1057 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001058 }
1059 return Result;
1060}
1061
Chris Lattnerd934c702004-04-02 20:23:17 +00001062//===----------------------------------------------------------------------===//
1063// SCEV Expression folder implementations
1064//===----------------------------------------------------------------------===//
1065
Dan Gohmanaf752342009-07-07 17:06:11 +00001066const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001067 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001068 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001069 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001070 assert(isSCEVable(Ty) &&
1071 "This is not a conversion to a SCEVable type!");
1072 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001073
Dan Gohman3a302cb2009-07-13 20:50:19 +00001074 FoldingSetNodeID ID;
1075 ID.AddInteger(scTruncate);
1076 ID.AddPointer(Op);
1077 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001078 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001079 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1080
Dan Gohman3423e722009-06-30 20:13:32 +00001081 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001082 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001083 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001084 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001085
Dan Gohman79af8542009-04-22 16:20:48 +00001086 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001087 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001088 return getTruncateExpr(ST->getOperand(), Ty);
1089
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001090 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001091 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001092 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1093
1094 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001095 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001096 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1097
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001098 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
Nick Lewycky2ce28322015-03-20 02:52:23 +00001099 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001100 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1101 SmallVector<const SCEV *, 4> Operands;
1102 bool hasTrunc = false;
1103 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1104 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001105 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1106 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001107 Operands.push_back(S);
1108 }
1109 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001110 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001111 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001112 }
1113
Nick Lewycky5c901f32011-01-19 18:56:00 +00001114 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
Nick Lewyckybe8af482015-03-20 02:25:00 +00001115 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001116 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1117 SmallVector<const SCEV *, 4> Operands;
1118 bool hasTrunc = false;
1119 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1120 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001121 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1122 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5c901f32011-01-19 18:56:00 +00001123 Operands.push_back(S);
1124 }
1125 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001126 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001127 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001128 }
1129
Dan Gohman5a728c92009-06-18 16:24:47 +00001130 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001131 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001132 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00001133 for (const SCEV *Op : AddRec->operands())
1134 Operands.push_back(getTruncateExpr(Op, Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001135 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001136 }
1137
Dan Gohman89dd42a2010-06-25 18:47:08 +00001138 // The cast wasn't folded; create an explicit cast node. We can reuse
1139 // the existing insert position since if we get here, we won't have
1140 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001141 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1142 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001143 UniqueSCEVs.InsertNode(S, IP);
1144 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001145}
1146
Sanjoy Das4153f472015-02-18 01:47:07 +00001147// Get the limit of a recurrence such that incrementing by Step cannot cause
1148// signed overflow as long as the value of the recurrence within the
1149// loop does not exceed this limit before incrementing.
1150static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1151 ICmpInst::Predicate *Pred,
1152 ScalarEvolution *SE) {
1153 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1154 if (SE->isKnownPositive(Step)) {
1155 *Pred = ICmpInst::ICMP_SLT;
1156 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1157 SE->getSignedRange(Step).getSignedMax());
1158 }
1159 if (SE->isKnownNegative(Step)) {
1160 *Pred = ICmpInst::ICMP_SGT;
1161 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1162 SE->getSignedRange(Step).getSignedMin());
1163 }
1164 return nullptr;
1165}
1166
1167// Get the limit of a recurrence such that incrementing by Step cannot cause
1168// unsigned overflow as long as the value of the recurrence within the loop does
1169// not exceed this limit before incrementing.
1170static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1171 ICmpInst::Predicate *Pred,
1172 ScalarEvolution *SE) {
1173 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1174 *Pred = ICmpInst::ICMP_ULT;
1175
1176 return SE->getConstant(APInt::getMinValue(BitWidth) -
1177 SE->getUnsignedRange(Step).getUnsignedMax());
1178}
1179
1180namespace {
1181
1182struct ExtendOpTraitsBase {
1183 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1184};
1185
1186// Used to make code generic over signed and unsigned overflow.
1187template <typename ExtendOp> struct ExtendOpTraits {
1188 // Members present:
1189 //
1190 // static const SCEV::NoWrapFlags WrapType;
1191 //
1192 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1193 //
1194 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1195 // ICmpInst::Predicate *Pred,
1196 // ScalarEvolution *SE);
1197};
1198
1199template <>
1200struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1201 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1202
1203 static const GetExtendExprTy GetExtendExpr;
1204
1205 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1206 ICmpInst::Predicate *Pred,
1207 ScalarEvolution *SE) {
1208 return getSignedOverflowLimitForStep(Step, Pred, SE);
1209 }
1210};
1211
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001212const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001213 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1214
1215template <>
1216struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1217 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1218
1219 static const GetExtendExprTy GetExtendExpr;
1220
1221 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1222 ICmpInst::Predicate *Pred,
1223 ScalarEvolution *SE) {
1224 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1225 }
1226};
1227
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001228const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001229 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
Alexander Kornienkof00654e2015-06-23 09:49:53 +00001230}
Sanjoy Das4153f472015-02-18 01:47:07 +00001231
1232// The recurrence AR has been shown to have no signed/unsigned wrap or something
1233// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1234// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1235// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1236// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1237// expression "Step + sext/zext(PreIncAR)" is congruent with
1238// "sext/zext(PostIncAR)"
1239template <typename ExtendOpTy>
1240static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1241 ScalarEvolution *SE) {
1242 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1243 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1244
1245 const Loop *L = AR->getLoop();
1246 const SCEV *Start = AR->getStart();
1247 const SCEV *Step = AR->getStepRecurrence(*SE);
1248
1249 // Check for a simple looking step prior to loop entry.
1250 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1251 if (!SA)
1252 return nullptr;
1253
1254 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1255 // subtraction is expensive. For this purpose, perform a quick and dirty
1256 // difference, by checking for Step in the operand list.
1257 SmallVector<const SCEV *, 4> DiffOps;
1258 for (const SCEV *Op : SA->operands())
1259 if (Op != Step)
1260 DiffOps.push_back(Op);
1261
1262 if (DiffOps.size() == SA->getNumOperands())
1263 return nullptr;
1264
1265 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1266 // `Step`:
1267
1268 // 1. NSW/NUW flags on the step increment.
Sanjoy Das0714e3e2015-10-23 06:33:47 +00001269 auto PreStartFlags =
1270 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1271 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
Sanjoy Das4153f472015-02-18 01:47:07 +00001272 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1273 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1274
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001275 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1276 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001277 //
1278
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001279 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1280 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1281 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001282 return PreStart;
1283
1284 // 2. Direct overflow check on the step operation's expression.
1285 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1286 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1287 const SCEV *OperandExtendedStart =
1288 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1289 (SE->*GetExtendExpr)(Step, WideTy));
1290 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1291 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1292 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1293 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1294 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1295 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1296 }
1297 return PreStart;
1298 }
1299
1300 // 3. Loop precondition.
1301 ICmpInst::Predicate Pred;
1302 const SCEV *OverflowLimit =
1303 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1304
1305 if (OverflowLimit &&
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001306 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
Sanjoy Das4153f472015-02-18 01:47:07 +00001307 return PreStart;
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001308
Sanjoy Das4153f472015-02-18 01:47:07 +00001309 return nullptr;
1310}
1311
1312// Get the normalized zero or sign extended expression for this AddRec's Start.
1313template <typename ExtendOpTy>
1314static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1315 ScalarEvolution *SE) {
1316 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1317
1318 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1319 if (!PreStart)
1320 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1321
1322 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1323 (SE->*GetExtendExpr)(PreStart, Ty));
1324}
1325
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001326// Try to prove away overflow by looking at "nearby" add recurrences. A
1327// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1328// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1329//
1330// Formally:
1331//
1332// {S,+,X} == {S-T,+,X} + T
1333// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1334//
1335// If ({S-T,+,X} + T) does not overflow ... (1)
1336//
1337// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1338//
1339// If {S-T,+,X} does not overflow ... (2)
1340//
1341// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1342// == {Ext(S-T)+Ext(T),+,Ext(X)}
1343//
1344// If (S-T)+T does not overflow ... (3)
1345//
1346// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1347// == {Ext(S),+,Ext(X)} == LHS
1348//
1349// Thus, if (1), (2) and (3) are true for some T, then
1350// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1351//
1352// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1353// does not overflow" restricted to the 0th iteration. Therefore we only need
1354// to check for (1) and (2).
1355//
1356// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1357// is `Delta` (defined below).
1358//
1359template <typename ExtendOpTy>
1360bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1361 const SCEV *Step,
1362 const Loop *L) {
1363 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1364
1365 // We restrict `Start` to a constant to prevent SCEV from spending too much
1366 // time here. It is correct (but more expensive) to continue with a
1367 // non-constant `Start` and do a general SCEV subtraction to compute
1368 // `PreStart` below.
1369 //
1370 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1371 if (!StartC)
1372 return false;
1373
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001374 APInt StartAI = StartC->getAPInt();
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001375
1376 for (unsigned Delta : {-2, -1, 1, 2}) {
1377 const SCEV *PreStart = getConstant(StartAI - Delta);
1378
Sanjoy Das42801102015-10-23 06:57:21 +00001379 FoldingSetNodeID ID;
1380 ID.AddInteger(scAddRecExpr);
1381 ID.AddPointer(PreStart);
1382 ID.AddPointer(Step);
1383 ID.AddPointer(L);
1384 void *IP = nullptr;
1385 const auto *PreAR =
1386 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1387
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001388 // Give up if we don't already have the add recurrence we need because
1389 // actually constructing an add recurrence is relatively expensive.
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001390 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1391 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1392 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1393 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1394 DeltaS, &Pred, this);
1395 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1396 return true;
1397 }
1398 }
1399
1400 return false;
1401}
1402
Dan Gohmanaf752342009-07-07 17:06:11 +00001403const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001404 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001405 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001406 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001407 assert(isSCEVable(Ty) &&
1408 "This is not a conversion to a SCEVable type!");
1409 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001410
Dan Gohman3423e722009-06-30 20:13:32 +00001411 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001412 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1413 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001414 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001415
Dan Gohman79af8542009-04-22 16:20:48 +00001416 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001417 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001418 return getZeroExtendExpr(SZ->getOperand(), Ty);
1419
Dan Gohman74a0ba12009-07-13 20:55:53 +00001420 // Before doing any expensive analysis, check to see if we've already
1421 // computed a SCEV for this Op and Ty.
1422 FoldingSetNodeID ID;
1423 ID.AddInteger(scZeroExtend);
1424 ID.AddPointer(Op);
1425 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001426 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001427 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1428
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001429 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1430 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1431 // It's possible the bits taken off by the truncate were all zero bits. If
1432 // so, we should be able to simplify this further.
1433 const SCEV *X = ST->getOperand();
1434 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001435 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1436 unsigned NewBits = getTypeSizeInBits(Ty);
1437 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001438 CR.zextOrTrunc(NewBits)))
1439 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001440 }
1441
Dan Gohman76466372009-04-27 20:16:15 +00001442 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001443 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001444 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001445 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001446 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001447 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001448 const SCEV *Start = AR->getStart();
1449 const SCEV *Step = AR->getStepRecurrence(*this);
1450 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1451 const Loop *L = AR->getLoop();
1452
Dan Gohman62ef6a72009-07-25 01:22:26 +00001453 // If we have special knowledge that this addrec won't overflow,
1454 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001455 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001456 return getAddRecExpr(
1457 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1458 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001459
Dan Gohman76466372009-04-27 20:16:15 +00001460 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1461 // Note that this serves two purposes: It filters out loops that are
1462 // simply not analyzable, and it covers the case where this code is
1463 // being called from within backedge-taken count analysis, such that
1464 // attempting to ask for the backedge-taken count would likely result
1465 // in infinite recursion. In the later case, the analysis code will
1466 // cope with a conservative value, and it will take care to purge
1467 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001468 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001469 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001470 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001471 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001472
1473 // Check whether the backedge-taken count can be losslessly casted to
1474 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001475 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001476 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001477 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001478 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1479 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001480 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001481 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001482 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001483 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1484 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1485 const SCEV *WideMaxBECount =
1486 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001487 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001488 getAddExpr(WideStart,
1489 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001490 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001491 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001492 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1493 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001494 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001495 return getAddRecExpr(
1496 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1497 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001498 }
Dan Gohman76466372009-04-27 20:16:15 +00001499 // Similar to above, only this time treat the step value as signed.
1500 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001501 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001502 getAddExpr(WideStart,
1503 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001504 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001505 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001506 // Cache knowledge of AR NW, which is propagated to this AddRec.
1507 // Negative step causes unsigned wrap, but it still can't self-wrap.
1508 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001509 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001510 return getAddRecExpr(
1511 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1512 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001513 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001514 }
1515
1516 // If the backedge is guarded by a comparison with the pre-inc value
1517 // the addrec is safe. Also, if the entry is guarded by a comparison
1518 // with the start value and the backedge is guarded by a comparison
1519 // with the post-inc value, the addrec is safe.
1520 if (isKnownPositive(Step)) {
1521 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1522 getUnsignedRange(Step).getUnsignedMax());
1523 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001524 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001525 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001526 AR->getPostIncExpr(*this), N))) {
1527 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1528 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001529 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001530 return getAddRecExpr(
1531 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1532 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001533 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001534 } else if (isKnownNegative(Step)) {
1535 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1536 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001537 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1538 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001539 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001540 AR->getPostIncExpr(*this), N))) {
1541 // Cache knowledge of AR NW, which is propagated to this AddRec.
1542 // Negative step causes unsigned wrap, but it still can't self-wrap.
1543 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1544 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001545 return getAddRecExpr(
1546 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1547 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001548 }
Dan Gohman76466372009-04-27 20:16:15 +00001549 }
1550 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001551
1552 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1553 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1554 return getAddRecExpr(
1555 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1556 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1557 }
Dan Gohman76466372009-04-27 20:16:15 +00001558 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001559
Sanjoy Daseeca9f62015-10-22 19:57:38 +00001560 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1561 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1562 if (SA->getNoWrapFlags(SCEV::FlagNUW)) {
1563 // If the addition does not unsign overflow then we can, by definition,
1564 // commute the zero extension with the addition operation.
1565 SmallVector<const SCEV *, 4> Ops;
1566 for (const auto *Op : SA->operands())
1567 Ops.push_back(getZeroExtendExpr(Op, Ty));
1568 return getAddExpr(Ops, SCEV::FlagNUW);
1569 }
1570 }
1571
Dan Gohman74a0ba12009-07-13 20:55:53 +00001572 // The cast wasn't folded; create an explicit cast node.
1573 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001574 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001575 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1576 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001577 UniqueSCEVs.InsertNode(S, IP);
1578 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001579}
1580
Dan Gohmanaf752342009-07-07 17:06:11 +00001581const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001582 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001583 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001584 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001585 assert(isSCEVable(Ty) &&
1586 "This is not a conversion to a SCEVable type!");
1587 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001588
Dan Gohman3423e722009-06-30 20:13:32 +00001589 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001590 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1591 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001592 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001593
Dan Gohman79af8542009-04-22 16:20:48 +00001594 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001595 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001596 return getSignExtendExpr(SS->getOperand(), Ty);
1597
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001598 // sext(zext(x)) --> zext(x)
1599 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1600 return getZeroExtendExpr(SZ->getOperand(), Ty);
1601
Dan Gohman74a0ba12009-07-13 20:55:53 +00001602 // Before doing any expensive analysis, check to see if we've already
1603 // computed a SCEV for this Op and Ty.
1604 FoldingSetNodeID ID;
1605 ID.AddInteger(scSignExtend);
1606 ID.AddPointer(Op);
1607 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001608 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001609 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1610
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001611 // If the input value is provably positive, build a zext instead.
1612 if (isKnownNonNegative(Op))
1613 return getZeroExtendExpr(Op, Ty);
1614
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001615 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1616 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1617 // It's possible the bits taken off by the truncate were all sign bits. If
1618 // so, we should be able to simplify this further.
1619 const SCEV *X = ST->getOperand();
1620 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001621 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1622 unsigned NewBits = getTypeSizeInBits(Ty);
1623 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001624 CR.sextOrTrunc(NewBits)))
1625 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001626 }
1627
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001628 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001629 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001630 if (SA->getNumOperands() == 2) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001631 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1632 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001633 if (SMul && SC1) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001634 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001635 const APInt &C1 = SC1->getAPInt();
1636 const APInt &C2 = SC2->getAPInt();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001637 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001638 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001639 return getAddExpr(getSignExtendExpr(SC1, Ty),
1640 getSignExtendExpr(SMul, Ty));
1641 }
1642 }
1643 }
Sanjoy Dasa060e602015-10-22 19:57:25 +00001644
1645 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1646 if (SA->getNoWrapFlags(SCEV::FlagNSW)) {
1647 // If the addition does not sign overflow then we can, by definition,
1648 // commute the sign extension with the addition operation.
1649 SmallVector<const SCEV *, 4> Ops;
1650 for (const auto *Op : SA->operands())
1651 Ops.push_back(getSignExtendExpr(Op, Ty));
1652 return getAddExpr(Ops, SCEV::FlagNSW);
1653 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001654 }
Dan Gohman76466372009-04-27 20:16:15 +00001655 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001656 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001657 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001658 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001659 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001660 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001661 const SCEV *Start = AR->getStart();
1662 const SCEV *Step = AR->getStepRecurrence(*this);
1663 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1664 const Loop *L = AR->getLoop();
1665
Dan Gohman62ef6a72009-07-25 01:22:26 +00001666 // If we have special knowledge that this addrec won't overflow,
1667 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001668 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001669 return getAddRecExpr(
1670 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1671 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001672
Dan Gohman76466372009-04-27 20:16:15 +00001673 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1674 // Note that this serves two purposes: It filters out loops that are
1675 // simply not analyzable, and it covers the case where this code is
1676 // being called from within backedge-taken count analysis, such that
1677 // attempting to ask for the backedge-taken count would likely result
1678 // in infinite recursion. In the later case, the analysis code will
1679 // cope with a conservative value, and it will take care to purge
1680 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001681 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001682 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001683 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001684 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001685
1686 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001687 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001688 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001689 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001690 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001691 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1692 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001693 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001694 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001695 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001696 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1697 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1698 const SCEV *WideMaxBECount =
1699 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001700 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001701 getAddExpr(WideStart,
1702 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001703 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001704 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001705 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1706 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001707 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001708 return getAddRecExpr(
1709 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1710 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001711 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001712 // Similar to above, only this time treat the step value as unsigned.
1713 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001714 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001715 getAddExpr(WideStart,
1716 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001717 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001718 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001719 // If AR wraps around then
1720 //
1721 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1722 // => SAdd != OperandExtendedAdd
1723 //
1724 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1725 // (SAdd == OperandExtendedAdd => AR is NW)
1726
1727 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1728
Dan Gohman8c129d72009-07-16 17:34:36 +00001729 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001730 return getAddRecExpr(
1731 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1732 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001733 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001734 }
1735
1736 // If the backedge is guarded by a comparison with the pre-inc value
1737 // the addrec is safe. Also, if the entry is guarded by a comparison
1738 // with the start value and the backedge is guarded by a comparison
1739 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001740 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001741 const SCEV *OverflowLimit =
1742 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001743 if (OverflowLimit &&
1744 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1745 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1746 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1747 OverflowLimit)))) {
1748 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1749 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001750 return getAddRecExpr(
1751 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1752 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001753 }
1754 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001755 // If Start and Step are constants, check if we can apply this
1756 // transformation:
1757 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001758 auto *SC1 = dyn_cast<SCEVConstant>(Start);
1759 auto *SC2 = dyn_cast<SCEVConstant>(Step);
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001760 if (SC1 && SC2) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001761 const APInt &C1 = SC1->getAPInt();
1762 const APInt &C2 = SC2->getAPInt();
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001763 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1764 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001765 Start = getSignExtendExpr(Start, Ty);
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001766 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1767 AR->getNoWrapFlags());
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001768 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1769 }
1770 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001771
1772 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1773 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1774 return getAddRecExpr(
1775 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1776 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1777 }
Dan Gohman76466372009-04-27 20:16:15 +00001778 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001779
Dan Gohman74a0ba12009-07-13 20:55:53 +00001780 // The cast wasn't folded; create an explicit cast node.
1781 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001782 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001783 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1784 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001785 UniqueSCEVs.InsertNode(S, IP);
1786 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001787}
1788
Dan Gohman8db2edc2009-06-13 15:56:47 +00001789/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1790/// unspecified bits out to the given type.
1791///
Dan Gohmanaf752342009-07-07 17:06:11 +00001792const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001793 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001794 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1795 "This is not an extending conversion!");
1796 assert(isSCEVable(Ty) &&
1797 "This is not a conversion to a SCEVable type!");
1798 Ty = getEffectiveSCEVType(Ty);
1799
1800 // Sign-extend negative constants.
1801 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001802 if (SC->getAPInt().isNegative())
Dan Gohman8db2edc2009-06-13 15:56:47 +00001803 return getSignExtendExpr(Op, Ty);
1804
1805 // Peel off a truncate cast.
1806 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001807 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001808 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1809 return getAnyExtendExpr(NewOp, Ty);
1810 return getTruncateOrNoop(NewOp, Ty);
1811 }
1812
1813 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001814 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001815 if (!isa<SCEVZeroExtendExpr>(ZExt))
1816 return ZExt;
1817
1818 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001819 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001820 if (!isa<SCEVSignExtendExpr>(SExt))
1821 return SExt;
1822
Dan Gohman51ad99d2010-01-21 02:09:26 +00001823 // Force the cast to be folded into the operands of an addrec.
1824 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1825 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001826 for (const SCEV *Op : AR->operands())
1827 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001828 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001829 }
1830
Dan Gohman8db2edc2009-06-13 15:56:47 +00001831 // If the expression is obviously signed, use the sext cast value.
1832 if (isa<SCEVSMaxExpr>(Op))
1833 return SExt;
1834
1835 // Absent any other information, use the zext cast value.
1836 return ZExt;
1837}
1838
Dan Gohman038d02e2009-06-14 22:58:51 +00001839/// CollectAddOperandsWithScales - Process the given Ops list, which is
1840/// a list of operands to be added under the given scale, update the given
1841/// map. This is a helper function for getAddRecExpr. As an example of
1842/// what it does, given a sequence of operands that would form an add
1843/// expression like this:
1844///
Tobias Grosserba49e422014-03-05 10:37:17 +00001845/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001846///
1847/// where A and B are constants, update the map with these values:
1848///
1849/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1850///
1851/// and add 13 + A*B*29 to AccumulatedConstant.
1852/// This will allow getAddRecExpr to produce this:
1853///
1854/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1855///
1856/// This form often exposes folding opportunities that are hidden in
1857/// the original operand list.
1858///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001859/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001860/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1861/// the common case where no interesting opportunities are present, and
1862/// is also used as a check to avoid infinite recursion.
1863///
1864static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001865CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001866 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001867 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001868 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001869 const APInt &Scale,
1870 ScalarEvolution &SE) {
1871 bool Interesting = false;
1872
Dan Gohman45073042010-06-18 19:12:32 +00001873 // Iterate over the add operands. They are sorted, with constants first.
1874 unsigned i = 0;
1875 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1876 ++i;
1877 // Pull a buried constant out to the outside.
1878 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1879 Interesting = true;
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001880 AccumulatedConstant += Scale * C->getAPInt();
Dan Gohman45073042010-06-18 19:12:32 +00001881 }
1882
1883 // Next comes everything else. We're especially interested in multiplies
1884 // here, but they're in the middle, so just visit the rest with one loop.
1885 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001886 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1887 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1888 APInt NewScale =
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001889 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
Dan Gohman038d02e2009-06-14 22:58:51 +00001890 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1891 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001892 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001893 Interesting |=
1894 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001895 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001896 NewScale, SE);
1897 } else {
1898 // A multiplication of a constant with some other value. Update
1899 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001900 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1901 const SCEV *Key = SE.getMulExpr(MulOps);
Sanjoy Das7a9f8bb2015-09-17 19:04:09 +00001902 auto Pair = M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001903 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001904 NewOps.push_back(Pair.first->first);
1905 } else {
1906 Pair.first->second += NewScale;
1907 // The map already had an entry for this value, which may indicate
1908 // a folding opportunity.
1909 Interesting = true;
1910 }
1911 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001912 } else {
1913 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001914 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001915 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001916 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001917 NewOps.push_back(Pair.first->first);
1918 } else {
1919 Pair.first->second += Scale;
1920 // The map already had an entry for this value, which may indicate
1921 // a folding opportunity.
1922 Interesting = true;
1923 }
1924 }
1925 }
1926
1927 return Interesting;
1928}
1929
Sanjoy Das81401d42015-01-10 23:41:24 +00001930// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1931// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1932// can't-overflow flags for the operation if possible.
1933static SCEV::NoWrapFlags
1934StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1935 const SmallVectorImpl<const SCEV *> &Ops,
Sanjoy Das8f274152015-10-22 19:57:19 +00001936 SCEV::NoWrapFlags Flags) {
Sanjoy Das81401d42015-01-10 23:41:24 +00001937 using namespace std::placeholders;
Sanjoy Das8f274152015-10-22 19:57:19 +00001938 typedef OverflowingBinaryOperator OBO;
Sanjoy Das81401d42015-01-10 23:41:24 +00001939
1940 bool CanAnalyze =
1941 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1942 (void)CanAnalyze;
1943 assert(CanAnalyze && "don't call from other places!");
1944
1945 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1946 SCEV::NoWrapFlags SignOrUnsignWrap =
Sanjoy Das8f274152015-10-22 19:57:19 +00001947 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001948
1949 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Sanjoy Das9b0015f2015-11-29 23:40:57 +00001950 auto IsKnownNonNegative = [&](const SCEV *S) {
1951 return SE->isKnownNonNegative(S);
1952 };
Sanjoy Das81401d42015-01-10 23:41:24 +00001953
Sanjoy Das3b827c72015-11-29 23:40:53 +00001954 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
Sanjoy Das8f274152015-10-22 19:57:19 +00001955 Flags =
1956 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001957
Sanjoy Das8f274152015-10-22 19:57:19 +00001958 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1959
1960 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1961 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1962
1963 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
1964 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
1965
Sanjoy Das0de2fec2015-12-17 20:28:46 +00001966 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
Sanjoy Das8f274152015-10-22 19:57:19 +00001967 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
1968 auto NSWRegion =
1969 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap);
1970 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
1971 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
1972 }
1973 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
1974 auto NUWRegion =
1975 ConstantRange::makeNoWrapRegion(Instruction::Add, C,
1976 OBO::NoUnsignedWrap);
1977 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
1978 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
1979 }
1980 }
1981
1982 return Flags;
Sanjoy Das81401d42015-01-10 23:41:24 +00001983}
1984
Dan Gohman4d5435d2009-05-24 23:45:28 +00001985/// getAddExpr - Get a canonical add expression, or something simpler if
1986/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001987const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001988 SCEV::NoWrapFlags Flags) {
1989 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1990 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001991 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001992 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001993#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001994 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001995 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001996 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001997 "SCEVAddExpr operand types don't match!");
1998#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001999
2000 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002001 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002002
Sanjoy Das64895612015-10-09 02:44:45 +00002003 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2004
Chris Lattnerd934c702004-04-02 20:23:17 +00002005 // If there are any constants, fold them together.
2006 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002007 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002008 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00002009 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002010 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002011 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002012 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
Dan Gohman011cf682009-06-14 22:53:57 +00002013 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002014 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002015 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002016 }
2017
2018 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002019 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002020 Ops.erase(Ops.begin());
2021 --Idx;
2022 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002023
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002024 if (Ops.size() == 1) return Ops[0];
2025 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002026
Dan Gohman15871f22010-08-27 21:39:59 +00002027 // Okay, check to see if the same value occurs in the operand list more than
2028 // once. If so, merge them together into an multiply expression. Since we
2029 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00002030 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00002031 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00002032 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00002033 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00002034 // Scan ahead to count how many equal operands there are.
2035 unsigned Count = 2;
2036 while (i+Count != e && Ops[i+Count] == Ops[i])
2037 ++Count;
2038 // Merge the values into a multiply.
2039 const SCEV *Scale = getConstant(Ty, Count);
2040 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2041 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002042 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002043 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002044 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002045 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002046 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002047 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002048 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002049 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002050
Dan Gohman2e55cc52009-05-08 21:03:19 +00002051 // Check for truncates. If all the operands are truncated from the same
2052 // type, see if factoring out the truncate would permit the result to be
2053 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2054 // if the contents of the resulting outer trunc fold to something simple.
2055 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2056 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002057 Type *DstType = Trunc->getType();
2058 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002059 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002060 bool Ok = true;
2061 // Check all the operands to see if they can be represented in the
2062 // source type of the truncate.
2063 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2064 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2065 if (T->getOperand()->getType() != SrcType) {
2066 Ok = false;
2067 break;
2068 }
2069 LargeOps.push_back(T->getOperand());
2070 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002071 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002072 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002073 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002074 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2075 if (const SCEVTruncateExpr *T =
2076 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2077 if (T->getOperand()->getType() != SrcType) {
2078 Ok = false;
2079 break;
2080 }
2081 LargeMulOps.push_back(T->getOperand());
Sanjoy Das63914592015-10-18 00:29:20 +00002082 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002083 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002084 } else {
2085 Ok = false;
2086 break;
2087 }
2088 }
2089 if (Ok)
2090 LargeOps.push_back(getMulExpr(LargeMulOps));
2091 } else {
2092 Ok = false;
2093 break;
2094 }
2095 }
2096 if (Ok) {
2097 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002098 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002099 // If it folds to something simple, use it. Otherwise, don't.
2100 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2101 return getTruncateExpr(Fold, DstType);
2102 }
2103 }
2104
2105 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002106 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2107 ++Idx;
2108
2109 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002110 if (Idx < Ops.size()) {
2111 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002112 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002113 // If we have an add, expand the add operands onto the end of the operands
2114 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002115 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002116 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002117 DeletedAdd = true;
2118 }
2119
2120 // If we deleted at least one add, we added operands to the end of the list,
2121 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002122 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002123 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002124 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002125 }
2126
2127 // Skip over the add expression until we get to a multiply.
2128 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2129 ++Idx;
2130
Dan Gohman038d02e2009-06-14 22:58:51 +00002131 // Check to see if there are any folding opportunities present with
2132 // operands multiplied by constant values.
2133 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2134 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002135 DenseMap<const SCEV *, APInt> M;
2136 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002137 APInt AccumulatedConstant(BitWidth, 0);
2138 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002139 Ops.data(), Ops.size(),
2140 APInt(BitWidth, 1), *this)) {
Sanjoy Das7d752672015-12-08 04:32:54 +00002141 struct APIntCompare {
2142 bool operator()(const APInt &LHS, const APInt &RHS) const {
2143 return LHS.ult(RHS);
2144 }
2145 };
2146
Dan Gohman038d02e2009-06-14 22:58:51 +00002147 // Some interesting folding opportunity is present, so its worthwhile to
2148 // re-generate the operands list. Group the operands by constant scale,
2149 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002150 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002151 for (const SCEV *NewOp : NewOps)
2152 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
Dan Gohman038d02e2009-06-14 22:58:51 +00002153 // Re-generate the operands list.
2154 Ops.clear();
2155 if (AccumulatedConstant != 0)
2156 Ops.push_back(getConstant(AccumulatedConstant));
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002157 for (auto &MulOp : MulOpLists)
2158 if (MulOp.first != 0)
2159 Ops.push_back(getMulExpr(getConstant(MulOp.first),
2160 getAddExpr(MulOp.second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002161 if (Ops.empty())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002162 return getZero(Ty);
Dan Gohman038d02e2009-06-14 22:58:51 +00002163 if (Ops.size() == 1)
2164 return Ops[0];
2165 return getAddExpr(Ops);
2166 }
2167 }
2168
Chris Lattnerd934c702004-04-02 20:23:17 +00002169 // If we are adding something to a multiply expression, make sure the
2170 // something is not already an operand of the multiply. If so, merge it into
2171 // the multiply.
2172 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002173 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002174 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002175 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002176 if (isa<SCEVConstant>(MulOpSCEV))
2177 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002178 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002179 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002180 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002181 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002182 if (Mul->getNumOperands() != 2) {
2183 // If the multiply has more than two operands, we must get the
2184 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002185 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2186 Mul->op_begin()+MulOp);
2187 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002188 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002189 }
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002190 const SCEV *One = getOne(Ty);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002191 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002192 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002193 if (Ops.size() == 2) return OuterMul;
2194 if (AddOp < Idx) {
2195 Ops.erase(Ops.begin()+AddOp);
2196 Ops.erase(Ops.begin()+Idx-1);
2197 } else {
2198 Ops.erase(Ops.begin()+Idx);
2199 Ops.erase(Ops.begin()+AddOp-1);
2200 }
2201 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002202 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002203 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002204
Chris Lattnerd934c702004-04-02 20:23:17 +00002205 // Check this multiply against other multiplies being added together.
2206 for (unsigned OtherMulIdx = Idx+1;
2207 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2208 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002209 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002210 // If MulOp occurs in OtherMul, we can fold the two multiplies
2211 // together.
2212 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2213 OMulOp != e; ++OMulOp)
2214 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2215 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002216 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002217 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002218 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002219 Mul->op_begin()+MulOp);
2220 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002221 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002222 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002223 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002224 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002225 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002226 OtherMul->op_begin()+OMulOp);
2227 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002228 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002229 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002230 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2231 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002232 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002233 Ops.erase(Ops.begin()+Idx);
2234 Ops.erase(Ops.begin()+OtherMulIdx-1);
2235 Ops.push_back(OuterMul);
2236 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002237 }
2238 }
2239 }
2240 }
2241
2242 // If there are any add recurrences in the operands list, see if any other
2243 // added values are loop invariant. If so, we can fold them into the
2244 // recurrence.
2245 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2246 ++Idx;
2247
2248 // Scan over all recurrences, trying to fold loop invariants into them.
2249 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2250 // Scan all of the other operands to this add and add them to the vector if
2251 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002252 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002253 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002254 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002255 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002256 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002257 LIOps.push_back(Ops[i]);
2258 Ops.erase(Ops.begin()+i);
2259 --i; --e;
2260 }
2261
2262 // If we found some loop invariants, fold them into the recurrence.
2263 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002264 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002265 LIOps.push_back(AddRec->getStart());
2266
Dan Gohmanaf752342009-07-07 17:06:11 +00002267 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002268 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002269 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002270
Dan Gohman16206132010-06-30 07:16:37 +00002271 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002272 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002273 // Always propagate NW.
2274 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002275 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002276
Chris Lattnerd934c702004-04-02 20:23:17 +00002277 // If all of the other operands were loop invariant, we are done.
2278 if (Ops.size() == 1) return NewRec;
2279
Nick Lewyckydb66b822011-09-06 05:08:09 +00002280 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002281 for (unsigned i = 0;; ++i)
2282 if (Ops[i] == AddRec) {
2283 Ops[i] = NewRec;
2284 break;
2285 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002286 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002287 }
2288
2289 // Okay, if there weren't any loop invariants to be folded, check to see if
2290 // there are multiple AddRec's with the same loop induction variable being
2291 // added together. If so, we can fold them.
2292 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002293 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2294 ++OtherIdx)
2295 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2296 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2297 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2298 AddRec->op_end());
2299 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2300 ++OtherIdx)
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002301 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002302 if (OtherAddRec->getLoop() == AddRecLoop) {
2303 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2304 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002305 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002306 AddRecOps.append(OtherAddRec->op_begin()+i,
2307 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002308 break;
2309 }
Dan Gohman028c1812010-08-29 14:53:34 +00002310 AddRecOps[i] = getAddExpr(AddRecOps[i],
2311 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002312 }
2313 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002314 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002315 // Step size has changed, so we cannot guarantee no self-wraparound.
2316 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002317 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002318 }
2319
2320 // Otherwise couldn't fold anything into this recurrence. Move onto the
2321 // next one.
2322 }
2323
2324 // Okay, it looks like we really DO need an add expr. Check to see if we
2325 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002326 FoldingSetNodeID ID;
2327 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002328 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2329 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002330 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002331 SCEVAddExpr *S =
2332 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2333 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002334 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2335 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002336 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2337 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002338 UniqueSCEVs.InsertNode(S, IP);
2339 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002340 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002341 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002342}
2343
Nick Lewycky287682e2011-10-04 06:51:26 +00002344static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2345 uint64_t k = i*j;
2346 if (j > 1 && k / j != i) Overflow = true;
2347 return k;
2348}
2349
2350/// Compute the result of "n choose k", the binomial coefficient. If an
2351/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002352/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002353static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2354 // We use the multiplicative formula:
2355 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2356 // At each iteration, we take the n-th term of the numeral and divide by the
2357 // (k-n)th term of the denominator. This division will always produce an
2358 // integral result, and helps reduce the chance of overflow in the
2359 // intermediate computations. However, we can still overflow even when the
2360 // final result would fit.
2361
2362 if (n == 0 || n == k) return 1;
2363 if (k > n) return 0;
2364
2365 if (k > n/2)
2366 k = n-k;
2367
2368 uint64_t r = 1;
2369 for (uint64_t i = 1; i <= k; ++i) {
2370 r = umul_ov(r, n-(i-1), Overflow);
2371 r /= i;
2372 }
2373 return r;
2374}
2375
Nick Lewycky05044c22014-12-06 00:45:50 +00002376/// Determine if any of the operands in this SCEV are a constant or if
2377/// any of the add or multiply expressions in this SCEV contain a constant.
2378static bool containsConstantSomewhere(const SCEV *StartExpr) {
2379 SmallVector<const SCEV *, 4> Ops;
2380 Ops.push_back(StartExpr);
2381 while (!Ops.empty()) {
2382 const SCEV *CurrentExpr = Ops.pop_back_val();
2383 if (isa<SCEVConstant>(*CurrentExpr))
2384 return true;
2385
2386 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2387 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002388 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002389 }
2390 }
2391 return false;
2392}
2393
Dan Gohman4d5435d2009-05-24 23:45:28 +00002394/// getMulExpr - Get a canonical multiply expression, or something simpler if
2395/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002396const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002397 SCEV::NoWrapFlags Flags) {
2398 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2399 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002400 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002401 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002402#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002403 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002404 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002405 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002406 "SCEVMulExpr operand types don't match!");
2407#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002408
2409 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002410 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002411
Sanjoy Das64895612015-10-09 02:44:45 +00002412 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2413
Chris Lattnerd934c702004-04-02 20:23:17 +00002414 // If there are any constants, fold them together.
2415 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002416 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002417
2418 // C1*(C2+V) -> C1*C2 + C1*V
2419 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002420 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2421 // If any of Add's ops are Adds or Muls with a constant,
2422 // apply this transformation as well.
2423 if (Add->getNumOperands() == 2)
2424 if (containsConstantSomewhere(Add))
2425 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2426 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002427
Chris Lattnerd934c702004-04-02 20:23:17 +00002428 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002429 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002430 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002431 ConstantInt *Fold =
2432 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002433 Ops[0] = getConstant(Fold);
2434 Ops.erase(Ops.begin()+1); // Erase the folded element
2435 if (Ops.size() == 1) return Ops[0];
2436 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002437 }
2438
2439 // If we are left with a constant one being multiplied, strip it off.
2440 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2441 Ops.erase(Ops.begin());
2442 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002443 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002444 // If we have a multiply of zero, it will always be zero.
2445 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002446 } else if (Ops[0]->isAllOnesValue()) {
2447 // If we have a mul by -1 of an add, try distributing the -1 among the
2448 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002449 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002450 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2451 SmallVector<const SCEV *, 4> NewOps;
2452 bool AnyFolded = false;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00002453 for (const SCEV *AddOp : Add->operands()) {
2454 const SCEV *Mul = getMulExpr(Ops[0], AddOp);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002455 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2456 NewOps.push_back(Mul);
2457 }
2458 if (AnyFolded)
2459 return getAddExpr(NewOps);
Sanjoy Das63914592015-10-18 00:29:20 +00002460 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
Andrew Tricke92dcce2011-03-14 17:38:54 +00002461 // Negation preserves a recurrence's no self-wrap property.
2462 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00002463 for (const SCEV *AddRecOp : AddRec->operands())
2464 Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2465
Andrew Tricke92dcce2011-03-14 17:38:54 +00002466 return getAddRecExpr(Operands, AddRec->getLoop(),
2467 AddRec->getNoWrapFlags(SCEV::FlagNW));
2468 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002469 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002470 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002471
2472 if (Ops.size() == 1)
2473 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002474 }
2475
2476 // Skip over the add expression until we get to a multiply.
2477 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2478 ++Idx;
2479
Chris Lattnerd934c702004-04-02 20:23:17 +00002480 // If there are mul operands inline them all into this expression.
2481 if (Idx < Ops.size()) {
2482 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002483 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002484 // If we have an mul, expand the mul operands onto the end of the operands
2485 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002486 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002487 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002488 DeletedMul = true;
2489 }
2490
2491 // If we deleted at least one mul, we added operands to the end of the list,
2492 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002493 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002494 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002495 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002496 }
2497
2498 // If there are any add recurrences in the operands list, see if any other
2499 // added values are loop invariant. If so, we can fold them into the
2500 // recurrence.
2501 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2502 ++Idx;
2503
2504 // Scan over all recurrences, trying to fold loop invariants into them.
2505 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2506 // Scan all of the other operands to this mul and add them to the vector if
2507 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002508 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002509 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002510 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002511 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002512 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002513 LIOps.push_back(Ops[i]);
2514 Ops.erase(Ops.begin()+i);
2515 --i; --e;
2516 }
2517
2518 // If we found some loop invariants, fold them into the recurrence.
2519 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002520 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002521 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002522 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002523 const SCEV *Scale = getMulExpr(LIOps);
2524 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2525 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002526
Dan Gohman16206132010-06-30 07:16:37 +00002527 // Build the new addrec. Propagate the NUW and NSW flags if both the
2528 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002529 //
2530 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002531 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002532 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2533 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002534
2535 // If all of the other operands were loop invariant, we are done.
2536 if (Ops.size() == 1) return NewRec;
2537
Nick Lewyckydb66b822011-09-06 05:08:09 +00002538 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002539 for (unsigned i = 0;; ++i)
2540 if (Ops[i] == AddRec) {
2541 Ops[i] = NewRec;
2542 break;
2543 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002544 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002545 }
2546
2547 // Okay, if there weren't any loop invariants to be folded, check to see if
2548 // there are multiple AddRec's with the same loop induction variable being
2549 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002550
2551 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2552 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2553 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2554 // ]]],+,...up to x=2n}.
2555 // Note that the arguments to choose() are always integers with values
2556 // known at compile time, never SCEV objects.
2557 //
2558 // The implementation avoids pointless extra computations when the two
2559 // addrec's are of different length (mathematically, it's equivalent to
2560 // an infinite stream of zeros on the right).
2561 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002562 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002563 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002564 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002565 const SCEVAddRecExpr *OtherAddRec =
2566 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2567 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002568 continue;
2569
Nick Lewycky97756402014-09-01 05:17:15 +00002570 bool Overflow = false;
2571 Type *Ty = AddRec->getType();
2572 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2573 SmallVector<const SCEV*, 7> AddRecOps;
2574 for (int x = 0, xe = AddRec->getNumOperands() +
2575 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002576 const SCEV *Term = getZero(Ty);
Nick Lewycky97756402014-09-01 05:17:15 +00002577 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2578 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2579 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2580 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2581 z < ze && !Overflow; ++z) {
2582 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2583 uint64_t Coeff;
2584 if (LargerThan64Bits)
2585 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2586 else
2587 Coeff = Coeff1*Coeff2;
2588 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2589 const SCEV *Term1 = AddRec->getOperand(y-z);
2590 const SCEV *Term2 = OtherAddRec->getOperand(z);
2591 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002592 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002593 }
Nick Lewycky97756402014-09-01 05:17:15 +00002594 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002595 }
Nick Lewycky97756402014-09-01 05:17:15 +00002596 if (!Overflow) {
2597 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2598 SCEV::FlagAnyWrap);
2599 if (Ops.size() == 2) return NewAddRec;
2600 Ops[Idx] = NewAddRec;
2601 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2602 OpsModified = true;
2603 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2604 if (!AddRec)
2605 break;
2606 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002607 }
Nick Lewycky97756402014-09-01 05:17:15 +00002608 if (OpsModified)
2609 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002610
2611 // Otherwise couldn't fold anything into this recurrence. Move onto the
2612 // next one.
2613 }
2614
2615 // Okay, it looks like we really DO need an mul expr. Check to see if we
2616 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002617 FoldingSetNodeID ID;
2618 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002619 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2620 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002621 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002622 SCEVMulExpr *S =
2623 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2624 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002625 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2626 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002627 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2628 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002629 UniqueSCEVs.InsertNode(S, IP);
2630 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002631 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002632 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002633}
2634
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002635/// getUDivExpr - Get a canonical unsigned division expression, or something
2636/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002637const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2638 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002639 assert(getEffectiveSCEVType(LHS->getType()) ==
2640 getEffectiveSCEVType(RHS->getType()) &&
2641 "SCEVUDivExpr operand types don't match!");
2642
Dan Gohmana30370b2009-05-04 22:02:23 +00002643 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002644 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002645 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002646 // If the denominator is zero, the result of the udiv is undefined. Don't
2647 // try to analyze it, because the resolution chosen here may differ from
2648 // the resolution chosen in other parts of the compiler.
2649 if (!RHSC->getValue()->isZero()) {
2650 // Determine if the division can be folded into the operands of
2651 // its operands.
2652 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002653 Type *Ty = LHS->getType();
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002654 unsigned LZ = RHSC->getAPInt().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002655 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002656 // For non-power-of-two values, effectively round the value up to the
2657 // nearest power of two.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002658 if (!RHSC->getAPInt().isPowerOf2())
Dan Gohmanacd700a2010-04-22 01:35:11 +00002659 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002660 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002661 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002662 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2663 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002664 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2665 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002666 const APInt &StepInt = Step->getAPInt();
2667 const APInt &DivInt = RHSC->getAPInt();
Andrew Trick6d45a012011-08-06 07:00:37 +00002668 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002669 getZeroExtendExpr(AR, ExtTy) ==
2670 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2671 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002672 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002673 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002674 for (const SCEV *Op : AR->operands())
2675 Operands.push_back(getUDivExpr(Op, RHS));
2676 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002677 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002678 /// Get a canonical UDivExpr for a recurrence.
2679 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2680 // We can currently only fold X%N if X is constant.
2681 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2682 if (StartC && !DivInt.urem(StepInt) &&
2683 getZeroExtendExpr(AR, ExtTy) ==
2684 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2685 getZeroExtendExpr(Step, ExtTy),
2686 AR->getLoop(), SCEV::FlagAnyWrap)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002687 const APInt &StartInt = StartC->getAPInt();
Andrew Trick6d45a012011-08-06 07:00:37 +00002688 const APInt &StartRem = StartInt.urem(StepInt);
2689 if (StartRem != 0)
2690 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2691 AR->getLoop(), SCEV::FlagNW);
2692 }
2693 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002694 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2695 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2696 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002697 for (const SCEV *Op : M->operands())
2698 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002699 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2700 // Find an operand that's safely divisible.
2701 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2702 const SCEV *Op = M->getOperand(i);
2703 const SCEV *Div = getUDivExpr(Op, RHSC);
2704 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2705 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2706 M->op_end());
2707 Operands[i] = Div;
2708 return getMulExpr(Operands);
2709 }
2710 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002711 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002712 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002713 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002714 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002715 for (const SCEV *Op : A->operands())
2716 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002717 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2718 Operands.clear();
2719 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2720 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2721 if (isa<SCEVUDivExpr>(Op) ||
2722 getMulExpr(Op, RHS) != A->getOperand(i))
2723 break;
2724 Operands.push_back(Op);
2725 }
2726 if (Operands.size() == A->getNumOperands())
2727 return getAddExpr(Operands);
2728 }
2729 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002730
Dan Gohmanacd700a2010-04-22 01:35:11 +00002731 // Fold if both operands are constant.
2732 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2733 Constant *LHSCV = LHSC->getValue();
2734 Constant *RHSCV = RHSC->getValue();
2735 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2736 RHSCV)));
2737 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002738 }
2739 }
2740
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002741 FoldingSetNodeID ID;
2742 ID.AddInteger(scUDivExpr);
2743 ID.AddPointer(LHS);
2744 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002745 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002746 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002747 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2748 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002749 UniqueSCEVs.InsertNode(S, IP);
2750 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002751}
2752
Nick Lewycky31eaca52014-01-27 10:04:03 +00002753static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002754 APInt A = C1->getAPInt().abs();
2755 APInt B = C2->getAPInt().abs();
Nick Lewycky31eaca52014-01-27 10:04:03 +00002756 uint32_t ABW = A.getBitWidth();
2757 uint32_t BBW = B.getBitWidth();
2758
2759 if (ABW > BBW)
2760 B = B.zext(ABW);
2761 else if (ABW < BBW)
2762 A = A.zext(BBW);
2763
2764 return APIntOps::GreatestCommonDivisor(A, B);
2765}
2766
2767/// getUDivExactExpr - Get a canonical unsigned division expression, or
2768/// something simpler if possible. There is no representation for an exact udiv
2769/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2770/// We can't do this when it's not exact because the udiv may be clearing bits.
2771const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2772 const SCEV *RHS) {
2773 // TODO: we could try to find factors in all sorts of things, but for now we
2774 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2775 // end of this file for inspiration.
2776
2777 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2778 if (!Mul)
2779 return getUDivExpr(LHS, RHS);
2780
2781 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2782 // If the mulexpr multiplies by a constant, then that constant must be the
2783 // first element of the mulexpr.
Sanjoy Das63914592015-10-18 00:29:20 +00002784 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
Nick Lewycky31eaca52014-01-27 10:04:03 +00002785 if (LHSCst == RHSCst) {
2786 SmallVector<const SCEV *, 2> Operands;
2787 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2788 return getMulExpr(Operands);
2789 }
2790
2791 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2792 // that there's a factor provided by one of the other terms. We need to
2793 // check.
2794 APInt Factor = gcd(LHSCst, RHSCst);
2795 if (!Factor.isIntN(1)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00002796 LHSCst =
2797 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2798 RHSCst =
2799 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
Nick Lewycky31eaca52014-01-27 10:04:03 +00002800 SmallVector<const SCEV *, 2> Operands;
2801 Operands.push_back(LHSCst);
2802 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2803 LHS = getMulExpr(Operands);
2804 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002805 Mul = dyn_cast<SCEVMulExpr>(LHS);
2806 if (!Mul)
2807 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002808 }
2809 }
2810 }
2811
2812 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2813 if (Mul->getOperand(i) == RHS) {
2814 SmallVector<const SCEV *, 2> Operands;
2815 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2816 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2817 return getMulExpr(Operands);
2818 }
2819 }
2820
2821 return getUDivExpr(LHS, RHS);
2822}
Chris Lattnerd934c702004-04-02 20:23:17 +00002823
Dan Gohman4d5435d2009-05-24 23:45:28 +00002824/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2825/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002826const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2827 const Loop *L,
2828 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002829 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002830 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002831 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002832 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002833 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002834 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002835 }
2836
2837 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002838 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002839}
2840
Dan Gohman4d5435d2009-05-24 23:45:28 +00002841/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2842/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002843const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002844ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002845 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002846 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002847#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002848 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002849 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002850 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002851 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002852 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002853 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002854 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002855#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002856
Dan Gohmanbe928e32008-06-18 16:23:07 +00002857 if (Operands.back()->isZero()) {
2858 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002859 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002860 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002861
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002862 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2863 // use that information to infer NUW and NSW flags. However, computing a
2864 // BE count requires calling getAddRecExpr, so we may not yet have a
2865 // meaningful BE count at this point (and if we don't, we'd be stuck
2866 // with a SCEVCouldNotCompute as the cached BE count).
2867
Sanjoy Das81401d42015-01-10 23:41:24 +00002868 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002869
Dan Gohman223a5d22008-08-08 18:33:12 +00002870 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002871 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002872 const Loop *NestedLoop = NestedAR->getLoop();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002873 if (L->contains(NestedLoop)
2874 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2875 : (!NestedLoop->contains(L) &&
2876 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002877 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002878 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002879 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002880 // AddRecs require their operands be loop-invariant with respect to their
2881 // loops. Don't perform this transformation if it would break this
2882 // requirement.
Sanjoy Das3b827c72015-11-29 23:40:53 +00002883 bool AllInvariant = all_of(
2884 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002885
Dan Gohmancc030b72009-06-26 22:36:20 +00002886 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002887 // Create a recurrence for the outer loop with the same step size.
2888 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002889 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2890 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002891 SCEV::NoWrapFlags OuterFlags =
2892 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002893
2894 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Sanjoy Das3b827c72015-11-29 23:40:53 +00002895 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2896 return isLoopInvariant(Op, NestedLoop);
2897 });
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002898
Andrew Trick8b55b732011-03-14 16:50:06 +00002899 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002900 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002901 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002902 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2903 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002904 SCEV::NoWrapFlags InnerFlags =
2905 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002906 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2907 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002908 }
2909 // Reset Operands to its original state.
2910 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002911 }
2912 }
2913
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002914 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2915 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002916 FoldingSetNodeID ID;
2917 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002918 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2919 ID.AddPointer(Operands[i]);
2920 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002921 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002922 SCEVAddRecExpr *S =
2923 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2924 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002925 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2926 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002927 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2928 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002929 UniqueSCEVs.InsertNode(S, IP);
2930 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002931 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002932 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002933}
2934
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002935const SCEV *
2936ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2937 const SmallVectorImpl<const SCEV *> &IndexExprs,
2938 bool InBounds) {
2939 // getSCEV(Base)->getType() has the same address space as Base->getType()
2940 // because SCEV::getType() preserves the address space.
2941 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2942 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2943 // instruction to its SCEV, because the Instruction may be guarded by control
2944 // flow and the no-overflow bits may not be valid for the expression in any
Jingyue Wu42f1d672015-07-28 18:22:40 +00002945 // context. This can be fixed similarly to how these flags are handled for
2946 // adds.
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002947 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2948
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002949 const SCEV *TotalOffset = getZero(IntPtrTy);
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002950 // The address space is unimportant. The first thing we do on CurTy is getting
2951 // its element type.
2952 Type *CurTy = PointerType::getUnqual(PointeeType);
2953 for (const SCEV *IndexExpr : IndexExprs) {
2954 // Compute the (potentially symbolic) offset in bytes for this index.
2955 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2956 // For a struct, add the member offset.
2957 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2958 unsigned FieldNo = Index->getZExtValue();
2959 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2960
2961 // Add the field offset to the running total offset.
2962 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2963
2964 // Update CurTy to the type of the field at Index.
2965 CurTy = STy->getTypeAtIndex(Index);
2966 } else {
2967 // Update CurTy to its element type.
2968 CurTy = cast<SequentialType>(CurTy)->getElementType();
2969 // For an array, add the element offset, explicitly scaled.
2970 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2971 // Getelementptr indices are signed.
2972 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2973
2974 // Multiply the index by the element size to compute the element offset.
2975 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2976
2977 // Add the element offset to the running total offset.
2978 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2979 }
2980 }
2981
2982 // Add the total offset from all the GEP indices to the base.
2983 return getAddExpr(BaseExpr, TotalOffset, Wrap);
2984}
2985
Dan Gohmanabd17092009-06-24 14:49:00 +00002986const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2987 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002988 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002989 Ops.push_back(LHS);
2990 Ops.push_back(RHS);
2991 return getSMaxExpr(Ops);
2992}
2993
Dan Gohmanaf752342009-07-07 17:06:11 +00002994const SCEV *
2995ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002996 assert(!Ops.empty() && "Cannot get empty smax!");
2997 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002998#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002999 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003000 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003001 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003002 "SCEVSMaxExpr operand types don't match!");
3003#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003004
3005 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003006 GroupByComplexity(Ops, &LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003007
3008 // If there are any constants, fold them together.
3009 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003010 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003011 ++Idx;
3012 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003013 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003014 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00003015 ConstantInt *Fold = ConstantInt::get(
3016 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003017 Ops[0] = getConstant(Fold);
3018 Ops.erase(Ops.begin()+1); // Erase the folded element
3019 if (Ops.size() == 1) return Ops[0];
3020 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003021 }
3022
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003023 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003024 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3025 Ops.erase(Ops.begin());
3026 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003027 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3028 // If we have an smax with a constant maximum-int, it will always be
3029 // maximum-int.
3030 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003031 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003032
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003033 if (Ops.size() == 1) return Ops[0];
3034 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003035
3036 // Find the first SMax
3037 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3038 ++Idx;
3039
3040 // Check to see if one of the operands is an SMax. If so, expand its operands
3041 // onto our operand list, and recurse to simplify.
3042 if (Idx < Ops.size()) {
3043 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003044 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003045 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003046 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003047 DeletedSMax = true;
3048 }
3049
3050 if (DeletedSMax)
3051 return getSMaxExpr(Ops);
3052 }
3053
3054 // Okay, check to see if the same value occurs in the operand list twice. If
3055 // so, delete one. Since we sorted the list, these values are required to
3056 // be adjacent.
3057 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003058 // X smax Y smax Y --> X smax Y
3059 // X smax Y --> X, if X is always greater than Y
3060 if (Ops[i] == Ops[i+1] ||
3061 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3062 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3063 --i; --e;
3064 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003065 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3066 --i; --e;
3067 }
3068
3069 if (Ops.size() == 1) return Ops[0];
3070
3071 assert(!Ops.empty() && "Reduced smax down to nothing!");
3072
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003073 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003074 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003075 FoldingSetNodeID ID;
3076 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003077 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3078 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003079 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003080 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003081 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3082 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003083 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3084 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003085 UniqueSCEVs.InsertNode(S, IP);
3086 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003087}
3088
Dan Gohmanabd17092009-06-24 14:49:00 +00003089const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3090 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003091 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003092 Ops.push_back(LHS);
3093 Ops.push_back(RHS);
3094 return getUMaxExpr(Ops);
3095}
3096
Dan Gohmanaf752342009-07-07 17:06:11 +00003097const SCEV *
3098ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003099 assert(!Ops.empty() && "Cannot get empty umax!");
3100 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003101#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003102 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003103 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003104 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003105 "SCEVUMaxExpr operand types don't match!");
3106#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003107
3108 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003109 GroupByComplexity(Ops, &LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003110
3111 // If there are any constants, fold them together.
3112 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003113 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003114 ++Idx;
3115 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003116 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003117 // We found two constants, fold them together!
Sanjoy Das0de2fec2015-12-17 20:28:46 +00003118 ConstantInt *Fold = ConstantInt::get(
3119 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003120 Ops[0] = getConstant(Fold);
3121 Ops.erase(Ops.begin()+1); // Erase the folded element
3122 if (Ops.size() == 1) return Ops[0];
3123 LHSC = cast<SCEVConstant>(Ops[0]);
3124 }
3125
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003126 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003127 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3128 Ops.erase(Ops.begin());
3129 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003130 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3131 // If we have an umax with a constant maximum-int, it will always be
3132 // maximum-int.
3133 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003134 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003135
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003136 if (Ops.size() == 1) return Ops[0];
3137 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003138
3139 // Find the first UMax
3140 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3141 ++Idx;
3142
3143 // Check to see if one of the operands is a UMax. If so, expand its operands
3144 // onto our operand list, and recurse to simplify.
3145 if (Idx < Ops.size()) {
3146 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003147 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003148 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003149 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003150 DeletedUMax = true;
3151 }
3152
3153 if (DeletedUMax)
3154 return getUMaxExpr(Ops);
3155 }
3156
3157 // Okay, check to see if the same value occurs in the operand list twice. If
3158 // so, delete one. Since we sorted the list, these values are required to
3159 // be adjacent.
3160 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003161 // X umax Y umax Y --> X umax Y
3162 // X umax Y --> X, if X is always greater than Y
3163 if (Ops[i] == Ops[i+1] ||
3164 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3165 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3166 --i; --e;
3167 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003168 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3169 --i; --e;
3170 }
3171
3172 if (Ops.size() == 1) return Ops[0];
3173
3174 assert(!Ops.empty() && "Reduced umax down to nothing!");
3175
3176 // Okay, it looks like we really DO need a umax expr. Check to see if we
3177 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003178 FoldingSetNodeID ID;
3179 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003180 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3181 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003182 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003183 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003184 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3185 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003186 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3187 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003188 UniqueSCEVs.InsertNode(S, IP);
3189 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003190}
3191
Dan Gohmanabd17092009-06-24 14:49:00 +00003192const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3193 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003194 // ~smax(~x, ~y) == smin(x, y).
3195 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3196}
3197
Dan Gohmanabd17092009-06-24 14:49:00 +00003198const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3199 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003200 // ~umax(~x, ~y) == umin(x, y)
3201 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3202}
3203
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003204const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003205 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003206 // constant expression and then folding it back into a ConstantInt.
3207 // This is just a compile-time optimization.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003208 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003209}
3210
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003211const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3212 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003213 unsigned FieldNo) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003214 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003215 // constant expression and then folding it back into a ConstantInt.
3216 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003217 return getConstant(
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003218 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003219}
3220
Dan Gohmanaf752342009-07-07 17:06:11 +00003221const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003222 // Don't attempt to do anything other than create a SCEVUnknown object
3223 // here. createSCEV only calls getUnknown after checking for all other
3224 // interesting possibilities, and any other code that calls getUnknown
3225 // is doing so in order to hide a value from SCEV canonicalization.
3226
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003227 FoldingSetNodeID ID;
3228 ID.AddInteger(scUnknown);
3229 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003230 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003231 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3232 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3233 "Stale SCEVUnknown in uniquing map!");
3234 return S;
3235 }
3236 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3237 FirstUnknown);
3238 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003239 UniqueSCEVs.InsertNode(S, IP);
3240 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003241}
3242
Chris Lattnerd934c702004-04-02 20:23:17 +00003243//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003244// Basic SCEV Analysis and PHI Idiom Recognition Code
3245//
3246
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003247/// isSCEVable - Test if values of the given type are analyzable within
3248/// the SCEV framework. This primarily includes integer types, and it
3249/// can optionally include pointer types if the ScalarEvolution class
3250/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003251bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003252 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003253 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003254}
3255
3256/// getTypeSizeInBits - Return the size in bits of the specified type,
3257/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003258uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003259 assert(isSCEVable(Ty) && "Type is not SCEVable!");
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003260 return getDataLayout().getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003261}
3262
3263/// getEffectiveSCEVType - Return a type with the same bitwidth as
3264/// the given type and which represents how SCEV will treat the given
3265/// type, for which isSCEVable must return true. For pointer types,
3266/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003267Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003268 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3269
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003270 if (Ty->isIntegerTy())
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003271 return Ty;
3272
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003273 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003274 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003275 return getDataLayout().getIntPtrType(Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003276}
Chris Lattnerd934c702004-04-02 20:23:17 +00003277
Dan Gohmanaf752342009-07-07 17:06:11 +00003278const SCEV *ScalarEvolution::getCouldNotCompute() {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003279 return CouldNotCompute.get();
Dan Gohman31efa302009-04-18 17:58:19 +00003280}
3281
Sanjoy Das7d752672015-12-08 04:32:54 +00003282
3283bool ScalarEvolution::checkValidity(const SCEV *S) const {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003284 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3285 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3286 // is set iff if find such SCEVUnknown.
3287 //
3288 struct FindInvalidSCEVUnknown {
3289 bool FindOne;
3290 FindInvalidSCEVUnknown() { FindOne = false; }
3291 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003292 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003293 case scConstant:
3294 return false;
3295 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003296 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003297 FindOne = true;
3298 return false;
3299 default:
3300 return true;
3301 }
3302 }
3303 bool isDone() const { return FindOne; }
3304 };
Shuxin Yangefc4c012013-07-08 17:33:13 +00003305
Shuxin Yangefc4c012013-07-08 17:33:13 +00003306 FindInvalidSCEVUnknown F;
3307 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3308 ST.visitAll(S);
3309
3310 return !F.FindOne;
3311}
3312
Chris Lattnerd934c702004-04-02 20:23:17 +00003313/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3314/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003315const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003316 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003317
Jingyue Wu42f1d672015-07-28 18:22:40 +00003318 const SCEV *S = getExistingSCEV(V);
3319 if (S == nullptr) {
3320 S = createSCEV(V);
3321 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
3322 }
3323 return S;
3324}
3325
3326const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3327 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3328
Shuxin Yangefc4c012013-07-08 17:33:13 +00003329 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3330 if (I != ValueExprMap.end()) {
3331 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003332 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003333 return S;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003334 ValueExprMap.erase(I);
Shuxin Yangefc4c012013-07-08 17:33:13 +00003335 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003336 return nullptr;
Chris Lattnerd934c702004-04-02 20:23:17 +00003337}
3338
Dan Gohman0a40ad92009-04-16 03:18:22 +00003339/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3340///
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003341const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3342 SCEV::NoWrapFlags Flags) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003343 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003344 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003345 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003346
Chris Lattner229907c2011-07-18 04:54:35 +00003347 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003348 Ty = getEffectiveSCEVType(Ty);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003349 return getMulExpr(
3350 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003351}
3352
3353/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003354const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003355 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003356 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003357 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003358
Chris Lattner229907c2011-07-18 04:54:35 +00003359 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003360 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003361 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003362 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003363 return getMinusSCEV(AllOnes, V);
3364}
3365
Andrew Trick8b55b732011-03-14 16:50:06 +00003366/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003367const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003368 SCEV::NoWrapFlags Flags) {
Dan Gohman46f00a22010-07-20 16:53:00 +00003369 // Fast path: X - X --> 0.
3370 if (LHS == RHS)
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00003371 return getZero(LHS->getType());
Dan Gohman46f00a22010-07-20 16:53:00 +00003372
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003373 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3374 // makes it so that we cannot make much use of NUW.
3375 auto AddFlags = SCEV::FlagAnyWrap;
3376 const bool RHSIsNotMinSigned =
3377 !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3378 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3379 // Let M be the minimum representable signed value. Then (-1)*RHS
3380 // signed-wraps if and only if RHS is M. That can happen even for
3381 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3382 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3383 // (-1)*RHS, we need to prove that RHS != M.
3384 //
3385 // If LHS is non-negative and we know that LHS - RHS does not
3386 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3387 // either by proving that RHS > M or that LHS >= 0.
3388 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3389 AddFlags = SCEV::FlagNSW;
3390 }
3391 }
3392
3393 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3394 // RHS is NSW and LHS >= 0.
3395 //
3396 // The difficulty here is that the NSW flag may have been proven
3397 // relative to a loop that is to be found in a recurrence in LHS and
3398 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3399 // larger scope than intended.
3400 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3401
3402 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003403}
3404
3405/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3406/// input value to the specified type. If the type must be extended, it is zero
3407/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003408const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003409ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3410 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003411 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3412 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003413 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003414 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003415 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003416 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003417 return getTruncateExpr(V, Ty);
3418 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003419}
3420
3421/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3422/// input value to the specified type. If the type must be extended, it is sign
3423/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003424const SCEV *
3425ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003426 Type *Ty) {
3427 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003428 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3429 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003430 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003431 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003432 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003433 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003434 return getTruncateExpr(V, Ty);
3435 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003436}
3437
Dan Gohmane712a2f2009-05-13 03:46:30 +00003438/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3439/// input value to the specified type. If the type must be extended, it is zero
3440/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003441const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003442ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3443 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003444 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3445 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003446 "Cannot noop or zero extend with non-integer arguments!");
3447 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3448 "getNoopOrZeroExtend cannot truncate!");
3449 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3450 return V; // No conversion
3451 return getZeroExtendExpr(V, Ty);
3452}
3453
3454/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3455/// input value to the specified type. If the type must be extended, it is sign
3456/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003457const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003458ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3459 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003460 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3461 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003462 "Cannot noop or sign extend with non-integer arguments!");
3463 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3464 "getNoopOrSignExtend cannot truncate!");
3465 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3466 return V; // No conversion
3467 return getSignExtendExpr(V, Ty);
3468}
3469
Dan Gohman8db2edc2009-06-13 15:56:47 +00003470/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3471/// the input value to the specified type. If the type must be extended,
3472/// it is extended with unspecified bits. The conversion must not be
3473/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003474const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003475ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3476 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003477 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3478 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003479 "Cannot noop or any extend with non-integer arguments!");
3480 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3481 "getNoopOrAnyExtend cannot truncate!");
3482 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3483 return V; // No conversion
3484 return getAnyExtendExpr(V, Ty);
3485}
3486
Dan Gohmane712a2f2009-05-13 03:46:30 +00003487/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3488/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003489const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003490ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3491 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003492 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3493 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003494 "Cannot truncate or noop with non-integer arguments!");
3495 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3496 "getTruncateOrNoop cannot extend!");
3497 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3498 return V; // No conversion
3499 return getTruncateExpr(V, Ty);
3500}
3501
Dan Gohman96212b62009-06-22 00:31:57 +00003502/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3503/// the types using zero-extension, and then perform a umax operation
3504/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003505const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3506 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003507 const SCEV *PromotedLHS = LHS;
3508 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003509
3510 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3511 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3512 else
3513 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3514
3515 return getUMaxExpr(PromotedLHS, PromotedRHS);
3516}
3517
Dan Gohman2bc22302009-06-22 15:03:27 +00003518/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3519/// the types using zero-extension, and then perform a umin operation
3520/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003521const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3522 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003523 const SCEV *PromotedLHS = LHS;
3524 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003525
3526 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3527 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3528 else
3529 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3530
3531 return getUMinExpr(PromotedLHS, PromotedRHS);
3532}
3533
Andrew Trick87716c92011-03-17 23:51:11 +00003534/// getPointerBase - Transitively follow the chain of pointer-type operands
3535/// until reaching a SCEV that does not have a single pointer operand. This
3536/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3537/// but corner cases do exist.
3538const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3539 // A pointer operand may evaluate to a nonpointer expression, such as null.
3540 if (!V->getType()->isPointerTy())
3541 return V;
3542
3543 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3544 return getPointerBase(Cast->getOperand());
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003545 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003546 const SCEV *PtrOp = nullptr;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00003547 for (const SCEV *NAryOp : NAry->operands()) {
3548 if (NAryOp->getType()->isPointerTy()) {
Andrew Trick87716c92011-03-17 23:51:11 +00003549 // Cannot find the base of an expression with multiple pointer operands.
3550 if (PtrOp)
3551 return V;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00003552 PtrOp = NAryOp;
Andrew Trick87716c92011-03-17 23:51:11 +00003553 }
3554 }
3555 if (!PtrOp)
3556 return V;
3557 return getPointerBase(PtrOp);
3558 }
3559 return V;
3560}
3561
Dan Gohman0b89dff2009-07-25 01:13:03 +00003562/// PushDefUseChildren - Push users of the given Instruction
3563/// onto the given Worklist.
3564static void
3565PushDefUseChildren(Instruction *I,
3566 SmallVectorImpl<Instruction *> &Worklist) {
3567 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003568 for (User *U : I->users())
3569 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003570}
3571
3572/// ForgetSymbolicValue - This looks up computed SCEV values for all
3573/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003574/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003575/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003576void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003577ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003578 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003579 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003580
Dan Gohman0b89dff2009-07-25 01:13:03 +00003581 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003582 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003583 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003584 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003585 if (!Visited.insert(I).second)
3586 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003587
Sanjoy Das63914592015-10-18 00:29:20 +00003588 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003589 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003590 const SCEV *Old = It->second;
3591
Dan Gohman0b89dff2009-07-25 01:13:03 +00003592 // Short-circuit the def-use traversal if the symbolic name
3593 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003594 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003595 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003596
Dan Gohman0b89dff2009-07-25 01:13:03 +00003597 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003598 // structure, it's a PHI that's in the progress of being computed
3599 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3600 // additional loop trip count information isn't going to change anything.
3601 // In the second case, createNodeForPHI will perform the necessary
3602 // updates on its own when it gets to that point. In the third, we do
3603 // want to forget the SCEVUnknown.
3604 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003605 !isa<SCEVUnknown>(Old) ||
3606 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003607 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003608 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003609 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003610 }
3611
3612 PushDefUseChildren(I, Worklist);
3613 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003614}
Chris Lattnerd934c702004-04-02 20:23:17 +00003615
Benjamin Kramer83709b12015-11-16 09:01:28 +00003616namespace {
Silviu Barangaf91c8072015-10-30 15:02:28 +00003617class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3618public:
3619 static const SCEV *rewrite(const SCEV *Scev, const Loop *L,
3620 ScalarEvolution &SE) {
3621 SCEVInitRewriter Rewriter(L, SE);
3622 const SCEV *Result = Rewriter.visit(Scev);
3623 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3624 }
3625
3626 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3627 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3628
3629 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3630 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3631 Valid = false;
3632 return Expr;
3633 }
3634
3635 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3636 // Only allow AddRecExprs for this loop.
3637 if (Expr->getLoop() == L)
3638 return Expr->getStart();
3639 Valid = false;
3640 return Expr;
3641 }
3642
3643 bool isValid() { return Valid; }
3644
3645private:
3646 const Loop *L;
3647 bool Valid;
3648};
3649
3650class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3651public:
3652 static const SCEV *rewrite(const SCEV *Scev, const Loop *L,
3653 ScalarEvolution &SE) {
3654 SCEVShiftRewriter Rewriter(L, SE);
3655 const SCEV *Result = Rewriter.visit(Scev);
3656 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3657 }
3658
3659 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3660 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3661
3662 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3663 // Only allow AddRecExprs for this loop.
3664 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3665 Valid = false;
3666 return Expr;
3667 }
3668
3669 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3670 if (Expr->getLoop() == L && Expr->isAffine())
3671 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3672 Valid = false;
3673 return Expr;
3674 }
3675 bool isValid() { return Valid; }
3676
3677private:
3678 const Loop *L;
3679 bool Valid;
3680};
Benjamin Kramer83709b12015-11-16 09:01:28 +00003681} // end anonymous namespace
Silviu Barangaf91c8072015-10-30 15:02:28 +00003682
Sanjoy Das55015d22015-10-02 23:09:44 +00003683const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3684 const Loop *L = LI.getLoopFor(PN->getParent());
3685 if (!L || L->getHeader() != PN->getParent())
3686 return nullptr;
3687
3688 // The loop may have multiple entrances or multiple exits; we can analyze
3689 // this phi as an addrec if it has a unique entry value and a unique
3690 // backedge value.
3691 Value *BEValueV = nullptr, *StartValueV = nullptr;
3692 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3693 Value *V = PN->getIncomingValue(i);
3694 if (L->contains(PN->getIncomingBlock(i))) {
3695 if (!BEValueV) {
3696 BEValueV = V;
3697 } else if (BEValueV != V) {
3698 BEValueV = nullptr;
3699 break;
3700 }
3701 } else if (!StartValueV) {
3702 StartValueV = V;
3703 } else if (StartValueV != V) {
3704 StartValueV = nullptr;
3705 break;
3706 }
3707 }
3708 if (BEValueV && StartValueV) {
3709 // While we are analyzing this PHI node, handle its value symbolically.
3710 const SCEV *SymbolicName = getUnknown(PN);
3711 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3712 "PHI node already processed?");
3713 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3714
3715 // Using this symbolic name for the PHI, analyze the value coming around
3716 // the back-edge.
3717 const SCEV *BEValue = getSCEV(BEValueV);
3718
3719 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3720 // has a special value for the first iteration of the loop.
3721
3722 // If the value coming around the backedge is an add with the symbolic
3723 // value we just inserted, then we found a simple induction variable!
3724 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3725 // If there is a single occurrence of the symbolic value, replace it
3726 // with a recurrence.
3727 unsigned FoundIndex = Add->getNumOperands();
3728 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3729 if (Add->getOperand(i) == SymbolicName)
3730 if (FoundIndex == e) {
3731 FoundIndex = i;
Dan Gohman6635bb22010-04-12 07:49:36 +00003732 break;
3733 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003734
3735 if (FoundIndex != Add->getNumOperands()) {
3736 // Create an add with everything but the specified operand.
3737 SmallVector<const SCEV *, 8> Ops;
3738 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3739 if (i != FoundIndex)
3740 Ops.push_back(Add->getOperand(i));
3741 const SCEV *Accum = getAddExpr(Ops);
3742
3743 // This is not a valid addrec if the step amount is varying each
3744 // loop iteration, but is not itself an addrec in this loop.
3745 if (isLoopInvariant(Accum, L) ||
3746 (isa<SCEVAddRecExpr>(Accum) &&
3747 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3748 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3749
3750 // If the increment doesn't overflow, then neither the addrec nor
3751 // the post-increment will overflow.
3752 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3753 if (OBO->getOperand(0) == PN) {
3754 if (OBO->hasNoUnsignedWrap())
3755 Flags = setFlags(Flags, SCEV::FlagNUW);
3756 if (OBO->hasNoSignedWrap())
3757 Flags = setFlags(Flags, SCEV::FlagNSW);
3758 }
3759 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3760 // If the increment is an inbounds GEP, then we know the address
3761 // space cannot be wrapped around. We cannot make any guarantee
3762 // about signed or unsigned overflow because pointers are
3763 // unsigned but we may have a negative index from the base
3764 // pointer. We can guarantee that no unsigned wrap occurs if the
3765 // indices form a positive value.
3766 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3767 Flags = setFlags(Flags, SCEV::FlagNW);
3768
3769 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3770 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3771 Flags = setFlags(Flags, SCEV::FlagNUW);
3772 }
3773
3774 // We cannot transfer nuw and nsw flags from subtraction
3775 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3776 // for instance.
3777 }
3778
3779 const SCEV *StartVal = getSCEV(StartValueV);
3780 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3781
3782 // Since the no-wrap flags are on the increment, they apply to the
3783 // post-incremented value as well.
3784 if (isLoopInvariant(Accum, L))
3785 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
3786
3787 // Okay, for the entire analysis of this edge we assumed the PHI
3788 // to be symbolic. We now need to go back and purge all of the
3789 // entries for the scalars that use the symbolic expression.
3790 ForgetSymbolicName(PN, SymbolicName);
3791 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3792 return PHISCEV;
Dan Gohman6635bb22010-04-12 07:49:36 +00003793 }
3794 }
Silviu Barangaf91c8072015-10-30 15:02:28 +00003795 } else {
Sanjoy Das55015d22015-10-02 23:09:44 +00003796 // Otherwise, this could be a loop like this:
3797 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3798 // In this case, j = {1,+,1} and BEValue is j.
3799 // Because the other in-value of i (0) fits the evolution of BEValue
3800 // i really is an addrec evolution.
Silviu Barangaf91c8072015-10-30 15:02:28 +00003801 //
3802 // We can generalize this saying that i is the shifted value of BEValue
3803 // by one iteration:
3804 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
3805 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
3806 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
3807 if (Shifted != getCouldNotCompute() &&
3808 Start != getCouldNotCompute()) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003809 const SCEV *StartVal = getSCEV(StartValueV);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003810 if (Start == StartVal) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003811 // Okay, for the entire analysis of this edge we assumed the PHI
3812 // to be symbolic. We now need to go back and purge all of the
3813 // entries for the scalars that use the symbolic expression.
3814 ForgetSymbolicName(PN, SymbolicName);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003815 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
3816 return Shifted;
Chris Lattnerd934c702004-04-02 20:23:17 +00003817 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003818 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003819 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003820 }
3821
3822 return nullptr;
3823}
3824
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003825// Checks if the SCEV S is available at BB. S is considered available at BB
3826// if S can be materialized at BB without introducing a fault.
3827static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
3828 BasicBlock *BB) {
3829 struct CheckAvailable {
3830 bool TraversalDone = false;
3831 bool Available = true;
Sanjoy Das55015d22015-10-02 23:09:44 +00003832
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003833 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
3834 BasicBlock *BB = nullptr;
3835 DominatorTree &DT;
Sanjoy Das55015d22015-10-02 23:09:44 +00003836
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003837 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
3838 : L(L), BB(BB), DT(DT) {}
Sanjoy Das55015d22015-10-02 23:09:44 +00003839
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003840 bool setUnavailable() {
3841 TraversalDone = true;
3842 Available = false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003843 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003844 }
3845
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003846 bool follow(const SCEV *S) {
3847 switch (S->getSCEVType()) {
3848 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
3849 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
Sanjoy Dasbb5ffc52015-10-24 05:37:28 +00003850 // These expressions are available if their operand(s) is/are.
3851 return true;
Sanjoy Das55015d22015-10-02 23:09:44 +00003852
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003853 case scAddRecExpr: {
3854 // We allow add recurrences that are on the loop BB is in, or some
3855 // outer loop. This guarantees availability because the value of the
3856 // add recurrence at BB is simply the "current" value of the induction
3857 // variable. We can relax this in the future; for instance an add
3858 // recurrence on a sibling dominating loop is also available at BB.
3859 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
3860 if (L && (ARLoop == L || ARLoop->contains(L)))
Sanjoy Das55015d22015-10-02 23:09:44 +00003861 return true;
3862
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003863 return setUnavailable();
Sanjoy Das55015d22015-10-02 23:09:44 +00003864 }
3865
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003866 case scUnknown: {
3867 // For SCEVUnknown, we check for simple dominance.
3868 const auto *SU = cast<SCEVUnknown>(S);
3869 Value *V = SU->getValue();
Sanjoy Das55015d22015-10-02 23:09:44 +00003870
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003871 if (isa<Argument>(V))
3872 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003873
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003874 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
3875 return false;
3876
3877 return setUnavailable();
3878 }
3879
3880 case scUDivExpr:
3881 case scCouldNotCompute:
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003882 // We do not try to smart about these at all.
3883 return setUnavailable();
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003884 }
3885 llvm_unreachable("switch should be fully covered!");
3886 }
3887
3888 bool isDone() { return TraversalDone; }
Sanjoy Das55015d22015-10-02 23:09:44 +00003889 };
3890
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003891 CheckAvailable CA(L, BB, DT);
3892 SCEVTraversal<CheckAvailable> ST(CA);
3893
3894 ST.visitAll(S);
3895 return CA.Available;
3896}
3897
3898// Try to match a control flow sequence that branches out at BI and merges back
3899// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
3900// match.
3901static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
3902 Value *&C, Value *&LHS, Value *&RHS) {
3903 C = BI->getCondition();
3904
3905 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
3906 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
3907
3908 if (!LeftEdge.isSingleEdge())
3909 return false;
3910
3911 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
3912
3913 Use &LeftUse = Merge->getOperandUse(0);
3914 Use &RightUse = Merge->getOperandUse(1);
3915
3916 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
3917 LHS = LeftUse;
3918 RHS = RightUse;
3919 return true;
3920 }
3921
3922 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
3923 LHS = RightUse;
3924 RHS = LeftUse;
3925 return true;
3926 }
3927
3928 return false;
3929}
3930
3931const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003932 if (PN->getNumIncomingValues() == 2) {
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003933 const Loop *L = LI.getLoopFor(PN->getParent());
3934
Sanjoy Das337d4782015-10-31 23:21:40 +00003935 // We don't want to break LCSSA, even in a SCEV expression tree.
3936 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3937 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
3938 return nullptr;
3939
Sanjoy Das55015d22015-10-02 23:09:44 +00003940 // Try to match
3941 //
3942 // br %cond, label %left, label %right
3943 // left:
3944 // br label %merge
3945 // right:
3946 // br label %merge
3947 // merge:
3948 // V = phi [ %x, %left ], [ %y, %right ]
3949 //
3950 // as "select %cond, %x, %y"
3951
3952 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
3953 assert(IDom && "At least the entry block should dominate PN");
3954
3955 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
3956 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
3957
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003958 if (BI && BI->isConditional() &&
3959 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
3960 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
3961 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
Sanjoy Das55015d22015-10-02 23:09:44 +00003962 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
3963 }
3964
3965 return nullptr;
3966}
3967
3968const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3969 if (const SCEV *S = createAddRecFromPHI(PN))
3970 return S;
3971
3972 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
3973 return S;
Misha Brukman01808ca2005-04-21 21:13:18 +00003974
Dan Gohmana9c205c2010-02-25 06:57:05 +00003975 // If the PHI has a single incoming value, follow that value, unless the
3976 // PHI's incoming blocks are in a different loop, in which case doing so
3977 // risks breaking LCSSA form. Instcombine would normally zap these, but
3978 // it doesn't have DominatorTree information, so it may miss cases.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003979 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003980 if (LI.replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003981 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003982
Chris Lattnerd934c702004-04-02 20:23:17 +00003983 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003984 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003985}
3986
Sanjoy Das55015d22015-10-02 23:09:44 +00003987const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
3988 Value *Cond,
3989 Value *TrueVal,
3990 Value *FalseVal) {
Mehdi Amini044cb342015-10-07 18:14:25 +00003991 // Handle "constant" branch or select. This can occur for instance when a
3992 // loop pass transforms an inner loop and moves on to process the outer loop.
3993 if (auto *CI = dyn_cast<ConstantInt>(Cond))
3994 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
3995
Sanjoy Dasd0671342015-10-02 19:39:59 +00003996 // Try to match some simple smax or umax patterns.
3997 auto *ICI = dyn_cast<ICmpInst>(Cond);
3998 if (!ICI)
3999 return getUnknown(I);
4000
4001 Value *LHS = ICI->getOperand(0);
4002 Value *RHS = ICI->getOperand(1);
4003
4004 switch (ICI->getPredicate()) {
4005 case ICmpInst::ICMP_SLT:
4006 case ICmpInst::ICMP_SLE:
4007 std::swap(LHS, RHS);
4008 // fall through
4009 case ICmpInst::ICMP_SGT:
4010 case ICmpInst::ICMP_SGE:
4011 // a >s b ? a+x : b+x -> smax(a, b)+x
4012 // a >s b ? b+x : a+x -> smin(a, b)+x
4013 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4014 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4015 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4016 const SCEV *LA = getSCEV(TrueVal);
4017 const SCEV *RA = getSCEV(FalseVal);
4018 const SCEV *LDiff = getMinusSCEV(LA, LS);
4019 const SCEV *RDiff = getMinusSCEV(RA, RS);
4020 if (LDiff == RDiff)
4021 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4022 LDiff = getMinusSCEV(LA, RS);
4023 RDiff = getMinusSCEV(RA, LS);
4024 if (LDiff == RDiff)
4025 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4026 }
4027 break;
4028 case ICmpInst::ICMP_ULT:
4029 case ICmpInst::ICMP_ULE:
4030 std::swap(LHS, RHS);
4031 // fall through
4032 case ICmpInst::ICMP_UGT:
4033 case ICmpInst::ICMP_UGE:
4034 // a >u b ? a+x : b+x -> umax(a, b)+x
4035 // a >u b ? b+x : a+x -> umin(a, b)+x
4036 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4037 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4038 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4039 const SCEV *LA = getSCEV(TrueVal);
4040 const SCEV *RA = getSCEV(FalseVal);
4041 const SCEV *LDiff = getMinusSCEV(LA, LS);
4042 const SCEV *RDiff = getMinusSCEV(RA, RS);
4043 if (LDiff == RDiff)
4044 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4045 LDiff = getMinusSCEV(LA, RS);
4046 RDiff = getMinusSCEV(RA, LS);
4047 if (LDiff == RDiff)
4048 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4049 }
4050 break;
4051 case ICmpInst::ICMP_NE:
4052 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4053 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4054 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4055 const SCEV *One = getOne(I->getType());
4056 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4057 const SCEV *LA = getSCEV(TrueVal);
4058 const SCEV *RA = getSCEV(FalseVal);
4059 const SCEV *LDiff = getMinusSCEV(LA, LS);
4060 const SCEV *RDiff = getMinusSCEV(RA, One);
4061 if (LDiff == RDiff)
4062 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4063 }
4064 break;
4065 case ICmpInst::ICMP_EQ:
4066 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4067 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4068 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4069 const SCEV *One = getOne(I->getType());
4070 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4071 const SCEV *LA = getSCEV(TrueVal);
4072 const SCEV *RA = getSCEV(FalseVal);
4073 const SCEV *LDiff = getMinusSCEV(LA, One);
4074 const SCEV *RDiff = getMinusSCEV(RA, LS);
4075 if (LDiff == RDiff)
4076 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4077 }
4078 break;
4079 default:
4080 break;
4081 }
4082
4083 return getUnknown(I);
4084}
4085
Dan Gohmanee750d12009-05-08 20:26:55 +00004086/// createNodeForGEP - Expand GEP instructions into add and multiply
4087/// operations. This allows them to be analyzed by regular SCEV code.
4088///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004089const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman30f24fe2009-05-09 00:14:52 +00004090 // Don't attempt to analyze GEPs over unsized objects.
Eduard Burtescu19eb0312016-01-19 17:28:00 +00004091 if (!GEP->getSourceElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00004092 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00004093
Jingyue Wu2982d4d2015-05-18 17:03:25 +00004094 SmallVector<const SCEV *, 4> IndexExprs;
4095 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4096 IndexExprs.push_back(getSCEV(*Index));
Eduard Burtescu19eb0312016-01-19 17:28:00 +00004097 return getGEPExpr(GEP->getSourceElementType(),
4098 getSCEV(GEP->getPointerOperand()),
4099 IndexExprs, GEP->isInBounds());
Dan Gohmanee750d12009-05-08 20:26:55 +00004100}
4101
Nick Lewycky3783b462007-11-22 07:59:40 +00004102/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4103/// guaranteed to end in (at every loop iteration). It is, at the same time,
4104/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
4105/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004106uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00004107ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00004108 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00004109 return C->getAPInt().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00004110
Dan Gohmana30370b2009-05-04 22:02:23 +00004111 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00004112 return std::min(GetMinTrailingZeros(T->getOperand()),
4113 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00004114
Dan Gohmana30370b2009-05-04 22:02:23 +00004115 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004116 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4117 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4118 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004119 }
4120
Dan Gohmana30370b2009-05-04 22:02:23 +00004121 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004122 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4123 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4124 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004125 }
4126
Dan Gohmana30370b2009-05-04 22:02:23 +00004127 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004128 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004129 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004130 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004131 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004132 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004133 }
4134
Dan Gohmana30370b2009-05-04 22:02:23 +00004135 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004136 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004137 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4138 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00004139 for (unsigned i = 1, e = M->getNumOperands();
4140 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004141 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00004142 BitWidth);
4143 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004144 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004145
Dan Gohmana30370b2009-05-04 22:02:23 +00004146 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004147 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004148 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004149 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004150 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004151 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004152 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004153
Dan Gohmana30370b2009-05-04 22:02:23 +00004154 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004155 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004156 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004157 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004158 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004159 return MinOpRes;
4160 }
4161
Dan Gohmana30370b2009-05-04 22:02:23 +00004162 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004163 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004164 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004165 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004166 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004167 return MinOpRes;
4168 }
4169
Dan Gohmanc702fc02009-06-19 23:29:04 +00004170 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4171 // For a SCEVUnknown, ask ValueTracking.
4172 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00004173 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004174 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4175 nullptr, &DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004176 return Zeros.countTrailingOnes();
4177 }
4178
4179 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00004180 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00004181}
Chris Lattnerd934c702004-04-02 20:23:17 +00004182
Sanjoy Das1f05c512014-10-10 21:22:34 +00004183/// GetRangeFromMetadata - Helper method to assign a range to V from
4184/// metadata present in the IR.
4185static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004186 if (Instruction *I = dyn_cast<Instruction>(V))
4187 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4188 return getConstantRangeFromMetadata(*MD);
Sanjoy Das1f05c512014-10-10 21:22:34 +00004189
4190 return None;
4191}
4192
Sanjoy Das91b54772015-03-09 21:43:43 +00004193/// getRange - Determine the range for a particular SCEV. If SignHint is
4194/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4195/// with a "cleaner" unsigned (resp. signed) representation.
Dan Gohmane65c9172009-07-13 21:35:55 +00004196///
4197ConstantRange
Sanjoy Das91b54772015-03-09 21:43:43 +00004198ScalarEvolution::getRange(const SCEV *S,
4199 ScalarEvolution::RangeSignHint SignHint) {
4200 DenseMap<const SCEV *, ConstantRange> &Cache =
4201 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4202 : SignedRanges;
4203
Dan Gohman761065e2010-11-17 02:44:44 +00004204 // See if we've computed this range already.
Sanjoy Das91b54772015-03-09 21:43:43 +00004205 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4206 if (I != Cache.end())
Dan Gohman761065e2010-11-17 02:44:44 +00004207 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00004208
4209 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00004210 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004211
Dan Gohman85be4332010-01-26 19:19:05 +00004212 unsigned BitWidth = getTypeSizeInBits(S->getType());
4213 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4214
Sanjoy Das91b54772015-03-09 21:43:43 +00004215 // If the value has known zeros, the maximum value will have those known zeros
4216 // as well.
Dan Gohman85be4332010-01-26 19:19:05 +00004217 uint32_t TZ = GetMinTrailingZeros(S);
Sanjoy Das91b54772015-03-09 21:43:43 +00004218 if (TZ != 0) {
4219 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4220 ConservativeResult =
4221 ConstantRange(APInt::getMinValue(BitWidth),
4222 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4223 else
4224 ConservativeResult = ConstantRange(
4225 APInt::getSignedMinValue(BitWidth),
4226 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4227 }
Dan Gohman85be4332010-01-26 19:19:05 +00004228
Dan Gohmane65c9172009-07-13 21:35:55 +00004229 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004230 ConstantRange X = getRange(Add->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004231 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004232 X = X.add(getRange(Add->getOperand(i), SignHint));
4233 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004234 }
4235
4236 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004237 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004238 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004239 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4240 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004241 }
4242
4243 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004244 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004245 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004246 X = X.smax(getRange(SMax->getOperand(i), SignHint));
4247 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004248 }
4249
4250 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004251 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004252 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004253 X = X.umax(getRange(UMax->getOperand(i), SignHint));
4254 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004255 }
4256
4257 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004258 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4259 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4260 return setRange(UDiv, SignHint,
4261 ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004262 }
4263
4264 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004265 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4266 return setRange(ZExt, SignHint,
4267 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004268 }
4269
4270 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004271 ConstantRange X = getRange(SExt->getOperand(), SignHint);
4272 return setRange(SExt, SignHint,
4273 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004274 }
4275
4276 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004277 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4278 return setRange(Trunc, SignHint,
4279 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004280 }
4281
Dan Gohmane65c9172009-07-13 21:35:55 +00004282 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004283 // If there's no unsigned wrap, the value will never be less than its
4284 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00004285 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00004286 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00004287 if (!C->getValue()->isZero())
Sanjoy Das0de2fec2015-12-17 20:28:46 +00004288 ConservativeResult = ConservativeResult.intersectWith(
4289 ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004290
Dan Gohman51ad99d2010-01-21 02:09:26 +00004291 // If there's no signed wrap, and all the operands have the same sign or
4292 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00004293 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004294 bool AllNonNeg = true;
4295 bool AllNonPos = true;
4296 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4297 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4298 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4299 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004300 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00004301 ConservativeResult = ConservativeResult.intersectWith(
4302 ConstantRange(APInt(BitWidth, 0),
4303 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004304 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00004305 ConservativeResult = ConservativeResult.intersectWith(
4306 ConstantRange(APInt::getSignedMinValue(BitWidth),
4307 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004308 }
Dan Gohmane65c9172009-07-13 21:35:55 +00004309
4310 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00004311 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00004312 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00004313 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00004314 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4315 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004316
4317 // Check for overflow. This must be done with ConstantRange arithmetic
4318 // because we could be called from within the ScalarEvolution overflow
4319 // checking code.
4320
Dan Gohmane65c9172009-07-13 21:35:55 +00004321 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
Sanjoy Das91b54772015-03-09 21:43:43 +00004322 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4323 ConstantRange ZExtMaxBECountRange =
4324 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004325
4326 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00004327 const SCEV *Step = AddRec->getStepRecurrence(*this);
Sanjoy Das91b54772015-03-09 21:43:43 +00004328 ConstantRange StepSRange = getSignedRange(Step);
4329 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004330
Sanjoy Das91b54772015-03-09 21:43:43 +00004331 ConstantRange StartURange = getUnsignedRange(Start);
4332 ConstantRange EndURange =
4333 StartURange.add(MaxBECountRange.multiply(StepSRange));
Dan Gohmanf76210e2010-04-12 07:39:33 +00004334
Sanjoy Das91b54772015-03-09 21:43:43 +00004335 // Check for unsigned overflow.
4336 ConstantRange ZExtStartURange =
4337 StartURange.zextOrTrunc(BitWidth * 2 + 1);
4338 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4339 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4340 ZExtEndURange) {
4341 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4342 EndURange.getUnsignedMin());
4343 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4344 EndURange.getUnsignedMax());
4345 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4346 if (!IsFullRange)
4347 ConservativeResult =
4348 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4349 }
Dan Gohmanf76210e2010-04-12 07:39:33 +00004350
Sanjoy Das91b54772015-03-09 21:43:43 +00004351 ConstantRange StartSRange = getSignedRange(Start);
4352 ConstantRange EndSRange =
4353 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4354
4355 // Check for signed overflow. This must be done with ConstantRange
4356 // arithmetic because we could be called from within the ScalarEvolution
4357 // overflow checking code.
4358 ConstantRange SExtStartSRange =
4359 StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4360 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4361 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4362 SExtEndSRange) {
4363 APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4364 EndSRange.getSignedMin());
4365 APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4366 EndSRange.getSignedMax());
4367 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4368 if (!IsFullRange)
4369 ConservativeResult =
4370 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4371 }
Dan Gohmand261d272009-06-24 01:05:09 +00004372 }
Dan Gohmand261d272009-06-24 01:05:09 +00004373 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004374
Sanjoy Das91b54772015-03-09 21:43:43 +00004375 return setRange(AddRec, SignHint, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004376 }
4377
Dan Gohmanc702fc02009-06-19 23:29:04 +00004378 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004379 // Check if the IR explicitly contains !range metadata.
4380 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4381 if (MDRange.hasValue())
4382 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4383
Sanjoy Das91b54772015-03-09 21:43:43 +00004384 // Split here to avoid paying the compile-time cost of calling both
4385 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4386 // if needed.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004387 const DataLayout &DL = getDataLayout();
Sanjoy Das91b54772015-03-09 21:43:43 +00004388 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4389 // For a SCEVUnknown, ask ValueTracking.
4390 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004391 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
Sanjoy Das91b54772015-03-09 21:43:43 +00004392 if (Ones != ~Zeros + 1)
4393 ConservativeResult =
4394 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4395 } else {
4396 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4397 "generalize as needed!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004398 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004399 if (NS > 1)
4400 ConservativeResult = ConservativeResult.intersectWith(
4401 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4402 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
Sanjoy Das91b54772015-03-09 21:43:43 +00004403 }
4404
4405 return setRange(U, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004406 }
4407
Sanjoy Das91b54772015-03-09 21:43:43 +00004408 return setRange(S, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004409}
4410
Jingyue Wu42f1d672015-07-28 18:22:40 +00004411SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004412 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004413 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4414
4415 // Return early if there are no flags to propagate to the SCEV.
4416 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4417 if (BinOp->hasNoUnsignedWrap())
4418 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4419 if (BinOp->hasNoSignedWrap())
4420 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4421 if (Flags == SCEV::FlagAnyWrap) {
4422 return SCEV::FlagAnyWrap;
4423 }
4424
4425 // Here we check that BinOp is in the header of the innermost loop
4426 // containing BinOp, since we only deal with instructions in the loop
4427 // header. The actual loop we need to check later will come from an add
4428 // recurrence, but getting that requires computing the SCEV of the operands,
4429 // which can be expensive. This check we can do cheaply to rule out some
4430 // cases early.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004431 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00004432 if (innermostContainingLoop == nullptr ||
4433 innermostContainingLoop->getHeader() != BinOp->getParent())
4434 return SCEV::FlagAnyWrap;
4435
4436 // Only proceed if we can prove that BinOp does not yield poison.
4437 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4438
4439 // At this point we know that if V is executed, then it does not wrap
4440 // according to at least one of NSW or NUW. If V is not executed, then we do
4441 // not know if the calculation that V represents would wrap. Multiple
4442 // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4443 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4444 // derived from other instructions that map to the same SCEV. We cannot make
4445 // that guarantee for cases where V is not executed. So we need to find the
4446 // loop that V is considered in relation to and prove that V is executed for
4447 // every iteration of that loop. That implies that the value that V
4448 // calculates does not wrap anywhere in the loop, so then we can apply the
4449 // flags to the SCEV.
4450 //
4451 // We check isLoopInvariant to disambiguate in case we are adding two
4452 // recurrences from different loops, so that we know which loop to prove
4453 // that V is executed in.
4454 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4455 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4456 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4457 const int OtherOpIndex = 1 - OpIndex;
4458 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4459 if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4460 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4461 return Flags;
4462 }
4463 }
4464 return SCEV::FlagAnyWrap;
4465}
4466
4467/// createSCEV - We know that there is no SCEV for the specified value. Analyze
4468/// the expression.
Chris Lattnerd934c702004-04-02 20:23:17 +00004469///
Dan Gohmanaf752342009-07-07 17:06:11 +00004470const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004471 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004472 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004473
Dan Gohman05e89732008-06-22 19:56:46 +00004474 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004475 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004476 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004477
4478 // Don't attempt to analyze instructions in blocks that aren't
4479 // reachable. Such instructions don't matter, and they aren't required
4480 // to obey basic rules for definitions dominating uses which this
4481 // analysis depends on.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004482 if (!DT.isReachableFromEntry(I->getParent()))
Dan Gohman69451a02010-03-09 23:46:50 +00004483 return getUnknown(V);
4484 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004485 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004486 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4487 return getConstant(CI);
4488 else if (isa<ConstantPointerNull>(V))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004489 return getZero(V->getType());
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004490 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4491 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004492 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004493 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004494
Dan Gohman80ca01c2009-07-17 20:47:02 +00004495 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004496 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004497 case Instruction::Add: {
4498 // The simple thing to do would be to just call getSCEV on both operands
4499 // and call getAddExpr with the result. However if we're looking at a
4500 // bunch of things all added together, this can be quite inefficient,
4501 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4502 // Instead, gather up all the operands and make a single getAddExpr call.
4503 // LLVM IR canonical form means we need only traverse the left operands.
4504 SmallVector<const SCEV *, 4> AddOps;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004505 for (Value *Op = U;; Op = U->getOperand(0)) {
4506 U = dyn_cast<Operator>(Op);
4507 unsigned Opcode = U ? U->getOpcode() : 0;
4508 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) {
4509 assert(Op != V && "V should be an add");
4510 AddOps.push_back(getSCEV(Op));
Dan Gohman47308d52010-08-31 22:53:17 +00004511 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004512 }
4513
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004514 if (auto *OpSCEV = getExistingSCEV(U)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00004515 AddOps.push_back(OpSCEV);
4516 break;
4517 }
4518
4519 // If a NUW or NSW flag can be applied to the SCEV for this
4520 // addition, then compute the SCEV for this addition by itself
4521 // with a separate call to getAddExpr. We need to do that
4522 // instead of pushing the operands of the addition onto AddOps,
4523 // since the flags are only known to apply to this particular
4524 // addition - they may not apply to other additions that can be
4525 // formed with operands from AddOps.
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004526 const SCEV *RHS = getSCEV(U->getOperand(1));
4527 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4528 if (Flags != SCEV::FlagAnyWrap) {
4529 const SCEV *LHS = getSCEV(U->getOperand(0));
4530 if (Opcode == Instruction::Sub)
4531 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4532 else
4533 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4534 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004535 }
4536
Dan Gohman47308d52010-08-31 22:53:17 +00004537 if (Opcode == Instruction::Sub)
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004538 AddOps.push_back(getNegativeSCEV(RHS));
Dan Gohman47308d52010-08-31 22:53:17 +00004539 else
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004540 AddOps.push_back(RHS);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004541 }
Andrew Trickd25089f2011-11-29 02:16:38 +00004542 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004543 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004544
Dan Gohmane5fb1032010-08-16 16:03:49 +00004545 case Instruction::Mul: {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004546 SmallVector<const SCEV *, 4> MulOps;
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004547 for (Value *Op = U;; Op = U->getOperand(0)) {
4548 U = dyn_cast<Operator>(Op);
4549 if (!U || U->getOpcode() != Instruction::Mul) {
4550 assert(Op != V && "V should be a mul");
4551 MulOps.push_back(getSCEV(Op));
4552 break;
4553 }
4554
4555 if (auto *OpSCEV = getExistingSCEV(U)) {
4556 MulOps.push_back(OpSCEV);
4557 break;
4558 }
4559
4560 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4561 if (Flags != SCEV::FlagAnyWrap) {
4562 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)),
4563 getSCEV(U->getOperand(1)), Flags));
4564 break;
4565 }
4566
Dan Gohmane5fb1032010-08-16 16:03:49 +00004567 MulOps.push_back(getSCEV(U->getOperand(1)));
4568 }
Dan Gohmane5fb1032010-08-16 16:03:49 +00004569 return getMulExpr(MulOps);
4570 }
Dan Gohman05e89732008-06-22 19:56:46 +00004571 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004572 return getUDivExpr(getSCEV(U->getOperand(0)),
4573 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004574 case Instruction::Sub:
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004575 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)),
4576 getNoWrapFlagsFromUB(U));
Dan Gohman0ec05372009-04-21 02:26:00 +00004577 case Instruction::And:
4578 // For an expression like x&255 that merely masks off the high bits,
4579 // use zext(trunc(x)) as the SCEV expression.
4580 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004581 if (CI->isNullValue())
4582 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004583 if (CI->isAllOnesValue())
4584 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004585 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004586
4587 // Instcombine's ShrinkDemandedConstant may strip bits out of
4588 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004589 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004590 // knew about to reconstruct a low-bits mask value.
4591 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004592 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004593 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004594 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004595 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(),
4596 0, &AC, nullptr, &DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004597
Nick Lewycky31eaca52014-01-27 10:04:03 +00004598 APInt EffectiveMask =
4599 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4600 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4601 const SCEV *MulCount = getConstant(
4602 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4603 return getMulExpr(
4604 getZeroExtendExpr(
4605 getTruncateExpr(
4606 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4607 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4608 U->getType()),
4609 MulCount);
4610 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004611 }
4612 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004613
Dan Gohman05e89732008-06-22 19:56:46 +00004614 case Instruction::Or:
4615 // If the RHS of the Or is a constant, we may have something like:
4616 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4617 // optimizations will transparently handle this case.
4618 //
4619 // In order for this transformation to be safe, the LHS must be of the
4620 // form X*(2^n) and the Or constant must be less than 2^n.
4621 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004622 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004623 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004624 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004625 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4626 // Build a plain add SCEV.
4627 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4628 // If the LHS of the add was an addrec and it has no-wrap flags,
4629 // transfer the no-wrap flags, since an or won't introduce a wrap.
4630 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4631 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004632 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4633 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004634 }
4635 return S;
4636 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004637 }
Dan Gohman05e89732008-06-22 19:56:46 +00004638 break;
4639 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004640 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004641 // If the RHS of the xor is a signbit, then this is just an add.
4642 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004643 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004644 return getAddExpr(getSCEV(U->getOperand(0)),
4645 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004646
4647 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004648 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004649 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004650
4651 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4652 // This is a variant of the check for xor with -1, and it handles
4653 // the case where instcombine has trimmed non-demanded bits out
4654 // of an xor with -1.
4655 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4656 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4657 if (BO->getOpcode() == Instruction::And &&
4658 LCI->getValue() == CI->getValue())
4659 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004660 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004661 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004662 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004663 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004664 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4665
Dan Gohman8b0a4192010-03-01 17:49:51 +00004666 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004667 // mask off the high bits. Complement the operand and
4668 // re-apply the zext.
4669 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4670 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4671
4672 // If C is a single bit, it may be in the sign-bit position
4673 // before the zero-extend. In this case, represent the xor
4674 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004675 APInt Trunc = CI->getValue().trunc(Z0TySize);
4676 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004677 Trunc.isSignBit())
4678 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4679 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004680 }
Dan Gohman05e89732008-06-22 19:56:46 +00004681 }
4682 break;
4683
4684 case Instruction::Shl:
4685 // Turn shift left of a constant amount into a multiply.
4686 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004687 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004688
4689 // If the shift count is not less than the bitwidth, the result of
4690 // the shift is undefined. Don't try to analyze it, because the
4691 // resolution chosen here may differ from the resolution chosen in
4692 // other parts of the compiler.
4693 if (SA->getValue().uge(BitWidth))
4694 break;
4695
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004696 // It is currently not resolved how to interpret NSW for left
4697 // shift by BitWidth - 1, so we avoid applying flags in that
4698 // case. Remove this check (or this comment) once the situation
4699 // is resolved. See
4700 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
4701 // and http://reviews.llvm.org/D8890 .
4702 auto Flags = SCEV::FlagAnyWrap;
4703 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U);
4704
Owen Andersonedb4a702009-07-24 23:12:02 +00004705 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004706 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004707 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags);
Dan Gohman05e89732008-06-22 19:56:46 +00004708 }
4709 break;
4710
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004711 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004712 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004713 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004714 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004715
4716 // If the shift count is not less than the bitwidth, the result of
4717 // the shift is undefined. Don't try to analyze it, because the
4718 // resolution chosen here may differ from the resolution chosen in
4719 // other parts of the compiler.
4720 if (SA->getValue().uge(BitWidth))
4721 break;
4722
Owen Andersonedb4a702009-07-24 23:12:02 +00004723 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004724 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004725 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004726 }
4727 break;
4728
Dan Gohman0ec05372009-04-21 02:26:00 +00004729 case Instruction::AShr:
4730 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4731 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004732 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004733 if (L->getOpcode() == Instruction::Shl &&
4734 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004735 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4736
4737 // If the shift count is not less than the bitwidth, the result of
4738 // the shift is undefined. Don't try to analyze it, because the
4739 // resolution chosen here may differ from the resolution chosen in
4740 // other parts of the compiler.
4741 if (CI->getValue().uge(BitWidth))
4742 break;
4743
Dan Gohmandf199482009-04-25 17:05:40 +00004744 uint64_t Amt = BitWidth - CI->getZExtValue();
4745 if (Amt == BitWidth)
4746 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004747 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004748 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004749 IntegerType::get(getContext(),
4750 Amt)),
4751 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004752 }
4753 break;
4754
Dan Gohman05e89732008-06-22 19:56:46 +00004755 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004756 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004757
4758 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004759 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004760
4761 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004762 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004763
4764 case Instruction::BitCast:
4765 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004766 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004767 return getSCEV(U->getOperand(0));
4768 break;
4769
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004770 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4771 // lead to pointer expressions which cannot safely be expanded to GEPs,
4772 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4773 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004774
Dan Gohmanee750d12009-05-08 20:26:55 +00004775 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004776 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004777
Dan Gohman05e89732008-06-22 19:56:46 +00004778 case Instruction::PHI:
4779 return createNodeForPHI(cast<PHINode>(U));
4780
4781 case Instruction::Select:
Sanjoy Dasd0671342015-10-02 19:39:59 +00004782 // U can also be a select constant expr, which let fall through. Since
4783 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
4784 // constant expressions cannot have instructions as operands, we'd have
4785 // returned getUnknown for a select constant expressions anyway.
4786 if (isa<Instruction>(U))
Sanjoy Das55015d22015-10-02 23:09:44 +00004787 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
4788 U->getOperand(1), U->getOperand(2));
Dan Gohman05e89732008-06-22 19:56:46 +00004789
4790 default: // We cannot analyze this expression.
4791 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004792 }
4793
Dan Gohmanc8e23622009-04-21 23:15:49 +00004794 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004795}
4796
4797
4798
4799//===----------------------------------------------------------------------===//
4800// Iteration Count Computation Code
4801//
4802
Chandler Carruth6666c272014-10-11 00:12:11 +00004803unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4804 if (BasicBlock *ExitingBB = L->getExitingBlock())
4805 return getSmallConstantTripCount(L, ExitingBB);
4806
4807 // No trip count information for multiple exits.
4808 return 0;
4809}
4810
Andrew Trick2b6860f2011-08-11 23:36:16 +00004811/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004812/// normal unsigned value. Returns 0 if the trip count is unknown or not
4813/// constant. Will also return 0 if the maximum trip count is very large (>=
4814/// 2^32).
4815///
4816/// This "trip count" assumes that control exits via ExitingBlock. More
4817/// precisely, it is the number of times that control may reach ExitingBlock
4818/// before taking the branch. For loops with multiple exits, it may not be the
4819/// number times that the loop header executes because the loop may exit
4820/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004821unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4822 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004823 assert(ExitingBlock && "Must pass a non-null exiting block!");
4824 assert(L->isLoopExiting(ExitingBlock) &&
4825 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004826 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004827 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004828 if (!ExitCount)
4829 return 0;
4830
4831 ConstantInt *ExitConst = ExitCount->getValue();
4832
4833 // Guard against huge trip counts.
4834 if (ExitConst->getValue().getActiveBits() > 32)
4835 return 0;
4836
4837 // In case of integer overflow, this returns 0, which is correct.
4838 return ((unsigned)ExitConst->getZExtValue()) + 1;
4839}
4840
Chandler Carruth6666c272014-10-11 00:12:11 +00004841unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4842 if (BasicBlock *ExitingBB = L->getExitingBlock())
4843 return getSmallConstantTripMultiple(L, ExitingBB);
4844
4845 // No trip multiple information for multiple exits.
4846 return 0;
4847}
4848
Andrew Trick2b6860f2011-08-11 23:36:16 +00004849/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4850/// trip count of this loop as a normal unsigned value, if possible. This
4851/// means that the actual trip count is always a multiple of the returned
4852/// value (don't forget the trip count could very well be zero as well!).
4853///
4854/// Returns 1 if the trip count is unknown or not guaranteed to be the
4855/// multiple of a constant (which is also the case if the trip count is simply
4856/// constant, use getSmallConstantTripCount for that case), Will also return 1
4857/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004858///
4859/// As explained in the comments for getSmallConstantTripCount, this assumes
4860/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004861unsigned
4862ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4863 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004864 assert(ExitingBlock && "Must pass a non-null exiting block!");
4865 assert(L->isLoopExiting(ExitingBlock) &&
4866 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004867 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004868 if (ExitCount == getCouldNotCompute())
4869 return 1;
4870
4871 // Get the trip count from the BE count by adding 1.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004872 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004873 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4874 // to factor simple cases.
4875 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4876 TCMul = Mul->getOperand(0);
4877
4878 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4879 if (!MulC)
4880 return 1;
4881
4882 ConstantInt *Result = MulC->getValue();
4883
Hal Finkel30bd9342012-10-24 19:46:44 +00004884 // Guard against huge trip counts (this requires checking
4885 // for zero to handle the case where the trip count == -1 and the
4886 // addition wraps).
4887 if (!Result || Result->getValue().getActiveBits() > 32 ||
4888 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004889 return 1;
4890
4891 return (unsigned)Result->getZExtValue();
4892}
4893
Andrew Trick3ca3f982011-07-26 17:19:55 +00004894// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004895// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004896// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004897const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4898 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004899}
4900
Dan Gohman0bddac12009-02-24 18:55:53 +00004901/// getBackedgeTakenCount - If the specified loop has a predictable
4902/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4903/// object. The backedge-taken count is the number of times the loop header
4904/// will be branched to from within the loop. This is one less than the
4905/// trip count of the loop, since it doesn't count the first iteration,
4906/// when the header is branched to from outside the loop.
4907///
4908/// Note that it is not valid to call this method on a loop without a
4909/// loop-invariant backedge-taken count (see
4910/// hasLoopInvariantBackedgeTakenCount).
4911///
Dan Gohmanaf752342009-07-07 17:06:11 +00004912const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004913 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004914}
4915
4916/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4917/// return the least SCEV value that is known never to be less than the
4918/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004919const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004920 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004921}
4922
Dan Gohmandc191042009-07-08 19:23:34 +00004923/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4924/// onto the given Worklist.
4925static void
4926PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4927 BasicBlock *Header = L->getHeader();
4928
4929 // Push all Loop-header PHIs onto the Worklist stack.
4930 for (BasicBlock::iterator I = Header->begin();
4931 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4932 Worklist.push_back(PN);
4933}
4934
Dan Gohman2b8da352009-04-30 20:47:05 +00004935const ScalarEvolution::BackedgeTakenInfo &
4936ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004937 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004938 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004939 // update the value. The temporary CouldNotCompute value tells SCEV
4940 // code elsewhere that it shouldn't attempt to request a new
4941 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004942 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004943 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004944 if (!Pair.second)
4945 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004946
Sanjoy Das413dbbb2015-10-08 18:46:59 +00004947 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
Andrew Trick3ca3f982011-07-26 17:19:55 +00004948 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4949 // must be cleared in this scope.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00004950 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004951
4952 if (Result.getExact(this) != getCouldNotCompute()) {
4953 assert(isLoopInvariant(Result.getExact(this), L) &&
4954 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004955 "Computed backedge-taken count isn't loop invariant for loop!");
4956 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004957 }
4958 else if (Result.getMax(this) == getCouldNotCompute() &&
4959 isa<PHINode>(L->getHeader()->begin())) {
4960 // Only count loops that have phi nodes as not being computable.
4961 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004962 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004963
Chris Lattnera337f5e2011-01-09 02:16:18 +00004964 // Now that we know more about the trip count for this loop, forget any
4965 // existing SCEV values for PHI nodes in this loop since they are only
4966 // conservative estimates made without the benefit of trip count
4967 // information. This is similar to the code in forgetLoop, except that
4968 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004969 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004970 SmallVector<Instruction *, 16> Worklist;
4971 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004972
Chris Lattnera337f5e2011-01-09 02:16:18 +00004973 SmallPtrSet<Instruction *, 8> Visited;
4974 while (!Worklist.empty()) {
4975 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004976 if (!Visited.insert(I).second)
4977 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004978
Chris Lattnera337f5e2011-01-09 02:16:18 +00004979 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004980 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004981 if (It != ValueExprMap.end()) {
4982 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004983
Chris Lattnera337f5e2011-01-09 02:16:18 +00004984 // SCEVUnknown for a PHI either means that it has an unrecognized
4985 // structure, or it's a PHI that's in the progress of being computed
4986 // by createNodeForPHI. In the former case, additional loop trip
4987 // count information isn't going to change anything. In the later
4988 // case, createNodeForPHI will perform the necessary updates on its
4989 // own when it gets to that point.
4990 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4991 forgetMemoizedResults(Old);
4992 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004993 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004994 if (PHINode *PN = dyn_cast<PHINode>(I))
4995 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004996 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004997
4998 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004999 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005000 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00005001
5002 // Re-lookup the insert position, since the call to
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005003 // computeBackedgeTakenCount above could result in a
Dan Gohman6acd95b2011-04-25 22:48:29 +00005004 // recusive call to getBackedgeTakenInfo (on a different
5005 // loop), which would invalidate the iterator computed
5006 // earlier.
5007 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00005008}
5009
Dan Gohman880c92a2009-10-31 15:04:55 +00005010/// forgetLoop - This method should be called by the client when it has
5011/// changed a loop in a way that may effect ScalarEvolution's ability to
5012/// compute a trip count, or if the loop is deleted.
5013void ScalarEvolution::forgetLoop(const Loop *L) {
5014 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005015 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
5016 BackedgeTakenCounts.find(L);
5017 if (BTCPos != BackedgeTakenCounts.end()) {
5018 BTCPos->second.clear();
5019 BackedgeTakenCounts.erase(BTCPos);
5020 }
Dan Gohmanf1505722009-05-02 17:43:35 +00005021
Dan Gohman880c92a2009-10-31 15:04:55 +00005022 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00005023 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00005024 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00005025
Dan Gohmandc191042009-07-08 19:23:34 +00005026 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00005027 while (!Worklist.empty()) {
5028 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005029 if (!Visited.insert(I).second)
5030 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00005031
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005032 ValueExprMapType::iterator It =
5033 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005034 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005035 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005036 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00005037 if (PHINode *PN = dyn_cast<PHINode>(I))
5038 ConstantEvolutionLoopExitValue.erase(PN);
5039 }
5040
5041 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00005042 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00005043
5044 // Forget all contained loops too, to avoid dangling entries in the
5045 // ValuesAtScopes map.
5046 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5047 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00005048}
5049
Eric Christopheref6d5932010-07-29 01:25:38 +00005050/// forgetValue - This method should be called by the client when it has
5051/// changed a value in a way that may effect its value, or which may
5052/// disconnect it from a def-use chain linking it to a loop.
5053void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005054 Instruction *I = dyn_cast<Instruction>(V);
5055 if (!I) return;
5056
5057 // Drop information about expressions based on loop-header PHIs.
5058 SmallVector<Instruction *, 16> Worklist;
5059 Worklist.push_back(I);
5060
5061 SmallPtrSet<Instruction *, 8> Visited;
5062 while (!Worklist.empty()) {
5063 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005064 if (!Visited.insert(I).second)
5065 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005066
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005067 ValueExprMapType::iterator It =
5068 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005069 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005070 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005071 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005072 if (PHINode *PN = dyn_cast<PHINode>(I))
5073 ConstantEvolutionLoopExitValue.erase(PN);
5074 }
5075
5076 PushDefUseChildren(I, Worklist);
5077 }
5078}
5079
Andrew Trick3ca3f982011-07-26 17:19:55 +00005080/// getExact - Get the exact loop backedge taken count considering all loop
Sanjoy Das135e5b92015-07-21 20:59:22 +00005081/// exits. A computable result can only be returned for loops with a single
5082/// exit. Returning the minimum taken count among all exits is incorrect
5083/// because one of the loop's exit limit's may have been skipped. HowFarToZero
5084/// assumes that the limit of each loop test is never skipped. This is a valid
5085/// assumption as long as the loop exits via that test. For precise results, it
5086/// is the caller's responsibility to specify the relevant loop exit using
Andrew Trick90c7a102011-11-16 00:52:40 +00005087/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00005088const SCEV *
5089ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
5090 // If any exits were not computable, the loop is not computable.
5091 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5092
Andrew Trick90c7a102011-11-16 00:52:40 +00005093 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00005094 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005095 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5096
Craig Topper9f008862014-04-15 04:59:12 +00005097 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005098 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005099 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005100
5101 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5102
5103 if (!BECount)
5104 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00005105 else if (BECount != ENT->ExactNotTaken)
5106 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005107 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00005108 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005109 return BECount;
5110}
5111
5112/// getExact - Get the exact not taken count for this loop exit.
5113const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00005114ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005115 ScalarEvolution *SE) const {
5116 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005117 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005118
Andrew Trick77c55422011-08-02 04:23:35 +00005119 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005120 return ENT->ExactNotTaken;
5121 }
5122 return SE->getCouldNotCompute();
5123}
5124
5125/// getMax - Get the max backedge taken count for the loop.
5126const SCEV *
5127ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5128 return Max ? Max : SE->getCouldNotCompute();
5129}
5130
Andrew Trick9093e152013-03-26 03:14:53 +00005131bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5132 ScalarEvolution *SE) const {
5133 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5134 return true;
5135
5136 if (!ExitNotTaken.ExitingBlock)
5137 return false;
5138
5139 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005140 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00005141
5142 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
5143 && SE->hasOperand(ENT->ExactNotTaken, S)) {
5144 return true;
5145 }
5146 }
5147 return false;
5148}
5149
Andrew Trick3ca3f982011-07-26 17:19:55 +00005150/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5151/// computable exit into a persistent ExitNotTakenInfo array.
5152ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5153 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
5154 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
5155
5156 if (!Complete)
5157 ExitNotTaken.setIncomplete();
5158
5159 unsigned NumExits = ExitCounts.size();
5160 if (NumExits == 0) return;
5161
Andrew Trick77c55422011-08-02 04:23:35 +00005162 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005163 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
5164 if (NumExits == 1) return;
5165
5166 // Handle the rare case of multiple computable exits.
5167 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
5168
5169 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
5170 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
5171 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00005172 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005173 ENT->ExactNotTaken = ExitCounts[i].second;
5174 }
5175}
5176
5177/// clear - Invalidate this result and free the ExitNotTakenInfo array.
5178void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00005179 ExitNotTaken.ExitingBlock = nullptr;
5180 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005181 delete[] ExitNotTaken.getNextExit();
5182}
5183
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005184/// computeBackedgeTakenCount - Compute the number of times the backedge
Dan Gohman0bddac12009-02-24 18:55:53 +00005185/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00005186ScalarEvolution::BackedgeTakenInfo
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005187ScalarEvolution::computeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00005188 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00005189 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00005190
Andrew Trick839e30b2014-05-23 19:47:13 +00005191 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005192 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005193 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00005194 const SCEV *MustExitMaxBECount = nullptr;
5195 const SCEV *MayExitMaxBECount = nullptr;
5196
5197 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5198 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00005199 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005200 BasicBlock *ExitBB = ExitingBlocks[i];
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005201 ExitLimit EL = computeExitLimit(L, ExitBB);
Andrew Trick839e30b2014-05-23 19:47:13 +00005202
5203 // 1. For each exit that can be computed, add an entry to ExitCounts.
5204 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005205 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00005206 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00005207 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005208 CouldComputeBECount = false;
5209 else
Andrew Trick839e30b2014-05-23 19:47:13 +00005210 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00005211
Andrew Trick839e30b2014-05-23 19:47:13 +00005212 // 2. Derive the loop's MaxBECount from each exit's max number of
5213 // non-exiting iterations. Partition the loop exits into two kinds:
5214 // LoopMustExits and LoopMayExits.
5215 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005216 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5217 // is a LoopMayExit. If any computable LoopMustExit is found, then
5218 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5219 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5220 // considered greater than any computable EL.Max.
5221 if (EL.Max != getCouldNotCompute() && Latch &&
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005222 DT.dominates(ExitBB, Latch)) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005223 if (!MustExitMaxBECount)
5224 MustExitMaxBECount = EL.Max;
5225 else {
5226 MustExitMaxBECount =
5227 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00005228 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005229 } else if (MayExitMaxBECount != getCouldNotCompute()) {
5230 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5231 MayExitMaxBECount = EL.Max;
5232 else {
5233 MayExitMaxBECount =
5234 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5235 }
Andrew Trick90c7a102011-11-16 00:52:40 +00005236 }
Dan Gohman96212b62009-06-22 00:31:57 +00005237 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005238 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5239 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00005240 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005241}
5242
Andrew Trick3ca3f982011-07-26 17:19:55 +00005243ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005244ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00005245
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005246 // Okay, we've chosen an exiting block. See what condition causes us to exit
5247 // at this block and remember the exit block and whether all other targets
Benjamin Kramer5a188542014-02-11 15:44:32 +00005248 // lead to the loop header.
5249 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00005250 BasicBlock *Exit = nullptr;
Sanjoy Das0ff07872016-01-19 20:53:46 +00005251 for (auto *SBB : successors(ExitingBlock))
5252 if (!L->contains(SBB)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005253 if (Exit) // Multiple exit successors.
5254 return getCouldNotCompute();
Sanjoy Das0ff07872016-01-19 20:53:46 +00005255 Exit = SBB;
5256 } else if (SBB != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005257 MustExecuteLoopHeader = false;
5258 }
Dan Gohmance973df2009-06-24 04:48:43 +00005259
Chris Lattner18954852007-01-07 02:24:26 +00005260 // At this point, we know we have a conditional branch that determines whether
5261 // the loop is exited. However, we don't know if the branch is executed each
5262 // time through the loop. If not, then the execution count of the branch will
5263 // not be equal to the trip count of the loop.
5264 //
5265 // Currently we check for this by checking to see if the Exit branch goes to
5266 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00005267 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00005268 // loop header. This is common for un-rotated loops.
5269 //
5270 // If both of those tests fail, walk up the unique predecessor chain to the
5271 // header, stopping if there is an edge that doesn't exit the loop. If the
5272 // header is reached, the execution count of the branch will be equal to the
5273 // trip count of the loop.
5274 //
5275 // More extensive analysis could be done to handle more cases here.
5276 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00005277 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005278 // The simple checks failed, try climbing the unique predecessor chain
5279 // up to the header.
5280 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00005281 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00005282 BasicBlock *Pred = BB->getUniquePredecessor();
5283 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005284 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005285 TerminatorInst *PredTerm = Pred->getTerminator();
Pete Cooperebcd7482015-08-06 20:22:46 +00005286 for (const BasicBlock *PredSucc : PredTerm->successors()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005287 if (PredSucc == BB)
5288 continue;
5289 // If the predecessor has a successor that isn't BB and isn't
5290 // outside the loop, assume the worst.
5291 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005292 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005293 }
5294 if (Pred == L->getHeader()) {
5295 Ok = true;
5296 break;
5297 }
5298 BB = Pred;
5299 }
5300 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005301 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005302 }
5303
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005304 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005305 TerminatorInst *Term = ExitingBlock->getTerminator();
5306 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5307 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5308 // Proceed to the next level to examine the exit condition expression.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005309 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
Benjamin Kramer5a188542014-02-11 15:44:32 +00005310 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005311 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005312 }
5313
5314 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005315 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005316 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005317
5318 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005319}
5320
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005321/// computeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005322/// backedge of the specified loop will execute if its exit condition
5323/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00005324///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005325/// @param ControlsExit is true if ExitCond directly controls the exit
5326/// branch. In this case, we can assume that the loop exits only if the
5327/// condition is true and can infer that failing to meet the condition prior to
5328/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005329ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005330ScalarEvolution::computeExitLimitFromCond(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005331 Value *ExitCond,
5332 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005333 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005334 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00005335 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00005336 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5337 if (BO->getOpcode() == Instruction::And) {
5338 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00005339 bool EitherMayExit = L->contains(TBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005340 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005341 ControlsExit && !EitherMayExit);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005342 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005343 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005344 const SCEV *BECount = getCouldNotCompute();
5345 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005346 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005347 // Both conditions must be true for the loop to continue executing.
5348 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005349 if (EL0.Exact == getCouldNotCompute() ||
5350 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005351 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005352 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005353 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5354 if (EL0.Max == getCouldNotCompute())
5355 MaxBECount = EL1.Max;
5356 else if (EL1.Max == getCouldNotCompute())
5357 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005358 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005359 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005360 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005361 // Both conditions must be true at the same time for the loop to exit.
5362 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005363 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005364 if (EL0.Max == EL1.Max)
5365 MaxBECount = EL0.Max;
5366 if (EL0.Exact == EL1.Exact)
5367 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005368 }
5369
Sanjoy Das29a4b5d2016-01-19 20:53:51 +00005370 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5371 // to be more aggressive when computing BECount than when computing
5372 // MaxBECount. In these cases it is possible for EL0.Exact and EL1.Exact
5373 // to match, but for EL0.Max and EL1.Max to not.
5374 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5375 !isa<SCEVCouldNotCompute>(BECount))
5376 MaxBECount = BECount;
5377
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005378 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005379 }
5380 if (BO->getOpcode() == Instruction::Or) {
5381 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005382 bool EitherMayExit = L->contains(FBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005383 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005384 ControlsExit && !EitherMayExit);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005385 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005386 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005387 const SCEV *BECount = getCouldNotCompute();
5388 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005389 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005390 // Both conditions must be false for the loop to continue executing.
5391 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005392 if (EL0.Exact == getCouldNotCompute() ||
5393 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005394 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005395 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005396 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5397 if (EL0.Max == getCouldNotCompute())
5398 MaxBECount = EL1.Max;
5399 else if (EL1.Max == getCouldNotCompute())
5400 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005401 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005402 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005403 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005404 // Both conditions must be false at the same time for the loop to exit.
5405 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005406 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005407 if (EL0.Max == EL1.Max)
5408 MaxBECount = EL0.Max;
5409 if (EL0.Exact == EL1.Exact)
5410 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005411 }
5412
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005413 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005414 }
5415 }
5416
5417 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005418 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005419 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005420 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005421
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005422 // Check for a constant condition. These are normally stripped out by
5423 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5424 // preserve the CFG and is temporarily leaving constant conditions
5425 // in place.
5426 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5427 if (L->contains(FBB) == !CI->getZExtValue())
5428 // The backedge is always taken.
5429 return getCouldNotCompute();
5430 else
5431 // The backedge is never taken.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00005432 return getZero(CI->getType());
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005433 }
5434
Eli Friedmanebf98b02009-05-09 12:32:42 +00005435 // If it's not an integer or pointer comparison then compute it the hard way.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005436 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005437}
5438
Andrew Trick3ca3f982011-07-26 17:19:55 +00005439ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005440ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005441 ICmpInst *ExitCond,
5442 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005443 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005444 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005445
Reid Spencer266e42b2006-12-23 06:05:41 +00005446 // If the condition was exit on true, convert the condition to exit on false
5447 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005448 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005449 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005450 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005451 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005452
5453 // Handle common loops like: for (X = "string"; *X; ++X)
5454 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5455 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005456 ExitLimit ItCnt =
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005457 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005458 if (ItCnt.hasAnyInfo())
5459 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005460 }
5461
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00005462 ExitLimit ShiftEL = computeShiftCompareExitLimit(
5463 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
5464 if (ShiftEL.hasAnyInfo())
5465 return ShiftEL;
5466
Dan Gohmanaf752342009-07-07 17:06:11 +00005467 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5468 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005469
5470 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005471 LHS = getSCEVAtScope(LHS, L);
5472 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005473
Dan Gohmance973df2009-06-24 04:48:43 +00005474 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005475 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005476 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005477 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005478 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005479 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005480 }
5481
Dan Gohman81585c12010-05-03 16:35:17 +00005482 // Simplify the operands before analyzing them.
5483 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5484
Chris Lattnerd934c702004-04-02 20:23:17 +00005485 // If we have a comparison of a chrec against a constant, try to use value
5486 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005487 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5488 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005489 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005490 // Form the constant range.
5491 ConstantRange CompRange(
Sanjoy Das0de2fec2015-12-17 20:28:46 +00005492 ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005493
Dan Gohmanaf752342009-07-07 17:06:11 +00005494 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005495 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005496 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005497
Chris Lattnerd934c702004-04-02 20:23:17 +00005498 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005499 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005500 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005501 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005502 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005503 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005504 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005505 case ICmpInst::ICMP_EQ: { // while (X == Y)
5506 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005507 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5508 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005509 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005510 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005511 case ICmpInst::ICMP_SLT:
5512 case ICmpInst::ICMP_ULT: { // while (X < Y)
5513 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005514 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005515 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005516 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005517 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005518 case ICmpInst::ICMP_SGT:
5519 case ICmpInst::ICMP_UGT: { // while (X > Y)
5520 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005521 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005522 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005523 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005524 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005525 default:
Chris Lattner0defaa12004-04-03 00:43:03 +00005526 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005527 }
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005528 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005529}
5530
Benjamin Kramer5a188542014-02-11 15:44:32 +00005531ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005532ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
Benjamin Kramer5a188542014-02-11 15:44:32 +00005533 SwitchInst *Switch,
5534 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005535 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005536 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5537
5538 // Give up if the exit is the default dest of a switch.
5539 if (Switch->getDefaultDest() == ExitingBlock)
5540 return getCouldNotCompute();
5541
5542 assert(L->contains(Switch->getDefaultDest()) &&
5543 "Default case must not exit the loop!");
5544 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5545 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5546
5547 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005548 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005549 if (EL.hasAnyInfo())
5550 return EL;
5551
5552 return getCouldNotCompute();
5553}
5554
Chris Lattnerec901cc2004-10-12 01:49:27 +00005555static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005556EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5557 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005558 const SCEV *InVal = SE.getConstant(C);
5559 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005560 assert(isa<SCEVConstant>(Val) &&
5561 "Evaluation of SCEV at constant didn't fold correctly?");
5562 return cast<SCEVConstant>(Val)->getValue();
5563}
5564
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005565/// computeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005566/// 'icmp op load X, cst', try to see if we can compute the backedge
5567/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005568ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005569ScalarEvolution::computeLoadConstantCompareExitLimit(
Andrew Trick3ca3f982011-07-26 17:19:55 +00005570 LoadInst *LI,
5571 Constant *RHS,
5572 const Loop *L,
5573 ICmpInst::Predicate predicate) {
5574
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005575 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005576
5577 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005578 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005579 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005580 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005581
5582 // Make sure that it is really a constant global we are gepping, with an
5583 // initializer, and make sure the first IDX is really 0.
5584 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005585 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005586 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5587 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005588 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005589
5590 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005591 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005592 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005593 unsigned VarIdxNum = 0;
5594 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5595 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5596 Indexes.push_back(CI);
5597 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005598 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005599 VarIdx = GEP->getOperand(i);
5600 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005601 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005602 }
5603
Andrew Trick7004e4b2012-03-26 22:33:59 +00005604 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5605 if (!VarIdx)
5606 return getCouldNotCompute();
5607
Chris Lattnerec901cc2004-10-12 01:49:27 +00005608 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5609 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005610 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005611 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005612
5613 // We can only recognize very limited forms of loop index expressions, in
5614 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005615 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005616 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005617 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5618 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005619 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005620
5621 unsigned MaxSteps = MaxBruteForceIterations;
5622 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005623 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005624 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005625 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005626
5627 // Form the GEP offset.
5628 Indexes[VarIdxNum] = Val;
5629
Chris Lattnere166a852012-01-24 05:49:24 +00005630 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5631 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005632 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005633
5634 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005635 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005636 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005637 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005638 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005639 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005640 }
5641 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005642 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005643}
5644
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00005645ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
5646 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
5647 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
5648 if (!RHS)
5649 return getCouldNotCompute();
5650
5651 const BasicBlock *Latch = L->getLoopLatch();
5652 if (!Latch)
5653 return getCouldNotCompute();
5654
5655 const BasicBlock *Predecessor = L->getLoopPredecessor();
5656 if (!Predecessor)
5657 return getCouldNotCompute();
5658
5659 // Return true if V is of the form "LHS `shift_op` <positive constant>".
5660 // Return LHS in OutLHS and shift_opt in OutOpCode.
5661 auto MatchPositiveShift =
5662 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
5663
5664 using namespace PatternMatch;
5665
5666 ConstantInt *ShiftAmt;
5667 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5668 OutOpCode = Instruction::LShr;
5669 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5670 OutOpCode = Instruction::AShr;
5671 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5672 OutOpCode = Instruction::Shl;
5673 else
5674 return false;
5675
5676 return ShiftAmt->getValue().isStrictlyPositive();
5677 };
5678
5679 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
5680 //
5681 // loop:
5682 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
5683 // %iv.shifted = lshr i32 %iv, <positive constant>
5684 //
5685 // Return true on a succesful match. Return the corresponding PHI node (%iv
5686 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
5687 auto MatchShiftRecurrence =
5688 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
5689 Optional<Instruction::BinaryOps> PostShiftOpCode;
5690
5691 {
5692 Instruction::BinaryOps OpC;
5693 Value *V;
5694
5695 // If we encounter a shift instruction, "peel off" the shift operation,
5696 // and remember that we did so. Later when we inspect %iv's backedge
5697 // value, we will make sure that the backedge value uses the same
5698 // operation.
5699 //
5700 // Note: the peeled shift operation does not have to be the same
5701 // instruction as the one feeding into the PHI's backedge value. We only
5702 // really care about it being the same *kind* of shift instruction --
5703 // that's all that is required for our later inferences to hold.
5704 if (MatchPositiveShift(LHS, V, OpC)) {
5705 PostShiftOpCode = OpC;
5706 LHS = V;
5707 }
5708 }
5709
5710 PNOut = dyn_cast<PHINode>(LHS);
5711 if (!PNOut || PNOut->getParent() != L->getHeader())
5712 return false;
5713
5714 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
5715 Value *OpLHS;
5716
5717 return
5718 // The backedge value for the PHI node must be a shift by a positive
5719 // amount
5720 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
5721
5722 // of the PHI node itself
5723 OpLHS == PNOut &&
5724
5725 // and the kind of shift should be match the kind of shift we peeled
5726 // off, if any.
5727 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
5728 };
5729
5730 PHINode *PN;
5731 Instruction::BinaryOps OpCode;
5732 if (!MatchShiftRecurrence(LHS, PN, OpCode))
5733 return getCouldNotCompute();
5734
5735 const DataLayout &DL = getDataLayout();
5736
5737 // The key rationale for this optimization is that for some kinds of shift
5738 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
5739 // within a finite number of iterations. If the condition guarding the
5740 // backedge (in the sense that the backedge is taken if the condition is true)
5741 // is false for the value the shift recurrence stabilizes to, then we know
5742 // that the backedge is taken only a finite number of times.
5743
5744 ConstantInt *StableValue = nullptr;
5745 switch (OpCode) {
5746 default:
5747 llvm_unreachable("Impossible case!");
5748
5749 case Instruction::AShr: {
5750 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
5751 // bitwidth(K) iterations.
5752 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
5753 bool KnownZero, KnownOne;
5754 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
5755 Predecessor->getTerminator(), &DT);
5756 auto *Ty = cast<IntegerType>(RHS->getType());
5757 if (KnownZero)
5758 StableValue = ConstantInt::get(Ty, 0);
5759 else if (KnownOne)
5760 StableValue = ConstantInt::get(Ty, -1, true);
5761 else
5762 return getCouldNotCompute();
5763
5764 break;
5765 }
5766 case Instruction::LShr:
5767 case Instruction::Shl:
5768 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
5769 // stabilize to 0 in at most bitwidth(K) iterations.
5770 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
5771 break;
5772 }
5773
5774 auto *Result =
5775 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
5776 assert(Result->getType()->isIntegerTy(1) &&
5777 "Otherwise cannot be an operand to a branch instruction");
5778
5779 if (Result->isZeroValue()) {
5780 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
5781 const SCEV *UpperBound =
5782 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
5783 return ExitLimit(getCouldNotCompute(), UpperBound);
5784 }
5785
5786 return getCouldNotCompute();
5787}
Chris Lattnerec901cc2004-10-12 01:49:27 +00005788
Chris Lattnerdd730472004-04-17 22:58:41 +00005789/// CanConstantFold - Return true if we can constant fold an instruction of the
5790/// specified type, assuming that all operands were constants.
5791static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005792 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005793 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5794 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005795 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005796
Chris Lattnerdd730472004-04-17 22:58:41 +00005797 if (const CallInst *CI = dyn_cast<CallInst>(I))
5798 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005799 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005800 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005801}
5802
Andrew Trick3a86ba72011-10-05 03:25:31 +00005803/// Determine whether this instruction can constant evolve within this loop
5804/// assuming its operands can all constant evolve.
5805static bool canConstantEvolve(Instruction *I, const Loop *L) {
5806 // An instruction outside of the loop can't be derived from a loop PHI.
5807 if (!L->contains(I)) return false;
5808
5809 if (isa<PHINode>(I)) {
David Blaikie19ef0d32015-03-24 16:33:19 +00005810 // We don't currently keep track of the control flow needed to evaluate
5811 // PHIs, so we cannot handle PHIs inside of loops.
5812 return L->getHeader() == I->getParent();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005813 }
5814
5815 // If we won't be able to constant fold this expression even if the operands
5816 // are constants, bail early.
5817 return CanConstantFold(I);
5818}
5819
5820/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5821/// recursing through each instruction operand until reaching a loop header phi.
5822static PHINode *
5823getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005824 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005825
5826 // Otherwise, we can evaluate this instruction if all of its operands are
5827 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005828 PHINode *PHI = nullptr;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00005829 for (Value *Op : UseInst->operands()) {
5830 if (isa<Constant>(Op)) continue;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005831
Sanjoy Dasd87e4352015-12-08 22:53:36 +00005832 Instruction *OpInst = dyn_cast<Instruction>(Op);
Craig Topper9f008862014-04-15 04:59:12 +00005833 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005834
5835 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005836 if (!P)
5837 // If this operand is already visited, reuse the prior result.
5838 // We may have P != PHI if this is the deepest point at which the
5839 // inconsistent paths meet.
5840 P = PHIMap.lookup(OpInst);
5841 if (!P) {
5842 // Recurse and memoize the results, whether a phi is found or not.
5843 // This recursive call invalidates pointers into PHIMap.
5844 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5845 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005846 }
Craig Topper9f008862014-04-15 04:59:12 +00005847 if (!P)
5848 return nullptr; // Not evolving from PHI
5849 if (PHI && PHI != P)
5850 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005851 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005852 }
5853 // This is a expression evolving from a constant PHI!
5854 return PHI;
5855}
5856
Chris Lattnerdd730472004-04-17 22:58:41 +00005857/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5858/// in the loop that V is derived from. We allow arbitrary operations along the
5859/// way, but the operands of an operation must either be constants or a value
5860/// derived from a constant PHI. If this expression does not fit with these
5861/// constraints, return null.
5862static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005863 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005864 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005865
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00005866 if (PHINode *PN = dyn_cast<PHINode>(I))
Andrew Trick3a86ba72011-10-05 03:25:31 +00005867 return PN;
Chris Lattnerdd730472004-04-17 22:58:41 +00005868
Andrew Trick3a86ba72011-10-05 03:25:31 +00005869 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005870 DenseMap<Instruction *, PHINode *> PHIMap;
5871 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005872}
5873
5874/// EvaluateExpression - Given an expression that passes the
5875/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5876/// in the loop has the value PHIVal. If we can't fold this expression for some
5877/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005878static Constant *EvaluateExpression(Value *V, const Loop *L,
5879 DenseMap<Instruction *, Constant *> &Vals,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005880 const DataLayout &DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005881 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005882 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005883 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005884 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005885 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005886
Andrew Trick3a86ba72011-10-05 03:25:31 +00005887 if (Constant *C = Vals.lookup(I)) return C;
5888
Nick Lewyckya6674c72011-10-22 19:58:20 +00005889 // An instruction inside the loop depends on a value outside the loop that we
5890 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005891 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005892
5893 // An unmapped PHI can be due to a branch or another loop inside this loop,
5894 // or due to this not being the initial iteration through a loop where we
5895 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005896 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005897
Dan Gohmanf820bd32010-06-22 13:15:46 +00005898 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005899
5900 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005901 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5902 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005903 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005904 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005905 continue;
5906 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005907 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005908 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005909 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005910 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005911 }
5912
Nick Lewyckya6674c72011-10-22 19:58:20 +00005913 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005914 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005915 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005916 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5917 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005918 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005919 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005920 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005921 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005922}
5923
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00005924
5925// If every incoming value to PN except the one for BB is a specific Constant,
5926// return that, else return nullptr.
5927static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
5928 Constant *IncomingVal = nullptr;
5929
5930 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5931 if (PN->getIncomingBlock(i) == BB)
5932 continue;
5933
5934 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
5935 if (!CurrentVal)
5936 return nullptr;
5937
5938 if (IncomingVal != CurrentVal) {
5939 if (IncomingVal)
5940 return nullptr;
5941 IncomingVal = CurrentVal;
5942 }
5943 }
5944
5945 return IncomingVal;
5946}
5947
Chris Lattnerdd730472004-04-17 22:58:41 +00005948/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5949/// in the header of its containing loop, we know the loop executes a
5950/// constant number of times, and the PHI node is just a recurrence
5951/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005952Constant *
5953ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005954 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005955 const Loop *L) {
Sanjoy Das4493b402015-10-07 17:38:25 +00005956 auto I = ConstantEvolutionLoopExitValue.find(PN);
Chris Lattnerdd730472004-04-17 22:58:41 +00005957 if (I != ConstantEvolutionLoopExitValue.end())
5958 return I->second;
5959
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005960 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005961 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005962
5963 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5964
Andrew Trick3a86ba72011-10-05 03:25:31 +00005965 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005966 BasicBlock *Header = L->getHeader();
5967 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005968
Sanjoy Dasdd709962015-10-08 18:28:36 +00005969 BasicBlock *Latch = L->getLoopLatch();
5970 if (!Latch)
5971 return nullptr;
5972
Sanjoy Das4493b402015-10-07 17:38:25 +00005973 for (auto &I : *Header) {
5974 PHINode *PHI = dyn_cast<PHINode>(&I);
5975 if (!PHI) break;
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00005976 auto *StartCST = getOtherIncomingValue(PHI, Latch);
Craig Topper9f008862014-04-15 04:59:12 +00005977 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005978 CurrentIterVals[PHI] = StartCST;
5979 }
5980 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005981 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005982
Sanjoy Dasdd709962015-10-08 18:28:36 +00005983 Value *BEValue = PN->getIncomingValueForBlock(Latch);
Chris Lattnerdd730472004-04-17 22:58:41 +00005984
5985 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005986 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005987 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005988
Dan Gohman0bddac12009-02-24 18:55:53 +00005989 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005990 unsigned IterationNum = 0;
Sanjoy Das49edd3b2015-10-27 00:52:09 +00005991 const DataLayout &DL = getDataLayout();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005992 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005993 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005994 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005995
Nick Lewyckya6674c72011-10-22 19:58:20 +00005996 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005997 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005998 DenseMap<Instruction *, Constant *> NextIterVals;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005999 Constant *NextPHI =
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006000 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Craig Topper9f008862014-04-15 04:59:12 +00006001 if (!NextPHI)
6002 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00006003 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006004
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006005 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6006
Nick Lewyckya6674c72011-10-22 19:58:20 +00006007 // Also evaluate the other PHI nodes. However, we don't get to stop if we
6008 // cease to be able to evaluate one of them or if they stop evolving,
6009 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006010 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00006011 for (const auto &I : CurrentIterVals) {
6012 PHINode *PHI = dyn_cast<PHINode>(I.first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00006013 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Sanjoy Das4493b402015-10-07 17:38:25 +00006014 PHIsToCompute.emplace_back(PHI, I.second);
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006015 }
6016 // We use two distinct loops because EvaluateExpression may invalidate any
6017 // iterators into CurrentIterVals.
Sanjoy Das4493b402015-10-07 17:38:25 +00006018 for (const auto &I : PHIsToCompute) {
6019 PHINode *PHI = I.first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006020 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006021 if (!NextPHI) { // Not already computed.
Sanjoy Dasdd709962015-10-08 18:28:36 +00006022 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006023 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006024 }
Sanjoy Das4493b402015-10-07 17:38:25 +00006025 if (NextPHI != I.second)
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006026 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006027 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006028
6029 // If all entries in CurrentIterVals == NextIterVals then we can stop
6030 // iterating, the loop can't continue to change.
6031 if (StoppedEvolving)
6032 return RetVal = CurrentIterVals[PN];
6033
Andrew Trick3a86ba72011-10-05 03:25:31 +00006034 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00006035 }
6036}
6037
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006038const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
Nick Lewyckya6674c72011-10-22 19:58:20 +00006039 Value *Cond,
6040 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00006041 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00006042 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00006043
Dan Gohman866971e2010-06-19 14:17:24 +00006044 // If the loop is canonicalized, the PHI will have exactly two entries.
6045 // That's the only form we support here.
6046 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6047
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006048 DenseMap<Instruction *, Constant *> CurrentIterVals;
6049 BasicBlock *Header = L->getHeader();
6050 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6051
Sanjoy Dasdd709962015-10-08 18:28:36 +00006052 BasicBlock *Latch = L->getLoopLatch();
6053 assert(Latch && "Should follow from NumIncomingValues == 2!");
6054
Sanjoy Das4493b402015-10-07 17:38:25 +00006055 for (auto &I : *Header) {
6056 PHINode *PHI = dyn_cast<PHINode>(&I);
6057 if (!PHI)
6058 break;
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006059 auto *StartCST = getOtherIncomingValue(PHI, Latch);
Craig Topper9f008862014-04-15 04:59:12 +00006060 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006061 CurrentIterVals[PHI] = StartCST;
6062 }
6063 if (!CurrentIterVals.count(PN))
6064 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00006065
6066 // Okay, we find a PHI node that defines the trip count of this loop. Execute
6067 // the loop symbolically to determine when the condition gets a value of
6068 // "ExitWhen".
Andrew Trick90c7a102011-11-16 00:52:40 +00006069 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006070 const DataLayout &DL = getDataLayout();
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006071 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Sanjoy Das4493b402015-10-07 17:38:25 +00006072 auto *CondVal = dyn_cast_or_null<ConstantInt>(
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006073 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00006074
Zhou Sheng75b871f2007-01-11 12:24:14 +00006075 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006076 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00006077
Reid Spencer983e3b32007-03-01 07:25:48 +00006078 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00006079 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00006080 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006081 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006082
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006083 // Update all the PHI nodes for the next iteration.
6084 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006085
6086 // Create a list of which PHIs we need to compute. We want to do this before
6087 // calling EvaluateExpression on them because that may invalidate iterators
6088 // into CurrentIterVals.
6089 SmallVector<PHINode *, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00006090 for (const auto &I : CurrentIterVals) {
6091 PHINode *PHI = dyn_cast<PHINode>(I.first);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006092 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006093 PHIsToCompute.push_back(PHI);
6094 }
Sanjoy Das4493b402015-10-07 17:38:25 +00006095 for (PHINode *PHI : PHIsToCompute) {
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006096 Constant *&NextPHI = NextIterVals[PHI];
6097 if (NextPHI) continue; // Already computed!
6098
Sanjoy Dasdd709962015-10-08 18:28:36 +00006099 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006100 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006101 }
6102 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006103 }
6104
6105 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006106 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006107}
6108
Dan Gohman237d9e52009-09-03 15:00:26 +00006109/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006110/// at the specified scope in the program. The L value specifies a loop
6111/// nest to evaluate the expression at, where null is the top-level or a
6112/// specified loop is immediately inside of the loop.
6113///
6114/// This method can be used to compute the exit value for a variable defined
6115/// in a loop by querying what the value will hold in the parent loop.
6116///
Dan Gohman8ca08852009-05-24 23:25:42 +00006117/// In the case that a relevant loop exit value cannot be computed, the
6118/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006119const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Sanjoy Das01947432015-11-22 21:20:13 +00006120 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6121 ValuesAtScopes[V];
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006122 // Check to see if we've folded this expression at this loop before.
Sanjoy Das01947432015-11-22 21:20:13 +00006123 for (auto &LS : Values)
6124 if (LS.first == L)
6125 return LS.second ? LS.second : V;
6126
6127 Values.emplace_back(L, nullptr);
6128
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006129 // Otherwise compute it.
6130 const SCEV *C = computeSCEVAtScope(V, L);
Sanjoy Das01947432015-11-22 21:20:13 +00006131 for (auto &LS : reverse(ValuesAtScopes[V]))
6132 if (LS.first == L) {
6133 LS.second = C;
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00006134 break;
6135 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006136 return C;
6137}
6138
Nick Lewyckya6674c72011-10-22 19:58:20 +00006139/// This builds up a Constant using the ConstantExpr interface. That way, we
6140/// will return Constants for objects which aren't represented by a
6141/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6142/// Returns NULL if the SCEV isn't representable as a Constant.
6143static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00006144 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00006145 case scCouldNotCompute:
6146 case scAddRecExpr:
6147 break;
6148 case scConstant:
6149 return cast<SCEVConstant>(V)->getValue();
6150 case scUnknown:
6151 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6152 case scSignExtend: {
6153 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6154 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6155 return ConstantExpr::getSExt(CastOp, SS->getType());
6156 break;
6157 }
6158 case scZeroExtend: {
6159 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6160 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6161 return ConstantExpr::getZExt(CastOp, SZ->getType());
6162 break;
6163 }
6164 case scTruncate: {
6165 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6166 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6167 return ConstantExpr::getTrunc(CastOp, ST->getType());
6168 break;
6169 }
6170 case scAddExpr: {
6171 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6172 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006173 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6174 unsigned AS = PTy->getAddressSpace();
6175 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6176 C = ConstantExpr::getBitCast(C, DestPtrTy);
6177 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00006178 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6179 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006180 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006181
6182 // First pointer!
6183 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006184 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00006185 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006186 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006187 // The offsets have been converted to bytes. We can add bytes to an
6188 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006189 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006190 }
6191
6192 // Don't bother trying to sum two pointers. We probably can't
6193 // statically compute a load that results from it anyway.
6194 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00006195 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006196
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006197 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6198 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00006199 C2 = ConstantExpr::getIntegerCast(
6200 C2, Type::getInt32Ty(C->getContext()), true);
David Blaikie4a2e73b2015-04-02 18:55:32 +00006201 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006202 } else
6203 C = ConstantExpr::getAdd(C, C2);
6204 }
6205 return C;
6206 }
6207 break;
6208 }
6209 case scMulExpr: {
6210 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6211 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6212 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00006213 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006214 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6215 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006216 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006217 C = ConstantExpr::getMul(C, C2);
6218 }
6219 return C;
6220 }
6221 break;
6222 }
6223 case scUDivExpr: {
6224 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6225 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6226 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6227 if (LHS->getType() == RHS->getType())
6228 return ConstantExpr::getUDiv(LHS, RHS);
6229 break;
6230 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00006231 case scSMaxExpr:
6232 case scUMaxExpr:
6233 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006234 }
Craig Topper9f008862014-04-15 04:59:12 +00006235 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006236}
6237
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006238const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006239 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00006240
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006241 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00006242 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00006243 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006244 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006245 const Loop *LI = this->LI[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00006246 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
6247 if (PHINode *PN = dyn_cast<PHINode>(I))
6248 if (PN->getParent() == LI->getHeader()) {
6249 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00006250 // to see if the loop that contains it has a known backedge-taken
6251 // count. If so, we may be able to force computation of the exit
6252 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00006253 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00006254 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00006255 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006256 // Okay, we know how many times the containing loop executes. If
6257 // this is a constant evolving PHI node, get the final value at
6258 // the specified iteration number.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006259 Constant *RV =
6260 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00006261 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00006262 }
6263 }
6264
Reid Spencere6328ca2006-12-04 21:33:23 +00006265 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00006266 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00006267 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00006268 // result. This is particularly useful for computing loop exit values.
6269 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006270 SmallVector<Constant *, 4> Operands;
6271 bool MadeImprovement = false;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00006272 for (Value *Op : I->operands()) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006273 if (Constant *C = dyn_cast<Constant>(Op)) {
6274 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006275 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00006276 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006277
6278 // If any of the operands is non-constant and if they are
6279 // non-integer and non-pointer, don't even try to analyze them
6280 // with scev techniques.
6281 if (!isSCEVable(Op->getType()))
6282 return V;
6283
6284 const SCEV *OrigV = getSCEV(Op);
6285 const SCEV *OpV = getSCEVAtScope(OrigV, L);
6286 MadeImprovement |= OrigV != OpV;
6287
Nick Lewyckya6674c72011-10-22 19:58:20 +00006288 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006289 if (!C) return V;
6290 if (C->getType() != Op->getType())
6291 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6292 Op->getType(),
6293 false),
6294 C, Op->getType());
6295 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00006296 }
Dan Gohmance973df2009-06-24 04:48:43 +00006297
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006298 // Check to see if getSCEVAtScope actually made an improvement.
6299 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00006300 Constant *C = nullptr;
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006301 const DataLayout &DL = getDataLayout();
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006302 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006303 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006304 Operands[1], DL, &TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006305 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6306 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00006307 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006308 } else
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006309 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006310 DL, &TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006311 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00006312 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006313 }
Chris Lattnerdd730472004-04-17 22:58:41 +00006314 }
6315 }
6316
6317 // This is some other type of SCEVUnknown, just return it.
6318 return V;
6319 }
6320
Dan Gohmana30370b2009-05-04 22:02:23 +00006321 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006322 // Avoid performing the look-up in the common case where the specified
6323 // expression has no loop-variant portions.
6324 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006325 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006326 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006327 // Okay, at least one of these operands is loop variant but might be
6328 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00006329 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6330 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00006331 NewOps.push_back(OpAtScope);
6332
6333 for (++i; i != e; ++i) {
6334 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006335 NewOps.push_back(OpAtScope);
6336 }
6337 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006338 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006339 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006340 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006341 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006342 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006343 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006344 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00006345 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006346 }
6347 }
6348 // If we got here, all operands are loop invariant.
6349 return Comm;
6350 }
6351
Dan Gohmana30370b2009-05-04 22:02:23 +00006352 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006353 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6354 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00006355 if (LHS == Div->getLHS() && RHS == Div->getRHS())
6356 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00006357 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00006358 }
6359
6360 // If this is a loop recurrence for a loop that does not contain L, then we
6361 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00006362 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006363 // First, attempt to evaluate each operand.
6364 // Avoid performing the look-up in the common case where the specified
6365 // expression has no loop-variant portions.
6366 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6367 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6368 if (OpAtScope == AddRec->getOperand(i))
6369 continue;
6370
6371 // Okay, at least one of these operands is loop variant but might be
6372 // foldable. Build a new instance of the folded commutative expression.
6373 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6374 AddRec->op_begin()+i);
6375 NewOps.push_back(OpAtScope);
6376 for (++i; i != e; ++i)
6377 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6378
Andrew Trick759ba082011-04-27 01:21:25 +00006379 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00006380 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00006381 AddRec->getNoWrapFlags(SCEV::FlagNW));
6382 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00006383 // The addrec may be folded to a nonrecurrence, for example, if the
6384 // induction variable is multiplied by zero after constant folding. Go
6385 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00006386 if (!AddRec)
6387 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006388 break;
6389 }
6390
6391 // If the scope is outside the addrec's loop, evaluate it by using the
6392 // loop exit value of the addrec.
6393 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006394 // To evaluate this recurrence, we need to know how many times the AddRec
6395 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006396 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006397 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00006398
Eli Friedman61f67622008-08-04 23:49:06 +00006399 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006400 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00006401 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006402
Dan Gohman8ca08852009-05-24 23:25:42 +00006403 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00006404 }
6405
Dan Gohmana30370b2009-05-04 22:02:23 +00006406 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006407 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006408 if (Op == Cast->getOperand())
6409 return Cast; // must be loop invariant
6410 return getZeroExtendExpr(Op, Cast->getType());
6411 }
6412
Dan Gohmana30370b2009-05-04 22:02:23 +00006413 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006414 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006415 if (Op == Cast->getOperand())
6416 return Cast; // must be loop invariant
6417 return getSignExtendExpr(Op, Cast->getType());
6418 }
6419
Dan Gohmana30370b2009-05-04 22:02:23 +00006420 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006421 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006422 if (Op == Cast->getOperand())
6423 return Cast; // must be loop invariant
6424 return getTruncateExpr(Op, Cast->getType());
6425 }
6426
Torok Edwinfbcc6632009-07-14 16:55:14 +00006427 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006428}
6429
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006430/// getSCEVAtScope - This is a convenience function which does
6431/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00006432const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00006433 return getSCEVAtScope(getSCEV(V), L);
6434}
6435
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006436/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6437/// following equation:
6438///
6439/// A * X = B (mod N)
6440///
6441/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6442/// A and B isn't important.
6443///
6444/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006445static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006446 ScalarEvolution &SE) {
6447 uint32_t BW = A.getBitWidth();
6448 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6449 assert(A != 0 && "A must be non-zero.");
6450
6451 // 1. D = gcd(A, N)
6452 //
6453 // The gcd of A and N may have only one prime factor: 2. The number of
6454 // trailing zeros in A is its multiplicity
6455 uint32_t Mult2 = A.countTrailingZeros();
6456 // D = 2^Mult2
6457
6458 // 2. Check if B is divisible by D.
6459 //
6460 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6461 // is not less than multiplicity of this prime factor for D.
6462 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00006463 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006464
6465 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6466 // modulo (N / D).
6467 //
6468 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6469 // bit width during computations.
6470 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6471 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00006472 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006473 APInt I = AD.multiplicativeInverse(Mod);
6474
6475 // 4. Compute the minimum unsigned root of the equation:
6476 // I * (B / D) mod (N / D)
6477 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6478
6479 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6480 // bits.
6481 return SE.getConstant(Result.trunc(BW));
6482}
Chris Lattnerd934c702004-04-02 20:23:17 +00006483
6484/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6485/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
6486/// might be the same) or two SCEVCouldNotCompute objects.
6487///
Dan Gohmanaf752342009-07-07 17:06:11 +00006488static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00006489SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006490 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00006491 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6492 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6493 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00006494
Chris Lattnerd934c702004-04-02 20:23:17 +00006495 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00006496 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00006497 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006498 return std::make_pair(CNC, CNC);
6499 }
6500
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006501 uint32_t BitWidth = LC->getAPInt().getBitWidth();
6502 const APInt &L = LC->getAPInt();
6503 const APInt &M = MC->getAPInt();
6504 const APInt &N = NC->getAPInt();
Reid Spencer983e3b32007-03-01 07:25:48 +00006505 APInt Two(BitWidth, 2);
6506 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006507
Dan Gohmance973df2009-06-24 04:48:43 +00006508 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006509 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006510 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006511 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6512 // The B coefficient is M-N/2
6513 APInt B(M);
6514 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006515
Reid Spencer983e3b32007-03-01 07:25:48 +00006516 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006517 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006518
Reid Spencer983e3b32007-03-01 07:25:48 +00006519 // Compute the B^2-4ac term.
6520 APInt SqrtTerm(B);
6521 SqrtTerm *= B;
6522 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006523
Nick Lewyckyfb780832012-08-01 09:14:36 +00006524 if (SqrtTerm.isNegative()) {
6525 // The loop is provably infinite.
6526 const SCEV *CNC = SE.getCouldNotCompute();
6527 return std::make_pair(CNC, CNC);
6528 }
6529
Reid Spencer983e3b32007-03-01 07:25:48 +00006530 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6531 // integer value or else APInt::sqrt() will assert.
6532 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006533
Dan Gohmance973df2009-06-24 04:48:43 +00006534 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006535 // The divisions must be performed as signed divisions.
6536 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006537 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006538 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006539 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00006540 return std::make_pair(CNC, CNC);
6541 }
6542
Owen Anderson47db9412009-07-22 00:24:57 +00006543 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006544
6545 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006546 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006547 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006548 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006549
Dan Gohmance973df2009-06-24 04:48:43 +00006550 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00006551 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00006552 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006553}
6554
6555/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006556/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006557///
6558/// This is only used for loops with a "x != y" exit test. The exit condition is
6559/// now expressed as a single expression, V = x-y. So the exit test is
6560/// effectively V != 0. We know and take advantage of the fact that this
6561/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006562ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006563ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006564 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006565 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006566 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006567 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006568 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006569 }
6570
Dan Gohman48f82222009-05-04 22:30:44 +00006571 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006572 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006573 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006574
Chris Lattnerdff679f2011-01-09 22:39:48 +00006575 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6576 // the quadratic equation to solve it.
6577 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6578 std::pair<const SCEV *,const SCEV *> Roots =
6579 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006580 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6581 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006582 if (R1 && R2) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006583 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006584 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006585 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6586 R1->getValue(),
6587 R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00006588 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00006589 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006590
Chris Lattnerd934c702004-04-02 20:23:17 +00006591 // We can only use this value if the chrec ends up with an exact zero
6592 // value at this index. When solving for "X*X != 5", for example, we
6593 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006594 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006595 if (Val->isZero())
6596 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006597 }
6598 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006599 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006600 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006601
Chris Lattnerdff679f2011-01-09 22:39:48 +00006602 // Otherwise we can only handle this if it is affine.
6603 if (!AddRec->isAffine())
6604 return getCouldNotCompute();
6605
6606 // If this is an affine expression, the execution count of this branch is
6607 // the minimum unsigned root of the following equation:
6608 //
6609 // Start + Step*N = 0 (mod 2^BW)
6610 //
6611 // equivalent to:
6612 //
6613 // Step*N = -Start (mod 2^BW)
6614 //
6615 // where BW is the common bit width of Start and Step.
6616
6617 // Get the initial value for the loop.
6618 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6619 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6620
6621 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006622 //
6623 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6624 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6625 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6626 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006627 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006628 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006629 return getCouldNotCompute();
6630
Andrew Trick8b55b732011-03-14 16:50:06 +00006631 // For positive steps (counting up until unsigned overflow):
6632 // N = -Start/Step (as unsigned)
6633 // For negative steps (counting down to zero):
6634 // N = Start/-Step
6635 // First compute the unsigned distance from zero in the direction of Step.
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006636 bool CountDown = StepC->getAPInt().isNegative();
Andrew Trickf1781db2011-03-14 17:28:02 +00006637 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006638
6639 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006640 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6641 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006642 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6643 ConstantRange CR = getUnsignedRange(Start);
6644 const SCEV *MaxBECount;
6645 if (!CountDown && CR.getUnsignedMin().isMinValue())
6646 // When counting up, the worst starting value is 1, not 0.
6647 MaxBECount = CR.getUnsignedMax().isMinValue()
6648 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6649 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6650 else
6651 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6652 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006653 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006654 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006655
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006656 // As a special case, handle the instance where Step is a positive power of
6657 // two. In this case, determining whether Step divides Distance evenly can be
6658 // done by counting and comparing the number of trailing zeros of Step and
6659 // Distance.
6660 if (!CountDown) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006661 const APInt &StepV = StepC->getAPInt();
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006662 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6663 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6664 // case is not handled as this code is guarded by !CountDown.
6665 if (StepV.isPowerOf2() &&
Sanjoy Dasf3132d32015-09-10 05:27:38 +00006666 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
6667 // Here we've constrained the equation to be of the form
6668 //
6669 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
6670 //
6671 // where we're operating on a W bit wide integer domain and k is
6672 // non-negative. The smallest unsigned solution for X is the trip count.
6673 //
6674 // (0) is equivalent to:
6675 //
6676 // 2^(N + k) * Distance' - 2^N * X = L * 2^W
6677 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
6678 // <=> 2^k * Distance' - X = L * 2^(W - N)
6679 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
6680 //
6681 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
6682 // by 2^(W - N).
6683 //
6684 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
6685 //
6686 // E.g. say we're solving
6687 //
6688 // 2 * Val = 2 * X (in i8) ... (3)
6689 //
6690 // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
6691 //
6692 // Note: It is tempting to solve (3) by setting X = Val, but Val is not
6693 // necessarily the smallest unsigned value of X that satisfies (3).
6694 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
6695 // is i8 1, not i8 -127
6696
6697 const auto *ModuloResult = getUDivExactExpr(Distance, Step);
6698
6699 // Since SCEV does not have a URem node, we construct one using a truncate
6700 // and a zero extend.
6701
6702 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
6703 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
6704 auto *WideTy = Distance->getType();
6705
6706 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
6707 }
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006708 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006709
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006710 // If the condition controls loop exit (the loop exits only if the expression
6711 // is true) and the addition is no-wrap we can use unsigned divide to
6712 // compute the backedge count. In this case, the step may not divide the
6713 // distance, but we don't care because if the condition is "missed" the loop
6714 // will have undefined behavior due to wrapping.
6715 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6716 const SCEV *Exact =
6717 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6718 return ExitLimit(Exact, Exact);
6719 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006720
Chris Lattnerdff679f2011-01-09 22:39:48 +00006721 // Then, try to solve the above equation provided that Start is constant.
6722 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006723 return SolveLinEquationWithOverflow(StepC->getAPInt(), -StartC->getAPInt(),
Chris Lattnerdff679f2011-01-09 22:39:48 +00006724 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006725 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006726}
6727
6728/// HowFarToNonZero - Return the number of times a backedge checking the
6729/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006730/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006731ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006732ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006733 // Loops that look like: while (X == 0) are very strange indeed. We don't
6734 // handle them yet except for the trivial case. This could be expanded in the
6735 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006736
Chris Lattnerd934c702004-04-02 20:23:17 +00006737 // If the value is a constant, check to see if it is known to be non-zero
6738 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006739 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006740 if (!C->getValue()->isNullValue())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00006741 return getZero(C->getType());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006742 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006743 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006744
Chris Lattnerd934c702004-04-02 20:23:17 +00006745 // We could implement others, but I really doubt anyone writes loops like
6746 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006747 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006748}
6749
Dan Gohmanf9081a22008-09-15 22:18:04 +00006750/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6751/// (which may not be an immediate predecessor) which has exactly one
6752/// successor from which BB is reachable, or null if no such block is
6753/// found.
6754///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006755std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006756ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006757 // If the block has a unique predecessor, then there is no path from the
6758 // predecessor to the block that does not go through the direct edge
6759 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006760 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006761 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006762
6763 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006764 // If the header has a unique predecessor outside the loop, it must be
6765 // a block that has exactly one successor that can reach the loop.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006766 if (Loop *L = LI.getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006767 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006768
Dan Gohman4e3c1132010-04-15 16:19:08 +00006769 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006770}
6771
Dan Gohman450f4e02009-06-20 00:35:32 +00006772/// HasSameValue - SCEV structural equivalence is usually sufficient for
6773/// testing whether two expressions are equal, however for the purposes of
6774/// looking for a condition guarding a loop, it can be useful to be a little
6775/// more general, since a front-end may have replicated the controlling
6776/// expression.
6777///
Dan Gohmanaf752342009-07-07 17:06:11 +00006778static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006779 // Quick check to see if they are the same SCEV.
6780 if (A == B) return true;
6781
Sanjoy Dasf1090b62015-09-27 21:09:48 +00006782 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
6783 // Not all instructions that are "identical" compute the same value. For
6784 // instance, two distinct alloca instructions allocating the same type are
6785 // identical and do not read memory; but compute distinct values.
6786 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
6787 };
6788
Dan Gohman450f4e02009-06-20 00:35:32 +00006789 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6790 // two different instructions with the same value. Check for this case.
6791 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6792 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6793 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6794 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Sanjoy Dasf1090b62015-09-27 21:09:48 +00006795 if (ComputesEqualValues(AI, BI))
Dan Gohman450f4e02009-06-20 00:35:32 +00006796 return true;
6797
6798 // Otherwise assume they may have a different value.
6799 return false;
6800}
6801
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006802/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006803/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006804///
6805bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006806 const SCEV *&LHS, const SCEV *&RHS,
6807 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006808 bool Changed = false;
6809
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006810 // If we hit the max recursion limit bail out.
6811 if (Depth >= 3)
6812 return false;
6813
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006814 // Canonicalize a constant to the right side.
6815 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6816 // Check for both operands constant.
6817 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6818 if (ConstantExpr::getICmp(Pred,
6819 LHSC->getValue(),
6820 RHSC->getValue())->isNullValue())
6821 goto trivially_false;
6822 else
6823 goto trivially_true;
6824 }
6825 // Otherwise swap the operands to put the constant on the right.
6826 std::swap(LHS, RHS);
6827 Pred = ICmpInst::getSwappedPredicate(Pred);
6828 Changed = true;
6829 }
6830
6831 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006832 // addrec's loop, put the addrec on the left. Also make a dominance check,
6833 // as both operands could be addrecs loop-invariant in each other's loop.
6834 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6835 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006836 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006837 std::swap(LHS, RHS);
6838 Pred = ICmpInst::getSwappedPredicate(Pred);
6839 Changed = true;
6840 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006841 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006842
6843 // If there's a constant operand, canonicalize comparisons with boundary
6844 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6845 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00006846 const APInt &RA = RC->getAPInt();
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006847 switch (Pred) {
6848 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6849 case ICmpInst::ICMP_EQ:
6850 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006851 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6852 if (!RA)
6853 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6854 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006855 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6856 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006857 RHS = AE->getOperand(1);
6858 LHS = ME->getOperand(1);
6859 Changed = true;
6860 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006861 break;
6862 case ICmpInst::ICMP_UGE:
6863 if ((RA - 1).isMinValue()) {
6864 Pred = ICmpInst::ICMP_NE;
6865 RHS = getConstant(RA - 1);
6866 Changed = true;
6867 break;
6868 }
6869 if (RA.isMaxValue()) {
6870 Pred = ICmpInst::ICMP_EQ;
6871 Changed = true;
6872 break;
6873 }
6874 if (RA.isMinValue()) goto trivially_true;
6875
6876 Pred = ICmpInst::ICMP_UGT;
6877 RHS = getConstant(RA - 1);
6878 Changed = true;
6879 break;
6880 case ICmpInst::ICMP_ULE:
6881 if ((RA + 1).isMaxValue()) {
6882 Pred = ICmpInst::ICMP_NE;
6883 RHS = getConstant(RA + 1);
6884 Changed = true;
6885 break;
6886 }
6887 if (RA.isMinValue()) {
6888 Pred = ICmpInst::ICMP_EQ;
6889 Changed = true;
6890 break;
6891 }
6892 if (RA.isMaxValue()) goto trivially_true;
6893
6894 Pred = ICmpInst::ICMP_ULT;
6895 RHS = getConstant(RA + 1);
6896 Changed = true;
6897 break;
6898 case ICmpInst::ICMP_SGE:
6899 if ((RA - 1).isMinSignedValue()) {
6900 Pred = ICmpInst::ICMP_NE;
6901 RHS = getConstant(RA - 1);
6902 Changed = true;
6903 break;
6904 }
6905 if (RA.isMaxSignedValue()) {
6906 Pred = ICmpInst::ICMP_EQ;
6907 Changed = true;
6908 break;
6909 }
6910 if (RA.isMinSignedValue()) goto trivially_true;
6911
6912 Pred = ICmpInst::ICMP_SGT;
6913 RHS = getConstant(RA - 1);
6914 Changed = true;
6915 break;
6916 case ICmpInst::ICMP_SLE:
6917 if ((RA + 1).isMaxSignedValue()) {
6918 Pred = ICmpInst::ICMP_NE;
6919 RHS = getConstant(RA + 1);
6920 Changed = true;
6921 break;
6922 }
6923 if (RA.isMinSignedValue()) {
6924 Pred = ICmpInst::ICMP_EQ;
6925 Changed = true;
6926 break;
6927 }
6928 if (RA.isMaxSignedValue()) goto trivially_true;
6929
6930 Pred = ICmpInst::ICMP_SLT;
6931 RHS = getConstant(RA + 1);
6932 Changed = true;
6933 break;
6934 case ICmpInst::ICMP_UGT:
6935 if (RA.isMinValue()) {
6936 Pred = ICmpInst::ICMP_NE;
6937 Changed = true;
6938 break;
6939 }
6940 if ((RA + 1).isMaxValue()) {
6941 Pred = ICmpInst::ICMP_EQ;
6942 RHS = getConstant(RA + 1);
6943 Changed = true;
6944 break;
6945 }
6946 if (RA.isMaxValue()) goto trivially_false;
6947 break;
6948 case ICmpInst::ICMP_ULT:
6949 if (RA.isMaxValue()) {
6950 Pred = ICmpInst::ICMP_NE;
6951 Changed = true;
6952 break;
6953 }
6954 if ((RA - 1).isMinValue()) {
6955 Pred = ICmpInst::ICMP_EQ;
6956 RHS = getConstant(RA - 1);
6957 Changed = true;
6958 break;
6959 }
6960 if (RA.isMinValue()) goto trivially_false;
6961 break;
6962 case ICmpInst::ICMP_SGT:
6963 if (RA.isMinSignedValue()) {
6964 Pred = ICmpInst::ICMP_NE;
6965 Changed = true;
6966 break;
6967 }
6968 if ((RA + 1).isMaxSignedValue()) {
6969 Pred = ICmpInst::ICMP_EQ;
6970 RHS = getConstant(RA + 1);
6971 Changed = true;
6972 break;
6973 }
6974 if (RA.isMaxSignedValue()) goto trivially_false;
6975 break;
6976 case ICmpInst::ICMP_SLT:
6977 if (RA.isMaxSignedValue()) {
6978 Pred = ICmpInst::ICMP_NE;
6979 Changed = true;
6980 break;
6981 }
6982 if ((RA - 1).isMinSignedValue()) {
6983 Pred = ICmpInst::ICMP_EQ;
6984 RHS = getConstant(RA - 1);
6985 Changed = true;
6986 break;
6987 }
6988 if (RA.isMinSignedValue()) goto trivially_false;
6989 break;
6990 }
6991 }
6992
6993 // Check for obvious equality.
6994 if (HasSameValue(LHS, RHS)) {
6995 if (ICmpInst::isTrueWhenEqual(Pred))
6996 goto trivially_true;
6997 if (ICmpInst::isFalseWhenEqual(Pred))
6998 goto trivially_false;
6999 }
7000
Dan Gohman81585c12010-05-03 16:35:17 +00007001 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7002 // adding or subtracting 1 from one of the operands.
7003 switch (Pred) {
7004 case ICmpInst::ICMP_SLE:
7005 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7006 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007007 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007008 Pred = ICmpInst::ICMP_SLT;
7009 Changed = true;
7010 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007011 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007012 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007013 Pred = ICmpInst::ICMP_SLT;
7014 Changed = true;
7015 }
7016 break;
7017 case ICmpInst::ICMP_SGE:
7018 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007019 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007020 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007021 Pred = ICmpInst::ICMP_SGT;
7022 Changed = true;
7023 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7024 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007025 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007026 Pred = ICmpInst::ICMP_SGT;
7027 Changed = true;
7028 }
7029 break;
7030 case ICmpInst::ICMP_ULE:
7031 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007032 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007033 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007034 Pred = ICmpInst::ICMP_ULT;
7035 Changed = true;
7036 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Peter Collingbournec85f4ce2015-11-20 01:26:13 +00007037 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
Dan Gohman81585c12010-05-03 16:35:17 +00007038 Pred = ICmpInst::ICMP_ULT;
7039 Changed = true;
7040 }
7041 break;
7042 case ICmpInst::ICMP_UGE:
7043 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Peter Collingbournec85f4ce2015-11-20 01:26:13 +00007044 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
Dan Gohman81585c12010-05-03 16:35:17 +00007045 Pred = ICmpInst::ICMP_UGT;
7046 Changed = true;
7047 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007048 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007049 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007050 Pred = ICmpInst::ICMP_UGT;
7051 Changed = true;
7052 }
7053 break;
7054 default:
7055 break;
7056 }
7057
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007058 // TODO: More simplifications are possible here.
7059
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007060 // Recursively simplify until we either hit a recursion limit or nothing
7061 // changes.
7062 if (Changed)
7063 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7064
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007065 return Changed;
7066
7067trivially_true:
7068 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00007069 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007070 Pred = ICmpInst::ICMP_EQ;
7071 return true;
7072
7073trivially_false:
7074 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00007075 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007076 Pred = ICmpInst::ICMP_NE;
7077 return true;
7078}
7079
Dan Gohmane65c9172009-07-13 21:35:55 +00007080bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7081 return getSignedRange(S).getSignedMax().isNegative();
7082}
7083
7084bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7085 return getSignedRange(S).getSignedMin().isStrictlyPositive();
7086}
7087
7088bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7089 return !getSignedRange(S).getSignedMin().isNegative();
7090}
7091
7092bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7093 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7094}
7095
7096bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7097 return isKnownNegative(S) || isKnownPositive(S);
7098}
7099
7100bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7101 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00007102 // Canonicalize the inputs first.
7103 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7104
Dan Gohman07591692010-04-11 22:16:48 +00007105 // If LHS or RHS is an addrec, check to see if the condition is true in
7106 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00007107 // If LHS and RHS are both addrec, both conditions must be true in
7108 // every iteration of the loop.
7109 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7110 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7111 bool LeftGuarded = false;
7112 bool RightGuarded = false;
7113 if (LAR) {
7114 const Loop *L = LAR->getLoop();
7115 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7116 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7117 if (!RAR) return true;
7118 LeftGuarded = true;
7119 }
7120 }
7121 if (RAR) {
7122 const Loop *L = RAR->getLoop();
7123 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7124 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7125 if (!LAR) return true;
7126 RightGuarded = true;
7127 }
7128 }
7129 if (LeftGuarded && RightGuarded)
7130 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007131
Sanjoy Das7d910f22015-10-02 18:50:30 +00007132 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7133 return true;
7134
Dan Gohman07591692010-04-11 22:16:48 +00007135 // Otherwise see what can be done with known constant ranges.
7136 return isKnownPredicateWithRanges(Pred, LHS, RHS);
7137}
7138
Sanjoy Das5dab2052015-07-27 21:42:49 +00007139bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7140 ICmpInst::Predicate Pred,
7141 bool &Increasing) {
7142 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7143
7144#ifndef NDEBUG
7145 // Verify an invariant: inverting the predicate should turn a monotonically
7146 // increasing change to a monotonically decreasing one, and vice versa.
7147 bool IncreasingSwapped;
7148 bool ResultSwapped = isMonotonicPredicateImpl(
7149 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7150
7151 assert(Result == ResultSwapped && "should be able to analyze both!");
7152 if (ResultSwapped)
7153 assert(Increasing == !IncreasingSwapped &&
7154 "monotonicity should flip as we flip the predicate");
7155#endif
7156
7157 return Result;
7158}
7159
7160bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7161 ICmpInst::Predicate Pred,
7162 bool &Increasing) {
Sanjoy Das5dab2052015-07-27 21:42:49 +00007163
7164 // A zero step value for LHS means the induction variable is essentially a
7165 // loop invariant value. We don't really depend on the predicate actually
7166 // flipping from false to true (for increasing predicates, and the other way
7167 // around for decreasing predicates), all we care about is that *if* the
7168 // predicate changes then it only changes from false to true.
7169 //
7170 // A zero step value in itself is not very useful, but there may be places
7171 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7172 // as general as possible.
7173
Sanjoy Das366acc12015-08-06 20:43:41 +00007174 switch (Pred) {
7175 default:
7176 return false; // Conservative answer
7177
7178 case ICmpInst::ICMP_UGT:
7179 case ICmpInst::ICMP_UGE:
7180 case ICmpInst::ICMP_ULT:
7181 case ICmpInst::ICMP_ULE:
7182 if (!LHS->getNoWrapFlags(SCEV::FlagNUW))
7183 return false;
7184
7185 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007186 return true;
Sanjoy Das366acc12015-08-06 20:43:41 +00007187
7188 case ICmpInst::ICMP_SGT:
7189 case ICmpInst::ICMP_SGE:
7190 case ICmpInst::ICMP_SLT:
7191 case ICmpInst::ICMP_SLE: {
7192 if (!LHS->getNoWrapFlags(SCEV::FlagNSW))
7193 return false;
7194
7195 const SCEV *Step = LHS->getStepRecurrence(*this);
7196
7197 if (isKnownNonNegative(Step)) {
7198 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7199 return true;
7200 }
7201
7202 if (isKnownNonPositive(Step)) {
7203 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7204 return true;
7205 }
7206
7207 return false;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007208 }
7209
Sanjoy Das5dab2052015-07-27 21:42:49 +00007210 }
7211
Sanjoy Das366acc12015-08-06 20:43:41 +00007212 llvm_unreachable("switch has default clause!");
Sanjoy Das5dab2052015-07-27 21:42:49 +00007213}
7214
7215bool ScalarEvolution::isLoopInvariantPredicate(
7216 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7217 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7218 const SCEV *&InvariantRHS) {
7219
7220 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7221 if (!isLoopInvariant(RHS, L)) {
7222 if (!isLoopInvariant(LHS, L))
7223 return false;
7224
7225 std::swap(LHS, RHS);
7226 Pred = ICmpInst::getSwappedPredicate(Pred);
7227 }
7228
7229 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7230 if (!ArLHS || ArLHS->getLoop() != L)
7231 return false;
7232
7233 bool Increasing;
7234 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7235 return false;
7236
7237 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7238 // true as the loop iterates, and the backedge is control dependent on
7239 // "ArLHS `Pred` RHS" == true then we can reason as follows:
7240 //
7241 // * if the predicate was false in the first iteration then the predicate
7242 // is never evaluated again, since the loop exits without taking the
7243 // backedge.
7244 // * if the predicate was true in the first iteration then it will
7245 // continue to be true for all future iterations since it is
7246 // monotonically increasing.
7247 //
7248 // For both the above possibilities, we can replace the loop varying
7249 // predicate with its value on the first iteration of the loop (which is
7250 // loop invariant).
7251 //
7252 // A similar reasoning applies for a monotonically decreasing predicate, by
7253 // replacing true with false and false with true in the above two bullets.
7254
7255 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7256
7257 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7258 return false;
7259
7260 InvariantPred = Pred;
7261 InvariantLHS = ArLHS->getStart();
7262 InvariantRHS = RHS;
7263 return true;
7264}
7265
Dan Gohman07591692010-04-11 22:16:48 +00007266bool
7267ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
7268 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007269 if (HasSameValue(LHS, RHS))
7270 return ICmpInst::isTrueWhenEqual(Pred);
7271
Dan Gohman07591692010-04-11 22:16:48 +00007272 // This code is split out from isKnownPredicate because it is called from
7273 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00007274 switch (Pred) {
7275 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00007276 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00007277 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00007278 std::swap(LHS, RHS);
7279 case ICmpInst::ICMP_SLT: {
7280 ConstantRange LHSRange = getSignedRange(LHS);
7281 ConstantRange RHSRange = getSignedRange(RHS);
7282 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
7283 return true;
7284 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
7285 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007286 break;
7287 }
7288 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00007289 std::swap(LHS, RHS);
7290 case ICmpInst::ICMP_SLE: {
7291 ConstantRange LHSRange = getSignedRange(LHS);
7292 ConstantRange RHSRange = getSignedRange(RHS);
7293 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
7294 return true;
7295 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
7296 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007297 break;
7298 }
7299 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00007300 std::swap(LHS, RHS);
7301 case ICmpInst::ICMP_ULT: {
7302 ConstantRange LHSRange = getUnsignedRange(LHS);
7303 ConstantRange RHSRange = getUnsignedRange(RHS);
7304 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
7305 return true;
7306 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
7307 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007308 break;
7309 }
7310 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00007311 std::swap(LHS, RHS);
7312 case ICmpInst::ICMP_ULE: {
7313 ConstantRange LHSRange = getUnsignedRange(LHS);
7314 ConstantRange RHSRange = getUnsignedRange(RHS);
7315 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
7316 return true;
7317 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
7318 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007319 break;
7320 }
7321 case ICmpInst::ICMP_NE: {
7322 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
7323 return true;
7324 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
7325 return true;
7326
7327 const SCEV *Diff = getMinusSCEV(LHS, RHS);
7328 if (isKnownNonZero(Diff))
7329 return true;
7330 break;
7331 }
7332 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00007333 // The check at the top of the function catches the case where
7334 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00007335 break;
7336 }
7337 return false;
7338}
7339
Sanjoy Dasc1a29772015-11-05 23:45:38 +00007340bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7341 const SCEV *LHS,
7342 const SCEV *RHS) {
7343
7344 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7345 // Return Y via OutY.
7346 auto MatchBinaryAddToConst =
7347 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7348 SCEV::NoWrapFlags ExpectedFlags) {
7349 const SCEV *NonConstOp, *ConstOp;
7350 SCEV::NoWrapFlags FlagsPresent;
7351
7352 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7353 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7354 return false;
7355
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007356 OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
Sanjoy Dasc1a29772015-11-05 23:45:38 +00007357 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7358 };
7359
7360 APInt C;
7361
7362 switch (Pred) {
7363 default:
7364 break;
7365
7366 case ICmpInst::ICMP_SGE:
7367 std::swap(LHS, RHS);
7368 case ICmpInst::ICMP_SLE:
7369 // X s<= (X + C)<nsw> if C >= 0
7370 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7371 return true;
7372
7373 // (X + C)<nsw> s<= X if C <= 0
7374 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7375 !C.isStrictlyPositive())
7376 return true;
7377 break;
7378
7379 case ICmpInst::ICMP_SGT:
7380 std::swap(LHS, RHS);
7381 case ICmpInst::ICMP_SLT:
7382 // X s< (X + C)<nsw> if C > 0
7383 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7384 C.isStrictlyPositive())
7385 return true;
7386
7387 // (X + C)<nsw> s< X if C < 0
7388 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7389 return true;
7390 break;
7391 }
7392
7393 return false;
7394}
7395
Sanjoy Das7d910f22015-10-02 18:50:30 +00007396bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7397 const SCEV *LHS,
7398 const SCEV *RHS) {
Sanjoy Das10dffcb2015-10-08 03:46:00 +00007399 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
Sanjoy Das7d910f22015-10-02 18:50:30 +00007400 return false;
7401
7402 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7403 // the stack can result in exponential time complexity.
7404 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7405
7406 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7407 //
7408 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7409 // isKnownPredicate. isKnownPredicate is more powerful, but also more
7410 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7411 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
7412 // use isKnownPredicate later if needed.
Alexander Kornienko484e48e32015-11-05 21:07:12 +00007413 return isKnownNonNegative(RHS) &&
7414 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7415 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
Sanjoy Das7d910f22015-10-02 18:50:30 +00007416}
7417
Dan Gohmane65c9172009-07-13 21:35:55 +00007418/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7419/// protected by a conditional between LHS and RHS. This is used to
7420/// to eliminate casts.
7421bool
7422ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7423 ICmpInst::Predicate Pred,
7424 const SCEV *LHS, const SCEV *RHS) {
7425 // Interpret a null as meaning no loop, where there is obviously no guard
7426 // (interprocedural conditions notwithstanding).
7427 if (!L) return true;
7428
Sanjoy Das1f05c512014-10-10 21:22:34 +00007429 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7430
Dan Gohmane65c9172009-07-13 21:35:55 +00007431 BasicBlock *Latch = L->getLoopLatch();
7432 if (!Latch)
7433 return false;
7434
7435 BranchInst *LoopContinuePredicate =
7436 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007437 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7438 isImpliedCond(Pred, LHS, RHS,
7439 LoopContinuePredicate->getCondition(),
7440 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7441 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007442
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007443 // We don't want more than one activation of the following loops on the stack
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007444 // -- that can lead to O(n!) time complexity.
7445 if (WalkingBEDominatingConds)
7446 return false;
7447
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +00007448 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007449
Sanjoy Dasb174f9a2015-09-25 23:53:50 +00007450 // See if we can exploit a trip count to prove the predicate.
7451 const auto &BETakenInfo = getBackedgeTakenInfo(L);
7452 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7453 if (LatchBECount != getCouldNotCompute()) {
7454 // We know that Latch branches back to the loop header exactly
7455 // LatchBECount times. This means the backdege condition at Latch is
7456 // equivalent to "{0,+,1} u< LatchBECount".
7457 Type *Ty = LatchBECount->getType();
7458 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7459 const SCEV *LoopCounter =
7460 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7461 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7462 LatchBECount))
7463 return true;
7464 }
7465
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007466 // Check conditions due to any @llvm.assume intrinsics.
7467 for (auto &AssumeVH : AC.assumptions()) {
7468 if (!AssumeVH)
7469 continue;
7470 auto *CI = cast<CallInst>(AssumeVH);
7471 if (!DT.dominates(CI, Latch->getTerminator()))
7472 continue;
7473
7474 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7475 return true;
7476 }
7477
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007478 // If the loop is not reachable from the entry block, we risk running into an
7479 // infinite loop as we walk up into the dom tree. These loops do not matter
7480 // anyway, so we just return a conservative answer when we see them.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007481 if (!DT.isReachableFromEntry(L->getHeader()))
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007482 return false;
7483
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007484 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7485 DTN != HeaderDTN; DTN = DTN->getIDom()) {
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007486
7487 assert(DTN && "should reach the loop header before reaching the root!");
7488
7489 BasicBlock *BB = DTN->getBlock();
7490 BasicBlock *PBB = BB->getSinglePredecessor();
7491 if (!PBB)
7492 continue;
7493
7494 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7495 if (!ContinuePredicate || !ContinuePredicate->isConditional())
7496 continue;
7497
7498 Value *Condition = ContinuePredicate->getCondition();
7499
7500 // If we have an edge `E` within the loop body that dominates the only
7501 // latch, the condition guarding `E` also guards the backedge. This
7502 // reasoning works only for loops with a single latch.
7503
7504 BasicBlockEdge DominatingEdge(PBB, BB);
7505 if (DominatingEdge.isSingleEdge()) {
7506 // We're constructively (and conservatively) enumerating edges within the
7507 // loop body that dominate the latch. The dominator tree better agree
7508 // with us on this:
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007509 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007510
7511 if (isImpliedCond(Pred, LHS, RHS, Condition,
7512 BB != ContinuePredicate->getSuccessor(0)))
7513 return true;
7514 }
7515 }
7516
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007517 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007518}
7519
Dan Gohmanb50349a2010-04-11 19:27:13 +00007520/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00007521/// by a conditional between LHS and RHS. This is used to help avoid max
7522/// expressions in loop trip counts, and to eliminate casts.
7523bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00007524ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7525 ICmpInst::Predicate Pred,
7526 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00007527 // Interpret a null as meaning no loop, where there is obviously no guard
7528 // (interprocedural conditions notwithstanding).
7529 if (!L) return false;
7530
Sanjoy Das1f05c512014-10-10 21:22:34 +00007531 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7532
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007533 // Starting at the loop predecessor, climb up the predecessor chain, as long
7534 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00007535 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00007536 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00007537 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00007538 Pair.first;
7539 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00007540
7541 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00007542 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00007543 if (!LoopEntryPredicate ||
7544 LoopEntryPredicate->isUnconditional())
7545 continue;
7546
Dan Gohmane18c2d62010-08-10 23:46:30 +00007547 if (isImpliedCond(Pred, LHS, RHS,
7548 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00007549 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00007550 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007551 }
7552
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007553 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007554 for (auto &AssumeVH : AC.assumptions()) {
Chandler Carruth66b31302015-01-04 12:03:27 +00007555 if (!AssumeVH)
7556 continue;
7557 auto *CI = cast<CallInst>(AssumeVH);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007558 if (!DT.dominates(CI, L->getHeader()))
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007559 continue;
7560
7561 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7562 return true;
7563 }
7564
Dan Gohman2a62fd92008-08-12 20:17:31 +00007565 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007566}
7567
Benjamin Kramer039b1042015-10-28 13:54:36 +00007568namespace {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007569/// RAII wrapper to prevent recursive application of isImpliedCond.
7570/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7571/// currently evaluating isImpliedCond.
7572struct MarkPendingLoopPredicate {
7573 Value *Cond;
7574 DenseSet<Value*> &LoopPreds;
7575 bool Pending;
7576
7577 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7578 : Cond(C), LoopPreds(LP) {
7579 Pending = !LoopPreds.insert(Cond).second;
7580 }
7581 ~MarkPendingLoopPredicate() {
7582 if (!Pending)
7583 LoopPreds.erase(Cond);
7584 }
7585};
Benjamin Kramer039b1042015-10-28 13:54:36 +00007586} // end anonymous namespace
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007587
Dan Gohman430f0cc2009-07-21 23:03:19 +00007588/// isImpliedCond - Test whether the condition described by Pred, LHS,
7589/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007590bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007591 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00007592 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007593 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007594 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7595 if (Mark.Pending)
7596 return false;
7597
Dan Gohman8b0a4192010-03-01 17:49:51 +00007598 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007599 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007600 if (BO->getOpcode() == Instruction::And) {
7601 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007602 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7603 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007604 } else if (BO->getOpcode() == Instruction::Or) {
7605 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007606 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7607 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007608 }
7609 }
7610
Dan Gohmane18c2d62010-08-10 23:46:30 +00007611 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007612 if (!ICI) return false;
7613
Andrew Trickfa594032012-11-29 18:35:13 +00007614 // Now that we found a conditional branch that dominates the loop or controls
7615 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00007616 ICmpInst::Predicate FoundPred;
7617 if (Inverse)
7618 FoundPred = ICI->getInversePredicate();
7619 else
7620 FoundPred = ICI->getPredicate();
7621
7622 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7623 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00007624
Sanjoy Dasdf1635d2015-09-25 19:59:52 +00007625 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
7626}
7627
7628bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
7629 const SCEV *RHS,
7630 ICmpInst::Predicate FoundPred,
7631 const SCEV *FoundLHS,
7632 const SCEV *FoundRHS) {
Sanjoy Das14598832015-03-26 17:28:26 +00007633 // Balance the types.
7634 if (getTypeSizeInBits(LHS->getType()) <
7635 getTypeSizeInBits(FoundLHS->getType())) {
7636 if (CmpInst::isSigned(Pred)) {
7637 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7638 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7639 } else {
7640 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7641 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7642 }
7643 } else if (getTypeSizeInBits(LHS->getType()) >
Dan Gohmane65c9172009-07-13 21:35:55 +00007644 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00007645 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007646 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7647 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7648 } else {
7649 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7650 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7651 }
7652 }
7653
Dan Gohman430f0cc2009-07-21 23:03:19 +00007654 // Canonicalize the query to match the way instcombine will have
7655 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00007656 if (SimplifyICmpOperands(Pred, LHS, RHS))
7657 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00007658 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00007659 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7660 if (FoundLHS == FoundRHS)
7661 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00007662
7663 // Check to see if we can make the LHS or RHS match.
7664 if (LHS == FoundRHS || RHS == FoundLHS) {
7665 if (isa<SCEVConstant>(RHS)) {
7666 std::swap(FoundLHS, FoundRHS);
7667 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7668 } else {
7669 std::swap(LHS, RHS);
7670 Pred = ICmpInst::getSwappedPredicate(Pred);
7671 }
7672 }
7673
7674 // Check whether the found predicate is the same as the desired predicate.
7675 if (FoundPred == Pred)
7676 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7677
7678 // Check whether swapping the found predicate makes it the same as the
7679 // desired predicate.
7680 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7681 if (isa<SCEVConstant>(RHS))
7682 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7683 else
7684 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7685 RHS, LHS, FoundLHS, FoundRHS);
7686 }
7687
Sanjoy Das6e78b172015-10-22 19:57:34 +00007688 // Unsigned comparison is the same as signed comparison when both the operands
7689 // are non-negative.
7690 if (CmpInst::isUnsigned(FoundPred) &&
7691 CmpInst::getSignedPredicate(FoundPred) == Pred &&
7692 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
7693 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7694
Sanjoy Dasc5676df2014-11-13 00:00:58 +00007695 // Check if we can make progress by sharpening ranges.
7696 if (FoundPred == ICmpInst::ICMP_NE &&
7697 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7698
7699 const SCEVConstant *C = nullptr;
7700 const SCEV *V = nullptr;
7701
7702 if (isa<SCEVConstant>(FoundLHS)) {
7703 C = cast<SCEVConstant>(FoundLHS);
7704 V = FoundRHS;
7705 } else {
7706 C = cast<SCEVConstant>(FoundRHS);
7707 V = FoundLHS;
7708 }
7709
7710 // The guarding predicate tells us that C != V. If the known range
7711 // of V is [C, t), we can sharpen the range to [C + 1, t). The
7712 // range we consider has to correspond to same signedness as the
7713 // predicate we're interested in folding.
7714
7715 APInt Min = ICmpInst::isSigned(Pred) ?
7716 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7717
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007718 if (Min == C->getAPInt()) {
Sanjoy Dasc5676df2014-11-13 00:00:58 +00007719 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
7720 // This is true even if (Min + 1) wraps around -- in case of
7721 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
7722
7723 APInt SharperMin = Min + 1;
7724
7725 switch (Pred) {
7726 case ICmpInst::ICMP_SGE:
7727 case ICmpInst::ICMP_UGE:
7728 // We know V `Pred` SharperMin. If this implies LHS `Pred`
7729 // RHS, we're done.
7730 if (isImpliedCondOperands(Pred, LHS, RHS, V,
7731 getConstant(SharperMin)))
7732 return true;
7733
7734 case ICmpInst::ICMP_SGT:
7735 case ICmpInst::ICMP_UGT:
7736 // We know from the range information that (V `Pred` Min ||
7737 // V == Min). We know from the guarding condition that !(V
7738 // == Min). This gives us
7739 //
7740 // V `Pred` Min || V == Min && !(V == Min)
7741 // => V `Pred` Min
7742 //
7743 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
7744
7745 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
7746 return true;
7747
7748 default:
7749 // No change
7750 break;
7751 }
7752 }
7753 }
7754
Dan Gohman430f0cc2009-07-21 23:03:19 +00007755 // Check whether the actual condition is beyond sufficient.
7756 if (FoundPred == ICmpInst::ICMP_EQ)
7757 if (ICmpInst::isTrueWhenEqual(Pred))
7758 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
7759 return true;
7760 if (Pred == ICmpInst::ICMP_NE)
7761 if (!ICmpInst::isTrueWhenEqual(FoundPred))
7762 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
7763 return true;
7764
7765 // Otherwise assume the worst.
7766 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007767}
7768
Sanjoy Das1ed69102015-10-13 02:53:27 +00007769bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
7770 const SCEV *&L, const SCEV *&R,
7771 SCEV::NoWrapFlags &Flags) {
7772 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
7773 if (!AE || AE->getNumOperands() != 2)
7774 return false;
7775
7776 L = AE->getOperand(0);
7777 R = AE->getOperand(1);
7778 Flags = AE->getNoWrapFlags();
7779 return true;
7780}
7781
7782bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
7783 const SCEV *More,
7784 APInt &C) {
Sanjoy Das96709c42015-09-25 23:53:45 +00007785 // We avoid subtracting expressions here because this function is usually
7786 // fairly deep in the call stack (i.e. is called many times).
7787
Sanjoy Das96709c42015-09-25 23:53:45 +00007788 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
7789 const auto *LAR = cast<SCEVAddRecExpr>(Less);
7790 const auto *MAR = cast<SCEVAddRecExpr>(More);
7791
7792 if (LAR->getLoop() != MAR->getLoop())
7793 return false;
7794
7795 // We look at affine expressions only; not for correctness but to keep
7796 // getStepRecurrence cheap.
7797 if (!LAR->isAffine() || !MAR->isAffine())
7798 return false;
7799
Sanjoy Das1ed69102015-10-13 02:53:27 +00007800 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
Sanjoy Das96709c42015-09-25 23:53:45 +00007801 return false;
7802
7803 Less = LAR->getStart();
7804 More = MAR->getStart();
7805
7806 // fall through
7807 }
7808
7809 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007810 const auto &M = cast<SCEVConstant>(More)->getAPInt();
7811 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
Sanjoy Das96709c42015-09-25 23:53:45 +00007812 C = M - L;
7813 return true;
7814 }
7815
7816 const SCEV *L, *R;
Sanjoy Das1ed69102015-10-13 02:53:27 +00007817 SCEV::NoWrapFlags Flags;
7818 if (splitBinaryAdd(Less, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00007819 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7820 if (R == More) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007821 C = -(LC->getAPInt());
Sanjoy Das96709c42015-09-25 23:53:45 +00007822 return true;
7823 }
7824
Sanjoy Das1ed69102015-10-13 02:53:27 +00007825 if (splitBinaryAdd(More, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00007826 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7827 if (R == Less) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00007828 C = LC->getAPInt();
Sanjoy Das96709c42015-09-25 23:53:45 +00007829 return true;
7830 }
7831
7832 return false;
7833}
7834
7835bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
7836 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
7837 const SCEV *FoundLHS, const SCEV *FoundRHS) {
7838 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
7839 return false;
7840
7841 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7842 if (!AddRecLHS)
7843 return false;
7844
7845 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
7846 if (!AddRecFoundLHS)
7847 return false;
7848
7849 // We'd like to let SCEV reason about control dependencies, so we constrain
7850 // both the inequalities to be about add recurrences on the same loop. This
7851 // way we can use isLoopEntryGuardedByCond later.
7852
7853 const Loop *L = AddRecFoundLHS->getLoop();
7854 if (L != AddRecLHS->getLoop())
7855 return false;
7856
7857 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
7858 //
7859 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
7860 // ... (2)
7861 //
7862 // Informal proof for (2), assuming (1) [*]:
7863 //
7864 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
7865 //
7866 // Then
7867 //
7868 // FoundLHS s< FoundRHS s< INT_MIN - C
7869 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
7870 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
7871 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
7872 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
7873 // <=> FoundLHS + C s< FoundRHS + C
7874 //
7875 // [*]: (1) can be proved by ruling out overflow.
7876 //
7877 // [**]: This can be proved by analyzing all the four possibilities:
7878 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
7879 // (A s>= 0, B s>= 0).
7880 //
7881 // Note:
7882 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
7883 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
7884 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
7885 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
7886 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
7887 // C)".
7888
7889 APInt LDiff, RDiff;
Sanjoy Das1ed69102015-10-13 02:53:27 +00007890 if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
7891 !computeConstantDifference(FoundRHS, RHS, RDiff) ||
Sanjoy Das96709c42015-09-25 23:53:45 +00007892 LDiff != RDiff)
7893 return false;
7894
7895 if (LDiff == 0)
7896 return true;
7897
Sanjoy Das96709c42015-09-25 23:53:45 +00007898 APInt FoundRHSLimit;
7899
7900 if (Pred == CmpInst::ICMP_ULT) {
7901 FoundRHSLimit = -RDiff;
7902 } else {
7903 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
Sanjoy Das4f1c4592015-09-28 21:14:32 +00007904 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
Sanjoy Das96709c42015-09-25 23:53:45 +00007905 }
7906
7907 // Try to prove (1) or (2), as needed.
7908 return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
7909 getConstant(FoundRHSLimit));
7910}
7911
Dan Gohman430f0cc2009-07-21 23:03:19 +00007912/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00007913/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007914/// and FoundRHS is true.
7915bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
7916 const SCEV *LHS, const SCEV *RHS,
7917 const SCEV *FoundLHS,
7918 const SCEV *FoundRHS) {
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007919 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
7920 return true;
7921
Sanjoy Das96709c42015-09-25 23:53:45 +00007922 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
7923 return true;
7924
Dan Gohman430f0cc2009-07-21 23:03:19 +00007925 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7926 FoundLHS, FoundRHS) ||
7927 // ~x < ~y --> x > y
7928 isImpliedCondOperandsHelper(Pred, LHS, RHS,
7929 getNotSCEV(FoundRHS),
7930 getNotSCEV(FoundLHS));
7931}
7932
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007933
7934/// If Expr computes ~A, return A else return nullptr
7935static const SCEV *MatchNotExpr(const SCEV *Expr) {
7936 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
Sanjoy Das16e7ff12015-10-13 23:28:31 +00007937 if (!Add || Add->getNumOperands() != 2 ||
7938 !Add->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007939 return nullptr;
7940
7941 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
Sanjoy Das16e7ff12015-10-13 23:28:31 +00007942 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
7943 !AddRHS->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007944 return nullptr;
7945
7946 return AddRHS->getOperand(1);
7947}
7948
7949
7950/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7951template<typename MaxExprType>
7952static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7953 const SCEV *Candidate) {
7954 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7955 if (!MaxExpr) return false;
7956
Sanjoy Das347d2722015-12-01 07:49:27 +00007957 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007958}
7959
7960
7961/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
7962template<typename MaxExprType>
7963static bool IsMinConsistingOf(ScalarEvolution &SE,
7964 const SCEV *MaybeMinExpr,
7965 const SCEV *Candidate) {
7966 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
7967 if (!MaybeMaxExpr)
7968 return false;
7969
7970 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
7971}
7972
Hal Finkela8d205f2015-08-19 01:51:51 +00007973static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
7974 ICmpInst::Predicate Pred,
7975 const SCEV *LHS, const SCEV *RHS) {
7976
7977 // If both sides are affine addrecs for the same loop, with equal
7978 // steps, and we know the recurrences don't wrap, then we only
7979 // need to check the predicate on the starting values.
7980
7981 if (!ICmpInst::isRelational(Pred))
7982 return false;
7983
7984 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7985 if (!LAR)
7986 return false;
7987 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7988 if (!RAR)
7989 return false;
7990 if (LAR->getLoop() != RAR->getLoop())
7991 return false;
7992 if (!LAR->isAffine() || !RAR->isAffine())
7993 return false;
7994
7995 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
7996 return false;
7997
Hal Finkelff08a2e2015-08-19 17:26:07 +00007998 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
7999 SCEV::FlagNSW : SCEV::FlagNUW;
8000 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
Hal Finkela8d205f2015-08-19 01:51:51 +00008001 return false;
8002
8003 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8004}
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008005
8006/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8007/// expression?
8008static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8009 ICmpInst::Predicate Pred,
8010 const SCEV *LHS, const SCEV *RHS) {
8011 switch (Pred) {
8012 default:
8013 return false;
8014
8015 case ICmpInst::ICMP_SGE:
8016 std::swap(LHS, RHS);
8017 // fall through
8018 case ICmpInst::ICMP_SLE:
8019 return
8020 // min(A, ...) <= A
8021 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8022 // A <= max(A, ...)
8023 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8024
8025 case ICmpInst::ICMP_UGE:
8026 std::swap(LHS, RHS);
8027 // fall through
8028 case ICmpInst::ICMP_ULE:
8029 return
8030 // min(A, ...) <= A
8031 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8032 // A <= max(A, ...)
8033 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8034 }
8035
8036 llvm_unreachable("covered switch fell through?!");
8037}
8038
Dan Gohman430f0cc2009-07-21 23:03:19 +00008039/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00008040/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00008041/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00008042bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00008043ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8044 const SCEV *LHS, const SCEV *RHS,
8045 const SCEV *FoundLHS,
8046 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008047 auto IsKnownPredicateFull =
8048 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8049 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
Sanjoy Das11231482015-10-22 19:57:29 +00008050 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
Sanjoy Dasc1a29772015-11-05 23:45:38 +00008051 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8052 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008053 };
8054
Dan Gohmane65c9172009-07-13 21:35:55 +00008055 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00008056 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8057 case ICmpInst::ICMP_EQ:
8058 case ICmpInst::ICMP_NE:
8059 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8060 return true;
8061 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00008062 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008063 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008064 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8065 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008066 return true;
8067 break;
8068 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008069 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008070 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8071 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008072 return true;
8073 break;
8074 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008075 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008076 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8077 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008078 return true;
8079 break;
8080 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008081 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008082 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8083 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008084 return true;
8085 break;
8086 }
8087
8088 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008089}
8090
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008091/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
8092/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
8093bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8094 const SCEV *LHS,
8095 const SCEV *RHS,
8096 const SCEV *FoundLHS,
8097 const SCEV *FoundRHS) {
8098 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8099 // The restriction on `FoundRHS` be lifted easily -- it exists only to
8100 // reduce the compile time impact of this optimization.
8101 return false;
8102
8103 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8104 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8105 !isa<SCEVConstant>(AddLHS->getOperand(0)))
8106 return false;
8107
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008108 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008109
8110 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8111 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8112 ConstantRange FoundLHSRange =
8113 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8114
8115 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8116 // for `LHS`:
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008117 APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008118 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8119
8120 // We can also compute the range of values for `LHS` that satisfy the
8121 // consequent, "`LHS` `Pred` `RHS`":
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008122 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008123 ConstantRange SatisfyingLHSRange =
8124 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8125
8126 // The antecedent implies the consequent if every value of `LHS` that
8127 // satisfies the antecedent also satisfies the consequent.
8128 return SatisfyingLHSRange.contains(LHSRange);
8129}
8130
Johannes Doerfert2683e562015-02-09 12:34:23 +00008131// Verify if an linear IV with positive stride can overflow when in a
8132// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008133// stride and the knowledge of NSW/NUW flags on the recurrence.
8134bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8135 bool IsSigned, bool NoWrap) {
8136 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00008137
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008138 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008139 const SCEV *One = getOne(Stride->getType());
Andrew Trick2afa3252011-03-09 17:29:58 +00008140
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008141 if (IsSigned) {
8142 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8143 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8144 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8145 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00008146
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008147 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8148 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00008149 }
Dan Gohman01048422009-06-21 23:46:38 +00008150
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008151 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8152 APInt MaxValue = APInt::getMaxValue(BitWidth);
8153 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8154 .getUnsignedMax();
8155
8156 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8157 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8158}
8159
Johannes Doerfert2683e562015-02-09 12:34:23 +00008160// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008161// greater-than comparison, knowing the invariant term of the comparison,
8162// the stride and the knowledge of NSW/NUW flags on the recurrence.
8163bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8164 bool IsSigned, bool NoWrap) {
8165 if (NoWrap) return false;
8166
8167 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008168 const SCEV *One = getOne(Stride->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008169
8170 if (IsSigned) {
8171 APInt MinRHS = getSignedRange(RHS).getSignedMin();
8172 APInt MinValue = APInt::getSignedMinValue(BitWidth);
8173 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8174 .getSignedMax();
8175
8176 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8177 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8178 }
8179
8180 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8181 APInt MinValue = APInt::getMinValue(BitWidth);
8182 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8183 .getUnsignedMax();
8184
8185 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8186 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8187}
8188
8189// Compute the backedge taken count knowing the interval difference, the
8190// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00008191const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008192 bool Equality) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008193 const SCEV *One = getOne(Step->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008194 Delta = Equality ? getAddExpr(Delta, Step)
8195 : getAddExpr(Delta, getMinusSCEV(Step, One));
8196 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00008197}
8198
Chris Lattner587a75b2005-08-15 23:33:51 +00008199/// HowManyLessThans - Return the number of times a backedge containing the
8200/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00008201/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00008202///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008203/// @param ControlsExit is true when the LHS < RHS condition directly controls
8204/// the branch (loops exits only if condition is true). In this case, we can use
8205/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00008206ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00008207ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008208 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008209 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008210 // We handle only IV < Invariant
8211 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00008212 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008213
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008214 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00008215
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008216 // Avoid weird loops
8217 if (!IV || IV->getLoop() != L || !IV->isAffine())
8218 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008219
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008220 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008221 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008222
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008223 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008224
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008225 // Avoid negative or zero stride values
8226 if (!isKnownPositive(Stride))
8227 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008228
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008229 // Avoid proven overflow cases: this will ensure that the backedge taken count
8230 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008231 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008232 // behaviors like the case of C language.
8233 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8234 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008235
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008236 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8237 : ICmpInst::ICMP_ULT;
8238 const SCEV *Start = IV->getStart();
8239 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008240 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8241 const SCEV *Diff = getMinusSCEV(RHS, Start);
8242 // If we have NoWrap set, then we can assume that the increment won't
8243 // overflow, in which case if RHS - Start is a constant, we don't need to
8244 // do a max operation since we can just figure it out statically
8245 if (NoWrap && isa<SCEVConstant>(Diff)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008246 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
Bradley Smith9992b162014-10-31 11:40:32 +00008247 if (D.isNegative())
8248 End = Start;
8249 } else
8250 End = IsSigned ? getSMaxExpr(RHS, Start)
8251 : getUMaxExpr(RHS, Start);
8252 }
Dan Gohman51aaf022010-01-26 04:40:18 +00008253
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008254 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00008255
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008256 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8257 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00008258
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008259 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8260 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00008261
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008262 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8263 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8264 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00008265
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008266 // Although End can be a MAX expression we estimate MaxEnd considering only
8267 // the case End = RHS. This is safe because in the other case (End - Start)
8268 // is zero, leading to a zero maximum backedge taken count.
8269 APInt MaxEnd =
8270 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8271 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8272
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00008273 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008274 if (isa<SCEVConstant>(BECount))
8275 MaxBECount = BECount;
8276 else
8277 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8278 getConstant(MinStride), false);
8279
8280 if (isa<SCEVCouldNotCompute>(MaxBECount))
8281 MaxBECount = BECount;
8282
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008283 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008284}
8285
8286ScalarEvolution::ExitLimit
8287ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8288 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008289 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008290 // We handle only IV > Invariant
8291 if (!isLoopInvariant(RHS, L))
8292 return getCouldNotCompute();
8293
8294 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8295
8296 // Avoid weird loops
8297 if (!IV || IV->getLoop() != L || !IV->isAffine())
8298 return getCouldNotCompute();
8299
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008300 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008301 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8302
8303 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8304
8305 // Avoid negative or zero stride values
8306 if (!isKnownPositive(Stride))
8307 return getCouldNotCompute();
8308
8309 // Avoid proven overflow cases: this will ensure that the backedge taken count
8310 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008311 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008312 // behaviors like the case of C language.
8313 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8314 return getCouldNotCompute();
8315
8316 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8317 : ICmpInst::ICMP_UGT;
8318
8319 const SCEV *Start = IV->getStart();
8320 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008321 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8322 const SCEV *Diff = getMinusSCEV(RHS, Start);
8323 // If we have NoWrap set, then we can assume that the increment won't
8324 // overflow, in which case if RHS - Start is a constant, we don't need to
8325 // do a max operation since we can just figure it out statically
8326 if (NoWrap && isa<SCEVConstant>(Diff)) {
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008327 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
Bradley Smith9992b162014-10-31 11:40:32 +00008328 if (!D.isNegative())
8329 End = Start;
8330 } else
8331 End = IsSigned ? getSMinExpr(RHS, Start)
8332 : getUMinExpr(RHS, Start);
8333 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008334
8335 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8336
8337 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8338 : getUnsignedRange(Start).getUnsignedMax();
8339
8340 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8341 : getUnsignedRange(Stride).getUnsignedMin();
8342
8343 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8344 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8345 : APInt::getMinValue(BitWidth) + (MinStride - 1);
8346
8347 // Although End can be a MIN expression we estimate MinEnd considering only
8348 // the case End = RHS. This is safe because in the other case (Start - End)
8349 // is zero, leading to a zero maximum backedge taken count.
8350 APInt MinEnd =
8351 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8352 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8353
8354
8355 const SCEV *MaxBECount = getCouldNotCompute();
8356 if (isa<SCEVConstant>(BECount))
8357 MaxBECount = BECount;
8358 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00008359 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008360 getConstant(MinStride), false);
8361
8362 if (isa<SCEVCouldNotCompute>(MaxBECount))
8363 MaxBECount = BECount;
8364
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008365 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00008366}
8367
Chris Lattnerd934c702004-04-02 20:23:17 +00008368/// getNumIterationsInRange - Return the number of iterations of this loop that
8369/// produce values in the specified constant range. Another way of looking at
8370/// this is that it returns the first iteration number where the value is not in
8371/// the condition, thus computing the exit count. If the iteration count can't
8372/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00008373const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00008374 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00008375 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00008376 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008377
8378 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00008379 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00008380 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00008381 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008382 Operands[0] = SE.getZero(SC->getType());
Andrew Trick8b55b732011-03-14 16:50:06 +00008383 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00008384 getNoWrapFlags(FlagNW));
Sanjoy Das63914592015-10-18 00:29:20 +00008385 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00008386 return ShiftedAddRec->getNumIterationsInRange(
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008387 Range.subtract(SC->getAPInt()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00008388 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00008389 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008390 }
8391
8392 // The only time we can solve this is when we have all constant indices.
8393 // Otherwise, we cannot determine the overflow conditions.
Sanjoy Dasff3b8b42015-12-01 07:49:23 +00008394 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00008395 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008396
8397 // Okay at this point we know that all elements of the chrec are constants and
8398 // that the start element is zero.
8399
8400 // First check to see if the range contains zero. If not, the first
8401 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00008402 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00008403 if (!Range.contains(APInt(BitWidth, 0)))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008404 return SE.getZero(getType());
Misha Brukman01808ca2005-04-21 21:13:18 +00008405
Chris Lattnerd934c702004-04-02 20:23:17 +00008406 if (isAffine()) {
8407 // If this is an affine expression then we have this situation:
8408 // Solve {0,+,A} in Range === Ax in Range
8409
Nick Lewycky52460262007-07-16 02:08:00 +00008410 // We know that zero is in the range. If A is positive then we know that
8411 // the upper value of the range must be the first possible exit value.
8412 // If A is negative then the lower of the range is the last possible loop
8413 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00008414 APInt One(BitWidth,1);
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008415 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
Nick Lewycky52460262007-07-16 02:08:00 +00008416 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00008417
Nick Lewycky52460262007-07-16 02:08:00 +00008418 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00008419 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00008420 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00008421
8422 // Evaluate at the exit value. If we really did fall out of the valid
8423 // range, then we computed our trip count, otherwise wrap around or other
8424 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00008425 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008426 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00008427 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008428
8429 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00008430 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00008431 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00008432 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00008433 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00008434 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00008435 } else if (isQuadratic()) {
8436 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8437 // quadratic equation to solve it. To do this, we must frame our problem in
8438 // terms of figuring out when zero is crossed, instead of when
8439 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00008440 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00008441 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00008442 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8443 // getNoWrapFlags(FlagNW)
8444 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00008445
8446 // Next, solve the constructed addrec
Sanjoy Das01947432015-11-22 21:20:13 +00008447 auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00008448 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8449 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00008450 if (R1) {
8451 // Pick the smallest positive root value.
Sanjoy Das01947432015-11-22 21:20:13 +00008452 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8453 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00008454 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00008455 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00008456
Chris Lattnerd934c702004-04-02 20:23:17 +00008457 // Make sure the root is not off by one. The returned iteration should
8458 // not be in the range, but the previous one should be. When solving
8459 // for "X*X < 5", for example, we should not return a root of 2.
8460 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00008461 R1->getValue(),
8462 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008463 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008464 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00008465 ConstantInt *NextVal =
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008466 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
Misha Brukman01808ca2005-04-21 21:13:18 +00008467
Dan Gohmana37eaf22007-10-22 18:31:58 +00008468 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008469 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00008470 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00008471 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008472 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008473
Chris Lattnerd934c702004-04-02 20:23:17 +00008474 // If R1 was not in the range, then it is a good return value. Make
8475 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00008476 ConstantInt *NextVal =
Sanjoy Das0de2fec2015-12-17 20:28:46 +00008477 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00008478 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008479 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00008480 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00008481 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008482 }
8483 }
8484 }
8485
Dan Gohman31efa302009-04-18 17:58:19 +00008486 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008487}
8488
Sebastian Pop448712b2014-05-07 18:01:20 +00008489namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008490struct FindUndefs {
8491 bool Found;
8492 FindUndefs() : Found(false) {}
8493
8494 bool follow(const SCEV *S) {
8495 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8496 if (isa<UndefValue>(C->getValue()))
8497 Found = true;
8498 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8499 if (isa<UndefValue>(C->getValue()))
8500 Found = true;
8501 }
8502
8503 // Keep looking if we haven't found it yet.
8504 return !Found;
8505 }
8506 bool isDone() const {
8507 // Stop recursion if we have found an undef.
8508 return Found;
8509 }
8510};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008511}
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008512
8513// Return true when S contains at least an undef value.
8514static inline bool
8515containsUndefs(const SCEV *S) {
8516 FindUndefs F;
8517 SCEVTraversal<FindUndefs> ST(F);
8518 ST.visitAll(S);
8519
8520 return F.Found;
8521}
8522
8523namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00008524// Collect all steps of SCEV expressions.
8525struct SCEVCollectStrides {
8526 ScalarEvolution &SE;
8527 SmallVectorImpl<const SCEV *> &Strides;
8528
8529 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8530 : SE(SE), Strides(S) {}
8531
8532 bool follow(const SCEV *S) {
8533 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8534 Strides.push_back(AR->getStepRecurrence(SE));
8535 return true;
8536 }
8537 bool isDone() const { return false; }
8538};
8539
8540// Collect all SCEVUnknown and SCEVMulExpr expressions.
8541struct SCEVCollectTerms {
8542 SmallVectorImpl<const SCEV *> &Terms;
8543
8544 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8545 : Terms(T) {}
8546
8547 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008548 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008549 if (!containsUndefs(S))
8550 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00008551
8552 // Stop recursion: once we collected a term, do not walk its operands.
8553 return false;
8554 }
8555
8556 // Keep looking.
8557 return true;
8558 }
8559 bool isDone() const { return false; }
8560};
Tobias Grosser374bce02015-10-12 08:02:00 +00008561
8562// Check if a SCEV contains an AddRecExpr.
8563struct SCEVHasAddRec {
8564 bool &ContainsAddRec;
8565
8566 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8567 ContainsAddRec = false;
8568 }
8569
8570 bool follow(const SCEV *S) {
8571 if (isa<SCEVAddRecExpr>(S)) {
8572 ContainsAddRec = true;
8573
8574 // Stop recursion: once we collected a term, do not walk its operands.
8575 return false;
8576 }
8577
8578 // Keep looking.
8579 return true;
8580 }
8581 bool isDone() const { return false; }
8582};
8583
8584// Find factors that are multiplied with an expression that (possibly as a
8585// subexpression) contains an AddRecExpr. In the expression:
8586//
8587// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
8588//
8589// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
8590// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
8591// parameters as they form a product with an induction variable.
8592//
8593// This collector expects all array size parameters to be in the same MulExpr.
8594// It might be necessary to later add support for collecting parameters that are
8595// spread over different nested MulExpr.
8596struct SCEVCollectAddRecMultiplies {
8597 SmallVectorImpl<const SCEV *> &Terms;
8598 ScalarEvolution &SE;
8599
8600 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
8601 : Terms(T), SE(SE) {}
8602
8603 bool follow(const SCEV *S) {
8604 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
8605 bool HasAddRec = false;
8606 SmallVector<const SCEV *, 0> Operands;
8607 for (auto Op : Mul->operands()) {
8608 if (isa<SCEVUnknown>(Op)) {
8609 Operands.push_back(Op);
8610 } else {
8611 bool ContainsAddRec;
8612 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
8613 visitAll(Op, ContiansAddRec);
8614 HasAddRec |= ContainsAddRec;
8615 }
8616 }
8617 if (Operands.size() == 0)
8618 return true;
8619
8620 if (!HasAddRec)
8621 return false;
8622
8623 Terms.push_back(SE.getMulExpr(Operands));
8624 // Stop recursion: once we collected a term, do not walk its operands.
8625 return false;
8626 }
8627
8628 // Keep looking.
8629 return true;
8630 }
8631 bool isDone() const { return false; }
8632};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008633}
Sebastian Pop448712b2014-05-07 18:01:20 +00008634
Tobias Grosser374bce02015-10-12 08:02:00 +00008635/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
8636/// two places:
8637/// 1) The strides of AddRec expressions.
8638/// 2) Unknowns that are multiplied with AddRec expressions.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008639void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
8640 SmallVectorImpl<const SCEV *> &Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008641 SmallVector<const SCEV *, 4> Strides;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008642 SCEVCollectStrides StrideCollector(*this, Strides);
8643 visitAll(Expr, StrideCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00008644
8645 DEBUG({
8646 dbgs() << "Strides:\n";
8647 for (const SCEV *S : Strides)
8648 dbgs() << *S << "\n";
8649 });
8650
8651 for (const SCEV *S : Strides) {
8652 SCEVCollectTerms TermCollector(Terms);
8653 visitAll(S, TermCollector);
8654 }
8655
8656 DEBUG({
8657 dbgs() << "Terms:\n";
8658 for (const SCEV *T : Terms)
8659 dbgs() << *T << "\n";
8660 });
Tobias Grosser374bce02015-10-12 08:02:00 +00008661
8662 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
8663 visitAll(Expr, MulCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00008664}
8665
Sebastian Popb1a548f2014-05-12 19:01:53 +00008666static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00008667 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00008668 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00008669 int Last = Terms.size() - 1;
8670 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00008671
Sebastian Pop448712b2014-05-07 18:01:20 +00008672 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00008673 if (Last == 0) {
8674 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008675 SmallVector<const SCEV *, 2> Qs;
8676 for (const SCEV *Op : M->operands())
8677 if (!isa<SCEVConstant>(Op))
8678 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00008679
Sebastian Pope30bd352014-05-27 22:41:56 +00008680 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00008681 }
8682
Sebastian Pope30bd352014-05-27 22:41:56 +00008683 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008684 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00008685 }
8686
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008687 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008688 // Normalize the terms before the next call to findArrayDimensionsRec.
8689 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008690 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008691
8692 // Bail out when GCD does not evenly divide one of the terms.
8693 if (!R->isZero())
8694 return false;
8695
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008696 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00008697 }
8698
Tobias Grosser3080cf12014-05-08 07:55:34 +00008699 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00008700 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
8701 return isa<SCEVConstant>(E);
8702 }),
8703 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00008704
Sebastian Pop448712b2014-05-07 18:01:20 +00008705 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00008706 if (!findArrayDimensionsRec(SE, Terms, Sizes))
8707 return false;
8708
Sebastian Pope30bd352014-05-27 22:41:56 +00008709 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008710 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00008711}
Sebastian Popc62c6792013-11-12 22:47:20 +00008712
Sebastian Pop448712b2014-05-07 18:01:20 +00008713// Returns true when S contains at least a SCEVUnknown parameter.
8714static inline bool
8715containsParameters(const SCEV *S) {
Sanjoy Das7d752672015-12-08 04:32:54 +00008716 struct FindParameter {
8717 bool FoundParameter;
8718 FindParameter() : FoundParameter(false) {}
8719
8720 bool follow(const SCEV *S) {
8721 if (isa<SCEVUnknown>(S)) {
8722 FoundParameter = true;
8723 // Stop recursion: we found a parameter.
8724 return false;
8725 }
8726 // Keep looking.
8727 return true;
8728 }
8729 bool isDone() const {
8730 // Stop recursion if we have found a parameter.
8731 return FoundParameter;
8732 }
8733 };
8734
Sebastian Pop448712b2014-05-07 18:01:20 +00008735 FindParameter F;
8736 SCEVTraversal<FindParameter> ST(F);
8737 ST.visitAll(S);
8738
8739 return F.FoundParameter;
8740}
8741
8742// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
8743static inline bool
8744containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
8745 for (const SCEV *T : Terms)
8746 if (containsParameters(T))
8747 return true;
8748 return false;
8749}
8750
8751// Return the number of product terms in S.
8752static inline int numberOfTerms(const SCEV *S) {
8753 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
8754 return Expr->getNumOperands();
8755 return 1;
8756}
8757
Sebastian Popa6e58602014-05-27 22:41:45 +00008758static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
8759 if (isa<SCEVConstant>(T))
8760 return nullptr;
8761
8762 if (isa<SCEVUnknown>(T))
8763 return T;
8764
8765 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
8766 SmallVector<const SCEV *, 2> Factors;
8767 for (const SCEV *Op : M->operands())
8768 if (!isa<SCEVConstant>(Op))
8769 Factors.push_back(Op);
8770
8771 return SE.getMulExpr(Factors);
8772 }
8773
8774 return T;
8775}
8776
8777/// Return the size of an element read or written by Inst.
8778const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
8779 Type *Ty;
8780 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
8781 Ty = Store->getValueOperand()->getType();
8782 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00008783 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00008784 else
8785 return nullptr;
8786
8787 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
8788 return getSizeOfExpr(ETy, Ty);
8789}
8790
Sebastian Pop448712b2014-05-07 18:01:20 +00008791/// Second step of delinearization: compute the array dimensions Sizes from the
8792/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00008793void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
8794 SmallVectorImpl<const SCEV *> &Sizes,
8795 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00008796
Sebastian Pop53524082014-05-29 19:44:05 +00008797 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00008798 return;
8799
8800 // Early return when Terms do not contain parameters: we do not delinearize
8801 // non parametric SCEVs.
8802 if (!containsParameters(Terms))
8803 return;
8804
8805 DEBUG({
8806 dbgs() << "Terms:\n";
8807 for (const SCEV *T : Terms)
8808 dbgs() << *T << "\n";
8809 });
8810
8811 // Remove duplicates.
8812 std::sort(Terms.begin(), Terms.end());
8813 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
8814
8815 // Put larger terms first.
8816 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
8817 return numberOfTerms(LHS) > numberOfTerms(RHS);
8818 });
8819
Sebastian Popa6e58602014-05-27 22:41:45 +00008820 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8821
Tobias Grosser374bce02015-10-12 08:02:00 +00008822 // Try to divide all terms by the element size. If term is not divisible by
8823 // element size, proceed with the original term.
Sebastian Popa6e58602014-05-27 22:41:45 +00008824 for (const SCEV *&Term : Terms) {
8825 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008826 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Tobias Grosser374bce02015-10-12 08:02:00 +00008827 if (!Q->isZero())
8828 Term = Q;
Sebastian Popa6e58602014-05-27 22:41:45 +00008829 }
8830
8831 SmallVector<const SCEV *, 4> NewTerms;
8832
8833 // Remove constant factors.
8834 for (const SCEV *T : Terms)
8835 if (const SCEV *NewT = removeConstantFactors(SE, T))
8836 NewTerms.push_back(NewT);
8837
Sebastian Pop448712b2014-05-07 18:01:20 +00008838 DEBUG({
8839 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00008840 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00008841 dbgs() << *T << "\n";
8842 });
8843
Sebastian Popa6e58602014-05-27 22:41:45 +00008844 if (NewTerms.empty() ||
8845 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00008846 Sizes.clear();
8847 return;
8848 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008849
Sebastian Popa6e58602014-05-27 22:41:45 +00008850 // The last element to be pushed into Sizes is the size of an element.
8851 Sizes.push_back(ElementSize);
8852
Sebastian Pop448712b2014-05-07 18:01:20 +00008853 DEBUG({
8854 dbgs() << "Sizes:\n";
8855 for (const SCEV *S : Sizes)
8856 dbgs() << *S << "\n";
8857 });
8858}
8859
8860/// Third step of delinearization: compute the access functions for the
8861/// Subscripts based on the dimensions in Sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008862void ScalarEvolution::computeAccessFunctions(
8863 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
8864 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008865
Sebastian Popb1a548f2014-05-12 19:01:53 +00008866 // Early exit in case this SCEV is not an affine multivariate function.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008867 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008868 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008869
Sanjoy Das1195dbe2015-10-08 03:45:58 +00008870 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008871 if (!AR->isAffine())
8872 return;
8873
8874 const SCEV *Res = Expr;
Sebastian Pop448712b2014-05-07 18:01:20 +00008875 int Last = Sizes.size() - 1;
8876 for (int i = Last; i >= 0; i--) {
8877 const SCEV *Q, *R;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008878 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00008879
8880 DEBUG({
8881 dbgs() << "Res: " << *Res << "\n";
8882 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
8883 dbgs() << "Res divided by Sizes[i]:\n";
8884 dbgs() << "Quotient: " << *Q << "\n";
8885 dbgs() << "Remainder: " << *R << "\n";
8886 });
8887
8888 Res = Q;
8889
Sebastian Popa6e58602014-05-27 22:41:45 +00008890 // Do not record the last subscript corresponding to the size of elements in
8891 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00008892 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008893
8894 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00008895 if (isa<SCEVAddRecExpr>(R)) {
8896 Subscripts.clear();
8897 Sizes.clear();
8898 return;
8899 }
Sebastian Popa6e58602014-05-27 22:41:45 +00008900
Sebastian Pop448712b2014-05-07 18:01:20 +00008901 continue;
8902 }
8903
8904 // Record the access function for the current subscript.
8905 Subscripts.push_back(R);
8906 }
8907
8908 // Also push in last position the remainder of the last division: it will be
8909 // the access function of the innermost dimension.
8910 Subscripts.push_back(Res);
8911
8912 std::reverse(Subscripts.begin(), Subscripts.end());
8913
8914 DEBUG({
8915 dbgs() << "Subscripts:\n";
8916 for (const SCEV *S : Subscripts)
8917 dbgs() << *S << "\n";
8918 });
Sebastian Pop448712b2014-05-07 18:01:20 +00008919}
8920
Sebastian Popc62c6792013-11-12 22:47:20 +00008921/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
8922/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00008923/// is the offset start of the array. The SCEV->delinearize algorithm computes
8924/// the multiples of SCEV coefficients: that is a pattern matching of sub
8925/// expressions in the stride and base of a SCEV corresponding to the
8926/// computation of a GCD (greatest common divisor) of base and stride. When
8927/// SCEV->delinearize fails, it returns the SCEV unchanged.
8928///
8929/// For example: when analyzing the memory access A[i][j][k] in this loop nest
8930///
8931/// void foo(long n, long m, long o, double A[n][m][o]) {
8932///
8933/// for (long i = 0; i < n; i++)
8934/// for (long j = 0; j < m; j++)
8935/// for (long k = 0; k < o; k++)
8936/// A[i][j][k] = 1.0;
8937/// }
8938///
8939/// the delinearization input is the following AddRec SCEV:
8940///
8941/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
8942///
8943/// From this SCEV, we are able to say that the base offset of the access is %A
8944/// because it appears as an offset that does not divide any of the strides in
8945/// the loops:
8946///
8947/// CHECK: Base offset: %A
8948///
8949/// and then SCEV->delinearize determines the size of some of the dimensions of
8950/// the array as these are the multiples by which the strides are happening:
8951///
8952/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
8953///
8954/// Note that the outermost dimension remains of UnknownSize because there are
8955/// no strides that would help identifying the size of the last dimension: when
8956/// the array has been statically allocated, one could compute the size of that
8957/// dimension by dividing the overall size of the array by the size of the known
8958/// dimensions: %m * %o * 8.
8959///
8960/// Finally delinearize provides the access functions for the array reference
8961/// that does correspond to A[i][j][k] of the above C testcase:
8962///
8963/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
8964///
8965/// The testcases are checking the output of a function pass:
8966/// DelinearizationPass that walks through all loads and stores of a function
8967/// asking for the SCEV of the memory access with respect to all enclosing
8968/// loops, calling SCEV->delinearize on that and printing the results.
8969
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008970void ScalarEvolution::delinearize(const SCEV *Expr,
Sebastian Pop28e6b972014-05-27 22:41:51 +00008971 SmallVectorImpl<const SCEV *> &Subscripts,
8972 SmallVectorImpl<const SCEV *> &Sizes,
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008973 const SCEV *ElementSize) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008974 // First step: collect parametric terms.
8975 SmallVector<const SCEV *, 4> Terms;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008976 collectParametricTerms(Expr, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00008977
Sebastian Popb1a548f2014-05-12 19:01:53 +00008978 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008979 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008980
Sebastian Pop448712b2014-05-07 18:01:20 +00008981 // Second step: find subscript sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008982 findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00008983
Sebastian Popb1a548f2014-05-12 19:01:53 +00008984 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008985 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008986
Sebastian Pop448712b2014-05-07 18:01:20 +00008987 // Third step: compute the access functions for each subscript.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008988 computeAccessFunctions(Expr, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00008989
Sebastian Pop28e6b972014-05-27 22:41:51 +00008990 if (Subscripts.empty())
8991 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008992
Sebastian Pop448712b2014-05-07 18:01:20 +00008993 DEBUG({
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008994 dbgs() << "succeeded to delinearize " << *Expr << "\n";
Sebastian Pop448712b2014-05-07 18:01:20 +00008995 dbgs() << "ArrayDecl[UnknownSize]";
8996 for (const SCEV *S : Sizes)
8997 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00008998
Sebastian Pop444621a2014-05-09 22:45:02 +00008999 dbgs() << "\nArrayRef";
9000 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00009001 dbgs() << "[" << *S << "]";
9002 dbgs() << "\n";
9003 });
Sebastian Popc62c6792013-11-12 22:47:20 +00009004}
Chris Lattnerd934c702004-04-02 20:23:17 +00009005
9006//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00009007// SCEVCallbackVH Class Implementation
9008//===----------------------------------------------------------------------===//
9009
Dan Gohmand33a0902009-05-19 19:22:47 +00009010void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00009011 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00009012 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9013 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009014 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00009015 // this now dangles!
9016}
9017
Dan Gohman7a066722010-07-28 01:09:07 +00009018void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00009019 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00009020
Dan Gohman48f82222009-05-04 22:30:44 +00009021 // Forget all the expressions associated with users of the old value,
9022 // so that future queries will recompute the expressions using the new
9023 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00009024 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00009025 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00009026 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00009027 while (!Worklist.empty()) {
9028 User *U = Worklist.pop_back_val();
9029 // Deleting the Old value will cause this to dangle. Postpone
9030 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009031 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00009032 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00009033 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00009034 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00009035 if (PHINode *PN = dyn_cast<PHINode>(U))
9036 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009037 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00009038 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00009039 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009040 // Delete the Old value.
9041 if (PHINode *PN = dyn_cast<PHINode>(Old))
9042 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009043 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009044 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00009045}
9046
Dan Gohmand33a0902009-05-19 19:22:47 +00009047ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00009048 : CallbackVH(V), SE(se) {}
9049
9050//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00009051// ScalarEvolution Class Implementation
9052//===----------------------------------------------------------------------===//
9053
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009054ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9055 AssumptionCache &AC, DominatorTree &DT,
9056 LoopInfo &LI)
9057 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9058 CouldNotCompute(new SCEVCouldNotCompute()),
Sanjoy Das7d910f22015-10-02 18:50:30 +00009059 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9060 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9061 FirstUnknown(nullptr) {}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009062
9063ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9064 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
9065 CouldNotCompute(std::move(Arg.CouldNotCompute)),
9066 ValueExprMap(std::move(Arg.ValueExprMap)),
Sanjoy Das7d910f22015-10-02 18:50:30 +00009067 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009068 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9069 ConstantEvolutionLoopExitValue(
9070 std::move(Arg.ConstantEvolutionLoopExitValue)),
9071 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9072 LoopDispositions(std::move(Arg.LoopDispositions)),
9073 BlockDispositions(std::move(Arg.BlockDispositions)),
9074 UnsignedRanges(std::move(Arg.UnsignedRanges)),
9075 SignedRanges(std::move(Arg.SignedRanges)),
9076 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
Silviu Barangae3c05342015-11-02 14:41:02 +00009077 UniquePreds(std::move(Arg.UniquePreds)),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009078 SCEVAllocator(std::move(Arg.SCEVAllocator)),
9079 FirstUnknown(Arg.FirstUnknown) {
9080 Arg.FirstUnknown = nullptr;
Dan Gohmanc8e23622009-04-21 23:15:49 +00009081}
9082
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009083ScalarEvolution::~ScalarEvolution() {
Dan Gohman7cac9572010-08-02 23:49:30 +00009084 // Iterate through all the SCEVUnknown instances and call their
9085 // destructors, so that they release their references to their values.
Naomi Musgravef90c1be2015-09-16 23:46:40 +00009086 for (SCEVUnknown *U = FirstUnknown; U;) {
9087 SCEVUnknown *Tmp = U;
9088 U = U->Next;
9089 Tmp->~SCEVUnknown();
9090 }
Craig Topper9f008862014-04-15 04:59:12 +00009091 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00009092
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009093 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00009094
9095 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9096 // that a loop had multiple computable exits.
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009097 for (auto &BTCI : BackedgeTakenCounts)
9098 BTCI.second.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00009099
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00009100 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00009101 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
Sanjoy Das7d910f22015-10-02 18:50:30 +00009102 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
Dan Gohman0a40ad92009-04-16 03:18:22 +00009103}
9104
Dan Gohmanc8e23622009-04-21 23:15:49 +00009105bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00009106 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00009107}
9108
Dan Gohmanc8e23622009-04-21 23:15:49 +00009109static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00009110 const Loop *L) {
9111 // Print all inner loops first
9112 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9113 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00009114
Dan Gohmanbc694912010-01-09 18:17:45 +00009115 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00009116 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009117 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00009118
Dan Gohmancb0efec2009-12-18 01:14:11 +00009119 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00009120 L->getExitBlocks(ExitBlocks);
9121 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00009122 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00009123
Dan Gohman0bddac12009-02-24 18:55:53 +00009124 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9125 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00009126 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00009127 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00009128 }
9129
Dan Gohmanbc694912010-01-09 18:17:45 +00009130 OS << "\n"
9131 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00009132 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009133 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00009134
9135 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9136 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9137 } else {
9138 OS << "Unpredictable max backedge-taken count. ";
9139 }
9140
9141 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00009142}
9143
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009144void ScalarEvolution::print(raw_ostream &OS) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00009145 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00009146 // out SCEV values of all instructions that are interesting. Doing
9147 // this potentially causes it to create new SCEV objects though,
9148 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00009149 // observable from outside the class though, so casting away the
9150 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00009151 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00009152
Dan Gohmanbc694912010-01-09 18:17:45 +00009153 OS << "Classifying expressions for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009154 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009155 OS << "\n";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009156 for (Instruction &I : instructions(F))
9157 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9158 OS << I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00009159 OS << " --> ";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009160 const SCEV *SV = SE.getSCEV(&I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009161 SV->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009162 if (!isa<SCEVCouldNotCompute>(SV)) {
9163 OS << " U: ";
9164 SE.getUnsignedRange(SV).print(OS);
9165 OS << " S: ";
9166 SE.getSignedRange(SV).print(OS);
9167 }
Misha Brukman01808ca2005-04-21 21:13:18 +00009168
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009169 const Loop *L = LI.getLoopFor(I.getParent());
Dan Gohmanb9063a82009-06-19 17:49:54 +00009170
Dan Gohmanaf752342009-07-07 17:06:11 +00009171 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00009172 if (AtUse != SV) {
9173 OS << " --> ";
9174 AtUse->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009175 if (!isa<SCEVCouldNotCompute>(AtUse)) {
9176 OS << " U: ";
9177 SE.getUnsignedRange(AtUse).print(OS);
9178 OS << " S: ";
9179 SE.getSignedRange(AtUse).print(OS);
9180 }
Dan Gohmanb9063a82009-06-19 17:49:54 +00009181 }
9182
9183 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00009184 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00009185 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00009186 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00009187 OS << "<<Unknown>>";
9188 } else {
9189 OS << *ExitValue;
9190 }
9191 }
9192
Chris Lattnerd934c702004-04-02 20:23:17 +00009193 OS << "\n";
9194 }
9195
Dan Gohmanbc694912010-01-09 18:17:45 +00009196 OS << "Determining loop execution counts for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009197 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009198 OS << "\n";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009199 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
Dan Gohmanc8e23622009-04-21 23:15:49 +00009200 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009201}
Dan Gohmane20f8242009-04-21 00:47:46 +00009202
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009203ScalarEvolution::LoopDisposition
9204ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009205 auto &Values = LoopDispositions[S];
9206 for (auto &V : Values) {
9207 if (V.getPointer() == L)
9208 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009209 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009210 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009211 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009212 auto &Values2 = LoopDispositions[S];
9213 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9214 if (V.getPointer() == L) {
9215 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009216 break;
9217 }
9218 }
9219 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009220}
9221
9222ScalarEvolution::LoopDisposition
9223ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009224 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009225 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009226 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009227 case scTruncate:
9228 case scZeroExtend:
9229 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009230 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00009231 case scAddRecExpr: {
9232 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9233
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009234 // If L is the addrec's loop, it's computable.
9235 if (AR->getLoop() == L)
9236 return LoopComputable;
9237
Dan Gohmanafd6db92010-11-17 21:23:15 +00009238 // Add recurrences are never invariant in the function-body (null loop).
9239 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009240 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009241
9242 // This recurrence is variant w.r.t. L if L contains AR's loop.
9243 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009244 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009245
9246 // This recurrence is invariant w.r.t. L if AR's loop contains L.
9247 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009248 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009249
9250 // This recurrence is variant w.r.t. L if any of its operands
9251 // are variant.
Sanjoy Das01947432015-11-22 21:20:13 +00009252 for (auto *Op : AR->operands())
9253 if (!isLoopInvariant(Op, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009254 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009255
9256 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009257 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009258 }
9259 case scAddExpr:
9260 case scMulExpr:
9261 case scUMaxExpr:
9262 case scSMaxExpr: {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009263 bool HasVarying = false;
Sanjoy Das01947432015-11-22 21:20:13 +00009264 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9265 LoopDisposition D = getLoopDisposition(Op, L);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009266 if (D == LoopVariant)
9267 return LoopVariant;
9268 if (D == LoopComputable)
9269 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009270 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009271 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009272 }
9273 case scUDivExpr: {
9274 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009275 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9276 if (LD == LoopVariant)
9277 return LoopVariant;
9278 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9279 if (RD == LoopVariant)
9280 return LoopVariant;
9281 return (LD == LoopInvariant && RD == LoopInvariant) ?
9282 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009283 }
9284 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009285 // All non-instruction values are loop invariant. All instructions are loop
9286 // invariant if they are not contained in the specified loop.
9287 // Instructions are never considered invariant in the function body
9288 // (null loop) because they are defined within the "loop".
Sanjoy Das01947432015-11-22 21:20:13 +00009289 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009290 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9291 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009292 case scCouldNotCompute:
9293 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00009294 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009295 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009296}
9297
9298bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9299 return getLoopDisposition(S, L) == LoopInvariant;
9300}
9301
9302bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9303 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009304}
Dan Gohman20d9ce22010-11-17 21:41:58 +00009305
Dan Gohman8ea83d82010-11-18 00:34:22 +00009306ScalarEvolution::BlockDisposition
9307ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009308 auto &Values = BlockDispositions[S];
9309 for (auto &V : Values) {
9310 if (V.getPointer() == BB)
9311 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009312 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009313 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009314 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009315 auto &Values2 = BlockDispositions[S];
9316 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9317 if (V.getPointer() == BB) {
9318 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009319 break;
9320 }
9321 }
9322 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009323}
9324
Dan Gohman8ea83d82010-11-18 00:34:22 +00009325ScalarEvolution::BlockDisposition
9326ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009327 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00009328 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009329 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009330 case scTruncate:
9331 case scZeroExtend:
9332 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009333 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00009334 case scAddRecExpr: {
9335 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00009336 // to test for proper dominance too, because the instruction which
9337 // produces the addrec's value is a PHI, and a PHI effectively properly
9338 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00009339 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009340 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009341 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009342 }
9343 // FALL THROUGH into SCEVNAryExpr handling.
9344 case scAddExpr:
9345 case scMulExpr:
9346 case scUMaxExpr:
9347 case scSMaxExpr: {
9348 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009349 bool Proper = true;
Sanjoy Dasd87e4352015-12-08 22:53:36 +00009350 for (const SCEV *NAryOp : NAry->operands()) {
9351 BlockDisposition D = getBlockDisposition(NAryOp, BB);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009352 if (D == DoesNotDominateBlock)
9353 return DoesNotDominateBlock;
9354 if (D == DominatesBlock)
9355 Proper = false;
9356 }
9357 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009358 }
9359 case scUDivExpr: {
9360 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009361 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9362 BlockDisposition LD = getBlockDisposition(LHS, BB);
9363 if (LD == DoesNotDominateBlock)
9364 return DoesNotDominateBlock;
9365 BlockDisposition RD = getBlockDisposition(RHS, BB);
9366 if (RD == DoesNotDominateBlock)
9367 return DoesNotDominateBlock;
9368 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9369 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009370 }
9371 case scUnknown:
9372 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00009373 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9374 if (I->getParent() == BB)
9375 return DominatesBlock;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009376 if (DT.properlyDominates(I->getParent(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009377 return ProperlyDominatesBlock;
9378 return DoesNotDominateBlock;
9379 }
9380 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009381 case scCouldNotCompute:
9382 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00009383 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009384 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00009385}
9386
9387bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9388 return getBlockDisposition(S, BB) >= DominatesBlock;
9389}
9390
9391bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9392 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009393}
Dan Gohman534749b2010-11-17 22:27:42 +00009394
9395bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Sanjoy Das7d752672015-12-08 04:32:54 +00009396 // Search for a SCEV expression node within an expression tree.
9397 // Implements SCEVTraversal::Visitor.
9398 struct SCEVSearch {
9399 const SCEV *Node;
9400 bool IsFound;
9401
9402 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9403
9404 bool follow(const SCEV *S) {
9405 IsFound |= (S == Node);
9406 return !IsFound;
9407 }
9408 bool isDone() const { return IsFound; }
9409 };
9410
Andrew Trick365e31c2012-07-13 23:33:03 +00009411 SCEVSearch Search(Op);
9412 visitAll(S, Search);
9413 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00009414}
Dan Gohman7e6b3932010-11-17 23:28:48 +00009415
9416void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9417 ValuesAtScopes.erase(S);
9418 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009419 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00009420 UnsignedRanges.erase(S);
9421 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00009422
9423 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
9424 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
9425 BackedgeTakenInfo &BEInfo = I->second;
9426 if (BEInfo.hasOperand(S, this)) {
9427 BEInfo.clear();
9428 BackedgeTakenCounts.erase(I++);
9429 }
9430 else
9431 ++I;
9432 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00009433}
Benjamin Kramer214935e2012-10-26 17:31:32 +00009434
9435typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009436
Alp Tokercb402912014-01-24 17:20:08 +00009437/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009438static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9439 size_t Pos = 0;
9440 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9441 Str.replace(Pos, From.size(), To.data(), To.size());
9442 Pos += To.size();
9443 }
9444}
9445
Benjamin Kramer214935e2012-10-26 17:31:32 +00009446/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9447static void
9448getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
Sanjoy Das2fbfb252015-12-23 17:48:14 +00009449 std::string &S = Map[L];
9450 if (S.empty()) {
9451 raw_string_ostream OS(S);
9452 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer214935e2012-10-26 17:31:32 +00009453
Sanjoy Das2fbfb252015-12-23 17:48:14 +00009454 // false and 0 are semantically equivalent. This can happen in dead loops.
9455 replaceSubString(OS.str(), "false", "0");
9456 // Remove wrap flags, their use in SCEV is highly fragile.
9457 // FIXME: Remove this when SCEV gets smarter about them.
9458 replaceSubString(OS.str(), "<nw>", "");
9459 replaceSubString(OS.str(), "<nsw>", "");
9460 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00009461 }
Sanjoy Das2fbfb252015-12-23 17:48:14 +00009462
JF Bastien61ad8b32015-12-23 18:18:53 +00009463 for (auto *R : reverse(*L))
9464 getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
Benjamin Kramer214935e2012-10-26 17:31:32 +00009465}
9466
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009467void ScalarEvolution::verify() const {
Benjamin Kramer214935e2012-10-26 17:31:32 +00009468 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9469
9470 // Gather stringified backedge taken counts for all loops using SCEV's caches.
9471 // FIXME: It would be much better to store actual values instead of strings,
9472 // but SCEV pointers will change if we drop the caches.
9473 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009474 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
Benjamin Kramer214935e2012-10-26 17:31:32 +00009475 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9476
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009477 // Gather stringified backedge taken counts for all loops using a fresh
9478 // ScalarEvolution object.
9479 ScalarEvolution SE2(F, TLI, AC, DT, LI);
9480 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9481 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
Benjamin Kramer214935e2012-10-26 17:31:32 +00009482
9483 // Now compare whether they're the same with and without caches. This allows
9484 // verifying that no pass changed the cache.
9485 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9486 "New loops suddenly appeared!");
9487
9488 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9489 OldE = BackedgeDumpsOld.end(),
9490 NewI = BackedgeDumpsNew.begin();
9491 OldI != OldE; ++OldI, ++NewI) {
9492 assert(OldI->first == NewI->first && "Loop order changed!");
9493
9494 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9495 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009496 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00009497 // means that a pass is buggy or SCEV has to learn a new pattern but is
9498 // usually not harmful.
9499 if (OldI->second != NewI->second &&
9500 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009501 NewI->second.find("undef") == std::string::npos &&
9502 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00009503 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009504 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00009505 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009506 << "' changed from '" << OldI->second
9507 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00009508 std::abort();
9509 }
9510 }
9511
9512 // TODO: Verify more things.
9513}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009514
9515char ScalarEvolutionAnalysis::PassID;
9516
9517ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
9518 AnalysisManager<Function> *AM) {
9519 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F),
9520 AM->getResult<AssumptionAnalysis>(F),
9521 AM->getResult<DominatorTreeAnalysis>(F),
9522 AM->getResult<LoopAnalysis>(F));
9523}
9524
9525PreservedAnalyses
9526ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) {
9527 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS);
9528 return PreservedAnalyses::all();
9529}
9530
9531INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
9532 "Scalar Evolution Analysis", false, true)
9533INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
9534INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
9535INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
9536INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
9537INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
9538 "Scalar Evolution Analysis", false, true)
9539char ScalarEvolutionWrapperPass::ID = 0;
9540
9541ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
9542 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
9543}
9544
9545bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
9546 SE.reset(new ScalarEvolution(
9547 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
9548 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
9549 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
9550 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
9551 return false;
9552}
9553
9554void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
9555
9556void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
9557 SE->print(OS);
9558}
9559
9560void ScalarEvolutionWrapperPass::verifyAnalysis() const {
9561 if (!VerifySCEV)
9562 return;
9563
9564 SE->verify();
9565}
9566
9567void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
9568 AU.setPreservesAll();
9569 AU.addRequiredTransitive<AssumptionCacheTracker>();
9570 AU.addRequiredTransitive<LoopInfoWrapperPass>();
9571 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
9572 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
9573}
Silviu Barangae3c05342015-11-02 14:41:02 +00009574
9575const SCEVPredicate *
9576ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
9577 const SCEVConstant *RHS) {
9578 FoldingSetNodeID ID;
9579 // Unique this node based on the arguments
9580 ID.AddInteger(SCEVPredicate::P_Equal);
9581 ID.AddPointer(LHS);
9582 ID.AddPointer(RHS);
9583 void *IP = nullptr;
9584 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
9585 return S;
9586 SCEVEqualPredicate *Eq = new (SCEVAllocator)
9587 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
9588 UniquePreds.InsertNode(Eq, IP);
9589 return Eq;
9590}
9591
Benjamin Kramer83709b12015-11-16 09:01:28 +00009592namespace {
Silviu Barangae3c05342015-11-02 14:41:02 +00009593class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
9594public:
9595 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
9596 SCEVUnionPredicate &A) {
9597 SCEVPredicateRewriter Rewriter(SE, A);
9598 return Rewriter.visit(Scev);
9599 }
9600
9601 SCEVPredicateRewriter(ScalarEvolution &SE, SCEVUnionPredicate &P)
9602 : SCEVRewriteVisitor(SE), P(P) {}
9603
9604 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
9605 auto ExprPreds = P.getPredicatesForExpr(Expr);
9606 for (auto *Pred : ExprPreds)
9607 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
9608 if (IPred->getLHS() == Expr)
9609 return IPred->getRHS();
9610
9611 return Expr;
9612 }
9613
9614private:
9615 SCEVUnionPredicate &P;
9616};
Benjamin Kramer83709b12015-11-16 09:01:28 +00009617} // end anonymous namespace
Silviu Barangae3c05342015-11-02 14:41:02 +00009618
9619const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *Scev,
9620 SCEVUnionPredicate &Preds) {
9621 return SCEVPredicateRewriter::rewrite(Scev, *this, Preds);
9622}
9623
9624/// SCEV predicates
9625SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
9626 SCEVPredicateKind Kind)
9627 : FastID(ID), Kind(Kind) {}
9628
9629SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
9630 const SCEVUnknown *LHS,
9631 const SCEVConstant *RHS)
9632 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
9633
9634bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
9635 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
9636
9637 if (!Op)
9638 return false;
9639
9640 return Op->LHS == LHS && Op->RHS == RHS;
9641}
9642
9643bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
9644
9645const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
9646
9647void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
9648 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
9649}
9650
9651/// Union predicates don't get cached so create a dummy set ID for it.
9652SCEVUnionPredicate::SCEVUnionPredicate()
9653 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
9654
9655bool SCEVUnionPredicate::isAlwaysTrue() const {
Sanjoy Das3b827c72015-11-29 23:40:53 +00009656 return all_of(Preds,
9657 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
Silviu Barangae3c05342015-11-02 14:41:02 +00009658}
9659
9660ArrayRef<const SCEVPredicate *>
9661SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
9662 auto I = SCEVToPreds.find(Expr);
9663 if (I == SCEVToPreds.end())
9664 return ArrayRef<const SCEVPredicate *>();
9665 return I->second;
9666}
9667
9668bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
9669 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
Sanjoy Das3b827c72015-11-29 23:40:53 +00009670 return all_of(Set->Preds,
9671 [this](const SCEVPredicate *I) { return this->implies(I); });
Silviu Barangae3c05342015-11-02 14:41:02 +00009672
9673 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
9674 if (ScevPredsIt == SCEVToPreds.end())
9675 return false;
9676 auto &SCEVPreds = ScevPredsIt->second;
9677
Sanjoy Dasff3b8b42015-12-01 07:49:23 +00009678 return any_of(SCEVPreds,
9679 [N](const SCEVPredicate *I) { return I->implies(N); });
Silviu Barangae3c05342015-11-02 14:41:02 +00009680}
9681
9682const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
9683
9684void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
9685 for (auto Pred : Preds)
9686 Pred->print(OS, Depth);
9687}
9688
9689void SCEVUnionPredicate::add(const SCEVPredicate *N) {
9690 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
9691 for (auto Pred : Set->Preds)
9692 add(Pred);
9693 return;
9694 }
9695
9696 if (implies(N))
9697 return;
9698
9699 const SCEV *Key = N->getExpr();
9700 assert(Key && "Only SCEVUnionPredicate doesn't have an "
9701 " associated expression!");
9702
9703 SCEVToPreds[Key].push_back(N);
9704 Preds.push_back(N);
9705}
Silviu Baranga9cd9a7e2015-12-09 16:06:28 +00009706
9707PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE)
9708 : SE(SE), Generation(0) {}
9709
9710const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
9711 const SCEV *Expr = SE.getSCEV(V);
9712 RewriteEntry &Entry = RewriteMap[Expr];
9713
9714 // If we already have an entry and the version matches, return it.
9715 if (Entry.second && Generation == Entry.first)
9716 return Entry.second;
9717
9718 // We found an entry but it's stale. Rewrite the stale entry
9719 // acording to the current predicate.
9720 if (Entry.second)
9721 Expr = Entry.second;
9722
9723 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, Preds);
9724 Entry = {Generation, NewSCEV};
9725
9726 return NewSCEV;
9727}
9728
9729void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
9730 if (Preds.implies(&Pred))
9731 return;
9732 Preds.add(&Pred);
9733 updateGeneration();
9734}
9735
9736const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
9737 return Preds;
9738}
9739
9740void PredicatedScalarEvolution::updateGeneration() {
9741 // If the generation number wrapped recompute everything.
9742 if (++Generation == 0) {
9743 for (auto &II : RewriteMap) {
9744 const SCEV *Rewritten = II.second.second;
9745 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, Preds)};
9746 }
9747 }
9748}