blob: 9a0570d47f024e09de9f63dd8a703c21e2abb0c9 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Sanjoy Dasc88f5d32015-10-28 21:27:14 +000086#include "llvm/IR/PatternMatch.h"
Chris Lattner996795b2006-06-28 23:17:24 +000087#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000088#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000089#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000090#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000091#include "llvm/Support/raw_ostream.h"
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +000092#include "llvm/Support/SaveAndRestore.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000093#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000094using namespace llvm;
95
Chandler Carruthf1221bd2014-04-22 02:48:03 +000096#define DEBUG_TYPE "scalar-evolution"
97
Chris Lattner57ef9422006-12-19 22:30:33 +000098STATISTIC(NumArrayLenItCounts,
99 "Number of trip counts computed with array length");
100STATISTIC(NumTripCountsComputed,
101 "Number of loops with predictable loop counts");
102STATISTIC(NumTripCountsNotComputed,
103 "Number of loops without predictable loop counts");
104STATISTIC(NumBruteForceTripCountsComputed,
105 "Number of loops with trip counts computed by force");
106
Dan Gohmand78c4002008-05-13 00:00:25 +0000107static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000108MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000110 "symbolically execute a constant "
111 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000112 cl::init(100));
113
Benjamin Kramer214935e2012-10-26 17:31:32 +0000114// FIXME: Enable this with XDEBUG when the test suite is clean.
115static cl::opt<bool>
116VerifySCEV("verify-scev",
117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
118
Chris Lattnerd934c702004-04-02 20:23:17 +0000119//===----------------------------------------------------------------------===//
120// SCEV class definitions
121//===----------------------------------------------------------------------===//
122
123//===----------------------------------------------------------------------===//
124// Implementation of the SCEV class.
125//
Dan Gohman3423e722009-06-30 20:13:32 +0000126
Davide Italiano2071f4c2015-10-25 19:55:24 +0000127LLVM_DUMP_METHOD
128void SCEV::dump() const {
129 print(dbgs());
130 dbgs() << '\n';
131}
132
Dan Gohman534749b2010-11-17 22:27:42 +0000133void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000134 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000135 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000137 return;
138 case scTruncate: {
139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
140 const SCEV *Op = Trunc->getOperand();
141 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
142 << *Trunc->getType() << ")";
143 return;
144 }
145 case scZeroExtend: {
146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
147 const SCEV *Op = ZExt->getOperand();
148 OS << "(zext " << *Op->getType() << " " << *Op << " to "
149 << *ZExt->getType() << ")";
150 return;
151 }
152 case scSignExtend: {
153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
154 const SCEV *Op = SExt->getOperand();
155 OS << "(sext " << *Op->getType() << " " << *Op << " to "
156 << *SExt->getType() << ")";
157 return;
158 }
159 case scAddRecExpr: {
160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
161 OS << "{" << *AR->getOperand(0);
162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
163 OS << ",+," << *AR->getOperand(i);
164 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000165 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000166 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000167 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000168 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000169 if (AR->getNoWrapFlags(FlagNW) &&
170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
171 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000173 OS << ">";
174 return;
175 }
176 case scAddExpr:
177 case scMulExpr:
178 case scUMaxExpr:
179 case scSMaxExpr: {
180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000181 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000182 switch (NAry->getSCEVType()) {
183 case scAddExpr: OpStr = " + "; break;
184 case scMulExpr: OpStr = " * "; break;
185 case scUMaxExpr: OpStr = " umax "; break;
186 case scSMaxExpr: OpStr = " smax "; break;
187 }
188 OS << "(";
189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
190 I != E; ++I) {
191 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000192 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000193 OS << OpStr;
194 }
195 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000196 switch (NAry->getSCEVType()) {
197 case scAddExpr:
198 case scMulExpr:
199 if (NAry->getNoWrapFlags(FlagNUW))
200 OS << "<nuw>";
201 if (NAry->getNoWrapFlags(FlagNSW))
202 OS << "<nsw>";
203 }
Dan Gohman534749b2010-11-17 22:27:42 +0000204 return;
205 }
206 case scUDivExpr: {
207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
209 return;
210 }
211 case scUnknown: {
212 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000213 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000214 if (U->isSizeOf(AllocTy)) {
215 OS << "sizeof(" << *AllocTy << ")";
216 return;
217 }
218 if (U->isAlignOf(AllocTy)) {
219 OS << "alignof(" << *AllocTy << ")";
220 return;
221 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000222
Chris Lattner229907c2011-07-18 04:54:35 +0000223 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000224 Constant *FieldNo;
225 if (U->isOffsetOf(CTy, FieldNo)) {
226 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000227 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000228 OS << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Dan Gohman534749b2010-11-17 22:27:42 +0000232 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000233 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000234 return;
235 }
236 case scCouldNotCompute:
237 OS << "***COULDNOTCOMPUTE***";
238 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000239 }
240 llvm_unreachable("Unknown SCEV kind!");
241}
242
Chris Lattner229907c2011-07-18 04:54:35 +0000243Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000244 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000245 case scConstant:
246 return cast<SCEVConstant>(this)->getType();
247 case scTruncate:
248 case scZeroExtend:
249 case scSignExtend:
250 return cast<SCEVCastExpr>(this)->getType();
251 case scAddRecExpr:
252 case scMulExpr:
253 case scUMaxExpr:
254 case scSMaxExpr:
255 return cast<SCEVNAryExpr>(this)->getType();
256 case scAddExpr:
257 return cast<SCEVAddExpr>(this)->getType();
258 case scUDivExpr:
259 return cast<SCEVUDivExpr>(this)->getType();
260 case scUnknown:
261 return cast<SCEVUnknown>(this)->getType();
262 case scCouldNotCompute:
263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000264 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000265 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000266}
267
Dan Gohmanbe928e32008-06-18 16:23:07 +0000268bool SCEV::isZero() const {
269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270 return SC->getValue()->isZero();
271 return false;
272}
273
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000274bool SCEV::isOne() const {
275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
276 return SC->getValue()->isOne();
277 return false;
278}
Chris Lattnerd934c702004-04-02 20:23:17 +0000279
Dan Gohman18a96bb2009-06-24 00:30:26 +0000280bool SCEV::isAllOnesValue() const {
281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
282 return SC->getValue()->isAllOnesValue();
283 return false;
284}
285
Andrew Trick881a7762012-01-07 00:27:31 +0000286/// isNonConstantNegative - Return true if the specified scev is negated, but
287/// not a constant.
288bool SCEV::isNonConstantNegative() const {
289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
290 if (!Mul) return false;
291
292 // If there is a constant factor, it will be first.
293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
294 if (!SC) return false;
295
296 // Return true if the value is negative, this matches things like (-42 * V).
297 return SC->getValue()->getValue().isNegative();
298}
299
Owen Anderson04052ec2009-06-22 21:57:23 +0000300SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000302
Chris Lattnerd934c702004-04-02 20:23:17 +0000303bool SCEVCouldNotCompute::classof(const SCEV *S) {
304 return S->getSCEVType() == scCouldNotCompute;
305}
306
Dan Gohmanaf752342009-07-07 17:06:11 +0000307const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000308 FoldingSetNodeID ID;
309 ID.AddInteger(scConstant);
310 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000311 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000314 UniqueSCEVs.InsertNode(S, IP);
315 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000316}
Chris Lattnerd934c702004-04-02 20:23:17 +0000317
Nick Lewycky31eaca52014-01-27 10:04:03 +0000318const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000319 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000320}
321
Dan Gohmanaf752342009-07-07 17:06:11 +0000322const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000323ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000325 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000326}
327
Dan Gohman24ceda82010-06-18 19:54:20 +0000328SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000329 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000331
Dan Gohman24ceda82010-06-18 19:54:20 +0000332SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000333 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000334 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
336 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000337 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000338}
Chris Lattnerd934c702004-04-02 20:23:17 +0000339
Dan Gohman24ceda82010-06-18 19:54:20 +0000340SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000341 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000342 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
344 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000345 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346}
347
Dan Gohman24ceda82010-06-18 19:54:20 +0000348SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000349 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000350 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
352 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000353 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000354}
355
Dan Gohman7cac9572010-08-02 23:49:30 +0000356void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000357 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000358 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000359
360 // Remove this SCEVUnknown from the uniquing map.
361 SE->UniqueSCEVs.RemoveNode(this);
362
363 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000364 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000365}
366
367void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000368 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000369 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000370
371 // Remove this SCEVUnknown from the uniquing map.
372 SE->UniqueSCEVs.RemoveNode(this);
373
374 // Update this SCEVUnknown to point to the new value. This is needed
375 // because there may still be outstanding SCEVs which still point to
376 // this SCEVUnknown.
377 setValPtr(New);
378}
379
Chris Lattner229907c2011-07-18 04:54:35 +0000380bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000382 if (VCE->getOpcode() == Instruction::PtrToInt)
383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000384 if (CE->getOpcode() == Instruction::GetElementPtr &&
385 CE->getOperand(0)->isNullValue() &&
386 CE->getNumOperands() == 2)
387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
388 if (CI->isOne()) {
389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
390 ->getElementType();
391 return true;
392 }
Dan Gohmancf913832010-01-28 02:15:55 +0000393
394 return false;
395}
396
Chris Lattner229907c2011-07-18 04:54:35 +0000397bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000399 if (VCE->getOpcode() == Instruction::PtrToInt)
400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000401 if (CE->getOpcode() == Instruction::GetElementPtr &&
402 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000403 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000405 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000406 if (!STy->isPacked() &&
407 CE->getNumOperands() == 3 &&
408 CE->getOperand(1)->isNullValue()) {
409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
410 if (CI->isOne() &&
411 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000412 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 AllocTy = STy->getElementType(1);
414 return true;
415 }
416 }
417 }
Dan Gohmancf913832010-01-28 02:15:55 +0000418
419 return false;
420}
421
Chris Lattner229907c2011-07-18 04:54:35 +0000422bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000424 if (VCE->getOpcode() == Instruction::PtrToInt)
425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
426 if (CE->getOpcode() == Instruction::GetElementPtr &&
427 CE->getNumOperands() == 3 &&
428 CE->getOperand(0)->isNullValue() &&
429 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000430 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
432 // Ignore vector types here so that ScalarEvolutionExpander doesn't
433 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000434 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000435 CTy = Ty;
436 FieldNo = CE->getOperand(2);
437 return true;
438 }
439 }
440
441 return false;
442}
443
Chris Lattnereb3e8402004-06-20 06:23:15 +0000444//===----------------------------------------------------------------------===//
445// SCEV Utilities
446//===----------------------------------------------------------------------===//
447
448namespace {
449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
450 /// than the complexity of the RHS. This comparator is used to canonicalize
451 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000452 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000453 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000454 public:
Dan Gohman992db002010-07-23 21:18:55 +0000455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000456
Dan Gohman27065672010-08-27 15:26:01 +0000457 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000458 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000459 return compare(LHS, RHS) < 0;
460 }
461
462 // Return negative, zero, or positive, if LHS is less than, equal to, or
463 // greater than RHS, respectively. A three-way result allows recursive
464 // comparisons to be more efficient.
465 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000466 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
467 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000468 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000469
Dan Gohman9ba542c2009-05-07 14:39:04 +0000470 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
472 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000473 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000474
Dan Gohman24ceda82010-06-18 19:54:20 +0000475 // Aside from the getSCEVType() ordering, the particular ordering
476 // isn't very important except that it's beneficial to be consistent,
477 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000478 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000479 case scUnknown: {
480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000482
483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
484 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000485 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000486
487 // Order pointer values after integer values. This helps SCEVExpander
488 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000489 bool LIsPointer = LV->getType()->isPointerTy(),
490 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000491 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000492 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000493
494 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000495 unsigned LID = LV->getValueID(),
496 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000497 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000498 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000499
500 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000501 if (const Argument *LA = dyn_cast<Argument>(LV)) {
502 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
504 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000505 }
506
Dan Gohman27065672010-08-27 15:26:01 +0000507 // For instructions, compare their loop depth, and their operand
508 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
510 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000511
512 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000513 const BasicBlock *LParent = LInst->getParent(),
514 *RParent = RInst->getParent();
515 if (LParent != RParent) {
516 unsigned LDepth = LI->getLoopDepth(LParent),
517 RDepth = LI->getLoopDepth(RParent);
518 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000519 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000520 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000521
522 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000523 unsigned LNumOps = LInst->getNumOperands(),
524 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000525 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000526 }
527
Dan Gohman27065672010-08-27 15:26:01 +0000528 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000529 }
530
Dan Gohman27065672010-08-27 15:26:01 +0000531 case scConstant: {
532 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000533 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000534
535 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000536 const APInt &LA = LC->getValue()->getValue();
537 const APInt &RA = RC->getValue()->getValue();
538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000539 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000540 return (int)LBitWidth - (int)RBitWidth;
541 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000542 }
543
Dan Gohman27065672010-08-27 15:26:01 +0000544 case scAddRecExpr: {
545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000547
548 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
550 if (LLoop != RLoop) {
551 unsigned LDepth = LLoop->getLoopDepth(),
552 RDepth = RLoop->getLoopDepth();
553 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000554 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000555 }
Dan Gohman27065672010-08-27 15:26:01 +0000556
557 // Addrec complexity grows with operand count.
558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
559 if (LNumOps != RNumOps)
560 return (int)LNumOps - (int)RNumOps;
561
562 // Lexicographically compare.
563 for (unsigned i = 0; i != LNumOps; ++i) {
564 long X = compare(LA->getOperand(i), RA->getOperand(i));
565 if (X != 0)
566 return X;
567 }
568
569 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000570 }
571
Dan Gohman27065672010-08-27 15:26:01 +0000572 case scAddExpr:
573 case scMulExpr:
574 case scSMaxExpr:
575 case scUMaxExpr: {
576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000578
579 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000581 if (LNumOps != RNumOps)
582 return (int)LNumOps - (int)RNumOps;
583
Dan Gohman5ae31022010-07-23 21:20:52 +0000584 for (unsigned i = 0; i != LNumOps; ++i) {
585 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000586 return 1;
587 long X = compare(LC->getOperand(i), RC->getOperand(i));
588 if (X != 0)
589 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000590 }
Dan Gohman27065672010-08-27 15:26:01 +0000591 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000592 }
593
Dan Gohman27065672010-08-27 15:26:01 +0000594 case scUDivExpr: {
595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000597
598 // Lexicographically compare udiv expressions.
599 long X = compare(LC->getLHS(), RC->getLHS());
600 if (X != 0)
601 return X;
602 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000603 }
604
Dan Gohman27065672010-08-27 15:26:01 +0000605 case scTruncate:
606 case scZeroExtend:
607 case scSignExtend: {
608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000610
611 // Compare cast expressions by operand.
612 return compare(LC->getOperand(), RC->getOperand());
613 }
614
Benjamin Kramer987b8502014-02-11 19:02:55 +0000615 case scCouldNotCompute:
616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000617 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000618 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000619 }
620 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000621}
Chris Lattnereb3e8402004-06-20 06:23:15 +0000622
623/// GroupByComplexity - Given a list of SCEV objects, order them by their
624/// complexity, and group objects of the same complexity together by value.
625/// When this routine is finished, we know that any duplicates in the vector are
626/// consecutive and that complexity is monotonically increasing.
627///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000628/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000629/// results from this routine. In other words, we don't want the results of
630/// this to depend on where the addresses of various SCEV objects happened to
631/// land in memory.
632///
Dan Gohmanaf752342009-07-07 17:06:11 +0000633static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000634 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000635 if (Ops.size() < 2) return; // Noop
636 if (Ops.size() == 2) {
637 // This is the common case, which also happens to be trivially simple.
638 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
640 if (SCEVComplexityCompare(LI)(RHS, LHS))
641 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000642 return;
643 }
644
Dan Gohman24ceda82010-06-18 19:54:20 +0000645 // Do the rough sort by complexity.
646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
647
648 // Now that we are sorted by complexity, group elements of the same
649 // complexity. Note that this is, at worst, N^2, but the vector is likely to
650 // be extremely short in practice. Note that we take this approach because we
651 // do not want to depend on the addresses of the objects we are grouping.
652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
653 const SCEV *S = Ops[i];
654 unsigned Complexity = S->getSCEVType();
655
656 // If there are any objects of the same complexity and same value as this
657 // one, group them.
658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
659 if (Ops[j] == S) { // Found a duplicate.
660 // Move it to immediately after i'th element.
661 std::swap(Ops[i+1], Ops[j]);
662 ++i; // no need to rescan it.
663 if (i == e-2) return; // Done!
664 }
665 }
666 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000667}
668
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000669namespace {
670struct FindSCEVSize {
671 int Size;
672 FindSCEVSize() : Size(0) {}
673
674 bool follow(const SCEV *S) {
675 ++Size;
676 // Keep looking at all operands of S.
677 return true;
678 }
679 bool isDone() const {
680 return false;
681 }
682};
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000683}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000684
685// Returns the size of the SCEV S.
686static inline int sizeOfSCEV(const SCEV *S) {
687 FindSCEVSize F;
688 SCEVTraversal<FindSCEVSize> ST(F);
689 ST.visitAll(S);
690 return F.Size;
691}
692
693namespace {
694
David Majnemer4e879362014-12-14 09:12:33 +0000695struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000696public:
697 // Computes the Quotient and Remainder of the division of Numerator by
698 // Denominator.
699 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
700 const SCEV *Denominator, const SCEV **Quotient,
701 const SCEV **Remainder) {
702 assert(Numerator && Denominator && "Uninitialized SCEV");
703
David Majnemer4e879362014-12-14 09:12:33 +0000704 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000705
706 // Check for the trivial case here to avoid having to check for it in the
707 // rest of the code.
708 if (Numerator == Denominator) {
709 *Quotient = D.One;
710 *Remainder = D.Zero;
711 return;
712 }
713
714 if (Numerator->isZero()) {
715 *Quotient = D.Zero;
716 *Remainder = D.Zero;
717 return;
718 }
719
Brendon Cahoona57cc8b2015-04-20 16:03:28 +0000720 // A simple case when N/1. The quotient is N.
721 if (Denominator->isOne()) {
722 *Quotient = Numerator;
723 *Remainder = D.Zero;
724 return;
725 }
726
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000727 // Split the Denominator when it is a product.
728 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
729 const SCEV *Q, *R;
730 *Quotient = Numerator;
731 for (const SCEV *Op : T->operands()) {
732 divide(SE, *Quotient, Op, &Q, &R);
733 *Quotient = Q;
734
735 // Bail out when the Numerator is not divisible by one of the terms of
736 // the Denominator.
737 if (!R->isZero()) {
738 *Quotient = D.Zero;
739 *Remainder = Numerator;
740 return;
741 }
742 }
743 *Remainder = D.Zero;
744 return;
745 }
746
747 D.visit(Numerator);
748 *Quotient = D.Quotient;
749 *Remainder = D.Remainder;
750 }
751
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000752 // Except in the trivial case described above, we do not know how to divide
753 // Expr by Denominator for the following functions with empty implementation.
754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
760 void visitUnknown(const SCEVUnknown *Numerator) {}
761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
762
David Majnemer4e879362014-12-14 09:12:33 +0000763 void visitConstant(const SCEVConstant *Numerator) {
764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
765 APInt NumeratorVal = Numerator->getValue()->getValue();
766 APInt DenominatorVal = D->getValue()->getValue();
767 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
768 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
769
770 if (NumeratorBW > DenominatorBW)
771 DenominatorVal = DenominatorVal.sext(NumeratorBW);
772 else if (NumeratorBW < DenominatorBW)
773 NumeratorVal = NumeratorVal.sext(DenominatorBW);
774
775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
778 Quotient = SE.getConstant(QuotientVal);
779 Remainder = SE.getConstant(RemainderVal);
780 return;
781 }
782 }
783
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
785 const SCEV *StartQ, *StartR, *StepQ, *StepR;
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000786 if (!Numerator->isAffine())
787 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
Brendon Cahoonf9751ad2015-04-22 15:06:40 +0000790 // Bail out if the types do not match.
791 Type *Ty = Denominator->getType();
792 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000793 Ty != StepQ->getType() || Ty != StepR->getType())
794 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
796 Numerator->getNoWrapFlags());
797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
798 Numerator->getNoWrapFlags());
799 }
800
801 void visitAddExpr(const SCEVAddExpr *Numerator) {
802 SmallVector<const SCEV *, 2> Qs, Rs;
803 Type *Ty = Denominator->getType();
804
805 for (const SCEV *Op : Numerator->operands()) {
806 const SCEV *Q, *R;
807 divide(SE, Op, Denominator, &Q, &R);
808
809 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000810 if (Ty != Q->getType() || Ty != R->getType())
811 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000812
813 Qs.push_back(Q);
814 Rs.push_back(R);
815 }
816
817 if (Qs.size() == 1) {
818 Quotient = Qs[0];
819 Remainder = Rs[0];
820 return;
821 }
822
823 Quotient = SE.getAddExpr(Qs);
824 Remainder = SE.getAddExpr(Rs);
825 }
826
827 void visitMulExpr(const SCEVMulExpr *Numerator) {
828 SmallVector<const SCEV *, 2> Qs;
829 Type *Ty = Denominator->getType();
830
831 bool FoundDenominatorTerm = false;
832 for (const SCEV *Op : Numerator->operands()) {
833 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000834 if (Ty != Op->getType())
835 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000836
837 if (FoundDenominatorTerm) {
838 Qs.push_back(Op);
839 continue;
840 }
841
842 // Check whether Denominator divides one of the product operands.
843 const SCEV *Q, *R;
844 divide(SE, Op, Denominator, &Q, &R);
845 if (!R->isZero()) {
846 Qs.push_back(Op);
847 continue;
848 }
849
850 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000851 if (Ty != Q->getType())
852 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000853
854 FoundDenominatorTerm = true;
855 Qs.push_back(Q);
856 }
857
858 if (FoundDenominatorTerm) {
859 Remainder = Zero;
860 if (Qs.size() == 1)
861 Quotient = Qs[0];
862 else
863 Quotient = SE.getMulExpr(Qs);
864 return;
865 }
866
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000867 if (!isa<SCEVUnknown>(Denominator))
868 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000869
870 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
871 ValueToValueMap RewriteMap;
872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
873 cast<SCEVConstant>(Zero)->getValue();
874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
875
876 if (Remainder->isZero()) {
877 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
879 cast<SCEVConstant>(One)->getValue();
880 Quotient =
881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
882 return;
883 }
884
885 // Quotient is (Numerator - Remainder) divided by Denominator.
886 const SCEV *Q, *R;
887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000888 // This SCEV does not seem to simplify: fail the division here.
889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
890 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000891 divide(SE, Diff, Denominator, &Q, &R);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000892 if (R != Zero)
893 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000894 Quotient = Q;
895 }
896
897private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
899 const SCEV *Denominator)
900 : SE(S), Denominator(Denominator) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +0000901 Zero = SE.getZero(Denominator->getType());
902 One = SE.getOne(Denominator->getType());
David Majnemer5d2670c2014-11-17 11:27:45 +0000903
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000904 // We generally do not know how to divide Expr by Denominator. We
905 // initialize the division to a "cannot divide" state to simplify the rest
906 // of the code.
907 cannotDivide(Numerator);
908 }
909
910 // Convenience function for giving up on the division. We set the quotient to
911 // be equal to zero and the remainder to be equal to the numerator.
912 void cannotDivide(const SCEV *Numerator) {
David Majnemer5d2670c2014-11-17 11:27:45 +0000913 Quotient = Zero;
914 Remainder = Numerator;
915 }
916
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000917 ScalarEvolution &SE;
918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000919};
920
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000921}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000922
Chris Lattnerd934c702004-04-02 20:23:17 +0000923//===----------------------------------------------------------------------===//
924// Simple SCEV method implementations
925//===----------------------------------------------------------------------===//
926
Eli Friedman61f67622008-08-04 23:49:06 +0000927/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000928/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000929static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000930 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000931 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000932 // Handle the simplest case efficiently.
933 if (K == 1)
934 return SE.getTruncateOrZeroExtend(It, ResultTy);
935
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000936 // We are using the following formula for BC(It, K):
937 //
938 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
939 //
Eli Friedman61f67622008-08-04 23:49:06 +0000940 // Suppose, W is the bitwidth of the return value. We must be prepared for
941 // overflow. Hence, we must assure that the result of our computation is
942 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
943 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000944 //
Eli Friedman61f67622008-08-04 23:49:06 +0000945 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000946 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000947 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
948 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000949 //
Eli Friedman61f67622008-08-04 23:49:06 +0000950 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000951 //
Eli Friedman61f67622008-08-04 23:49:06 +0000952 // This formula is trivially equivalent to the previous formula. However,
953 // this formula can be implemented much more efficiently. The trick is that
954 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
955 // arithmetic. To do exact division in modular arithmetic, all we have
956 // to do is multiply by the inverse. Therefore, this step can be done at
957 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000958 //
Eli Friedman61f67622008-08-04 23:49:06 +0000959 // The next issue is how to safely do the division by 2^T. The way this
960 // is done is by doing the multiplication step at a width of at least W + T
961 // bits. This way, the bottom W+T bits of the product are accurate. Then,
962 // when we perform the division by 2^T (which is equivalent to a right shift
963 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
964 // truncated out after the division by 2^T.
965 //
966 // In comparison to just directly using the first formula, this technique
967 // is much more efficient; using the first formula requires W * K bits,
968 // but this formula less than W + K bits. Also, the first formula requires
969 // a division step, whereas this formula only requires multiplies and shifts.
970 //
971 // It doesn't matter whether the subtraction step is done in the calculation
972 // width or the input iteration count's width; if the subtraction overflows,
973 // the result must be zero anyway. We prefer here to do it in the width of
974 // the induction variable because it helps a lot for certain cases; CodeGen
975 // isn't smart enough to ignore the overflow, which leads to much less
976 // efficient code if the width of the subtraction is wider than the native
977 // register width.
978 //
979 // (It's possible to not widen at all by pulling out factors of 2 before
980 // the multiplication; for example, K=2 can be calculated as
981 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
982 // extra arithmetic, so it's not an obvious win, and it gets
983 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000984
Eli Friedman61f67622008-08-04 23:49:06 +0000985 // Protection from insane SCEVs; this bound is conservative,
986 // but it probably doesn't matter.
987 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000988 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000989
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000990 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000991
Eli Friedman61f67622008-08-04 23:49:06 +0000992 // Calculate K! / 2^T and T; we divide out the factors of two before
993 // multiplying for calculating K! / 2^T to avoid overflow.
994 // Other overflow doesn't matter because we only care about the bottom
995 // W bits of the result.
996 APInt OddFactorial(W, 1);
997 unsigned T = 1;
998 for (unsigned i = 3; i <= K; ++i) {
999 APInt Mult(W, i);
1000 unsigned TwoFactors = Mult.countTrailingZeros();
1001 T += TwoFactors;
1002 Mult = Mult.lshr(TwoFactors);
1003 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001004 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001005
Eli Friedman61f67622008-08-04 23:49:06 +00001006 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001007 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001008
Dan Gohman8b0a4192010-03-01 17:49:51 +00001009 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001010 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001011
1012 // Calculate the multiplicative inverse of K! / 2^T;
1013 // this multiplication factor will perform the exact division by
1014 // K! / 2^T.
1015 APInt Mod = APInt::getSignedMinValue(W+1);
1016 APInt MultiplyFactor = OddFactorial.zext(W+1);
1017 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1018 MultiplyFactor = MultiplyFactor.trunc(W);
1019
1020 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001021 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001022 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001023 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001024 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001025 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001026 Dividend = SE.getMulExpr(Dividend,
1027 SE.getTruncateOrZeroExtend(S, CalculationTy));
1028 }
1029
1030 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001031 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001032
1033 // Truncate the result, and divide by K! / 2^T.
1034
1035 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1036 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001037}
1038
Chris Lattnerd934c702004-04-02 20:23:17 +00001039/// evaluateAtIteration - Return the value of this chain of recurrences at
1040/// the specified iteration number. We can evaluate this recurrence by
1041/// multiplying each element in the chain by the binomial coefficient
1042/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1043///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001044/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001045///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001046/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001047///
Dan Gohmanaf752342009-07-07 17:06:11 +00001048const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001049 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001050 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001051 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001052 // The computation is correct in the face of overflow provided that the
1053 // multiplication is performed _after_ the evaluation of the binomial
1054 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001055 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001056 if (isa<SCEVCouldNotCompute>(Coeff))
1057 return Coeff;
1058
1059 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001060 }
1061 return Result;
1062}
1063
Chris Lattnerd934c702004-04-02 20:23:17 +00001064//===----------------------------------------------------------------------===//
1065// SCEV Expression folder implementations
1066//===----------------------------------------------------------------------===//
1067
Dan Gohmanaf752342009-07-07 17:06:11 +00001068const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001069 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001070 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001071 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001072 assert(isSCEVable(Ty) &&
1073 "This is not a conversion to a SCEVable type!");
1074 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001075
Dan Gohman3a302cb2009-07-13 20:50:19 +00001076 FoldingSetNodeID ID;
1077 ID.AddInteger(scTruncate);
1078 ID.AddPointer(Op);
1079 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001080 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1082
Dan Gohman3423e722009-06-30 20:13:32 +00001083 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001084 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001085 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001086 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001087
Dan Gohman79af8542009-04-22 16:20:48 +00001088 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001089 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001090 return getTruncateExpr(ST->getOperand(), Ty);
1091
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001092 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001093 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001094 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1095
1096 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001097 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001098 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1099
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001100 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
Nick Lewycky2ce28322015-03-20 02:52:23 +00001101 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001102 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1103 SmallVector<const SCEV *, 4> Operands;
1104 bool hasTrunc = false;
1105 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1106 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001107 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1108 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001109 Operands.push_back(S);
1110 }
1111 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001112 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001113 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001114 }
1115
Nick Lewycky5c901f32011-01-19 18:56:00 +00001116 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
Nick Lewyckybe8af482015-03-20 02:25:00 +00001117 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001118 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1119 SmallVector<const SCEV *, 4> Operands;
1120 bool hasTrunc = false;
1121 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1122 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001123 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1124 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5c901f32011-01-19 18:56:00 +00001125 Operands.push_back(S);
1126 }
1127 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001128 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001129 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001130 }
1131
Dan Gohman5a728c92009-06-18 16:24:47 +00001132 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001134 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00001135 for (const SCEV *Op : AddRec->operands())
1136 Operands.push_back(getTruncateExpr(Op, Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001137 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001138 }
1139
Dan Gohman89dd42a2010-06-25 18:47:08 +00001140 // The cast wasn't folded; create an explicit cast node. We can reuse
1141 // the existing insert position since if we get here, we won't have
1142 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001143 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1144 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001145 UniqueSCEVs.InsertNode(S, IP);
1146 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001147}
1148
Sanjoy Das4153f472015-02-18 01:47:07 +00001149// Get the limit of a recurrence such that incrementing by Step cannot cause
1150// signed overflow as long as the value of the recurrence within the
1151// loop does not exceed this limit before incrementing.
1152static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1153 ICmpInst::Predicate *Pred,
1154 ScalarEvolution *SE) {
1155 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1156 if (SE->isKnownPositive(Step)) {
1157 *Pred = ICmpInst::ICMP_SLT;
1158 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1159 SE->getSignedRange(Step).getSignedMax());
1160 }
1161 if (SE->isKnownNegative(Step)) {
1162 *Pred = ICmpInst::ICMP_SGT;
1163 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1164 SE->getSignedRange(Step).getSignedMin());
1165 }
1166 return nullptr;
1167}
1168
1169// Get the limit of a recurrence such that incrementing by Step cannot cause
1170// unsigned overflow as long as the value of the recurrence within the loop does
1171// not exceed this limit before incrementing.
1172static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1173 ICmpInst::Predicate *Pred,
1174 ScalarEvolution *SE) {
1175 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1176 *Pred = ICmpInst::ICMP_ULT;
1177
1178 return SE->getConstant(APInt::getMinValue(BitWidth) -
1179 SE->getUnsignedRange(Step).getUnsignedMax());
1180}
1181
1182namespace {
1183
1184struct ExtendOpTraitsBase {
1185 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1186};
1187
1188// Used to make code generic over signed and unsigned overflow.
1189template <typename ExtendOp> struct ExtendOpTraits {
1190 // Members present:
1191 //
1192 // static const SCEV::NoWrapFlags WrapType;
1193 //
1194 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1195 //
1196 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1197 // ICmpInst::Predicate *Pred,
1198 // ScalarEvolution *SE);
1199};
1200
1201template <>
1202struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1203 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1204
1205 static const GetExtendExprTy GetExtendExpr;
1206
1207 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1208 ICmpInst::Predicate *Pred,
1209 ScalarEvolution *SE) {
1210 return getSignedOverflowLimitForStep(Step, Pred, SE);
1211 }
1212};
1213
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001214const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001215 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1216
1217template <>
1218struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1219 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1220
1221 static const GetExtendExprTy GetExtendExpr;
1222
1223 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1224 ICmpInst::Predicate *Pred,
1225 ScalarEvolution *SE) {
1226 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1227 }
1228};
1229
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001230const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001231 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
Alexander Kornienkof00654e2015-06-23 09:49:53 +00001232}
Sanjoy Das4153f472015-02-18 01:47:07 +00001233
1234// The recurrence AR has been shown to have no signed/unsigned wrap or something
1235// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1236// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1237// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1238// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1239// expression "Step + sext/zext(PreIncAR)" is congruent with
1240// "sext/zext(PostIncAR)"
1241template <typename ExtendOpTy>
1242static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1243 ScalarEvolution *SE) {
1244 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1245 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1246
1247 const Loop *L = AR->getLoop();
1248 const SCEV *Start = AR->getStart();
1249 const SCEV *Step = AR->getStepRecurrence(*SE);
1250
1251 // Check for a simple looking step prior to loop entry.
1252 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1253 if (!SA)
1254 return nullptr;
1255
1256 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1257 // subtraction is expensive. For this purpose, perform a quick and dirty
1258 // difference, by checking for Step in the operand list.
1259 SmallVector<const SCEV *, 4> DiffOps;
1260 for (const SCEV *Op : SA->operands())
1261 if (Op != Step)
1262 DiffOps.push_back(Op);
1263
1264 if (DiffOps.size() == SA->getNumOperands())
1265 return nullptr;
1266
1267 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1268 // `Step`:
1269
1270 // 1. NSW/NUW flags on the step increment.
Sanjoy Das0714e3e2015-10-23 06:33:47 +00001271 auto PreStartFlags =
1272 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1273 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
Sanjoy Das4153f472015-02-18 01:47:07 +00001274 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1275 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1276
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001277 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1278 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001279 //
1280
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001281 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1282 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1283 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001284 return PreStart;
1285
1286 // 2. Direct overflow check on the step operation's expression.
1287 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1288 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1289 const SCEV *OperandExtendedStart =
1290 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1291 (SE->*GetExtendExpr)(Step, WideTy));
1292 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1293 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1294 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1295 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1296 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1297 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1298 }
1299 return PreStart;
1300 }
1301
1302 // 3. Loop precondition.
1303 ICmpInst::Predicate Pred;
1304 const SCEV *OverflowLimit =
1305 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1306
1307 if (OverflowLimit &&
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001308 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
Sanjoy Das4153f472015-02-18 01:47:07 +00001309 return PreStart;
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001310
Sanjoy Das4153f472015-02-18 01:47:07 +00001311 return nullptr;
1312}
1313
1314// Get the normalized zero or sign extended expression for this AddRec's Start.
1315template <typename ExtendOpTy>
1316static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1317 ScalarEvolution *SE) {
1318 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1319
1320 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1321 if (!PreStart)
1322 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1323
1324 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1325 (SE->*GetExtendExpr)(PreStart, Ty));
1326}
1327
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001328// Try to prove away overflow by looking at "nearby" add recurrences. A
1329// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1330// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1331//
1332// Formally:
1333//
1334// {S,+,X} == {S-T,+,X} + T
1335// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1336//
1337// If ({S-T,+,X} + T) does not overflow ... (1)
1338//
1339// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1340//
1341// If {S-T,+,X} does not overflow ... (2)
1342//
1343// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1344// == {Ext(S-T)+Ext(T),+,Ext(X)}
1345//
1346// If (S-T)+T does not overflow ... (3)
1347//
1348// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1349// == {Ext(S),+,Ext(X)} == LHS
1350//
1351// Thus, if (1), (2) and (3) are true for some T, then
1352// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1353//
1354// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1355// does not overflow" restricted to the 0th iteration. Therefore we only need
1356// to check for (1) and (2).
1357//
1358// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1359// is `Delta` (defined below).
1360//
1361template <typename ExtendOpTy>
1362bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1363 const SCEV *Step,
1364 const Loop *L) {
1365 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1366
1367 // We restrict `Start` to a constant to prevent SCEV from spending too much
1368 // time here. It is correct (but more expensive) to continue with a
1369 // non-constant `Start` and do a general SCEV subtraction to compute
1370 // `PreStart` below.
1371 //
1372 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1373 if (!StartC)
1374 return false;
1375
1376 APInt StartAI = StartC->getValue()->getValue();
1377
1378 for (unsigned Delta : {-2, -1, 1, 2}) {
1379 const SCEV *PreStart = getConstant(StartAI - Delta);
1380
Sanjoy Das42801102015-10-23 06:57:21 +00001381 FoldingSetNodeID ID;
1382 ID.AddInteger(scAddRecExpr);
1383 ID.AddPointer(PreStart);
1384 ID.AddPointer(Step);
1385 ID.AddPointer(L);
1386 void *IP = nullptr;
1387 const auto *PreAR =
1388 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1389
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001390 // Give up if we don't already have the add recurrence we need because
1391 // actually constructing an add recurrence is relatively expensive.
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001392 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1393 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1394 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1395 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1396 DeltaS, &Pred, this);
1397 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1398 return true;
1399 }
1400 }
1401
1402 return false;
1403}
1404
Dan Gohmanaf752342009-07-07 17:06:11 +00001405const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001406 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001407 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001408 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001409 assert(isSCEVable(Ty) &&
1410 "This is not a conversion to a SCEVable type!");
1411 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001412
Dan Gohman3423e722009-06-30 20:13:32 +00001413 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1415 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001416 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001417
Dan Gohman79af8542009-04-22 16:20:48 +00001418 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001419 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001420 return getZeroExtendExpr(SZ->getOperand(), Ty);
1421
Dan Gohman74a0ba12009-07-13 20:55:53 +00001422 // Before doing any expensive analysis, check to see if we've already
1423 // computed a SCEV for this Op and Ty.
1424 FoldingSetNodeID ID;
1425 ID.AddInteger(scZeroExtend);
1426 ID.AddPointer(Op);
1427 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001428 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001429 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1430
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001431 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1432 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1433 // It's possible the bits taken off by the truncate were all zero bits. If
1434 // so, we should be able to simplify this further.
1435 const SCEV *X = ST->getOperand();
1436 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001437 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1438 unsigned NewBits = getTypeSizeInBits(Ty);
1439 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001440 CR.zextOrTrunc(NewBits)))
1441 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001442 }
1443
Dan Gohman76466372009-04-27 20:16:15 +00001444 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001445 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001446 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001447 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001448 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001449 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001450 const SCEV *Start = AR->getStart();
1451 const SCEV *Step = AR->getStepRecurrence(*this);
1452 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1453 const Loop *L = AR->getLoop();
1454
Dan Gohman62ef6a72009-07-25 01:22:26 +00001455 // If we have special knowledge that this addrec won't overflow,
1456 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001457 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001458 return getAddRecExpr(
1459 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1460 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001461
Dan Gohman76466372009-04-27 20:16:15 +00001462 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1463 // Note that this serves two purposes: It filters out loops that are
1464 // simply not analyzable, and it covers the case where this code is
1465 // being called from within backedge-taken count analysis, such that
1466 // attempting to ask for the backedge-taken count would likely result
1467 // in infinite recursion. In the later case, the analysis code will
1468 // cope with a conservative value, and it will take care to purge
1469 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001470 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001471 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001472 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001473 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001474
1475 // Check whether the backedge-taken count can be losslessly casted to
1476 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001477 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001478 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001479 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001480 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1481 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001482 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001483 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001484 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001485 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1486 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1487 const SCEV *WideMaxBECount =
1488 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001489 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001490 getAddExpr(WideStart,
1491 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001492 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001493 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001494 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001496 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001497 return getAddRecExpr(
1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1499 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001500 }
Dan Gohman76466372009-04-27 20:16:15 +00001501 // Similar to above, only this time treat the step value as signed.
1502 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001503 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001504 getAddExpr(WideStart,
1505 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001506 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001507 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001508 // Cache knowledge of AR NW, which is propagated to this AddRec.
1509 // Negative step causes unsigned wrap, but it still can't self-wrap.
1510 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001511 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001512 return getAddRecExpr(
1513 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1514 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001515 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001516 }
1517
1518 // If the backedge is guarded by a comparison with the pre-inc value
1519 // the addrec is safe. Also, if the entry is guarded by a comparison
1520 // with the start value and the backedge is guarded by a comparison
1521 // with the post-inc value, the addrec is safe.
1522 if (isKnownPositive(Step)) {
1523 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1524 getUnsignedRange(Step).getUnsignedMax());
1525 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001526 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001527 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001528 AR->getPostIncExpr(*this), N))) {
1529 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1530 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001531 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001532 return getAddRecExpr(
1533 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1534 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001535 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001536 } else if (isKnownNegative(Step)) {
1537 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1538 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001539 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1540 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001541 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001542 AR->getPostIncExpr(*this), N))) {
1543 // Cache knowledge of AR NW, which is propagated to this AddRec.
1544 // Negative step causes unsigned wrap, but it still can't self-wrap.
1545 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1546 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001547 return getAddRecExpr(
1548 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1549 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001550 }
Dan Gohman76466372009-04-27 20:16:15 +00001551 }
1552 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001553
1554 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1555 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1556 return getAddRecExpr(
1557 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1558 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1559 }
Dan Gohman76466372009-04-27 20:16:15 +00001560 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001561
Sanjoy Daseeca9f62015-10-22 19:57:38 +00001562 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1563 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1564 if (SA->getNoWrapFlags(SCEV::FlagNUW)) {
1565 // If the addition does not unsign overflow then we can, by definition,
1566 // commute the zero extension with the addition operation.
1567 SmallVector<const SCEV *, 4> Ops;
1568 for (const auto *Op : SA->operands())
1569 Ops.push_back(getZeroExtendExpr(Op, Ty));
1570 return getAddExpr(Ops, SCEV::FlagNUW);
1571 }
1572 }
1573
Dan Gohman74a0ba12009-07-13 20:55:53 +00001574 // The cast wasn't folded; create an explicit cast node.
1575 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001576 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001577 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1578 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001579 UniqueSCEVs.InsertNode(S, IP);
1580 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001581}
1582
Dan Gohmanaf752342009-07-07 17:06:11 +00001583const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001584 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001585 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001586 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001587 assert(isSCEVable(Ty) &&
1588 "This is not a conversion to a SCEVable type!");
1589 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001590
Dan Gohman3423e722009-06-30 20:13:32 +00001591 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001592 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1593 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001594 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001595
Dan Gohman79af8542009-04-22 16:20:48 +00001596 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001597 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001598 return getSignExtendExpr(SS->getOperand(), Ty);
1599
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001600 // sext(zext(x)) --> zext(x)
1601 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1602 return getZeroExtendExpr(SZ->getOperand(), Ty);
1603
Dan Gohman74a0ba12009-07-13 20:55:53 +00001604 // Before doing any expensive analysis, check to see if we've already
1605 // computed a SCEV for this Op and Ty.
1606 FoldingSetNodeID ID;
1607 ID.AddInteger(scSignExtend);
1608 ID.AddPointer(Op);
1609 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001610 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001611 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1612
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001613 // If the input value is provably positive, build a zext instead.
1614 if (isKnownNonNegative(Op))
1615 return getZeroExtendExpr(Op, Ty);
1616
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001617 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1618 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1619 // It's possible the bits taken off by the truncate were all sign bits. If
1620 // so, we should be able to simplify this further.
1621 const SCEV *X = ST->getOperand();
1622 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001623 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1624 unsigned NewBits = getTypeSizeInBits(Ty);
1625 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001626 CR.sextOrTrunc(NewBits)))
1627 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001628 }
1629
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001630 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001631 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001632 if (SA->getNumOperands() == 2) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001633 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1634 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001635 if (SMul && SC1) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001636 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001637 const APInt &C1 = SC1->getValue()->getValue();
1638 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001639 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001640 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001641 return getAddExpr(getSignExtendExpr(SC1, Ty),
1642 getSignExtendExpr(SMul, Ty));
1643 }
1644 }
1645 }
Sanjoy Dasa060e602015-10-22 19:57:25 +00001646
1647 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1648 if (SA->getNoWrapFlags(SCEV::FlagNSW)) {
1649 // If the addition does not sign overflow then we can, by definition,
1650 // commute the sign extension with the addition operation.
1651 SmallVector<const SCEV *, 4> Ops;
1652 for (const auto *Op : SA->operands())
1653 Ops.push_back(getSignExtendExpr(Op, Ty));
1654 return getAddExpr(Ops, SCEV::FlagNSW);
1655 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001656 }
Dan Gohman76466372009-04-27 20:16:15 +00001657 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001658 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001659 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001660 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001661 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001662 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001663 const SCEV *Start = AR->getStart();
1664 const SCEV *Step = AR->getStepRecurrence(*this);
1665 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1666 const Loop *L = AR->getLoop();
1667
Dan Gohman62ef6a72009-07-25 01:22:26 +00001668 // If we have special knowledge that this addrec won't overflow,
1669 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001670 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001671 return getAddRecExpr(
1672 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1673 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001674
Dan Gohman76466372009-04-27 20:16:15 +00001675 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1676 // Note that this serves two purposes: It filters out loops that are
1677 // simply not analyzable, and it covers the case where this code is
1678 // being called from within backedge-taken count analysis, such that
1679 // attempting to ask for the backedge-taken count would likely result
1680 // in infinite recursion. In the later case, the analysis code will
1681 // cope with a conservative value, and it will take care to purge
1682 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001683 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001684 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001685 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001686 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001687
1688 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001689 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001690 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001691 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001692 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001693 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1694 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001695 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001696 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001697 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001698 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1699 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1700 const SCEV *WideMaxBECount =
1701 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001702 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001703 getAddExpr(WideStart,
1704 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001705 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001706 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001707 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1708 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001709 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001710 return getAddRecExpr(
1711 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1712 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001713 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001714 // Similar to above, only this time treat the step value as unsigned.
1715 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001716 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001717 getAddExpr(WideStart,
1718 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001719 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001720 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001721 // If AR wraps around then
1722 //
1723 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1724 // => SAdd != OperandExtendedAdd
1725 //
1726 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1727 // (SAdd == OperandExtendedAdd => AR is NW)
1728
1729 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1730
Dan Gohman8c129d72009-07-16 17:34:36 +00001731 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001732 return getAddRecExpr(
1733 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1734 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001735 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001736 }
1737
1738 // If the backedge is guarded by a comparison with the pre-inc value
1739 // the addrec is safe. Also, if the entry is guarded by a comparison
1740 // with the start value and the backedge is guarded by a comparison
1741 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001742 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001743 const SCEV *OverflowLimit =
1744 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001745 if (OverflowLimit &&
1746 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1747 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1748 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1749 OverflowLimit)))) {
1750 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1751 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001752 return getAddRecExpr(
1753 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1754 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001755 }
1756 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001757 // If Start and Step are constants, check if we can apply this
1758 // transformation:
1759 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001760 auto *SC1 = dyn_cast<SCEVConstant>(Start);
1761 auto *SC2 = dyn_cast<SCEVConstant>(Step);
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001762 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001763 const APInt &C1 = SC1->getValue()->getValue();
1764 const APInt &C2 = SC2->getValue()->getValue();
1765 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1766 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001767 Start = getSignExtendExpr(Start, Ty);
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001768 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1769 AR->getNoWrapFlags());
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001770 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1771 }
1772 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001773
1774 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1775 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1776 return getAddRecExpr(
1777 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1778 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1779 }
Dan Gohman76466372009-04-27 20:16:15 +00001780 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001781
Dan Gohman74a0ba12009-07-13 20:55:53 +00001782 // The cast wasn't folded; create an explicit cast node.
1783 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001784 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001785 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1786 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001787 UniqueSCEVs.InsertNode(S, IP);
1788 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001789}
1790
Dan Gohman8db2edc2009-06-13 15:56:47 +00001791/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1792/// unspecified bits out to the given type.
1793///
Dan Gohmanaf752342009-07-07 17:06:11 +00001794const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001795 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001796 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1797 "This is not an extending conversion!");
1798 assert(isSCEVable(Ty) &&
1799 "This is not a conversion to a SCEVable type!");
1800 Ty = getEffectiveSCEVType(Ty);
1801
1802 // Sign-extend negative constants.
1803 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1804 if (SC->getValue()->getValue().isNegative())
1805 return getSignExtendExpr(Op, Ty);
1806
1807 // Peel off a truncate cast.
1808 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001809 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001810 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1811 return getAnyExtendExpr(NewOp, Ty);
1812 return getTruncateOrNoop(NewOp, Ty);
1813 }
1814
1815 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001816 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001817 if (!isa<SCEVZeroExtendExpr>(ZExt))
1818 return ZExt;
1819
1820 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001821 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001822 if (!isa<SCEVSignExtendExpr>(SExt))
1823 return SExt;
1824
Dan Gohman51ad99d2010-01-21 02:09:26 +00001825 // Force the cast to be folded into the operands of an addrec.
1826 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1827 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001828 for (const SCEV *Op : AR->operands())
1829 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001830 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001831 }
1832
Dan Gohman8db2edc2009-06-13 15:56:47 +00001833 // If the expression is obviously signed, use the sext cast value.
1834 if (isa<SCEVSMaxExpr>(Op))
1835 return SExt;
1836
1837 // Absent any other information, use the zext cast value.
1838 return ZExt;
1839}
1840
Dan Gohman038d02e2009-06-14 22:58:51 +00001841/// CollectAddOperandsWithScales - Process the given Ops list, which is
1842/// a list of operands to be added under the given scale, update the given
1843/// map. This is a helper function for getAddRecExpr. As an example of
1844/// what it does, given a sequence of operands that would form an add
1845/// expression like this:
1846///
Tobias Grosserba49e422014-03-05 10:37:17 +00001847/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001848///
1849/// where A and B are constants, update the map with these values:
1850///
1851/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1852///
1853/// and add 13 + A*B*29 to AccumulatedConstant.
1854/// This will allow getAddRecExpr to produce this:
1855///
1856/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1857///
1858/// This form often exposes folding opportunities that are hidden in
1859/// the original operand list.
1860///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001861/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001862/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1863/// the common case where no interesting opportunities are present, and
1864/// is also used as a check to avoid infinite recursion.
1865///
1866static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001867CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001868 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001869 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001870 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001871 const APInt &Scale,
1872 ScalarEvolution &SE) {
1873 bool Interesting = false;
1874
Dan Gohman45073042010-06-18 19:12:32 +00001875 // Iterate over the add operands. They are sorted, with constants first.
1876 unsigned i = 0;
1877 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1878 ++i;
1879 // Pull a buried constant out to the outside.
1880 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1881 Interesting = true;
1882 AccumulatedConstant += Scale * C->getValue()->getValue();
1883 }
1884
1885 // Next comes everything else. We're especially interested in multiplies
1886 // here, but they're in the middle, so just visit the rest with one loop.
1887 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001888 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1889 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1890 APInt NewScale =
1891 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1892 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1893 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001894 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001895 Interesting |=
1896 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001897 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001898 NewScale, SE);
1899 } else {
1900 // A multiplication of a constant with some other value. Update
1901 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001902 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1903 const SCEV *Key = SE.getMulExpr(MulOps);
Sanjoy Das7a9f8bb2015-09-17 19:04:09 +00001904 auto Pair = M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001905 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001906 NewOps.push_back(Pair.first->first);
1907 } else {
1908 Pair.first->second += NewScale;
1909 // The map already had an entry for this value, which may indicate
1910 // a folding opportunity.
1911 Interesting = true;
1912 }
1913 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001914 } else {
1915 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001916 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001917 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001918 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001919 NewOps.push_back(Pair.first->first);
1920 } else {
1921 Pair.first->second += Scale;
1922 // The map already had an entry for this value, which may indicate
1923 // a folding opportunity.
1924 Interesting = true;
1925 }
1926 }
1927 }
1928
1929 return Interesting;
1930}
1931
1932namespace {
1933 struct APIntCompare {
1934 bool operator()(const APInt &LHS, const APInt &RHS) const {
1935 return LHS.ult(RHS);
1936 }
1937 };
1938}
1939
Sanjoy Das81401d42015-01-10 23:41:24 +00001940// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1941// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1942// can't-overflow flags for the operation if possible.
1943static SCEV::NoWrapFlags
1944StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1945 const SmallVectorImpl<const SCEV *> &Ops,
Sanjoy Das8f274152015-10-22 19:57:19 +00001946 SCEV::NoWrapFlags Flags) {
Sanjoy Das81401d42015-01-10 23:41:24 +00001947 using namespace std::placeholders;
Sanjoy Das8f274152015-10-22 19:57:19 +00001948 typedef OverflowingBinaryOperator OBO;
Sanjoy Das81401d42015-01-10 23:41:24 +00001949
1950 bool CanAnalyze =
1951 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1952 (void)CanAnalyze;
1953 assert(CanAnalyze && "don't call from other places!");
1954
1955 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1956 SCEV::NoWrapFlags SignOrUnsignWrap =
Sanjoy Das8f274152015-10-22 19:57:19 +00001957 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001958
1959 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Sanjoy Das9b0015f2015-11-29 23:40:57 +00001960 auto IsKnownNonNegative = [&](const SCEV *S) {
1961 return SE->isKnownNonNegative(S);
1962 };
Sanjoy Das81401d42015-01-10 23:41:24 +00001963
Sanjoy Das3b827c72015-11-29 23:40:53 +00001964 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
Sanjoy Das8f274152015-10-22 19:57:19 +00001965 Flags =
1966 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001967
Sanjoy Das8f274152015-10-22 19:57:19 +00001968 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1969
1970 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1971 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1972
1973 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
1974 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
1975
1976 const APInt &C = cast<SCEVConstant>(Ops[0])->getValue()->getValue();
1977 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
1978 auto NSWRegion =
1979 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap);
1980 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
1981 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
1982 }
1983 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
1984 auto NUWRegion =
1985 ConstantRange::makeNoWrapRegion(Instruction::Add, C,
1986 OBO::NoUnsignedWrap);
1987 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
1988 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
1989 }
1990 }
1991
1992 return Flags;
Sanjoy Das81401d42015-01-10 23:41:24 +00001993}
1994
Dan Gohman4d5435d2009-05-24 23:45:28 +00001995/// getAddExpr - Get a canonical add expression, or something simpler if
1996/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001997const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001998 SCEV::NoWrapFlags Flags) {
1999 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2000 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002001 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00002002 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002003#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002004 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002005 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00002006 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002007 "SCEVAddExpr operand types don't match!");
2008#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002009
2010 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002011 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002012
Sanjoy Das64895612015-10-09 02:44:45 +00002013 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2014
Chris Lattnerd934c702004-04-02 20:23:17 +00002015 // If there are any constants, fold them together.
2016 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002017 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002018 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00002019 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002020 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002021 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00002022 Ops[0] = getConstant(LHSC->getValue()->getValue() +
2023 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00002024 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002025 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002026 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002027 }
2028
2029 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002030 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002031 Ops.erase(Ops.begin());
2032 --Idx;
2033 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002034
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002035 if (Ops.size() == 1) return Ops[0];
2036 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002037
Dan Gohman15871f22010-08-27 21:39:59 +00002038 // Okay, check to see if the same value occurs in the operand list more than
2039 // once. If so, merge them together into an multiply expression. Since we
2040 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00002041 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00002042 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00002043 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00002044 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00002045 // Scan ahead to count how many equal operands there are.
2046 unsigned Count = 2;
2047 while (i+Count != e && Ops[i+Count] == Ops[i])
2048 ++Count;
2049 // Merge the values into a multiply.
2050 const SCEV *Scale = getConstant(Ty, Count);
2051 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2052 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002053 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002054 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002055 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002056 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002057 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002058 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002059 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002060 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002061
Dan Gohman2e55cc52009-05-08 21:03:19 +00002062 // Check for truncates. If all the operands are truncated from the same
2063 // type, see if factoring out the truncate would permit the result to be
2064 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2065 // if the contents of the resulting outer trunc fold to something simple.
2066 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2067 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002068 Type *DstType = Trunc->getType();
2069 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002070 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002071 bool Ok = true;
2072 // Check all the operands to see if they can be represented in the
2073 // source type of the truncate.
2074 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2075 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2076 if (T->getOperand()->getType() != SrcType) {
2077 Ok = false;
2078 break;
2079 }
2080 LargeOps.push_back(T->getOperand());
2081 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002082 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002083 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002084 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002085 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2086 if (const SCEVTruncateExpr *T =
2087 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2088 if (T->getOperand()->getType() != SrcType) {
2089 Ok = false;
2090 break;
2091 }
2092 LargeMulOps.push_back(T->getOperand());
Sanjoy Das63914592015-10-18 00:29:20 +00002093 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002094 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002095 } else {
2096 Ok = false;
2097 break;
2098 }
2099 }
2100 if (Ok)
2101 LargeOps.push_back(getMulExpr(LargeMulOps));
2102 } else {
2103 Ok = false;
2104 break;
2105 }
2106 }
2107 if (Ok) {
2108 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002109 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002110 // If it folds to something simple, use it. Otherwise, don't.
2111 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2112 return getTruncateExpr(Fold, DstType);
2113 }
2114 }
2115
2116 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002117 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2118 ++Idx;
2119
2120 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002121 if (Idx < Ops.size()) {
2122 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002123 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002124 // If we have an add, expand the add operands onto the end of the operands
2125 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002126 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002127 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002128 DeletedAdd = true;
2129 }
2130
2131 // If we deleted at least one add, we added operands to the end of the list,
2132 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002133 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002134 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002135 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002136 }
2137
2138 // Skip over the add expression until we get to a multiply.
2139 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2140 ++Idx;
2141
Dan Gohman038d02e2009-06-14 22:58:51 +00002142 // Check to see if there are any folding opportunities present with
2143 // operands multiplied by constant values.
2144 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2145 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002146 DenseMap<const SCEV *, APInt> M;
2147 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002148 APInt AccumulatedConstant(BitWidth, 0);
2149 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002150 Ops.data(), Ops.size(),
2151 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00002152 // Some interesting folding opportunity is present, so its worthwhile to
2153 // re-generate the operands list. Group the operands by constant scale,
2154 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002155 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002156 for (const SCEV *NewOp : NewOps)
2157 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
Dan Gohman038d02e2009-06-14 22:58:51 +00002158 // Re-generate the operands list.
2159 Ops.clear();
2160 if (AccumulatedConstant != 0)
2161 Ops.push_back(getConstant(AccumulatedConstant));
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002162 for (auto &MulOp : MulOpLists)
2163 if (MulOp.first != 0)
2164 Ops.push_back(getMulExpr(getConstant(MulOp.first),
2165 getAddExpr(MulOp.second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002166 if (Ops.empty())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002167 return getZero(Ty);
Dan Gohman038d02e2009-06-14 22:58:51 +00002168 if (Ops.size() == 1)
2169 return Ops[0];
2170 return getAddExpr(Ops);
2171 }
2172 }
2173
Chris Lattnerd934c702004-04-02 20:23:17 +00002174 // If we are adding something to a multiply expression, make sure the
2175 // something is not already an operand of the multiply. If so, merge it into
2176 // the multiply.
2177 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002178 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002179 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002180 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002181 if (isa<SCEVConstant>(MulOpSCEV))
2182 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002183 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002184 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002185 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002186 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002187 if (Mul->getNumOperands() != 2) {
2188 // If the multiply has more than two operands, we must get the
2189 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002190 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2191 Mul->op_begin()+MulOp);
2192 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002193 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002194 }
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002195 const SCEV *One = getOne(Ty);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002196 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002197 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002198 if (Ops.size() == 2) return OuterMul;
2199 if (AddOp < Idx) {
2200 Ops.erase(Ops.begin()+AddOp);
2201 Ops.erase(Ops.begin()+Idx-1);
2202 } else {
2203 Ops.erase(Ops.begin()+Idx);
2204 Ops.erase(Ops.begin()+AddOp-1);
2205 }
2206 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002207 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002208 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002209
Chris Lattnerd934c702004-04-02 20:23:17 +00002210 // Check this multiply against other multiplies being added together.
2211 for (unsigned OtherMulIdx = Idx+1;
2212 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2213 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002214 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002215 // If MulOp occurs in OtherMul, we can fold the two multiplies
2216 // together.
2217 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2218 OMulOp != e; ++OMulOp)
2219 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2220 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002221 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002222 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002223 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002224 Mul->op_begin()+MulOp);
2225 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002226 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002227 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002228 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002229 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002230 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002231 OtherMul->op_begin()+OMulOp);
2232 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002233 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002234 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002235 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2236 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002237 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002238 Ops.erase(Ops.begin()+Idx);
2239 Ops.erase(Ops.begin()+OtherMulIdx-1);
2240 Ops.push_back(OuterMul);
2241 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002242 }
2243 }
2244 }
2245 }
2246
2247 // If there are any add recurrences in the operands list, see if any other
2248 // added values are loop invariant. If so, we can fold them into the
2249 // recurrence.
2250 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2251 ++Idx;
2252
2253 // Scan over all recurrences, trying to fold loop invariants into them.
2254 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2255 // Scan all of the other operands to this add and add them to the vector if
2256 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002257 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002258 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002259 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002260 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002261 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002262 LIOps.push_back(Ops[i]);
2263 Ops.erase(Ops.begin()+i);
2264 --i; --e;
2265 }
2266
2267 // If we found some loop invariants, fold them into the recurrence.
2268 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002269 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002270 LIOps.push_back(AddRec->getStart());
2271
Dan Gohmanaf752342009-07-07 17:06:11 +00002272 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002273 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002274 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002275
Dan Gohman16206132010-06-30 07:16:37 +00002276 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002277 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002278 // Always propagate NW.
2279 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002280 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002281
Chris Lattnerd934c702004-04-02 20:23:17 +00002282 // If all of the other operands were loop invariant, we are done.
2283 if (Ops.size() == 1) return NewRec;
2284
Nick Lewyckydb66b822011-09-06 05:08:09 +00002285 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002286 for (unsigned i = 0;; ++i)
2287 if (Ops[i] == AddRec) {
2288 Ops[i] = NewRec;
2289 break;
2290 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002291 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002292 }
2293
2294 // Okay, if there weren't any loop invariants to be folded, check to see if
2295 // there are multiple AddRec's with the same loop induction variable being
2296 // added together. If so, we can fold them.
2297 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002298 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2299 ++OtherIdx)
2300 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2301 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2302 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2303 AddRec->op_end());
2304 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2305 ++OtherIdx)
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002306 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002307 if (OtherAddRec->getLoop() == AddRecLoop) {
2308 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2309 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002310 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002311 AddRecOps.append(OtherAddRec->op_begin()+i,
2312 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002313 break;
2314 }
Dan Gohman028c1812010-08-29 14:53:34 +00002315 AddRecOps[i] = getAddExpr(AddRecOps[i],
2316 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002317 }
2318 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002319 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002320 // Step size has changed, so we cannot guarantee no self-wraparound.
2321 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002322 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002323 }
2324
2325 // Otherwise couldn't fold anything into this recurrence. Move onto the
2326 // next one.
2327 }
2328
2329 // Okay, it looks like we really DO need an add expr. Check to see if we
2330 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002331 FoldingSetNodeID ID;
2332 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002333 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2334 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002335 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002336 SCEVAddExpr *S =
2337 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2338 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002339 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2340 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002341 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2342 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002343 UniqueSCEVs.InsertNode(S, IP);
2344 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002345 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002346 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002347}
2348
Nick Lewycky287682e2011-10-04 06:51:26 +00002349static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2350 uint64_t k = i*j;
2351 if (j > 1 && k / j != i) Overflow = true;
2352 return k;
2353}
2354
2355/// Compute the result of "n choose k", the binomial coefficient. If an
2356/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002357/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002358static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2359 // We use the multiplicative formula:
2360 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2361 // At each iteration, we take the n-th term of the numeral and divide by the
2362 // (k-n)th term of the denominator. This division will always produce an
2363 // integral result, and helps reduce the chance of overflow in the
2364 // intermediate computations. However, we can still overflow even when the
2365 // final result would fit.
2366
2367 if (n == 0 || n == k) return 1;
2368 if (k > n) return 0;
2369
2370 if (k > n/2)
2371 k = n-k;
2372
2373 uint64_t r = 1;
2374 for (uint64_t i = 1; i <= k; ++i) {
2375 r = umul_ov(r, n-(i-1), Overflow);
2376 r /= i;
2377 }
2378 return r;
2379}
2380
Nick Lewycky05044c22014-12-06 00:45:50 +00002381/// Determine if any of the operands in this SCEV are a constant or if
2382/// any of the add or multiply expressions in this SCEV contain a constant.
2383static bool containsConstantSomewhere(const SCEV *StartExpr) {
2384 SmallVector<const SCEV *, 4> Ops;
2385 Ops.push_back(StartExpr);
2386 while (!Ops.empty()) {
2387 const SCEV *CurrentExpr = Ops.pop_back_val();
2388 if (isa<SCEVConstant>(*CurrentExpr))
2389 return true;
2390
2391 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2392 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002393 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002394 }
2395 }
2396 return false;
2397}
2398
Dan Gohman4d5435d2009-05-24 23:45:28 +00002399/// getMulExpr - Get a canonical multiply expression, or something simpler if
2400/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002401const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002402 SCEV::NoWrapFlags Flags) {
2403 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2404 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002405 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002406 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002407#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002408 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002409 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002410 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002411 "SCEVMulExpr operand types don't match!");
2412#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002413
2414 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002415 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002416
Sanjoy Das64895612015-10-09 02:44:45 +00002417 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2418
Chris Lattnerd934c702004-04-02 20:23:17 +00002419 // If there are any constants, fold them together.
2420 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002421 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002422
2423 // C1*(C2+V) -> C1*C2 + C1*V
2424 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002425 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2426 // If any of Add's ops are Adds or Muls with a constant,
2427 // apply this transformation as well.
2428 if (Add->getNumOperands() == 2)
2429 if (containsConstantSomewhere(Add))
2430 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2431 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002432
Chris Lattnerd934c702004-04-02 20:23:17 +00002433 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002434 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002435 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002436 ConstantInt *Fold = ConstantInt::get(getContext(),
2437 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002438 RHSC->getValue()->getValue());
2439 Ops[0] = getConstant(Fold);
2440 Ops.erase(Ops.begin()+1); // Erase the folded element
2441 if (Ops.size() == 1) return Ops[0];
2442 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002443 }
2444
2445 // If we are left with a constant one being multiplied, strip it off.
2446 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2447 Ops.erase(Ops.begin());
2448 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002449 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002450 // If we have a multiply of zero, it will always be zero.
2451 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002452 } else if (Ops[0]->isAllOnesValue()) {
2453 // If we have a mul by -1 of an add, try distributing the -1 among the
2454 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002455 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002456 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2457 SmallVector<const SCEV *, 4> NewOps;
2458 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002459 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2460 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002461 const SCEV *Mul = getMulExpr(Ops[0], *I);
2462 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2463 NewOps.push_back(Mul);
2464 }
2465 if (AnyFolded)
2466 return getAddExpr(NewOps);
Sanjoy Das63914592015-10-18 00:29:20 +00002467 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
Andrew Tricke92dcce2011-03-14 17:38:54 +00002468 // Negation preserves a recurrence's no self-wrap property.
2469 SmallVector<const SCEV *, 4> Operands;
2470 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2471 E = AddRec->op_end(); I != E; ++I) {
2472 Operands.push_back(getMulExpr(Ops[0], *I));
2473 }
2474 return getAddRecExpr(Operands, AddRec->getLoop(),
2475 AddRec->getNoWrapFlags(SCEV::FlagNW));
2476 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002477 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002478 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002479
2480 if (Ops.size() == 1)
2481 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002482 }
2483
2484 // Skip over the add expression until we get to a multiply.
2485 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2486 ++Idx;
2487
Chris Lattnerd934c702004-04-02 20:23:17 +00002488 // If there are mul operands inline them all into this expression.
2489 if (Idx < Ops.size()) {
2490 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002491 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002492 // If we have an mul, expand the mul operands onto the end of the operands
2493 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002494 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002495 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002496 DeletedMul = true;
2497 }
2498
2499 // If we deleted at least one mul, we added operands to the end of the list,
2500 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002501 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002502 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002503 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002504 }
2505
2506 // If there are any add recurrences in the operands list, see if any other
2507 // added values are loop invariant. If so, we can fold them into the
2508 // recurrence.
2509 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2510 ++Idx;
2511
2512 // Scan over all recurrences, trying to fold loop invariants into them.
2513 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2514 // Scan all of the other operands to this mul and add them to the vector if
2515 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002516 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002517 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002518 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002519 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002520 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002521 LIOps.push_back(Ops[i]);
2522 Ops.erase(Ops.begin()+i);
2523 --i; --e;
2524 }
2525
2526 // If we found some loop invariants, fold them into the recurrence.
2527 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002528 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002529 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002530 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002531 const SCEV *Scale = getMulExpr(LIOps);
2532 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2533 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002534
Dan Gohman16206132010-06-30 07:16:37 +00002535 // Build the new addrec. Propagate the NUW and NSW flags if both the
2536 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002537 //
2538 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002539 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002540 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2541 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002542
2543 // If all of the other operands were loop invariant, we are done.
2544 if (Ops.size() == 1) return NewRec;
2545
Nick Lewyckydb66b822011-09-06 05:08:09 +00002546 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002547 for (unsigned i = 0;; ++i)
2548 if (Ops[i] == AddRec) {
2549 Ops[i] = NewRec;
2550 break;
2551 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002552 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002553 }
2554
2555 // Okay, if there weren't any loop invariants to be folded, check to see if
2556 // there are multiple AddRec's with the same loop induction variable being
2557 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002558
2559 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2560 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2561 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2562 // ]]],+,...up to x=2n}.
2563 // Note that the arguments to choose() are always integers with values
2564 // known at compile time, never SCEV objects.
2565 //
2566 // The implementation avoids pointless extra computations when the two
2567 // addrec's are of different length (mathematically, it's equivalent to
2568 // an infinite stream of zeros on the right).
2569 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002570 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002571 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002572 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002573 const SCEVAddRecExpr *OtherAddRec =
2574 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2575 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002576 continue;
2577
Nick Lewycky97756402014-09-01 05:17:15 +00002578 bool Overflow = false;
2579 Type *Ty = AddRec->getType();
2580 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2581 SmallVector<const SCEV*, 7> AddRecOps;
2582 for (int x = 0, xe = AddRec->getNumOperands() +
2583 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002584 const SCEV *Term = getZero(Ty);
Nick Lewycky97756402014-09-01 05:17:15 +00002585 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2586 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2587 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2588 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2589 z < ze && !Overflow; ++z) {
2590 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2591 uint64_t Coeff;
2592 if (LargerThan64Bits)
2593 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2594 else
2595 Coeff = Coeff1*Coeff2;
2596 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2597 const SCEV *Term1 = AddRec->getOperand(y-z);
2598 const SCEV *Term2 = OtherAddRec->getOperand(z);
2599 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002600 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002601 }
Nick Lewycky97756402014-09-01 05:17:15 +00002602 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002603 }
Nick Lewycky97756402014-09-01 05:17:15 +00002604 if (!Overflow) {
2605 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2606 SCEV::FlagAnyWrap);
2607 if (Ops.size() == 2) return NewAddRec;
2608 Ops[Idx] = NewAddRec;
2609 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2610 OpsModified = true;
2611 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2612 if (!AddRec)
2613 break;
2614 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002615 }
Nick Lewycky97756402014-09-01 05:17:15 +00002616 if (OpsModified)
2617 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002618
2619 // Otherwise couldn't fold anything into this recurrence. Move onto the
2620 // next one.
2621 }
2622
2623 // Okay, it looks like we really DO need an mul expr. Check to see if we
2624 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002625 FoldingSetNodeID ID;
2626 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002627 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2628 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002629 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002630 SCEVMulExpr *S =
2631 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2632 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002633 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2634 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002635 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2636 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002637 UniqueSCEVs.InsertNode(S, IP);
2638 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002639 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002640 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002641}
2642
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002643/// getUDivExpr - Get a canonical unsigned division expression, or something
2644/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002645const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2646 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002647 assert(getEffectiveSCEVType(LHS->getType()) ==
2648 getEffectiveSCEVType(RHS->getType()) &&
2649 "SCEVUDivExpr operand types don't match!");
2650
Dan Gohmana30370b2009-05-04 22:02:23 +00002651 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002652 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002653 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002654 // If the denominator is zero, the result of the udiv is undefined. Don't
2655 // try to analyze it, because the resolution chosen here may differ from
2656 // the resolution chosen in other parts of the compiler.
2657 if (!RHSC->getValue()->isZero()) {
2658 // Determine if the division can be folded into the operands of
2659 // its operands.
2660 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002661 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002662 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002663 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002664 // For non-power-of-two values, effectively round the value up to the
2665 // nearest power of two.
2666 if (!RHSC->getValue()->getValue().isPowerOf2())
2667 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002668 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002669 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002670 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2671 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002672 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2673 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2674 const APInt &StepInt = Step->getValue()->getValue();
2675 const APInt &DivInt = RHSC->getValue()->getValue();
2676 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002677 getZeroExtendExpr(AR, ExtTy) ==
2678 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2679 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002680 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002681 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002682 for (const SCEV *Op : AR->operands())
2683 Operands.push_back(getUDivExpr(Op, RHS));
2684 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002685 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002686 /// Get a canonical UDivExpr for a recurrence.
2687 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2688 // We can currently only fold X%N if X is constant.
2689 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2690 if (StartC && !DivInt.urem(StepInt) &&
2691 getZeroExtendExpr(AR, ExtTy) ==
2692 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2693 getZeroExtendExpr(Step, ExtTy),
2694 AR->getLoop(), SCEV::FlagAnyWrap)) {
2695 const APInt &StartInt = StartC->getValue()->getValue();
2696 const APInt &StartRem = StartInt.urem(StepInt);
2697 if (StartRem != 0)
2698 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2699 AR->getLoop(), SCEV::FlagNW);
2700 }
2701 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002702 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2703 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2704 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002705 for (const SCEV *Op : M->operands())
2706 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002707 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2708 // Find an operand that's safely divisible.
2709 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2710 const SCEV *Op = M->getOperand(i);
2711 const SCEV *Div = getUDivExpr(Op, RHSC);
2712 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2713 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2714 M->op_end());
2715 Operands[i] = Div;
2716 return getMulExpr(Operands);
2717 }
2718 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002719 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002720 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002721 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002722 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002723 for (const SCEV *Op : A->operands())
2724 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002725 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2726 Operands.clear();
2727 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2728 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2729 if (isa<SCEVUDivExpr>(Op) ||
2730 getMulExpr(Op, RHS) != A->getOperand(i))
2731 break;
2732 Operands.push_back(Op);
2733 }
2734 if (Operands.size() == A->getNumOperands())
2735 return getAddExpr(Operands);
2736 }
2737 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002738
Dan Gohmanacd700a2010-04-22 01:35:11 +00002739 // Fold if both operands are constant.
2740 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2741 Constant *LHSCV = LHSC->getValue();
2742 Constant *RHSCV = RHSC->getValue();
2743 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2744 RHSCV)));
2745 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002746 }
2747 }
2748
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002749 FoldingSetNodeID ID;
2750 ID.AddInteger(scUDivExpr);
2751 ID.AddPointer(LHS);
2752 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002753 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002754 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002755 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2756 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002757 UniqueSCEVs.InsertNode(S, IP);
2758 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002759}
2760
Nick Lewycky31eaca52014-01-27 10:04:03 +00002761static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2762 APInt A = C1->getValue()->getValue().abs();
2763 APInt B = C2->getValue()->getValue().abs();
2764 uint32_t ABW = A.getBitWidth();
2765 uint32_t BBW = B.getBitWidth();
2766
2767 if (ABW > BBW)
2768 B = B.zext(ABW);
2769 else if (ABW < BBW)
2770 A = A.zext(BBW);
2771
2772 return APIntOps::GreatestCommonDivisor(A, B);
2773}
2774
2775/// getUDivExactExpr - Get a canonical unsigned division expression, or
2776/// something simpler if possible. There is no representation for an exact udiv
2777/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2778/// We can't do this when it's not exact because the udiv may be clearing bits.
2779const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2780 const SCEV *RHS) {
2781 // TODO: we could try to find factors in all sorts of things, but for now we
2782 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2783 // end of this file for inspiration.
2784
2785 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2786 if (!Mul)
2787 return getUDivExpr(LHS, RHS);
2788
2789 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2790 // If the mulexpr multiplies by a constant, then that constant must be the
2791 // first element of the mulexpr.
Sanjoy Das63914592015-10-18 00:29:20 +00002792 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
Nick Lewycky31eaca52014-01-27 10:04:03 +00002793 if (LHSCst == RHSCst) {
2794 SmallVector<const SCEV *, 2> Operands;
2795 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2796 return getMulExpr(Operands);
2797 }
2798
2799 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2800 // that there's a factor provided by one of the other terms. We need to
2801 // check.
2802 APInt Factor = gcd(LHSCst, RHSCst);
2803 if (!Factor.isIntN(1)) {
2804 LHSCst = cast<SCEVConstant>(
2805 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2806 RHSCst = cast<SCEVConstant>(
2807 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2808 SmallVector<const SCEV *, 2> Operands;
2809 Operands.push_back(LHSCst);
2810 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2811 LHS = getMulExpr(Operands);
2812 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002813 Mul = dyn_cast<SCEVMulExpr>(LHS);
2814 if (!Mul)
2815 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002816 }
2817 }
2818 }
2819
2820 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2821 if (Mul->getOperand(i) == RHS) {
2822 SmallVector<const SCEV *, 2> Operands;
2823 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2824 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2825 return getMulExpr(Operands);
2826 }
2827 }
2828
2829 return getUDivExpr(LHS, RHS);
2830}
Chris Lattnerd934c702004-04-02 20:23:17 +00002831
Dan Gohman4d5435d2009-05-24 23:45:28 +00002832/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2833/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002834const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2835 const Loop *L,
2836 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002837 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002838 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002839 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002840 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002841 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002842 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002843 }
2844
2845 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002846 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002847}
2848
Dan Gohman4d5435d2009-05-24 23:45:28 +00002849/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2850/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002851const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002852ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002853 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002854 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002855#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002856 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002857 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002858 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002859 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002860 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002861 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002862 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002863#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002864
Dan Gohmanbe928e32008-06-18 16:23:07 +00002865 if (Operands.back()->isZero()) {
2866 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002867 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002868 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002869
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002870 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2871 // use that information to infer NUW and NSW flags. However, computing a
2872 // BE count requires calling getAddRecExpr, so we may not yet have a
2873 // meaningful BE count at this point (and if we don't, we'd be stuck
2874 // with a SCEVCouldNotCompute as the cached BE count).
2875
Sanjoy Das81401d42015-01-10 23:41:24 +00002876 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002877
Dan Gohman223a5d22008-08-08 18:33:12 +00002878 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002879 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002880 const Loop *NestedLoop = NestedAR->getLoop();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002881 if (L->contains(NestedLoop)
2882 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2883 : (!NestedLoop->contains(L) &&
2884 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002885 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002886 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002887 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002888 // AddRecs require their operands be loop-invariant with respect to their
2889 // loops. Don't perform this transformation if it would break this
2890 // requirement.
Sanjoy Das3b827c72015-11-29 23:40:53 +00002891 bool AllInvariant = all_of(
2892 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002893
Dan Gohmancc030b72009-06-26 22:36:20 +00002894 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002895 // Create a recurrence for the outer loop with the same step size.
2896 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002897 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2898 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002899 SCEV::NoWrapFlags OuterFlags =
2900 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002901
2902 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Sanjoy Das3b827c72015-11-29 23:40:53 +00002903 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2904 return isLoopInvariant(Op, NestedLoop);
2905 });
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002906
Andrew Trick8b55b732011-03-14 16:50:06 +00002907 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002908 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002909 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002910 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2911 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002912 SCEV::NoWrapFlags InnerFlags =
2913 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002914 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2915 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002916 }
2917 // Reset Operands to its original state.
2918 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002919 }
2920 }
2921
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002922 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2923 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002924 FoldingSetNodeID ID;
2925 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002926 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2927 ID.AddPointer(Operands[i]);
2928 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002929 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002930 SCEVAddRecExpr *S =
2931 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2932 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002933 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2934 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002935 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2936 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002937 UniqueSCEVs.InsertNode(S, IP);
2938 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002939 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002940 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002941}
2942
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002943const SCEV *
2944ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2945 const SmallVectorImpl<const SCEV *> &IndexExprs,
2946 bool InBounds) {
2947 // getSCEV(Base)->getType() has the same address space as Base->getType()
2948 // because SCEV::getType() preserves the address space.
2949 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2950 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2951 // instruction to its SCEV, because the Instruction may be guarded by control
2952 // flow and the no-overflow bits may not be valid for the expression in any
Jingyue Wu42f1d672015-07-28 18:22:40 +00002953 // context. This can be fixed similarly to how these flags are handled for
2954 // adds.
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002955 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2956
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002957 const SCEV *TotalOffset = getZero(IntPtrTy);
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002958 // The address space is unimportant. The first thing we do on CurTy is getting
2959 // its element type.
2960 Type *CurTy = PointerType::getUnqual(PointeeType);
2961 for (const SCEV *IndexExpr : IndexExprs) {
2962 // Compute the (potentially symbolic) offset in bytes for this index.
2963 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2964 // For a struct, add the member offset.
2965 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2966 unsigned FieldNo = Index->getZExtValue();
2967 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2968
2969 // Add the field offset to the running total offset.
2970 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2971
2972 // Update CurTy to the type of the field at Index.
2973 CurTy = STy->getTypeAtIndex(Index);
2974 } else {
2975 // Update CurTy to its element type.
2976 CurTy = cast<SequentialType>(CurTy)->getElementType();
2977 // For an array, add the element offset, explicitly scaled.
2978 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2979 // Getelementptr indices are signed.
2980 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2981
2982 // Multiply the index by the element size to compute the element offset.
2983 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2984
2985 // Add the element offset to the running total offset.
2986 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2987 }
2988 }
2989
2990 // Add the total offset from all the GEP indices to the base.
2991 return getAddExpr(BaseExpr, TotalOffset, Wrap);
2992}
2993
Dan Gohmanabd17092009-06-24 14:49:00 +00002994const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2995 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002996 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002997 Ops.push_back(LHS);
2998 Ops.push_back(RHS);
2999 return getSMaxExpr(Ops);
3000}
3001
Dan Gohmanaf752342009-07-07 17:06:11 +00003002const SCEV *
3003ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003004 assert(!Ops.empty() && "Cannot get empty smax!");
3005 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003006#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003007 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003008 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003009 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003010 "SCEVSMaxExpr operand types don't match!");
3011#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003012
3013 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003014 GroupByComplexity(Ops, &LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003015
3016 // If there are any constants, fold them together.
3017 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003018 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003019 ++Idx;
3020 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003021 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003022 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003023 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003024 APIntOps::smax(LHSC->getValue()->getValue(),
3025 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003026 Ops[0] = getConstant(Fold);
3027 Ops.erase(Ops.begin()+1); // Erase the folded element
3028 if (Ops.size() == 1) return Ops[0];
3029 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003030 }
3031
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003032 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003033 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3034 Ops.erase(Ops.begin());
3035 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003036 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3037 // If we have an smax with a constant maximum-int, it will always be
3038 // maximum-int.
3039 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003040 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003041
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003042 if (Ops.size() == 1) return Ops[0];
3043 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003044
3045 // Find the first SMax
3046 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3047 ++Idx;
3048
3049 // Check to see if one of the operands is an SMax. If so, expand its operands
3050 // onto our operand list, and recurse to simplify.
3051 if (Idx < Ops.size()) {
3052 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003053 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003054 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003055 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003056 DeletedSMax = true;
3057 }
3058
3059 if (DeletedSMax)
3060 return getSMaxExpr(Ops);
3061 }
3062
3063 // Okay, check to see if the same value occurs in the operand list twice. If
3064 // so, delete one. Since we sorted the list, these values are required to
3065 // be adjacent.
3066 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003067 // X smax Y smax Y --> X smax Y
3068 // X smax Y --> X, if X is always greater than Y
3069 if (Ops[i] == Ops[i+1] ||
3070 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3071 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3072 --i; --e;
3073 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003074 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3075 --i; --e;
3076 }
3077
3078 if (Ops.size() == 1) return Ops[0];
3079
3080 assert(!Ops.empty() && "Reduced smax down to nothing!");
3081
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003082 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003083 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003084 FoldingSetNodeID ID;
3085 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003086 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3087 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003088 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003089 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003090 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3091 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003092 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3093 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003094 UniqueSCEVs.InsertNode(S, IP);
3095 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003096}
3097
Dan Gohmanabd17092009-06-24 14:49:00 +00003098const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3099 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003100 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003101 Ops.push_back(LHS);
3102 Ops.push_back(RHS);
3103 return getUMaxExpr(Ops);
3104}
3105
Dan Gohmanaf752342009-07-07 17:06:11 +00003106const SCEV *
3107ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003108 assert(!Ops.empty() && "Cannot get empty umax!");
3109 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003110#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003111 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003112 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003113 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003114 "SCEVUMaxExpr operand types don't match!");
3115#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003116
3117 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003118 GroupByComplexity(Ops, &LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003119
3120 // If there are any constants, fold them together.
3121 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003122 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003123 ++Idx;
3124 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003125 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003126 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003127 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003128 APIntOps::umax(LHSC->getValue()->getValue(),
3129 RHSC->getValue()->getValue()));
3130 Ops[0] = getConstant(Fold);
3131 Ops.erase(Ops.begin()+1); // Erase the folded element
3132 if (Ops.size() == 1) return Ops[0];
3133 LHSC = cast<SCEVConstant>(Ops[0]);
3134 }
3135
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003136 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003137 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3138 Ops.erase(Ops.begin());
3139 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003140 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3141 // If we have an umax with a constant maximum-int, it will always be
3142 // maximum-int.
3143 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003144 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003145
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003146 if (Ops.size() == 1) return Ops[0];
3147 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003148
3149 // Find the first UMax
3150 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3151 ++Idx;
3152
3153 // Check to see if one of the operands is a UMax. If so, expand its operands
3154 // onto our operand list, and recurse to simplify.
3155 if (Idx < Ops.size()) {
3156 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003157 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003158 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003159 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003160 DeletedUMax = true;
3161 }
3162
3163 if (DeletedUMax)
3164 return getUMaxExpr(Ops);
3165 }
3166
3167 // Okay, check to see if the same value occurs in the operand list twice. If
3168 // so, delete one. Since we sorted the list, these values are required to
3169 // be adjacent.
3170 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003171 // X umax Y umax Y --> X umax Y
3172 // X umax Y --> X, if X is always greater than Y
3173 if (Ops[i] == Ops[i+1] ||
3174 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3175 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3176 --i; --e;
3177 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003178 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3179 --i; --e;
3180 }
3181
3182 if (Ops.size() == 1) return Ops[0];
3183
3184 assert(!Ops.empty() && "Reduced umax down to nothing!");
3185
3186 // Okay, it looks like we really DO need a umax expr. Check to see if we
3187 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003188 FoldingSetNodeID ID;
3189 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003190 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3191 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003192 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003193 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003194 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3195 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003196 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3197 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003198 UniqueSCEVs.InsertNode(S, IP);
3199 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003200}
3201
Dan Gohmanabd17092009-06-24 14:49:00 +00003202const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3203 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003204 // ~smax(~x, ~y) == smin(x, y).
3205 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3206}
3207
Dan Gohmanabd17092009-06-24 14:49:00 +00003208const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3209 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003210 // ~umax(~x, ~y) == umin(x, y)
3211 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3212}
3213
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003214const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003215 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003216 // constant expression and then folding it back into a ConstantInt.
3217 // This is just a compile-time optimization.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003218 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003219}
3220
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003221const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3222 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003223 unsigned FieldNo) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003224 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003225 // constant expression and then folding it back into a ConstantInt.
3226 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003227 return getConstant(
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003228 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003229}
3230
Dan Gohmanaf752342009-07-07 17:06:11 +00003231const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003232 // Don't attempt to do anything other than create a SCEVUnknown object
3233 // here. createSCEV only calls getUnknown after checking for all other
3234 // interesting possibilities, and any other code that calls getUnknown
3235 // is doing so in order to hide a value from SCEV canonicalization.
3236
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003237 FoldingSetNodeID ID;
3238 ID.AddInteger(scUnknown);
3239 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003240 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003241 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3242 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3243 "Stale SCEVUnknown in uniquing map!");
3244 return S;
3245 }
3246 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3247 FirstUnknown);
3248 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003249 UniqueSCEVs.InsertNode(S, IP);
3250 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003251}
3252
Chris Lattnerd934c702004-04-02 20:23:17 +00003253//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003254// Basic SCEV Analysis and PHI Idiom Recognition Code
3255//
3256
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003257/// isSCEVable - Test if values of the given type are analyzable within
3258/// the SCEV framework. This primarily includes integer types, and it
3259/// can optionally include pointer types if the ScalarEvolution class
3260/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003261bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003262 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003263 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003264}
3265
3266/// getTypeSizeInBits - Return the size in bits of the specified type,
3267/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003268uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003269 assert(isSCEVable(Ty) && "Type is not SCEVable!");
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003270 return getDataLayout().getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003271}
3272
3273/// getEffectiveSCEVType - Return a type with the same bitwidth as
3274/// the given type and which represents how SCEV will treat the given
3275/// type, for which isSCEVable must return true. For pointer types,
3276/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003277Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003278 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3279
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003280 if (Ty->isIntegerTy())
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003281 return Ty;
3282
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003283 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003284 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003285 return getDataLayout().getIntPtrType(Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003286}
Chris Lattnerd934c702004-04-02 20:23:17 +00003287
Dan Gohmanaf752342009-07-07 17:06:11 +00003288const SCEV *ScalarEvolution::getCouldNotCompute() {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003289 return CouldNotCompute.get();
Dan Gohman31efa302009-04-18 17:58:19 +00003290}
3291
Shuxin Yangefc4c012013-07-08 17:33:13 +00003292namespace {
3293 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3294 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3295 // is set iff if find such SCEVUnknown.
3296 //
3297 struct FindInvalidSCEVUnknown {
3298 bool FindOne;
3299 FindInvalidSCEVUnknown() { FindOne = false; }
3300 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003301 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003302 case scConstant:
3303 return false;
3304 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003305 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003306 FindOne = true;
3307 return false;
3308 default:
3309 return true;
3310 }
3311 }
3312 bool isDone() const { return FindOne; }
3313 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +00003314}
Shuxin Yangefc4c012013-07-08 17:33:13 +00003315
3316bool ScalarEvolution::checkValidity(const SCEV *S) const {
3317 FindInvalidSCEVUnknown F;
3318 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3319 ST.visitAll(S);
3320
3321 return !F.FindOne;
3322}
3323
Chris Lattnerd934c702004-04-02 20:23:17 +00003324/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3325/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003326const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003327 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003328
Jingyue Wu42f1d672015-07-28 18:22:40 +00003329 const SCEV *S = getExistingSCEV(V);
3330 if (S == nullptr) {
3331 S = createSCEV(V);
3332 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
3333 }
3334 return S;
3335}
3336
3337const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3338 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3339
Shuxin Yangefc4c012013-07-08 17:33:13 +00003340 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3341 if (I != ValueExprMap.end()) {
3342 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003343 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003344 return S;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003345 ValueExprMap.erase(I);
Shuxin Yangefc4c012013-07-08 17:33:13 +00003346 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003347 return nullptr;
Chris Lattnerd934c702004-04-02 20:23:17 +00003348}
3349
Dan Gohman0a40ad92009-04-16 03:18:22 +00003350/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3351///
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003352const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3353 SCEV::NoWrapFlags Flags) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003354 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003355 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003356 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003357
Chris Lattner229907c2011-07-18 04:54:35 +00003358 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003359 Ty = getEffectiveSCEVType(Ty);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003360 return getMulExpr(
3361 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003362}
3363
3364/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003365const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003366 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003367 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003368 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003369
Chris Lattner229907c2011-07-18 04:54:35 +00003370 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003371 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003372 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003373 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003374 return getMinusSCEV(AllOnes, V);
3375}
3376
Andrew Trick8b55b732011-03-14 16:50:06 +00003377/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003378const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003379 SCEV::NoWrapFlags Flags) {
Dan Gohman46f00a22010-07-20 16:53:00 +00003380 // Fast path: X - X --> 0.
3381 if (LHS == RHS)
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00003382 return getZero(LHS->getType());
Dan Gohman46f00a22010-07-20 16:53:00 +00003383
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003384 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3385 // makes it so that we cannot make much use of NUW.
3386 auto AddFlags = SCEV::FlagAnyWrap;
3387 const bool RHSIsNotMinSigned =
3388 !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3389 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3390 // Let M be the minimum representable signed value. Then (-1)*RHS
3391 // signed-wraps if and only if RHS is M. That can happen even for
3392 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3393 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3394 // (-1)*RHS, we need to prove that RHS != M.
3395 //
3396 // If LHS is non-negative and we know that LHS - RHS does not
3397 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3398 // either by proving that RHS > M or that LHS >= 0.
3399 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3400 AddFlags = SCEV::FlagNSW;
3401 }
3402 }
3403
3404 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3405 // RHS is NSW and LHS >= 0.
3406 //
3407 // The difficulty here is that the NSW flag may have been proven
3408 // relative to a loop that is to be found in a recurrence in LHS and
3409 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3410 // larger scope than intended.
3411 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3412
3413 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003414}
3415
3416/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3417/// input value to the specified type. If the type must be extended, it is zero
3418/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003419const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003420ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3421 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003422 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3423 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003424 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003425 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003426 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003427 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003428 return getTruncateExpr(V, Ty);
3429 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003430}
3431
3432/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3433/// input value to the specified type. If the type must be extended, it is sign
3434/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003435const SCEV *
3436ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003437 Type *Ty) {
3438 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003439 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3440 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003441 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003442 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003443 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003444 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003445 return getTruncateExpr(V, Ty);
3446 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003447}
3448
Dan Gohmane712a2f2009-05-13 03:46:30 +00003449/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3450/// input value to the specified type. If the type must be extended, it is zero
3451/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003452const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003453ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3454 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003455 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3456 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003457 "Cannot noop or zero extend with non-integer arguments!");
3458 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3459 "getNoopOrZeroExtend cannot truncate!");
3460 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3461 return V; // No conversion
3462 return getZeroExtendExpr(V, Ty);
3463}
3464
3465/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3466/// input value to the specified type. If the type must be extended, it is sign
3467/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003468const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003469ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3470 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003471 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3472 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003473 "Cannot noop or sign extend with non-integer arguments!");
3474 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3475 "getNoopOrSignExtend cannot truncate!");
3476 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3477 return V; // No conversion
3478 return getSignExtendExpr(V, Ty);
3479}
3480
Dan Gohman8db2edc2009-06-13 15:56:47 +00003481/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3482/// the input value to the specified type. If the type must be extended,
3483/// it is extended with unspecified bits. The conversion must not be
3484/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003485const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003486ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3487 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003488 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3489 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003490 "Cannot noop or any extend with non-integer arguments!");
3491 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3492 "getNoopOrAnyExtend cannot truncate!");
3493 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3494 return V; // No conversion
3495 return getAnyExtendExpr(V, Ty);
3496}
3497
Dan Gohmane712a2f2009-05-13 03:46:30 +00003498/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3499/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003500const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003501ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3502 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003503 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3504 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003505 "Cannot truncate or noop with non-integer arguments!");
3506 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3507 "getTruncateOrNoop cannot extend!");
3508 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3509 return V; // No conversion
3510 return getTruncateExpr(V, Ty);
3511}
3512
Dan Gohman96212b62009-06-22 00:31:57 +00003513/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3514/// the types using zero-extension, and then perform a umax operation
3515/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003516const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3517 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003518 const SCEV *PromotedLHS = LHS;
3519 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003520
3521 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3522 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3523 else
3524 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3525
3526 return getUMaxExpr(PromotedLHS, PromotedRHS);
3527}
3528
Dan Gohman2bc22302009-06-22 15:03:27 +00003529/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3530/// the types using zero-extension, and then perform a umin operation
3531/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003532const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3533 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003534 const SCEV *PromotedLHS = LHS;
3535 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003536
3537 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3538 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3539 else
3540 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3541
3542 return getUMinExpr(PromotedLHS, PromotedRHS);
3543}
3544
Andrew Trick87716c92011-03-17 23:51:11 +00003545/// getPointerBase - Transitively follow the chain of pointer-type operands
3546/// until reaching a SCEV that does not have a single pointer operand. This
3547/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3548/// but corner cases do exist.
3549const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3550 // A pointer operand may evaluate to a nonpointer expression, such as null.
3551 if (!V->getType()->isPointerTy())
3552 return V;
3553
3554 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3555 return getPointerBase(Cast->getOperand());
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003556 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003557 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003558 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3559 I != E; ++I) {
3560 if ((*I)->getType()->isPointerTy()) {
3561 // Cannot find the base of an expression with multiple pointer operands.
3562 if (PtrOp)
3563 return V;
3564 PtrOp = *I;
3565 }
3566 }
3567 if (!PtrOp)
3568 return V;
3569 return getPointerBase(PtrOp);
3570 }
3571 return V;
3572}
3573
Dan Gohman0b89dff2009-07-25 01:13:03 +00003574/// PushDefUseChildren - Push users of the given Instruction
3575/// onto the given Worklist.
3576static void
3577PushDefUseChildren(Instruction *I,
3578 SmallVectorImpl<Instruction *> &Worklist) {
3579 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003580 for (User *U : I->users())
3581 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003582}
3583
3584/// ForgetSymbolicValue - This looks up computed SCEV values for all
3585/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003586/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003587/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003588void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003589ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003590 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003591 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003592
Dan Gohman0b89dff2009-07-25 01:13:03 +00003593 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003594 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003595 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003596 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003597 if (!Visited.insert(I).second)
3598 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003599
Sanjoy Das63914592015-10-18 00:29:20 +00003600 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003601 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003602 const SCEV *Old = It->second;
3603
Dan Gohman0b89dff2009-07-25 01:13:03 +00003604 // Short-circuit the def-use traversal if the symbolic name
3605 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003606 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003607 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003608
Dan Gohman0b89dff2009-07-25 01:13:03 +00003609 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003610 // structure, it's a PHI that's in the progress of being computed
3611 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3612 // additional loop trip count information isn't going to change anything.
3613 // In the second case, createNodeForPHI will perform the necessary
3614 // updates on its own when it gets to that point. In the third, we do
3615 // want to forget the SCEVUnknown.
3616 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003617 !isa<SCEVUnknown>(Old) ||
3618 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003619 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003620 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003621 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003622 }
3623
3624 PushDefUseChildren(I, Worklist);
3625 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003626}
Chris Lattnerd934c702004-04-02 20:23:17 +00003627
Benjamin Kramer83709b12015-11-16 09:01:28 +00003628namespace {
Silviu Barangaf91c8072015-10-30 15:02:28 +00003629class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3630public:
3631 static const SCEV *rewrite(const SCEV *Scev, const Loop *L,
3632 ScalarEvolution &SE) {
3633 SCEVInitRewriter Rewriter(L, SE);
3634 const SCEV *Result = Rewriter.visit(Scev);
3635 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3636 }
3637
3638 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3639 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3640
3641 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3642 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3643 Valid = false;
3644 return Expr;
3645 }
3646
3647 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3648 // Only allow AddRecExprs for this loop.
3649 if (Expr->getLoop() == L)
3650 return Expr->getStart();
3651 Valid = false;
3652 return Expr;
3653 }
3654
3655 bool isValid() { return Valid; }
3656
3657private:
3658 const Loop *L;
3659 bool Valid;
3660};
3661
3662class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3663public:
3664 static const SCEV *rewrite(const SCEV *Scev, const Loop *L,
3665 ScalarEvolution &SE) {
3666 SCEVShiftRewriter Rewriter(L, SE);
3667 const SCEV *Result = Rewriter.visit(Scev);
3668 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3669 }
3670
3671 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3672 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3673
3674 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3675 // Only allow AddRecExprs for this loop.
3676 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3677 Valid = false;
3678 return Expr;
3679 }
3680
3681 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3682 if (Expr->getLoop() == L && Expr->isAffine())
3683 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3684 Valid = false;
3685 return Expr;
3686 }
3687 bool isValid() { return Valid; }
3688
3689private:
3690 const Loop *L;
3691 bool Valid;
3692};
Benjamin Kramer83709b12015-11-16 09:01:28 +00003693} // end anonymous namespace
Silviu Barangaf91c8072015-10-30 15:02:28 +00003694
Sanjoy Das55015d22015-10-02 23:09:44 +00003695const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3696 const Loop *L = LI.getLoopFor(PN->getParent());
3697 if (!L || L->getHeader() != PN->getParent())
3698 return nullptr;
3699
3700 // The loop may have multiple entrances or multiple exits; we can analyze
3701 // this phi as an addrec if it has a unique entry value and a unique
3702 // backedge value.
3703 Value *BEValueV = nullptr, *StartValueV = nullptr;
3704 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3705 Value *V = PN->getIncomingValue(i);
3706 if (L->contains(PN->getIncomingBlock(i))) {
3707 if (!BEValueV) {
3708 BEValueV = V;
3709 } else if (BEValueV != V) {
3710 BEValueV = nullptr;
3711 break;
3712 }
3713 } else if (!StartValueV) {
3714 StartValueV = V;
3715 } else if (StartValueV != V) {
3716 StartValueV = nullptr;
3717 break;
3718 }
3719 }
3720 if (BEValueV && StartValueV) {
3721 // While we are analyzing this PHI node, handle its value symbolically.
3722 const SCEV *SymbolicName = getUnknown(PN);
3723 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3724 "PHI node already processed?");
3725 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3726
3727 // Using this symbolic name for the PHI, analyze the value coming around
3728 // the back-edge.
3729 const SCEV *BEValue = getSCEV(BEValueV);
3730
3731 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3732 // has a special value for the first iteration of the loop.
3733
3734 // If the value coming around the backedge is an add with the symbolic
3735 // value we just inserted, then we found a simple induction variable!
3736 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3737 // If there is a single occurrence of the symbolic value, replace it
3738 // with a recurrence.
3739 unsigned FoundIndex = Add->getNumOperands();
3740 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3741 if (Add->getOperand(i) == SymbolicName)
3742 if (FoundIndex == e) {
3743 FoundIndex = i;
Dan Gohman6635bb22010-04-12 07:49:36 +00003744 break;
3745 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003746
3747 if (FoundIndex != Add->getNumOperands()) {
3748 // Create an add with everything but the specified operand.
3749 SmallVector<const SCEV *, 8> Ops;
3750 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3751 if (i != FoundIndex)
3752 Ops.push_back(Add->getOperand(i));
3753 const SCEV *Accum = getAddExpr(Ops);
3754
3755 // This is not a valid addrec if the step amount is varying each
3756 // loop iteration, but is not itself an addrec in this loop.
3757 if (isLoopInvariant(Accum, L) ||
3758 (isa<SCEVAddRecExpr>(Accum) &&
3759 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3760 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3761
3762 // If the increment doesn't overflow, then neither the addrec nor
3763 // the post-increment will overflow.
3764 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3765 if (OBO->getOperand(0) == PN) {
3766 if (OBO->hasNoUnsignedWrap())
3767 Flags = setFlags(Flags, SCEV::FlagNUW);
3768 if (OBO->hasNoSignedWrap())
3769 Flags = setFlags(Flags, SCEV::FlagNSW);
3770 }
3771 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3772 // If the increment is an inbounds GEP, then we know the address
3773 // space cannot be wrapped around. We cannot make any guarantee
3774 // about signed or unsigned overflow because pointers are
3775 // unsigned but we may have a negative index from the base
3776 // pointer. We can guarantee that no unsigned wrap occurs if the
3777 // indices form a positive value.
3778 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3779 Flags = setFlags(Flags, SCEV::FlagNW);
3780
3781 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3782 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3783 Flags = setFlags(Flags, SCEV::FlagNUW);
3784 }
3785
3786 // We cannot transfer nuw and nsw flags from subtraction
3787 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3788 // for instance.
3789 }
3790
3791 const SCEV *StartVal = getSCEV(StartValueV);
3792 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3793
3794 // Since the no-wrap flags are on the increment, they apply to the
3795 // post-incremented value as well.
3796 if (isLoopInvariant(Accum, L))
3797 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
3798
3799 // Okay, for the entire analysis of this edge we assumed the PHI
3800 // to be symbolic. We now need to go back and purge all of the
3801 // entries for the scalars that use the symbolic expression.
3802 ForgetSymbolicName(PN, SymbolicName);
3803 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3804 return PHISCEV;
Dan Gohman6635bb22010-04-12 07:49:36 +00003805 }
3806 }
Silviu Barangaf91c8072015-10-30 15:02:28 +00003807 } else {
Sanjoy Das55015d22015-10-02 23:09:44 +00003808 // Otherwise, this could be a loop like this:
3809 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3810 // In this case, j = {1,+,1} and BEValue is j.
3811 // Because the other in-value of i (0) fits the evolution of BEValue
3812 // i really is an addrec evolution.
Silviu Barangaf91c8072015-10-30 15:02:28 +00003813 //
3814 // We can generalize this saying that i is the shifted value of BEValue
3815 // by one iteration:
3816 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
3817 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
3818 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
3819 if (Shifted != getCouldNotCompute() &&
3820 Start != getCouldNotCompute()) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003821 const SCEV *StartVal = getSCEV(StartValueV);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003822 if (Start == StartVal) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003823 // Okay, for the entire analysis of this edge we assumed the PHI
3824 // to be symbolic. We now need to go back and purge all of the
3825 // entries for the scalars that use the symbolic expression.
3826 ForgetSymbolicName(PN, SymbolicName);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003827 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
3828 return Shifted;
Chris Lattnerd934c702004-04-02 20:23:17 +00003829 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003830 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003831 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003832 }
3833
3834 return nullptr;
3835}
3836
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003837// Checks if the SCEV S is available at BB. S is considered available at BB
3838// if S can be materialized at BB without introducing a fault.
3839static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
3840 BasicBlock *BB) {
3841 struct CheckAvailable {
3842 bool TraversalDone = false;
3843 bool Available = true;
Sanjoy Das55015d22015-10-02 23:09:44 +00003844
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003845 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
3846 BasicBlock *BB = nullptr;
3847 DominatorTree &DT;
Sanjoy Das55015d22015-10-02 23:09:44 +00003848
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003849 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
3850 : L(L), BB(BB), DT(DT) {}
Sanjoy Das55015d22015-10-02 23:09:44 +00003851
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003852 bool setUnavailable() {
3853 TraversalDone = true;
3854 Available = false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003855 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003856 }
3857
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003858 bool follow(const SCEV *S) {
3859 switch (S->getSCEVType()) {
3860 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
3861 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
Sanjoy Dasbb5ffc52015-10-24 05:37:28 +00003862 // These expressions are available if their operand(s) is/are.
3863 return true;
Sanjoy Das55015d22015-10-02 23:09:44 +00003864
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003865 case scAddRecExpr: {
3866 // We allow add recurrences that are on the loop BB is in, or some
3867 // outer loop. This guarantees availability because the value of the
3868 // add recurrence at BB is simply the "current" value of the induction
3869 // variable. We can relax this in the future; for instance an add
3870 // recurrence on a sibling dominating loop is also available at BB.
3871 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
3872 if (L && (ARLoop == L || ARLoop->contains(L)))
Sanjoy Das55015d22015-10-02 23:09:44 +00003873 return true;
3874
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003875 return setUnavailable();
Sanjoy Das55015d22015-10-02 23:09:44 +00003876 }
3877
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003878 case scUnknown: {
3879 // For SCEVUnknown, we check for simple dominance.
3880 const auto *SU = cast<SCEVUnknown>(S);
3881 Value *V = SU->getValue();
Sanjoy Das55015d22015-10-02 23:09:44 +00003882
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003883 if (isa<Argument>(V))
3884 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003885
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003886 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
3887 return false;
3888
3889 return setUnavailable();
3890 }
3891
3892 case scUDivExpr:
3893 case scCouldNotCompute:
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003894 // We do not try to smart about these at all.
3895 return setUnavailable();
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003896 }
3897 llvm_unreachable("switch should be fully covered!");
3898 }
3899
3900 bool isDone() { return TraversalDone; }
Sanjoy Das55015d22015-10-02 23:09:44 +00003901 };
3902
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003903 CheckAvailable CA(L, BB, DT);
3904 SCEVTraversal<CheckAvailable> ST(CA);
3905
3906 ST.visitAll(S);
3907 return CA.Available;
3908}
3909
3910// Try to match a control flow sequence that branches out at BI and merges back
3911// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
3912// match.
3913static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
3914 Value *&C, Value *&LHS, Value *&RHS) {
3915 C = BI->getCondition();
3916
3917 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
3918 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
3919
3920 if (!LeftEdge.isSingleEdge())
3921 return false;
3922
3923 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
3924
3925 Use &LeftUse = Merge->getOperandUse(0);
3926 Use &RightUse = Merge->getOperandUse(1);
3927
3928 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
3929 LHS = LeftUse;
3930 RHS = RightUse;
3931 return true;
3932 }
3933
3934 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
3935 LHS = RightUse;
3936 RHS = LeftUse;
3937 return true;
3938 }
3939
3940 return false;
3941}
3942
3943const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003944 if (PN->getNumIncomingValues() == 2) {
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003945 const Loop *L = LI.getLoopFor(PN->getParent());
3946
Sanjoy Das337d4782015-10-31 23:21:40 +00003947 // We don't want to break LCSSA, even in a SCEV expression tree.
3948 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3949 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
3950 return nullptr;
3951
Sanjoy Das55015d22015-10-02 23:09:44 +00003952 // Try to match
3953 //
3954 // br %cond, label %left, label %right
3955 // left:
3956 // br label %merge
3957 // right:
3958 // br label %merge
3959 // merge:
3960 // V = phi [ %x, %left ], [ %y, %right ]
3961 //
3962 // as "select %cond, %x, %y"
3963
3964 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
3965 assert(IDom && "At least the entry block should dominate PN");
3966
3967 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
3968 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
3969
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003970 if (BI && BI->isConditional() &&
3971 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
3972 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
3973 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
Sanjoy Das55015d22015-10-02 23:09:44 +00003974 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
3975 }
3976
3977 return nullptr;
3978}
3979
3980const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3981 if (const SCEV *S = createAddRecFromPHI(PN))
3982 return S;
3983
3984 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
3985 return S;
Misha Brukman01808ca2005-04-21 21:13:18 +00003986
Dan Gohmana9c205c2010-02-25 06:57:05 +00003987 // If the PHI has a single incoming value, follow that value, unless the
3988 // PHI's incoming blocks are in a different loop, in which case doing so
3989 // risks breaking LCSSA form. Instcombine would normally zap these, but
3990 // it doesn't have DominatorTree information, so it may miss cases.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003991 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003992 if (LI.replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003993 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003994
Chris Lattnerd934c702004-04-02 20:23:17 +00003995 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003996 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003997}
3998
Sanjoy Das55015d22015-10-02 23:09:44 +00003999const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4000 Value *Cond,
4001 Value *TrueVal,
4002 Value *FalseVal) {
Mehdi Amini044cb342015-10-07 18:14:25 +00004003 // Handle "constant" branch or select. This can occur for instance when a
4004 // loop pass transforms an inner loop and moves on to process the outer loop.
4005 if (auto *CI = dyn_cast<ConstantInt>(Cond))
4006 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4007
Sanjoy Dasd0671342015-10-02 19:39:59 +00004008 // Try to match some simple smax or umax patterns.
4009 auto *ICI = dyn_cast<ICmpInst>(Cond);
4010 if (!ICI)
4011 return getUnknown(I);
4012
4013 Value *LHS = ICI->getOperand(0);
4014 Value *RHS = ICI->getOperand(1);
4015
4016 switch (ICI->getPredicate()) {
4017 case ICmpInst::ICMP_SLT:
4018 case ICmpInst::ICMP_SLE:
4019 std::swap(LHS, RHS);
4020 // fall through
4021 case ICmpInst::ICMP_SGT:
4022 case ICmpInst::ICMP_SGE:
4023 // a >s b ? a+x : b+x -> smax(a, b)+x
4024 // a >s b ? b+x : a+x -> smin(a, b)+x
4025 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4026 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4027 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4028 const SCEV *LA = getSCEV(TrueVal);
4029 const SCEV *RA = getSCEV(FalseVal);
4030 const SCEV *LDiff = getMinusSCEV(LA, LS);
4031 const SCEV *RDiff = getMinusSCEV(RA, RS);
4032 if (LDiff == RDiff)
4033 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4034 LDiff = getMinusSCEV(LA, RS);
4035 RDiff = getMinusSCEV(RA, LS);
4036 if (LDiff == RDiff)
4037 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4038 }
4039 break;
4040 case ICmpInst::ICMP_ULT:
4041 case ICmpInst::ICMP_ULE:
4042 std::swap(LHS, RHS);
4043 // fall through
4044 case ICmpInst::ICMP_UGT:
4045 case ICmpInst::ICMP_UGE:
4046 // a >u b ? a+x : b+x -> umax(a, b)+x
4047 // a >u b ? b+x : a+x -> umin(a, b)+x
4048 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4049 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4050 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4051 const SCEV *LA = getSCEV(TrueVal);
4052 const SCEV *RA = getSCEV(FalseVal);
4053 const SCEV *LDiff = getMinusSCEV(LA, LS);
4054 const SCEV *RDiff = getMinusSCEV(RA, RS);
4055 if (LDiff == RDiff)
4056 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4057 LDiff = getMinusSCEV(LA, RS);
4058 RDiff = getMinusSCEV(RA, LS);
4059 if (LDiff == RDiff)
4060 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4061 }
4062 break;
4063 case ICmpInst::ICMP_NE:
4064 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4065 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4066 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4067 const SCEV *One = getOne(I->getType());
4068 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4069 const SCEV *LA = getSCEV(TrueVal);
4070 const SCEV *RA = getSCEV(FalseVal);
4071 const SCEV *LDiff = getMinusSCEV(LA, LS);
4072 const SCEV *RDiff = getMinusSCEV(RA, One);
4073 if (LDiff == RDiff)
4074 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4075 }
4076 break;
4077 case ICmpInst::ICMP_EQ:
4078 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4079 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4080 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4081 const SCEV *One = getOne(I->getType());
4082 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4083 const SCEV *LA = getSCEV(TrueVal);
4084 const SCEV *RA = getSCEV(FalseVal);
4085 const SCEV *LDiff = getMinusSCEV(LA, One);
4086 const SCEV *RDiff = getMinusSCEV(RA, LS);
4087 if (LDiff == RDiff)
4088 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4089 }
4090 break;
4091 default:
4092 break;
4093 }
4094
4095 return getUnknown(I);
4096}
4097
Dan Gohmanee750d12009-05-08 20:26:55 +00004098/// createNodeForGEP - Expand GEP instructions into add and multiply
4099/// operations. This allows them to be analyzed by regular SCEV code.
4100///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004101const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman2173bd32009-05-08 20:36:47 +00004102 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00004103 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00004104 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00004105 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00004106
Jingyue Wu2982d4d2015-05-18 17:03:25 +00004107 SmallVector<const SCEV *, 4> IndexExprs;
4108 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4109 IndexExprs.push_back(getSCEV(*Index));
4110 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs,
4111 GEP->isInBounds());
Dan Gohmanee750d12009-05-08 20:26:55 +00004112}
4113
Nick Lewycky3783b462007-11-22 07:59:40 +00004114/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4115/// guaranteed to end in (at every loop iteration). It is, at the same time,
4116/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
4117/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004118uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00004119ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00004120 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00004121 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00004122
Dan Gohmana30370b2009-05-04 22:02:23 +00004123 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00004124 return std::min(GetMinTrailingZeros(T->getOperand()),
4125 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00004126
Dan Gohmana30370b2009-05-04 22:02:23 +00004127 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004128 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4129 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4130 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004131 }
4132
Dan Gohmana30370b2009-05-04 22:02:23 +00004133 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004134 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4135 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4136 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004137 }
4138
Dan Gohmana30370b2009-05-04 22:02:23 +00004139 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004140 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004141 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004142 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004143 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004144 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004145 }
4146
Dan Gohmana30370b2009-05-04 22:02:23 +00004147 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004148 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004149 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4150 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00004151 for (unsigned i = 1, e = M->getNumOperands();
4152 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004153 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00004154 BitWidth);
4155 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004156 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004157
Dan Gohmana30370b2009-05-04 22:02:23 +00004158 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004159 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004160 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004161 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004162 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004163 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004164 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004165
Dan Gohmana30370b2009-05-04 22:02:23 +00004166 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004167 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004168 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004169 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004170 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004171 return MinOpRes;
4172 }
4173
Dan Gohmana30370b2009-05-04 22:02:23 +00004174 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004175 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004176 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004177 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004178 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004179 return MinOpRes;
4180 }
4181
Dan Gohmanc702fc02009-06-19 23:29:04 +00004182 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4183 // For a SCEVUnknown, ask ValueTracking.
4184 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00004185 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004186 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4187 nullptr, &DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004188 return Zeros.countTrailingOnes();
4189 }
4190
4191 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00004192 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00004193}
Chris Lattnerd934c702004-04-02 20:23:17 +00004194
Sanjoy Das1f05c512014-10-10 21:22:34 +00004195/// GetRangeFromMetadata - Helper method to assign a range to V from
4196/// metadata present in the IR.
4197static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004198 if (Instruction *I = dyn_cast<Instruction>(V))
4199 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4200 return getConstantRangeFromMetadata(*MD);
Sanjoy Das1f05c512014-10-10 21:22:34 +00004201
4202 return None;
4203}
4204
Sanjoy Das91b54772015-03-09 21:43:43 +00004205/// getRange - Determine the range for a particular SCEV. If SignHint is
4206/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4207/// with a "cleaner" unsigned (resp. signed) representation.
Dan Gohmane65c9172009-07-13 21:35:55 +00004208///
4209ConstantRange
Sanjoy Das91b54772015-03-09 21:43:43 +00004210ScalarEvolution::getRange(const SCEV *S,
4211 ScalarEvolution::RangeSignHint SignHint) {
4212 DenseMap<const SCEV *, ConstantRange> &Cache =
4213 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4214 : SignedRanges;
4215
Dan Gohman761065e2010-11-17 02:44:44 +00004216 // See if we've computed this range already.
Sanjoy Das91b54772015-03-09 21:43:43 +00004217 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4218 if (I != Cache.end())
Dan Gohman761065e2010-11-17 02:44:44 +00004219 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00004220
4221 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das91b54772015-03-09 21:43:43 +00004222 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004223
Dan Gohman85be4332010-01-26 19:19:05 +00004224 unsigned BitWidth = getTypeSizeInBits(S->getType());
4225 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4226
Sanjoy Das91b54772015-03-09 21:43:43 +00004227 // If the value has known zeros, the maximum value will have those known zeros
4228 // as well.
Dan Gohman85be4332010-01-26 19:19:05 +00004229 uint32_t TZ = GetMinTrailingZeros(S);
Sanjoy Das91b54772015-03-09 21:43:43 +00004230 if (TZ != 0) {
4231 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4232 ConservativeResult =
4233 ConstantRange(APInt::getMinValue(BitWidth),
4234 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4235 else
4236 ConservativeResult = ConstantRange(
4237 APInt::getSignedMinValue(BitWidth),
4238 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4239 }
Dan Gohman85be4332010-01-26 19:19:05 +00004240
Dan Gohmane65c9172009-07-13 21:35:55 +00004241 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004242 ConstantRange X = getRange(Add->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004243 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004244 X = X.add(getRange(Add->getOperand(i), SignHint));
4245 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004246 }
4247
4248 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004249 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004250 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004251 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4252 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004253 }
4254
4255 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004256 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004257 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004258 X = X.smax(getRange(SMax->getOperand(i), SignHint));
4259 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004260 }
4261
4262 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004263 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004264 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004265 X = X.umax(getRange(UMax->getOperand(i), SignHint));
4266 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004267 }
4268
4269 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004270 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4271 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4272 return setRange(UDiv, SignHint,
4273 ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004274 }
4275
4276 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004277 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4278 return setRange(ZExt, SignHint,
4279 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004280 }
4281
4282 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004283 ConstantRange X = getRange(SExt->getOperand(), SignHint);
4284 return setRange(SExt, SignHint,
4285 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004286 }
4287
4288 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004289 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4290 return setRange(Trunc, SignHint,
4291 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004292 }
4293
Dan Gohmane65c9172009-07-13 21:35:55 +00004294 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004295 // If there's no unsigned wrap, the value will never be less than its
4296 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00004297 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00004298 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00004299 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00004300 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00004301 ConservativeResult.intersectWith(
4302 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004303
Dan Gohman51ad99d2010-01-21 02:09:26 +00004304 // If there's no signed wrap, and all the operands have the same sign or
4305 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00004306 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004307 bool AllNonNeg = true;
4308 bool AllNonPos = true;
4309 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4310 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4311 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4312 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004313 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00004314 ConservativeResult = ConservativeResult.intersectWith(
4315 ConstantRange(APInt(BitWidth, 0),
4316 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004317 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00004318 ConservativeResult = ConservativeResult.intersectWith(
4319 ConstantRange(APInt::getSignedMinValue(BitWidth),
4320 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004321 }
Dan Gohmane65c9172009-07-13 21:35:55 +00004322
4323 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00004324 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00004325 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00004326 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00004327 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4328 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004329
4330 // Check for overflow. This must be done with ConstantRange arithmetic
4331 // because we could be called from within the ScalarEvolution overflow
4332 // checking code.
4333
Dan Gohmane65c9172009-07-13 21:35:55 +00004334 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
Sanjoy Das91b54772015-03-09 21:43:43 +00004335 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4336 ConstantRange ZExtMaxBECountRange =
4337 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004338
4339 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00004340 const SCEV *Step = AddRec->getStepRecurrence(*this);
Sanjoy Das91b54772015-03-09 21:43:43 +00004341 ConstantRange StepSRange = getSignedRange(Step);
4342 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004343
Sanjoy Das91b54772015-03-09 21:43:43 +00004344 ConstantRange StartURange = getUnsignedRange(Start);
4345 ConstantRange EndURange =
4346 StartURange.add(MaxBECountRange.multiply(StepSRange));
Dan Gohmanf76210e2010-04-12 07:39:33 +00004347
Sanjoy Das91b54772015-03-09 21:43:43 +00004348 // Check for unsigned overflow.
4349 ConstantRange ZExtStartURange =
4350 StartURange.zextOrTrunc(BitWidth * 2 + 1);
4351 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4352 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4353 ZExtEndURange) {
4354 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4355 EndURange.getUnsignedMin());
4356 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4357 EndURange.getUnsignedMax());
4358 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4359 if (!IsFullRange)
4360 ConservativeResult =
4361 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4362 }
Dan Gohmanf76210e2010-04-12 07:39:33 +00004363
Sanjoy Das91b54772015-03-09 21:43:43 +00004364 ConstantRange StartSRange = getSignedRange(Start);
4365 ConstantRange EndSRange =
4366 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4367
4368 // Check for signed overflow. This must be done with ConstantRange
4369 // arithmetic because we could be called from within the ScalarEvolution
4370 // overflow checking code.
4371 ConstantRange SExtStartSRange =
4372 StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4373 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4374 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4375 SExtEndSRange) {
4376 APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4377 EndSRange.getSignedMin());
4378 APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4379 EndSRange.getSignedMax());
4380 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4381 if (!IsFullRange)
4382 ConservativeResult =
4383 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4384 }
Dan Gohmand261d272009-06-24 01:05:09 +00004385 }
Dan Gohmand261d272009-06-24 01:05:09 +00004386 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004387
Sanjoy Das91b54772015-03-09 21:43:43 +00004388 return setRange(AddRec, SignHint, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004389 }
4390
Dan Gohmanc702fc02009-06-19 23:29:04 +00004391 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004392 // Check if the IR explicitly contains !range metadata.
4393 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4394 if (MDRange.hasValue())
4395 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4396
Sanjoy Das91b54772015-03-09 21:43:43 +00004397 // Split here to avoid paying the compile-time cost of calling both
4398 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4399 // if needed.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004400 const DataLayout &DL = getDataLayout();
Sanjoy Das91b54772015-03-09 21:43:43 +00004401 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4402 // For a SCEVUnknown, ask ValueTracking.
4403 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004404 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
Sanjoy Das91b54772015-03-09 21:43:43 +00004405 if (Ones != ~Zeros + 1)
4406 ConservativeResult =
4407 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4408 } else {
4409 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4410 "generalize as needed!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004411 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004412 if (NS > 1)
4413 ConservativeResult = ConservativeResult.intersectWith(
4414 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4415 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
Sanjoy Das91b54772015-03-09 21:43:43 +00004416 }
4417
4418 return setRange(U, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004419 }
4420
Sanjoy Das91b54772015-03-09 21:43:43 +00004421 return setRange(S, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004422}
4423
Jingyue Wu42f1d672015-07-28 18:22:40 +00004424SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004425 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004426 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4427
4428 // Return early if there are no flags to propagate to the SCEV.
4429 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4430 if (BinOp->hasNoUnsignedWrap())
4431 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4432 if (BinOp->hasNoSignedWrap())
4433 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4434 if (Flags == SCEV::FlagAnyWrap) {
4435 return SCEV::FlagAnyWrap;
4436 }
4437
4438 // Here we check that BinOp is in the header of the innermost loop
4439 // containing BinOp, since we only deal with instructions in the loop
4440 // header. The actual loop we need to check later will come from an add
4441 // recurrence, but getting that requires computing the SCEV of the operands,
4442 // which can be expensive. This check we can do cheaply to rule out some
4443 // cases early.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004444 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00004445 if (innermostContainingLoop == nullptr ||
4446 innermostContainingLoop->getHeader() != BinOp->getParent())
4447 return SCEV::FlagAnyWrap;
4448
4449 // Only proceed if we can prove that BinOp does not yield poison.
4450 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4451
4452 // At this point we know that if V is executed, then it does not wrap
4453 // according to at least one of NSW or NUW. If V is not executed, then we do
4454 // not know if the calculation that V represents would wrap. Multiple
4455 // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4456 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4457 // derived from other instructions that map to the same SCEV. We cannot make
4458 // that guarantee for cases where V is not executed. So we need to find the
4459 // loop that V is considered in relation to and prove that V is executed for
4460 // every iteration of that loop. That implies that the value that V
4461 // calculates does not wrap anywhere in the loop, so then we can apply the
4462 // flags to the SCEV.
4463 //
4464 // We check isLoopInvariant to disambiguate in case we are adding two
4465 // recurrences from different loops, so that we know which loop to prove
4466 // that V is executed in.
4467 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4468 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4469 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4470 const int OtherOpIndex = 1 - OpIndex;
4471 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4472 if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4473 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4474 return Flags;
4475 }
4476 }
4477 return SCEV::FlagAnyWrap;
4478}
4479
4480/// createSCEV - We know that there is no SCEV for the specified value. Analyze
4481/// the expression.
Chris Lattnerd934c702004-04-02 20:23:17 +00004482///
Dan Gohmanaf752342009-07-07 17:06:11 +00004483const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004484 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004485 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004486
Dan Gohman05e89732008-06-22 19:56:46 +00004487 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004488 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004489 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004490
4491 // Don't attempt to analyze instructions in blocks that aren't
4492 // reachable. Such instructions don't matter, and they aren't required
4493 // to obey basic rules for definitions dominating uses which this
4494 // analysis depends on.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004495 if (!DT.isReachableFromEntry(I->getParent()))
Dan Gohman69451a02010-03-09 23:46:50 +00004496 return getUnknown(V);
4497 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004498 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004499 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4500 return getConstant(CI);
4501 else if (isa<ConstantPointerNull>(V))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004502 return getZero(V->getType());
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004503 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4504 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004505 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004506 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004507
Dan Gohman80ca01c2009-07-17 20:47:02 +00004508 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004509 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004510 case Instruction::Add: {
4511 // The simple thing to do would be to just call getSCEV on both operands
4512 // and call getAddExpr with the result. However if we're looking at a
4513 // bunch of things all added together, this can be quite inefficient,
4514 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4515 // Instead, gather up all the operands and make a single getAddExpr call.
4516 // LLVM IR canonical form means we need only traverse the left operands.
4517 SmallVector<const SCEV *, 4> AddOps;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004518 for (Value *Op = U;; Op = U->getOperand(0)) {
4519 U = dyn_cast<Operator>(Op);
4520 unsigned Opcode = U ? U->getOpcode() : 0;
4521 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) {
4522 assert(Op != V && "V should be an add");
4523 AddOps.push_back(getSCEV(Op));
Dan Gohman47308d52010-08-31 22:53:17 +00004524 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004525 }
4526
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004527 if (auto *OpSCEV = getExistingSCEV(U)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00004528 AddOps.push_back(OpSCEV);
4529 break;
4530 }
4531
4532 // If a NUW or NSW flag can be applied to the SCEV for this
4533 // addition, then compute the SCEV for this addition by itself
4534 // with a separate call to getAddExpr. We need to do that
4535 // instead of pushing the operands of the addition onto AddOps,
4536 // since the flags are only known to apply to this particular
4537 // addition - they may not apply to other additions that can be
4538 // formed with operands from AddOps.
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004539 const SCEV *RHS = getSCEV(U->getOperand(1));
4540 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4541 if (Flags != SCEV::FlagAnyWrap) {
4542 const SCEV *LHS = getSCEV(U->getOperand(0));
4543 if (Opcode == Instruction::Sub)
4544 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4545 else
4546 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4547 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004548 }
4549
Dan Gohman47308d52010-08-31 22:53:17 +00004550 if (Opcode == Instruction::Sub)
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004551 AddOps.push_back(getNegativeSCEV(RHS));
Dan Gohman47308d52010-08-31 22:53:17 +00004552 else
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004553 AddOps.push_back(RHS);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004554 }
Andrew Trickd25089f2011-11-29 02:16:38 +00004555 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004556 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004557
Dan Gohmane5fb1032010-08-16 16:03:49 +00004558 case Instruction::Mul: {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004559 SmallVector<const SCEV *, 4> MulOps;
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004560 for (Value *Op = U;; Op = U->getOperand(0)) {
4561 U = dyn_cast<Operator>(Op);
4562 if (!U || U->getOpcode() != Instruction::Mul) {
4563 assert(Op != V && "V should be a mul");
4564 MulOps.push_back(getSCEV(Op));
4565 break;
4566 }
4567
4568 if (auto *OpSCEV = getExistingSCEV(U)) {
4569 MulOps.push_back(OpSCEV);
4570 break;
4571 }
4572
4573 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4574 if (Flags != SCEV::FlagAnyWrap) {
4575 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)),
4576 getSCEV(U->getOperand(1)), Flags));
4577 break;
4578 }
4579
Dan Gohmane5fb1032010-08-16 16:03:49 +00004580 MulOps.push_back(getSCEV(U->getOperand(1)));
4581 }
Dan Gohmane5fb1032010-08-16 16:03:49 +00004582 return getMulExpr(MulOps);
4583 }
Dan Gohman05e89732008-06-22 19:56:46 +00004584 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004585 return getUDivExpr(getSCEV(U->getOperand(0)),
4586 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004587 case Instruction::Sub:
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004588 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)),
4589 getNoWrapFlagsFromUB(U));
Dan Gohman0ec05372009-04-21 02:26:00 +00004590 case Instruction::And:
4591 // For an expression like x&255 that merely masks off the high bits,
4592 // use zext(trunc(x)) as the SCEV expression.
4593 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004594 if (CI->isNullValue())
4595 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004596 if (CI->isAllOnesValue())
4597 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004598 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004599
4600 // Instcombine's ShrinkDemandedConstant may strip bits out of
4601 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004602 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004603 // knew about to reconstruct a low-bits mask value.
4604 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004605 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004606 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004607 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004608 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(),
4609 0, &AC, nullptr, &DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004610
Nick Lewycky31eaca52014-01-27 10:04:03 +00004611 APInt EffectiveMask =
4612 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4613 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4614 const SCEV *MulCount = getConstant(
4615 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4616 return getMulExpr(
4617 getZeroExtendExpr(
4618 getTruncateExpr(
4619 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4620 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4621 U->getType()),
4622 MulCount);
4623 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004624 }
4625 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004626
Dan Gohman05e89732008-06-22 19:56:46 +00004627 case Instruction::Or:
4628 // If the RHS of the Or is a constant, we may have something like:
4629 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4630 // optimizations will transparently handle this case.
4631 //
4632 // In order for this transformation to be safe, the LHS must be of the
4633 // form X*(2^n) and the Or constant must be less than 2^n.
4634 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004635 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004636 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004637 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004638 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4639 // Build a plain add SCEV.
4640 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4641 // If the LHS of the add was an addrec and it has no-wrap flags,
4642 // transfer the no-wrap flags, since an or won't introduce a wrap.
4643 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4644 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004645 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4646 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004647 }
4648 return S;
4649 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004650 }
Dan Gohman05e89732008-06-22 19:56:46 +00004651 break;
4652 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004653 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004654 // If the RHS of the xor is a signbit, then this is just an add.
4655 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004656 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004657 return getAddExpr(getSCEV(U->getOperand(0)),
4658 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004659
4660 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004661 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004662 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004663
4664 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4665 // This is a variant of the check for xor with -1, and it handles
4666 // the case where instcombine has trimmed non-demanded bits out
4667 // of an xor with -1.
4668 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4669 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4670 if (BO->getOpcode() == Instruction::And &&
4671 LCI->getValue() == CI->getValue())
4672 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004673 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004674 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004675 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004676 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004677 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4678
Dan Gohman8b0a4192010-03-01 17:49:51 +00004679 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004680 // mask off the high bits. Complement the operand and
4681 // re-apply the zext.
4682 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4683 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4684
4685 // If C is a single bit, it may be in the sign-bit position
4686 // before the zero-extend. In this case, represent the xor
4687 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004688 APInt Trunc = CI->getValue().trunc(Z0TySize);
4689 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004690 Trunc.isSignBit())
4691 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4692 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004693 }
Dan Gohman05e89732008-06-22 19:56:46 +00004694 }
4695 break;
4696
4697 case Instruction::Shl:
4698 // Turn shift left of a constant amount into a multiply.
4699 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004700 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004701
4702 // If the shift count is not less than the bitwidth, the result of
4703 // the shift is undefined. Don't try to analyze it, because the
4704 // resolution chosen here may differ from the resolution chosen in
4705 // other parts of the compiler.
4706 if (SA->getValue().uge(BitWidth))
4707 break;
4708
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004709 // It is currently not resolved how to interpret NSW for left
4710 // shift by BitWidth - 1, so we avoid applying flags in that
4711 // case. Remove this check (or this comment) once the situation
4712 // is resolved. See
4713 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
4714 // and http://reviews.llvm.org/D8890 .
4715 auto Flags = SCEV::FlagAnyWrap;
4716 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U);
4717
Owen Andersonedb4a702009-07-24 23:12:02 +00004718 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004719 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004720 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags);
Dan Gohman05e89732008-06-22 19:56:46 +00004721 }
4722 break;
4723
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004724 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004725 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004726 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004727 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004728
4729 // If the shift count is not less than the bitwidth, the result of
4730 // the shift is undefined. Don't try to analyze it, because the
4731 // resolution chosen here may differ from the resolution chosen in
4732 // other parts of the compiler.
4733 if (SA->getValue().uge(BitWidth))
4734 break;
4735
Owen Andersonedb4a702009-07-24 23:12:02 +00004736 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004737 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004738 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004739 }
4740 break;
4741
Dan Gohman0ec05372009-04-21 02:26:00 +00004742 case Instruction::AShr:
4743 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4744 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004745 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004746 if (L->getOpcode() == Instruction::Shl &&
4747 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004748 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4749
4750 // If the shift count is not less than the bitwidth, the result of
4751 // the shift is undefined. Don't try to analyze it, because the
4752 // resolution chosen here may differ from the resolution chosen in
4753 // other parts of the compiler.
4754 if (CI->getValue().uge(BitWidth))
4755 break;
4756
Dan Gohmandf199482009-04-25 17:05:40 +00004757 uint64_t Amt = BitWidth - CI->getZExtValue();
4758 if (Amt == BitWidth)
4759 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004760 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004761 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004762 IntegerType::get(getContext(),
4763 Amt)),
4764 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004765 }
4766 break;
4767
Dan Gohman05e89732008-06-22 19:56:46 +00004768 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004769 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004770
4771 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004772 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004773
4774 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004775 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004776
4777 case Instruction::BitCast:
4778 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004779 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004780 return getSCEV(U->getOperand(0));
4781 break;
4782
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004783 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4784 // lead to pointer expressions which cannot safely be expanded to GEPs,
4785 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4786 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004787
Dan Gohmanee750d12009-05-08 20:26:55 +00004788 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004789 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004790
Dan Gohman05e89732008-06-22 19:56:46 +00004791 case Instruction::PHI:
4792 return createNodeForPHI(cast<PHINode>(U));
4793
4794 case Instruction::Select:
Sanjoy Dasd0671342015-10-02 19:39:59 +00004795 // U can also be a select constant expr, which let fall through. Since
4796 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
4797 // constant expressions cannot have instructions as operands, we'd have
4798 // returned getUnknown for a select constant expressions anyway.
4799 if (isa<Instruction>(U))
Sanjoy Das55015d22015-10-02 23:09:44 +00004800 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
4801 U->getOperand(1), U->getOperand(2));
Dan Gohman05e89732008-06-22 19:56:46 +00004802
4803 default: // We cannot analyze this expression.
4804 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004805 }
4806
Dan Gohmanc8e23622009-04-21 23:15:49 +00004807 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004808}
4809
4810
4811
4812//===----------------------------------------------------------------------===//
4813// Iteration Count Computation Code
4814//
4815
Chandler Carruth6666c272014-10-11 00:12:11 +00004816unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4817 if (BasicBlock *ExitingBB = L->getExitingBlock())
4818 return getSmallConstantTripCount(L, ExitingBB);
4819
4820 // No trip count information for multiple exits.
4821 return 0;
4822}
4823
Andrew Trick2b6860f2011-08-11 23:36:16 +00004824/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004825/// normal unsigned value. Returns 0 if the trip count is unknown or not
4826/// constant. Will also return 0 if the maximum trip count is very large (>=
4827/// 2^32).
4828///
4829/// This "trip count" assumes that control exits via ExitingBlock. More
4830/// precisely, it is the number of times that control may reach ExitingBlock
4831/// before taking the branch. For loops with multiple exits, it may not be the
4832/// number times that the loop header executes because the loop may exit
4833/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004834unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4835 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004836 assert(ExitingBlock && "Must pass a non-null exiting block!");
4837 assert(L->isLoopExiting(ExitingBlock) &&
4838 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004839 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004840 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004841 if (!ExitCount)
4842 return 0;
4843
4844 ConstantInt *ExitConst = ExitCount->getValue();
4845
4846 // Guard against huge trip counts.
4847 if (ExitConst->getValue().getActiveBits() > 32)
4848 return 0;
4849
4850 // In case of integer overflow, this returns 0, which is correct.
4851 return ((unsigned)ExitConst->getZExtValue()) + 1;
4852}
4853
Chandler Carruth6666c272014-10-11 00:12:11 +00004854unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4855 if (BasicBlock *ExitingBB = L->getExitingBlock())
4856 return getSmallConstantTripMultiple(L, ExitingBB);
4857
4858 // No trip multiple information for multiple exits.
4859 return 0;
4860}
4861
Andrew Trick2b6860f2011-08-11 23:36:16 +00004862/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4863/// trip count of this loop as a normal unsigned value, if possible. This
4864/// means that the actual trip count is always a multiple of the returned
4865/// value (don't forget the trip count could very well be zero as well!).
4866///
4867/// Returns 1 if the trip count is unknown or not guaranteed to be the
4868/// multiple of a constant (which is also the case if the trip count is simply
4869/// constant, use getSmallConstantTripCount for that case), Will also return 1
4870/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004871///
4872/// As explained in the comments for getSmallConstantTripCount, this assumes
4873/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004874unsigned
4875ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4876 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004877 assert(ExitingBlock && "Must pass a non-null exiting block!");
4878 assert(L->isLoopExiting(ExitingBlock) &&
4879 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004880 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004881 if (ExitCount == getCouldNotCompute())
4882 return 1;
4883
4884 // Get the trip count from the BE count by adding 1.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004885 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004886 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4887 // to factor simple cases.
4888 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4889 TCMul = Mul->getOperand(0);
4890
4891 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4892 if (!MulC)
4893 return 1;
4894
4895 ConstantInt *Result = MulC->getValue();
4896
Hal Finkel30bd9342012-10-24 19:46:44 +00004897 // Guard against huge trip counts (this requires checking
4898 // for zero to handle the case where the trip count == -1 and the
4899 // addition wraps).
4900 if (!Result || Result->getValue().getActiveBits() > 32 ||
4901 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004902 return 1;
4903
4904 return (unsigned)Result->getZExtValue();
4905}
4906
Andrew Trick3ca3f982011-07-26 17:19:55 +00004907// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004908// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004909// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004910const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4911 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004912}
4913
Dan Gohman0bddac12009-02-24 18:55:53 +00004914/// getBackedgeTakenCount - If the specified loop has a predictable
4915/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4916/// object. The backedge-taken count is the number of times the loop header
4917/// will be branched to from within the loop. This is one less than the
4918/// trip count of the loop, since it doesn't count the first iteration,
4919/// when the header is branched to from outside the loop.
4920///
4921/// Note that it is not valid to call this method on a loop without a
4922/// loop-invariant backedge-taken count (see
4923/// hasLoopInvariantBackedgeTakenCount).
4924///
Dan Gohmanaf752342009-07-07 17:06:11 +00004925const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004926 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004927}
4928
4929/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4930/// return the least SCEV value that is known never to be less than the
4931/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004932const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004933 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004934}
4935
Dan Gohmandc191042009-07-08 19:23:34 +00004936/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4937/// onto the given Worklist.
4938static void
4939PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4940 BasicBlock *Header = L->getHeader();
4941
4942 // Push all Loop-header PHIs onto the Worklist stack.
4943 for (BasicBlock::iterator I = Header->begin();
4944 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4945 Worklist.push_back(PN);
4946}
4947
Dan Gohman2b8da352009-04-30 20:47:05 +00004948const ScalarEvolution::BackedgeTakenInfo &
4949ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004950 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004951 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004952 // update the value. The temporary CouldNotCompute value tells SCEV
4953 // code elsewhere that it shouldn't attempt to request a new
4954 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004955 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004956 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004957 if (!Pair.second)
4958 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004959
Sanjoy Das413dbbb2015-10-08 18:46:59 +00004960 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
Andrew Trick3ca3f982011-07-26 17:19:55 +00004961 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4962 // must be cleared in this scope.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00004963 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004964
4965 if (Result.getExact(this) != getCouldNotCompute()) {
4966 assert(isLoopInvariant(Result.getExact(this), L) &&
4967 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004968 "Computed backedge-taken count isn't loop invariant for loop!");
4969 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004970 }
4971 else if (Result.getMax(this) == getCouldNotCompute() &&
4972 isa<PHINode>(L->getHeader()->begin())) {
4973 // Only count loops that have phi nodes as not being computable.
4974 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004975 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004976
Chris Lattnera337f5e2011-01-09 02:16:18 +00004977 // Now that we know more about the trip count for this loop, forget any
4978 // existing SCEV values for PHI nodes in this loop since they are only
4979 // conservative estimates made without the benefit of trip count
4980 // information. This is similar to the code in forgetLoop, except that
4981 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004982 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004983 SmallVector<Instruction *, 16> Worklist;
4984 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004985
Chris Lattnera337f5e2011-01-09 02:16:18 +00004986 SmallPtrSet<Instruction *, 8> Visited;
4987 while (!Worklist.empty()) {
4988 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004989 if (!Visited.insert(I).second)
4990 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004991
Chris Lattnera337f5e2011-01-09 02:16:18 +00004992 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004993 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004994 if (It != ValueExprMap.end()) {
4995 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004996
Chris Lattnera337f5e2011-01-09 02:16:18 +00004997 // SCEVUnknown for a PHI either means that it has an unrecognized
4998 // structure, or it's a PHI that's in the progress of being computed
4999 // by createNodeForPHI. In the former case, additional loop trip
5000 // count information isn't going to change anything. In the later
5001 // case, createNodeForPHI will perform the necessary updates on its
5002 // own when it gets to that point.
5003 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5004 forgetMemoizedResults(Old);
5005 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00005006 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00005007 if (PHINode *PN = dyn_cast<PHINode>(I))
5008 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00005009 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00005010
5011 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00005012 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005013 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00005014
5015 // Re-lookup the insert position, since the call to
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005016 // computeBackedgeTakenCount above could result in a
Dan Gohman6acd95b2011-04-25 22:48:29 +00005017 // recusive call to getBackedgeTakenInfo (on a different
5018 // loop), which would invalidate the iterator computed
5019 // earlier.
5020 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00005021}
5022
Dan Gohman880c92a2009-10-31 15:04:55 +00005023/// forgetLoop - This method should be called by the client when it has
5024/// changed a loop in a way that may effect ScalarEvolution's ability to
5025/// compute a trip count, or if the loop is deleted.
5026void ScalarEvolution::forgetLoop(const Loop *L) {
5027 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005028 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
5029 BackedgeTakenCounts.find(L);
5030 if (BTCPos != BackedgeTakenCounts.end()) {
5031 BTCPos->second.clear();
5032 BackedgeTakenCounts.erase(BTCPos);
5033 }
Dan Gohmanf1505722009-05-02 17:43:35 +00005034
Dan Gohman880c92a2009-10-31 15:04:55 +00005035 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00005036 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00005037 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00005038
Dan Gohmandc191042009-07-08 19:23:34 +00005039 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00005040 while (!Worklist.empty()) {
5041 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005042 if (!Visited.insert(I).second)
5043 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00005044
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005045 ValueExprMapType::iterator It =
5046 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005047 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005048 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005049 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00005050 if (PHINode *PN = dyn_cast<PHINode>(I))
5051 ConstantEvolutionLoopExitValue.erase(PN);
5052 }
5053
5054 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00005055 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00005056
5057 // Forget all contained loops too, to avoid dangling entries in the
5058 // ValuesAtScopes map.
5059 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5060 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00005061}
5062
Eric Christopheref6d5932010-07-29 01:25:38 +00005063/// forgetValue - This method should be called by the client when it has
5064/// changed a value in a way that may effect its value, or which may
5065/// disconnect it from a def-use chain linking it to a loop.
5066void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005067 Instruction *I = dyn_cast<Instruction>(V);
5068 if (!I) return;
5069
5070 // Drop information about expressions based on loop-header PHIs.
5071 SmallVector<Instruction *, 16> Worklist;
5072 Worklist.push_back(I);
5073
5074 SmallPtrSet<Instruction *, 8> Visited;
5075 while (!Worklist.empty()) {
5076 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005077 if (!Visited.insert(I).second)
5078 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005079
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005080 ValueExprMapType::iterator It =
5081 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005082 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005083 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005084 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005085 if (PHINode *PN = dyn_cast<PHINode>(I))
5086 ConstantEvolutionLoopExitValue.erase(PN);
5087 }
5088
5089 PushDefUseChildren(I, Worklist);
5090 }
5091}
5092
Andrew Trick3ca3f982011-07-26 17:19:55 +00005093/// getExact - Get the exact loop backedge taken count considering all loop
Sanjoy Das135e5b92015-07-21 20:59:22 +00005094/// exits. A computable result can only be returned for loops with a single
5095/// exit. Returning the minimum taken count among all exits is incorrect
5096/// because one of the loop's exit limit's may have been skipped. HowFarToZero
5097/// assumes that the limit of each loop test is never skipped. This is a valid
5098/// assumption as long as the loop exits via that test. For precise results, it
5099/// is the caller's responsibility to specify the relevant loop exit using
Andrew Trick90c7a102011-11-16 00:52:40 +00005100/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00005101const SCEV *
5102ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
5103 // If any exits were not computable, the loop is not computable.
5104 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5105
Andrew Trick90c7a102011-11-16 00:52:40 +00005106 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00005107 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005108 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5109
Craig Topper9f008862014-04-15 04:59:12 +00005110 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005111 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005112 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005113
5114 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5115
5116 if (!BECount)
5117 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00005118 else if (BECount != ENT->ExactNotTaken)
5119 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005120 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00005121 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005122 return BECount;
5123}
5124
5125/// getExact - Get the exact not taken count for this loop exit.
5126const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00005127ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005128 ScalarEvolution *SE) const {
5129 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005130 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005131
Andrew Trick77c55422011-08-02 04:23:35 +00005132 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005133 return ENT->ExactNotTaken;
5134 }
5135 return SE->getCouldNotCompute();
5136}
5137
5138/// getMax - Get the max backedge taken count for the loop.
5139const SCEV *
5140ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5141 return Max ? Max : SE->getCouldNotCompute();
5142}
5143
Andrew Trick9093e152013-03-26 03:14:53 +00005144bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5145 ScalarEvolution *SE) const {
5146 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5147 return true;
5148
5149 if (!ExitNotTaken.ExitingBlock)
5150 return false;
5151
5152 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005153 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00005154
5155 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
5156 && SE->hasOperand(ENT->ExactNotTaken, S)) {
5157 return true;
5158 }
5159 }
5160 return false;
5161}
5162
Andrew Trick3ca3f982011-07-26 17:19:55 +00005163/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5164/// computable exit into a persistent ExitNotTakenInfo array.
5165ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5166 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
5167 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
5168
5169 if (!Complete)
5170 ExitNotTaken.setIncomplete();
5171
5172 unsigned NumExits = ExitCounts.size();
5173 if (NumExits == 0) return;
5174
Andrew Trick77c55422011-08-02 04:23:35 +00005175 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005176 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
5177 if (NumExits == 1) return;
5178
5179 // Handle the rare case of multiple computable exits.
5180 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
5181
5182 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
5183 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
5184 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00005185 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005186 ENT->ExactNotTaken = ExitCounts[i].second;
5187 }
5188}
5189
5190/// clear - Invalidate this result and free the ExitNotTakenInfo array.
5191void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00005192 ExitNotTaken.ExitingBlock = nullptr;
5193 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005194 delete[] ExitNotTaken.getNextExit();
5195}
5196
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005197/// computeBackedgeTakenCount - Compute the number of times the backedge
Dan Gohman0bddac12009-02-24 18:55:53 +00005198/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00005199ScalarEvolution::BackedgeTakenInfo
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005200ScalarEvolution::computeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00005201 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00005202 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00005203
Andrew Trick839e30b2014-05-23 19:47:13 +00005204 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005205 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005206 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00005207 const SCEV *MustExitMaxBECount = nullptr;
5208 const SCEV *MayExitMaxBECount = nullptr;
5209
5210 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5211 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00005212 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005213 BasicBlock *ExitBB = ExitingBlocks[i];
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005214 ExitLimit EL = computeExitLimit(L, ExitBB);
Andrew Trick839e30b2014-05-23 19:47:13 +00005215
5216 // 1. For each exit that can be computed, add an entry to ExitCounts.
5217 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005218 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00005219 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00005220 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005221 CouldComputeBECount = false;
5222 else
Andrew Trick839e30b2014-05-23 19:47:13 +00005223 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00005224
Andrew Trick839e30b2014-05-23 19:47:13 +00005225 // 2. Derive the loop's MaxBECount from each exit's max number of
5226 // non-exiting iterations. Partition the loop exits into two kinds:
5227 // LoopMustExits and LoopMayExits.
5228 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005229 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5230 // is a LoopMayExit. If any computable LoopMustExit is found, then
5231 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5232 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5233 // considered greater than any computable EL.Max.
5234 if (EL.Max != getCouldNotCompute() && Latch &&
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005235 DT.dominates(ExitBB, Latch)) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005236 if (!MustExitMaxBECount)
5237 MustExitMaxBECount = EL.Max;
5238 else {
5239 MustExitMaxBECount =
5240 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00005241 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005242 } else if (MayExitMaxBECount != getCouldNotCompute()) {
5243 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5244 MayExitMaxBECount = EL.Max;
5245 else {
5246 MayExitMaxBECount =
5247 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5248 }
Andrew Trick90c7a102011-11-16 00:52:40 +00005249 }
Dan Gohman96212b62009-06-22 00:31:57 +00005250 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005251 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5252 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00005253 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005254}
5255
Andrew Trick3ca3f982011-07-26 17:19:55 +00005256ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005257ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00005258
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005259 // Okay, we've chosen an exiting block. See what condition causes us to exit
5260 // at this block and remember the exit block and whether all other targets
Benjamin Kramer5a188542014-02-11 15:44:32 +00005261 // lead to the loop header.
5262 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00005263 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005264 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
5265 SI != SE; ++SI)
5266 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005267 if (Exit) // Multiple exit successors.
5268 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005269 Exit = *SI;
5270 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005271 MustExecuteLoopHeader = false;
5272 }
Dan Gohmance973df2009-06-24 04:48:43 +00005273
Chris Lattner18954852007-01-07 02:24:26 +00005274 // At this point, we know we have a conditional branch that determines whether
5275 // the loop is exited. However, we don't know if the branch is executed each
5276 // time through the loop. If not, then the execution count of the branch will
5277 // not be equal to the trip count of the loop.
5278 //
5279 // Currently we check for this by checking to see if the Exit branch goes to
5280 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00005281 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00005282 // loop header. This is common for un-rotated loops.
5283 //
5284 // If both of those tests fail, walk up the unique predecessor chain to the
5285 // header, stopping if there is an edge that doesn't exit the loop. If the
5286 // header is reached, the execution count of the branch will be equal to the
5287 // trip count of the loop.
5288 //
5289 // More extensive analysis could be done to handle more cases here.
5290 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00005291 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005292 // The simple checks failed, try climbing the unique predecessor chain
5293 // up to the header.
5294 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00005295 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00005296 BasicBlock *Pred = BB->getUniquePredecessor();
5297 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005298 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005299 TerminatorInst *PredTerm = Pred->getTerminator();
Pete Cooperebcd7482015-08-06 20:22:46 +00005300 for (const BasicBlock *PredSucc : PredTerm->successors()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005301 if (PredSucc == BB)
5302 continue;
5303 // If the predecessor has a successor that isn't BB and isn't
5304 // outside the loop, assume the worst.
5305 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005306 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005307 }
5308 if (Pred == L->getHeader()) {
5309 Ok = true;
5310 break;
5311 }
5312 BB = Pred;
5313 }
5314 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005315 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005316 }
5317
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005318 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005319 TerminatorInst *Term = ExitingBlock->getTerminator();
5320 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5321 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5322 // Proceed to the next level to examine the exit condition expression.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005323 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
Benjamin Kramer5a188542014-02-11 15:44:32 +00005324 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005325 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005326 }
5327
5328 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005329 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005330 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005331
5332 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005333}
5334
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005335/// computeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005336/// backedge of the specified loop will execute if its exit condition
5337/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00005338///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005339/// @param ControlsExit is true if ExitCond directly controls the exit
5340/// branch. In this case, we can assume that the loop exits only if the
5341/// condition is true and can infer that failing to meet the condition prior to
5342/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005343ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005344ScalarEvolution::computeExitLimitFromCond(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005345 Value *ExitCond,
5346 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005347 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005348 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00005349 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00005350 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5351 if (BO->getOpcode() == Instruction::And) {
5352 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00005353 bool EitherMayExit = L->contains(TBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005354 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005355 ControlsExit && !EitherMayExit);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005356 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005357 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005358 const SCEV *BECount = getCouldNotCompute();
5359 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005360 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005361 // Both conditions must be true for the loop to continue executing.
5362 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005363 if (EL0.Exact == getCouldNotCompute() ||
5364 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005365 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005366 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005367 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5368 if (EL0.Max == getCouldNotCompute())
5369 MaxBECount = EL1.Max;
5370 else if (EL1.Max == getCouldNotCompute())
5371 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005372 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005373 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005374 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005375 // Both conditions must be true at the same time for the loop to exit.
5376 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005377 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005378 if (EL0.Max == EL1.Max)
5379 MaxBECount = EL0.Max;
5380 if (EL0.Exact == EL1.Exact)
5381 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005382 }
5383
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005384 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005385 }
5386 if (BO->getOpcode() == Instruction::Or) {
5387 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005388 bool EitherMayExit = L->contains(FBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005389 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005390 ControlsExit && !EitherMayExit);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005391 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005392 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005393 const SCEV *BECount = getCouldNotCompute();
5394 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005395 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005396 // Both conditions must be false for the loop to continue executing.
5397 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005398 if (EL0.Exact == getCouldNotCompute() ||
5399 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005400 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005401 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005402 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5403 if (EL0.Max == getCouldNotCompute())
5404 MaxBECount = EL1.Max;
5405 else if (EL1.Max == getCouldNotCompute())
5406 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005407 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005408 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005409 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005410 // Both conditions must be false at the same time for the loop to exit.
5411 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005412 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005413 if (EL0.Max == EL1.Max)
5414 MaxBECount = EL0.Max;
5415 if (EL0.Exact == EL1.Exact)
5416 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005417 }
5418
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005419 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005420 }
5421 }
5422
5423 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005424 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005425 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005426 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005427
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005428 // Check for a constant condition. These are normally stripped out by
5429 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5430 // preserve the CFG and is temporarily leaving constant conditions
5431 // in place.
5432 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5433 if (L->contains(FBB) == !CI->getZExtValue())
5434 // The backedge is always taken.
5435 return getCouldNotCompute();
5436 else
5437 // The backedge is never taken.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00005438 return getZero(CI->getType());
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005439 }
5440
Eli Friedmanebf98b02009-05-09 12:32:42 +00005441 // If it's not an integer or pointer comparison then compute it the hard way.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005442 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005443}
5444
Andrew Trick3ca3f982011-07-26 17:19:55 +00005445ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005446ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005447 ICmpInst *ExitCond,
5448 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005449 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005450 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005451
Reid Spencer266e42b2006-12-23 06:05:41 +00005452 // If the condition was exit on true, convert the condition to exit on false
5453 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005454 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005455 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005456 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005457 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005458
5459 // Handle common loops like: for (X = "string"; *X; ++X)
5460 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5461 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005462 ExitLimit ItCnt =
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005463 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005464 if (ItCnt.hasAnyInfo())
5465 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005466 }
5467
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00005468 ExitLimit ShiftEL = computeShiftCompareExitLimit(
5469 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
5470 if (ShiftEL.hasAnyInfo())
5471 return ShiftEL;
5472
Dan Gohmanaf752342009-07-07 17:06:11 +00005473 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5474 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005475
5476 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005477 LHS = getSCEVAtScope(LHS, L);
5478 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005479
Dan Gohmance973df2009-06-24 04:48:43 +00005480 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005481 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005482 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005483 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005484 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005485 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005486 }
5487
Dan Gohman81585c12010-05-03 16:35:17 +00005488 // Simplify the operands before analyzing them.
5489 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5490
Chris Lattnerd934c702004-04-02 20:23:17 +00005491 // If we have a comparison of a chrec against a constant, try to use value
5492 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005493 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5494 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005495 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005496 // Form the constant range.
5497 ConstantRange CompRange(
5498 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005499
Dan Gohmanaf752342009-07-07 17:06:11 +00005500 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005501 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005502 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005503
Chris Lattnerd934c702004-04-02 20:23:17 +00005504 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005505 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005506 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005507 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005508 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005509 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005510 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005511 case ICmpInst::ICMP_EQ: { // while (X == Y)
5512 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005513 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5514 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005515 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005516 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005517 case ICmpInst::ICMP_SLT:
5518 case ICmpInst::ICMP_ULT: { // while (X < Y)
5519 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005520 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005521 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005522 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005523 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005524 case ICmpInst::ICMP_SGT:
5525 case ICmpInst::ICMP_UGT: { // while (X > Y)
5526 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005527 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005528 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005529 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005530 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005531 default:
Chris Lattner0defaa12004-04-03 00:43:03 +00005532 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005533 }
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005534 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005535}
5536
Benjamin Kramer5a188542014-02-11 15:44:32 +00005537ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005538ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
Benjamin Kramer5a188542014-02-11 15:44:32 +00005539 SwitchInst *Switch,
5540 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005541 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005542 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5543
5544 // Give up if the exit is the default dest of a switch.
5545 if (Switch->getDefaultDest() == ExitingBlock)
5546 return getCouldNotCompute();
5547
5548 assert(L->contains(Switch->getDefaultDest()) &&
5549 "Default case must not exit the loop!");
5550 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5551 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5552
5553 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005554 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005555 if (EL.hasAnyInfo())
5556 return EL;
5557
5558 return getCouldNotCompute();
5559}
5560
Chris Lattnerec901cc2004-10-12 01:49:27 +00005561static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005562EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5563 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005564 const SCEV *InVal = SE.getConstant(C);
5565 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005566 assert(isa<SCEVConstant>(Val) &&
5567 "Evaluation of SCEV at constant didn't fold correctly?");
5568 return cast<SCEVConstant>(Val)->getValue();
5569}
5570
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005571/// computeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005572/// 'icmp op load X, cst', try to see if we can compute the backedge
5573/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005574ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005575ScalarEvolution::computeLoadConstantCompareExitLimit(
Andrew Trick3ca3f982011-07-26 17:19:55 +00005576 LoadInst *LI,
5577 Constant *RHS,
5578 const Loop *L,
5579 ICmpInst::Predicate predicate) {
5580
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005581 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005582
5583 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005584 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005585 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005586 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005587
5588 // Make sure that it is really a constant global we are gepping, with an
5589 // initializer, and make sure the first IDX is really 0.
5590 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005591 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005592 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5593 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005594 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005595
5596 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005597 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005598 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005599 unsigned VarIdxNum = 0;
5600 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5601 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5602 Indexes.push_back(CI);
5603 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005604 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005605 VarIdx = GEP->getOperand(i);
5606 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005607 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005608 }
5609
Andrew Trick7004e4b2012-03-26 22:33:59 +00005610 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5611 if (!VarIdx)
5612 return getCouldNotCompute();
5613
Chris Lattnerec901cc2004-10-12 01:49:27 +00005614 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5615 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005616 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005617 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005618
5619 // We can only recognize very limited forms of loop index expressions, in
5620 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005621 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005622 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005623 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5624 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005625 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005626
5627 unsigned MaxSteps = MaxBruteForceIterations;
5628 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005629 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005630 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005631 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005632
5633 // Form the GEP offset.
5634 Indexes[VarIdxNum] = Val;
5635
Chris Lattnere166a852012-01-24 05:49:24 +00005636 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5637 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005638 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005639
5640 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005641 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005642 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005643 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005644 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005645 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005646 }
5647 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005648 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005649}
5650
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00005651ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
5652 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
5653 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
5654 if (!RHS)
5655 return getCouldNotCompute();
5656
5657 const BasicBlock *Latch = L->getLoopLatch();
5658 if (!Latch)
5659 return getCouldNotCompute();
5660
5661 const BasicBlock *Predecessor = L->getLoopPredecessor();
5662 if (!Predecessor)
5663 return getCouldNotCompute();
5664
5665 // Return true if V is of the form "LHS `shift_op` <positive constant>".
5666 // Return LHS in OutLHS and shift_opt in OutOpCode.
5667 auto MatchPositiveShift =
5668 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
5669
5670 using namespace PatternMatch;
5671
5672 ConstantInt *ShiftAmt;
5673 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5674 OutOpCode = Instruction::LShr;
5675 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5676 OutOpCode = Instruction::AShr;
5677 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5678 OutOpCode = Instruction::Shl;
5679 else
5680 return false;
5681
5682 return ShiftAmt->getValue().isStrictlyPositive();
5683 };
5684
5685 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
5686 //
5687 // loop:
5688 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
5689 // %iv.shifted = lshr i32 %iv, <positive constant>
5690 //
5691 // Return true on a succesful match. Return the corresponding PHI node (%iv
5692 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
5693 auto MatchShiftRecurrence =
5694 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
5695 Optional<Instruction::BinaryOps> PostShiftOpCode;
5696
5697 {
5698 Instruction::BinaryOps OpC;
5699 Value *V;
5700
5701 // If we encounter a shift instruction, "peel off" the shift operation,
5702 // and remember that we did so. Later when we inspect %iv's backedge
5703 // value, we will make sure that the backedge value uses the same
5704 // operation.
5705 //
5706 // Note: the peeled shift operation does not have to be the same
5707 // instruction as the one feeding into the PHI's backedge value. We only
5708 // really care about it being the same *kind* of shift instruction --
5709 // that's all that is required for our later inferences to hold.
5710 if (MatchPositiveShift(LHS, V, OpC)) {
5711 PostShiftOpCode = OpC;
5712 LHS = V;
5713 }
5714 }
5715
5716 PNOut = dyn_cast<PHINode>(LHS);
5717 if (!PNOut || PNOut->getParent() != L->getHeader())
5718 return false;
5719
5720 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
5721 Value *OpLHS;
5722
5723 return
5724 // The backedge value for the PHI node must be a shift by a positive
5725 // amount
5726 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
5727
5728 // of the PHI node itself
5729 OpLHS == PNOut &&
5730
5731 // and the kind of shift should be match the kind of shift we peeled
5732 // off, if any.
5733 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
5734 };
5735
5736 PHINode *PN;
5737 Instruction::BinaryOps OpCode;
5738 if (!MatchShiftRecurrence(LHS, PN, OpCode))
5739 return getCouldNotCompute();
5740
5741 const DataLayout &DL = getDataLayout();
5742
5743 // The key rationale for this optimization is that for some kinds of shift
5744 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
5745 // within a finite number of iterations. If the condition guarding the
5746 // backedge (in the sense that the backedge is taken if the condition is true)
5747 // is false for the value the shift recurrence stabilizes to, then we know
5748 // that the backedge is taken only a finite number of times.
5749
5750 ConstantInt *StableValue = nullptr;
5751 switch (OpCode) {
5752 default:
5753 llvm_unreachable("Impossible case!");
5754
5755 case Instruction::AShr: {
5756 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
5757 // bitwidth(K) iterations.
5758 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
5759 bool KnownZero, KnownOne;
5760 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
5761 Predecessor->getTerminator(), &DT);
5762 auto *Ty = cast<IntegerType>(RHS->getType());
5763 if (KnownZero)
5764 StableValue = ConstantInt::get(Ty, 0);
5765 else if (KnownOne)
5766 StableValue = ConstantInt::get(Ty, -1, true);
5767 else
5768 return getCouldNotCompute();
5769
5770 break;
5771 }
5772 case Instruction::LShr:
5773 case Instruction::Shl:
5774 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
5775 // stabilize to 0 in at most bitwidth(K) iterations.
5776 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
5777 break;
5778 }
5779
5780 auto *Result =
5781 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
5782 assert(Result->getType()->isIntegerTy(1) &&
5783 "Otherwise cannot be an operand to a branch instruction");
5784
5785 if (Result->isZeroValue()) {
5786 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
5787 const SCEV *UpperBound =
5788 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
5789 return ExitLimit(getCouldNotCompute(), UpperBound);
5790 }
5791
5792 return getCouldNotCompute();
5793}
Chris Lattnerec901cc2004-10-12 01:49:27 +00005794
Chris Lattnerdd730472004-04-17 22:58:41 +00005795/// CanConstantFold - Return true if we can constant fold an instruction of the
5796/// specified type, assuming that all operands were constants.
5797static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005798 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005799 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5800 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005801 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005802
Chris Lattnerdd730472004-04-17 22:58:41 +00005803 if (const CallInst *CI = dyn_cast<CallInst>(I))
5804 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005805 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005806 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005807}
5808
Andrew Trick3a86ba72011-10-05 03:25:31 +00005809/// Determine whether this instruction can constant evolve within this loop
5810/// assuming its operands can all constant evolve.
5811static bool canConstantEvolve(Instruction *I, const Loop *L) {
5812 // An instruction outside of the loop can't be derived from a loop PHI.
5813 if (!L->contains(I)) return false;
5814
5815 if (isa<PHINode>(I)) {
David Blaikie19ef0d32015-03-24 16:33:19 +00005816 // We don't currently keep track of the control flow needed to evaluate
5817 // PHIs, so we cannot handle PHIs inside of loops.
5818 return L->getHeader() == I->getParent();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005819 }
5820
5821 // If we won't be able to constant fold this expression even if the operands
5822 // are constants, bail early.
5823 return CanConstantFold(I);
5824}
5825
5826/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5827/// recursing through each instruction operand until reaching a loop header phi.
5828static PHINode *
5829getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005830 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005831
5832 // Otherwise, we can evaluate this instruction if all of its operands are
5833 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005834 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005835 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5836 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5837
5838 if (isa<Constant>(*OpI)) continue;
5839
5840 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005841 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005842
5843 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005844 if (!P)
5845 // If this operand is already visited, reuse the prior result.
5846 // We may have P != PHI if this is the deepest point at which the
5847 // inconsistent paths meet.
5848 P = PHIMap.lookup(OpInst);
5849 if (!P) {
5850 // Recurse and memoize the results, whether a phi is found or not.
5851 // This recursive call invalidates pointers into PHIMap.
5852 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5853 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005854 }
Craig Topper9f008862014-04-15 04:59:12 +00005855 if (!P)
5856 return nullptr; // Not evolving from PHI
5857 if (PHI && PHI != P)
5858 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005859 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005860 }
5861 // This is a expression evolving from a constant PHI!
5862 return PHI;
5863}
5864
Chris Lattnerdd730472004-04-17 22:58:41 +00005865/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5866/// in the loop that V is derived from. We allow arbitrary operations along the
5867/// way, but the operands of an operation must either be constants or a value
5868/// derived from a constant PHI. If this expression does not fit with these
5869/// constraints, return null.
5870static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005871 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005872 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005873
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00005874 if (PHINode *PN = dyn_cast<PHINode>(I))
Andrew Trick3a86ba72011-10-05 03:25:31 +00005875 return PN;
Chris Lattnerdd730472004-04-17 22:58:41 +00005876
Andrew Trick3a86ba72011-10-05 03:25:31 +00005877 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005878 DenseMap<Instruction *, PHINode *> PHIMap;
5879 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005880}
5881
5882/// EvaluateExpression - Given an expression that passes the
5883/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5884/// in the loop has the value PHIVal. If we can't fold this expression for some
5885/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005886static Constant *EvaluateExpression(Value *V, const Loop *L,
5887 DenseMap<Instruction *, Constant *> &Vals,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005888 const DataLayout &DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005889 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005890 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005891 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005892 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005893 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005894
Andrew Trick3a86ba72011-10-05 03:25:31 +00005895 if (Constant *C = Vals.lookup(I)) return C;
5896
Nick Lewyckya6674c72011-10-22 19:58:20 +00005897 // An instruction inside the loop depends on a value outside the loop that we
5898 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005899 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005900
5901 // An unmapped PHI can be due to a branch or another loop inside this loop,
5902 // or due to this not being the initial iteration through a loop where we
5903 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005904 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005905
Dan Gohmanf820bd32010-06-22 13:15:46 +00005906 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005907
5908 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005909 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5910 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005911 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005912 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005913 continue;
5914 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005915 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005916 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005917 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005918 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005919 }
5920
Nick Lewyckya6674c72011-10-22 19:58:20 +00005921 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005922 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005923 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005924 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5925 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005926 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005927 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005928 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005929 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005930}
5931
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00005932
5933// If every incoming value to PN except the one for BB is a specific Constant,
5934// return that, else return nullptr.
5935static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
5936 Constant *IncomingVal = nullptr;
5937
5938 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5939 if (PN->getIncomingBlock(i) == BB)
5940 continue;
5941
5942 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
5943 if (!CurrentVal)
5944 return nullptr;
5945
5946 if (IncomingVal != CurrentVal) {
5947 if (IncomingVal)
5948 return nullptr;
5949 IncomingVal = CurrentVal;
5950 }
5951 }
5952
5953 return IncomingVal;
5954}
5955
Chris Lattnerdd730472004-04-17 22:58:41 +00005956/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5957/// in the header of its containing loop, we know the loop executes a
5958/// constant number of times, and the PHI node is just a recurrence
5959/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005960Constant *
5961ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005962 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005963 const Loop *L) {
Sanjoy Das4493b402015-10-07 17:38:25 +00005964 auto I = ConstantEvolutionLoopExitValue.find(PN);
Chris Lattnerdd730472004-04-17 22:58:41 +00005965 if (I != ConstantEvolutionLoopExitValue.end())
5966 return I->second;
5967
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005968 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005969 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005970
5971 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5972
Andrew Trick3a86ba72011-10-05 03:25:31 +00005973 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005974 BasicBlock *Header = L->getHeader();
5975 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005976
Sanjoy Dasdd709962015-10-08 18:28:36 +00005977 BasicBlock *Latch = L->getLoopLatch();
5978 if (!Latch)
5979 return nullptr;
5980
Sanjoy Das4493b402015-10-07 17:38:25 +00005981 for (auto &I : *Header) {
5982 PHINode *PHI = dyn_cast<PHINode>(&I);
5983 if (!PHI) break;
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00005984 auto *StartCST = getOtherIncomingValue(PHI, Latch);
Craig Topper9f008862014-04-15 04:59:12 +00005985 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005986 CurrentIterVals[PHI] = StartCST;
5987 }
5988 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005989 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005990
Sanjoy Dasdd709962015-10-08 18:28:36 +00005991 Value *BEValue = PN->getIncomingValueForBlock(Latch);
Chris Lattnerdd730472004-04-17 22:58:41 +00005992
5993 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005994 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005995 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005996
Dan Gohman0bddac12009-02-24 18:55:53 +00005997 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005998 unsigned IterationNum = 0;
Sanjoy Das49edd3b2015-10-27 00:52:09 +00005999 const DataLayout &DL = getDataLayout();
Andrew Trick3a86ba72011-10-05 03:25:31 +00006000 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006001 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00006002 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00006003
Nick Lewyckya6674c72011-10-22 19:58:20 +00006004 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00006005 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006006 DenseMap<Instruction *, Constant *> NextIterVals;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006007 Constant *NextPHI =
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006008 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Craig Topper9f008862014-04-15 04:59:12 +00006009 if (!NextPHI)
6010 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00006011 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006012
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006013 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6014
Nick Lewyckya6674c72011-10-22 19:58:20 +00006015 // Also evaluate the other PHI nodes. However, we don't get to stop if we
6016 // cease to be able to evaluate one of them or if they stop evolving,
6017 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006018 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00006019 for (const auto &I : CurrentIterVals) {
6020 PHINode *PHI = dyn_cast<PHINode>(I.first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00006021 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Sanjoy Das4493b402015-10-07 17:38:25 +00006022 PHIsToCompute.emplace_back(PHI, I.second);
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006023 }
6024 // We use two distinct loops because EvaluateExpression may invalidate any
6025 // iterators into CurrentIterVals.
Sanjoy Das4493b402015-10-07 17:38:25 +00006026 for (const auto &I : PHIsToCompute) {
6027 PHINode *PHI = I.first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006028 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006029 if (!NextPHI) { // Not already computed.
Sanjoy Dasdd709962015-10-08 18:28:36 +00006030 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006031 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006032 }
Sanjoy Das4493b402015-10-07 17:38:25 +00006033 if (NextPHI != I.second)
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006034 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006035 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006036
6037 // If all entries in CurrentIterVals == NextIterVals then we can stop
6038 // iterating, the loop can't continue to change.
6039 if (StoppedEvolving)
6040 return RetVal = CurrentIterVals[PN];
6041
Andrew Trick3a86ba72011-10-05 03:25:31 +00006042 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00006043 }
6044}
6045
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006046const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
Nick Lewyckya6674c72011-10-22 19:58:20 +00006047 Value *Cond,
6048 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00006049 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00006050 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00006051
Dan Gohman866971e2010-06-19 14:17:24 +00006052 // If the loop is canonicalized, the PHI will have exactly two entries.
6053 // That's the only form we support here.
6054 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6055
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006056 DenseMap<Instruction *, Constant *> CurrentIterVals;
6057 BasicBlock *Header = L->getHeader();
6058 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6059
Sanjoy Dasdd709962015-10-08 18:28:36 +00006060 BasicBlock *Latch = L->getLoopLatch();
6061 assert(Latch && "Should follow from NumIncomingValues == 2!");
6062
Sanjoy Das4493b402015-10-07 17:38:25 +00006063 for (auto &I : *Header) {
6064 PHINode *PHI = dyn_cast<PHINode>(&I);
6065 if (!PHI)
6066 break;
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006067 auto *StartCST = getOtherIncomingValue(PHI, Latch);
Craig Topper9f008862014-04-15 04:59:12 +00006068 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006069 CurrentIterVals[PHI] = StartCST;
6070 }
6071 if (!CurrentIterVals.count(PN))
6072 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00006073
6074 // Okay, we find a PHI node that defines the trip count of this loop. Execute
6075 // the loop symbolically to determine when the condition gets a value of
6076 // "ExitWhen".
Andrew Trick90c7a102011-11-16 00:52:40 +00006077 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006078 const DataLayout &DL = getDataLayout();
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006079 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Sanjoy Das4493b402015-10-07 17:38:25 +00006080 auto *CondVal = dyn_cast_or_null<ConstantInt>(
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006081 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00006082
Zhou Sheng75b871f2007-01-11 12:24:14 +00006083 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006084 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00006085
Reid Spencer983e3b32007-03-01 07:25:48 +00006086 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00006087 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00006088 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006089 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006090
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006091 // Update all the PHI nodes for the next iteration.
6092 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006093
6094 // Create a list of which PHIs we need to compute. We want to do this before
6095 // calling EvaluateExpression on them because that may invalidate iterators
6096 // into CurrentIterVals.
6097 SmallVector<PHINode *, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00006098 for (const auto &I : CurrentIterVals) {
6099 PHINode *PHI = dyn_cast<PHINode>(I.first);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006100 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006101 PHIsToCompute.push_back(PHI);
6102 }
Sanjoy Das4493b402015-10-07 17:38:25 +00006103 for (PHINode *PHI : PHIsToCompute) {
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006104 Constant *&NextPHI = NextIterVals[PHI];
6105 if (NextPHI) continue; // Already computed!
6106
Sanjoy Dasdd709962015-10-08 18:28:36 +00006107 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006108 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006109 }
6110 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006111 }
6112
6113 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006114 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006115}
6116
Dan Gohman237d9e52009-09-03 15:00:26 +00006117/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006118/// at the specified scope in the program. The L value specifies a loop
6119/// nest to evaluate the expression at, where null is the top-level or a
6120/// specified loop is immediately inside of the loop.
6121///
6122/// This method can be used to compute the exit value for a variable defined
6123/// in a loop by querying what the value will hold in the parent loop.
6124///
Dan Gohman8ca08852009-05-24 23:25:42 +00006125/// In the case that a relevant loop exit value cannot be computed, the
6126/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006127const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Sanjoy Das01947432015-11-22 21:20:13 +00006128 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6129 ValuesAtScopes[V];
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006130 // Check to see if we've folded this expression at this loop before.
Sanjoy Das01947432015-11-22 21:20:13 +00006131 for (auto &LS : Values)
6132 if (LS.first == L)
6133 return LS.second ? LS.second : V;
6134
6135 Values.emplace_back(L, nullptr);
6136
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006137 // Otherwise compute it.
6138 const SCEV *C = computeSCEVAtScope(V, L);
Sanjoy Das01947432015-11-22 21:20:13 +00006139 for (auto &LS : reverse(ValuesAtScopes[V]))
6140 if (LS.first == L) {
6141 LS.second = C;
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00006142 break;
6143 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006144 return C;
6145}
6146
Nick Lewyckya6674c72011-10-22 19:58:20 +00006147/// This builds up a Constant using the ConstantExpr interface. That way, we
6148/// will return Constants for objects which aren't represented by a
6149/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6150/// Returns NULL if the SCEV isn't representable as a Constant.
6151static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00006152 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00006153 case scCouldNotCompute:
6154 case scAddRecExpr:
6155 break;
6156 case scConstant:
6157 return cast<SCEVConstant>(V)->getValue();
6158 case scUnknown:
6159 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6160 case scSignExtend: {
6161 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6162 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6163 return ConstantExpr::getSExt(CastOp, SS->getType());
6164 break;
6165 }
6166 case scZeroExtend: {
6167 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6168 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6169 return ConstantExpr::getZExt(CastOp, SZ->getType());
6170 break;
6171 }
6172 case scTruncate: {
6173 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6174 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6175 return ConstantExpr::getTrunc(CastOp, ST->getType());
6176 break;
6177 }
6178 case scAddExpr: {
6179 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6180 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006181 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6182 unsigned AS = PTy->getAddressSpace();
6183 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6184 C = ConstantExpr::getBitCast(C, DestPtrTy);
6185 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00006186 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6187 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006188 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006189
6190 // First pointer!
6191 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006192 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00006193 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006194 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006195 // The offsets have been converted to bytes. We can add bytes to an
6196 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006197 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006198 }
6199
6200 // Don't bother trying to sum two pointers. We probably can't
6201 // statically compute a load that results from it anyway.
6202 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00006203 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006204
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006205 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6206 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00006207 C2 = ConstantExpr::getIntegerCast(
6208 C2, Type::getInt32Ty(C->getContext()), true);
David Blaikie4a2e73b2015-04-02 18:55:32 +00006209 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006210 } else
6211 C = ConstantExpr::getAdd(C, C2);
6212 }
6213 return C;
6214 }
6215 break;
6216 }
6217 case scMulExpr: {
6218 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6219 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6220 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00006221 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006222 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6223 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006224 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006225 C = ConstantExpr::getMul(C, C2);
6226 }
6227 return C;
6228 }
6229 break;
6230 }
6231 case scUDivExpr: {
6232 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6233 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6234 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6235 if (LHS->getType() == RHS->getType())
6236 return ConstantExpr::getUDiv(LHS, RHS);
6237 break;
6238 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00006239 case scSMaxExpr:
6240 case scUMaxExpr:
6241 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006242 }
Craig Topper9f008862014-04-15 04:59:12 +00006243 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006244}
6245
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006246const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006247 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00006248
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006249 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00006250 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00006251 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006252 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006253 const Loop *LI = this->LI[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00006254 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
6255 if (PHINode *PN = dyn_cast<PHINode>(I))
6256 if (PN->getParent() == LI->getHeader()) {
6257 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00006258 // to see if the loop that contains it has a known backedge-taken
6259 // count. If so, we may be able to force computation of the exit
6260 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00006261 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00006262 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00006263 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006264 // Okay, we know how many times the containing loop executes. If
6265 // this is a constant evolving PHI node, get the final value at
6266 // the specified iteration number.
6267 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00006268 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00006269 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00006270 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00006271 }
6272 }
6273
Reid Spencere6328ca2006-12-04 21:33:23 +00006274 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00006275 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00006276 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00006277 // result. This is particularly useful for computing loop exit values.
6278 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006279 SmallVector<Constant *, 4> Operands;
6280 bool MadeImprovement = false;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00006281 for (Value *Op : I->operands()) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006282 if (Constant *C = dyn_cast<Constant>(Op)) {
6283 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006284 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00006285 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006286
6287 // If any of the operands is non-constant and if they are
6288 // non-integer and non-pointer, don't even try to analyze them
6289 // with scev techniques.
6290 if (!isSCEVable(Op->getType()))
6291 return V;
6292
6293 const SCEV *OrigV = getSCEV(Op);
6294 const SCEV *OpV = getSCEVAtScope(OrigV, L);
6295 MadeImprovement |= OrigV != OpV;
6296
Nick Lewyckya6674c72011-10-22 19:58:20 +00006297 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006298 if (!C) return V;
6299 if (C->getType() != Op->getType())
6300 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6301 Op->getType(),
6302 false),
6303 C, Op->getType());
6304 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00006305 }
Dan Gohmance973df2009-06-24 04:48:43 +00006306
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006307 // Check to see if getSCEVAtScope actually made an improvement.
6308 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00006309 Constant *C = nullptr;
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006310 const DataLayout &DL = getDataLayout();
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006311 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006312 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006313 Operands[1], DL, &TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006314 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6315 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00006316 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006317 } else
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006318 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006319 DL, &TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006320 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00006321 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006322 }
Chris Lattnerdd730472004-04-17 22:58:41 +00006323 }
6324 }
6325
6326 // This is some other type of SCEVUnknown, just return it.
6327 return V;
6328 }
6329
Dan Gohmana30370b2009-05-04 22:02:23 +00006330 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006331 // Avoid performing the look-up in the common case where the specified
6332 // expression has no loop-variant portions.
6333 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006334 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006335 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006336 // Okay, at least one of these operands is loop variant but might be
6337 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00006338 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6339 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00006340 NewOps.push_back(OpAtScope);
6341
6342 for (++i; i != e; ++i) {
6343 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006344 NewOps.push_back(OpAtScope);
6345 }
6346 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006347 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006348 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006349 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006350 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006351 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006352 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006353 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00006354 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006355 }
6356 }
6357 // If we got here, all operands are loop invariant.
6358 return Comm;
6359 }
6360
Dan Gohmana30370b2009-05-04 22:02:23 +00006361 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006362 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6363 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00006364 if (LHS == Div->getLHS() && RHS == Div->getRHS())
6365 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00006366 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00006367 }
6368
6369 // If this is a loop recurrence for a loop that does not contain L, then we
6370 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00006371 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006372 // First, attempt to evaluate each operand.
6373 // Avoid performing the look-up in the common case where the specified
6374 // expression has no loop-variant portions.
6375 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6376 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6377 if (OpAtScope == AddRec->getOperand(i))
6378 continue;
6379
6380 // Okay, at least one of these operands is loop variant but might be
6381 // foldable. Build a new instance of the folded commutative expression.
6382 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6383 AddRec->op_begin()+i);
6384 NewOps.push_back(OpAtScope);
6385 for (++i; i != e; ++i)
6386 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6387
Andrew Trick759ba082011-04-27 01:21:25 +00006388 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00006389 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00006390 AddRec->getNoWrapFlags(SCEV::FlagNW));
6391 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00006392 // The addrec may be folded to a nonrecurrence, for example, if the
6393 // induction variable is multiplied by zero after constant folding. Go
6394 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00006395 if (!AddRec)
6396 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006397 break;
6398 }
6399
6400 // If the scope is outside the addrec's loop, evaluate it by using the
6401 // loop exit value of the addrec.
6402 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006403 // To evaluate this recurrence, we need to know how many times the AddRec
6404 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006405 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006406 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00006407
Eli Friedman61f67622008-08-04 23:49:06 +00006408 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006409 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00006410 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006411
Dan Gohman8ca08852009-05-24 23:25:42 +00006412 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00006413 }
6414
Dan Gohmana30370b2009-05-04 22:02:23 +00006415 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006416 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006417 if (Op == Cast->getOperand())
6418 return Cast; // must be loop invariant
6419 return getZeroExtendExpr(Op, Cast->getType());
6420 }
6421
Dan Gohmana30370b2009-05-04 22:02:23 +00006422 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006423 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006424 if (Op == Cast->getOperand())
6425 return Cast; // must be loop invariant
6426 return getSignExtendExpr(Op, Cast->getType());
6427 }
6428
Dan Gohmana30370b2009-05-04 22:02:23 +00006429 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006430 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006431 if (Op == Cast->getOperand())
6432 return Cast; // must be loop invariant
6433 return getTruncateExpr(Op, Cast->getType());
6434 }
6435
Torok Edwinfbcc6632009-07-14 16:55:14 +00006436 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006437}
6438
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006439/// getSCEVAtScope - This is a convenience function which does
6440/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00006441const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00006442 return getSCEVAtScope(getSCEV(V), L);
6443}
6444
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006445/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6446/// following equation:
6447///
6448/// A * X = B (mod N)
6449///
6450/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6451/// A and B isn't important.
6452///
6453/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006454static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006455 ScalarEvolution &SE) {
6456 uint32_t BW = A.getBitWidth();
6457 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6458 assert(A != 0 && "A must be non-zero.");
6459
6460 // 1. D = gcd(A, N)
6461 //
6462 // The gcd of A and N may have only one prime factor: 2. The number of
6463 // trailing zeros in A is its multiplicity
6464 uint32_t Mult2 = A.countTrailingZeros();
6465 // D = 2^Mult2
6466
6467 // 2. Check if B is divisible by D.
6468 //
6469 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6470 // is not less than multiplicity of this prime factor for D.
6471 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00006472 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006473
6474 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6475 // modulo (N / D).
6476 //
6477 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6478 // bit width during computations.
6479 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6480 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00006481 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006482 APInt I = AD.multiplicativeInverse(Mod);
6483
6484 // 4. Compute the minimum unsigned root of the equation:
6485 // I * (B / D) mod (N / D)
6486 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6487
6488 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6489 // bits.
6490 return SE.getConstant(Result.trunc(BW));
6491}
Chris Lattnerd934c702004-04-02 20:23:17 +00006492
6493/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6494/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
6495/// might be the same) or two SCEVCouldNotCompute objects.
6496///
Dan Gohmanaf752342009-07-07 17:06:11 +00006497static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00006498SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006499 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00006500 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6501 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6502 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00006503
Chris Lattnerd934c702004-04-02 20:23:17 +00006504 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00006505 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00006506 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006507 return std::make_pair(CNC, CNC);
6508 }
6509
Reid Spencer983e3b32007-03-01 07:25:48 +00006510 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00006511 const APInt &L = LC->getValue()->getValue();
6512 const APInt &M = MC->getValue()->getValue();
6513 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00006514 APInt Two(BitWidth, 2);
6515 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006516
Dan Gohmance973df2009-06-24 04:48:43 +00006517 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006518 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006519 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006520 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6521 // The B coefficient is M-N/2
6522 APInt B(M);
6523 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006524
Reid Spencer983e3b32007-03-01 07:25:48 +00006525 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006526 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006527
Reid Spencer983e3b32007-03-01 07:25:48 +00006528 // Compute the B^2-4ac term.
6529 APInt SqrtTerm(B);
6530 SqrtTerm *= B;
6531 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006532
Nick Lewyckyfb780832012-08-01 09:14:36 +00006533 if (SqrtTerm.isNegative()) {
6534 // The loop is provably infinite.
6535 const SCEV *CNC = SE.getCouldNotCompute();
6536 return std::make_pair(CNC, CNC);
6537 }
6538
Reid Spencer983e3b32007-03-01 07:25:48 +00006539 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6540 // integer value or else APInt::sqrt() will assert.
6541 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006542
Dan Gohmance973df2009-06-24 04:48:43 +00006543 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006544 // The divisions must be performed as signed divisions.
6545 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006546 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006547 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006548 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00006549 return std::make_pair(CNC, CNC);
6550 }
6551
Owen Anderson47db9412009-07-22 00:24:57 +00006552 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006553
6554 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006555 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006556 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006557 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006558
Dan Gohmance973df2009-06-24 04:48:43 +00006559 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00006560 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00006561 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006562}
6563
6564/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006565/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006566///
6567/// This is only used for loops with a "x != y" exit test. The exit condition is
6568/// now expressed as a single expression, V = x-y. So the exit test is
6569/// effectively V != 0. We know and take advantage of the fact that this
6570/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006571ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006572ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006573 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006574 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006575 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006576 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006577 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006578 }
6579
Dan Gohman48f82222009-05-04 22:30:44 +00006580 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006581 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006582 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006583
Chris Lattnerdff679f2011-01-09 22:39:48 +00006584 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6585 // the quadratic equation to solve it.
6586 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6587 std::pair<const SCEV *,const SCEV *> Roots =
6588 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006589 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6590 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006591 if (R1 && R2) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006592 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006593 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006594 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6595 R1->getValue(),
6596 R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00006597 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00006598 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006599
Chris Lattnerd934c702004-04-02 20:23:17 +00006600 // We can only use this value if the chrec ends up with an exact zero
6601 // value at this index. When solving for "X*X != 5", for example, we
6602 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006603 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006604 if (Val->isZero())
6605 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006606 }
6607 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006608 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006609 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006610
Chris Lattnerdff679f2011-01-09 22:39:48 +00006611 // Otherwise we can only handle this if it is affine.
6612 if (!AddRec->isAffine())
6613 return getCouldNotCompute();
6614
6615 // If this is an affine expression, the execution count of this branch is
6616 // the minimum unsigned root of the following equation:
6617 //
6618 // Start + Step*N = 0 (mod 2^BW)
6619 //
6620 // equivalent to:
6621 //
6622 // Step*N = -Start (mod 2^BW)
6623 //
6624 // where BW is the common bit width of Start and Step.
6625
6626 // Get the initial value for the loop.
6627 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6628 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6629
6630 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006631 //
6632 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6633 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6634 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6635 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006636 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006637 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006638 return getCouldNotCompute();
6639
Andrew Trick8b55b732011-03-14 16:50:06 +00006640 // For positive steps (counting up until unsigned overflow):
6641 // N = -Start/Step (as unsigned)
6642 // For negative steps (counting down to zero):
6643 // N = Start/-Step
6644 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006645 bool CountDown = StepC->getValue()->getValue().isNegative();
6646 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006647
6648 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006649 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6650 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006651 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6652 ConstantRange CR = getUnsignedRange(Start);
6653 const SCEV *MaxBECount;
6654 if (!CountDown && CR.getUnsignedMin().isMinValue())
6655 // When counting up, the worst starting value is 1, not 0.
6656 MaxBECount = CR.getUnsignedMax().isMinValue()
6657 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6658 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6659 else
6660 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6661 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006662 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006663 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006664
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006665 // As a special case, handle the instance where Step is a positive power of
6666 // two. In this case, determining whether Step divides Distance evenly can be
6667 // done by counting and comparing the number of trailing zeros of Step and
6668 // Distance.
6669 if (!CountDown) {
6670 const APInt &StepV = StepC->getValue()->getValue();
6671 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6672 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6673 // case is not handled as this code is guarded by !CountDown.
6674 if (StepV.isPowerOf2() &&
Sanjoy Dasf3132d32015-09-10 05:27:38 +00006675 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
6676 // Here we've constrained the equation to be of the form
6677 //
6678 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
6679 //
6680 // where we're operating on a W bit wide integer domain and k is
6681 // non-negative. The smallest unsigned solution for X is the trip count.
6682 //
6683 // (0) is equivalent to:
6684 //
6685 // 2^(N + k) * Distance' - 2^N * X = L * 2^W
6686 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
6687 // <=> 2^k * Distance' - X = L * 2^(W - N)
6688 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
6689 //
6690 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
6691 // by 2^(W - N).
6692 //
6693 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
6694 //
6695 // E.g. say we're solving
6696 //
6697 // 2 * Val = 2 * X (in i8) ... (3)
6698 //
6699 // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
6700 //
6701 // Note: It is tempting to solve (3) by setting X = Val, but Val is not
6702 // necessarily the smallest unsigned value of X that satisfies (3).
6703 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
6704 // is i8 1, not i8 -127
6705
6706 const auto *ModuloResult = getUDivExactExpr(Distance, Step);
6707
6708 // Since SCEV does not have a URem node, we construct one using a truncate
6709 // and a zero extend.
6710
6711 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
6712 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
6713 auto *WideTy = Distance->getType();
6714
6715 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
6716 }
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006717 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006718
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006719 // If the condition controls loop exit (the loop exits only if the expression
6720 // is true) and the addition is no-wrap we can use unsigned divide to
6721 // compute the backedge count. In this case, the step may not divide the
6722 // distance, but we don't care because if the condition is "missed" the loop
6723 // will have undefined behavior due to wrapping.
6724 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6725 const SCEV *Exact =
6726 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6727 return ExitLimit(Exact, Exact);
6728 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006729
Chris Lattnerdff679f2011-01-09 22:39:48 +00006730 // Then, try to solve the above equation provided that Start is constant.
6731 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6732 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6733 -StartC->getValue()->getValue(),
6734 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006735 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006736}
6737
6738/// HowFarToNonZero - Return the number of times a backedge checking the
6739/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006740/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006741ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006742ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006743 // Loops that look like: while (X == 0) are very strange indeed. We don't
6744 // handle them yet except for the trivial case. This could be expanded in the
6745 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006746
Chris Lattnerd934c702004-04-02 20:23:17 +00006747 // If the value is a constant, check to see if it is known to be non-zero
6748 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006749 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006750 if (!C->getValue()->isNullValue())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00006751 return getZero(C->getType());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006752 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006753 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006754
Chris Lattnerd934c702004-04-02 20:23:17 +00006755 // We could implement others, but I really doubt anyone writes loops like
6756 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006757 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006758}
6759
Dan Gohmanf9081a22008-09-15 22:18:04 +00006760/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6761/// (which may not be an immediate predecessor) which has exactly one
6762/// successor from which BB is reachable, or null if no such block is
6763/// found.
6764///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006765std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006766ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006767 // If the block has a unique predecessor, then there is no path from the
6768 // predecessor to the block that does not go through the direct edge
6769 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006770 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006771 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006772
6773 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006774 // If the header has a unique predecessor outside the loop, it must be
6775 // a block that has exactly one successor that can reach the loop.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006776 if (Loop *L = LI.getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006777 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006778
Dan Gohman4e3c1132010-04-15 16:19:08 +00006779 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006780}
6781
Dan Gohman450f4e02009-06-20 00:35:32 +00006782/// HasSameValue - SCEV structural equivalence is usually sufficient for
6783/// testing whether two expressions are equal, however for the purposes of
6784/// looking for a condition guarding a loop, it can be useful to be a little
6785/// more general, since a front-end may have replicated the controlling
6786/// expression.
6787///
Dan Gohmanaf752342009-07-07 17:06:11 +00006788static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006789 // Quick check to see if they are the same SCEV.
6790 if (A == B) return true;
6791
Sanjoy Dasf1090b62015-09-27 21:09:48 +00006792 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
6793 // Not all instructions that are "identical" compute the same value. For
6794 // instance, two distinct alloca instructions allocating the same type are
6795 // identical and do not read memory; but compute distinct values.
6796 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
6797 };
6798
Dan Gohman450f4e02009-06-20 00:35:32 +00006799 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6800 // two different instructions with the same value. Check for this case.
6801 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6802 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6803 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6804 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Sanjoy Dasf1090b62015-09-27 21:09:48 +00006805 if (ComputesEqualValues(AI, BI))
Dan Gohman450f4e02009-06-20 00:35:32 +00006806 return true;
6807
6808 // Otherwise assume they may have a different value.
6809 return false;
6810}
6811
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006812/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006813/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006814///
6815bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006816 const SCEV *&LHS, const SCEV *&RHS,
6817 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006818 bool Changed = false;
6819
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006820 // If we hit the max recursion limit bail out.
6821 if (Depth >= 3)
6822 return false;
6823
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006824 // Canonicalize a constant to the right side.
6825 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6826 // Check for both operands constant.
6827 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6828 if (ConstantExpr::getICmp(Pred,
6829 LHSC->getValue(),
6830 RHSC->getValue())->isNullValue())
6831 goto trivially_false;
6832 else
6833 goto trivially_true;
6834 }
6835 // Otherwise swap the operands to put the constant on the right.
6836 std::swap(LHS, RHS);
6837 Pred = ICmpInst::getSwappedPredicate(Pred);
6838 Changed = true;
6839 }
6840
6841 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006842 // addrec's loop, put the addrec on the left. Also make a dominance check,
6843 // as both operands could be addrecs loop-invariant in each other's loop.
6844 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6845 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006846 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006847 std::swap(LHS, RHS);
6848 Pred = ICmpInst::getSwappedPredicate(Pred);
6849 Changed = true;
6850 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006851 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006852
6853 // If there's a constant operand, canonicalize comparisons with boundary
6854 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6855 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6856 const APInt &RA = RC->getValue()->getValue();
6857 switch (Pred) {
6858 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6859 case ICmpInst::ICMP_EQ:
6860 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006861 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6862 if (!RA)
6863 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6864 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006865 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6866 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006867 RHS = AE->getOperand(1);
6868 LHS = ME->getOperand(1);
6869 Changed = true;
6870 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006871 break;
6872 case ICmpInst::ICMP_UGE:
6873 if ((RA - 1).isMinValue()) {
6874 Pred = ICmpInst::ICMP_NE;
6875 RHS = getConstant(RA - 1);
6876 Changed = true;
6877 break;
6878 }
6879 if (RA.isMaxValue()) {
6880 Pred = ICmpInst::ICMP_EQ;
6881 Changed = true;
6882 break;
6883 }
6884 if (RA.isMinValue()) goto trivially_true;
6885
6886 Pred = ICmpInst::ICMP_UGT;
6887 RHS = getConstant(RA - 1);
6888 Changed = true;
6889 break;
6890 case ICmpInst::ICMP_ULE:
6891 if ((RA + 1).isMaxValue()) {
6892 Pred = ICmpInst::ICMP_NE;
6893 RHS = getConstant(RA + 1);
6894 Changed = true;
6895 break;
6896 }
6897 if (RA.isMinValue()) {
6898 Pred = ICmpInst::ICMP_EQ;
6899 Changed = true;
6900 break;
6901 }
6902 if (RA.isMaxValue()) goto trivially_true;
6903
6904 Pred = ICmpInst::ICMP_ULT;
6905 RHS = getConstant(RA + 1);
6906 Changed = true;
6907 break;
6908 case ICmpInst::ICMP_SGE:
6909 if ((RA - 1).isMinSignedValue()) {
6910 Pred = ICmpInst::ICMP_NE;
6911 RHS = getConstant(RA - 1);
6912 Changed = true;
6913 break;
6914 }
6915 if (RA.isMaxSignedValue()) {
6916 Pred = ICmpInst::ICMP_EQ;
6917 Changed = true;
6918 break;
6919 }
6920 if (RA.isMinSignedValue()) goto trivially_true;
6921
6922 Pred = ICmpInst::ICMP_SGT;
6923 RHS = getConstant(RA - 1);
6924 Changed = true;
6925 break;
6926 case ICmpInst::ICMP_SLE:
6927 if ((RA + 1).isMaxSignedValue()) {
6928 Pred = ICmpInst::ICMP_NE;
6929 RHS = getConstant(RA + 1);
6930 Changed = true;
6931 break;
6932 }
6933 if (RA.isMinSignedValue()) {
6934 Pred = ICmpInst::ICMP_EQ;
6935 Changed = true;
6936 break;
6937 }
6938 if (RA.isMaxSignedValue()) goto trivially_true;
6939
6940 Pred = ICmpInst::ICMP_SLT;
6941 RHS = getConstant(RA + 1);
6942 Changed = true;
6943 break;
6944 case ICmpInst::ICMP_UGT:
6945 if (RA.isMinValue()) {
6946 Pred = ICmpInst::ICMP_NE;
6947 Changed = true;
6948 break;
6949 }
6950 if ((RA + 1).isMaxValue()) {
6951 Pred = ICmpInst::ICMP_EQ;
6952 RHS = getConstant(RA + 1);
6953 Changed = true;
6954 break;
6955 }
6956 if (RA.isMaxValue()) goto trivially_false;
6957 break;
6958 case ICmpInst::ICMP_ULT:
6959 if (RA.isMaxValue()) {
6960 Pred = ICmpInst::ICMP_NE;
6961 Changed = true;
6962 break;
6963 }
6964 if ((RA - 1).isMinValue()) {
6965 Pred = ICmpInst::ICMP_EQ;
6966 RHS = getConstant(RA - 1);
6967 Changed = true;
6968 break;
6969 }
6970 if (RA.isMinValue()) goto trivially_false;
6971 break;
6972 case ICmpInst::ICMP_SGT:
6973 if (RA.isMinSignedValue()) {
6974 Pred = ICmpInst::ICMP_NE;
6975 Changed = true;
6976 break;
6977 }
6978 if ((RA + 1).isMaxSignedValue()) {
6979 Pred = ICmpInst::ICMP_EQ;
6980 RHS = getConstant(RA + 1);
6981 Changed = true;
6982 break;
6983 }
6984 if (RA.isMaxSignedValue()) goto trivially_false;
6985 break;
6986 case ICmpInst::ICMP_SLT:
6987 if (RA.isMaxSignedValue()) {
6988 Pred = ICmpInst::ICMP_NE;
6989 Changed = true;
6990 break;
6991 }
6992 if ((RA - 1).isMinSignedValue()) {
6993 Pred = ICmpInst::ICMP_EQ;
6994 RHS = getConstant(RA - 1);
6995 Changed = true;
6996 break;
6997 }
6998 if (RA.isMinSignedValue()) goto trivially_false;
6999 break;
7000 }
7001 }
7002
7003 // Check for obvious equality.
7004 if (HasSameValue(LHS, RHS)) {
7005 if (ICmpInst::isTrueWhenEqual(Pred))
7006 goto trivially_true;
7007 if (ICmpInst::isFalseWhenEqual(Pred))
7008 goto trivially_false;
7009 }
7010
Dan Gohman81585c12010-05-03 16:35:17 +00007011 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7012 // adding or subtracting 1 from one of the operands.
7013 switch (Pred) {
7014 case ICmpInst::ICMP_SLE:
7015 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7016 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007017 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007018 Pred = ICmpInst::ICMP_SLT;
7019 Changed = true;
7020 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007021 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007022 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007023 Pred = ICmpInst::ICMP_SLT;
7024 Changed = true;
7025 }
7026 break;
7027 case ICmpInst::ICMP_SGE:
7028 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007029 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007030 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007031 Pred = ICmpInst::ICMP_SGT;
7032 Changed = true;
7033 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7034 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007035 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007036 Pred = ICmpInst::ICMP_SGT;
7037 Changed = true;
7038 }
7039 break;
7040 case ICmpInst::ICMP_ULE:
7041 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007042 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007043 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007044 Pred = ICmpInst::ICMP_ULT;
7045 Changed = true;
7046 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Peter Collingbournec85f4ce2015-11-20 01:26:13 +00007047 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
Dan Gohman81585c12010-05-03 16:35:17 +00007048 Pred = ICmpInst::ICMP_ULT;
7049 Changed = true;
7050 }
7051 break;
7052 case ICmpInst::ICMP_UGE:
7053 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Peter Collingbournec85f4ce2015-11-20 01:26:13 +00007054 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
Dan Gohman81585c12010-05-03 16:35:17 +00007055 Pred = ICmpInst::ICMP_UGT;
7056 Changed = true;
7057 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007058 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007059 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007060 Pred = ICmpInst::ICMP_UGT;
7061 Changed = true;
7062 }
7063 break;
7064 default:
7065 break;
7066 }
7067
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007068 // TODO: More simplifications are possible here.
7069
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007070 // Recursively simplify until we either hit a recursion limit or nothing
7071 // changes.
7072 if (Changed)
7073 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7074
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007075 return Changed;
7076
7077trivially_true:
7078 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00007079 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007080 Pred = ICmpInst::ICMP_EQ;
7081 return true;
7082
7083trivially_false:
7084 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00007085 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007086 Pred = ICmpInst::ICMP_NE;
7087 return true;
7088}
7089
Dan Gohmane65c9172009-07-13 21:35:55 +00007090bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7091 return getSignedRange(S).getSignedMax().isNegative();
7092}
7093
7094bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7095 return getSignedRange(S).getSignedMin().isStrictlyPositive();
7096}
7097
7098bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7099 return !getSignedRange(S).getSignedMin().isNegative();
7100}
7101
7102bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7103 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7104}
7105
7106bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7107 return isKnownNegative(S) || isKnownPositive(S);
7108}
7109
7110bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7111 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00007112 // Canonicalize the inputs first.
7113 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7114
Dan Gohman07591692010-04-11 22:16:48 +00007115 // If LHS or RHS is an addrec, check to see if the condition is true in
7116 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00007117 // If LHS and RHS are both addrec, both conditions must be true in
7118 // every iteration of the loop.
7119 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7120 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7121 bool LeftGuarded = false;
7122 bool RightGuarded = false;
7123 if (LAR) {
7124 const Loop *L = LAR->getLoop();
7125 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7126 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7127 if (!RAR) return true;
7128 LeftGuarded = true;
7129 }
7130 }
7131 if (RAR) {
7132 const Loop *L = RAR->getLoop();
7133 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7134 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7135 if (!LAR) return true;
7136 RightGuarded = true;
7137 }
7138 }
7139 if (LeftGuarded && RightGuarded)
7140 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007141
Sanjoy Das7d910f22015-10-02 18:50:30 +00007142 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7143 return true;
7144
Dan Gohman07591692010-04-11 22:16:48 +00007145 // Otherwise see what can be done with known constant ranges.
7146 return isKnownPredicateWithRanges(Pred, LHS, RHS);
7147}
7148
Sanjoy Das5dab2052015-07-27 21:42:49 +00007149bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7150 ICmpInst::Predicate Pred,
7151 bool &Increasing) {
7152 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7153
7154#ifndef NDEBUG
7155 // Verify an invariant: inverting the predicate should turn a monotonically
7156 // increasing change to a monotonically decreasing one, and vice versa.
7157 bool IncreasingSwapped;
7158 bool ResultSwapped = isMonotonicPredicateImpl(
7159 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7160
7161 assert(Result == ResultSwapped && "should be able to analyze both!");
7162 if (ResultSwapped)
7163 assert(Increasing == !IncreasingSwapped &&
7164 "monotonicity should flip as we flip the predicate");
7165#endif
7166
7167 return Result;
7168}
7169
7170bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7171 ICmpInst::Predicate Pred,
7172 bool &Increasing) {
Sanjoy Das5dab2052015-07-27 21:42:49 +00007173
7174 // A zero step value for LHS means the induction variable is essentially a
7175 // loop invariant value. We don't really depend on the predicate actually
7176 // flipping from false to true (for increasing predicates, and the other way
7177 // around for decreasing predicates), all we care about is that *if* the
7178 // predicate changes then it only changes from false to true.
7179 //
7180 // A zero step value in itself is not very useful, but there may be places
7181 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7182 // as general as possible.
7183
Sanjoy Das366acc12015-08-06 20:43:41 +00007184 switch (Pred) {
7185 default:
7186 return false; // Conservative answer
7187
7188 case ICmpInst::ICMP_UGT:
7189 case ICmpInst::ICMP_UGE:
7190 case ICmpInst::ICMP_ULT:
7191 case ICmpInst::ICMP_ULE:
7192 if (!LHS->getNoWrapFlags(SCEV::FlagNUW))
7193 return false;
7194
7195 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007196 return true;
Sanjoy Das366acc12015-08-06 20:43:41 +00007197
7198 case ICmpInst::ICMP_SGT:
7199 case ICmpInst::ICMP_SGE:
7200 case ICmpInst::ICMP_SLT:
7201 case ICmpInst::ICMP_SLE: {
7202 if (!LHS->getNoWrapFlags(SCEV::FlagNSW))
7203 return false;
7204
7205 const SCEV *Step = LHS->getStepRecurrence(*this);
7206
7207 if (isKnownNonNegative(Step)) {
7208 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7209 return true;
7210 }
7211
7212 if (isKnownNonPositive(Step)) {
7213 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7214 return true;
7215 }
7216
7217 return false;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007218 }
7219
Sanjoy Das5dab2052015-07-27 21:42:49 +00007220 }
7221
Sanjoy Das366acc12015-08-06 20:43:41 +00007222 llvm_unreachable("switch has default clause!");
Sanjoy Das5dab2052015-07-27 21:42:49 +00007223}
7224
7225bool ScalarEvolution::isLoopInvariantPredicate(
7226 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7227 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7228 const SCEV *&InvariantRHS) {
7229
7230 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7231 if (!isLoopInvariant(RHS, L)) {
7232 if (!isLoopInvariant(LHS, L))
7233 return false;
7234
7235 std::swap(LHS, RHS);
7236 Pred = ICmpInst::getSwappedPredicate(Pred);
7237 }
7238
7239 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7240 if (!ArLHS || ArLHS->getLoop() != L)
7241 return false;
7242
7243 bool Increasing;
7244 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7245 return false;
7246
7247 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7248 // true as the loop iterates, and the backedge is control dependent on
7249 // "ArLHS `Pred` RHS" == true then we can reason as follows:
7250 //
7251 // * if the predicate was false in the first iteration then the predicate
7252 // is never evaluated again, since the loop exits without taking the
7253 // backedge.
7254 // * if the predicate was true in the first iteration then it will
7255 // continue to be true for all future iterations since it is
7256 // monotonically increasing.
7257 //
7258 // For both the above possibilities, we can replace the loop varying
7259 // predicate with its value on the first iteration of the loop (which is
7260 // loop invariant).
7261 //
7262 // A similar reasoning applies for a monotonically decreasing predicate, by
7263 // replacing true with false and false with true in the above two bullets.
7264
7265 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7266
7267 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7268 return false;
7269
7270 InvariantPred = Pred;
7271 InvariantLHS = ArLHS->getStart();
7272 InvariantRHS = RHS;
7273 return true;
7274}
7275
Dan Gohman07591692010-04-11 22:16:48 +00007276bool
7277ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
7278 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007279 if (HasSameValue(LHS, RHS))
7280 return ICmpInst::isTrueWhenEqual(Pred);
7281
Dan Gohman07591692010-04-11 22:16:48 +00007282 // This code is split out from isKnownPredicate because it is called from
7283 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00007284 switch (Pred) {
7285 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00007286 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00007287 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00007288 std::swap(LHS, RHS);
7289 case ICmpInst::ICMP_SLT: {
7290 ConstantRange LHSRange = getSignedRange(LHS);
7291 ConstantRange RHSRange = getSignedRange(RHS);
7292 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
7293 return true;
7294 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
7295 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007296 break;
7297 }
7298 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00007299 std::swap(LHS, RHS);
7300 case ICmpInst::ICMP_SLE: {
7301 ConstantRange LHSRange = getSignedRange(LHS);
7302 ConstantRange RHSRange = getSignedRange(RHS);
7303 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
7304 return true;
7305 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
7306 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007307 break;
7308 }
7309 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00007310 std::swap(LHS, RHS);
7311 case ICmpInst::ICMP_ULT: {
7312 ConstantRange LHSRange = getUnsignedRange(LHS);
7313 ConstantRange RHSRange = getUnsignedRange(RHS);
7314 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
7315 return true;
7316 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
7317 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007318 break;
7319 }
7320 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00007321 std::swap(LHS, RHS);
7322 case ICmpInst::ICMP_ULE: {
7323 ConstantRange LHSRange = getUnsignedRange(LHS);
7324 ConstantRange RHSRange = getUnsignedRange(RHS);
7325 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
7326 return true;
7327 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
7328 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007329 break;
7330 }
7331 case ICmpInst::ICMP_NE: {
7332 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
7333 return true;
7334 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
7335 return true;
7336
7337 const SCEV *Diff = getMinusSCEV(LHS, RHS);
7338 if (isKnownNonZero(Diff))
7339 return true;
7340 break;
7341 }
7342 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00007343 // The check at the top of the function catches the case where
7344 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00007345 break;
7346 }
7347 return false;
7348}
7349
Sanjoy Dasc1a29772015-11-05 23:45:38 +00007350bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7351 const SCEV *LHS,
7352 const SCEV *RHS) {
7353
7354 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7355 // Return Y via OutY.
7356 auto MatchBinaryAddToConst =
7357 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7358 SCEV::NoWrapFlags ExpectedFlags) {
7359 const SCEV *NonConstOp, *ConstOp;
7360 SCEV::NoWrapFlags FlagsPresent;
7361
7362 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7363 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7364 return false;
7365
7366 OutY = cast<SCEVConstant>(ConstOp)->getValue()->getValue();
7367 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7368 };
7369
7370 APInt C;
7371
7372 switch (Pred) {
7373 default:
7374 break;
7375
7376 case ICmpInst::ICMP_SGE:
7377 std::swap(LHS, RHS);
7378 case ICmpInst::ICMP_SLE:
7379 // X s<= (X + C)<nsw> if C >= 0
7380 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7381 return true;
7382
7383 // (X + C)<nsw> s<= X if C <= 0
7384 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7385 !C.isStrictlyPositive())
7386 return true;
7387 break;
7388
7389 case ICmpInst::ICMP_SGT:
7390 std::swap(LHS, RHS);
7391 case ICmpInst::ICMP_SLT:
7392 // X s< (X + C)<nsw> if C > 0
7393 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7394 C.isStrictlyPositive())
7395 return true;
7396
7397 // (X + C)<nsw> s< X if C < 0
7398 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7399 return true;
7400 break;
7401 }
7402
7403 return false;
7404}
7405
Sanjoy Das7d910f22015-10-02 18:50:30 +00007406bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7407 const SCEV *LHS,
7408 const SCEV *RHS) {
Sanjoy Das10dffcb2015-10-08 03:46:00 +00007409 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
Sanjoy Das7d910f22015-10-02 18:50:30 +00007410 return false;
7411
7412 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7413 // the stack can result in exponential time complexity.
7414 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7415
7416 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7417 //
7418 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7419 // isKnownPredicate. isKnownPredicate is more powerful, but also more
7420 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7421 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
7422 // use isKnownPredicate later if needed.
Alexander Kornienko484e48e32015-11-05 21:07:12 +00007423 return isKnownNonNegative(RHS) &&
7424 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7425 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
Sanjoy Das7d910f22015-10-02 18:50:30 +00007426}
7427
Dan Gohmane65c9172009-07-13 21:35:55 +00007428/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7429/// protected by a conditional between LHS and RHS. This is used to
7430/// to eliminate casts.
7431bool
7432ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7433 ICmpInst::Predicate Pred,
7434 const SCEV *LHS, const SCEV *RHS) {
7435 // Interpret a null as meaning no loop, where there is obviously no guard
7436 // (interprocedural conditions notwithstanding).
7437 if (!L) return true;
7438
Sanjoy Das1f05c512014-10-10 21:22:34 +00007439 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7440
Dan Gohmane65c9172009-07-13 21:35:55 +00007441 BasicBlock *Latch = L->getLoopLatch();
7442 if (!Latch)
7443 return false;
7444
7445 BranchInst *LoopContinuePredicate =
7446 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007447 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7448 isImpliedCond(Pred, LHS, RHS,
7449 LoopContinuePredicate->getCondition(),
7450 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7451 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007452
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007453 // We don't want more than one activation of the following loops on the stack
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007454 // -- that can lead to O(n!) time complexity.
7455 if (WalkingBEDominatingConds)
7456 return false;
7457
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +00007458 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007459
Sanjoy Dasb174f9a2015-09-25 23:53:50 +00007460 // See if we can exploit a trip count to prove the predicate.
7461 const auto &BETakenInfo = getBackedgeTakenInfo(L);
7462 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7463 if (LatchBECount != getCouldNotCompute()) {
7464 // We know that Latch branches back to the loop header exactly
7465 // LatchBECount times. This means the backdege condition at Latch is
7466 // equivalent to "{0,+,1} u< LatchBECount".
7467 Type *Ty = LatchBECount->getType();
7468 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7469 const SCEV *LoopCounter =
7470 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7471 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7472 LatchBECount))
7473 return true;
7474 }
7475
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007476 // Check conditions due to any @llvm.assume intrinsics.
7477 for (auto &AssumeVH : AC.assumptions()) {
7478 if (!AssumeVH)
7479 continue;
7480 auto *CI = cast<CallInst>(AssumeVH);
7481 if (!DT.dominates(CI, Latch->getTerminator()))
7482 continue;
7483
7484 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7485 return true;
7486 }
7487
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007488 // If the loop is not reachable from the entry block, we risk running into an
7489 // infinite loop as we walk up into the dom tree. These loops do not matter
7490 // anyway, so we just return a conservative answer when we see them.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007491 if (!DT.isReachableFromEntry(L->getHeader()))
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007492 return false;
7493
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007494 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7495 DTN != HeaderDTN; DTN = DTN->getIDom()) {
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007496
7497 assert(DTN && "should reach the loop header before reaching the root!");
7498
7499 BasicBlock *BB = DTN->getBlock();
7500 BasicBlock *PBB = BB->getSinglePredecessor();
7501 if (!PBB)
7502 continue;
7503
7504 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7505 if (!ContinuePredicate || !ContinuePredicate->isConditional())
7506 continue;
7507
7508 Value *Condition = ContinuePredicate->getCondition();
7509
7510 // If we have an edge `E` within the loop body that dominates the only
7511 // latch, the condition guarding `E` also guards the backedge. This
7512 // reasoning works only for loops with a single latch.
7513
7514 BasicBlockEdge DominatingEdge(PBB, BB);
7515 if (DominatingEdge.isSingleEdge()) {
7516 // We're constructively (and conservatively) enumerating edges within the
7517 // loop body that dominate the latch. The dominator tree better agree
7518 // with us on this:
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007519 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007520
7521 if (isImpliedCond(Pred, LHS, RHS, Condition,
7522 BB != ContinuePredicate->getSuccessor(0)))
7523 return true;
7524 }
7525 }
7526
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007527 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007528}
7529
Dan Gohmanb50349a2010-04-11 19:27:13 +00007530/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00007531/// by a conditional between LHS and RHS. This is used to help avoid max
7532/// expressions in loop trip counts, and to eliminate casts.
7533bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00007534ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7535 ICmpInst::Predicate Pred,
7536 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00007537 // Interpret a null as meaning no loop, where there is obviously no guard
7538 // (interprocedural conditions notwithstanding).
7539 if (!L) return false;
7540
Sanjoy Das1f05c512014-10-10 21:22:34 +00007541 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7542
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007543 // Starting at the loop predecessor, climb up the predecessor chain, as long
7544 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00007545 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00007546 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00007547 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00007548 Pair.first;
7549 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00007550
7551 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00007552 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00007553 if (!LoopEntryPredicate ||
7554 LoopEntryPredicate->isUnconditional())
7555 continue;
7556
Dan Gohmane18c2d62010-08-10 23:46:30 +00007557 if (isImpliedCond(Pred, LHS, RHS,
7558 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00007559 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00007560 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007561 }
7562
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007563 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007564 for (auto &AssumeVH : AC.assumptions()) {
Chandler Carruth66b31302015-01-04 12:03:27 +00007565 if (!AssumeVH)
7566 continue;
7567 auto *CI = cast<CallInst>(AssumeVH);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007568 if (!DT.dominates(CI, L->getHeader()))
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007569 continue;
7570
7571 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7572 return true;
7573 }
7574
Dan Gohman2a62fd92008-08-12 20:17:31 +00007575 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007576}
7577
Benjamin Kramer039b1042015-10-28 13:54:36 +00007578namespace {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007579/// RAII wrapper to prevent recursive application of isImpliedCond.
7580/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7581/// currently evaluating isImpliedCond.
7582struct MarkPendingLoopPredicate {
7583 Value *Cond;
7584 DenseSet<Value*> &LoopPreds;
7585 bool Pending;
7586
7587 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7588 : Cond(C), LoopPreds(LP) {
7589 Pending = !LoopPreds.insert(Cond).second;
7590 }
7591 ~MarkPendingLoopPredicate() {
7592 if (!Pending)
7593 LoopPreds.erase(Cond);
7594 }
7595};
Benjamin Kramer039b1042015-10-28 13:54:36 +00007596} // end anonymous namespace
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007597
Dan Gohman430f0cc2009-07-21 23:03:19 +00007598/// isImpliedCond - Test whether the condition described by Pred, LHS,
7599/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007600bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007601 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00007602 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007603 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007604 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7605 if (Mark.Pending)
7606 return false;
7607
Dan Gohman8b0a4192010-03-01 17:49:51 +00007608 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007609 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007610 if (BO->getOpcode() == Instruction::And) {
7611 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007612 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7613 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007614 } else if (BO->getOpcode() == Instruction::Or) {
7615 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007616 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7617 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007618 }
7619 }
7620
Dan Gohmane18c2d62010-08-10 23:46:30 +00007621 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007622 if (!ICI) return false;
7623
Andrew Trickfa594032012-11-29 18:35:13 +00007624 // Now that we found a conditional branch that dominates the loop or controls
7625 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00007626 ICmpInst::Predicate FoundPred;
7627 if (Inverse)
7628 FoundPred = ICI->getInversePredicate();
7629 else
7630 FoundPred = ICI->getPredicate();
7631
7632 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7633 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00007634
Sanjoy Dasdf1635d2015-09-25 19:59:52 +00007635 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
7636}
7637
7638bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
7639 const SCEV *RHS,
7640 ICmpInst::Predicate FoundPred,
7641 const SCEV *FoundLHS,
7642 const SCEV *FoundRHS) {
Sanjoy Das14598832015-03-26 17:28:26 +00007643 // Balance the types.
7644 if (getTypeSizeInBits(LHS->getType()) <
7645 getTypeSizeInBits(FoundLHS->getType())) {
7646 if (CmpInst::isSigned(Pred)) {
7647 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7648 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7649 } else {
7650 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7651 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7652 }
7653 } else if (getTypeSizeInBits(LHS->getType()) >
Dan Gohmane65c9172009-07-13 21:35:55 +00007654 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00007655 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007656 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7657 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7658 } else {
7659 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7660 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7661 }
7662 }
7663
Dan Gohman430f0cc2009-07-21 23:03:19 +00007664 // Canonicalize the query to match the way instcombine will have
7665 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00007666 if (SimplifyICmpOperands(Pred, LHS, RHS))
7667 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00007668 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00007669 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7670 if (FoundLHS == FoundRHS)
7671 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00007672
7673 // Check to see if we can make the LHS or RHS match.
7674 if (LHS == FoundRHS || RHS == FoundLHS) {
7675 if (isa<SCEVConstant>(RHS)) {
7676 std::swap(FoundLHS, FoundRHS);
7677 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7678 } else {
7679 std::swap(LHS, RHS);
7680 Pred = ICmpInst::getSwappedPredicate(Pred);
7681 }
7682 }
7683
7684 // Check whether the found predicate is the same as the desired predicate.
7685 if (FoundPred == Pred)
7686 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7687
7688 // Check whether swapping the found predicate makes it the same as the
7689 // desired predicate.
7690 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7691 if (isa<SCEVConstant>(RHS))
7692 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7693 else
7694 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7695 RHS, LHS, FoundLHS, FoundRHS);
7696 }
7697
Sanjoy Das6e78b172015-10-22 19:57:34 +00007698 // Unsigned comparison is the same as signed comparison when both the operands
7699 // are non-negative.
7700 if (CmpInst::isUnsigned(FoundPred) &&
7701 CmpInst::getSignedPredicate(FoundPred) == Pred &&
7702 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
7703 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7704
Sanjoy Dasc5676df2014-11-13 00:00:58 +00007705 // Check if we can make progress by sharpening ranges.
7706 if (FoundPred == ICmpInst::ICMP_NE &&
7707 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7708
7709 const SCEVConstant *C = nullptr;
7710 const SCEV *V = nullptr;
7711
7712 if (isa<SCEVConstant>(FoundLHS)) {
7713 C = cast<SCEVConstant>(FoundLHS);
7714 V = FoundRHS;
7715 } else {
7716 C = cast<SCEVConstant>(FoundRHS);
7717 V = FoundLHS;
7718 }
7719
7720 // The guarding predicate tells us that C != V. If the known range
7721 // of V is [C, t), we can sharpen the range to [C + 1, t). The
7722 // range we consider has to correspond to same signedness as the
7723 // predicate we're interested in folding.
7724
7725 APInt Min = ICmpInst::isSigned(Pred) ?
7726 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7727
7728 if (Min == C->getValue()->getValue()) {
7729 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
7730 // This is true even if (Min + 1) wraps around -- in case of
7731 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
7732
7733 APInt SharperMin = Min + 1;
7734
7735 switch (Pred) {
7736 case ICmpInst::ICMP_SGE:
7737 case ICmpInst::ICMP_UGE:
7738 // We know V `Pred` SharperMin. If this implies LHS `Pred`
7739 // RHS, we're done.
7740 if (isImpliedCondOperands(Pred, LHS, RHS, V,
7741 getConstant(SharperMin)))
7742 return true;
7743
7744 case ICmpInst::ICMP_SGT:
7745 case ICmpInst::ICMP_UGT:
7746 // We know from the range information that (V `Pred` Min ||
7747 // V == Min). We know from the guarding condition that !(V
7748 // == Min). This gives us
7749 //
7750 // V `Pred` Min || V == Min && !(V == Min)
7751 // => V `Pred` Min
7752 //
7753 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
7754
7755 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
7756 return true;
7757
7758 default:
7759 // No change
7760 break;
7761 }
7762 }
7763 }
7764
Dan Gohman430f0cc2009-07-21 23:03:19 +00007765 // Check whether the actual condition is beyond sufficient.
7766 if (FoundPred == ICmpInst::ICMP_EQ)
7767 if (ICmpInst::isTrueWhenEqual(Pred))
7768 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
7769 return true;
7770 if (Pred == ICmpInst::ICMP_NE)
7771 if (!ICmpInst::isTrueWhenEqual(FoundPred))
7772 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
7773 return true;
7774
7775 // Otherwise assume the worst.
7776 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007777}
7778
Sanjoy Das1ed69102015-10-13 02:53:27 +00007779bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
7780 const SCEV *&L, const SCEV *&R,
7781 SCEV::NoWrapFlags &Flags) {
7782 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
7783 if (!AE || AE->getNumOperands() != 2)
7784 return false;
7785
7786 L = AE->getOperand(0);
7787 R = AE->getOperand(1);
7788 Flags = AE->getNoWrapFlags();
7789 return true;
7790}
7791
7792bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
7793 const SCEV *More,
7794 APInt &C) {
Sanjoy Das96709c42015-09-25 23:53:45 +00007795 // We avoid subtracting expressions here because this function is usually
7796 // fairly deep in the call stack (i.e. is called many times).
7797
Sanjoy Das96709c42015-09-25 23:53:45 +00007798 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
7799 const auto *LAR = cast<SCEVAddRecExpr>(Less);
7800 const auto *MAR = cast<SCEVAddRecExpr>(More);
7801
7802 if (LAR->getLoop() != MAR->getLoop())
7803 return false;
7804
7805 // We look at affine expressions only; not for correctness but to keep
7806 // getStepRecurrence cheap.
7807 if (!LAR->isAffine() || !MAR->isAffine())
7808 return false;
7809
Sanjoy Das1ed69102015-10-13 02:53:27 +00007810 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
Sanjoy Das96709c42015-09-25 23:53:45 +00007811 return false;
7812
7813 Less = LAR->getStart();
7814 More = MAR->getStart();
7815
7816 // fall through
7817 }
7818
7819 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
7820 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue();
7821 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue();
7822 C = M - L;
7823 return true;
7824 }
7825
7826 const SCEV *L, *R;
Sanjoy Das1ed69102015-10-13 02:53:27 +00007827 SCEV::NoWrapFlags Flags;
7828 if (splitBinaryAdd(Less, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00007829 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7830 if (R == More) {
7831 C = -(LC->getValue()->getValue());
7832 return true;
7833 }
7834
Sanjoy Das1ed69102015-10-13 02:53:27 +00007835 if (splitBinaryAdd(More, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00007836 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7837 if (R == Less) {
7838 C = LC->getValue()->getValue();
7839 return true;
7840 }
7841
7842 return false;
7843}
7844
7845bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
7846 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
7847 const SCEV *FoundLHS, const SCEV *FoundRHS) {
7848 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
7849 return false;
7850
7851 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7852 if (!AddRecLHS)
7853 return false;
7854
7855 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
7856 if (!AddRecFoundLHS)
7857 return false;
7858
7859 // We'd like to let SCEV reason about control dependencies, so we constrain
7860 // both the inequalities to be about add recurrences on the same loop. This
7861 // way we can use isLoopEntryGuardedByCond later.
7862
7863 const Loop *L = AddRecFoundLHS->getLoop();
7864 if (L != AddRecLHS->getLoop())
7865 return false;
7866
7867 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
7868 //
7869 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
7870 // ... (2)
7871 //
7872 // Informal proof for (2), assuming (1) [*]:
7873 //
7874 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
7875 //
7876 // Then
7877 //
7878 // FoundLHS s< FoundRHS s< INT_MIN - C
7879 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
7880 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
7881 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
7882 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
7883 // <=> FoundLHS + C s< FoundRHS + C
7884 //
7885 // [*]: (1) can be proved by ruling out overflow.
7886 //
7887 // [**]: This can be proved by analyzing all the four possibilities:
7888 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
7889 // (A s>= 0, B s>= 0).
7890 //
7891 // Note:
7892 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
7893 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
7894 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
7895 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
7896 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
7897 // C)".
7898
7899 APInt LDiff, RDiff;
Sanjoy Das1ed69102015-10-13 02:53:27 +00007900 if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
7901 !computeConstantDifference(FoundRHS, RHS, RDiff) ||
Sanjoy Das96709c42015-09-25 23:53:45 +00007902 LDiff != RDiff)
7903 return false;
7904
7905 if (LDiff == 0)
7906 return true;
7907
Sanjoy Das96709c42015-09-25 23:53:45 +00007908 APInt FoundRHSLimit;
7909
7910 if (Pred == CmpInst::ICMP_ULT) {
7911 FoundRHSLimit = -RDiff;
7912 } else {
7913 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
Sanjoy Das4f1c4592015-09-28 21:14:32 +00007914 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
Sanjoy Das96709c42015-09-25 23:53:45 +00007915 }
7916
7917 // Try to prove (1) or (2), as needed.
7918 return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
7919 getConstant(FoundRHSLimit));
7920}
7921
Dan Gohman430f0cc2009-07-21 23:03:19 +00007922/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00007923/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007924/// and FoundRHS is true.
7925bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
7926 const SCEV *LHS, const SCEV *RHS,
7927 const SCEV *FoundLHS,
7928 const SCEV *FoundRHS) {
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007929 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
7930 return true;
7931
Sanjoy Das96709c42015-09-25 23:53:45 +00007932 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
7933 return true;
7934
Dan Gohman430f0cc2009-07-21 23:03:19 +00007935 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7936 FoundLHS, FoundRHS) ||
7937 // ~x < ~y --> x > y
7938 isImpliedCondOperandsHelper(Pred, LHS, RHS,
7939 getNotSCEV(FoundRHS),
7940 getNotSCEV(FoundLHS));
7941}
7942
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007943
7944/// If Expr computes ~A, return A else return nullptr
7945static const SCEV *MatchNotExpr(const SCEV *Expr) {
7946 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
Sanjoy Das16e7ff12015-10-13 23:28:31 +00007947 if (!Add || Add->getNumOperands() != 2 ||
7948 !Add->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007949 return nullptr;
7950
7951 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
Sanjoy Das16e7ff12015-10-13 23:28:31 +00007952 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
7953 !AddRHS->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007954 return nullptr;
7955
7956 return AddRHS->getOperand(1);
7957}
7958
7959
7960/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7961template<typename MaxExprType>
7962static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7963 const SCEV *Candidate) {
7964 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7965 if (!MaxExpr) return false;
7966
Sanjoy Das347d2722015-12-01 07:49:27 +00007967 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007968}
7969
7970
7971/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
7972template<typename MaxExprType>
7973static bool IsMinConsistingOf(ScalarEvolution &SE,
7974 const SCEV *MaybeMinExpr,
7975 const SCEV *Candidate) {
7976 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
7977 if (!MaybeMaxExpr)
7978 return false;
7979
7980 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
7981}
7982
Hal Finkela8d205f2015-08-19 01:51:51 +00007983static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
7984 ICmpInst::Predicate Pred,
7985 const SCEV *LHS, const SCEV *RHS) {
7986
7987 // If both sides are affine addrecs for the same loop, with equal
7988 // steps, and we know the recurrences don't wrap, then we only
7989 // need to check the predicate on the starting values.
7990
7991 if (!ICmpInst::isRelational(Pred))
7992 return false;
7993
7994 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7995 if (!LAR)
7996 return false;
7997 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7998 if (!RAR)
7999 return false;
8000 if (LAR->getLoop() != RAR->getLoop())
8001 return false;
8002 if (!LAR->isAffine() || !RAR->isAffine())
8003 return false;
8004
8005 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8006 return false;
8007
Hal Finkelff08a2e2015-08-19 17:26:07 +00008008 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8009 SCEV::FlagNSW : SCEV::FlagNUW;
8010 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
Hal Finkela8d205f2015-08-19 01:51:51 +00008011 return false;
8012
8013 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8014}
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008015
8016/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8017/// expression?
8018static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8019 ICmpInst::Predicate Pred,
8020 const SCEV *LHS, const SCEV *RHS) {
8021 switch (Pred) {
8022 default:
8023 return false;
8024
8025 case ICmpInst::ICMP_SGE:
8026 std::swap(LHS, RHS);
8027 // fall through
8028 case ICmpInst::ICMP_SLE:
8029 return
8030 // min(A, ...) <= A
8031 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8032 // A <= max(A, ...)
8033 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8034
8035 case ICmpInst::ICMP_UGE:
8036 std::swap(LHS, RHS);
8037 // fall through
8038 case ICmpInst::ICMP_ULE:
8039 return
8040 // min(A, ...) <= A
8041 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8042 // A <= max(A, ...)
8043 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8044 }
8045
8046 llvm_unreachable("covered switch fell through?!");
8047}
8048
Dan Gohman430f0cc2009-07-21 23:03:19 +00008049/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00008050/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00008051/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00008052bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00008053ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8054 const SCEV *LHS, const SCEV *RHS,
8055 const SCEV *FoundLHS,
8056 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008057 auto IsKnownPredicateFull =
8058 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8059 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
Sanjoy Das11231482015-10-22 19:57:29 +00008060 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
Sanjoy Dasc1a29772015-11-05 23:45:38 +00008061 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8062 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008063 };
8064
Dan Gohmane65c9172009-07-13 21:35:55 +00008065 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00008066 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8067 case ICmpInst::ICMP_EQ:
8068 case ICmpInst::ICMP_NE:
8069 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8070 return true;
8071 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00008072 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008073 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008074 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8075 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008076 return true;
8077 break;
8078 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008079 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008080 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8081 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008082 return true;
8083 break;
8084 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008085 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008086 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8087 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008088 return true;
8089 break;
8090 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008091 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008092 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8093 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008094 return true;
8095 break;
8096 }
8097
8098 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008099}
8100
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008101/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
8102/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
8103bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8104 const SCEV *LHS,
8105 const SCEV *RHS,
8106 const SCEV *FoundLHS,
8107 const SCEV *FoundRHS) {
8108 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8109 // The restriction on `FoundRHS` be lifted easily -- it exists only to
8110 // reduce the compile time impact of this optimization.
8111 return false;
8112
8113 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8114 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8115 !isa<SCEVConstant>(AddLHS->getOperand(0)))
8116 return false;
8117
8118 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue();
8119
8120 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8121 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8122 ConstantRange FoundLHSRange =
8123 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8124
8125 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8126 // for `LHS`:
8127 APInt Addend =
8128 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue();
8129 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8130
8131 // We can also compute the range of values for `LHS` that satisfy the
8132 // consequent, "`LHS` `Pred` `RHS`":
8133 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue();
8134 ConstantRange SatisfyingLHSRange =
8135 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8136
8137 // The antecedent implies the consequent if every value of `LHS` that
8138 // satisfies the antecedent also satisfies the consequent.
8139 return SatisfyingLHSRange.contains(LHSRange);
8140}
8141
Johannes Doerfert2683e562015-02-09 12:34:23 +00008142// Verify if an linear IV with positive stride can overflow when in a
8143// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008144// stride and the knowledge of NSW/NUW flags on the recurrence.
8145bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8146 bool IsSigned, bool NoWrap) {
8147 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00008148
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008149 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008150 const SCEV *One = getOne(Stride->getType());
Andrew Trick2afa3252011-03-09 17:29:58 +00008151
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008152 if (IsSigned) {
8153 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8154 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8155 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8156 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00008157
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008158 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8159 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00008160 }
Dan Gohman01048422009-06-21 23:46:38 +00008161
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008162 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8163 APInt MaxValue = APInt::getMaxValue(BitWidth);
8164 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8165 .getUnsignedMax();
8166
8167 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8168 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8169}
8170
Johannes Doerfert2683e562015-02-09 12:34:23 +00008171// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008172// greater-than comparison, knowing the invariant term of the comparison,
8173// the stride and the knowledge of NSW/NUW flags on the recurrence.
8174bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8175 bool IsSigned, bool NoWrap) {
8176 if (NoWrap) return false;
8177
8178 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008179 const SCEV *One = getOne(Stride->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008180
8181 if (IsSigned) {
8182 APInt MinRHS = getSignedRange(RHS).getSignedMin();
8183 APInt MinValue = APInt::getSignedMinValue(BitWidth);
8184 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8185 .getSignedMax();
8186
8187 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8188 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8189 }
8190
8191 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8192 APInt MinValue = APInt::getMinValue(BitWidth);
8193 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8194 .getUnsignedMax();
8195
8196 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8197 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8198}
8199
8200// Compute the backedge taken count knowing the interval difference, the
8201// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00008202const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008203 bool Equality) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008204 const SCEV *One = getOne(Step->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008205 Delta = Equality ? getAddExpr(Delta, Step)
8206 : getAddExpr(Delta, getMinusSCEV(Step, One));
8207 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00008208}
8209
Chris Lattner587a75b2005-08-15 23:33:51 +00008210/// HowManyLessThans - Return the number of times a backedge containing the
8211/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00008212/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00008213///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008214/// @param ControlsExit is true when the LHS < RHS condition directly controls
8215/// the branch (loops exits only if condition is true). In this case, we can use
8216/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00008217ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00008218ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008219 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008220 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008221 // We handle only IV < Invariant
8222 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00008223 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008224
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008225 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00008226
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008227 // Avoid weird loops
8228 if (!IV || IV->getLoop() != L || !IV->isAffine())
8229 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008230
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008231 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008232 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008233
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008234 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008235
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008236 // Avoid negative or zero stride values
8237 if (!isKnownPositive(Stride))
8238 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008239
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008240 // Avoid proven overflow cases: this will ensure that the backedge taken count
8241 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008242 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008243 // behaviors like the case of C language.
8244 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8245 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008246
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008247 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8248 : ICmpInst::ICMP_ULT;
8249 const SCEV *Start = IV->getStart();
8250 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008251 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8252 const SCEV *Diff = getMinusSCEV(RHS, Start);
8253 // If we have NoWrap set, then we can assume that the increment won't
8254 // overflow, in which case if RHS - Start is a constant, we don't need to
8255 // do a max operation since we can just figure it out statically
8256 if (NoWrap && isa<SCEVConstant>(Diff)) {
8257 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
8258 if (D.isNegative())
8259 End = Start;
8260 } else
8261 End = IsSigned ? getSMaxExpr(RHS, Start)
8262 : getUMaxExpr(RHS, Start);
8263 }
Dan Gohman51aaf022010-01-26 04:40:18 +00008264
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008265 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00008266
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008267 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8268 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00008269
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008270 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8271 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00008272
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008273 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8274 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8275 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00008276
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008277 // Although End can be a MAX expression we estimate MaxEnd considering only
8278 // the case End = RHS. This is safe because in the other case (End - Start)
8279 // is zero, leading to a zero maximum backedge taken count.
8280 APInt MaxEnd =
8281 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8282 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8283
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00008284 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008285 if (isa<SCEVConstant>(BECount))
8286 MaxBECount = BECount;
8287 else
8288 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8289 getConstant(MinStride), false);
8290
8291 if (isa<SCEVCouldNotCompute>(MaxBECount))
8292 MaxBECount = BECount;
8293
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008294 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008295}
8296
8297ScalarEvolution::ExitLimit
8298ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8299 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008300 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008301 // We handle only IV > Invariant
8302 if (!isLoopInvariant(RHS, L))
8303 return getCouldNotCompute();
8304
8305 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8306
8307 // Avoid weird loops
8308 if (!IV || IV->getLoop() != L || !IV->isAffine())
8309 return getCouldNotCompute();
8310
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008311 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008312 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8313
8314 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8315
8316 // Avoid negative or zero stride values
8317 if (!isKnownPositive(Stride))
8318 return getCouldNotCompute();
8319
8320 // Avoid proven overflow cases: this will ensure that the backedge taken count
8321 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008322 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008323 // behaviors like the case of C language.
8324 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8325 return getCouldNotCompute();
8326
8327 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8328 : ICmpInst::ICMP_UGT;
8329
8330 const SCEV *Start = IV->getStart();
8331 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008332 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8333 const SCEV *Diff = getMinusSCEV(RHS, Start);
8334 // If we have NoWrap set, then we can assume that the increment won't
8335 // overflow, in which case if RHS - Start is a constant, we don't need to
8336 // do a max operation since we can just figure it out statically
8337 if (NoWrap && isa<SCEVConstant>(Diff)) {
8338 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
8339 if (!D.isNegative())
8340 End = Start;
8341 } else
8342 End = IsSigned ? getSMinExpr(RHS, Start)
8343 : getUMinExpr(RHS, Start);
8344 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008345
8346 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8347
8348 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8349 : getUnsignedRange(Start).getUnsignedMax();
8350
8351 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8352 : getUnsignedRange(Stride).getUnsignedMin();
8353
8354 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8355 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8356 : APInt::getMinValue(BitWidth) + (MinStride - 1);
8357
8358 // Although End can be a MIN expression we estimate MinEnd considering only
8359 // the case End = RHS. This is safe because in the other case (Start - End)
8360 // is zero, leading to a zero maximum backedge taken count.
8361 APInt MinEnd =
8362 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8363 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8364
8365
8366 const SCEV *MaxBECount = getCouldNotCompute();
8367 if (isa<SCEVConstant>(BECount))
8368 MaxBECount = BECount;
8369 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00008370 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008371 getConstant(MinStride), false);
8372
8373 if (isa<SCEVCouldNotCompute>(MaxBECount))
8374 MaxBECount = BECount;
8375
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008376 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00008377}
8378
Chris Lattnerd934c702004-04-02 20:23:17 +00008379/// getNumIterationsInRange - Return the number of iterations of this loop that
8380/// produce values in the specified constant range. Another way of looking at
8381/// this is that it returns the first iteration number where the value is not in
8382/// the condition, thus computing the exit count. If the iteration count can't
8383/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00008384const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00008385 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00008386 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00008387 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008388
8389 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00008390 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00008391 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00008392 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008393 Operands[0] = SE.getZero(SC->getType());
Andrew Trick8b55b732011-03-14 16:50:06 +00008394 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00008395 getNoWrapFlags(FlagNW));
Sanjoy Das63914592015-10-18 00:29:20 +00008396 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00008397 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00008398 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00008399 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00008400 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008401 }
8402
8403 // The only time we can solve this is when we have all constant indices.
8404 // Otherwise, we cannot determine the overflow conditions.
Sanjoy Dasff3b8b42015-12-01 07:49:23 +00008405 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00008406 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008407
8408 // Okay at this point we know that all elements of the chrec are constants and
8409 // that the start element is zero.
8410
8411 // First check to see if the range contains zero. If not, the first
8412 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00008413 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00008414 if (!Range.contains(APInt(BitWidth, 0)))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008415 return SE.getZero(getType());
Misha Brukman01808ca2005-04-21 21:13:18 +00008416
Chris Lattnerd934c702004-04-02 20:23:17 +00008417 if (isAffine()) {
8418 // If this is an affine expression then we have this situation:
8419 // Solve {0,+,A} in Range === Ax in Range
8420
Nick Lewycky52460262007-07-16 02:08:00 +00008421 // We know that zero is in the range. If A is positive then we know that
8422 // the upper value of the range must be the first possible exit value.
8423 // If A is negative then the lower of the range is the last possible loop
8424 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00008425 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00008426 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
8427 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00008428
Nick Lewycky52460262007-07-16 02:08:00 +00008429 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00008430 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00008431 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00008432
8433 // Evaluate at the exit value. If we really did fall out of the valid
8434 // range, then we computed our trip count, otherwise wrap around or other
8435 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00008436 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008437 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00008438 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008439
8440 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00008441 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00008442 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00008443 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00008444 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00008445 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00008446 } else if (isQuadratic()) {
8447 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8448 // quadratic equation to solve it. To do this, we must frame our problem in
8449 // terms of figuring out when zero is crossed, instead of when
8450 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00008451 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00008452 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00008453 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8454 // getNoWrapFlags(FlagNW)
8455 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00008456
8457 // Next, solve the constructed addrec
Sanjoy Das01947432015-11-22 21:20:13 +00008458 auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00008459 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8460 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00008461 if (R1) {
8462 // Pick the smallest positive root value.
Sanjoy Das01947432015-11-22 21:20:13 +00008463 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8464 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00008465 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00008466 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00008467
Chris Lattnerd934c702004-04-02 20:23:17 +00008468 // Make sure the root is not off by one. The returned iteration should
8469 // not be in the range, but the previous one should be. When solving
8470 // for "X*X < 5", for example, we should not return a root of 2.
8471 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00008472 R1->getValue(),
8473 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008474 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008475 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00008476 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00008477 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00008478
Dan Gohmana37eaf22007-10-22 18:31:58 +00008479 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008480 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00008481 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00008482 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008483 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008484
Chris Lattnerd934c702004-04-02 20:23:17 +00008485 // If R1 was not in the range, then it is a good return value. Make
8486 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00008487 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00008488 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00008489 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008490 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00008491 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00008492 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008493 }
8494 }
8495 }
8496
Dan Gohman31efa302009-04-18 17:58:19 +00008497 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008498}
8499
Sebastian Pop448712b2014-05-07 18:01:20 +00008500namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008501struct FindUndefs {
8502 bool Found;
8503 FindUndefs() : Found(false) {}
8504
8505 bool follow(const SCEV *S) {
8506 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8507 if (isa<UndefValue>(C->getValue()))
8508 Found = true;
8509 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8510 if (isa<UndefValue>(C->getValue()))
8511 Found = true;
8512 }
8513
8514 // Keep looking if we haven't found it yet.
8515 return !Found;
8516 }
8517 bool isDone() const {
8518 // Stop recursion if we have found an undef.
8519 return Found;
8520 }
8521};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008522}
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008523
8524// Return true when S contains at least an undef value.
8525static inline bool
8526containsUndefs(const SCEV *S) {
8527 FindUndefs F;
8528 SCEVTraversal<FindUndefs> ST(F);
8529 ST.visitAll(S);
8530
8531 return F.Found;
8532}
8533
8534namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00008535// Collect all steps of SCEV expressions.
8536struct SCEVCollectStrides {
8537 ScalarEvolution &SE;
8538 SmallVectorImpl<const SCEV *> &Strides;
8539
8540 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8541 : SE(SE), Strides(S) {}
8542
8543 bool follow(const SCEV *S) {
8544 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8545 Strides.push_back(AR->getStepRecurrence(SE));
8546 return true;
8547 }
8548 bool isDone() const { return false; }
8549};
8550
8551// Collect all SCEVUnknown and SCEVMulExpr expressions.
8552struct SCEVCollectTerms {
8553 SmallVectorImpl<const SCEV *> &Terms;
8554
8555 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8556 : Terms(T) {}
8557
8558 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008559 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008560 if (!containsUndefs(S))
8561 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00008562
8563 // Stop recursion: once we collected a term, do not walk its operands.
8564 return false;
8565 }
8566
8567 // Keep looking.
8568 return true;
8569 }
8570 bool isDone() const { return false; }
8571};
Tobias Grosser374bce02015-10-12 08:02:00 +00008572
8573// Check if a SCEV contains an AddRecExpr.
8574struct SCEVHasAddRec {
8575 bool &ContainsAddRec;
8576
8577 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8578 ContainsAddRec = false;
8579 }
8580
8581 bool follow(const SCEV *S) {
8582 if (isa<SCEVAddRecExpr>(S)) {
8583 ContainsAddRec = true;
8584
8585 // Stop recursion: once we collected a term, do not walk its operands.
8586 return false;
8587 }
8588
8589 // Keep looking.
8590 return true;
8591 }
8592 bool isDone() const { return false; }
8593};
8594
8595// Find factors that are multiplied with an expression that (possibly as a
8596// subexpression) contains an AddRecExpr. In the expression:
8597//
8598// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
8599//
8600// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
8601// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
8602// parameters as they form a product with an induction variable.
8603//
8604// This collector expects all array size parameters to be in the same MulExpr.
8605// It might be necessary to later add support for collecting parameters that are
8606// spread over different nested MulExpr.
8607struct SCEVCollectAddRecMultiplies {
8608 SmallVectorImpl<const SCEV *> &Terms;
8609 ScalarEvolution &SE;
8610
8611 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
8612 : Terms(T), SE(SE) {}
8613
8614 bool follow(const SCEV *S) {
8615 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
8616 bool HasAddRec = false;
8617 SmallVector<const SCEV *, 0> Operands;
8618 for (auto Op : Mul->operands()) {
8619 if (isa<SCEVUnknown>(Op)) {
8620 Operands.push_back(Op);
8621 } else {
8622 bool ContainsAddRec;
8623 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
8624 visitAll(Op, ContiansAddRec);
8625 HasAddRec |= ContainsAddRec;
8626 }
8627 }
8628 if (Operands.size() == 0)
8629 return true;
8630
8631 if (!HasAddRec)
8632 return false;
8633
8634 Terms.push_back(SE.getMulExpr(Operands));
8635 // Stop recursion: once we collected a term, do not walk its operands.
8636 return false;
8637 }
8638
8639 // Keep looking.
8640 return true;
8641 }
8642 bool isDone() const { return false; }
8643};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008644}
Sebastian Pop448712b2014-05-07 18:01:20 +00008645
Tobias Grosser374bce02015-10-12 08:02:00 +00008646/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
8647/// two places:
8648/// 1) The strides of AddRec expressions.
8649/// 2) Unknowns that are multiplied with AddRec expressions.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008650void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
8651 SmallVectorImpl<const SCEV *> &Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008652 SmallVector<const SCEV *, 4> Strides;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008653 SCEVCollectStrides StrideCollector(*this, Strides);
8654 visitAll(Expr, StrideCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00008655
8656 DEBUG({
8657 dbgs() << "Strides:\n";
8658 for (const SCEV *S : Strides)
8659 dbgs() << *S << "\n";
8660 });
8661
8662 for (const SCEV *S : Strides) {
8663 SCEVCollectTerms TermCollector(Terms);
8664 visitAll(S, TermCollector);
8665 }
8666
8667 DEBUG({
8668 dbgs() << "Terms:\n";
8669 for (const SCEV *T : Terms)
8670 dbgs() << *T << "\n";
8671 });
Tobias Grosser374bce02015-10-12 08:02:00 +00008672
8673 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
8674 visitAll(Expr, MulCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00008675}
8676
Sebastian Popb1a548f2014-05-12 19:01:53 +00008677static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00008678 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00008679 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00008680 int Last = Terms.size() - 1;
8681 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00008682
Sebastian Pop448712b2014-05-07 18:01:20 +00008683 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00008684 if (Last == 0) {
8685 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008686 SmallVector<const SCEV *, 2> Qs;
8687 for (const SCEV *Op : M->operands())
8688 if (!isa<SCEVConstant>(Op))
8689 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00008690
Sebastian Pope30bd352014-05-27 22:41:56 +00008691 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00008692 }
8693
Sebastian Pope30bd352014-05-27 22:41:56 +00008694 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008695 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00008696 }
8697
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008698 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008699 // Normalize the terms before the next call to findArrayDimensionsRec.
8700 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008701 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008702
8703 // Bail out when GCD does not evenly divide one of the terms.
8704 if (!R->isZero())
8705 return false;
8706
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008707 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00008708 }
8709
Tobias Grosser3080cf12014-05-08 07:55:34 +00008710 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00008711 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
8712 return isa<SCEVConstant>(E);
8713 }),
8714 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00008715
Sebastian Pop448712b2014-05-07 18:01:20 +00008716 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00008717 if (!findArrayDimensionsRec(SE, Terms, Sizes))
8718 return false;
8719
Sebastian Pope30bd352014-05-27 22:41:56 +00008720 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008721 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00008722}
Sebastian Popc62c6792013-11-12 22:47:20 +00008723
Sebastian Pop448712b2014-05-07 18:01:20 +00008724namespace {
8725struct FindParameter {
8726 bool FoundParameter;
8727 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00008728
Sebastian Pop448712b2014-05-07 18:01:20 +00008729 bool follow(const SCEV *S) {
8730 if (isa<SCEVUnknown>(S)) {
8731 FoundParameter = true;
8732 // Stop recursion: we found a parameter.
8733 return false;
8734 }
8735 // Keep looking.
8736 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00008737 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008738 bool isDone() const {
8739 // Stop recursion if we have found a parameter.
8740 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00008741 }
Sebastian Popc62c6792013-11-12 22:47:20 +00008742};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008743}
Sebastian Popc62c6792013-11-12 22:47:20 +00008744
Sebastian Pop448712b2014-05-07 18:01:20 +00008745// Returns true when S contains at least a SCEVUnknown parameter.
8746static inline bool
8747containsParameters(const SCEV *S) {
8748 FindParameter F;
8749 SCEVTraversal<FindParameter> ST(F);
8750 ST.visitAll(S);
8751
8752 return F.FoundParameter;
8753}
8754
8755// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
8756static inline bool
8757containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
8758 for (const SCEV *T : Terms)
8759 if (containsParameters(T))
8760 return true;
8761 return false;
8762}
8763
8764// Return the number of product terms in S.
8765static inline int numberOfTerms(const SCEV *S) {
8766 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
8767 return Expr->getNumOperands();
8768 return 1;
8769}
8770
Sebastian Popa6e58602014-05-27 22:41:45 +00008771static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
8772 if (isa<SCEVConstant>(T))
8773 return nullptr;
8774
8775 if (isa<SCEVUnknown>(T))
8776 return T;
8777
8778 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
8779 SmallVector<const SCEV *, 2> Factors;
8780 for (const SCEV *Op : M->operands())
8781 if (!isa<SCEVConstant>(Op))
8782 Factors.push_back(Op);
8783
8784 return SE.getMulExpr(Factors);
8785 }
8786
8787 return T;
8788}
8789
8790/// Return the size of an element read or written by Inst.
8791const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
8792 Type *Ty;
8793 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
8794 Ty = Store->getValueOperand()->getType();
8795 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00008796 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00008797 else
8798 return nullptr;
8799
8800 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
8801 return getSizeOfExpr(ETy, Ty);
8802}
8803
Sebastian Pop448712b2014-05-07 18:01:20 +00008804/// Second step of delinearization: compute the array dimensions Sizes from the
8805/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00008806void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
8807 SmallVectorImpl<const SCEV *> &Sizes,
8808 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00008809
Sebastian Pop53524082014-05-29 19:44:05 +00008810 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00008811 return;
8812
8813 // Early return when Terms do not contain parameters: we do not delinearize
8814 // non parametric SCEVs.
8815 if (!containsParameters(Terms))
8816 return;
8817
8818 DEBUG({
8819 dbgs() << "Terms:\n";
8820 for (const SCEV *T : Terms)
8821 dbgs() << *T << "\n";
8822 });
8823
8824 // Remove duplicates.
8825 std::sort(Terms.begin(), Terms.end());
8826 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
8827
8828 // Put larger terms first.
8829 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
8830 return numberOfTerms(LHS) > numberOfTerms(RHS);
8831 });
8832
Sebastian Popa6e58602014-05-27 22:41:45 +00008833 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8834
Tobias Grosser374bce02015-10-12 08:02:00 +00008835 // Try to divide all terms by the element size. If term is not divisible by
8836 // element size, proceed with the original term.
Sebastian Popa6e58602014-05-27 22:41:45 +00008837 for (const SCEV *&Term : Terms) {
8838 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008839 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Tobias Grosser374bce02015-10-12 08:02:00 +00008840 if (!Q->isZero())
8841 Term = Q;
Sebastian Popa6e58602014-05-27 22:41:45 +00008842 }
8843
8844 SmallVector<const SCEV *, 4> NewTerms;
8845
8846 // Remove constant factors.
8847 for (const SCEV *T : Terms)
8848 if (const SCEV *NewT = removeConstantFactors(SE, T))
8849 NewTerms.push_back(NewT);
8850
Sebastian Pop448712b2014-05-07 18:01:20 +00008851 DEBUG({
8852 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00008853 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00008854 dbgs() << *T << "\n";
8855 });
8856
Sebastian Popa6e58602014-05-27 22:41:45 +00008857 if (NewTerms.empty() ||
8858 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00008859 Sizes.clear();
8860 return;
8861 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008862
Sebastian Popa6e58602014-05-27 22:41:45 +00008863 // The last element to be pushed into Sizes is the size of an element.
8864 Sizes.push_back(ElementSize);
8865
Sebastian Pop448712b2014-05-07 18:01:20 +00008866 DEBUG({
8867 dbgs() << "Sizes:\n";
8868 for (const SCEV *S : Sizes)
8869 dbgs() << *S << "\n";
8870 });
8871}
8872
8873/// Third step of delinearization: compute the access functions for the
8874/// Subscripts based on the dimensions in Sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008875void ScalarEvolution::computeAccessFunctions(
8876 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
8877 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008878
Sebastian Popb1a548f2014-05-12 19:01:53 +00008879 // Early exit in case this SCEV is not an affine multivariate function.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008880 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008881 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008882
Sanjoy Das1195dbe2015-10-08 03:45:58 +00008883 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008884 if (!AR->isAffine())
8885 return;
8886
8887 const SCEV *Res = Expr;
Sebastian Pop448712b2014-05-07 18:01:20 +00008888 int Last = Sizes.size() - 1;
8889 for (int i = Last; i >= 0; i--) {
8890 const SCEV *Q, *R;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008891 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00008892
8893 DEBUG({
8894 dbgs() << "Res: " << *Res << "\n";
8895 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
8896 dbgs() << "Res divided by Sizes[i]:\n";
8897 dbgs() << "Quotient: " << *Q << "\n";
8898 dbgs() << "Remainder: " << *R << "\n";
8899 });
8900
8901 Res = Q;
8902
Sebastian Popa6e58602014-05-27 22:41:45 +00008903 // Do not record the last subscript corresponding to the size of elements in
8904 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00008905 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008906
8907 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00008908 if (isa<SCEVAddRecExpr>(R)) {
8909 Subscripts.clear();
8910 Sizes.clear();
8911 return;
8912 }
Sebastian Popa6e58602014-05-27 22:41:45 +00008913
Sebastian Pop448712b2014-05-07 18:01:20 +00008914 continue;
8915 }
8916
8917 // Record the access function for the current subscript.
8918 Subscripts.push_back(R);
8919 }
8920
8921 // Also push in last position the remainder of the last division: it will be
8922 // the access function of the innermost dimension.
8923 Subscripts.push_back(Res);
8924
8925 std::reverse(Subscripts.begin(), Subscripts.end());
8926
8927 DEBUG({
8928 dbgs() << "Subscripts:\n";
8929 for (const SCEV *S : Subscripts)
8930 dbgs() << *S << "\n";
8931 });
Sebastian Pop448712b2014-05-07 18:01:20 +00008932}
8933
Sebastian Popc62c6792013-11-12 22:47:20 +00008934/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
8935/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00008936/// is the offset start of the array. The SCEV->delinearize algorithm computes
8937/// the multiples of SCEV coefficients: that is a pattern matching of sub
8938/// expressions in the stride and base of a SCEV corresponding to the
8939/// computation of a GCD (greatest common divisor) of base and stride. When
8940/// SCEV->delinearize fails, it returns the SCEV unchanged.
8941///
8942/// For example: when analyzing the memory access A[i][j][k] in this loop nest
8943///
8944/// void foo(long n, long m, long o, double A[n][m][o]) {
8945///
8946/// for (long i = 0; i < n; i++)
8947/// for (long j = 0; j < m; j++)
8948/// for (long k = 0; k < o; k++)
8949/// A[i][j][k] = 1.0;
8950/// }
8951///
8952/// the delinearization input is the following AddRec SCEV:
8953///
8954/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
8955///
8956/// From this SCEV, we are able to say that the base offset of the access is %A
8957/// because it appears as an offset that does not divide any of the strides in
8958/// the loops:
8959///
8960/// CHECK: Base offset: %A
8961///
8962/// and then SCEV->delinearize determines the size of some of the dimensions of
8963/// the array as these are the multiples by which the strides are happening:
8964///
8965/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
8966///
8967/// Note that the outermost dimension remains of UnknownSize because there are
8968/// no strides that would help identifying the size of the last dimension: when
8969/// the array has been statically allocated, one could compute the size of that
8970/// dimension by dividing the overall size of the array by the size of the known
8971/// dimensions: %m * %o * 8.
8972///
8973/// Finally delinearize provides the access functions for the array reference
8974/// that does correspond to A[i][j][k] of the above C testcase:
8975///
8976/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
8977///
8978/// The testcases are checking the output of a function pass:
8979/// DelinearizationPass that walks through all loads and stores of a function
8980/// asking for the SCEV of the memory access with respect to all enclosing
8981/// loops, calling SCEV->delinearize on that and printing the results.
8982
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008983void ScalarEvolution::delinearize(const SCEV *Expr,
Sebastian Pop28e6b972014-05-27 22:41:51 +00008984 SmallVectorImpl<const SCEV *> &Subscripts,
8985 SmallVectorImpl<const SCEV *> &Sizes,
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008986 const SCEV *ElementSize) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008987 // First step: collect parametric terms.
8988 SmallVector<const SCEV *, 4> Terms;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008989 collectParametricTerms(Expr, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00008990
Sebastian Popb1a548f2014-05-12 19:01:53 +00008991 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008992 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008993
Sebastian Pop448712b2014-05-07 18:01:20 +00008994 // Second step: find subscript sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008995 findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00008996
Sebastian Popb1a548f2014-05-12 19:01:53 +00008997 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008998 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008999
Sebastian Pop448712b2014-05-07 18:01:20 +00009000 // Third step: compute the access functions for each subscript.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009001 computeAccessFunctions(Expr, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00009002
Sebastian Pop28e6b972014-05-27 22:41:51 +00009003 if (Subscripts.empty())
9004 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00009005
Sebastian Pop448712b2014-05-07 18:01:20 +00009006 DEBUG({
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009007 dbgs() << "succeeded to delinearize " << *Expr << "\n";
Sebastian Pop448712b2014-05-07 18:01:20 +00009008 dbgs() << "ArrayDecl[UnknownSize]";
9009 for (const SCEV *S : Sizes)
9010 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00009011
Sebastian Pop444621a2014-05-09 22:45:02 +00009012 dbgs() << "\nArrayRef";
9013 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00009014 dbgs() << "[" << *S << "]";
9015 dbgs() << "\n";
9016 });
Sebastian Popc62c6792013-11-12 22:47:20 +00009017}
Chris Lattnerd934c702004-04-02 20:23:17 +00009018
9019//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00009020// SCEVCallbackVH Class Implementation
9021//===----------------------------------------------------------------------===//
9022
Dan Gohmand33a0902009-05-19 19:22:47 +00009023void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00009024 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00009025 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9026 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009027 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00009028 // this now dangles!
9029}
9030
Dan Gohman7a066722010-07-28 01:09:07 +00009031void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00009032 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00009033
Dan Gohman48f82222009-05-04 22:30:44 +00009034 // Forget all the expressions associated with users of the old value,
9035 // so that future queries will recompute the expressions using the new
9036 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00009037 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00009038 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00009039 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00009040 while (!Worklist.empty()) {
9041 User *U = Worklist.pop_back_val();
9042 // Deleting the Old value will cause this to dangle. Postpone
9043 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009044 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00009045 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00009046 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00009047 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00009048 if (PHINode *PN = dyn_cast<PHINode>(U))
9049 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009050 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00009051 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00009052 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009053 // Delete the Old value.
9054 if (PHINode *PN = dyn_cast<PHINode>(Old))
9055 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009056 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009057 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00009058}
9059
Dan Gohmand33a0902009-05-19 19:22:47 +00009060ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00009061 : CallbackVH(V), SE(se) {}
9062
9063//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00009064// ScalarEvolution Class Implementation
9065//===----------------------------------------------------------------------===//
9066
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009067ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9068 AssumptionCache &AC, DominatorTree &DT,
9069 LoopInfo &LI)
9070 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9071 CouldNotCompute(new SCEVCouldNotCompute()),
Sanjoy Das7d910f22015-10-02 18:50:30 +00009072 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9073 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9074 FirstUnknown(nullptr) {}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009075
9076ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9077 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
9078 CouldNotCompute(std::move(Arg.CouldNotCompute)),
9079 ValueExprMap(std::move(Arg.ValueExprMap)),
Sanjoy Das7d910f22015-10-02 18:50:30 +00009080 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009081 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9082 ConstantEvolutionLoopExitValue(
9083 std::move(Arg.ConstantEvolutionLoopExitValue)),
9084 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9085 LoopDispositions(std::move(Arg.LoopDispositions)),
9086 BlockDispositions(std::move(Arg.BlockDispositions)),
9087 UnsignedRanges(std::move(Arg.UnsignedRanges)),
9088 SignedRanges(std::move(Arg.SignedRanges)),
9089 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
Silviu Barangae3c05342015-11-02 14:41:02 +00009090 UniquePreds(std::move(Arg.UniquePreds)),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009091 SCEVAllocator(std::move(Arg.SCEVAllocator)),
9092 FirstUnknown(Arg.FirstUnknown) {
9093 Arg.FirstUnknown = nullptr;
Dan Gohmanc8e23622009-04-21 23:15:49 +00009094}
9095
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009096ScalarEvolution::~ScalarEvolution() {
Dan Gohman7cac9572010-08-02 23:49:30 +00009097 // Iterate through all the SCEVUnknown instances and call their
9098 // destructors, so that they release their references to their values.
Naomi Musgravef90c1be2015-09-16 23:46:40 +00009099 for (SCEVUnknown *U = FirstUnknown; U;) {
9100 SCEVUnknown *Tmp = U;
9101 U = U->Next;
9102 Tmp->~SCEVUnknown();
9103 }
Craig Topper9f008862014-04-15 04:59:12 +00009104 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00009105
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009106 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00009107
9108 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9109 // that a loop had multiple computable exits.
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009110 for (auto &BTCI : BackedgeTakenCounts)
9111 BTCI.second.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00009112
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00009113 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00009114 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
Sanjoy Das7d910f22015-10-02 18:50:30 +00009115 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
Dan Gohman0a40ad92009-04-16 03:18:22 +00009116}
9117
Dan Gohmanc8e23622009-04-21 23:15:49 +00009118bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00009119 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00009120}
9121
Dan Gohmanc8e23622009-04-21 23:15:49 +00009122static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00009123 const Loop *L) {
9124 // Print all inner loops first
9125 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9126 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00009127
Dan Gohmanbc694912010-01-09 18:17:45 +00009128 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00009129 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009130 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00009131
Dan Gohmancb0efec2009-12-18 01:14:11 +00009132 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00009133 L->getExitBlocks(ExitBlocks);
9134 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00009135 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00009136
Dan Gohman0bddac12009-02-24 18:55:53 +00009137 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9138 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00009139 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00009140 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00009141 }
9142
Dan Gohmanbc694912010-01-09 18:17:45 +00009143 OS << "\n"
9144 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00009145 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009146 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00009147
9148 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9149 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9150 } else {
9151 OS << "Unpredictable max backedge-taken count. ";
9152 }
9153
9154 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00009155}
9156
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009157void ScalarEvolution::print(raw_ostream &OS) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00009158 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00009159 // out SCEV values of all instructions that are interesting. Doing
9160 // this potentially causes it to create new SCEV objects though,
9161 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00009162 // observable from outside the class though, so casting away the
9163 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00009164 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00009165
Dan Gohmanbc694912010-01-09 18:17:45 +00009166 OS << "Classifying expressions for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009167 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009168 OS << "\n";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009169 for (Instruction &I : instructions(F))
9170 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9171 OS << I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00009172 OS << " --> ";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009173 const SCEV *SV = SE.getSCEV(&I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009174 SV->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009175 if (!isa<SCEVCouldNotCompute>(SV)) {
9176 OS << " U: ";
9177 SE.getUnsignedRange(SV).print(OS);
9178 OS << " S: ";
9179 SE.getSignedRange(SV).print(OS);
9180 }
Misha Brukman01808ca2005-04-21 21:13:18 +00009181
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009182 const Loop *L = LI.getLoopFor(I.getParent());
Dan Gohmanb9063a82009-06-19 17:49:54 +00009183
Dan Gohmanaf752342009-07-07 17:06:11 +00009184 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00009185 if (AtUse != SV) {
9186 OS << " --> ";
9187 AtUse->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009188 if (!isa<SCEVCouldNotCompute>(AtUse)) {
9189 OS << " U: ";
9190 SE.getUnsignedRange(AtUse).print(OS);
9191 OS << " S: ";
9192 SE.getSignedRange(AtUse).print(OS);
9193 }
Dan Gohmanb9063a82009-06-19 17:49:54 +00009194 }
9195
9196 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00009197 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00009198 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00009199 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00009200 OS << "<<Unknown>>";
9201 } else {
9202 OS << *ExitValue;
9203 }
9204 }
9205
Chris Lattnerd934c702004-04-02 20:23:17 +00009206 OS << "\n";
9207 }
9208
Dan Gohmanbc694912010-01-09 18:17:45 +00009209 OS << "Determining loop execution counts for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009210 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009211 OS << "\n";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009212 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
Dan Gohmanc8e23622009-04-21 23:15:49 +00009213 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009214}
Dan Gohmane20f8242009-04-21 00:47:46 +00009215
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009216ScalarEvolution::LoopDisposition
9217ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009218 auto &Values = LoopDispositions[S];
9219 for (auto &V : Values) {
9220 if (V.getPointer() == L)
9221 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009222 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009223 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009224 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009225 auto &Values2 = LoopDispositions[S];
9226 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9227 if (V.getPointer() == L) {
9228 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009229 break;
9230 }
9231 }
9232 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009233}
9234
9235ScalarEvolution::LoopDisposition
9236ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009237 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009238 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009239 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009240 case scTruncate:
9241 case scZeroExtend:
9242 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009243 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00009244 case scAddRecExpr: {
9245 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9246
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009247 // If L is the addrec's loop, it's computable.
9248 if (AR->getLoop() == L)
9249 return LoopComputable;
9250
Dan Gohmanafd6db92010-11-17 21:23:15 +00009251 // Add recurrences are never invariant in the function-body (null loop).
9252 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009253 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009254
9255 // This recurrence is variant w.r.t. L if L contains AR's loop.
9256 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009257 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009258
9259 // This recurrence is invariant w.r.t. L if AR's loop contains L.
9260 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009261 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009262
9263 // This recurrence is variant w.r.t. L if any of its operands
9264 // are variant.
Sanjoy Das01947432015-11-22 21:20:13 +00009265 for (auto *Op : AR->operands())
9266 if (!isLoopInvariant(Op, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009267 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009268
9269 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009270 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009271 }
9272 case scAddExpr:
9273 case scMulExpr:
9274 case scUMaxExpr:
9275 case scSMaxExpr: {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009276 bool HasVarying = false;
Sanjoy Das01947432015-11-22 21:20:13 +00009277 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9278 LoopDisposition D = getLoopDisposition(Op, L);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009279 if (D == LoopVariant)
9280 return LoopVariant;
9281 if (D == LoopComputable)
9282 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009283 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009284 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009285 }
9286 case scUDivExpr: {
9287 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009288 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9289 if (LD == LoopVariant)
9290 return LoopVariant;
9291 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9292 if (RD == LoopVariant)
9293 return LoopVariant;
9294 return (LD == LoopInvariant && RD == LoopInvariant) ?
9295 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009296 }
9297 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009298 // All non-instruction values are loop invariant. All instructions are loop
9299 // invariant if they are not contained in the specified loop.
9300 // Instructions are never considered invariant in the function body
9301 // (null loop) because they are defined within the "loop".
Sanjoy Das01947432015-11-22 21:20:13 +00009302 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009303 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9304 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009305 case scCouldNotCompute:
9306 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00009307 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009308 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009309}
9310
9311bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9312 return getLoopDisposition(S, L) == LoopInvariant;
9313}
9314
9315bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9316 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009317}
Dan Gohman20d9ce22010-11-17 21:41:58 +00009318
Dan Gohman8ea83d82010-11-18 00:34:22 +00009319ScalarEvolution::BlockDisposition
9320ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009321 auto &Values = BlockDispositions[S];
9322 for (auto &V : Values) {
9323 if (V.getPointer() == BB)
9324 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009325 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009326 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009327 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009328 auto &Values2 = BlockDispositions[S];
9329 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9330 if (V.getPointer() == BB) {
9331 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009332 break;
9333 }
9334 }
9335 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009336}
9337
Dan Gohman8ea83d82010-11-18 00:34:22 +00009338ScalarEvolution::BlockDisposition
9339ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009340 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00009341 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009342 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009343 case scTruncate:
9344 case scZeroExtend:
9345 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009346 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00009347 case scAddRecExpr: {
9348 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00009349 // to test for proper dominance too, because the instruction which
9350 // produces the addrec's value is a PHI, and a PHI effectively properly
9351 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00009352 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009353 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009354 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009355 }
9356 // FALL THROUGH into SCEVNAryExpr handling.
9357 case scAddExpr:
9358 case scMulExpr:
9359 case scUMaxExpr:
9360 case scSMaxExpr: {
9361 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009362 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009363 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00009364 I != E; ++I) {
9365 BlockDisposition D = getBlockDisposition(*I, BB);
9366 if (D == DoesNotDominateBlock)
9367 return DoesNotDominateBlock;
9368 if (D == DominatesBlock)
9369 Proper = false;
9370 }
9371 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009372 }
9373 case scUDivExpr: {
9374 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009375 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9376 BlockDisposition LD = getBlockDisposition(LHS, BB);
9377 if (LD == DoesNotDominateBlock)
9378 return DoesNotDominateBlock;
9379 BlockDisposition RD = getBlockDisposition(RHS, BB);
9380 if (RD == DoesNotDominateBlock)
9381 return DoesNotDominateBlock;
9382 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9383 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009384 }
9385 case scUnknown:
9386 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00009387 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9388 if (I->getParent() == BB)
9389 return DominatesBlock;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009390 if (DT.properlyDominates(I->getParent(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009391 return ProperlyDominatesBlock;
9392 return DoesNotDominateBlock;
9393 }
9394 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009395 case scCouldNotCompute:
9396 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00009397 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009398 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00009399}
9400
9401bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9402 return getBlockDisposition(S, BB) >= DominatesBlock;
9403}
9404
9405bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9406 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009407}
Dan Gohman534749b2010-11-17 22:27:42 +00009408
Andrew Trick365e31c2012-07-13 23:33:03 +00009409namespace {
9410// Search for a SCEV expression node within an expression tree.
9411// Implements SCEVTraversal::Visitor.
9412struct SCEVSearch {
9413 const SCEV *Node;
9414 bool IsFound;
9415
9416 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9417
9418 bool follow(const SCEV *S) {
9419 IsFound |= (S == Node);
9420 return !IsFound;
9421 }
9422 bool isDone() const { return IsFound; }
9423};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00009424}
Andrew Trick365e31c2012-07-13 23:33:03 +00009425
Dan Gohman534749b2010-11-17 22:27:42 +00009426bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00009427 SCEVSearch Search(Op);
9428 visitAll(S, Search);
9429 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00009430}
Dan Gohman7e6b3932010-11-17 23:28:48 +00009431
9432void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9433 ValuesAtScopes.erase(S);
9434 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009435 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00009436 UnsignedRanges.erase(S);
9437 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00009438
9439 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
9440 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
9441 BackedgeTakenInfo &BEInfo = I->second;
9442 if (BEInfo.hasOperand(S, this)) {
9443 BEInfo.clear();
9444 BackedgeTakenCounts.erase(I++);
9445 }
9446 else
9447 ++I;
9448 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00009449}
Benjamin Kramer214935e2012-10-26 17:31:32 +00009450
9451typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009452
Alp Tokercb402912014-01-24 17:20:08 +00009453/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009454static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9455 size_t Pos = 0;
9456 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9457 Str.replace(Pos, From.size(), To.data(), To.size());
9458 Pos += To.size();
9459 }
9460}
9461
Benjamin Kramer214935e2012-10-26 17:31:32 +00009462/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9463static void
9464getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9465 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
9466 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
9467
9468 std::string &S = Map[L];
9469 if (S.empty()) {
9470 raw_string_ostream OS(S);
9471 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009472
9473 // false and 0 are semantically equivalent. This can happen in dead loops.
9474 replaceSubString(OS.str(), "false", "0");
9475 // Remove wrap flags, their use in SCEV is highly fragile.
9476 // FIXME: Remove this when SCEV gets smarter about them.
9477 replaceSubString(OS.str(), "<nw>", "");
9478 replaceSubString(OS.str(), "<nsw>", "");
9479 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00009480 }
9481 }
9482}
9483
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009484void ScalarEvolution::verify() const {
Benjamin Kramer214935e2012-10-26 17:31:32 +00009485 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9486
9487 // Gather stringified backedge taken counts for all loops using SCEV's caches.
9488 // FIXME: It would be much better to store actual values instead of strings,
9489 // but SCEV pointers will change if we drop the caches.
9490 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009491 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
Benjamin Kramer214935e2012-10-26 17:31:32 +00009492 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9493
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009494 // Gather stringified backedge taken counts for all loops using a fresh
9495 // ScalarEvolution object.
9496 ScalarEvolution SE2(F, TLI, AC, DT, LI);
9497 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9498 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
Benjamin Kramer214935e2012-10-26 17:31:32 +00009499
9500 // Now compare whether they're the same with and without caches. This allows
9501 // verifying that no pass changed the cache.
9502 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9503 "New loops suddenly appeared!");
9504
9505 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9506 OldE = BackedgeDumpsOld.end(),
9507 NewI = BackedgeDumpsNew.begin();
9508 OldI != OldE; ++OldI, ++NewI) {
9509 assert(OldI->first == NewI->first && "Loop order changed!");
9510
9511 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9512 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009513 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00009514 // means that a pass is buggy or SCEV has to learn a new pattern but is
9515 // usually not harmful.
9516 if (OldI->second != NewI->second &&
9517 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009518 NewI->second.find("undef") == std::string::npos &&
9519 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00009520 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009521 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00009522 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009523 << "' changed from '" << OldI->second
9524 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00009525 std::abort();
9526 }
9527 }
9528
9529 // TODO: Verify more things.
9530}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009531
9532char ScalarEvolutionAnalysis::PassID;
9533
9534ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
9535 AnalysisManager<Function> *AM) {
9536 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F),
9537 AM->getResult<AssumptionAnalysis>(F),
9538 AM->getResult<DominatorTreeAnalysis>(F),
9539 AM->getResult<LoopAnalysis>(F));
9540}
9541
9542PreservedAnalyses
9543ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) {
9544 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS);
9545 return PreservedAnalyses::all();
9546}
9547
9548INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
9549 "Scalar Evolution Analysis", false, true)
9550INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
9551INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
9552INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
9553INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
9554INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
9555 "Scalar Evolution Analysis", false, true)
9556char ScalarEvolutionWrapperPass::ID = 0;
9557
9558ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
9559 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
9560}
9561
9562bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
9563 SE.reset(new ScalarEvolution(
9564 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
9565 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
9566 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
9567 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
9568 return false;
9569}
9570
9571void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
9572
9573void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
9574 SE->print(OS);
9575}
9576
9577void ScalarEvolutionWrapperPass::verifyAnalysis() const {
9578 if (!VerifySCEV)
9579 return;
9580
9581 SE->verify();
9582}
9583
9584void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
9585 AU.setPreservesAll();
9586 AU.addRequiredTransitive<AssumptionCacheTracker>();
9587 AU.addRequiredTransitive<LoopInfoWrapperPass>();
9588 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
9589 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
9590}
Silviu Barangae3c05342015-11-02 14:41:02 +00009591
9592const SCEVPredicate *
9593ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
9594 const SCEVConstant *RHS) {
9595 FoldingSetNodeID ID;
9596 // Unique this node based on the arguments
9597 ID.AddInteger(SCEVPredicate::P_Equal);
9598 ID.AddPointer(LHS);
9599 ID.AddPointer(RHS);
9600 void *IP = nullptr;
9601 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
9602 return S;
9603 SCEVEqualPredicate *Eq = new (SCEVAllocator)
9604 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
9605 UniquePreds.InsertNode(Eq, IP);
9606 return Eq;
9607}
9608
Benjamin Kramer83709b12015-11-16 09:01:28 +00009609namespace {
Silviu Barangae3c05342015-11-02 14:41:02 +00009610class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
9611public:
9612 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
9613 SCEVUnionPredicate &A) {
9614 SCEVPredicateRewriter Rewriter(SE, A);
9615 return Rewriter.visit(Scev);
9616 }
9617
9618 SCEVPredicateRewriter(ScalarEvolution &SE, SCEVUnionPredicate &P)
9619 : SCEVRewriteVisitor(SE), P(P) {}
9620
9621 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
9622 auto ExprPreds = P.getPredicatesForExpr(Expr);
9623 for (auto *Pred : ExprPreds)
9624 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
9625 if (IPred->getLHS() == Expr)
9626 return IPred->getRHS();
9627
9628 return Expr;
9629 }
9630
9631private:
9632 SCEVUnionPredicate &P;
9633};
Benjamin Kramer83709b12015-11-16 09:01:28 +00009634} // end anonymous namespace
Silviu Barangae3c05342015-11-02 14:41:02 +00009635
9636const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *Scev,
9637 SCEVUnionPredicate &Preds) {
9638 return SCEVPredicateRewriter::rewrite(Scev, *this, Preds);
9639}
9640
9641/// SCEV predicates
9642SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
9643 SCEVPredicateKind Kind)
9644 : FastID(ID), Kind(Kind) {}
9645
Andy Gibbs81b1a272015-12-03 08:20:20 +00009646SCEVPredicate::~SCEVPredicate() {}
9647
Silviu Barangae3c05342015-11-02 14:41:02 +00009648SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
9649 const SCEVUnknown *LHS,
9650 const SCEVConstant *RHS)
9651 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
9652
9653bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
9654 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
9655
9656 if (!Op)
9657 return false;
9658
9659 return Op->LHS == LHS && Op->RHS == RHS;
9660}
9661
9662bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
9663
9664const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
9665
9666void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
9667 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
9668}
9669
9670/// Union predicates don't get cached so create a dummy set ID for it.
9671SCEVUnionPredicate::SCEVUnionPredicate()
9672 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
9673
9674bool SCEVUnionPredicate::isAlwaysTrue() const {
Sanjoy Das3b827c72015-11-29 23:40:53 +00009675 return all_of(Preds,
9676 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
Silviu Barangae3c05342015-11-02 14:41:02 +00009677}
9678
9679ArrayRef<const SCEVPredicate *>
9680SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
9681 auto I = SCEVToPreds.find(Expr);
9682 if (I == SCEVToPreds.end())
9683 return ArrayRef<const SCEVPredicate *>();
9684 return I->second;
9685}
9686
9687bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
9688 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
Sanjoy Das3b827c72015-11-29 23:40:53 +00009689 return all_of(Set->Preds,
9690 [this](const SCEVPredicate *I) { return this->implies(I); });
Silviu Barangae3c05342015-11-02 14:41:02 +00009691
9692 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
9693 if (ScevPredsIt == SCEVToPreds.end())
9694 return false;
9695 auto &SCEVPreds = ScevPredsIt->second;
9696
Sanjoy Dasff3b8b42015-12-01 07:49:23 +00009697 return any_of(SCEVPreds,
9698 [N](const SCEVPredicate *I) { return I->implies(N); });
Silviu Barangae3c05342015-11-02 14:41:02 +00009699}
9700
9701const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
9702
9703void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
9704 for (auto Pred : Preds)
9705 Pred->print(OS, Depth);
9706}
9707
9708void SCEVUnionPredicate::add(const SCEVPredicate *N) {
9709 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
9710 for (auto Pred : Set->Preds)
9711 add(Pred);
9712 return;
9713 }
9714
9715 if (implies(N))
9716 return;
9717
9718 const SCEV *Key = N->getExpr();
9719 assert(Key && "Only SCEVUnionPredicate doesn't have an "
9720 " associated expression!");
9721
9722 SCEVToPreds[Key].push_back(N);
9723 Preds.push_back(N);
9724}