blob: 00536235287d2009fe420eeb1360d22993963d7b [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000023#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000024#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000025#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000028#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000029#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/GlobalAlias.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000037#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000038#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000039#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000040#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000041#include <algorithm>
42#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000043#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000044using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000045using namespace llvm::PatternMatch;
46
47const unsigned MaxDepth = 6;
48
Philip Reames1c292272015-03-10 22:43:20 +000049// Controls the number of uses of the value searched for possible
50// dominating comparisons.
51static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000052 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000053
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +000054// This optimization is known to cause performance regressions is some cases,
55// keep it under a temporary flag for now.
56static cl::opt<bool>
57DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
58 cl::Hidden, cl::init(true));
59
Sanjay Patelaee84212014-11-04 16:27:42 +000060/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
61/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000062static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000063 if (unsigned BitWidth = Ty->getScalarSizeInBits())
64 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000065
Mehdi Aminia28d91d2015-03-10 02:37:25 +000066 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000067}
Chris Lattner965c7692008-06-02 01:18:21 +000068
Benjamin Kramercfd8d902014-09-12 08:56:53 +000069namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000070// Simplifying using an assume can only be done in a particular control-flow
71// context (the context instruction provides that context). If an assume and
72// the context instruction are not in the same block then the DT helps in
73// figuring out if we can use it.
74struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000075 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +000076 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000077 const Instruction *CxtI;
78 const DominatorTree *DT;
79
Matthias Braun37e5d792016-01-28 06:29:33 +000080 /// Set of assumptions that should be excluded from further queries.
81 /// This is because of the potential for mutual recursion to cause
82 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
83 /// classic case of this is assume(x = y), which will attempt to determine
84 /// bits in x from bits in y, which will attempt to determine bits in y from
85 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
86 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
87 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
88 /// on.
Li Huang755f75f2016-10-15 19:00:04 +000089 std::array<const Value *, MaxDepth> Excluded;
Matthias Braun37e5d792016-01-28 06:29:33 +000090 unsigned NumExcluded;
91
Daniel Jasperaec2fa32016-12-19 08:22:17 +000092 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
93 const DominatorTree *DT)
94 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000095
96 Query(const Query &Q, const Value *NewExcl)
Daniel Jasperaec2fa32016-12-19 08:22:17 +000097 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +000098 Excluded = Q.Excluded;
99 Excluded[NumExcluded++] = NewExcl;
100 assert(NumExcluded <= Excluded.size());
101 }
102
103 bool isExcluded(const Value *Value) const {
104 if (NumExcluded == 0)
105 return false;
106 auto End = Excluded.begin() + NumExcluded;
107 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000108 }
109};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000110} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000111
Sanjay Patel547e9752014-11-04 16:09:50 +0000112// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000113// the preferred context instruction (if any).
114static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
115 // If we've been provided with a context instruction, then use that (provided
116 // it has been inserted).
117 if (CxtI && CxtI->getParent())
118 return CxtI;
119
120 // If the value is really an already-inserted instruction, then use that.
121 CxtI = dyn_cast<Instruction>(V);
122 if (CxtI && CxtI->getParent())
123 return CxtI;
124
125 return nullptr;
126}
127
Pete Cooper35b00d52016-08-13 01:05:32 +0000128static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000129 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000130
Pete Cooper35b00d52016-08-13 01:05:32 +0000131void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000132 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000133 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000134 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000135 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000136 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000137}
138
Pete Cooper35b00d52016-08-13 01:05:32 +0000139bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
140 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000141 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000142 const DominatorTree *DT) {
143 assert(LHS->getType() == RHS->getType() &&
144 "LHS and RHS should have the same type");
145 assert(LHS->getType()->isIntOrIntVectorTy() &&
146 "LHS and RHS should be integers");
147 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
148 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
149 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000150 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
151 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
Jingyue Wuca321902015-05-14 23:53:19 +0000152 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
153}
154
Pete Cooper35b00d52016-08-13 01:05:32 +0000155static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000156 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000157
Pete Cooper35b00d52016-08-13 01:05:32 +0000158void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000159 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000160 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000161 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000162 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000163 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000164}
165
Pete Cooper35b00d52016-08-13 01:05:32 +0000166static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000167 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000168
Pete Cooper35b00d52016-08-13 01:05:32 +0000169bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
170 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000171 unsigned Depth, AssumptionCache *AC,
172 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000173 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000174 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000175 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000176}
177
Pete Cooper35b00d52016-08-13 01:05:32 +0000178static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000179
Pete Cooper35b00d52016-08-13 01:05:32 +0000180bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000181 AssumptionCache *AC, const Instruction *CxtI,
182 const DominatorTree *DT) {
183 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000184}
185
Pete Cooper35b00d52016-08-13 01:05:32 +0000186bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000187 unsigned Depth,
188 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000189 const DominatorTree *DT) {
190 bool NonNegative, Negative;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000191 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +0000192 return NonNegative;
193}
194
Pete Cooper35b00d52016-08-13 01:05:32 +0000195bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000196 AssumptionCache *AC, const Instruction *CxtI,
197 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000198 if (auto *CI = dyn_cast<ConstantInt>(V))
199 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000200
Philip Reames8f12eba2016-03-09 21:31:47 +0000201 // TODO: We'd doing two recursive queries here. We should factor this such
202 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000203 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
204 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000205}
206
Pete Cooper35b00d52016-08-13 01:05:32 +0000207bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000208 AssumptionCache *AC, const Instruction *CxtI,
209 const DominatorTree *DT) {
Nick Lewycky762f8a82016-04-21 00:53:14 +0000210 bool NonNegative, Negative;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000211 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
Nick Lewycky762f8a82016-04-21 00:53:14 +0000212 return Negative;
213}
214
Pete Cooper35b00d52016-08-13 01:05:32 +0000215static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000216
Pete Cooper35b00d52016-08-13 01:05:32 +0000217bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000218 const DataLayout &DL,
219 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000220 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000221 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
222 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000223 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000224}
225
Pete Cooper35b00d52016-08-13 01:05:32 +0000226static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000227 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000228
Pete Cooper35b00d52016-08-13 01:05:32 +0000229bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
230 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000231 unsigned Depth, AssumptionCache *AC,
232 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000233 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000234 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000235}
236
Pete Cooper35b00d52016-08-13 01:05:32 +0000237static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
238 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000239
Pete Cooper35b00d52016-08-13 01:05:32 +0000240unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000241 unsigned Depth, AssumptionCache *AC,
242 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000243 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000244 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000245}
246
Pete Cooper35b00d52016-08-13 01:05:32 +0000247static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
248 bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000249 APInt &KnownZero, APInt &KnownOne,
250 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000251 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000252 if (!Add) {
Pete Cooper35b00d52016-08-13 01:05:32 +0000253 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000254 // We know that the top bits of C-X are clear if X contains less bits
255 // than C (i.e. no wrap-around can happen). For example, 20-X is
256 // positive if we can prove that X is >= 0 and < 16.
257 if (!CLHS->getValue().isNegative()) {
258 unsigned BitWidth = KnownZero.getBitWidth();
259 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
260 // NLZ can't be BitWidth with no sign bit
261 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000262 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000263
264 // If all of the MaskV bits are known to be zero, then we know the
265 // output top bits are zero, because we now know that the output is
266 // from [0-C].
267 if ((KnownZero2 & MaskV) == MaskV) {
268 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
269 // Top bits known zero.
270 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
271 }
272 }
273 }
274 }
275
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000276 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000277
David Majnemer97ddca32014-08-22 00:40:43 +0000278 // If an initial sequence of bits in the result is not needed, the
279 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000280 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000281 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
282 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000283
David Majnemer97ddca32014-08-22 00:40:43 +0000284 // Carry in a 1 for a subtract, rather than a 0.
285 APInt CarryIn(BitWidth, 0);
286 if (!Add) {
287 // Sum = LHS + ~RHS + 1
288 std::swap(KnownZero2, KnownOne2);
289 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000290 }
291
David Majnemer97ddca32014-08-22 00:40:43 +0000292 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
293 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
294
295 // Compute known bits of the carry.
296 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
297 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
298
299 // Compute set of known bits (where all three relevant bits are known).
300 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
301 APInt RHSKnown = KnownZero2 | KnownOne2;
302 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
303 APInt Known = LHSKnown & RHSKnown & CarryKnown;
304
305 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
306 "known bits of sum differ");
307
308 // Compute known bits of the result.
309 KnownZero = ~PossibleSumOne & Known;
310 KnownOne = PossibleSumOne & Known;
311
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000312 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000313 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000314 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000315 // Adding two non-negative numbers, or subtracting a negative number from
316 // a non-negative one, can't wrap into negative.
317 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
318 KnownZero |= APInt::getSignBit(BitWidth);
319 // Adding two negative numbers, or subtracting a non-negative number from
320 // a negative one, can't wrap into non-negative.
321 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
322 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000323 }
324 }
325}
326
Pete Cooper35b00d52016-08-13 01:05:32 +0000327static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000328 APInt &KnownZero, APInt &KnownOne,
329 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000330 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000331 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000332 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
333 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000334
335 bool isKnownNegative = false;
336 bool isKnownNonNegative = false;
337 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000338 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000339 if (Op0 == Op1) {
340 // The product of a number with itself is non-negative.
341 isKnownNonNegative = true;
342 } else {
343 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
344 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
345 bool isKnownNegativeOp1 = KnownOne.isNegative();
346 bool isKnownNegativeOp0 = KnownOne2.isNegative();
347 // The product of two numbers with the same sign is non-negative.
348 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
349 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
350 // The product of a negative number and a non-negative number is either
351 // negative or zero.
352 if (!isKnownNonNegative)
353 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000354 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000355 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000356 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000357 }
358 }
359
360 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000361 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000362 // More trickiness is possible, but this is sufficient for the
363 // interesting case of alignment computation.
364 KnownOne.clearAllBits();
365 unsigned TrailZ = KnownZero.countTrailingOnes() +
366 KnownZero2.countTrailingOnes();
367 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
368 KnownZero2.countLeadingOnes(),
369 BitWidth) - BitWidth;
370
371 TrailZ = std::min(TrailZ, BitWidth);
372 LeadZ = std::min(LeadZ, BitWidth);
373 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
374 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000375
376 // Only make use of no-wrap flags if we failed to compute the sign bit
377 // directly. This matters if the multiplication always overflows, in
378 // which case we prefer to follow the result of the direct computation,
379 // though as the program is invoking undefined behaviour we can choose
380 // whatever we like here.
381 if (isKnownNonNegative && !KnownOne.isNegative())
382 KnownZero.setBit(BitWidth - 1);
383 else if (isKnownNegative && !KnownZero.isNegative())
384 KnownOne.setBit(BitWidth - 1);
385}
386
Jingyue Wu37fcb592014-06-19 16:50:16 +0000387void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000388 APInt &KnownZero,
389 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000390 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000391 unsigned NumRanges = Ranges.getNumOperands() / 2;
392 assert(NumRanges >= 1);
393
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000394 KnownZero.setAllBits();
395 KnownOne.setAllBits();
396
Rafael Espindola53190532012-03-30 15:52:11 +0000397 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000398 ConstantInt *Lower =
399 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
400 ConstantInt *Upper =
401 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000402 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000403
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000404 // The first CommonPrefixBits of all values in Range are equal.
405 unsigned CommonPrefixBits =
406 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
407
408 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
409 KnownOne &= Range.getUnsignedMax() & Mask;
410 KnownZero &= ~Range.getUnsignedMax() & Mask;
411 }
Rafael Espindola53190532012-03-30 15:52:11 +0000412}
Jay Foad5a29c362014-05-15 12:12:55 +0000413
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000414static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000415 SmallVector<const Value *, 16> WorkSet(1, I);
416 SmallPtrSet<const Value *, 32> Visited;
417 SmallPtrSet<const Value *, 16> EphValues;
418
Hal Finkelf2199b22015-10-23 20:37:08 +0000419 // The instruction defining an assumption's condition itself is always
420 // considered ephemeral to that assumption (even if it has other
421 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000422 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000423 return true;
424
Hal Finkel60db0582014-09-07 18:57:58 +0000425 while (!WorkSet.empty()) {
426 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000427 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000428 continue;
429
430 // If all uses of this value are ephemeral, then so is this value.
David Majnemer0a16c222016-08-11 21:15:00 +0000431 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000432 if (V == E)
433 return true;
434
435 EphValues.insert(V);
436 if (const User *U = dyn_cast<User>(V))
437 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
438 J != JE; ++J) {
439 if (isSafeToSpeculativelyExecute(*J))
440 WorkSet.push_back(*J);
441 }
442 }
443 }
444
445 return false;
446}
447
448// Is this an intrinsic that cannot be speculated but also cannot trap?
449static bool isAssumeLikeIntrinsic(const Instruction *I) {
450 if (const CallInst *CI = dyn_cast<CallInst>(I))
451 if (Function *F = CI->getCalledFunction())
452 switch (F->getIntrinsicID()) {
453 default: break;
454 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
455 case Intrinsic::assume:
456 case Intrinsic::dbg_declare:
457 case Intrinsic::dbg_value:
458 case Intrinsic::invariant_start:
459 case Intrinsic::invariant_end:
460 case Intrinsic::lifetime_start:
461 case Intrinsic::lifetime_end:
462 case Intrinsic::objectsize:
463 case Intrinsic::ptr_annotation:
464 case Intrinsic::var_annotation:
465 return true;
466 }
467
468 return false;
469}
470
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000471bool llvm::isValidAssumeForContext(const Instruction *Inv,
472 const Instruction *CxtI,
473 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000474
475 // There are two restrictions on the use of an assume:
476 // 1. The assume must dominate the context (or the control flow must
477 // reach the assume whenever it reaches the context).
478 // 2. The context must not be in the assume's set of ephemeral values
479 // (otherwise we will use the assume to prove that the condition
480 // feeding the assume is trivially true, thus causing the removal of
481 // the assume).
482
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000483 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000484 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000485 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000486 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
487 // We don't have a DT, but this trivially dominates.
488 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000489 }
490
Pete Cooper54a02552016-08-12 01:00:15 +0000491 // With or without a DT, the only remaining case we will check is if the
492 // instructions are in the same BB. Give up if that is not the case.
493 if (Inv->getParent() != CxtI->getParent())
494 return false;
495
496 // If we have a dom tree, then we now know that the assume doens't dominate
497 // the other instruction. If we don't have a dom tree then we can check if
498 // the assume is first in the BB.
499 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000500 // Search forward from the assume until we reach the context (or the end
501 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000502 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000503 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000504 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000505 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000506 }
507
Pete Cooper54a02552016-08-12 01:00:15 +0000508 // The context comes first, but they're both in the same block. Make sure
509 // there is nothing in between that might interrupt the control flow.
510 for (BasicBlock::const_iterator I =
511 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
512 I != IE; ++I)
513 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
514 return false;
515
516 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000517}
518
Pete Cooper35b00d52016-08-13 01:05:32 +0000519static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000520 APInt &KnownOne, unsigned Depth,
521 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000522 // Use of assumptions is context-sensitive. If we don't have a context, we
523 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000524 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000525 return;
526
527 unsigned BitWidth = KnownZero.getBitWidth();
528
Hal Finkel8a9a7832017-01-11 13:24:24 +0000529 // Note that the patterns below need to be kept in sync with the code
530 // in AssumptionCache::updateAffectedValues.
531
532 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000533 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000534 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000535 CallInst *I = cast<CallInst>(AssumeVH);
536 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
537 "Got assumption for the wrong function!");
538 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000539 continue;
540
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000541 // Warning: This loop can end up being somewhat performance sensetive.
542 // We're running this loop for once for each value queried resulting in a
543 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000544
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000545 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
546 "must be an assume intrinsic");
547
548 Value *Arg = I->getArgOperand(0);
549
550 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000551 assert(BitWidth == 1 && "assume operand is not i1?");
552 KnownZero.clearAllBits();
553 KnownOne.setAllBits();
554 return;
555 }
Sanjay Patel96669962017-01-17 18:15:49 +0000556 if (match(Arg, m_Not(m_Specific(V))) &&
557 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
558 assert(BitWidth == 1 && "assume operand is not i1?");
559 KnownZero.setAllBits();
560 KnownOne.clearAllBits();
561 return;
562 }
Hal Finkel60db0582014-09-07 18:57:58 +0000563
David Majnemer9b609752014-12-12 23:59:29 +0000564 // The remaining tests are all recursive, so bail out if we hit the limit.
565 if (Depth == MaxDepth)
566 continue;
567
Hal Finkel60db0582014-09-07 18:57:58 +0000568 Value *A, *B;
569 auto m_V = m_CombineOr(m_Specific(V),
570 m_CombineOr(m_PtrToInt(m_Specific(V)),
571 m_BitCast(m_Specific(V))));
572
573 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000574 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000575 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000576 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000577 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000578 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000579 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000580 KnownZero |= RHSKnownZero;
581 KnownOne |= RHSKnownOne;
582 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000583 } else if (match(Arg,
584 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000585 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000586 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000587 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000588 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000589 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000590 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000591
592 // For those bits in the mask that are known to be one, we can propagate
593 // known bits from the RHS to V.
594 KnownZero |= RHSKnownZero & MaskKnownOne;
595 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000596 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000597 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
598 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000599 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000600 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000601 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000602 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000603 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000604 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000605
606 // For those bits in the mask that are known to be one, we can propagate
607 // inverted known bits from the RHS to V.
608 KnownZero |= RHSKnownOne & MaskKnownOne;
609 KnownOne |= RHSKnownZero & MaskKnownOne;
610 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000611 } else if (match(Arg,
612 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000613 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000614 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000615 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000616 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000617 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000618 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000619
620 // For those bits in B that are known to be zero, we can propagate known
621 // bits from the RHS to V.
622 KnownZero |= RHSKnownZero & BKnownZero;
623 KnownOne |= RHSKnownOne & BKnownZero;
624 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000625 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
626 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000627 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000628 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000629 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000630 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000631 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000632 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000633
634 // For those bits in B that are known to be zero, we can propagate
635 // inverted known bits from the RHS to V.
636 KnownZero |= RHSKnownOne & BKnownZero;
637 KnownOne |= RHSKnownZero & BKnownZero;
638 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000639 } else if (match(Arg,
640 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000641 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000642 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000643 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000644 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000645 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000646 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000647
648 // For those bits in B that are known to be zero, we can propagate known
649 // bits from the RHS to V. For those bits in B that are known to be one,
650 // we can propagate inverted known bits from the RHS to V.
651 KnownZero |= RHSKnownZero & BKnownZero;
652 KnownOne |= RHSKnownOne & BKnownZero;
653 KnownZero |= RHSKnownOne & BKnownOne;
654 KnownOne |= RHSKnownZero & BKnownOne;
655 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000656 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
657 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000658 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000659 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000660 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000661 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000662 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000663 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000664
665 // For those bits in B that are known to be zero, we can propagate
666 // inverted known bits from the RHS to V. For those bits in B that are
667 // known to be one, we can propagate known bits from the RHS to V.
668 KnownZero |= RHSKnownOne & BKnownZero;
669 KnownOne |= RHSKnownZero & BKnownZero;
670 KnownZero |= RHSKnownZero & BKnownOne;
671 KnownOne |= RHSKnownOne & BKnownOne;
672 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000673 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
674 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000675 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000676 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000677 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000678 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000679 // For those bits in RHS that are known, we can propagate them to known
680 // bits in V shifted to the right by C.
681 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
682 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
683 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000684 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
685 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000686 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000687 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000688 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000689 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000690 // For those bits in RHS that are known, we can propagate them inverted
691 // to known bits in V shifted to the right by C.
692 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
693 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
694 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000695 } else if (match(Arg,
696 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000697 m_AShr(m_V, m_ConstantInt(C))),
698 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000699 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000700 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000701 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000702 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000703 // For those bits in RHS that are known, we can propagate them to known
704 // bits in V shifted to the right by C.
705 KnownZero |= RHSKnownZero << C->getZExtValue();
706 KnownOne |= RHSKnownOne << C->getZExtValue();
707 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000708 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000709 m_LShr(m_V, m_ConstantInt(C)),
710 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000711 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000712 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000713 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000714 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000715 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000716 // For those bits in RHS that are known, we can propagate them inverted
717 // to known bits in V shifted to the right by C.
718 KnownZero |= RHSKnownOne << C->getZExtValue();
719 KnownOne |= RHSKnownZero << C->getZExtValue();
720 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000721 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000722 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000723 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000724 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000725 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000726
727 if (RHSKnownZero.isNegative()) {
728 // We know that the sign bit is zero.
729 KnownZero |= APInt::getSignBit(BitWidth);
730 }
731 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000732 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000733 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000735 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000736 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000737
738 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
739 // We know that the sign bit is zero.
740 KnownZero |= APInt::getSignBit(BitWidth);
741 }
742 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000743 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000744 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000745 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000746 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000747 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000748
749 if (RHSKnownOne.isNegative()) {
750 // We know that the sign bit is one.
751 KnownOne |= APInt::getSignBit(BitWidth);
752 }
753 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000754 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000755 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000756 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000757 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000758 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000759
760 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
761 // We know that the sign bit is one.
762 KnownOne |= APInt::getSignBit(BitWidth);
763 }
764 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000765 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000766 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000767 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000770
771 // Whatever high bits in c are zero are known to be zero.
772 KnownZero |=
773 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
774 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000775 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000776 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000777 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000778 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000779 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000780
781 // Whatever high bits in c are zero are known to be zero (if c is a power
782 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000783 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000784 KnownZero |=
785 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
786 else
787 KnownZero |=
788 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000789 }
790 }
791}
792
Hal Finkelf2199b22015-10-23 20:37:08 +0000793// Compute known bits from a shift operator, including those with a
794// non-constant shift amount. KnownZero and KnownOne are the outputs of this
795// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
796// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
797// functors that, given the known-zero or known-one bits respectively, and a
798// shift amount, compute the implied known-zero or known-one bits of the shift
799// operator's result respectively for that shift amount. The results from calling
800// KZF and KOF are conservatively combined for all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000801static void computeKnownBitsFromShiftOperator(
802 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2,
803 APInt &KnownOne2, unsigned Depth, const Query &Q,
804 function_ref<APInt(const APInt &, unsigned)> KZF,
805 function_ref<APInt(const APInt &, unsigned)> KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000806 unsigned BitWidth = KnownZero.getBitWidth();
807
808 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
809 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
810
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000811 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000812 KnownZero = KZF(KnownZero, ShiftAmt);
813 KnownOne = KOF(KnownOne, ShiftAmt);
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000814 // If there is conflict between KnownZero and KnownOne, this must be an
815 // overflowing left shift, so the shift result is undefined. Clear KnownZero
816 // and KnownOne bits so that other code could propagate this undef.
817 if ((KnownZero & KnownOne) != 0) {
818 KnownZero.clearAllBits();
819 KnownOne.clearAllBits();
820 }
821
Hal Finkelf2199b22015-10-23 20:37:08 +0000822 return;
823 }
824
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000825 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000826
827 // Note: We cannot use KnownZero.getLimitedValue() here, because if
828 // BitWidth > 64 and any upper bits are known, we'll end up returning the
829 // limit value (which implies all bits are known).
830 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
831 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
832
833 // It would be more-clearly correct to use the two temporaries for this
834 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000835 KnownZero.clearAllBits();
836 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000837
James Molloy493e57d2015-10-26 14:10:46 +0000838 // If we know the shifter operand is nonzero, we can sometimes infer more
839 // known bits. However this is expensive to compute, so be lazy about it and
840 // only compute it when absolutely necessary.
841 Optional<bool> ShifterOperandIsNonZero;
842
Hal Finkelf2199b22015-10-23 20:37:08 +0000843 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000844 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
845 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000846 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000847 if (!*ShifterOperandIsNonZero)
848 return;
849 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000850
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000851 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000852
853 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
854 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
855 // Combine the shifted known input bits only for those shift amounts
856 // compatible with its known constraints.
857 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
858 continue;
859 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
860 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000861 // If we know the shifter is nonzero, we may be able to infer more known
862 // bits. This check is sunk down as far as possible to avoid the expensive
863 // call to isKnownNonZero if the cheaper checks above fail.
864 if (ShiftAmt == 0) {
865 if (!ShifterOperandIsNonZero.hasValue())
866 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000867 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000868 if (*ShifterOperandIsNonZero)
869 continue;
870 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000871
872 KnownZero &= KZF(KnownZero2, ShiftAmt);
873 KnownOne &= KOF(KnownOne2, ShiftAmt);
874 }
875
876 // If there are no compatible shift amounts, then we've proven that the shift
877 // amount must be >= the BitWidth, and the result is undefined. We could
878 // return anything we'd like, but we need to make sure the sets of known bits
879 // stay disjoint (it should be better for some other code to actually
880 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000881 if ((KnownZero & KnownOne) != 0) {
882 KnownZero.clearAllBits();
883 KnownOne.clearAllBits();
884 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000885}
886
Pete Cooper35b00d52016-08-13 01:05:32 +0000887static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000888 APInt &KnownOne, unsigned Depth,
889 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000890 unsigned BitWidth = KnownZero.getBitWidth();
891
Chris Lattner965c7692008-06-02 01:18:21 +0000892 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000893 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000894 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000895 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000896 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000897 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000898 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000899 case Instruction::And: {
900 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000901 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
902 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000903
Chris Lattner965c7692008-06-02 01:18:21 +0000904 // Output known-1 bits are only known if set in both the LHS & RHS.
905 KnownOne &= KnownOne2;
906 // Output known-0 are known to be clear if zero in either the LHS | RHS.
907 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000908
909 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
910 // here we handle the more general case of adding any odd number by
911 // matching the form add(x, add(x, y)) where y is odd.
912 // TODO: This could be generalized to clearing any bit set in y where the
913 // following bit is known to be unset in y.
914 Value *Y = nullptr;
915 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
916 m_Value(Y))) ||
917 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
918 m_Value(Y)))) {
919 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000920 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000921 if (KnownOne3.countTrailingOnes() > 0)
922 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
923 }
Jay Foad5a29c362014-05-15 12:12:55 +0000924 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000925 }
926 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000927 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
928 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000929
Chris Lattner965c7692008-06-02 01:18:21 +0000930 // Output known-0 bits are only known if clear in both the LHS & RHS.
931 KnownZero &= KnownZero2;
932 // Output known-1 are known to be set if set in either the LHS | RHS.
933 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000934 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000935 }
936 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000937 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
938 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000939
Chris Lattner965c7692008-06-02 01:18:21 +0000940 // Output known-0 bits are known if clear or set in both the LHS & RHS.
941 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
942 // Output known-1 are known to be set if set in only one of the LHS, RHS.
943 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
944 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000945 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000946 }
947 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000948 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000949 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000950 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000951 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000952 }
953 case Instruction::UDiv: {
954 // For the purposes of computing leading zeros we can conservatively
955 // treat a udiv as a logical right shift by the power of 2 known to
956 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000957 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000958 unsigned LeadZ = KnownZero2.countLeadingOnes();
959
Jay Foad25a5e4c2010-12-01 08:53:58 +0000960 KnownOne2.clearAllBits();
961 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000962 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000963 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
964 if (RHSUnknownLeadingOnes != BitWidth)
965 LeadZ = std::min(BitWidth,
966 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
967
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000968 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000969 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000970 }
David Majnemera19d0f22016-08-06 08:16:00 +0000971 case Instruction::Select: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000972 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
973 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000974
Pete Cooper35b00d52016-08-13 01:05:32 +0000975 const Value *LHS;
976 const Value *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +0000977 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
978 if (SelectPatternResult::isMinOrMax(SPF)) {
979 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
980 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
981 } else {
982 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
983 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
984 }
985
986 unsigned MaxHighOnes = 0;
987 unsigned MaxHighZeros = 0;
988 if (SPF == SPF_SMAX) {
989 // If both sides are negative, the result is negative.
990 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
991 // We can derive a lower bound on the result by taking the max of the
992 // leading one bits.
993 MaxHighOnes =
994 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
995 // If either side is non-negative, the result is non-negative.
996 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
997 MaxHighZeros = 1;
998 } else if (SPF == SPF_SMIN) {
999 // If both sides are non-negative, the result is non-negative.
1000 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
1001 // We can derive an upper bound on the result by taking the max of the
1002 // leading zero bits.
1003 MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
1004 KnownZero2.countLeadingOnes());
1005 // If either side is negative, the result is negative.
1006 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
1007 MaxHighOnes = 1;
1008 } else if (SPF == SPF_UMAX) {
1009 // We can derive a lower bound on the result by taking the max of the
1010 // leading one bits.
1011 MaxHighOnes =
1012 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1013 } else if (SPF == SPF_UMIN) {
1014 // We can derive an upper bound on the result by taking the max of the
1015 // leading zero bits.
1016 MaxHighZeros =
1017 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
1018 }
1019
Chris Lattner965c7692008-06-02 01:18:21 +00001020 // Only known if known in both the LHS and RHS.
1021 KnownOne &= KnownOne2;
1022 KnownZero &= KnownZero2;
David Majnemera19d0f22016-08-06 08:16:00 +00001023 if (MaxHighOnes > 0)
1024 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
1025 if (MaxHighZeros > 0)
1026 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001027 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001028 }
Chris Lattner965c7692008-06-02 01:18:21 +00001029 case Instruction::FPTrunc:
1030 case Instruction::FPExt:
1031 case Instruction::FPToUI:
1032 case Instruction::FPToSI:
1033 case Instruction::SIToFP:
1034 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001035 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001036 case Instruction::PtrToInt:
1037 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001038 // Fall through and handle them the same as zext/trunc.
1039 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001040 case Instruction::ZExt:
1041 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001042 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001043
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001044 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001045 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1046 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001047 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001048
1049 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001050 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1051 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001052 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001053 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1054 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001055 // Any top bits are known to be zero.
1056 if (BitWidth > SrcBitWidth)
1057 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001058 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001059 }
1060 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001061 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001062 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001063 // TODO: For now, not handling conversions like:
1064 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001065 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001066 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001067 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001068 }
1069 break;
1070 }
1071 case Instruction::SExt: {
1072 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001073 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001074
Jay Foad583abbc2010-12-07 08:25:19 +00001075 KnownZero = KnownZero.trunc(SrcBitWidth);
1076 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001077 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001078 KnownZero = KnownZero.zext(BitWidth);
1079 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001080
1081 // If the sign bit of the input is known set or clear, then we know the
1082 // top bits of the result.
1083 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1084 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1085 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1086 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001087 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001088 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001089 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001090 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001091 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1092 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1093 APInt KZResult =
1094 (KnownZero << ShiftAmt) |
1095 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1096 // If this shift has "nsw" keyword, then the result is either a poison
1097 // value or has the same sign bit as the first operand.
1098 if (NSW && KnownZero.isNegative())
1099 KZResult.setBit(BitWidth - 1);
1100 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001101 };
1102
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001103 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1104 APInt KOResult = KnownOne << ShiftAmt;
1105 if (NSW && KnownOne.isNegative())
1106 KOResult.setBit(BitWidth - 1);
1107 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001108 };
1109
1110 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001111 KnownZero2, KnownOne2, Depth, Q, KZF,
1112 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001113 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001114 }
1115 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001116 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001117 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1118 return APIntOps::lshr(KnownZero, ShiftAmt) |
1119 // High bits known zero.
1120 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1121 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001122
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001123 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Hal Finkelf2199b22015-10-23 20:37:08 +00001124 return APIntOps::lshr(KnownOne, ShiftAmt);
1125 };
1126
1127 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001128 KnownZero2, KnownOne2, Depth, Q, KZF,
1129 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001130 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001131 }
1132 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001133 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001134 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
Hal Finkelf2199b22015-10-23 20:37:08 +00001135 return APIntOps::ashr(KnownZero, ShiftAmt);
1136 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001137
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001138 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Hal Finkelf2199b22015-10-23 20:37:08 +00001139 return APIntOps::ashr(KnownOne, ShiftAmt);
1140 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001141
Hal Finkelf2199b22015-10-23 20:37:08 +00001142 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001143 KnownZero2, KnownOne2, Depth, Q, KZF,
1144 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001145 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001146 }
Chris Lattner965c7692008-06-02 01:18:21 +00001147 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001148 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001149 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001150 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1151 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001152 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001153 }
Chris Lattner965c7692008-06-02 01:18:21 +00001154 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001155 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001156 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001157 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1158 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001159 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001160 }
1161 case Instruction::SRem:
1162 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001163 APInt RA = Rem->getValue().abs();
1164 if (RA.isPowerOf2()) {
1165 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001166 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001167 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001168
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001169 // The low bits of the first operand are unchanged by the srem.
1170 KnownZero = KnownZero2 & LowBits;
1171 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001172
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001173 // If the first operand is non-negative or has all low bits zero, then
1174 // the upper bits are all zero.
1175 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1176 KnownZero |= ~LowBits;
1177
1178 // If the first operand is negative and not all low bits are zero, then
1179 // the upper bits are all one.
1180 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1181 KnownOne |= ~LowBits;
1182
Craig Topper1bef2c82012-12-22 19:15:35 +00001183 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001184 }
1185 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001186
1187 // The sign bit is the LHS's sign bit, except when the result of the
1188 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001189 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001190 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001191 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1192 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001193 // If it's known zero, our sign bit is also zero.
1194 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001195 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001196 }
1197
Chris Lattner965c7692008-06-02 01:18:21 +00001198 break;
1199 case Instruction::URem: {
1200 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001201 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001202 if (RA.isPowerOf2()) {
1203 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001204 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001205 KnownZero |= ~LowBits;
1206 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001207 break;
1208 }
1209 }
1210
1211 // Since the result is less than or equal to either operand, any leading
1212 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001213 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1214 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001215
Chris Lattner4612ae12009-01-20 18:22:57 +00001216 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001217 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001218 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001219 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001220 break;
1221 }
1222
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001223 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001224 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001225 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001226 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001227 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001228
Chris Lattner965c7692008-06-02 01:18:21 +00001229 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001230 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001231 break;
1232 }
1233 case Instruction::GetElementPtr: {
1234 // Analyze all of the subscripts of this getelementptr instruction
1235 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001236 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001237 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1238 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001239 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1240
1241 gep_type_iterator GTI = gep_type_begin(I);
1242 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1243 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001244 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001245 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001246
1247 // Handle case when index is vector zeroinitializer
1248 Constant *CIndex = cast<Constant>(Index);
1249 if (CIndex->isZeroValue())
1250 continue;
1251
1252 if (CIndex->getType()->isVectorTy())
1253 Index = CIndex->getSplatValue();
1254
Chris Lattner965c7692008-06-02 01:18:21 +00001255 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001256 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001257 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001258 TrailZ = std::min<unsigned>(TrailZ,
1259 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001260 } else {
1261 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001262 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001263 if (!IndexedTy->isSized()) {
1264 TrailZ = 0;
1265 break;
1266 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001267 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001268 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001269 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001270 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001271 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001272 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001273 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001274 }
1275 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001276
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001277 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001278 break;
1279 }
1280 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001281 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001282 // Handle the case of a simple two-predecessor recurrence PHI.
1283 // There's a lot more that could theoretically be done here, but
1284 // this is sufficient to catch some interesting cases.
1285 if (P->getNumIncomingValues() == 2) {
1286 for (unsigned i = 0; i != 2; ++i) {
1287 Value *L = P->getIncomingValue(i);
1288 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001289 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001290 if (!LU)
1291 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001292 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001293 // Check for operations that have the property that if
1294 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001295 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001296 if (Opcode == Instruction::Add ||
1297 Opcode == Instruction::Sub ||
1298 Opcode == Instruction::And ||
1299 Opcode == Instruction::Or ||
1300 Opcode == Instruction::Mul) {
1301 Value *LL = LU->getOperand(0);
1302 Value *LR = LU->getOperand(1);
1303 // Find a recurrence.
1304 if (LL == I)
1305 L = LR;
1306 else if (LR == I)
1307 L = LL;
1308 else
1309 break;
1310 // Ok, we have a PHI of the form L op= R. Check for low
1311 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001312 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001313
1314 // We need to take the minimum number of known bits
1315 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001316 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001317
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001318 KnownZero = APInt::getLowBitsSet(
1319 BitWidth, std::min(KnownZero2.countTrailingOnes(),
1320 KnownZero3.countTrailingOnes()));
1321
1322 if (DontImproveNonNegativePhiBits)
1323 break;
1324
1325 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1326 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1327 // If initial value of recurrence is nonnegative, and we are adding
1328 // a nonnegative number with nsw, the result can only be nonnegative
1329 // or poison value regardless of the number of times we execute the
1330 // add in phi recurrence. If initial value is negative and we are
1331 // adding a negative number with nsw, the result can only be
1332 // negative or poison value. Similar arguments apply to sub and mul.
1333 //
1334 // (add non-negative, non-negative) --> non-negative
1335 // (add negative, negative) --> negative
1336 if (Opcode == Instruction::Add) {
1337 if (KnownZero2.isNegative() && KnownZero3.isNegative())
1338 KnownZero.setBit(BitWidth - 1);
1339 else if (KnownOne2.isNegative() && KnownOne3.isNegative())
1340 KnownOne.setBit(BitWidth - 1);
1341 }
1342
1343 // (sub nsw non-negative, negative) --> non-negative
1344 // (sub nsw negative, non-negative) --> negative
1345 else if (Opcode == Instruction::Sub && LL == I) {
1346 if (KnownZero2.isNegative() && KnownOne3.isNegative())
1347 KnownZero.setBit(BitWidth - 1);
1348 else if (KnownOne2.isNegative() && KnownZero3.isNegative())
1349 KnownOne.setBit(BitWidth - 1);
1350 }
1351
1352 // (mul nsw non-negative, non-negative) --> non-negative
1353 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() &&
1354 KnownZero3.isNegative())
1355 KnownZero.setBit(BitWidth - 1);
1356 }
1357
Chris Lattner965c7692008-06-02 01:18:21 +00001358 break;
1359 }
1360 }
1361 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001362
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001363 // Unreachable blocks may have zero-operand PHI nodes.
1364 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001365 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001366
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001367 // Otherwise take the unions of the known bit sets of the operands,
1368 // taking conservative care to avoid excessive recursion.
1369 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001370 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001371 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001372 break;
1373
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001374 KnownZero = APInt::getAllOnesValue(BitWidth);
1375 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001376 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001377 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001378 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001379
1380 KnownZero2 = APInt(BitWidth, 0);
1381 KnownOne2 = APInt(BitWidth, 0);
1382 // Recurse, but cap the recursion to one level, because we don't
1383 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001384 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001385 KnownZero &= KnownZero2;
1386 KnownOne &= KnownOne2;
1387 // If all bits have been ruled out, there's no need to check
1388 // more operands.
1389 if (!KnownZero && !KnownOne)
1390 break;
1391 }
1392 }
Chris Lattner965c7692008-06-02 01:18:21 +00001393 break;
1394 }
1395 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001396 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001397 // If range metadata is attached to this call, set known bits from that,
1398 // and then intersect with known bits based on other properties of the
1399 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001400 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001401 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Pete Cooper35b00d52016-08-13 01:05:32 +00001402 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001403 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1404 KnownZero |= KnownZero2;
1405 KnownOne |= KnownOne2;
1406 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001407 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001408 switch (II->getIntrinsicID()) {
1409 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001410 case Intrinsic::bitreverse:
1411 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1412 KnownZero = KnownZero2.reverseBits();
1413 KnownOne = KnownOne2.reverseBits();
1414 break;
Philip Reames675418e2015-10-06 20:20:45 +00001415 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001416 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001417 KnownZero |= KnownZero2.byteSwap();
1418 KnownOne |= KnownOne2.byteSwap();
1419 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001420 case Intrinsic::ctlz:
1421 case Intrinsic::cttz: {
1422 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001423 // If this call is undefined for 0, the result will be less than 2^n.
1424 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1425 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001426 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001427 break;
1428 }
1429 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001430 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001431 // We can bound the space the count needs. Also, bits known to be zero
1432 // can't contribute to the population.
1433 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1434 unsigned LeadingZeros =
1435 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001436 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001437 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1438 KnownOne &= ~KnownZero;
1439 // TODO: we could bound KnownOne using the lower bound on the number
1440 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001441 break;
1442 }
Chad Rosierb3628842011-05-26 23:13:19 +00001443 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001444 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001445 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001446 }
1447 }
1448 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001449 case Instruction::ExtractElement:
1450 // Look through extract element. At the moment we keep this simple and skip
1451 // tracking the specific element. But at least we might find information
1452 // valid for all elements of the vector (for example if vector is sign
1453 // extended, shifted, etc).
1454 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1455 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001456 case Instruction::ExtractValue:
1457 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001458 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001459 if (EVI->getNumIndices() != 1) break;
1460 if (EVI->getIndices()[0] == 0) {
1461 switch (II->getIntrinsicID()) {
1462 default: break;
1463 case Intrinsic::uadd_with_overflow:
1464 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001465 computeKnownBitsAddSub(true, II->getArgOperand(0),
1466 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001467 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001468 break;
1469 case Intrinsic::usub_with_overflow:
1470 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001471 computeKnownBitsAddSub(false, II->getArgOperand(0),
1472 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001473 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001474 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001475 case Intrinsic::umul_with_overflow:
1476 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001477 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001478 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1479 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001480 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001481 }
1482 }
1483 }
Chris Lattner965c7692008-06-02 01:18:21 +00001484 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001485}
1486
1487/// Determine which bits of V are known to be either zero or one and return
1488/// them in the KnownZero/KnownOne bit sets.
1489///
1490/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1491/// we cannot optimize based on the assumption that it is zero without changing
1492/// it to be an explicit zero. If we don't change it to zero, other code could
1493/// optimized based on the contradictory assumption that it is non-zero.
1494/// Because instcombine aggressively folds operations with undef args anyway,
1495/// this won't lose us code quality.
1496///
1497/// This function is defined on values with integer type, values with pointer
1498/// type, and vectors of integers. In the case
1499/// where V is a vector, known zero, and known one values are the
1500/// same width as the vector element, and the bit is set only if it is true
1501/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00001502void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001503 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001504 assert(V && "No Value?");
1505 assert(Depth <= MaxDepth && "Limit Search Depth");
1506 unsigned BitWidth = KnownZero.getBitWidth();
1507
1508 assert((V->getType()->isIntOrIntVectorTy() ||
1509 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001510 "Not integer or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001511 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001512 (!V->getType()->isIntOrIntVectorTy() ||
1513 V->getType()->getScalarSizeInBits() == BitWidth) &&
1514 KnownZero.getBitWidth() == BitWidth &&
1515 KnownOne.getBitWidth() == BitWidth &&
1516 "V, KnownOne and KnownZero should have same BitWidth");
1517
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001518 const APInt *C;
1519 if (match(V, m_APInt(C))) {
1520 // We know all of the bits for a scalar constant or a splat vector constant!
1521 KnownOne = *C;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001522 KnownZero = ~KnownOne;
1523 return;
1524 }
1525 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001526 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001527 KnownOne.clearAllBits();
1528 KnownZero = APInt::getAllOnesValue(BitWidth);
1529 return;
1530 }
1531 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001532 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001533 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001534 // We know that CDS must be a vector of integers. Take the intersection of
1535 // each element.
1536 KnownZero.setAllBits(); KnownOne.setAllBits();
1537 APInt Elt(KnownZero.getBitWidth(), 0);
1538 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1539 Elt = CDS->getElementAsInteger(i);
1540 KnownZero &= ~Elt;
1541 KnownOne &= Elt;
1542 }
1543 return;
1544 }
1545
Pete Cooper35b00d52016-08-13 01:05:32 +00001546 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001547 // We know that CV must be a vector of integers. Take the intersection of
1548 // each element.
1549 KnownZero.setAllBits(); KnownOne.setAllBits();
1550 APInt Elt(KnownZero.getBitWidth(), 0);
1551 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1552 Constant *Element = CV->getAggregateElement(i);
1553 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1554 if (!ElementCI) {
1555 KnownZero.clearAllBits();
1556 KnownOne.clearAllBits();
1557 return;
1558 }
1559 Elt = ElementCI->getValue();
1560 KnownZero &= ~Elt;
1561 KnownOne &= Elt;
1562 }
1563 return;
1564 }
1565
Jingyue Wu12b0c282015-06-15 05:46:29 +00001566 // Start out not knowing anything.
1567 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1568
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001569 // We can't imply anything about undefs.
1570 if (isa<UndefValue>(V))
1571 return;
1572
1573 // There's no point in looking through other users of ConstantData for
1574 // assumptions. Confirm that we've handled them all.
1575 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1576
Jingyue Wu12b0c282015-06-15 05:46:29 +00001577 // Limit search depth.
1578 // All recursive calls that increase depth must come after this.
1579 if (Depth == MaxDepth)
1580 return;
1581
1582 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1583 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001584 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001585 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001586 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001587 return;
1588 }
1589
Pete Cooper35b00d52016-08-13 01:05:32 +00001590 if (const Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001591 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001592
Artur Pilipenko029d8532015-09-30 11:55:45 +00001593 // Aligned pointers have trailing zeros - refine KnownZero set
1594 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001595 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001596 if (Align)
1597 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1598 }
1599
Philip Reames146307e2016-03-03 19:44:06 +00001600 // computeKnownBitsFromAssume strictly refines KnownZero and
1601 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001602
1603 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001604 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001605
Jay Foad5a29c362014-05-15 12:12:55 +00001606 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001607}
1608
Sanjay Patelaee84212014-11-04 16:27:42 +00001609/// Determine whether the sign bit is known to be zero or one.
1610/// Convenience wrapper around computeKnownBits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001611void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001612 unsigned Depth, const Query &Q) {
1613 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001614 if (!BitWidth) {
1615 KnownZero = false;
1616 KnownOne = false;
1617 return;
1618 }
1619 APInt ZeroBits(BitWidth, 0);
1620 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001621 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001622 KnownOne = OneBits[BitWidth - 1];
1623 KnownZero = ZeroBits[BitWidth - 1];
1624}
1625
Sanjay Patelaee84212014-11-04 16:27:42 +00001626/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001627/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001628/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001629/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001630bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001631 const Query &Q) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001632 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001633 if (C->isNullValue())
1634 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001635
1636 const APInt *ConstIntOrConstSplatInt;
1637 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1638 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001639 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001640
1641 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1642 // it is shifted off the end then the result is undefined.
1643 if (match(V, m_Shl(m_One(), m_Value())))
1644 return true;
1645
1646 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1647 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001648 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001649 return true;
1650
1651 // The remaining tests are all recursive, so bail out if we hit the limit.
1652 if (Depth++ == MaxDepth)
1653 return false;
1654
Craig Topper9f008862014-04-15 04:59:12 +00001655 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001656 // A shift left or a logical shift right of a power of two is a power of two
1657 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001658 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001659 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001660 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001661
Pete Cooper35b00d52016-08-13 01:05:32 +00001662 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001663 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001664
Pete Cooper35b00d52016-08-13 01:05:32 +00001665 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001666 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1667 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001668
Duncan Sandsba286d72011-10-26 20:55:21 +00001669 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1670 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001671 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1672 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001673 return true;
1674 // X & (-X) is always a power of two or zero.
1675 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1676 return true;
1677 return false;
1678 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001679
David Majnemerb7d54092013-07-30 21:01:36 +00001680 // Adding a power-of-two or zero to the same power-of-two or zero yields
1681 // either the original power-of-two, a larger power-of-two or zero.
1682 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001683 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001684 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1685 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1686 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001687 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001688 return true;
1689 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1690 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001691 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001692 return true;
1693
1694 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1695 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001696 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001697
1698 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001699 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001700 // If i8 V is a power of two or zero:
1701 // ZeroBits: 1 1 1 0 1 1 1 1
1702 // ~ZeroBits: 0 0 0 1 0 0 0 0
1703 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1704 // If OrZero isn't set, we cannot give back a zero result.
1705 // Make sure either the LHS or RHS has a bit set.
1706 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1707 return true;
1708 }
1709 }
David Majnemerbeab5672013-05-18 19:30:37 +00001710
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001711 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001712 // is a power of two only if the first operand is a power of two and not
1713 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001714 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1715 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001716 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001717 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001718 }
1719
Duncan Sandsd3951082011-01-25 09:38:29 +00001720 return false;
1721}
1722
Chandler Carruth80d3e562012-12-07 02:08:58 +00001723/// \brief Test whether a GEP's result is known to be non-null.
1724///
1725/// Uses properties inherent in a GEP to try to determine whether it is known
1726/// to be non-null.
1727///
1728/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001729static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001730 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001731 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1732 return false;
1733
1734 // FIXME: Support vector-GEPs.
1735 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1736
1737 // If the base pointer is non-null, we cannot walk to a null address with an
1738 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001739 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001740 return true;
1741
Chandler Carruth80d3e562012-12-07 02:08:58 +00001742 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1743 // If so, then the GEP cannot produce a null pointer, as doing so would
1744 // inherently violate the inbounds contract within address space zero.
1745 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1746 GTI != GTE; ++GTI) {
1747 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001748 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001749 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1750 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001751 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001752 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1753 if (ElementOffset > 0)
1754 return true;
1755 continue;
1756 }
1757
1758 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001759 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001760 continue;
1761
1762 // Fast path the constant operand case both for efficiency and so we don't
1763 // increment Depth when just zipping down an all-constant GEP.
1764 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1765 if (!OpC->isZero())
1766 return true;
1767 continue;
1768 }
1769
1770 // We post-increment Depth here because while isKnownNonZero increments it
1771 // as well, when we pop back up that increment won't persist. We don't want
1772 // to recurse 10k times just because we have 10k GEP operands. We don't
1773 // bail completely out because we want to handle constant GEPs regardless
1774 // of depth.
1775 if (Depth++ >= MaxDepth)
1776 continue;
1777
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001778 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001779 return true;
1780 }
1781
1782 return false;
1783}
1784
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001785/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1786/// ensure that the value it's attached to is never Value? 'RangeType' is
1787/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001788static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001789 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1790 assert(NumRanges >= 1);
1791 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001792 ConstantInt *Lower =
1793 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1794 ConstantInt *Upper =
1795 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001796 ConstantRange Range(Lower->getValue(), Upper->getValue());
1797 if (Range.contains(Value))
1798 return false;
1799 }
1800 return true;
1801}
1802
Sanjay Patelaee84212014-11-04 16:27:42 +00001803/// Return true if the given value is known to be non-zero when defined.
1804/// For vectors return true if every element is known to be non-zero when
1805/// defined. Supports values with integer or pointer type and vectors of
1806/// integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001807bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001808 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001809 if (C->isNullValue())
1810 return false;
1811 if (isa<ConstantInt>(C))
1812 // Must be non-zero due to null test above.
1813 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001814
1815 // For constant vectors, check that all elements are undefined or known
1816 // non-zero to determine that the whole vector is known non-zero.
1817 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1818 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1819 Constant *Elt = C->getAggregateElement(i);
1820 if (!Elt || Elt->isNullValue())
1821 return false;
1822 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1823 return false;
1824 }
1825 return true;
1826 }
1827
Duncan Sandsd3951082011-01-25 09:38:29 +00001828 return false;
1829 }
1830
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001831 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001832 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001833 // If the possible ranges don't contain zero, then the value is
1834 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001835 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001836 const APInt ZeroValue(Ty->getBitWidth(), 0);
1837 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1838 return true;
1839 }
1840 }
1841 }
1842
Duncan Sandsd3951082011-01-25 09:38:29 +00001843 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001844 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001845 return false;
1846
Chandler Carruth80d3e562012-12-07 02:08:58 +00001847 // Check for pointer simplifications.
1848 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001849 if (isKnownNonNull(V))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001850 return true;
Pete Cooper35b00d52016-08-13 01:05:32 +00001851 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001852 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001853 return true;
1854 }
1855
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001856 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001857
1858 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001859 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001860 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001861 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001862
1863 // ext X != 0 if X != 0.
1864 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001865 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001866
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001867 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001868 // if the lowest bit is shifted off the end.
1869 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001870 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001871 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001872 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001873 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001874
Duncan Sandsd3951082011-01-25 09:38:29 +00001875 APInt KnownZero(BitWidth, 0);
1876 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001877 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001878 if (KnownOne[0])
1879 return true;
1880 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001881 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001882 // defined if the sign bit is shifted off the end.
1883 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001884 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001885 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001886 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001887 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001888
Duncan Sandsd3951082011-01-25 09:38:29 +00001889 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001890 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001891 if (XKnownNegative)
1892 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001893
1894 // If the shifter operand is a constant, and all of the bits shifted
1895 // out are known to be zero, and X is known non-zero then at least one
1896 // non-zero bit must remain.
1897 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1898 APInt KnownZero(BitWidth, 0);
1899 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001900 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001901
James Molloyb6be1eb2015-09-24 16:06:32 +00001902 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1903 // Is there a known one in the portion not shifted out?
1904 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1905 return true;
1906 // Are all the bits to be shifted out known zero?
1907 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001908 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001909 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001910 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001911 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001912 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001913 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001914 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001915 // X + Y.
1916 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1917 bool XKnownNonNegative, XKnownNegative;
1918 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001919 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1920 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001921
1922 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001923 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001924 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001925 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001926 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001927
1928 // If X and Y are both negative (as signed values) then their sum is not
1929 // zero unless both X and Y equal INT_MIN.
1930 if (BitWidth && XKnownNegative && YKnownNegative) {
1931 APInt KnownZero(BitWidth, 0);
1932 APInt KnownOne(BitWidth, 0);
1933 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1934 // The sign bit of X is set. If some other bit is set then X is not equal
1935 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001936 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001937 if ((KnownOne & Mask) != 0)
1938 return true;
1939 // The sign bit of Y is set. If some other bit is set then Y is not equal
1940 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001941 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001942 if ((KnownOne & Mask) != 0)
1943 return true;
1944 }
1945
1946 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001947 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001948 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001949 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001950 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001951 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001952 return true;
1953 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001954 // X * Y.
1955 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001956 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001957 // If X and Y are non-zero then so is X * Y as long as the multiplication
1958 // does not overflow.
1959 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001960 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001961 return true;
1962 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001963 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001964 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001965 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1966 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001967 return true;
1968 }
James Molloy897048b2015-09-29 14:08:45 +00001969 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00001970 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00001971 // Try and detect a recurrence that monotonically increases from a
1972 // starting value, as these are common as induction variables.
1973 if (PN->getNumIncomingValues() == 2) {
1974 Value *Start = PN->getIncomingValue(0);
1975 Value *Induction = PN->getIncomingValue(1);
1976 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1977 std::swap(Start, Induction);
1978 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1979 if (!C->isZero() && !C->isNegative()) {
1980 ConstantInt *X;
1981 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1982 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1983 !X->isNegative())
1984 return true;
1985 }
1986 }
1987 }
Jun Bum Limca832662016-02-01 17:03:07 +00001988 // Check if all incoming values are non-zero constant.
1989 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1990 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1991 });
1992 if (AllNonZeroConstants)
1993 return true;
James Molloy897048b2015-09-29 14:08:45 +00001994 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001995
1996 if (!BitWidth) return false;
1997 APInt KnownZero(BitWidth, 0);
1998 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001999 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002000 return KnownOne != 0;
2001}
2002
James Molloy1d88d6f2015-10-22 13:18:42 +00002003/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00002004static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2005 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00002006 if (!BO || BO->getOpcode() != Instruction::Add)
2007 return false;
2008 Value *Op = nullptr;
2009 if (V2 == BO->getOperand(0))
2010 Op = BO->getOperand(1);
2011 else if (V2 == BO->getOperand(1))
2012 Op = BO->getOperand(0);
2013 else
2014 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002015 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002016}
2017
2018/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00002019static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002020 if (V1->getType()->isVectorTy() || V1 == V2)
2021 return false;
2022 if (V1->getType() != V2->getType())
2023 // We can't look through casts yet.
2024 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002025 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002026 return true;
2027
2028 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2029 // Are any known bits in V1 contradictory to known bits in V2? If V1
2030 // has a known zero where V2 has a known one, they must not be equal.
2031 auto BitWidth = Ty->getBitWidth();
2032 APInt KnownZero1(BitWidth, 0);
2033 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002034 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002035 APInt KnownZero2(BitWidth, 0);
2036 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002037 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002038
2039 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2040 if (OppositeBits.getBoolValue())
2041 return true;
2042 }
2043 return false;
2044}
2045
Sanjay Patelaee84212014-11-04 16:27:42 +00002046/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2047/// simplify operations downstream. Mask is known to be zero for bits that V
2048/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002049///
2050/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002051/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002052/// where V is a vector, the mask, known zero, and known one values are the
2053/// same width as the vector element, and the bit is set only if it is true
2054/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002055bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002056 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00002057 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002058 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002059 return (KnownZero & Mask) == Mask;
2060}
2061
Sanjay Patela06d9892016-06-22 19:20:59 +00002062/// For vector constants, loop over the elements and find the constant with the
2063/// minimum number of sign bits. Return 0 if the value is not a vector constant
2064/// or if any element was not analyzed; otherwise, return the count for the
2065/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002066static unsigned computeNumSignBitsVectorConstant(const Value *V,
2067 unsigned TyBits) {
2068 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002069 if (!CV || !CV->getType()->isVectorTy())
2070 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002071
Sanjay Patela06d9892016-06-22 19:20:59 +00002072 unsigned MinSignBits = TyBits;
2073 unsigned NumElts = CV->getType()->getVectorNumElements();
2074 for (unsigned i = 0; i != NumElts; ++i) {
2075 // If we find a non-ConstantInt, bail out.
2076 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2077 if (!Elt)
2078 return 0;
2079
2080 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2081 APInt EltVal = Elt->getValue();
2082 if (EltVal.isNegative())
2083 EltVal = ~EltVal;
2084 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2085 }
2086
2087 return MinSignBits;
2088}
Chris Lattner965c7692008-06-02 01:18:21 +00002089
Sanjay Patelaee84212014-11-04 16:27:42 +00002090/// Return the number of times the sign bit of the register is replicated into
2091/// the other bits. We know that at least 1 bit is always equal to the sign bit
2092/// (itself), but other cases can give us information. For example, immediately
2093/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002094/// other, so we return 3. For vectors, return the number of sign bits for the
2095/// vector element with the mininum number of known sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002096unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002097 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002098 unsigned Tmp, Tmp2;
2099 unsigned FirstAnswer = 1;
2100
Jay Foada0653a32014-05-14 21:14:37 +00002101 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002102 // below.
2103
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002104 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002105 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002106
Pete Cooper35b00d52016-08-13 01:05:32 +00002107 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002108 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002109 default: break;
2110 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002111 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002112 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002113
Nadav Rotemc99a3872015-03-06 00:23:58 +00002114 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002115 const APInt *Denominator;
2116 // sdiv X, C -> adds log(C) sign bits.
2117 if (match(U->getOperand(1), m_APInt(Denominator))) {
2118
2119 // Ignore non-positive denominator.
2120 if (!Denominator->isStrictlyPositive())
2121 break;
2122
2123 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002124 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002125
2126 // Add floor(log(C)) bits to the numerator bits.
2127 return std::min(TyBits, NumBits + Denominator->logBase2());
2128 }
2129 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002130 }
2131
2132 case Instruction::SRem: {
2133 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002134 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2135 // positive constant. This let us put a lower bound on the number of sign
2136 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002137 if (match(U->getOperand(1), m_APInt(Denominator))) {
2138
2139 // Ignore non-positive denominator.
2140 if (!Denominator->isStrictlyPositive())
2141 break;
2142
2143 // Calculate the incoming numerator bits. SRem by a positive constant
2144 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002145 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002146 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002147
2148 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002149 // denominator. Given that the denominator is positive, there are two
2150 // cases:
2151 //
2152 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2153 // (1 << ceilLogBase2(C)).
2154 //
2155 // 2. the numerator is negative. Then the result range is (-C,0] and
2156 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2157 //
2158 // Thus a lower bound on the number of sign bits is `TyBits -
2159 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002160
Sanjoy Dase561fee2015-03-25 22:33:53 +00002161 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002162 return std::max(NumrBits, ResBits);
2163 }
2164 break;
2165 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002166
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002167 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002168 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002169 // ashr X, C -> adds C sign bits. Vectors too.
2170 const APInt *ShAmt;
2171 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2172 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002173 if (Tmp > TyBits) Tmp = TyBits;
2174 }
2175 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002176 }
2177 case Instruction::Shl: {
2178 const APInt *ShAmt;
2179 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002180 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002181 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002182 Tmp2 = ShAmt->getZExtValue();
2183 if (Tmp2 >= TyBits || // Bad shift.
2184 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2185 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002186 }
2187 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002188 }
Chris Lattner965c7692008-06-02 01:18:21 +00002189 case Instruction::And:
2190 case Instruction::Or:
2191 case Instruction::Xor: // NOT is handled here.
2192 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002193 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002194 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002195 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002196 FirstAnswer = std::min(Tmp, Tmp2);
2197 // We computed what we know about the sign bits as our first
2198 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002199 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002200 }
2201 break;
2202
2203 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002204 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002205 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002206 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002207 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002208
Chris Lattner965c7692008-06-02 01:18:21 +00002209 case Instruction::Add:
2210 // Add can have at most one carry bit. Thus we know that the output
2211 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002212 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002213 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002214
Chris Lattner965c7692008-06-02 01:18:21 +00002215 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002216 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002217 if (CRHS->isAllOnesValue()) {
2218 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002219 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002220
Chris Lattner965c7692008-06-02 01:18:21 +00002221 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2222 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002223 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002224 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002225
Chris Lattner965c7692008-06-02 01:18:21 +00002226 // If we are subtracting one from a positive number, there is no carry
2227 // out of the result.
2228 if (KnownZero.isNegative())
2229 return Tmp;
2230 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002231
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002232 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002233 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002234 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002235
Chris Lattner965c7692008-06-02 01:18:21 +00002236 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002237 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002238 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002239
Chris Lattner965c7692008-06-02 01:18:21 +00002240 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002241 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002242 if (CLHS->isNullValue()) {
2243 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002244 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002245 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2246 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002247 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002248 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002249
Chris Lattner965c7692008-06-02 01:18:21 +00002250 // If the input is known to be positive (the sign bit is known clear),
2251 // the output of the NEG has the same number of sign bits as the input.
2252 if (KnownZero.isNegative())
2253 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002254
Chris Lattner965c7692008-06-02 01:18:21 +00002255 // Otherwise, we treat this like a SUB.
2256 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002257
Chris Lattner965c7692008-06-02 01:18:21 +00002258 // Sub can have at most one carry bit. Thus we know that the output
2259 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002260 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002261 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002262 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002263
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002264 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002265 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002266 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002267 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002268 if (NumIncomingValues > 4) break;
2269 // Unreachable blocks may have zero-operand PHI nodes.
2270 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002271
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002272 // Take the minimum of all incoming values. This can't infinitely loop
2273 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002274 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002275 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002276 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002277 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002278 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002279 }
2280 return Tmp;
2281 }
2282
Chris Lattner965c7692008-06-02 01:18:21 +00002283 case Instruction::Trunc:
2284 // FIXME: it's tricky to do anything useful for this, but it is an important
2285 // case for targets like X86.
2286 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002287
2288 case Instruction::ExtractElement:
2289 // Look through extract element. At the moment we keep this simple and skip
2290 // tracking the specific element. But at least we might find information
2291 // valid for all elements of the vector (for example if vector is sign
2292 // extended, shifted, etc).
2293 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002294 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002295
Chris Lattner965c7692008-06-02 01:18:21 +00002296 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2297 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002298
2299 // If we can examine all elements of a vector constant successfully, we're
2300 // done (we can't do any better than that). If not, keep trying.
2301 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2302 return VecSignBits;
2303
Chris Lattner965c7692008-06-02 01:18:21 +00002304 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002305 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002306
Sanjay Patele0536212016-06-23 17:41:59 +00002307 // If we know that the sign bit is either zero or one, determine the number of
2308 // identical bits in the top of the input value.
2309 if (KnownZero.isNegative())
2310 return std::max(FirstAnswer, KnownZero.countLeadingOnes());
Craig Topper1bef2c82012-12-22 19:15:35 +00002311
Sanjay Patele0536212016-06-23 17:41:59 +00002312 if (KnownOne.isNegative())
2313 return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2314
2315 // computeKnownBits gave us no extra information about the top bits.
2316 return FirstAnswer;
Chris Lattner965c7692008-06-02 01:18:21 +00002317}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002318
Sanjay Patelaee84212014-11-04 16:27:42 +00002319/// This function computes the integer multiple of Base that equals V.
2320/// If successful, it returns true and returns the multiple in
2321/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002322/// through SExt instructions only if LookThroughSExt is true.
2323bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002324 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002325 const unsigned MaxDepth = 6;
2326
Dan Gohman6a976bb2009-11-18 00:58:27 +00002327 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002328 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002329 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002330
Chris Lattner229907c2011-07-18 04:54:35 +00002331 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002332
Dan Gohman6a976bb2009-11-18 00:58:27 +00002333 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002334
2335 if (Base == 0)
2336 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002337
Victor Hernandez47444882009-11-10 08:28:35 +00002338 if (Base == 1) {
2339 Multiple = V;
2340 return true;
2341 }
2342
2343 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2344 Constant *BaseVal = ConstantInt::get(T, Base);
2345 if (CO && CO == BaseVal) {
2346 // Multiple is 1.
2347 Multiple = ConstantInt::get(T, 1);
2348 return true;
2349 }
2350
2351 if (CI && CI->getZExtValue() % Base == 0) {
2352 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002353 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002354 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002355
Victor Hernandez47444882009-11-10 08:28:35 +00002356 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002357
Victor Hernandez47444882009-11-10 08:28:35 +00002358 Operator *I = dyn_cast<Operator>(V);
2359 if (!I) return false;
2360
2361 switch (I->getOpcode()) {
2362 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002363 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002364 if (!LookThroughSExt) return false;
2365 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002366 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002367 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2368 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002369 case Instruction::Shl:
2370 case Instruction::Mul: {
2371 Value *Op0 = I->getOperand(0);
2372 Value *Op1 = I->getOperand(1);
2373
2374 if (I->getOpcode() == Instruction::Shl) {
2375 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2376 if (!Op1CI) return false;
2377 // Turn Op0 << Op1 into Op0 * 2^Op1
2378 APInt Op1Int = Op1CI->getValue();
2379 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002380 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002381 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002382 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002383 }
2384
Craig Topper9f008862014-04-15 04:59:12 +00002385 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002386 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2387 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2388 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002389 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002390 MulC->getType()->getPrimitiveSizeInBits())
2391 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002392 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002393 MulC->getType()->getPrimitiveSizeInBits())
2394 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002395
Chris Lattner72d283c2010-09-05 17:20:46 +00002396 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2397 Multiple = ConstantExpr::getMul(MulC, Op1C);
2398 return true;
2399 }
Victor Hernandez47444882009-11-10 08:28:35 +00002400
2401 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2402 if (Mul0CI->getValue() == 1) {
2403 // V == Base * Op1, so return Op1
2404 Multiple = Op1;
2405 return true;
2406 }
2407 }
2408
Craig Topper9f008862014-04-15 04:59:12 +00002409 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002410 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2411 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2412 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002413 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002414 MulC->getType()->getPrimitiveSizeInBits())
2415 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002416 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002417 MulC->getType()->getPrimitiveSizeInBits())
2418 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002419
Chris Lattner72d283c2010-09-05 17:20:46 +00002420 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2421 Multiple = ConstantExpr::getMul(MulC, Op0C);
2422 return true;
2423 }
Victor Hernandez47444882009-11-10 08:28:35 +00002424
2425 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2426 if (Mul1CI->getValue() == 1) {
2427 // V == Base * Op0, so return Op0
2428 Multiple = Op0;
2429 return true;
2430 }
2431 }
Victor Hernandez47444882009-11-10 08:28:35 +00002432 }
2433 }
2434
2435 // We could not determine if V is a multiple of Base.
2436 return false;
2437}
2438
David Majnemerb4b27232016-04-19 19:10:21 +00002439Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2440 const TargetLibraryInfo *TLI) {
2441 const Function *F = ICS.getCalledFunction();
2442 if (!F)
2443 return Intrinsic::not_intrinsic;
2444
2445 if (F->isIntrinsic())
2446 return F->getIntrinsicID();
2447
2448 if (!TLI)
2449 return Intrinsic::not_intrinsic;
2450
2451 LibFunc::Func Func;
2452 // We're going to make assumptions on the semantics of the functions, check
2453 // that the target knows that it's available in this environment and it does
2454 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002455 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2456 return Intrinsic::not_intrinsic;
2457
2458 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002459 return Intrinsic::not_intrinsic;
2460
2461 // Otherwise check if we have a call to a function that can be turned into a
2462 // vector intrinsic.
2463 switch (Func) {
2464 default:
2465 break;
2466 case LibFunc::sin:
2467 case LibFunc::sinf:
2468 case LibFunc::sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002469 return Intrinsic::sin;
David Majnemerb4b27232016-04-19 19:10:21 +00002470 case LibFunc::cos:
2471 case LibFunc::cosf:
2472 case LibFunc::cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002473 return Intrinsic::cos;
David Majnemerb4b27232016-04-19 19:10:21 +00002474 case LibFunc::exp:
2475 case LibFunc::expf:
2476 case LibFunc::expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002477 return Intrinsic::exp;
David Majnemerb4b27232016-04-19 19:10:21 +00002478 case LibFunc::exp2:
2479 case LibFunc::exp2f:
2480 case LibFunc::exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002481 return Intrinsic::exp2;
David Majnemerb4b27232016-04-19 19:10:21 +00002482 case LibFunc::log:
2483 case LibFunc::logf:
2484 case LibFunc::logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002485 return Intrinsic::log;
David Majnemerb4b27232016-04-19 19:10:21 +00002486 case LibFunc::log10:
2487 case LibFunc::log10f:
2488 case LibFunc::log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002489 return Intrinsic::log10;
David Majnemerb4b27232016-04-19 19:10:21 +00002490 case LibFunc::log2:
2491 case LibFunc::log2f:
2492 case LibFunc::log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002493 return Intrinsic::log2;
David Majnemerb4b27232016-04-19 19:10:21 +00002494 case LibFunc::fabs:
2495 case LibFunc::fabsf:
2496 case LibFunc::fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002497 return Intrinsic::fabs;
David Majnemerb4b27232016-04-19 19:10:21 +00002498 case LibFunc::fmin:
2499 case LibFunc::fminf:
2500 case LibFunc::fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002501 return Intrinsic::minnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002502 case LibFunc::fmax:
2503 case LibFunc::fmaxf:
2504 case LibFunc::fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002505 return Intrinsic::maxnum;
David Majnemerb4b27232016-04-19 19:10:21 +00002506 case LibFunc::copysign:
2507 case LibFunc::copysignf:
2508 case LibFunc::copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002509 return Intrinsic::copysign;
David Majnemerb4b27232016-04-19 19:10:21 +00002510 case LibFunc::floor:
2511 case LibFunc::floorf:
2512 case LibFunc::floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002513 return Intrinsic::floor;
David Majnemerb4b27232016-04-19 19:10:21 +00002514 case LibFunc::ceil:
2515 case LibFunc::ceilf:
2516 case LibFunc::ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002517 return Intrinsic::ceil;
David Majnemerb4b27232016-04-19 19:10:21 +00002518 case LibFunc::trunc:
2519 case LibFunc::truncf:
2520 case LibFunc::truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002521 return Intrinsic::trunc;
David Majnemerb4b27232016-04-19 19:10:21 +00002522 case LibFunc::rint:
2523 case LibFunc::rintf:
2524 case LibFunc::rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002525 return Intrinsic::rint;
David Majnemerb4b27232016-04-19 19:10:21 +00002526 case LibFunc::nearbyint:
2527 case LibFunc::nearbyintf:
2528 case LibFunc::nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002529 return Intrinsic::nearbyint;
David Majnemerb4b27232016-04-19 19:10:21 +00002530 case LibFunc::round:
2531 case LibFunc::roundf:
2532 case LibFunc::roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002533 return Intrinsic::round;
David Majnemerb4b27232016-04-19 19:10:21 +00002534 case LibFunc::pow:
2535 case LibFunc::powf:
2536 case LibFunc::powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002537 return Intrinsic::pow;
David Majnemerb4b27232016-04-19 19:10:21 +00002538 case LibFunc::sqrt:
2539 case LibFunc::sqrtf:
2540 case LibFunc::sqrtl:
2541 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002542 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002543 return Intrinsic::not_intrinsic;
2544 }
2545
2546 return Intrinsic::not_intrinsic;
2547}
2548
Sanjay Patelaee84212014-11-04 16:27:42 +00002549/// Return true if we can prove that the specified FP value is never equal to
2550/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002551///
2552/// NOTE: this function will need to be revisited when we support non-default
2553/// rounding modes!
2554///
David Majnemer3ee5f342016-04-13 06:55:52 +00002555bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2556 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002557 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2558 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002559
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002560 if (Depth == MaxDepth)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002561 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002562
Dan Gohman80ca01c2009-07-17 20:47:02 +00002563 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002564 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002565
2566 // Check if the nsz fast-math flag is set
2567 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2568 if (FPO->hasNoSignedZeros())
2569 return true;
2570
Chris Lattnera12a6de2008-06-02 01:29:46 +00002571 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002572 if (I->getOpcode() == Instruction::FAdd)
2573 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2574 if (CFP->isNullValue())
2575 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002576
Chris Lattnera12a6de2008-06-02 01:29:46 +00002577 // sitofp and uitofp turn into +0.0 for zero.
2578 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2579 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002580
David Majnemer3ee5f342016-04-13 06:55:52 +00002581 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002582 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002583 switch (IID) {
2584 default:
2585 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002586 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002587 case Intrinsic::sqrt:
2588 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2589 // fabs(x) != -0.0
2590 case Intrinsic::fabs:
2591 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002592 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002593 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002594
Chris Lattnera12a6de2008-06-02 01:29:46 +00002595 return false;
2596}
2597
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002598/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2599/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2600/// bit despite comparing equal.
2601static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2602 const TargetLibraryInfo *TLI,
2603 bool SignBitOnly,
2604 unsigned Depth) {
2605 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2606 return !CFP->getValueAPF().isNegative() ||
2607 (!SignBitOnly && CFP->getValueAPF().isZero());
2608 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002609
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002610 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002611 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002612
2613 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002614 if (!I)
2615 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002616
2617 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002618 default:
2619 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002620 // Unsigned integers are always nonnegative.
2621 case Instruction::UIToFP:
2622 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002623 case Instruction::FMul:
2624 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002625 if (I->getOperand(0) == I->getOperand(1) &&
2626 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002627 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002628
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002629 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002630 case Instruction::FAdd:
2631 case Instruction::FDiv:
2632 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002633 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2634 Depth + 1) &&
2635 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2636 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002637 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002638 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2639 Depth + 1) &&
2640 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2641 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002642 case Instruction::FPExt:
2643 case Instruction::FPTrunc:
2644 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002645 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2646 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002647 case Instruction::Call:
David Majnemerb4b27232016-04-19 19:10:21 +00002648 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002649 switch (IID) {
2650 default:
2651 break;
2652 case Intrinsic::maxnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002653 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2654 Depth + 1) ||
2655 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2656 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002657 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002658 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2659 Depth + 1) &&
2660 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2661 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002662 case Intrinsic::exp:
2663 case Intrinsic::exp2:
2664 case Intrinsic::fabs:
2665 case Intrinsic::sqrt:
2666 return true;
2667 case Intrinsic::powi:
2668 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2669 // powi(x,n) is non-negative if n is even.
2670 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2671 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002672 }
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002673 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2674 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002675 case Intrinsic::fma:
2676 case Intrinsic::fmuladd:
2677 // x*x+y is non-negative if y is non-negative.
2678 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002679 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2680 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2681 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002682 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002683 break;
2684 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002685 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002686}
2687
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002688bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2689 const TargetLibraryInfo *TLI) {
2690 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2691}
2692
2693bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2694 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2695}
2696
Sanjay Patelaee84212014-11-04 16:27:42 +00002697/// If the specified value can be set by repeating the same byte in memory,
2698/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002699/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2700/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2701/// byte store (e.g. i16 0x1234), return null.
2702Value *llvm::isBytewiseValue(Value *V) {
2703 // All byte-wide stores are splatable, even of arbitrary variables.
2704 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002705
2706 // Handle 'null' ConstantArrayZero etc.
2707 if (Constant *C = dyn_cast<Constant>(V))
2708 if (C->isNullValue())
2709 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002710
Chris Lattner9cb10352010-12-26 20:15:01 +00002711 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002712 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002713 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2714 if (CFP->getType()->isFloatTy())
2715 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2716 if (CFP->getType()->isDoubleTy())
2717 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2718 // Don't handle long double formats, which have strange constraints.
2719 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002720
Benjamin Kramer17d90152015-02-07 19:29:02 +00002721 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002722 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002723 if (CI->getBitWidth() % 8 == 0) {
2724 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002725
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002726 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002727 return nullptr;
2728 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002729 }
2730 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002731
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002732 // A ConstantDataArray/Vector is splatable if all its members are equal and
2733 // also splatable.
2734 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2735 Value *Elt = CA->getElementAsConstant(0);
2736 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002737 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002738 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002739
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002740 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2741 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002742 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002743
Chris Lattner9cb10352010-12-26 20:15:01 +00002744 return Val;
2745 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002746
Chris Lattner9cb10352010-12-26 20:15:01 +00002747 // Conceptually, we could handle things like:
2748 // %a = zext i8 %X to i16
2749 // %b = shl i16 %a, 8
2750 // %c = or i16 %a, %b
2751 // but until there is an example that actually needs this, it doesn't seem
2752 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002753 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002754}
2755
2756
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002757// This is the recursive version of BuildSubAggregate. It takes a few different
2758// arguments. Idxs is the index within the nested struct From that we are
2759// looking at now (which is of type IndexedType). IdxSkip is the number of
2760// indices from Idxs that should be left out when inserting into the resulting
2761// struct. To is the result struct built so far, new insertvalue instructions
2762// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002763static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002764 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002765 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002766 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002767 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002768 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002769 // Save the original To argument so we can modify it
2770 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002771 // General case, the type indexed by Idxs is a struct
2772 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2773 // Process each struct element recursively
2774 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002775 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002776 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002777 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002778 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002779 if (!To) {
2780 // Couldn't find any inserted value for this index? Cleanup
2781 while (PrevTo != OrigTo) {
2782 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2783 PrevTo = Del->getAggregateOperand();
2784 Del->eraseFromParent();
2785 }
2786 // Stop processing elements
2787 break;
2788 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002789 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002790 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002791 if (To)
2792 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002793 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002794 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2795 // the struct's elements had a value that was inserted directly. In the latter
2796 // case, perhaps we can't determine each of the subelements individually, but
2797 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002798
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002799 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002800 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002801
2802 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002803 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002804
2805 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002806 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002807 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002808}
2809
2810// This helper takes a nested struct and extracts a part of it (which is again a
2811// struct) into a new value. For example, given the struct:
2812// { a, { b, { c, d }, e } }
2813// and the indices "1, 1" this returns
2814// { c, d }.
2815//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002816// It does this by inserting an insertvalue for each element in the resulting
2817// struct, as opposed to just inserting a single struct. This will only work if
2818// each of the elements of the substruct are known (ie, inserted into From by an
2819// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002820//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002821// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002822static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002823 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002824 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002825 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002826 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002827 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002828 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002829 unsigned IdxSkip = Idxs.size();
2830
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002831 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002832}
2833
Sanjay Patelaee84212014-11-04 16:27:42 +00002834/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002835/// the scalar value indexed is already around as a register, for example if it
2836/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002837///
2838/// If InsertBefore is not null, this function will duplicate (modified)
2839/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002840Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2841 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002842 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002843 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002844 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002845 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002846 // We have indices, so V should have an indexable type.
2847 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2848 "Not looking at a struct or array?");
2849 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2850 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002851
Chris Lattner67058832012-01-25 06:48:06 +00002852 if (Constant *C = dyn_cast<Constant>(V)) {
2853 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002854 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002855 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2856 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002857
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002858 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002859 // Loop the indices for the insertvalue instruction in parallel with the
2860 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002861 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002862 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2863 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002864 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002865 // We can't handle this without inserting insertvalues
2866 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002867 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002868
2869 // The requested index identifies a part of a nested aggregate. Handle
2870 // this specially. For example,
2871 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2872 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2873 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2874 // This can be changed into
2875 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2876 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2877 // which allows the unused 0,0 element from the nested struct to be
2878 // removed.
2879 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2880 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002881 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002882
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002883 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002884 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002885 // looking for, then.
2886 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002887 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002888 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002889 }
2890 // If we end up here, the indices of the insertvalue match with those
2891 // requested (though possibly only partially). Now we recursively look at
2892 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002893 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002894 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002895 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002896 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002897
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002898 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002899 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002900 // something else, we can extract from that something else directly instead.
2901 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002902
2903 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002904 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002905 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002906 SmallVector<unsigned, 5> Idxs;
2907 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002908 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002909 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002910
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002911 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002912 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002913
Craig Topper1bef2c82012-12-22 19:15:35 +00002914 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002915 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002916
Jay Foad57aa6362011-07-13 10:26:04 +00002917 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002918 }
2919 // Otherwise, we don't know (such as, extracting from a function return value
2920 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002921 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002922}
Evan Chengda3db112008-06-30 07:31:25 +00002923
Sanjay Patelaee84212014-11-04 16:27:42 +00002924/// Analyze the specified pointer to see if it can be expressed as a base
2925/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002926Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002927 const DataLayout &DL) {
2928 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002929 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002930
2931 // We walk up the defs but use a visited set to handle unreachable code. In
2932 // that case, we stop after accumulating the cycle once (not that it
2933 // matters).
2934 SmallPtrSet<Value *, 16> Visited;
2935 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002936 if (Ptr->getType()->isVectorTy())
2937 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002938
Nuno Lopes368c4d02012-12-31 20:48:35 +00002939 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00002940 // If one of the values we have visited is an addrspacecast, then
2941 // the pointer type of this GEP may be different from the type
2942 // of the Ptr parameter which was passed to this function. This
2943 // means when we construct GEPOffset, we need to use the size
2944 // of GEP's pointer type rather than the size of the original
2945 // pointer type.
2946 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002947 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2948 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002949
Tom Stellard17eb3412016-10-07 14:23:29 +00002950 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002951
Nuno Lopes368c4d02012-12-31 20:48:35 +00002952 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00002953 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2954 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002955 Ptr = cast<Operator>(Ptr)->getOperand(0);
2956 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002957 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002958 break;
2959 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002960 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002961 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002962 }
2963 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002964 Offset = ByteOffset.getSExtValue();
2965 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002966}
2967
David L Kreitzer752c1442016-04-13 14:31:06 +00002968bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2969 // Make sure the GEP has exactly three arguments.
2970 if (GEP->getNumOperands() != 3)
2971 return false;
2972
2973 // Make sure the index-ee is a pointer to array of i8.
2974 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2975 if (!AT || !AT->getElementType()->isIntegerTy(8))
2976 return false;
2977
2978 // Check to make sure that the first operand of the GEP is an integer and
2979 // has value 0 so that we are sure we're indexing into the initializer.
2980 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2981 if (!FirstIdx || !FirstIdx->isZero())
2982 return false;
2983
2984 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002985}
Chris Lattnere28618d2010-11-30 22:25:26 +00002986
Sanjay Patelaee84212014-11-04 16:27:42 +00002987/// This function computes the length of a null-terminated C string pointed to
2988/// by V. If successful, it returns true and returns the string in Str.
2989/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002990bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2991 uint64_t Offset, bool TrimAtNul) {
2992 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002993
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002994 // Look through bitcast instructions and geps.
2995 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002996
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002997 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002998 // offset.
2999 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003000 // The GEP operator should be based on a pointer to string constant, and is
3001 // indexing into the string constant.
3002 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003003 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003004
Evan Chengda3db112008-06-30 07:31:25 +00003005 // If the second index isn't a ConstantInt, then this is a variable index
3006 // into the array. If this occurs, we can't say anything meaningful about
3007 // the string.
3008 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003009 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003010 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003011 else
3012 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003013 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
3014 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00003015 }
Nick Lewycky46209882011-10-20 00:34:35 +00003016
Evan Chengda3db112008-06-30 07:31:25 +00003017 // The GEP instruction, constant or instruction, must reference a global
3018 // variable that is a constant and is initialized. The referenced constant
3019 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003020 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003021 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003022 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003023
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003024 // Handle the all-zeros case.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003025 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00003026 // This is a degenerate case. The initializer is constant zero so the
3027 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003028 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003029 return true;
3030 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003031
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003032 // This must be a ConstantDataArray.
3033 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00003034 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003035 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003036
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003037 // Get the number of elements in the array.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003038 uint64_t NumElts = Array->getType()->getArrayNumElements();
3039
3040 // Start out with the entire array in the StringRef.
3041 Str = Array->getAsString();
3042
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003043 if (Offset > NumElts)
3044 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003045
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003046 // Skip over 'offset' bytes.
3047 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003048
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003049 if (TrimAtNul) {
3050 // Trim off the \0 and anything after it. If the array is not nul
3051 // terminated, we just return the whole end of string. The client may know
3052 // some other way that the string is length-bound.
3053 Str = Str.substr(0, Str.find('\0'));
3054 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003055 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003056}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003057
3058// These next two are very similar to the above, but also look through PHI
3059// nodes.
3060// TODO: See if we can integrate these two together.
3061
Sanjay Patelaee84212014-11-04 16:27:42 +00003062/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003063/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003064static uint64_t GetStringLengthH(const Value *V,
3065 SmallPtrSetImpl<const PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003066 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003067 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003068
3069 // If this is a PHI node, there are two cases: either we have already seen it
3070 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003071 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003072 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003073 return ~0ULL; // already in the set.
3074
3075 // If it was new, see if all the input strings are the same length.
3076 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003077 for (Value *IncValue : PN->incoming_values()) {
3078 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003079 if (Len == 0) return 0; // Unknown length -> unknown.
3080
3081 if (Len == ~0ULL) continue;
3082
3083 if (Len != LenSoFar && LenSoFar != ~0ULL)
3084 return 0; // Disagree -> unknown.
3085 LenSoFar = Len;
3086 }
3087
3088 // Success, all agree.
3089 return LenSoFar;
3090 }
3091
3092 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003093 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003094 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3095 if (Len1 == 0) return 0;
3096 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3097 if (Len2 == 0) return 0;
3098 if (Len1 == ~0ULL) return Len2;
3099 if (Len2 == ~0ULL) return Len1;
3100 if (Len1 != Len2) return 0;
3101 return Len1;
3102 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003103
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003104 // Otherwise, see if we can read the string.
3105 StringRef StrData;
3106 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003107 return 0;
3108
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003109 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003110}
3111
Sanjay Patelaee84212014-11-04 16:27:42 +00003112/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003113/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003114uint64_t llvm::GetStringLength(const Value *V) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003115 if (!V->getType()->isPointerTy()) return 0;
3116
Pete Cooper35b00d52016-08-13 01:05:32 +00003117 SmallPtrSet<const PHINode*, 32> PHIs;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003118 uint64_t Len = GetStringLengthH(V, PHIs);
3119 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3120 // an empty string as a length.
3121 return Len == ~0ULL ? 1 : Len;
3122}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003123
Adam Nemete2b885c2015-04-23 20:09:20 +00003124/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3125/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003126static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3127 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003128 // Find the loop-defined value.
3129 Loop *L = LI->getLoopFor(PN->getParent());
3130 if (PN->getNumIncomingValues() != 2)
3131 return true;
3132
3133 // Find the value from previous iteration.
3134 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3135 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3136 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3137 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3138 return true;
3139
3140 // If a new pointer is loaded in the loop, the pointer references a different
3141 // object in every iteration. E.g.:
3142 // for (i)
3143 // int *p = a[i];
3144 // ...
3145 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3146 if (!L->isLoopInvariant(Load->getPointerOperand()))
3147 return false;
3148 return true;
3149}
3150
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003151Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3152 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003153 if (!V->getType()->isPointerTy())
3154 return V;
3155 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3156 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3157 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003158 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3159 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003160 V = cast<Operator>(V)->getOperand(0);
3161 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003162 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003163 return V;
3164 V = GA->getAliasee();
3165 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003166 if (auto CS = CallSite(V))
3167 if (Value *RV = CS.getReturnedArgOperand()) {
3168 V = RV;
3169 continue;
3170 }
3171
Dan Gohman05b18f12010-12-15 20:49:55 +00003172 // See if InstructionSimplify knows any relevant tricks.
3173 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003174 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003175 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003176 V = Simplified;
3177 continue;
3178 }
3179
Dan Gohmana4fcd242010-12-15 20:02:24 +00003180 return V;
3181 }
3182 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3183 }
3184 return V;
3185}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003186
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003187void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003188 const DataLayout &DL, LoopInfo *LI,
3189 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003190 SmallPtrSet<Value *, 4> Visited;
3191 SmallVector<Value *, 4> Worklist;
3192 Worklist.push_back(V);
3193 do {
3194 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003195 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003196
David Blaikie70573dc2014-11-19 07:49:26 +00003197 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003198 continue;
3199
3200 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3201 Worklist.push_back(SI->getTrueValue());
3202 Worklist.push_back(SI->getFalseValue());
3203 continue;
3204 }
3205
3206 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003207 // If this PHI changes the underlying object in every iteration of the
3208 // loop, don't look through it. Consider:
3209 // int **A;
3210 // for (i) {
3211 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3212 // Curr = A[i];
3213 // *Prev, *Curr;
3214 //
3215 // Prev is tracking Curr one iteration behind so they refer to different
3216 // underlying objects.
3217 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3218 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003219 for (Value *IncValue : PN->incoming_values())
3220 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003221 continue;
3222 }
3223
3224 Objects.push_back(P);
3225 } while (!Worklist.empty());
3226}
3227
Sanjay Patelaee84212014-11-04 16:27:42 +00003228/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003229bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003230 for (const User *U : V->users()) {
3231 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003232 if (!II) return false;
3233
3234 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3235 II->getIntrinsicID() != Intrinsic::lifetime_end)
3236 return false;
3237 }
3238 return true;
3239}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003240
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003241bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3242 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003243 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003244 const Operator *Inst = dyn_cast<Operator>(V);
3245 if (!Inst)
3246 return false;
3247
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003248 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3249 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3250 if (C->canTrap())
3251 return false;
3252
3253 switch (Inst->getOpcode()) {
3254 default:
3255 return true;
3256 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003257 case Instruction::URem: {
3258 // x / y is undefined if y == 0.
3259 const APInt *V;
3260 if (match(Inst->getOperand(1), m_APInt(V)))
3261 return *V != 0;
3262 return false;
3263 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003264 case Instruction::SDiv:
3265 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003266 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003267 const APInt *Numerator, *Denominator;
3268 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3269 return false;
3270 // We cannot hoist this division if the denominator is 0.
3271 if (*Denominator == 0)
3272 return false;
3273 // It's safe to hoist if the denominator is not 0 or -1.
3274 if (*Denominator != -1)
3275 return true;
3276 // At this point we know that the denominator is -1. It is safe to hoist as
3277 // long we know that the numerator is not INT_MIN.
3278 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3279 return !Numerator->isMinSignedValue();
3280 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003281 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003282 }
3283 case Instruction::Load: {
3284 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003285 if (!LI->isUnordered() ||
3286 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003287 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003288 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003289 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003290 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003291 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003292 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3293 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003294 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003295 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003296 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3297 switch (II->getIntrinsicID()) {
3298 // These synthetic intrinsics have no side-effects and just mark
3299 // information about their operands.
3300 // FIXME: There are other no-op synthetic instructions that potentially
3301 // should be considered at least *safe* to speculate...
3302 case Intrinsic::dbg_declare:
3303 case Intrinsic::dbg_value:
3304 return true;
3305
Xin Tongc13a8e82017-01-09 17:57:08 +00003306 case Intrinsic::bitreverse:
David Majnemer0a92f862015-08-28 21:13:39 +00003307 case Intrinsic::bswap:
3308 case Intrinsic::ctlz:
3309 case Intrinsic::ctpop:
3310 case Intrinsic::cttz:
3311 case Intrinsic::objectsize:
3312 case Intrinsic::sadd_with_overflow:
3313 case Intrinsic::smul_with_overflow:
3314 case Intrinsic::ssub_with_overflow:
3315 case Intrinsic::uadd_with_overflow:
3316 case Intrinsic::umul_with_overflow:
3317 case Intrinsic::usub_with_overflow:
3318 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003319 // These intrinsics are defined to have the same behavior as libm
3320 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003321 case Intrinsic::sqrt:
3322 case Intrinsic::fma:
3323 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003324 return true;
3325 // These intrinsics are defined to have the same behavior as libm
3326 // functions, and the corresponding libm functions never set errno.
3327 case Intrinsic::trunc:
3328 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003329 case Intrinsic::fabs:
3330 case Intrinsic::minnum:
3331 case Intrinsic::maxnum:
3332 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003333 // These intrinsics are defined to have the same behavior as libm
3334 // functions, which never overflow when operating on the IEEE754 types
3335 // that we support, and never set errno otherwise.
3336 case Intrinsic::ceil:
3337 case Intrinsic::floor:
3338 case Intrinsic::nearbyint:
3339 case Intrinsic::rint:
3340 case Intrinsic::round:
3341 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003342 // TODO: are convert_{from,to}_fp16 safe?
3343 // TODO: can we list target-specific intrinsics here?
3344 default: break;
3345 }
3346 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003347 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003348 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003349 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003350 case Instruction::VAArg:
3351 case Instruction::Alloca:
3352 case Instruction::Invoke:
3353 case Instruction::PHI:
3354 case Instruction::Store:
3355 case Instruction::Ret:
3356 case Instruction::Br:
3357 case Instruction::IndirectBr:
3358 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003359 case Instruction::Unreachable:
3360 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003361 case Instruction::AtomicRMW:
3362 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003363 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003364 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003365 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003366 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003367 case Instruction::CatchRet:
3368 case Instruction::CleanupPad:
3369 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003370 return false; // Misc instructions which have effects
3371 }
3372}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003373
Quentin Colombet6443cce2015-08-06 18:44:34 +00003374bool llvm::mayBeMemoryDependent(const Instruction &I) {
3375 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3376}
3377
Sanjay Patelaee84212014-11-04 16:27:42 +00003378/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003379bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003380 assert(V->getType()->isPointerTy() && "V must be pointer type");
3381
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003382 // Alloca never returns null, malloc might.
3383 if (isa<AllocaInst>(V)) return true;
3384
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003385 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003386 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003387 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003388
Peter Collingbourne235c2752016-12-08 19:01:00 +00003389 // A global variable in address space 0 is non null unless extern weak
3390 // or an absolute symbol reference. Other address spaces may have null as a
3391 // valid address for a global, so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003392 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Peter Collingbourne235c2752016-12-08 19:01:00 +00003393 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
Pete Cooper6b716212015-08-27 03:16:29 +00003394 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003395
Sanjoy Das5056e192016-05-07 02:08:22 +00003396 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003397 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003398 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003399
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003400 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003401 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003402 return true;
3403
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003404 return false;
3405}
David Majnemer491331a2015-01-02 07:29:43 +00003406
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003407static bool isKnownNonNullFromDominatingCondition(const Value *V,
3408 const Instruction *CtxI,
3409 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003410 assert(V->getType()->isPointerTy() && "V must be pointer type");
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003411 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003412 assert(CtxI && "Context instruction required for analysis");
3413 assert(DT && "Dominator tree required for analysis");
Chen Li0d043b52015-09-14 18:10:43 +00003414
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003415 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003416 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003417 // Avoid massive lists
3418 if (NumUsesExplored >= DomConditionsMaxUses)
3419 break;
3420 NumUsesExplored++;
3421 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003422 CmpInst::Predicate Pred;
3423 if (!match(const_cast<User *>(U),
3424 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3425 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003426 continue;
3427
Sanjoy Das987aaa12016-05-07 02:08:24 +00003428 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003429 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3430 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003431
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003432 BasicBlock *NonNullSuccessor =
3433 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3434 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3435 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3436 return true;
3437 } else if (Pred == ICmpInst::ICMP_NE &&
3438 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3439 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003440 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003441 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003442 }
3443 }
3444
3445 return false;
3446}
3447
3448bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003449 const DominatorTree *DT) {
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003450 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3451 return false;
3452
Sean Silva45835e72016-07-02 23:47:27 +00003453 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003454 return true;
3455
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003456 if (!CtxI || !DT)
3457 return false;
3458
3459 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003460}
3461
Pete Cooper35b00d52016-08-13 01:05:32 +00003462OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3463 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003464 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003465 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003466 const Instruction *CxtI,
3467 const DominatorTree *DT) {
3468 // Multiplying n * m significant bits yields a result of n + m significant
3469 // bits. If the total number of significant bits does not exceed the
3470 // result bit width (minus 1), there is no overflow.
3471 // This means if we have enough leading zero bits in the operands
3472 // we can guarantee that the result does not overflow.
3473 // Ref: "Hacker's Delight" by Henry Warren
3474 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3475 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003476 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003477 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003478 APInt RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003479 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3480 DT);
3481 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3482 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003483 // Note that underestimating the number of zero bits gives a more
3484 // conservative answer.
3485 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3486 RHSKnownZero.countLeadingOnes();
3487 // First handle the easy case: if we have enough zero bits there's
3488 // definitely no overflow.
3489 if (ZeroBits >= BitWidth)
3490 return OverflowResult::NeverOverflows;
3491
3492 // Get the largest possible values for each operand.
3493 APInt LHSMax = ~LHSKnownZero;
3494 APInt RHSMax = ~RHSKnownZero;
3495
3496 // We know the multiply operation doesn't overflow if the maximum values for
3497 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003498 bool MaxOverflow;
3499 LHSMax.umul_ov(RHSMax, MaxOverflow);
3500 if (!MaxOverflow)
3501 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003502
David Majnemerc8a576b2015-01-02 07:29:47 +00003503 // We know it always overflows if multiplying the smallest possible values for
3504 // the operands also results in overflow.
3505 bool MinOverflow;
3506 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3507 if (MinOverflow)
3508 return OverflowResult::AlwaysOverflows;
3509
3510 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003511}
David Majnemer5310c1e2015-01-07 00:39:50 +00003512
Pete Cooper35b00d52016-08-13 01:05:32 +00003513OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3514 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003515 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003516 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003517 const Instruction *CxtI,
3518 const DominatorTree *DT) {
3519 bool LHSKnownNonNegative, LHSKnownNegative;
3520 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003521 AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003522 if (LHSKnownNonNegative || LHSKnownNegative) {
3523 bool RHSKnownNonNegative, RHSKnownNegative;
3524 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003525 AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003526
3527 if (LHSKnownNegative && RHSKnownNegative) {
3528 // The sign bit is set in both cases: this MUST overflow.
3529 // Create a simple add instruction, and insert it into the struct.
3530 return OverflowResult::AlwaysOverflows;
3531 }
3532
3533 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3534 // The sign bit is clear in both cases: this CANNOT overflow.
3535 // Create a simple add instruction, and insert it into the struct.
3536 return OverflowResult::NeverOverflows;
3537 }
3538 }
3539
3540 return OverflowResult::MayOverflow;
3541}
James Molloy71b91c22015-05-11 14:42:20 +00003542
Pete Cooper35b00d52016-08-13 01:05:32 +00003543static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3544 const Value *RHS,
3545 const AddOperator *Add,
3546 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003547 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003548 const Instruction *CxtI,
3549 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003550 if (Add && Add->hasNoSignedWrap()) {
3551 return OverflowResult::NeverOverflows;
3552 }
3553
3554 bool LHSKnownNonNegative, LHSKnownNegative;
3555 bool RHSKnownNonNegative, RHSKnownNegative;
3556 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003557 AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003558 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003559 AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003560
3561 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3562 (LHSKnownNegative && RHSKnownNonNegative)) {
3563 // The sign bits are opposite: this CANNOT overflow.
3564 return OverflowResult::NeverOverflows;
3565 }
3566
3567 // The remaining code needs Add to be available. Early returns if not so.
3568 if (!Add)
3569 return OverflowResult::MayOverflow;
3570
3571 // If the sign of Add is the same as at least one of the operands, this add
3572 // CANNOT overflow. This is particularly useful when the sum is
3573 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3574 // operands.
3575 bool LHSOrRHSKnownNonNegative =
3576 (LHSKnownNonNegative || RHSKnownNonNegative);
3577 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3578 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3579 bool AddKnownNonNegative, AddKnownNegative;
3580 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003581 /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003582 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3583 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3584 return OverflowResult::NeverOverflows;
3585 }
3586 }
3587
3588 return OverflowResult::MayOverflow;
3589}
3590
Pete Cooper35b00d52016-08-13 01:05:32 +00003591bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3592 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003593#ifndef NDEBUG
3594 auto IID = II->getIntrinsicID();
3595 assert((IID == Intrinsic::sadd_with_overflow ||
3596 IID == Intrinsic::uadd_with_overflow ||
3597 IID == Intrinsic::ssub_with_overflow ||
3598 IID == Intrinsic::usub_with_overflow ||
3599 IID == Intrinsic::smul_with_overflow ||
3600 IID == Intrinsic::umul_with_overflow) &&
3601 "Not an overflow intrinsic!");
3602#endif
3603
Pete Cooper35b00d52016-08-13 01:05:32 +00003604 SmallVector<const BranchInst *, 2> GuardingBranches;
3605 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003606
Pete Cooper35b00d52016-08-13 01:05:32 +00003607 for (const User *U : II->users()) {
3608 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003609 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3610
3611 if (EVI->getIndices()[0] == 0)
3612 Results.push_back(EVI);
3613 else {
3614 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3615
Pete Cooper35b00d52016-08-13 01:05:32 +00003616 for (const auto *U : EVI->users())
3617 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003618 assert(B->isConditional() && "How else is it using an i1?");
3619 GuardingBranches.push_back(B);
3620 }
3621 }
3622 } else {
3623 // We are using the aggregate directly in a way we don't want to analyze
3624 // here (storing it to a global, say).
3625 return false;
3626 }
3627 }
3628
Pete Cooper35b00d52016-08-13 01:05:32 +00003629 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003630 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3631 if (!NoWrapEdge.isSingleEdge())
3632 return false;
3633
3634 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003635 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003636 // If the extractvalue itself is not executed on overflow, the we don't
3637 // need to check each use separately, since domination is transitive.
3638 if (DT.dominates(NoWrapEdge, Result->getParent()))
3639 continue;
3640
3641 for (auto &RU : Result->uses())
3642 if (!DT.dominates(NoWrapEdge, RU))
3643 return false;
3644 }
3645
3646 return true;
3647 };
3648
3649 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3650}
3651
3652
Pete Cooper35b00d52016-08-13 01:05:32 +00003653OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003654 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003655 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003656 const Instruction *CxtI,
3657 const DominatorTree *DT) {
3658 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003659 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003660}
3661
Pete Cooper35b00d52016-08-13 01:05:32 +00003662OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3663 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003664 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003665 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003666 const Instruction *CxtI,
3667 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003668 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003669}
3670
Jingyue Wu42f1d672015-07-28 18:22:40 +00003671bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003672 // A memory operation returns normally if it isn't volatile. A volatile
3673 // operation is allowed to trap.
3674 //
3675 // An atomic operation isn't guaranteed to return in a reasonable amount of
3676 // time because it's possible for another thread to interfere with it for an
3677 // arbitrary length of time, but programs aren't allowed to rely on that.
3678 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3679 return !LI->isVolatile();
3680 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3681 return !SI->isVolatile();
3682 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3683 return !CXI->isVolatile();
3684 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3685 return !RMWI->isVolatile();
3686 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3687 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003688
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003689 // If there is no successor, then execution can't transfer to it.
3690 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3691 return !CRI->unwindsToCaller();
3692 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3693 return !CatchSwitch->unwindsToCaller();
3694 if (isa<ResumeInst>(I))
3695 return false;
3696 if (isa<ReturnInst>(I))
3697 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003698
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003699 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00003700 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00003701 // Call sites that throw have implicit non-local control flow.
3702 if (!CS.doesNotThrow())
3703 return false;
3704
3705 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3706 // etc. and thus not return. However, LLVM already assumes that
3707 //
3708 // - Thread exiting actions are modeled as writes to memory invisible to
3709 // the program.
3710 //
3711 // - Loops that don't have side effects (side effects are volatile/atomic
3712 // stores and IO) always terminate (see http://llvm.org/PR965).
3713 // Furthermore IO itself is also modeled as writes to memory invisible to
3714 // the program.
3715 //
3716 // We rely on those assumptions here, and use the memory effects of the call
3717 // target as a proxy for checking that it always returns.
3718
3719 // FIXME: This isn't aggressive enough; a call which only writes to a global
3720 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003721 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3722 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003723 }
3724
3725 // Other instructions return normally.
3726 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003727}
3728
3729bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3730 const Loop *L) {
3731 // The loop header is guaranteed to be executed for every iteration.
3732 //
3733 // FIXME: Relax this constraint to cover all basic blocks that are
3734 // guaranteed to be executed at every iteration.
3735 if (I->getParent() != L->getHeader()) return false;
3736
3737 for (const Instruction &LI : *L->getHeader()) {
3738 if (&LI == I) return true;
3739 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3740 }
3741 llvm_unreachable("Instruction not contained in its own parent basic block.");
3742}
3743
3744bool llvm::propagatesFullPoison(const Instruction *I) {
3745 switch (I->getOpcode()) {
3746 case Instruction::Add:
3747 case Instruction::Sub:
3748 case Instruction::Xor:
3749 case Instruction::Trunc:
3750 case Instruction::BitCast:
3751 case Instruction::AddrSpaceCast:
3752 // These operations all propagate poison unconditionally. Note that poison
3753 // is not any particular value, so xor or subtraction of poison with
3754 // itself still yields poison, not zero.
3755 return true;
3756
3757 case Instruction::AShr:
3758 case Instruction::SExt:
3759 // For these operations, one bit of the input is replicated across
3760 // multiple output bits. A replicated poison bit is still poison.
3761 return true;
3762
3763 case Instruction::Shl: {
3764 // Left shift *by* a poison value is poison. The number of
3765 // positions to shift is unsigned, so no negative values are
3766 // possible there. Left shift by zero places preserves poison. So
3767 // it only remains to consider left shift of poison by a positive
3768 // number of places.
3769 //
3770 // A left shift by a positive number of places leaves the lowest order bit
3771 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3772 // make the poison operand violate that flag, yielding a fresh full-poison
3773 // value.
3774 auto *OBO = cast<OverflowingBinaryOperator>(I);
3775 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3776 }
3777
3778 case Instruction::Mul: {
3779 // A multiplication by zero yields a non-poison zero result, so we need to
3780 // rule out zero as an operand. Conservatively, multiplication by a
3781 // non-zero constant is not multiplication by zero.
3782 //
3783 // Multiplication by a non-zero constant can leave some bits
3784 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3785 // order bit unpoisoned. So we need to consider that.
3786 //
3787 // Multiplication by 1 preserves poison. If the multiplication has a
3788 // no-wrap flag, then we can make the poison operand violate that flag
3789 // when multiplied by any integer other than 0 and 1.
3790 auto *OBO = cast<OverflowingBinaryOperator>(I);
3791 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3792 for (Value *V : OBO->operands()) {
3793 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3794 // A ConstantInt cannot yield poison, so we can assume that it is
3795 // the other operand that is poison.
3796 return !CI->isZero();
3797 }
3798 }
3799 }
3800 return false;
3801 }
3802
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003803 case Instruction::ICmp:
3804 // Comparing poison with any value yields poison. This is why, for
3805 // instance, x s< (x +nsw 1) can be folded to true.
3806 return true;
3807
Jingyue Wu42f1d672015-07-28 18:22:40 +00003808 case Instruction::GetElementPtr:
3809 // A GEP implicitly represents a sequence of additions, subtractions,
3810 // truncations, sign extensions and multiplications. The multiplications
3811 // are by the non-zero sizes of some set of types, so we do not have to be
3812 // concerned with multiplication by zero. If the GEP is in-bounds, then
3813 // these operations are implicitly no-signed-wrap so poison is propagated
3814 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3815 return cast<GEPOperator>(I)->isInBounds();
3816
3817 default:
3818 return false;
3819 }
3820}
3821
3822const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3823 switch (I->getOpcode()) {
3824 case Instruction::Store:
3825 return cast<StoreInst>(I)->getPointerOperand();
3826
3827 case Instruction::Load:
3828 return cast<LoadInst>(I)->getPointerOperand();
3829
3830 case Instruction::AtomicCmpXchg:
3831 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3832
3833 case Instruction::AtomicRMW:
3834 return cast<AtomicRMWInst>(I)->getPointerOperand();
3835
3836 case Instruction::UDiv:
3837 case Instruction::SDiv:
3838 case Instruction::URem:
3839 case Instruction::SRem:
3840 return I->getOperand(1);
3841
3842 default:
3843 return nullptr;
3844 }
3845}
3846
3847bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3848 // We currently only look for uses of poison values within the same basic
3849 // block, as that makes it easier to guarantee that the uses will be
3850 // executed given that PoisonI is executed.
3851 //
3852 // FIXME: Expand this to consider uses beyond the same basic block. To do
3853 // this, look out for the distinction between post-dominance and strong
3854 // post-dominance.
3855 const BasicBlock *BB = PoisonI->getParent();
3856
3857 // Set of instructions that we have proved will yield poison if PoisonI
3858 // does.
3859 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003860 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003861 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003862 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003863
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003864 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003865
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003866 unsigned Iter = 0;
3867 while (Iter++ < MaxDepth) {
3868 for (auto &I : make_range(Begin, End)) {
3869 if (&I != PoisonI) {
3870 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3871 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3872 return true;
3873 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3874 return false;
3875 }
3876
3877 // Mark poison that propagates from I through uses of I.
3878 if (YieldsPoison.count(&I)) {
3879 for (const User *User : I.users()) {
3880 const Instruction *UserI = cast<Instruction>(User);
3881 if (propagatesFullPoison(UserI))
3882 YieldsPoison.insert(User);
3883 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003884 }
3885 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003886
3887 if (auto *NextBB = BB->getSingleSuccessor()) {
3888 if (Visited.insert(NextBB).second) {
3889 BB = NextBB;
3890 Begin = BB->getFirstNonPHI()->getIterator();
3891 End = BB->end();
3892 continue;
3893 }
3894 }
3895
3896 break;
3897 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003898 return false;
3899}
3900
Pete Cooper35b00d52016-08-13 01:05:32 +00003901static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00003902 if (FMF.noNaNs())
3903 return true;
3904
3905 if (auto *C = dyn_cast<ConstantFP>(V))
3906 return !C->isNaN();
3907 return false;
3908}
3909
Pete Cooper35b00d52016-08-13 01:05:32 +00003910static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00003911 if (auto *C = dyn_cast<ConstantFP>(V))
3912 return !C->isZero();
3913 return false;
3914}
3915
Sanjay Patel819f0962016-11-13 19:30:19 +00003916/// Match non-obvious integer minimum and maximum sequences.
3917static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
3918 Value *CmpLHS, Value *CmpRHS,
3919 Value *TrueVal, Value *FalseVal,
3920 Value *&LHS, Value *&RHS) {
3921 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
3922 return {SPF_UNKNOWN, SPNB_NA, false};
3923
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00003924 // Z = X -nsw Y
3925 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
3926 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
3927 if (match(TrueVal, m_Zero()) &&
3928 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) {
3929 LHS = TrueVal;
3930 RHS = FalseVal;
3931 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
3932 }
3933
3934 // Z = X -nsw Y
3935 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
3936 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
3937 if (match(FalseVal, m_Zero()) &&
3938 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) {
3939 LHS = TrueVal;
3940 RHS = FalseVal;
3941 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
3942 }
3943
Sanjay Patel819f0962016-11-13 19:30:19 +00003944 const APInt *C1;
3945 if (!match(CmpRHS, m_APInt(C1)))
3946 return {SPF_UNKNOWN, SPNB_NA, false};
3947
3948 // An unsigned min/max can be written with a signed compare.
3949 const APInt *C2;
3950 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
3951 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
3952 // Is the sign bit set?
3953 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
3954 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
3955 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) {
3956 LHS = TrueVal;
3957 RHS = FalseVal;
3958 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
3959 }
3960
3961 // Is the sign bit clear?
3962 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
3963 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
3964 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
3965 C2->isMinSignedValue()) {
3966 LHS = TrueVal;
3967 RHS = FalseVal;
3968 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
3969 }
3970 }
3971
3972 // Look through 'not' ops to find disguised signed min/max.
3973 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
3974 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
3975 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
3976 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) {
3977 LHS = TrueVal;
3978 RHS = FalseVal;
3979 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
3980 }
3981
3982 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
3983 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
3984 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
3985 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) {
3986 LHS = TrueVal;
3987 RHS = FalseVal;
3988 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
3989 }
3990
3991 return {SPF_UNKNOWN, SPNB_NA, false};
3992}
3993
James Molloy134bec22015-08-11 09:12:57 +00003994static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3995 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003996 Value *CmpLHS, Value *CmpRHS,
3997 Value *TrueVal, Value *FalseVal,
3998 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003999 LHS = CmpLHS;
4000 RHS = CmpRHS;
4001
James Molloy134bec22015-08-11 09:12:57 +00004002 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
4003 // return inconsistent results between implementations.
4004 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4005 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4006 // Therefore we behave conservatively and only proceed if at least one of the
4007 // operands is known to not be zero, or if we don't care about signed zeroes.
4008 switch (Pred) {
4009 default: break;
4010 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4011 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4012 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4013 !isKnownNonZero(CmpRHS))
4014 return {SPF_UNKNOWN, SPNB_NA, false};
4015 }
4016
4017 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4018 bool Ordered = false;
4019
4020 // When given one NaN and one non-NaN input:
4021 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4022 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4023 // ordered comparison fails), which could be NaN or non-NaN.
4024 // so here we discover exactly what NaN behavior is required/accepted.
4025 if (CmpInst::isFPPredicate(Pred)) {
4026 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4027 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4028
4029 if (LHSSafe && RHSSafe) {
4030 // Both operands are known non-NaN.
4031 NaNBehavior = SPNB_RETURNS_ANY;
4032 } else if (CmpInst::isOrdered(Pred)) {
4033 // An ordered comparison will return false when given a NaN, so it
4034 // returns the RHS.
4035 Ordered = true;
4036 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004037 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004038 NaNBehavior = SPNB_RETURNS_NAN;
4039 else if (RHSSafe)
4040 NaNBehavior = SPNB_RETURNS_OTHER;
4041 else
4042 // Completely unsafe.
4043 return {SPF_UNKNOWN, SPNB_NA, false};
4044 } else {
4045 Ordered = false;
4046 // An unordered comparison will return true when given a NaN, so it
4047 // returns the LHS.
4048 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004049 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004050 NaNBehavior = SPNB_RETURNS_OTHER;
4051 else if (RHSSafe)
4052 NaNBehavior = SPNB_RETURNS_NAN;
4053 else
4054 // Completely unsafe.
4055 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004056 }
4057 }
4058
James Molloy71b91c22015-05-11 14:42:20 +00004059 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004060 std::swap(CmpLHS, CmpRHS);
4061 Pred = CmpInst::getSwappedPredicate(Pred);
4062 if (NaNBehavior == SPNB_RETURNS_NAN)
4063 NaNBehavior = SPNB_RETURNS_OTHER;
4064 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4065 NaNBehavior = SPNB_RETURNS_NAN;
4066 Ordered = !Ordered;
4067 }
4068
4069 // ([if]cmp X, Y) ? X : Y
4070 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004071 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004072 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004073 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004074 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004075 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004076 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004077 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004078 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004079 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004080 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4081 case FCmpInst::FCMP_UGT:
4082 case FCmpInst::FCMP_UGE:
4083 case FCmpInst::FCMP_OGT:
4084 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4085 case FCmpInst::FCMP_ULT:
4086 case FCmpInst::FCMP_ULE:
4087 case FCmpInst::FCMP_OLT:
4088 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004089 }
4090 }
4091
Sanjay Patele372aec2016-10-27 15:26:10 +00004092 const APInt *C1;
4093 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004094 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4095 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4096
4097 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4098 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Sanjay Patele372aec2016-10-27 15:26:10 +00004099 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004100 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004101 }
4102
4103 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4104 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Sanjay Patele372aec2016-10-27 15:26:10 +00004105 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
James Molloy134bec22015-08-11 09:12:57 +00004106 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004107 }
4108 }
James Molloy71b91c22015-05-11 14:42:20 +00004109 }
4110
Sanjay Patel819f0962016-11-13 19:30:19 +00004111 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004112}
James Molloy270ef8c2015-05-15 16:04:50 +00004113
James Molloy569cea62015-09-02 17:25:25 +00004114static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4115 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00004116 CastInst *CI = dyn_cast<CastInst>(V1);
4117 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00004118 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00004119 return nullptr;
4120 *CastOp = CI->getOpcode();
4121
David Majnemerd2a074b2016-04-29 18:40:34 +00004122 if (auto *CI2 = dyn_cast<CastInst>(V2)) {
James Molloy569cea62015-09-02 17:25:25 +00004123 // If V1 and V2 are both the same cast from the same type, we can look
4124 // through V1.
4125 if (CI2->getOpcode() == CI->getOpcode() &&
4126 CI2->getSrcTy() == CI->getSrcTy())
4127 return CI2->getOperand(0);
4128 return nullptr;
4129 } else if (!C) {
4130 return nullptr;
4131 }
4132
David Majnemerd2a074b2016-04-29 18:40:34 +00004133 Constant *CastedTo = nullptr;
4134
David Majnemer826e9832016-04-29 21:22:04 +00004135 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
4136 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
4137
David Majnemerd2a074b2016-04-29 18:40:34 +00004138 if (isa<SExtInst>(CI) && CmpI->isSigned())
4139 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
4140
David Majnemer826e9832016-04-29 21:22:04 +00004141 if (isa<TruncInst>(CI))
4142 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
4143
4144 if (isa<FPTruncInst>(CI))
4145 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
4146
4147 if (isa<FPExtInst>(CI))
4148 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
4149
David Majnemerd2a074b2016-04-29 18:40:34 +00004150 if (isa<FPToUIInst>(CI))
4151 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
4152
4153 if (isa<FPToSIInst>(CI))
4154 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
4155
4156 if (isa<UIToFPInst>(CI))
4157 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
4158
4159 if (isa<SIToFPInst>(CI))
4160 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
4161
4162 if (!CastedTo)
4163 return nullptr;
4164
4165 Constant *CastedBack =
4166 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
4167 // Make sure the cast doesn't lose any information.
4168 if (CastedBack != C)
4169 return nullptr;
4170
4171 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004172}
4173
Sanjay Patele8dc0902016-05-23 17:57:54 +00004174SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004175 Instruction::CastOps *CastOp) {
4176 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004177 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004178
James Molloy134bec22015-08-11 09:12:57 +00004179 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4180 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004181
James Molloy134bec22015-08-11 09:12:57 +00004182 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004183 Value *CmpLHS = CmpI->getOperand(0);
4184 Value *CmpRHS = CmpI->getOperand(1);
4185 Value *TrueVal = SI->getTrueValue();
4186 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004187 FastMathFlags FMF;
4188 if (isa<FPMathOperator>(CmpI))
4189 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004190
4191 // Bail out early.
4192 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004193 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004194
4195 // Deal with type mismatches.
4196 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004197 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004198 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004199 cast<CastInst>(TrueVal)->getOperand(0), C,
4200 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004201 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004202 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004203 C, cast<CastInst>(FalseVal)->getOperand(0),
4204 LHS, RHS);
4205 }
James Molloy134bec22015-08-11 09:12:57 +00004206 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004207 LHS, RHS);
4208}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004209
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004210/// Return true if "icmp Pred LHS RHS" is always true.
Pete Cooper35b00d52016-08-13 01:05:32 +00004211static bool isTruePredicate(CmpInst::Predicate Pred,
4212 const Value *LHS, const Value *RHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004213 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004214 AssumptionCache *AC, const Instruction *CxtI,
4215 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004216 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004217 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4218 return true;
4219
4220 switch (Pred) {
4221 default:
4222 return false;
4223
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004224 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004225 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004226
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004227 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004228 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004229 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004230 return false;
4231 }
4232
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004233 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004234 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004235
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004236 // LHS u<= LHS +_{nuw} C for any C
4237 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004238 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004239
4240 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004241 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4242 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004243 const APInt *&CA, const APInt *&CB) {
4244 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4245 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4246 return true;
4247
4248 // If X & C == 0 then (X | C) == X +_{nuw} C
4249 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4250 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4251 unsigned BitWidth = CA->getBitWidth();
4252 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004253 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
Sanjoy Das92568102015-11-10 23:56:20 +00004254
4255 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4256 return true;
4257 }
4258
4259 return false;
4260 };
4261
Pete Cooper35b00d52016-08-13 01:05:32 +00004262 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004263 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004264 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4265 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004266
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004267 return false;
4268 }
4269 }
4270}
4271
4272/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004273/// ALHS ARHS" is true. Otherwise, return None.
4274static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004275isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4276 const Value *ARHS, const Value *BLHS,
4277 const Value *BRHS, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004278 unsigned Depth, AssumptionCache *AC,
4279 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004280 switch (Pred) {
4281 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004282 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004283
4284 case CmpInst::ICMP_SLT:
4285 case CmpInst::ICMP_SLE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004286 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004287 DT) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004288 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004289 return true;
4290 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004291
4292 case CmpInst::ICMP_ULT:
4293 case CmpInst::ICMP_ULE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004294 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4295 DT) &&
4296 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004297 return true;
4298 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004299 }
4300}
4301
Chad Rosier226a7342016-05-05 17:41:19 +00004302/// Return true if the operands of the two compares match. IsSwappedOps is true
4303/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004304static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4305 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004306 bool &IsSwappedOps) {
4307
4308 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4309 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4310 return IsMatchingOps || IsSwappedOps;
4311}
4312
Chad Rosier41dd31f2016-04-20 19:15:26 +00004313/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4314/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4315/// BRHS" is false. Otherwise, return None if we can't infer anything.
4316static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004317 const Value *ALHS,
4318 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004319 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004320 const Value *BLHS,
4321 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004322 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004323 // Canonicalize the operands so they're matching.
4324 if (IsSwappedOps) {
4325 std::swap(BLHS, BRHS);
4326 BPred = ICmpInst::getSwappedPredicate(BPred);
4327 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004328 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004329 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004330 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004331 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004332
Chad Rosier41dd31f2016-04-20 19:15:26 +00004333 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004334}
4335
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004336/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4337/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4338/// C2" is false. Otherwise, return None if we can't infer anything.
4339static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004340isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4341 const ConstantInt *C1,
4342 CmpInst::Predicate BPred,
4343 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004344 assert(ALHS == BLHS && "LHS operands must match.");
4345 ConstantRange DomCR =
4346 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4347 ConstantRange CR =
4348 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4349 ConstantRange Intersection = DomCR.intersectWith(CR);
4350 ConstantRange Difference = DomCR.difference(CR);
4351 if (Intersection.isEmptySet())
4352 return false;
4353 if (Difference.isEmptySet())
4354 return true;
4355 return None;
4356}
4357
Pete Cooper35b00d52016-08-13 01:05:32 +00004358Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00004359 const DataLayout &DL, bool InvertAPred,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004360 unsigned Depth, AssumptionCache *AC,
4361 const Instruction *CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004362 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00004363 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4364 if (LHS->getType() != RHS->getType())
4365 return None;
4366
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004367 Type *OpTy = LHS->getType();
4368 assert(OpTy->getScalarType()->isIntegerTy(1));
4369
4370 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00004371 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004372 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004373
4374 if (OpTy->isVectorTy())
4375 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004376 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004377 assert(OpTy->isIntegerTy(1) && "implied by above");
4378
4379 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004380 Value *ALHS, *ARHS;
4381 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004382
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004383 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4384 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004385 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004386
Chad Rosiere2cbd132016-04-25 17:23:36 +00004387 if (InvertAPred)
4388 APred = CmpInst::getInversePredicate(APred);
4389
Chad Rosier226a7342016-05-05 17:41:19 +00004390 // Can we infer anything when the two compares have matching operands?
4391 bool IsSwappedOps;
4392 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4393 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4394 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004395 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004396 // No amount of additional analysis will infer the second condition, so
4397 // early exit.
4398 return None;
4399 }
4400
4401 // Can we infer anything when the LHS operands match and the RHS operands are
4402 // constants (not necessarily matching)?
4403 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4404 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4405 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4406 cast<ConstantInt>(BRHS)))
4407 return Implication;
4408 // No amount of additional analysis will infer the second condition, so
4409 // early exit.
4410 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004411 }
4412
Chad Rosier41dd31f2016-04-20 19:15:26 +00004413 if (APred == BPred)
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004414 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4415 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004416
Chad Rosier41dd31f2016-04-20 19:15:26 +00004417 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004418}