blob: fa40363a7548d772904a9f53e7e556052d7c2ffc [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000200``internal``
201 Similar to private, but the value shows as a local symbol
202 (``STB_LOCAL`` in the case of ELF) in the object file. This
203 corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205 Globals with "``available_externally``" linkage are never emitted
206 into the object file corresponding to the LLVM module. They exist to
207 allow inlining and other optimizations to take place given knowledge
208 of the definition of the global, which is known to be somewhere
209 outside the module. Globals with ``available_externally`` linkage
210 are allowed to be discarded at will, and are otherwise the same as
211 ``linkonce_odr``. This linkage type is only allowed on definitions,
212 not declarations.
213``linkonce``
214 Globals with "``linkonce``" linkage are merged with other globals of
215 the same name when linkage occurs. This can be used to implement
216 some forms of inline functions, templates, or other code which must
217 be generated in each translation unit that uses it, but where the
218 body may be overridden with a more definitive definition later.
219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220 that ``linkonce`` linkage does not actually allow the optimizer to
221 inline the body of this function into callers because it doesn't
222 know if this definition of the function is the definitive definition
223 within the program or whether it will be overridden by a stronger
224 definition. To enable inlining and other optimizations, use
225 "``linkonce_odr``" linkage.
226``weak``
227 "``weak``" linkage has the same merging semantics as ``linkonce``
228 linkage, except that unreferenced globals with ``weak`` linkage may
229 not be discarded. This is used for globals that are declared "weak"
230 in C source code.
231``common``
232 "``common``" linkage is most similar to "``weak``" linkage, but they
233 are used for tentative definitions in C, such as "``int X;``" at
234 global scope. Symbols with "``common``" linkage are merged in the
235 same way as ``weak symbols``, and they may not be deleted if
236 unreferenced. ``common`` symbols may not have an explicit section,
237 must have a zero initializer, and may not be marked
238 ':ref:`constant <globalvars>`'. Functions and aliases may not have
239 common linkage.
240
241.. _linkage_appending:
242
243``appending``
244 "``appending``" linkage may only be applied to global variables of
245 pointer to array type. When two global variables with appending
246 linkage are linked together, the two global arrays are appended
247 together. This is the LLVM, typesafe, equivalent of having the
248 system linker append together "sections" with identical names when
249 .o files are linked.
250``extern_weak``
251 The semantics of this linkage follow the ELF object file model: the
252 symbol is weak until linked, if not linked, the symbol becomes null
253 instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255 Some languages allow differing globals to be merged, such as two
256 functions with different semantics. Other languages, such as
257 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000258 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260 global will only be merged with equivalent globals. These linkage
261 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000262``external``
263 If none of the above identifiers are used, the global is externally
264 visible, meaning that it participates in linkage and can be used to
265 resolve external symbol references.
266
Sean Silvab084af42012-12-07 10:36:55 +0000267It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000268other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000269
Sean Silvab084af42012-12-07 10:36:55 +0000270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283 This calling convention (the default if no other calling convention
284 is specified) matches the target C calling conventions. This calling
285 convention supports varargs function calls and tolerates some
286 mismatch in the declared prototype and implemented declaration of
287 the function (as does normal C).
288"``fastcc``" - The fast calling convention
289 This calling convention attempts to make calls as fast as possible
290 (e.g. by passing things in registers). This calling convention
291 allows the target to use whatever tricks it wants to produce fast
292 code for the target, without having to conform to an externally
293 specified ABI (Application Binary Interface). `Tail calls can only
294 be optimized when this, the GHC or the HiPE convention is
295 used. <CodeGenerator.html#id80>`_ This calling convention does not
296 support varargs and requires the prototype of all callees to exactly
297 match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299 This calling convention attempts to make code in the caller as
300 efficient as possible under the assumption that the call is not
301 commonly executed. As such, these calls often preserve all registers
302 so that the call does not break any live ranges in the caller side.
303 This calling convention does not support varargs and requires the
304 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000305 function definition. Furthermore the inliner doesn't consider such function
306 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000307"``cc 10``" - GHC convention
308 This calling convention has been implemented specifically for use by
309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310 It passes everything in registers, going to extremes to achieve this
311 by disabling callee save registers. This calling convention should
312 not be used lightly but only for specific situations such as an
313 alternative to the *register pinning* performance technique often
314 used when implementing functional programming languages. At the
315 moment only X86 supports this convention and it has the following
316 limitations:
317
318 - On *X86-32* only supports up to 4 bit type parameters. No
319 floating point types are supported.
320 - On *X86-64* only supports up to 10 bit type parameters and 6
321 floating point parameters.
322
323 This calling convention supports `tail call
324 optimization <CodeGenerator.html#id80>`_ but requires both the
325 caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327 This calling convention has been implemented specifically for use by
328 the `High-Performance Erlang
329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330 native code compiler of the `Ericsson's Open Source Erlang/OTP
331 system <http://www.erlang.org/download.shtml>`_. It uses more
332 registers for argument passing than the ordinary C calling
333 convention and defines no callee-saved registers. The calling
334 convention properly supports `tail call
335 optimization <CodeGenerator.html#id80>`_ but requires that both the
336 caller and the callee use it. It uses a *register pinning*
337 mechanism, similar to GHC's convention, for keeping frequently
338 accessed runtime components pinned to specific hardware registers.
339 At the moment only X86 supports this convention (both 32 and 64
340 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000341"``webkit_jscc``" - WebKit's JavaScript calling convention
342 This calling convention has been implemented for `WebKit FTL JIT
343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344 stack right to left (as cdecl does), and returns a value in the
345 platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347 This is a special convention that supports patching an arbitrary code
348 sequence in place of a call site. This convention forces the call
349 arguments into registers but allows them to be dynamcially
350 allocated. This can currently only be used with calls to
351 llvm.experimental.patchpoint because only this intrinsic records
352 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000353"``preserve_mostcc``" - The `PreserveMost` calling convention
354 This calling convention attempts to make the code in the caller as little
355 intrusive as possible. This calling convention behaves identical to the `C`
356 calling convention on how arguments and return values are passed, but it
357 uses a different set of caller/callee-saved registers. This alleviates the
358 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000359 call in the caller. If the arguments are passed in callee-saved registers,
360 then they will be preserved by the callee across the call. This doesn't
361 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000362
363 - On X86-64 the callee preserves all general purpose registers, except for
364 R11. R11 can be used as a scratch register. Floating-point registers
365 (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367 The idea behind this convention is to support calls to runtime functions
368 that have a hot path and a cold path. The hot path is usually a small piece
369 of code that doesn't many registers. The cold path might need to call out to
370 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000371 registers, which haven't already been saved by the caller. The
372 `PreserveMost` calling convention is very similar to the `cold` calling
373 convention in terms of caller/callee-saved registers, but they are used for
374 different types of function calls. `coldcc` is for function calls that are
375 rarely executed, whereas `preserve_mostcc` function calls are intended to be
376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000378
379 This calling convention will be used by a future version of the ObjectiveC
380 runtime and should therefore still be considered experimental at this time.
381 Although this convention was created to optimize certain runtime calls to
382 the ObjectiveC runtime, it is not limited to this runtime and might be used
383 by other runtimes in the future too. The current implementation only
384 supports X86-64, but the intention is to support more architectures in the
385 future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387 This calling convention attempts to make the code in the caller even less
388 intrusive than the `PreserveMost` calling convention. This calling
389 convention also behaves identical to the `C` calling convention on how
390 arguments and return values are passed, but it uses a different set of
391 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000392 recovering a large register set before and after the call in the caller. If
393 the arguments are passed in callee-saved registers, then they will be
394 preserved by the callee across the call. This doesn't apply for values
395 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000396
397 - On X86-64 the callee preserves all general purpose registers, except for
398 R11. R11 can be used as a scratch register. Furthermore it also preserves
399 all floating-point registers (XMMs/YMMs).
400
401 The idea behind this convention is to support calls to runtime functions
402 that don't need to call out to any other functions.
403
404 This calling convention, like the `PreserveMost` calling convention, will be
405 used by a future version of the ObjectiveC runtime and should be considered
406 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000407"``cc <n>``" - Numbered convention
408 Any calling convention may be specified by number, allowing
409 target-specific calling conventions to be used. Target specific
410 calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000416.. _visibilitystyles:
417
Sean Silvab084af42012-12-07 10:36:55 +0000418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425 On targets that use the ELF object file format, default visibility
426 means that the declaration is visible to other modules and, in
427 shared libraries, means that the declared entity may be overridden.
428 On Darwin, default visibility means that the declaration is visible
429 to other modules. Default visibility corresponds to "external
430 linkage" in the language.
431"``hidden``" - Hidden style
432 Two declarations of an object with hidden visibility refer to the
433 same object if they are in the same shared object. Usually, hidden
434 visibility indicates that the symbol will not be placed into the
435 dynamic symbol table, so no other module (executable or shared
436 library) can reference it directly.
437"``protected``" - Protected style
438 On ELF, protected visibility indicates that the symbol will be
439 placed in the dynamic symbol table, but that references within the
440 defining module will bind to the local symbol. That is, the symbol
441 cannot be overridden by another module.
442
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000443A symbol with ``internal`` or ``private`` linkage must have ``default``
444visibility.
445
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000446.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000447
Nico Rieck7157bb72014-01-14 15:22:47 +0000448DLL Storage Classes
449-------------------
450
451All Global Variables, Functions and Aliases can have one of the following
452DLL storage class:
453
454``dllimport``
455 "``dllimport``" causes the compiler to reference a function or variable via
456 a global pointer to a pointer that is set up by the DLL exporting the
457 symbol. On Microsoft Windows targets, the pointer name is formed by
458 combining ``__imp_`` and the function or variable name.
459``dllexport``
460 "``dllexport``" causes the compiler to provide a global pointer to a pointer
461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
462 Microsoft Windows targets, the pointer name is formed by combining
463 ``__imp_`` and the function or variable name. Since this storage class
464 exists for defining a dll interface, the compiler, assembler and linker know
465 it is externally referenced and must refrain from deleting the symbol.
466
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000467.. _namedtypes:
468
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000469Structure Types
470---------------
Sean Silvab084af42012-12-07 10:36:55 +0000471
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000472LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
473types <t_struct>`. Literal types are uniqued structurally, but identified types
474are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
475to forward declare a type which is not yet available.
476
477An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000478
479.. code-block:: llvm
480
481 %mytype = type { %mytype*, i32 }
482
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000483Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
484literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000485
486.. _globalvars:
487
488Global Variables
489----------------
490
491Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000492instead of run-time.
493
494Global variables definitions must be initialized, may have an explicit section
495to be placed in, and may have an optional explicit alignment specified.
496
497Global variables in other translation units can also be declared, in which
498case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000499
500A variable may be defined as ``thread_local``, which means that it will
501not be shared by threads (each thread will have a separated copy of the
502variable). Not all targets support thread-local variables. Optionally, a
503TLS model may be specified:
504
505``localdynamic``
506 For variables that are only used within the current shared library.
507``initialexec``
508 For variables in modules that will not be loaded dynamically.
509``localexec``
510 For variables defined in the executable and only used within it.
511
512The models correspond to the ELF TLS models; see `ELF Handling For
513Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
514more information on under which circumstances the different models may
515be used. The target may choose a different TLS model if the specified
516model is not supported, or if a better choice of model can be made.
517
Michael Gottesman006039c2013-01-31 05:48:48 +0000518A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000519the contents of the variable will **never** be modified (enabling better
520optimization, allowing the global data to be placed in the read-only
521section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000522initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000523variable.
524
525LLVM explicitly allows *declarations* of global variables to be marked
526constant, even if the final definition of the global is not. This
527capability can be used to enable slightly better optimization of the
528program, but requires the language definition to guarantee that
529optimizations based on the 'constantness' are valid for the translation
530units that do not include the definition.
531
532As SSA values, global variables define pointer values that are in scope
533(i.e. they dominate) all basic blocks in the program. Global variables
534always define a pointer to their "content" type because they describe a
535region of memory, and all memory objects in LLVM are accessed through
536pointers.
537
538Global variables can be marked with ``unnamed_addr`` which indicates
539that the address is not significant, only the content. Constants marked
540like this can be merged with other constants if they have the same
541initializer. Note that a constant with significant address *can* be
542merged with a ``unnamed_addr`` constant, the result being a constant
543whose address is significant.
544
545A global variable may be declared to reside in a target-specific
546numbered address space. For targets that support them, address spaces
547may affect how optimizations are performed and/or what target
548instructions are used to access the variable. The default address space
549is zero. The address space qualifier must precede any other attributes.
550
551LLVM allows an explicit section to be specified for globals. If the
552target supports it, it will emit globals to the section specified.
553
Michael Gottesmane743a302013-02-04 03:22:00 +0000554By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000555variables defined within the module are not modified from their
556initial values before the start of the global initializer. This is
557true even for variables potentially accessible from outside the
558module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000559``@llvm.used`` or dllexported variables. This assumption may be suppressed
560by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000561
Sean Silvab084af42012-12-07 10:36:55 +0000562An explicit alignment may be specified for a global, which must be a
563power of 2. If not present, or if the alignment is set to zero, the
564alignment of the global is set by the target to whatever it feels
565convenient. If an explicit alignment is specified, the global is forced
566to have exactly that alignment. Targets and optimizers are not allowed
567to over-align the global if the global has an assigned section. In this
568case, the extra alignment could be observable: for example, code could
569assume that the globals are densely packed in their section and try to
570iterate over them as an array, alignment padding would break this
571iteration.
572
Nico Rieck7157bb72014-01-14 15:22:47 +0000573Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
574
575Syntax::
576
577 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
578 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
579 <global | constant> <Type>
580 [, section "name"] [, align <Alignment>]
581
Sean Silvab084af42012-12-07 10:36:55 +0000582For example, the following defines a global in a numbered address space
583with an initializer, section, and alignment:
584
585.. code-block:: llvm
586
587 @G = addrspace(5) constant float 1.0, section "foo", align 4
588
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000589The following example just declares a global variable
590
591.. code-block:: llvm
592
593 @G = external global i32
594
Sean Silvab084af42012-12-07 10:36:55 +0000595The following example defines a thread-local global with the
596``initialexec`` TLS model:
597
598.. code-block:: llvm
599
600 @G = thread_local(initialexec) global i32 0, align 4
601
602.. _functionstructure:
603
604Functions
605---------
606
607LLVM function definitions consist of the "``define``" keyword, an
608optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000609style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
610an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000611an optional ``unnamed_addr`` attribute, a return type, an optional
612:ref:`parameter attribute <paramattrs>` for the return type, a function
613name, a (possibly empty) argument list (each with optional :ref:`parameter
614attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
615an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000616collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
617curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000618
619LLVM function declarations consist of the "``declare``" keyword, an
620optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000621style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
622an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000623an optional ``unnamed_addr`` attribute, a return type, an optional
624:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000625name, a possibly empty list of arguments, an optional alignment, an optional
626:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000627
Bill Wendling6822ecb2013-10-27 05:09:12 +0000628A function definition contains a list of basic blocks, forming the CFG (Control
629Flow Graph) for the function. Each basic block may optionally start with a label
630(giving the basic block a symbol table entry), contains a list of instructions,
631and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
632function return). If an explicit label is not provided, a block is assigned an
633implicit numbered label, using the next value from the same counter as used for
634unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
635entry block does not have an explicit label, it will be assigned label "%0",
636then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000637
638The first basic block in a function is special in two ways: it is
639immediately executed on entrance to the function, and it is not allowed
640to have predecessor basic blocks (i.e. there can not be any branches to
641the entry block of a function). Because the block can have no
642predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
643
644LLVM allows an explicit section to be specified for functions. If the
645target supports it, it will emit functions to the section specified.
646
647An explicit alignment may be specified for a function. If not present,
648or if the alignment is set to zero, the alignment of the function is set
649by the target to whatever it feels convenient. If an explicit alignment
650is specified, the function is forced to have at least that much
651alignment. All alignments must be a power of 2.
652
653If the ``unnamed_addr`` attribute is given, the address is know to not
654be significant and two identical functions can be merged.
655
656Syntax::
657
Nico Rieck7157bb72014-01-14 15:22:47 +0000658 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000659 [cconv] [ret attrs]
660 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola84c76ae2014-03-07 04:28:28 +0000661 [unnamed_addr] [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000662 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000663
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000664.. _langref_aliases:
665
Sean Silvab084af42012-12-07 10:36:55 +0000666Aliases
667-------
668
669Aliases act as "second name" for the aliasee value (which can be either
670function, global variable, another alias or bitcast of global value).
Nico Rieck7157bb72014-01-14 15:22:47 +0000671Aliases may have an optional :ref:`linkage type <linkage>`, an optional
672:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
673<dllstorageclass>`.
Sean Silvab084af42012-12-07 10:36:55 +0000674
675Syntax::
676
Nico Rieck7157bb72014-01-14 15:22:47 +0000677 @<Name> = [Visibility] [DLLStorageClass] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000678
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000679The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000680``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000681might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000682alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000683
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000684Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
685the aliasee.
686
687The aliasee must be a definition.
688
Rafael Espindola24a669d2014-03-27 15:26:56 +0000689Aliases are not allowed to point to aliases with linkages that can be
690overridden. Since they are only a second name, the possibility of the
691intermediate alias being overridden cannot be represented in an object file.
692
Sean Silvab084af42012-12-07 10:36:55 +0000693.. _namedmetadatastructure:
694
695Named Metadata
696--------------
697
698Named metadata is a collection of metadata. :ref:`Metadata
699nodes <metadata>` (but not metadata strings) are the only valid
700operands for a named metadata.
701
702Syntax::
703
704 ; Some unnamed metadata nodes, which are referenced by the named metadata.
705 !0 = metadata !{metadata !"zero"}
706 !1 = metadata !{metadata !"one"}
707 !2 = metadata !{metadata !"two"}
708 ; A named metadata.
709 !name = !{!0, !1, !2}
710
711.. _paramattrs:
712
713Parameter Attributes
714--------------------
715
716The return type and each parameter of a function type may have a set of
717*parameter attributes* associated with them. Parameter attributes are
718used to communicate additional information about the result or
719parameters of a function. Parameter attributes are considered to be part
720of the function, not of the function type, so functions with different
721parameter attributes can have the same function type.
722
723Parameter attributes are simple keywords that follow the type specified.
724If multiple parameter attributes are needed, they are space separated.
725For example:
726
727.. code-block:: llvm
728
729 declare i32 @printf(i8* noalias nocapture, ...)
730 declare i32 @atoi(i8 zeroext)
731 declare signext i8 @returns_signed_char()
732
733Note that any attributes for the function result (``nounwind``,
734``readonly``) come immediately after the argument list.
735
736Currently, only the following parameter attributes are defined:
737
738``zeroext``
739 This indicates to the code generator that the parameter or return
740 value should be zero-extended to the extent required by the target's
741 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
742 the caller (for a parameter) or the callee (for a return value).
743``signext``
744 This indicates to the code generator that the parameter or return
745 value should be sign-extended to the extent required by the target's
746 ABI (which is usually 32-bits) by the caller (for a parameter) or
747 the callee (for a return value).
748``inreg``
749 This indicates that this parameter or return value should be treated
750 in a special target-dependent fashion during while emitting code for
751 a function call or return (usually, by putting it in a register as
752 opposed to memory, though some targets use it to distinguish between
753 two different kinds of registers). Use of this attribute is
754 target-specific.
755``byval``
756 This indicates that the pointer parameter should really be passed by
757 value to the function. The attribute implies that a hidden copy of
758 the pointee is made between the caller and the callee, so the callee
759 is unable to modify the value in the caller. This attribute is only
760 valid on LLVM pointer arguments. It is generally used to pass
761 structs and arrays by value, but is also valid on pointers to
762 scalars. The copy is considered to belong to the caller not the
763 callee (for example, ``readonly`` functions should not write to
764 ``byval`` parameters). This is not a valid attribute for return
765 values.
766
767 The byval attribute also supports specifying an alignment with the
768 align attribute. It indicates the alignment of the stack slot to
769 form and the known alignment of the pointer specified to the call
770 site. If the alignment is not specified, then the code generator
771 makes a target-specific assumption.
772
Reid Klecknera534a382013-12-19 02:14:12 +0000773.. _attr_inalloca:
774
775``inalloca``
776
Reid Kleckner60d3a832014-01-16 22:59:24 +0000777 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000778 address of outgoing stack arguments. An ``inalloca`` argument must
779 be a pointer to stack memory produced by an ``alloca`` instruction.
780 The alloca, or argument allocation, must also be tagged with the
781 inalloca keyword. Only the past argument may have the ``inalloca``
782 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000783
Reid Kleckner436c42e2014-01-17 23:58:17 +0000784 An argument allocation may be used by a call at most once because
785 the call may deallocate it. The ``inalloca`` attribute cannot be
786 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000787 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
788 ``inalloca`` attribute also disables LLVM's implicit lowering of
789 large aggregate return values, which means that frontend authors
790 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000791
Reid Kleckner60d3a832014-01-16 22:59:24 +0000792 When the call site is reached, the argument allocation must have
793 been the most recent stack allocation that is still live, or the
794 results are undefined. It is possible to allocate additional stack
795 space after an argument allocation and before its call site, but it
796 must be cleared off with :ref:`llvm.stackrestore
797 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000798
799 See :doc:`InAlloca` for more information on how to use this
800 attribute.
801
Sean Silvab084af42012-12-07 10:36:55 +0000802``sret``
803 This indicates that the pointer parameter specifies the address of a
804 structure that is the return value of the function in the source
805 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000806 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000807 not to trap and to be properly aligned. This may only be applied to
808 the first parameter. This is not a valid attribute for return
809 values.
Sean Silva1703e702014-04-08 21:06:22 +0000810
811.. _noalias:
812
Sean Silvab084af42012-12-07 10:36:55 +0000813``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000814 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000815 the argument or return value do not alias pointer values which are
816 not *based* on it, ignoring certain "irrelevant" dependencies. For a
817 call to the parent function, dependencies between memory references
818 from before or after the call and from those during the call are
819 "irrelevant" to the ``noalias`` keyword for the arguments and return
820 value used in that call. The caller shares the responsibility with
821 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000822 details, please see the discussion of the NoAlias response in :ref:`alias
823 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000824
825 Note that this definition of ``noalias`` is intentionally similar
826 to the definition of ``restrict`` in C99 for function arguments,
827 though it is slightly weaker.
828
829 For function return values, C99's ``restrict`` is not meaningful,
830 while LLVM's ``noalias`` is.
831``nocapture``
832 This indicates that the callee does not make any copies of the
833 pointer that outlive the callee itself. This is not a valid
834 attribute for return values.
835
836.. _nest:
837
838``nest``
839 This indicates that the pointer parameter can be excised using the
840 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000841 attribute for return values and can only be applied to one parameter.
842
843``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000844 This indicates that the function always returns the argument as its return
845 value. This is an optimization hint to the code generator when generating
846 the caller, allowing tail call optimization and omission of register saves
847 and restores in some cases; it is not checked or enforced when generating
848 the callee. The parameter and the function return type must be valid
849 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
850 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000851
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000852``nonnull``
853 This indicates that the parameter or return pointer is not null. This
854 attribute may only be applied to pointer typed parameters. This is not
855 checked or enforced by LLVM, the caller must ensure that the pointer
856 passed in is non-null, or the callee must ensure that the returned pointer
857 is non-null.
858
Sean Silvab084af42012-12-07 10:36:55 +0000859.. _gc:
860
861Garbage Collector Names
862-----------------------
863
864Each function may specify a garbage collector name, which is simply a
865string:
866
867.. code-block:: llvm
868
869 define void @f() gc "name" { ... }
870
871The compiler declares the supported values of *name*. Specifying a
872collector which will cause the compiler to alter its output in order to
873support the named garbage collection algorithm.
874
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000875.. _prefixdata:
876
877Prefix Data
878-----------
879
880Prefix data is data associated with a function which the code generator
881will emit immediately before the function body. The purpose of this feature
882is to allow frontends to associate language-specific runtime metadata with
883specific functions and make it available through the function pointer while
884still allowing the function pointer to be called. To access the data for a
885given function, a program may bitcast the function pointer to a pointer to
886the constant's type. This implies that the IR symbol points to the start
887of the prefix data.
888
889To maintain the semantics of ordinary function calls, the prefix data must
890have a particular format. Specifically, it must begin with a sequence of
891bytes which decode to a sequence of machine instructions, valid for the
892module's target, which transfer control to the point immediately succeeding
893the prefix data, without performing any other visible action. This allows
894the inliner and other passes to reason about the semantics of the function
895definition without needing to reason about the prefix data. Obviously this
896makes the format of the prefix data highly target dependent.
897
Peter Collingbourne213358a2013-09-23 20:14:21 +0000898Prefix data is laid out as if it were an initializer for a global variable
899of the prefix data's type. No padding is automatically placed between the
900prefix data and the function body. If padding is required, it must be part
901of the prefix data.
902
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000903A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
904which encodes the ``nop`` instruction:
905
906.. code-block:: llvm
907
908 define void @f() prefix i8 144 { ... }
909
910Generally prefix data can be formed by encoding a relative branch instruction
911which skips the metadata, as in this example of valid prefix data for the
912x86_64 architecture, where the first two bytes encode ``jmp .+10``:
913
914.. code-block:: llvm
915
916 %0 = type <{ i8, i8, i8* }>
917
918 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
919
920A function may have prefix data but no body. This has similar semantics
921to the ``available_externally`` linkage in that the data may be used by the
922optimizers but will not be emitted in the object file.
923
Bill Wendling63b88192013-02-06 06:52:58 +0000924.. _attrgrp:
925
926Attribute Groups
927----------------
928
929Attribute groups are groups of attributes that are referenced by objects within
930the IR. They are important for keeping ``.ll`` files readable, because a lot of
931functions will use the same set of attributes. In the degenerative case of a
932``.ll`` file that corresponds to a single ``.c`` file, the single attribute
933group will capture the important command line flags used to build that file.
934
935An attribute group is a module-level object. To use an attribute group, an
936object references the attribute group's ID (e.g. ``#37``). An object may refer
937to more than one attribute group. In that situation, the attributes from the
938different groups are merged.
939
940Here is an example of attribute groups for a function that should always be
941inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
942
943.. code-block:: llvm
944
945 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000946 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000947
948 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000949 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000950
951 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
952 define void @f() #0 #1 { ... }
953
Sean Silvab084af42012-12-07 10:36:55 +0000954.. _fnattrs:
955
956Function Attributes
957-------------------
958
959Function attributes are set to communicate additional information about
960a function. Function attributes are considered to be part of the
961function, not of the function type, so functions with different function
962attributes can have the same function type.
963
964Function attributes are simple keywords that follow the type specified.
965If multiple attributes are needed, they are space separated. For
966example:
967
968.. code-block:: llvm
969
970 define void @f() noinline { ... }
971 define void @f() alwaysinline { ... }
972 define void @f() alwaysinline optsize { ... }
973 define void @f() optsize { ... }
974
Sean Silvab084af42012-12-07 10:36:55 +0000975``alignstack(<n>)``
976 This attribute indicates that, when emitting the prologue and
977 epilogue, the backend should forcibly align the stack pointer.
978 Specify the desired alignment, which must be a power of two, in
979 parentheses.
980``alwaysinline``
981 This attribute indicates that the inliner should attempt to inline
982 this function into callers whenever possible, ignoring any active
983 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000984``builtin``
985 This indicates that the callee function at a call site should be
986 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000987 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000988 direct calls to functions which are declared with the ``nobuiltin``
989 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000990``cold``
991 This attribute indicates that this function is rarely called. When
992 computing edge weights, basic blocks post-dominated by a cold
993 function call are also considered to be cold; and, thus, given low
994 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000995``inlinehint``
996 This attribute indicates that the source code contained a hint that
997 inlining this function is desirable (such as the "inline" keyword in
998 C/C++). It is just a hint; it imposes no requirements on the
999 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001000``minsize``
1001 This attribute suggests that optimization passes and code generator
1002 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001003 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001004 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001005``naked``
1006 This attribute disables prologue / epilogue emission for the
1007 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001008``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001009 This indicates that the callee function at a call site is not recognized as
1010 a built-in function. LLVM will retain the original call and not replace it
1011 with equivalent code based on the semantics of the built-in function, unless
1012 the call site uses the ``builtin`` attribute. This is valid at call sites
1013 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001014``noduplicate``
1015 This attribute indicates that calls to the function cannot be
1016 duplicated. A call to a ``noduplicate`` function may be moved
1017 within its parent function, but may not be duplicated within
1018 its parent function.
1019
1020 A function containing a ``noduplicate`` call may still
1021 be an inlining candidate, provided that the call is not
1022 duplicated by inlining. That implies that the function has
1023 internal linkage and only has one call site, so the original
1024 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001025``noimplicitfloat``
1026 This attributes disables implicit floating point instructions.
1027``noinline``
1028 This attribute indicates that the inliner should never inline this
1029 function in any situation. This attribute may not be used together
1030 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001031``nonlazybind``
1032 This attribute suppresses lazy symbol binding for the function. This
1033 may make calls to the function faster, at the cost of extra program
1034 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001035``noredzone``
1036 This attribute indicates that the code generator should not use a
1037 red zone, even if the target-specific ABI normally permits it.
1038``noreturn``
1039 This function attribute indicates that the function never returns
1040 normally. This produces undefined behavior at runtime if the
1041 function ever does dynamically return.
1042``nounwind``
1043 This function attribute indicates that the function never returns
1044 with an unwind or exceptional control flow. If the function does
1045 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001046``optnone``
1047 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001048 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001049 exception of interprocedural optimization passes.
1050 This attribute cannot be used together with the ``alwaysinline``
1051 attribute; this attribute is also incompatible
1052 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001053
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001054 This attribute requires the ``noinline`` attribute to be specified on
1055 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001056 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001057 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001058``optsize``
1059 This attribute suggests that optimization passes and code generator
1060 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001061 and otherwise do optimizations specifically to reduce code size as
1062 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001063``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001064 On a function, this attribute indicates that the function computes its
1065 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001066 without dereferencing any pointer arguments or otherwise accessing
1067 any mutable state (e.g. memory, control registers, etc) visible to
1068 caller functions. It does not write through any pointer arguments
1069 (including ``byval`` arguments) and never changes any state visible
1070 to callers. This means that it cannot unwind exceptions by calling
1071 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001072
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001073 On an argument, this attribute indicates that the function does not
1074 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001075 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001076``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001077 On a function, this attribute indicates that the function does not write
1078 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001079 modify any state (e.g. memory, control registers, etc) visible to
1080 caller functions. It may dereference pointer arguments and read
1081 state that may be set in the caller. A readonly function always
1082 returns the same value (or unwinds an exception identically) when
1083 called with the same set of arguments and global state. It cannot
1084 unwind an exception by calling the ``C++`` exception throwing
1085 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001086
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001087 On an argument, this attribute indicates that the function does not write
1088 through this pointer argument, even though it may write to the memory that
1089 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001090``returns_twice``
1091 This attribute indicates that this function can return twice. The C
1092 ``setjmp`` is an example of such a function. The compiler disables
1093 some optimizations (like tail calls) in the caller of these
1094 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001095``sanitize_address``
1096 This attribute indicates that AddressSanitizer checks
1097 (dynamic address safety analysis) are enabled for this function.
1098``sanitize_memory``
1099 This attribute indicates that MemorySanitizer checks (dynamic detection
1100 of accesses to uninitialized memory) are enabled for this function.
1101``sanitize_thread``
1102 This attribute indicates that ThreadSanitizer checks
1103 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001104``ssp``
1105 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001106 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001107 placed on the stack before the local variables that's checked upon
1108 return from the function to see if it has been overwritten. A
1109 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001110 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001111
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001112 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1113 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1114 - Calls to alloca() with variable sizes or constant sizes greater than
1115 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001116
Josh Magee24c7f062014-02-01 01:36:16 +00001117 Variables that are identified as requiring a protector will be arranged
1118 on the stack such that they are adjacent to the stack protector guard.
1119
Sean Silvab084af42012-12-07 10:36:55 +00001120 If a function that has an ``ssp`` attribute is inlined into a
1121 function that doesn't have an ``ssp`` attribute, then the resulting
1122 function will have an ``ssp`` attribute.
1123``sspreq``
1124 This attribute indicates that the function should *always* emit a
1125 stack smashing protector. This overrides the ``ssp`` function
1126 attribute.
1127
Josh Magee24c7f062014-02-01 01:36:16 +00001128 Variables that are identified as requiring a protector will be arranged
1129 on the stack such that they are adjacent to the stack protector guard.
1130 The specific layout rules are:
1131
1132 #. Large arrays and structures containing large arrays
1133 (``>= ssp-buffer-size``) are closest to the stack protector.
1134 #. Small arrays and structures containing small arrays
1135 (``< ssp-buffer-size``) are 2nd closest to the protector.
1136 #. Variables that have had their address taken are 3rd closest to the
1137 protector.
1138
Sean Silvab084af42012-12-07 10:36:55 +00001139 If a function that has an ``sspreq`` attribute is inlined into a
1140 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001141 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1142 an ``sspreq`` attribute.
1143``sspstrong``
1144 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001145 protector. This attribute causes a strong heuristic to be used when
1146 determining if a function needs stack protectors. The strong heuristic
1147 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001148
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001149 - Arrays of any size and type
1150 - Aggregates containing an array of any size and type.
1151 - Calls to alloca().
1152 - Local variables that have had their address taken.
1153
Josh Magee24c7f062014-02-01 01:36:16 +00001154 Variables that are identified as requiring a protector will be arranged
1155 on the stack such that they are adjacent to the stack protector guard.
1156 The specific layout rules are:
1157
1158 #. Large arrays and structures containing large arrays
1159 (``>= ssp-buffer-size``) are closest to the stack protector.
1160 #. Small arrays and structures containing small arrays
1161 (``< ssp-buffer-size``) are 2nd closest to the protector.
1162 #. Variables that have had their address taken are 3rd closest to the
1163 protector.
1164
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001165 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001166
1167 If a function that has an ``sspstrong`` attribute is inlined into a
1168 function that doesn't have an ``sspstrong`` attribute, then the
1169 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001170``uwtable``
1171 This attribute indicates that the ABI being targeted requires that
1172 an unwind table entry be produce for this function even if we can
1173 show that no exceptions passes by it. This is normally the case for
1174 the ELF x86-64 abi, but it can be disabled for some compilation
1175 units.
Sean Silvab084af42012-12-07 10:36:55 +00001176
1177.. _moduleasm:
1178
1179Module-Level Inline Assembly
1180----------------------------
1181
1182Modules may contain "module-level inline asm" blocks, which corresponds
1183to the GCC "file scope inline asm" blocks. These blocks are internally
1184concatenated by LLVM and treated as a single unit, but may be separated
1185in the ``.ll`` file if desired. The syntax is very simple:
1186
1187.. code-block:: llvm
1188
1189 module asm "inline asm code goes here"
1190 module asm "more can go here"
1191
1192The strings can contain any character by escaping non-printable
1193characters. The escape sequence used is simply "\\xx" where "xx" is the
1194two digit hex code for the number.
1195
1196The inline asm code is simply printed to the machine code .s file when
1197assembly code is generated.
1198
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001199.. _langref_datalayout:
1200
Sean Silvab084af42012-12-07 10:36:55 +00001201Data Layout
1202-----------
1203
1204A module may specify a target specific data layout string that specifies
1205how data is to be laid out in memory. The syntax for the data layout is
1206simply:
1207
1208.. code-block:: llvm
1209
1210 target datalayout = "layout specification"
1211
1212The *layout specification* consists of a list of specifications
1213separated by the minus sign character ('-'). Each specification starts
1214with a letter and may include other information after the letter to
1215define some aspect of the data layout. The specifications accepted are
1216as follows:
1217
1218``E``
1219 Specifies that the target lays out data in big-endian form. That is,
1220 the bits with the most significance have the lowest address
1221 location.
1222``e``
1223 Specifies that the target lays out data in little-endian form. That
1224 is, the bits with the least significance have the lowest address
1225 location.
1226``S<size>``
1227 Specifies the natural alignment of the stack in bits. Alignment
1228 promotion of stack variables is limited to the natural stack
1229 alignment to avoid dynamic stack realignment. The stack alignment
1230 must be a multiple of 8-bits. If omitted, the natural stack
1231 alignment defaults to "unspecified", which does not prevent any
1232 alignment promotions.
1233``p[n]:<size>:<abi>:<pref>``
1234 This specifies the *size* of a pointer and its ``<abi>`` and
1235 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001236 bits. The address space, ``n`` is optional, and if not specified,
1237 denotes the default address space 0. The value of ``n`` must be
1238 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001239``i<size>:<abi>:<pref>``
1240 This specifies the alignment for an integer type of a given bit
1241 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1242``v<size>:<abi>:<pref>``
1243 This specifies the alignment for a vector type of a given bit
1244 ``<size>``.
1245``f<size>:<abi>:<pref>``
1246 This specifies the alignment for a floating point type of a given bit
1247 ``<size>``. Only values of ``<size>`` that are supported by the target
1248 will work. 32 (float) and 64 (double) are supported on all targets; 80
1249 or 128 (different flavors of long double) are also supported on some
1250 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001251``a:<abi>:<pref>``
1252 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001253``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001254 If present, specifies that llvm names are mangled in the output. The
1255 options are
1256
1257 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1258 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1259 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1260 symbols get a ``_`` prefix.
1261 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1262 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001263``n<size1>:<size2>:<size3>...``
1264 This specifies a set of native integer widths for the target CPU in
1265 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1266 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1267 this set are considered to support most general arithmetic operations
1268 efficiently.
1269
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001270On every specification that takes a ``<abi>:<pref>``, specifying the
1271``<pref>`` alignment is optional. If omitted, the preceding ``:``
1272should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1273
Sean Silvab084af42012-12-07 10:36:55 +00001274When constructing the data layout for a given target, LLVM starts with a
1275default set of specifications which are then (possibly) overridden by
1276the specifications in the ``datalayout`` keyword. The default
1277specifications are given in this list:
1278
1279- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001280- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1281- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1282 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001283- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001284- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1285- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1286- ``i16:16:16`` - i16 is 16-bit aligned
1287- ``i32:32:32`` - i32 is 32-bit aligned
1288- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1289 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001290- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001291- ``f32:32:32`` - float is 32-bit aligned
1292- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001293- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001294- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1295- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001296- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001297
1298When LLVM is determining the alignment for a given type, it uses the
1299following rules:
1300
1301#. If the type sought is an exact match for one of the specifications,
1302 that specification is used.
1303#. If no match is found, and the type sought is an integer type, then
1304 the smallest integer type that is larger than the bitwidth of the
1305 sought type is used. If none of the specifications are larger than
1306 the bitwidth then the largest integer type is used. For example,
1307 given the default specifications above, the i7 type will use the
1308 alignment of i8 (next largest) while both i65 and i256 will use the
1309 alignment of i64 (largest specified).
1310#. If no match is found, and the type sought is a vector type, then the
1311 largest vector type that is smaller than the sought vector type will
1312 be used as a fall back. This happens because <128 x double> can be
1313 implemented in terms of 64 <2 x double>, for example.
1314
1315The function of the data layout string may not be what you expect.
1316Notably, this is not a specification from the frontend of what alignment
1317the code generator should use.
1318
1319Instead, if specified, the target data layout is required to match what
1320the ultimate *code generator* expects. This string is used by the
1321mid-level optimizers to improve code, and this only works if it matches
1322what the ultimate code generator uses. If you would like to generate IR
1323that does not embed this target-specific detail into the IR, then you
1324don't have to specify the string. This will disable some optimizations
1325that require precise layout information, but this also prevents those
1326optimizations from introducing target specificity into the IR.
1327
Bill Wendling5cc90842013-10-18 23:41:25 +00001328.. _langref_triple:
1329
1330Target Triple
1331-------------
1332
1333A module may specify a target triple string that describes the target
1334host. The syntax for the target triple is simply:
1335
1336.. code-block:: llvm
1337
1338 target triple = "x86_64-apple-macosx10.7.0"
1339
1340The *target triple* string consists of a series of identifiers delimited
1341by the minus sign character ('-'). The canonical forms are:
1342
1343::
1344
1345 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1346 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1347
1348This information is passed along to the backend so that it generates
1349code for the proper architecture. It's possible to override this on the
1350command line with the ``-mtriple`` command line option.
1351
Sean Silvab084af42012-12-07 10:36:55 +00001352.. _pointeraliasing:
1353
1354Pointer Aliasing Rules
1355----------------------
1356
1357Any memory access must be done through a pointer value associated with
1358an address range of the memory access, otherwise the behavior is
1359undefined. Pointer values are associated with address ranges according
1360to the following rules:
1361
1362- A pointer value is associated with the addresses associated with any
1363 value it is *based* on.
1364- An address of a global variable is associated with the address range
1365 of the variable's storage.
1366- The result value of an allocation instruction is associated with the
1367 address range of the allocated storage.
1368- A null pointer in the default address-space is associated with no
1369 address.
1370- An integer constant other than zero or a pointer value returned from
1371 a function not defined within LLVM may be associated with address
1372 ranges allocated through mechanisms other than those provided by
1373 LLVM. Such ranges shall not overlap with any ranges of addresses
1374 allocated by mechanisms provided by LLVM.
1375
1376A pointer value is *based* on another pointer value according to the
1377following rules:
1378
1379- A pointer value formed from a ``getelementptr`` operation is *based*
1380 on the first operand of the ``getelementptr``.
1381- The result value of a ``bitcast`` is *based* on the operand of the
1382 ``bitcast``.
1383- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1384 values that contribute (directly or indirectly) to the computation of
1385 the pointer's value.
1386- The "*based* on" relationship is transitive.
1387
1388Note that this definition of *"based"* is intentionally similar to the
1389definition of *"based"* in C99, though it is slightly weaker.
1390
1391LLVM IR does not associate types with memory. The result type of a
1392``load`` merely indicates the size and alignment of the memory from
1393which to load, as well as the interpretation of the value. The first
1394operand type of a ``store`` similarly only indicates the size and
1395alignment of the store.
1396
1397Consequently, type-based alias analysis, aka TBAA, aka
1398``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1399:ref:`Metadata <metadata>` may be used to encode additional information
1400which specialized optimization passes may use to implement type-based
1401alias analysis.
1402
1403.. _volatile:
1404
1405Volatile Memory Accesses
1406------------------------
1407
1408Certain memory accesses, such as :ref:`load <i_load>`'s,
1409:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1410marked ``volatile``. The optimizers must not change the number of
1411volatile operations or change their order of execution relative to other
1412volatile operations. The optimizers *may* change the order of volatile
1413operations relative to non-volatile operations. This is not Java's
1414"volatile" and has no cross-thread synchronization behavior.
1415
Andrew Trick89fc5a62013-01-30 21:19:35 +00001416IR-level volatile loads and stores cannot safely be optimized into
1417llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1418flagged volatile. Likewise, the backend should never split or merge
1419target-legal volatile load/store instructions.
1420
Andrew Trick7e6f9282013-01-31 00:49:39 +00001421.. admonition:: Rationale
1422
1423 Platforms may rely on volatile loads and stores of natively supported
1424 data width to be executed as single instruction. For example, in C
1425 this holds for an l-value of volatile primitive type with native
1426 hardware support, but not necessarily for aggregate types. The
1427 frontend upholds these expectations, which are intentionally
1428 unspecified in the IR. The rules above ensure that IR transformation
1429 do not violate the frontend's contract with the language.
1430
Sean Silvab084af42012-12-07 10:36:55 +00001431.. _memmodel:
1432
1433Memory Model for Concurrent Operations
1434--------------------------------------
1435
1436The LLVM IR does not define any way to start parallel threads of
1437execution or to register signal handlers. Nonetheless, there are
1438platform-specific ways to create them, and we define LLVM IR's behavior
1439in their presence. This model is inspired by the C++0x memory model.
1440
1441For a more informal introduction to this model, see the :doc:`Atomics`.
1442
1443We define a *happens-before* partial order as the least partial order
1444that
1445
1446- Is a superset of single-thread program order, and
1447- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1448 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1449 techniques, like pthread locks, thread creation, thread joining,
1450 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1451 Constraints <ordering>`).
1452
1453Note that program order does not introduce *happens-before* edges
1454between a thread and signals executing inside that thread.
1455
1456Every (defined) read operation (load instructions, memcpy, atomic
1457loads/read-modify-writes, etc.) R reads a series of bytes written by
1458(defined) write operations (store instructions, atomic
1459stores/read-modify-writes, memcpy, etc.). For the purposes of this
1460section, initialized globals are considered to have a write of the
1461initializer which is atomic and happens before any other read or write
1462of the memory in question. For each byte of a read R, R\ :sub:`byte`
1463may see any write to the same byte, except:
1464
1465- If write\ :sub:`1` happens before write\ :sub:`2`, and
1466 write\ :sub:`2` happens before R\ :sub:`byte`, then
1467 R\ :sub:`byte` does not see write\ :sub:`1`.
1468- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1469 R\ :sub:`byte` does not see write\ :sub:`3`.
1470
1471Given that definition, R\ :sub:`byte` is defined as follows:
1472
1473- If R is volatile, the result is target-dependent. (Volatile is
1474 supposed to give guarantees which can support ``sig_atomic_t`` in
1475 C/C++, and may be used for accesses to addresses which do not behave
1476 like normal memory. It does not generally provide cross-thread
1477 synchronization.)
1478- Otherwise, if there is no write to the same byte that happens before
1479 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1480- Otherwise, if R\ :sub:`byte` may see exactly one write,
1481 R\ :sub:`byte` returns the value written by that write.
1482- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1483 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1484 Memory Ordering Constraints <ordering>` section for additional
1485 constraints on how the choice is made.
1486- Otherwise R\ :sub:`byte` returns ``undef``.
1487
1488R returns the value composed of the series of bytes it read. This
1489implies that some bytes within the value may be ``undef`` **without**
1490the entire value being ``undef``. Note that this only defines the
1491semantics of the operation; it doesn't mean that targets will emit more
1492than one instruction to read the series of bytes.
1493
1494Note that in cases where none of the atomic intrinsics are used, this
1495model places only one restriction on IR transformations on top of what
1496is required for single-threaded execution: introducing a store to a byte
1497which might not otherwise be stored is not allowed in general.
1498(Specifically, in the case where another thread might write to and read
1499from an address, introducing a store can change a load that may see
1500exactly one write into a load that may see multiple writes.)
1501
1502.. _ordering:
1503
1504Atomic Memory Ordering Constraints
1505----------------------------------
1506
1507Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1508:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1509:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001510ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001511the same address they *synchronize with*. These semantics are borrowed
1512from Java and C++0x, but are somewhat more colloquial. If these
1513descriptions aren't precise enough, check those specs (see spec
1514references in the :doc:`atomics guide <Atomics>`).
1515:ref:`fence <i_fence>` instructions treat these orderings somewhat
1516differently since they don't take an address. See that instruction's
1517documentation for details.
1518
1519For a simpler introduction to the ordering constraints, see the
1520:doc:`Atomics`.
1521
1522``unordered``
1523 The set of values that can be read is governed by the happens-before
1524 partial order. A value cannot be read unless some operation wrote
1525 it. This is intended to provide a guarantee strong enough to model
1526 Java's non-volatile shared variables. This ordering cannot be
1527 specified for read-modify-write operations; it is not strong enough
1528 to make them atomic in any interesting way.
1529``monotonic``
1530 In addition to the guarantees of ``unordered``, there is a single
1531 total order for modifications by ``monotonic`` operations on each
1532 address. All modification orders must be compatible with the
1533 happens-before order. There is no guarantee that the modification
1534 orders can be combined to a global total order for the whole program
1535 (and this often will not be possible). The read in an atomic
1536 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1537 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1538 order immediately before the value it writes. If one atomic read
1539 happens before another atomic read of the same address, the later
1540 read must see the same value or a later value in the address's
1541 modification order. This disallows reordering of ``monotonic`` (or
1542 stronger) operations on the same address. If an address is written
1543 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1544 read that address repeatedly, the other threads must eventually see
1545 the write. This corresponds to the C++0x/C1x
1546 ``memory_order_relaxed``.
1547``acquire``
1548 In addition to the guarantees of ``monotonic``, a
1549 *synchronizes-with* edge may be formed with a ``release`` operation.
1550 This is intended to model C++'s ``memory_order_acquire``.
1551``release``
1552 In addition to the guarantees of ``monotonic``, if this operation
1553 writes a value which is subsequently read by an ``acquire``
1554 operation, it *synchronizes-with* that operation. (This isn't a
1555 complete description; see the C++0x definition of a release
1556 sequence.) This corresponds to the C++0x/C1x
1557 ``memory_order_release``.
1558``acq_rel`` (acquire+release)
1559 Acts as both an ``acquire`` and ``release`` operation on its
1560 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1561``seq_cst`` (sequentially consistent)
1562 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1563 operation which only reads, ``release`` for an operation which only
1564 writes), there is a global total order on all
1565 sequentially-consistent operations on all addresses, which is
1566 consistent with the *happens-before* partial order and with the
1567 modification orders of all the affected addresses. Each
1568 sequentially-consistent read sees the last preceding write to the
1569 same address in this global order. This corresponds to the C++0x/C1x
1570 ``memory_order_seq_cst`` and Java volatile.
1571
1572.. _singlethread:
1573
1574If an atomic operation is marked ``singlethread``, it only *synchronizes
1575with* or participates in modification and seq\_cst total orderings with
1576other operations running in the same thread (for example, in signal
1577handlers).
1578
1579.. _fastmath:
1580
1581Fast-Math Flags
1582---------------
1583
1584LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1585:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1586:ref:`frem <i_frem>`) have the following flags that can set to enable
1587otherwise unsafe floating point operations
1588
1589``nnan``
1590 No NaNs - Allow optimizations to assume the arguments and result are not
1591 NaN. Such optimizations are required to retain defined behavior over
1592 NaNs, but the value of the result is undefined.
1593
1594``ninf``
1595 No Infs - Allow optimizations to assume the arguments and result are not
1596 +/-Inf. Such optimizations are required to retain defined behavior over
1597 +/-Inf, but the value of the result is undefined.
1598
1599``nsz``
1600 No Signed Zeros - Allow optimizations to treat the sign of a zero
1601 argument or result as insignificant.
1602
1603``arcp``
1604 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1605 argument rather than perform division.
1606
1607``fast``
1608 Fast - Allow algebraically equivalent transformations that may
1609 dramatically change results in floating point (e.g. reassociate). This
1610 flag implies all the others.
1611
1612.. _typesystem:
1613
1614Type System
1615===========
1616
1617The LLVM type system is one of the most important features of the
1618intermediate representation. Being typed enables a number of
1619optimizations to be performed on the intermediate representation
1620directly, without having to do extra analyses on the side before the
1621transformation. A strong type system makes it easier to read the
1622generated code and enables novel analyses and transformations that are
1623not feasible to perform on normal three address code representations.
1624
Rafael Espindola08013342013-12-07 19:34:20 +00001625.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001626
Rafael Espindola08013342013-12-07 19:34:20 +00001627Void Type
1628---------
Sean Silvab084af42012-12-07 10:36:55 +00001629
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001630:Overview:
1631
Rafael Espindola08013342013-12-07 19:34:20 +00001632
1633The void type does not represent any value and has no size.
1634
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001635:Syntax:
1636
Rafael Espindola08013342013-12-07 19:34:20 +00001637
1638::
1639
1640 void
Sean Silvab084af42012-12-07 10:36:55 +00001641
1642
Rafael Espindola08013342013-12-07 19:34:20 +00001643.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001644
Rafael Espindola08013342013-12-07 19:34:20 +00001645Function Type
1646-------------
Sean Silvab084af42012-12-07 10:36:55 +00001647
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001648:Overview:
1649
Sean Silvab084af42012-12-07 10:36:55 +00001650
Rafael Espindola08013342013-12-07 19:34:20 +00001651The function type can be thought of as a function signature. It consists of a
1652return type and a list of formal parameter types. The return type of a function
1653type is a void type or first class type --- except for :ref:`label <t_label>`
1654and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001655
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001656:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001657
Rafael Espindola08013342013-12-07 19:34:20 +00001658::
Sean Silvab084af42012-12-07 10:36:55 +00001659
Rafael Espindola08013342013-12-07 19:34:20 +00001660 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001661
Rafael Espindola08013342013-12-07 19:34:20 +00001662...where '``<parameter list>``' is a comma-separated list of type
1663specifiers. Optionally, the parameter list may include a type ``...``, which
1664indicates that the function takes a variable number of arguments. Variable
1665argument functions can access their arguments with the :ref:`variable argument
1666handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1667except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001668
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001669:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001670
Rafael Espindola08013342013-12-07 19:34:20 +00001671+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1672| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1673+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1674| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1675+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1676| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1677+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1678| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1679+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1680
1681.. _t_firstclass:
1682
1683First Class Types
1684-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001685
1686The :ref:`first class <t_firstclass>` types are perhaps the most important.
1687Values of these types are the only ones which can be produced by
1688instructions.
1689
Rafael Espindola08013342013-12-07 19:34:20 +00001690.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001691
Rafael Espindola08013342013-12-07 19:34:20 +00001692Single Value Types
1693^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001694
Rafael Espindola08013342013-12-07 19:34:20 +00001695These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001696
1697.. _t_integer:
1698
1699Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001700""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001701
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001702:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001703
1704The integer type is a very simple type that simply specifies an
1705arbitrary bit width for the integer type desired. Any bit width from 1
1706bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1707
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001708:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001709
1710::
1711
1712 iN
1713
1714The number of bits the integer will occupy is specified by the ``N``
1715value.
1716
1717Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001718*********
Sean Silvab084af42012-12-07 10:36:55 +00001719
1720+----------------+------------------------------------------------+
1721| ``i1`` | a single-bit integer. |
1722+----------------+------------------------------------------------+
1723| ``i32`` | a 32-bit integer. |
1724+----------------+------------------------------------------------+
1725| ``i1942652`` | a really big integer of over 1 million bits. |
1726+----------------+------------------------------------------------+
1727
1728.. _t_floating:
1729
1730Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001731""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001732
1733.. list-table::
1734 :header-rows: 1
1735
1736 * - Type
1737 - Description
1738
1739 * - ``half``
1740 - 16-bit floating point value
1741
1742 * - ``float``
1743 - 32-bit floating point value
1744
1745 * - ``double``
1746 - 64-bit floating point value
1747
1748 * - ``fp128``
1749 - 128-bit floating point value (112-bit mantissa)
1750
1751 * - ``x86_fp80``
1752 - 80-bit floating point value (X87)
1753
1754 * - ``ppc_fp128``
1755 - 128-bit floating point value (two 64-bits)
1756
Reid Kleckner9a16d082014-03-05 02:41:37 +00001757X86_mmx Type
1758""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001759
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001760:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001761
Reid Kleckner9a16d082014-03-05 02:41:37 +00001762The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001763machine. The operations allowed on it are quite limited: parameters and
1764return values, load and store, and bitcast. User-specified MMX
1765instructions are represented as intrinsic or asm calls with arguments
1766and/or results of this type. There are no arrays, vectors or constants
1767of this type.
1768
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001769:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001770
1771::
1772
Reid Kleckner9a16d082014-03-05 02:41:37 +00001773 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001774
Sean Silvab084af42012-12-07 10:36:55 +00001775
Rafael Espindola08013342013-12-07 19:34:20 +00001776.. _t_pointer:
1777
1778Pointer Type
1779""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001780
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001781:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001782
Rafael Espindola08013342013-12-07 19:34:20 +00001783The pointer type is used to specify memory locations. Pointers are
1784commonly used to reference objects in memory.
1785
1786Pointer types may have an optional address space attribute defining the
1787numbered address space where the pointed-to object resides. The default
1788address space is number zero. The semantics of non-zero address spaces
1789are target-specific.
1790
1791Note that LLVM does not permit pointers to void (``void*``) nor does it
1792permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001793
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001794:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001795
1796::
1797
Rafael Espindola08013342013-12-07 19:34:20 +00001798 <type> *
1799
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001800:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001801
1802+-------------------------+--------------------------------------------------------------------------------------------------------------+
1803| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1804+-------------------------+--------------------------------------------------------------------------------------------------------------+
1805| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1806+-------------------------+--------------------------------------------------------------------------------------------------------------+
1807| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1808+-------------------------+--------------------------------------------------------------------------------------------------------------+
1809
1810.. _t_vector:
1811
1812Vector Type
1813"""""""""""
1814
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001815:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001816
1817A vector type is a simple derived type that represents a vector of
1818elements. Vector types are used when multiple primitive data are
1819operated in parallel using a single instruction (SIMD). A vector type
1820requires a size (number of elements) and an underlying primitive data
1821type. Vector types are considered :ref:`first class <t_firstclass>`.
1822
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001823:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001824
1825::
1826
1827 < <# elements> x <elementtype> >
1828
1829The number of elements is a constant integer value larger than 0;
1830elementtype may be any integer or floating point type, or a pointer to
1831these types. Vectors of size zero are not allowed.
1832
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001833:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001834
1835+-------------------+--------------------------------------------------+
1836| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1837+-------------------+--------------------------------------------------+
1838| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1839+-------------------+--------------------------------------------------+
1840| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1841+-------------------+--------------------------------------------------+
1842| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1843+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001844
1845.. _t_label:
1846
1847Label Type
1848^^^^^^^^^^
1849
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001850:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001851
1852The label type represents code labels.
1853
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001854:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001855
1856::
1857
1858 label
1859
1860.. _t_metadata:
1861
1862Metadata Type
1863^^^^^^^^^^^^^
1864
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001865:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001866
1867The metadata type represents embedded metadata. No derived types may be
1868created from metadata except for :ref:`function <t_function>` arguments.
1869
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001870:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001871
1872::
1873
1874 metadata
1875
Sean Silvab084af42012-12-07 10:36:55 +00001876.. _t_aggregate:
1877
1878Aggregate Types
1879^^^^^^^^^^^^^^^
1880
1881Aggregate Types are a subset of derived types that can contain multiple
1882member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1883aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1884aggregate types.
1885
1886.. _t_array:
1887
1888Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001889""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001890
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001891:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001892
1893The array type is a very simple derived type that arranges elements
1894sequentially in memory. The array type requires a size (number of
1895elements) and an underlying data type.
1896
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001897:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001898
1899::
1900
1901 [<# elements> x <elementtype>]
1902
1903The number of elements is a constant integer value; ``elementtype`` may
1904be any type with a size.
1905
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001906:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001907
1908+------------------+--------------------------------------+
1909| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1910+------------------+--------------------------------------+
1911| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1912+------------------+--------------------------------------+
1913| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1914+------------------+--------------------------------------+
1915
1916Here are some examples of multidimensional arrays:
1917
1918+-----------------------------+----------------------------------------------------------+
1919| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1920+-----------------------------+----------------------------------------------------------+
1921| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1922+-----------------------------+----------------------------------------------------------+
1923| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1924+-----------------------------+----------------------------------------------------------+
1925
1926There is no restriction on indexing beyond the end of the array implied
1927by a static type (though there are restrictions on indexing beyond the
1928bounds of an allocated object in some cases). This means that
1929single-dimension 'variable sized array' addressing can be implemented in
1930LLVM with a zero length array type. An implementation of 'pascal style
1931arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1932example.
1933
Sean Silvab084af42012-12-07 10:36:55 +00001934.. _t_struct:
1935
1936Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001937""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001938
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001939:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001940
1941The structure type is used to represent a collection of data members
1942together in memory. The elements of a structure may be any type that has
1943a size.
1944
1945Structures in memory are accessed using '``load``' and '``store``' by
1946getting a pointer to a field with the '``getelementptr``' instruction.
1947Structures in registers are accessed using the '``extractvalue``' and
1948'``insertvalue``' instructions.
1949
1950Structures may optionally be "packed" structures, which indicate that
1951the alignment of the struct is one byte, and that there is no padding
1952between the elements. In non-packed structs, padding between field types
1953is inserted as defined by the DataLayout string in the module, which is
1954required to match what the underlying code generator expects.
1955
1956Structures can either be "literal" or "identified". A literal structure
1957is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1958identified types are always defined at the top level with a name.
1959Literal types are uniqued by their contents and can never be recursive
1960or opaque since there is no way to write one. Identified types can be
1961recursive, can be opaqued, and are never uniqued.
1962
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001963:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001964
1965::
1966
1967 %T1 = type { <type list> } ; Identified normal struct type
1968 %T2 = type <{ <type list> }> ; Identified packed struct type
1969
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001970:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001971
1972+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1973| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1974+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001975| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001976+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1977| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1978+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1979
1980.. _t_opaque:
1981
1982Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001983""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001984
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001985:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001986
1987Opaque structure types are used to represent named structure types that
1988do not have a body specified. This corresponds (for example) to the C
1989notion of a forward declared structure.
1990
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001991:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001992
1993::
1994
1995 %X = type opaque
1996 %52 = type opaque
1997
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001998:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001999
2000+--------------+-------------------+
2001| ``opaque`` | An opaque type. |
2002+--------------+-------------------+
2003
Sean Silva1703e702014-04-08 21:06:22 +00002004.. _constants:
2005
Sean Silvab084af42012-12-07 10:36:55 +00002006Constants
2007=========
2008
2009LLVM has several different basic types of constants. This section
2010describes them all and their syntax.
2011
2012Simple Constants
2013----------------
2014
2015**Boolean constants**
2016 The two strings '``true``' and '``false``' are both valid constants
2017 of the ``i1`` type.
2018**Integer constants**
2019 Standard integers (such as '4') are constants of the
2020 :ref:`integer <t_integer>` type. Negative numbers may be used with
2021 integer types.
2022**Floating point constants**
2023 Floating point constants use standard decimal notation (e.g.
2024 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2025 hexadecimal notation (see below). The assembler requires the exact
2026 decimal value of a floating-point constant. For example, the
2027 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2028 decimal in binary. Floating point constants must have a :ref:`floating
2029 point <t_floating>` type.
2030**Null pointer constants**
2031 The identifier '``null``' is recognized as a null pointer constant
2032 and must be of :ref:`pointer type <t_pointer>`.
2033
2034The one non-intuitive notation for constants is the hexadecimal form of
2035floating point constants. For example, the form
2036'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2037than) '``double 4.5e+15``'. The only time hexadecimal floating point
2038constants are required (and the only time that they are generated by the
2039disassembler) is when a floating point constant must be emitted but it
2040cannot be represented as a decimal floating point number in a reasonable
2041number of digits. For example, NaN's, infinities, and other special
2042values are represented in their IEEE hexadecimal format so that assembly
2043and disassembly do not cause any bits to change in the constants.
2044
2045When using the hexadecimal form, constants of types half, float, and
2046double are represented using the 16-digit form shown above (which
2047matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002048must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002049precision, respectively. Hexadecimal format is always used for long
2050double, and there are three forms of long double. The 80-bit format used
2051by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2052128-bit format used by PowerPC (two adjacent doubles) is represented by
2053``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002054represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2055will only work if they match the long double format on your target.
2056The IEEE 16-bit format (half precision) is represented by ``0xH``
2057followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2058(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002059
Reid Kleckner9a16d082014-03-05 02:41:37 +00002060There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002061
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002062.. _complexconstants:
2063
Sean Silvab084af42012-12-07 10:36:55 +00002064Complex Constants
2065-----------------
2066
2067Complex constants are a (potentially recursive) combination of simple
2068constants and smaller complex constants.
2069
2070**Structure constants**
2071 Structure constants are represented with notation similar to
2072 structure type definitions (a comma separated list of elements,
2073 surrounded by braces (``{}``)). For example:
2074 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2075 "``@G = external global i32``". Structure constants must have
2076 :ref:`structure type <t_struct>`, and the number and types of elements
2077 must match those specified by the type.
2078**Array constants**
2079 Array constants are represented with notation similar to array type
2080 definitions (a comma separated list of elements, surrounded by
2081 square brackets (``[]``)). For example:
2082 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2083 :ref:`array type <t_array>`, and the number and types of elements must
2084 match those specified by the type.
2085**Vector constants**
2086 Vector constants are represented with notation similar to vector
2087 type definitions (a comma separated list of elements, surrounded by
2088 less-than/greater-than's (``<>``)). For example:
2089 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2090 must have :ref:`vector type <t_vector>`, and the number and types of
2091 elements must match those specified by the type.
2092**Zero initialization**
2093 The string '``zeroinitializer``' can be used to zero initialize a
2094 value to zero of *any* type, including scalar and
2095 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2096 having to print large zero initializers (e.g. for large arrays) and
2097 is always exactly equivalent to using explicit zero initializers.
2098**Metadata node**
2099 A metadata node is a structure-like constant with :ref:`metadata
2100 type <t_metadata>`. For example:
2101 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2102 constants that are meant to be interpreted as part of the
2103 instruction stream, metadata is a place to attach additional
2104 information such as debug info.
2105
2106Global Variable and Function Addresses
2107--------------------------------------
2108
2109The addresses of :ref:`global variables <globalvars>` and
2110:ref:`functions <functionstructure>` are always implicitly valid
2111(link-time) constants. These constants are explicitly referenced when
2112the :ref:`identifier for the global <identifiers>` is used and always have
2113:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2114file:
2115
2116.. code-block:: llvm
2117
2118 @X = global i32 17
2119 @Y = global i32 42
2120 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2121
2122.. _undefvalues:
2123
2124Undefined Values
2125----------------
2126
2127The string '``undef``' can be used anywhere a constant is expected, and
2128indicates that the user of the value may receive an unspecified
2129bit-pattern. Undefined values may be of any type (other than '``label``'
2130or '``void``') and be used anywhere a constant is permitted.
2131
2132Undefined values are useful because they indicate to the compiler that
2133the program is well defined no matter what value is used. This gives the
2134compiler more freedom to optimize. Here are some examples of
2135(potentially surprising) transformations that are valid (in pseudo IR):
2136
2137.. code-block:: llvm
2138
2139 %A = add %X, undef
2140 %B = sub %X, undef
2141 %C = xor %X, undef
2142 Safe:
2143 %A = undef
2144 %B = undef
2145 %C = undef
2146
2147This is safe because all of the output bits are affected by the undef
2148bits. Any output bit can have a zero or one depending on the input bits.
2149
2150.. code-block:: llvm
2151
2152 %A = or %X, undef
2153 %B = and %X, undef
2154 Safe:
2155 %A = -1
2156 %B = 0
2157 Unsafe:
2158 %A = undef
2159 %B = undef
2160
2161These logical operations have bits that are not always affected by the
2162input. For example, if ``%X`` has a zero bit, then the output of the
2163'``and``' operation will always be a zero for that bit, no matter what
2164the corresponding bit from the '``undef``' is. As such, it is unsafe to
2165optimize or assume that the result of the '``and``' is '``undef``'.
2166However, it is safe to assume that all bits of the '``undef``' could be
21670, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2168all the bits of the '``undef``' operand to the '``or``' could be set,
2169allowing the '``or``' to be folded to -1.
2170
2171.. code-block:: llvm
2172
2173 %A = select undef, %X, %Y
2174 %B = select undef, 42, %Y
2175 %C = select %X, %Y, undef
2176 Safe:
2177 %A = %X (or %Y)
2178 %B = 42 (or %Y)
2179 %C = %Y
2180 Unsafe:
2181 %A = undef
2182 %B = undef
2183 %C = undef
2184
2185This set of examples shows that undefined '``select``' (and conditional
2186branch) conditions can go *either way*, but they have to come from one
2187of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2188both known to have a clear low bit, then ``%A`` would have to have a
2189cleared low bit. However, in the ``%C`` example, the optimizer is
2190allowed to assume that the '``undef``' operand could be the same as
2191``%Y``, allowing the whole '``select``' to be eliminated.
2192
2193.. code-block:: llvm
2194
2195 %A = xor undef, undef
2196
2197 %B = undef
2198 %C = xor %B, %B
2199
2200 %D = undef
2201 %E = icmp lt %D, 4
2202 %F = icmp gte %D, 4
2203
2204 Safe:
2205 %A = undef
2206 %B = undef
2207 %C = undef
2208 %D = undef
2209 %E = undef
2210 %F = undef
2211
2212This example points out that two '``undef``' operands are not
2213necessarily the same. This can be surprising to people (and also matches
2214C semantics) where they assume that "``X^X``" is always zero, even if
2215``X`` is undefined. This isn't true for a number of reasons, but the
2216short answer is that an '``undef``' "variable" can arbitrarily change
2217its value over its "live range". This is true because the variable
2218doesn't actually *have a live range*. Instead, the value is logically
2219read from arbitrary registers that happen to be around when needed, so
2220the value is not necessarily consistent over time. In fact, ``%A`` and
2221``%C`` need to have the same semantics or the core LLVM "replace all
2222uses with" concept would not hold.
2223
2224.. code-block:: llvm
2225
2226 %A = fdiv undef, %X
2227 %B = fdiv %X, undef
2228 Safe:
2229 %A = undef
2230 b: unreachable
2231
2232These examples show the crucial difference between an *undefined value*
2233and *undefined behavior*. An undefined value (like '``undef``') is
2234allowed to have an arbitrary bit-pattern. This means that the ``%A``
2235operation can be constant folded to '``undef``', because the '``undef``'
2236could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2237However, in the second example, we can make a more aggressive
2238assumption: because the ``undef`` is allowed to be an arbitrary value,
2239we are allowed to assume that it could be zero. Since a divide by zero
2240has *undefined behavior*, we are allowed to assume that the operation
2241does not execute at all. This allows us to delete the divide and all
2242code after it. Because the undefined operation "can't happen", the
2243optimizer can assume that it occurs in dead code.
2244
2245.. code-block:: llvm
2246
2247 a: store undef -> %X
2248 b: store %X -> undef
2249 Safe:
2250 a: <deleted>
2251 b: unreachable
2252
2253These examples reiterate the ``fdiv`` example: a store *of* an undefined
2254value can be assumed to not have any effect; we can assume that the
2255value is overwritten with bits that happen to match what was already
2256there. However, a store *to* an undefined location could clobber
2257arbitrary memory, therefore, it has undefined behavior.
2258
2259.. _poisonvalues:
2260
2261Poison Values
2262-------------
2263
2264Poison values are similar to :ref:`undef values <undefvalues>`, however
2265they also represent the fact that an instruction or constant expression
2266which cannot evoke side effects has nevertheless detected a condition
2267which results in undefined behavior.
2268
2269There is currently no way of representing a poison value in the IR; they
2270only exist when produced by operations such as :ref:`add <i_add>` with
2271the ``nsw`` flag.
2272
2273Poison value behavior is defined in terms of value *dependence*:
2274
2275- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2276- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2277 their dynamic predecessor basic block.
2278- Function arguments depend on the corresponding actual argument values
2279 in the dynamic callers of their functions.
2280- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2281 instructions that dynamically transfer control back to them.
2282- :ref:`Invoke <i_invoke>` instructions depend on the
2283 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2284 call instructions that dynamically transfer control back to them.
2285- Non-volatile loads and stores depend on the most recent stores to all
2286 of the referenced memory addresses, following the order in the IR
2287 (including loads and stores implied by intrinsics such as
2288 :ref:`@llvm.memcpy <int_memcpy>`.)
2289- An instruction with externally visible side effects depends on the
2290 most recent preceding instruction with externally visible side
2291 effects, following the order in the IR. (This includes :ref:`volatile
2292 operations <volatile>`.)
2293- An instruction *control-depends* on a :ref:`terminator
2294 instruction <terminators>` if the terminator instruction has
2295 multiple successors and the instruction is always executed when
2296 control transfers to one of the successors, and may not be executed
2297 when control is transferred to another.
2298- Additionally, an instruction also *control-depends* on a terminator
2299 instruction if the set of instructions it otherwise depends on would
2300 be different if the terminator had transferred control to a different
2301 successor.
2302- Dependence is transitive.
2303
2304Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2305with the additional affect that any instruction which has a *dependence*
2306on a poison value has undefined behavior.
2307
2308Here are some examples:
2309
2310.. code-block:: llvm
2311
2312 entry:
2313 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2314 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2315 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2316 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2317
2318 store i32 %poison, i32* @g ; Poison value stored to memory.
2319 %poison2 = load i32* @g ; Poison value loaded back from memory.
2320
2321 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2322
2323 %narrowaddr = bitcast i32* @g to i16*
2324 %wideaddr = bitcast i32* @g to i64*
2325 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2326 %poison4 = load i64* %wideaddr ; Returns a poison value.
2327
2328 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2329 br i1 %cmp, label %true, label %end ; Branch to either destination.
2330
2331 true:
2332 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2333 ; it has undefined behavior.
2334 br label %end
2335
2336 end:
2337 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2338 ; Both edges into this PHI are
2339 ; control-dependent on %cmp, so this
2340 ; always results in a poison value.
2341
2342 store volatile i32 0, i32* @g ; This would depend on the store in %true
2343 ; if %cmp is true, or the store in %entry
2344 ; otherwise, so this is undefined behavior.
2345
2346 br i1 %cmp, label %second_true, label %second_end
2347 ; The same branch again, but this time the
2348 ; true block doesn't have side effects.
2349
2350 second_true:
2351 ; No side effects!
2352 ret void
2353
2354 second_end:
2355 store volatile i32 0, i32* @g ; This time, the instruction always depends
2356 ; on the store in %end. Also, it is
2357 ; control-equivalent to %end, so this is
2358 ; well-defined (ignoring earlier undefined
2359 ; behavior in this example).
2360
2361.. _blockaddress:
2362
2363Addresses of Basic Blocks
2364-------------------------
2365
2366``blockaddress(@function, %block)``
2367
2368The '``blockaddress``' constant computes the address of the specified
2369basic block in the specified function, and always has an ``i8*`` type.
2370Taking the address of the entry block is illegal.
2371
2372This value only has defined behavior when used as an operand to the
2373':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2374against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002375undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002376no label is equal to the null pointer. This may be passed around as an
2377opaque pointer sized value as long as the bits are not inspected. This
2378allows ``ptrtoint`` and arithmetic to be performed on these values so
2379long as the original value is reconstituted before the ``indirectbr``
2380instruction.
2381
2382Finally, some targets may provide defined semantics when using the value
2383as the operand to an inline assembly, but that is target specific.
2384
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002385.. _constantexprs:
2386
Sean Silvab084af42012-12-07 10:36:55 +00002387Constant Expressions
2388--------------------
2389
2390Constant expressions are used to allow expressions involving other
2391constants to be used as constants. Constant expressions may be of any
2392:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2393that does not have side effects (e.g. load and call are not supported).
2394The following is the syntax for constant expressions:
2395
2396``trunc (CST to TYPE)``
2397 Truncate a constant to another type. The bit size of CST must be
2398 larger than the bit size of TYPE. Both types must be integers.
2399``zext (CST to TYPE)``
2400 Zero extend a constant to another type. The bit size of CST must be
2401 smaller than the bit size of TYPE. Both types must be integers.
2402``sext (CST to TYPE)``
2403 Sign extend a constant to another type. The bit size of CST must be
2404 smaller than the bit size of TYPE. Both types must be integers.
2405``fptrunc (CST to TYPE)``
2406 Truncate a floating point constant to another floating point type.
2407 The size of CST must be larger than the size of TYPE. Both types
2408 must be floating point.
2409``fpext (CST to TYPE)``
2410 Floating point extend a constant to another type. The size of CST
2411 must be smaller or equal to the size of TYPE. Both types must be
2412 floating point.
2413``fptoui (CST to TYPE)``
2414 Convert a floating point constant to the corresponding unsigned
2415 integer constant. TYPE must be a scalar or vector integer type. CST
2416 must be of scalar or vector floating point type. Both CST and TYPE
2417 must be scalars, or vectors of the same number of elements. If the
2418 value won't fit in the integer type, the results are undefined.
2419``fptosi (CST to TYPE)``
2420 Convert a floating point constant to the corresponding signed
2421 integer constant. TYPE must be a scalar or vector integer type. CST
2422 must be of scalar or vector floating point type. Both CST and TYPE
2423 must be scalars, or vectors of the same number of elements. If the
2424 value won't fit in the integer type, the results are undefined.
2425``uitofp (CST to TYPE)``
2426 Convert an unsigned integer constant to the corresponding floating
2427 point constant. TYPE must be a scalar or vector floating point type.
2428 CST must be of scalar or vector integer type. Both CST and TYPE must
2429 be scalars, or vectors of the same number of elements. If the value
2430 won't fit in the floating point type, the results are undefined.
2431``sitofp (CST to TYPE)``
2432 Convert a signed integer constant to the corresponding floating
2433 point constant. TYPE must be a scalar or vector floating point type.
2434 CST must be of scalar or vector integer type. Both CST and TYPE must
2435 be scalars, or vectors of the same number of elements. If the value
2436 won't fit in the floating point type, the results are undefined.
2437``ptrtoint (CST to TYPE)``
2438 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002439 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002440 pointer type. The ``CST`` value is zero extended, truncated, or
2441 unchanged to make it fit in ``TYPE``.
2442``inttoptr (CST to TYPE)``
2443 Convert an integer constant to a pointer constant. TYPE must be a
2444 pointer type. CST must be of integer type. The CST value is zero
2445 extended, truncated, or unchanged to make it fit in a pointer size.
2446 This one is *really* dangerous!
2447``bitcast (CST to TYPE)``
2448 Convert a constant, CST, to another TYPE. The constraints of the
2449 operands are the same as those for the :ref:`bitcast
2450 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002451``addrspacecast (CST to TYPE)``
2452 Convert a constant pointer or constant vector of pointer, CST, to another
2453 TYPE in a different address space. The constraints of the operands are the
2454 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002455``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2456 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2457 constants. As with the :ref:`getelementptr <i_getelementptr>`
2458 instruction, the index list may have zero or more indexes, which are
2459 required to make sense for the type of "CSTPTR".
2460``select (COND, VAL1, VAL2)``
2461 Perform the :ref:`select operation <i_select>` on constants.
2462``icmp COND (VAL1, VAL2)``
2463 Performs the :ref:`icmp operation <i_icmp>` on constants.
2464``fcmp COND (VAL1, VAL2)``
2465 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2466``extractelement (VAL, IDX)``
2467 Perform the :ref:`extractelement operation <i_extractelement>` on
2468 constants.
2469``insertelement (VAL, ELT, IDX)``
2470 Perform the :ref:`insertelement operation <i_insertelement>` on
2471 constants.
2472``shufflevector (VEC1, VEC2, IDXMASK)``
2473 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2474 constants.
2475``extractvalue (VAL, IDX0, IDX1, ...)``
2476 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2477 constants. The index list is interpreted in a similar manner as
2478 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2479 least one index value must be specified.
2480``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2481 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2482 The index list is interpreted in a similar manner as indices in a
2483 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2484 value must be specified.
2485``OPCODE (LHS, RHS)``
2486 Perform the specified operation of the LHS and RHS constants. OPCODE
2487 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2488 binary <bitwiseops>` operations. The constraints on operands are
2489 the same as those for the corresponding instruction (e.g. no bitwise
2490 operations on floating point values are allowed).
2491
2492Other Values
2493============
2494
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002495.. _inlineasmexprs:
2496
Sean Silvab084af42012-12-07 10:36:55 +00002497Inline Assembler Expressions
2498----------------------------
2499
2500LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2501Inline Assembly <moduleasm>`) through the use of a special value. This
2502value represents the inline assembler as a string (containing the
2503instructions to emit), a list of operand constraints (stored as a
2504string), a flag that indicates whether or not the inline asm expression
2505has side effects, and a flag indicating whether the function containing
2506the asm needs to align its stack conservatively. An example inline
2507assembler expression is:
2508
2509.. code-block:: llvm
2510
2511 i32 (i32) asm "bswap $0", "=r,r"
2512
2513Inline assembler expressions may **only** be used as the callee operand
2514of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2515Thus, typically we have:
2516
2517.. code-block:: llvm
2518
2519 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2520
2521Inline asms with side effects not visible in the constraint list must be
2522marked as having side effects. This is done through the use of the
2523'``sideeffect``' keyword, like so:
2524
2525.. code-block:: llvm
2526
2527 call void asm sideeffect "eieio", ""()
2528
2529In some cases inline asms will contain code that will not work unless
2530the stack is aligned in some way, such as calls or SSE instructions on
2531x86, yet will not contain code that does that alignment within the asm.
2532The compiler should make conservative assumptions about what the asm
2533might contain and should generate its usual stack alignment code in the
2534prologue if the '``alignstack``' keyword is present:
2535
2536.. code-block:: llvm
2537
2538 call void asm alignstack "eieio", ""()
2539
2540Inline asms also support using non-standard assembly dialects. The
2541assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2542the inline asm is using the Intel dialect. Currently, ATT and Intel are
2543the only supported dialects. An example is:
2544
2545.. code-block:: llvm
2546
2547 call void asm inteldialect "eieio", ""()
2548
2549If multiple keywords appear the '``sideeffect``' keyword must come
2550first, the '``alignstack``' keyword second and the '``inteldialect``'
2551keyword last.
2552
2553Inline Asm Metadata
2554^^^^^^^^^^^^^^^^^^^
2555
2556The call instructions that wrap inline asm nodes may have a
2557"``!srcloc``" MDNode attached to it that contains a list of constant
2558integers. If present, the code generator will use the integer as the
2559location cookie value when report errors through the ``LLVMContext``
2560error reporting mechanisms. This allows a front-end to correlate backend
2561errors that occur with inline asm back to the source code that produced
2562it. For example:
2563
2564.. code-block:: llvm
2565
2566 call void asm sideeffect "something bad", ""(), !srcloc !42
2567 ...
2568 !42 = !{ i32 1234567 }
2569
2570It is up to the front-end to make sense of the magic numbers it places
2571in the IR. If the MDNode contains multiple constants, the code generator
2572will use the one that corresponds to the line of the asm that the error
2573occurs on.
2574
2575.. _metadata:
2576
2577Metadata Nodes and Metadata Strings
2578-----------------------------------
2579
2580LLVM IR allows metadata to be attached to instructions in the program
2581that can convey extra information about the code to the optimizers and
2582code generator. One example application of metadata is source-level
2583debug information. There are two metadata primitives: strings and nodes.
2584All metadata has the ``metadata`` type and is identified in syntax by a
2585preceding exclamation point ('``!``').
2586
2587A metadata string is a string surrounded by double quotes. It can
2588contain any character by escaping non-printable characters with
2589"``\xx``" where "``xx``" is the two digit hex code. For example:
2590"``!"test\00"``".
2591
2592Metadata nodes are represented with notation similar to structure
2593constants (a comma separated list of elements, surrounded by braces and
2594preceded by an exclamation point). Metadata nodes can have any values as
2595their operand. For example:
2596
2597.. code-block:: llvm
2598
2599 !{ metadata !"test\00", i32 10}
2600
2601A :ref:`named metadata <namedmetadatastructure>` is a collection of
2602metadata nodes, which can be looked up in the module symbol table. For
2603example:
2604
2605.. code-block:: llvm
2606
2607 !foo = metadata !{!4, !3}
2608
2609Metadata can be used as function arguments. Here ``llvm.dbg.value``
2610function is using two metadata arguments:
2611
2612.. code-block:: llvm
2613
2614 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2615
2616Metadata can be attached with an instruction. Here metadata ``!21`` is
2617attached to the ``add`` instruction using the ``!dbg`` identifier:
2618
2619.. code-block:: llvm
2620
2621 %indvar.next = add i64 %indvar, 1, !dbg !21
2622
2623More information about specific metadata nodes recognized by the
2624optimizers and code generator is found below.
2625
2626'``tbaa``' Metadata
2627^^^^^^^^^^^^^^^^^^^
2628
2629In LLVM IR, memory does not have types, so LLVM's own type system is not
2630suitable for doing TBAA. Instead, metadata is added to the IR to
2631describe a type system of a higher level language. This can be used to
2632implement typical C/C++ TBAA, but it can also be used to implement
2633custom alias analysis behavior for other languages.
2634
2635The current metadata format is very simple. TBAA metadata nodes have up
2636to three fields, e.g.:
2637
2638.. code-block:: llvm
2639
2640 !0 = metadata !{ metadata !"an example type tree" }
2641 !1 = metadata !{ metadata !"int", metadata !0 }
2642 !2 = metadata !{ metadata !"float", metadata !0 }
2643 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2644
2645The first field is an identity field. It can be any value, usually a
2646metadata string, which uniquely identifies the type. The most important
2647name in the tree is the name of the root node. Two trees with different
2648root node names are entirely disjoint, even if they have leaves with
2649common names.
2650
2651The second field identifies the type's parent node in the tree, or is
2652null or omitted for a root node. A type is considered to alias all of
2653its descendants and all of its ancestors in the tree. Also, a type is
2654considered to alias all types in other trees, so that bitcode produced
2655from multiple front-ends is handled conservatively.
2656
2657If the third field is present, it's an integer which if equal to 1
2658indicates that the type is "constant" (meaning
2659``pointsToConstantMemory`` should return true; see `other useful
2660AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2661
2662'``tbaa.struct``' Metadata
2663^^^^^^^^^^^^^^^^^^^^^^^^^^
2664
2665The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2666aggregate assignment operations in C and similar languages, however it
2667is defined to copy a contiguous region of memory, which is more than
2668strictly necessary for aggregate types which contain holes due to
2669padding. Also, it doesn't contain any TBAA information about the fields
2670of the aggregate.
2671
2672``!tbaa.struct`` metadata can describe which memory subregions in a
2673memcpy are padding and what the TBAA tags of the struct are.
2674
2675The current metadata format is very simple. ``!tbaa.struct`` metadata
2676nodes are a list of operands which are in conceptual groups of three.
2677For each group of three, the first operand gives the byte offset of a
2678field in bytes, the second gives its size in bytes, and the third gives
2679its tbaa tag. e.g.:
2680
2681.. code-block:: llvm
2682
2683 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2684
2685This describes a struct with two fields. The first is at offset 0 bytes
2686with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2687and has size 4 bytes and has tbaa tag !2.
2688
2689Note that the fields need not be contiguous. In this example, there is a
26904 byte gap between the two fields. This gap represents padding which
2691does not carry useful data and need not be preserved.
2692
2693'``fpmath``' Metadata
2694^^^^^^^^^^^^^^^^^^^^^
2695
2696``fpmath`` metadata may be attached to any instruction of floating point
2697type. It can be used to express the maximum acceptable error in the
2698result of that instruction, in ULPs, thus potentially allowing the
2699compiler to use a more efficient but less accurate method of computing
2700it. ULP is defined as follows:
2701
2702 If ``x`` is a real number that lies between two finite consecutive
2703 floating-point numbers ``a`` and ``b``, without being equal to one
2704 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2705 distance between the two non-equal finite floating-point numbers
2706 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2707
2708The metadata node shall consist of a single positive floating point
2709number representing the maximum relative error, for example:
2710
2711.. code-block:: llvm
2712
2713 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2714
2715'``range``' Metadata
2716^^^^^^^^^^^^^^^^^^^^
2717
2718``range`` metadata may be attached only to loads of integer types. It
2719expresses the possible ranges the loaded value is in. The ranges are
2720represented with a flattened list of integers. The loaded value is known
2721to be in the union of the ranges defined by each consecutive pair. Each
2722pair has the following properties:
2723
2724- The type must match the type loaded by the instruction.
2725- The pair ``a,b`` represents the range ``[a,b)``.
2726- Both ``a`` and ``b`` are constants.
2727- The range is allowed to wrap.
2728- The range should not represent the full or empty set. That is,
2729 ``a!=b``.
2730
2731In addition, the pairs must be in signed order of the lower bound and
2732they must be non-contiguous.
2733
2734Examples:
2735
2736.. code-block:: llvm
2737
2738 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2739 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2740 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2741 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2742 ...
2743 !0 = metadata !{ i8 0, i8 2 }
2744 !1 = metadata !{ i8 255, i8 2 }
2745 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2746 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2747
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002748'``llvm.loop``'
2749^^^^^^^^^^^^^^^
2750
2751It is sometimes useful to attach information to loop constructs. Currently,
2752loop metadata is implemented as metadata attached to the branch instruction
2753in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002754guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002755specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002756
2757The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002758itself to avoid merging it with any other identifier metadata, e.g.,
2759during module linkage or function inlining. That is, each loop should refer
2760to their own identification metadata even if they reside in separate functions.
2761The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002762constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002763
2764.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002765
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002766 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002767 !1 = metadata !{ metadata !1 }
2768
Paul Redmond5fdf8362013-05-28 20:00:34 +00002769The loop identifier metadata can be used to specify additional per-loop
2770metadata. Any operands after the first operand can be treated as user-defined
2771metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2772by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002773
Paul Redmond5fdf8362013-05-28 20:00:34 +00002774.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002775
Paul Redmond5fdf8362013-05-28 20:00:34 +00002776 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2777 ...
2778 !0 = metadata !{ metadata !0, metadata !1 }
2779 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002780
2781'``llvm.mem``'
2782^^^^^^^^^^^^^^^
2783
2784Metadata types used to annotate memory accesses with information helpful
2785for optimizations are prefixed with ``llvm.mem``.
2786
2787'``llvm.mem.parallel_loop_access``' Metadata
2788^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2789
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00002790The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
2791or metadata containing a list of loop identifiers for nested loops.
2792The metadata is attached to memory accessing instructions and denotes that
2793no loop carried memory dependence exist between it and other instructions denoted
2794with the same loop identifier.
2795
2796Precisely, given two instructions ``m1`` and ``m2`` that both have the
2797``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
2798set of loops associated with that metadata, respectively, then there is no loop
2799carried dependence between ``m1`` and ``m2`` for loops ``L1`` or
2800``L2``.
2801
2802As a special case, if all memory accessing instructions in a loop have
2803``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
2804loop has no loop carried memory dependences and is considered to be a parallel
2805loop.
2806
2807Note that if not all memory access instructions have such metadata referring to
2808the loop, then the loop is considered not being trivially parallel. Additional
2809memory dependence analysis is required to make that determination. As a fail
2810safe mechanism, this causes loops that were originally parallel to be considered
2811sequential (if optimization passes that are unaware of the parallel semantics
2812insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002813
2814Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002815both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002816metadata types that refer to the same loop identifier metadata.
2817
2818.. code-block:: llvm
2819
2820 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002821 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002822 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002823 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002824 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002825 ...
2826 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002827
2828 for.end:
2829 ...
2830 !0 = metadata !{ metadata !0 }
2831
2832It is also possible to have nested parallel loops. In that case the
2833memory accesses refer to a list of loop identifier metadata nodes instead of
2834the loop identifier metadata node directly:
2835
2836.. code-block:: llvm
2837
2838 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002839 ...
2840 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
2841 ...
2842 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002843
2844 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002845 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002846 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002847 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002848 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00002849 ...
2850 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002851
2852 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002853 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00002854 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00002855 ...
2856 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002857
2858 outer.for.end: ; preds = %for.body
2859 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002860 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2861 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2862 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002863
Paul Redmond5fdf8362013-05-28 20:00:34 +00002864'``llvm.vectorizer``'
2865^^^^^^^^^^^^^^^^^^^^^
2866
2867Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2868vectorization parameters such as vectorization factor and unroll factor.
2869
2870``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2871loop identification metadata.
2872
2873'``llvm.vectorizer.unroll``' Metadata
2874^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2875
2876This metadata instructs the loop vectorizer to unroll the specified
2877loop exactly ``N`` times.
2878
2879The first operand is the string ``llvm.vectorizer.unroll`` and the second
2880operand is an integer specifying the unroll factor. For example:
2881
2882.. code-block:: llvm
2883
2884 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2885
2886Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2887loop.
2888
2889If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2890determined automatically.
2891
2892'``llvm.vectorizer.width``' Metadata
2893^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2894
Paul Redmondeccbb322013-05-30 17:22:46 +00002895This metadata sets the target width of the vectorizer to ``N``. Without
2896this metadata, the vectorizer will choose a width automatically.
2897Regardless of this metadata, the vectorizer will only vectorize loops if
2898it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002899
2900The first operand is the string ``llvm.vectorizer.width`` and the second
2901operand is an integer specifying the width. For example:
2902
2903.. code-block:: llvm
2904
2905 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2906
2907Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2908loop.
2909
2910If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2911automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002912
Sean Silvab084af42012-12-07 10:36:55 +00002913Module Flags Metadata
2914=====================
2915
2916Information about the module as a whole is difficult to convey to LLVM's
2917subsystems. The LLVM IR isn't sufficient to transmit this information.
2918The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002919this. These flags are in the form of key / value pairs --- much like a
2920dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002921look it up.
2922
2923The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2924Each triplet has the following form:
2925
2926- The first element is a *behavior* flag, which specifies the behavior
2927 when two (or more) modules are merged together, and it encounters two
2928 (or more) metadata with the same ID. The supported behaviors are
2929 described below.
2930- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002931 metadata. Each module may only have one flag entry for each unique ID (not
2932 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002933- The third element is the value of the flag.
2934
2935When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002936``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2937each unique metadata ID string, there will be exactly one entry in the merged
2938modules ``llvm.module.flags`` metadata table, and the value for that entry will
2939be determined by the merge behavior flag, as described below. The only exception
2940is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002941
2942The following behaviors are supported:
2943
2944.. list-table::
2945 :header-rows: 1
2946 :widths: 10 90
2947
2948 * - Value
2949 - Behavior
2950
2951 * - 1
2952 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002953 Emits an error if two values disagree, otherwise the resulting value
2954 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002955
2956 * - 2
2957 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002958 Emits a warning if two values disagree. The result value will be the
2959 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002960
2961 * - 3
2962 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002963 Adds a requirement that another module flag be present and have a
2964 specified value after linking is performed. The value must be a
2965 metadata pair, where the first element of the pair is the ID of the
2966 module flag to be restricted, and the second element of the pair is
2967 the value the module flag should be restricted to. This behavior can
2968 be used to restrict the allowable results (via triggering of an
2969 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002970
2971 * - 4
2972 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002973 Uses the specified value, regardless of the behavior or value of the
2974 other module. If both modules specify **Override**, but the values
2975 differ, an error will be emitted.
2976
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002977 * - 5
2978 - **Append**
2979 Appends the two values, which are required to be metadata nodes.
2980
2981 * - 6
2982 - **AppendUnique**
2983 Appends the two values, which are required to be metadata
2984 nodes. However, duplicate entries in the second list are dropped
2985 during the append operation.
2986
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002987It is an error for a particular unique flag ID to have multiple behaviors,
2988except in the case of **Require** (which adds restrictions on another metadata
2989value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002990
2991An example of module flags:
2992
2993.. code-block:: llvm
2994
2995 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2996 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2997 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2998 !3 = metadata !{ i32 3, metadata !"qux",
2999 metadata !{
3000 metadata !"foo", i32 1
3001 }
3002 }
3003 !llvm.module.flags = !{ !0, !1, !2, !3 }
3004
3005- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3006 if two or more ``!"foo"`` flags are seen is to emit an error if their
3007 values are not equal.
3008
3009- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3010 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003011 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003012
3013- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3014 behavior if two or more ``!"qux"`` flags are seen is to emit a
3015 warning if their values are not equal.
3016
3017- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3018
3019 ::
3020
3021 metadata !{ metadata !"foo", i32 1 }
3022
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003023 The behavior is to emit an error if the ``llvm.module.flags`` does not
3024 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3025 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003026
3027Objective-C Garbage Collection Module Flags Metadata
3028----------------------------------------------------
3029
3030On the Mach-O platform, Objective-C stores metadata about garbage
3031collection in a special section called "image info". The metadata
3032consists of a version number and a bitmask specifying what types of
3033garbage collection are supported (if any) by the file. If two or more
3034modules are linked together their garbage collection metadata needs to
3035be merged rather than appended together.
3036
3037The Objective-C garbage collection module flags metadata consists of the
3038following key-value pairs:
3039
3040.. list-table::
3041 :header-rows: 1
3042 :widths: 30 70
3043
3044 * - Key
3045 - Value
3046
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003047 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003048 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003049
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003050 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003051 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003052 always 0.
3053
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003054 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003055 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003056 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3057 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3058 Objective-C ABI version 2.
3059
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003060 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003061 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003062 not. Valid values are 0, for no garbage collection, and 2, for garbage
3063 collection supported.
3064
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003065 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003066 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003067 If present, its value must be 6. This flag requires that the
3068 ``Objective-C Garbage Collection`` flag have the value 2.
3069
3070Some important flag interactions:
3071
3072- If a module with ``Objective-C Garbage Collection`` set to 0 is
3073 merged with a module with ``Objective-C Garbage Collection`` set to
3074 2, then the resulting module has the
3075 ``Objective-C Garbage Collection`` flag set to 0.
3076- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3077 merged with a module with ``Objective-C GC Only`` set to 6.
3078
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003079Automatic Linker Flags Module Flags Metadata
3080--------------------------------------------
3081
3082Some targets support embedding flags to the linker inside individual object
3083files. Typically this is used in conjunction with language extensions which
3084allow source files to explicitly declare the libraries they depend on, and have
3085these automatically be transmitted to the linker via object files.
3086
3087These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003088using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003089to be ``AppendUnique``, and the value for the key is expected to be a metadata
3090node which should be a list of other metadata nodes, each of which should be a
3091list of metadata strings defining linker options.
3092
3093For example, the following metadata section specifies two separate sets of
3094linker options, presumably to link against ``libz`` and the ``Cocoa``
3095framework::
3096
Michael Liaoa7699082013-03-06 18:24:34 +00003097 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003098 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003099 metadata !{ metadata !"-lz" },
3100 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003101 !llvm.module.flags = !{ !0 }
3102
3103The metadata encoding as lists of lists of options, as opposed to a collapsed
3104list of options, is chosen so that the IR encoding can use multiple option
3105strings to specify e.g., a single library, while still having that specifier be
3106preserved as an atomic element that can be recognized by a target specific
3107assembly writer or object file emitter.
3108
3109Each individual option is required to be either a valid option for the target's
3110linker, or an option that is reserved by the target specific assembly writer or
3111object file emitter. No other aspect of these options is defined by the IR.
3112
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003113.. _intrinsicglobalvariables:
3114
Sean Silvab084af42012-12-07 10:36:55 +00003115Intrinsic Global Variables
3116==========================
3117
3118LLVM has a number of "magic" global variables that contain data that
3119affect code generation or other IR semantics. These are documented here.
3120All globals of this sort should have a section specified as
3121"``llvm.metadata``". This section and all globals that start with
3122"``llvm.``" are reserved for use by LLVM.
3123
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003124.. _gv_llvmused:
3125
Sean Silvab084af42012-12-07 10:36:55 +00003126The '``llvm.used``' Global Variable
3127-----------------------------------
3128
Rafael Espindola74f2e462013-04-22 14:58:02 +00003129The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003130:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003131pointers to named global variables, functions and aliases which may optionally
3132have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003133use of it is:
3134
3135.. code-block:: llvm
3136
3137 @X = global i8 4
3138 @Y = global i32 123
3139
3140 @llvm.used = appending global [2 x i8*] [
3141 i8* @X,
3142 i8* bitcast (i32* @Y to i8*)
3143 ], section "llvm.metadata"
3144
Rafael Espindola74f2e462013-04-22 14:58:02 +00003145If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3146and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003147symbol that it cannot see (which is why they have to be named). For example, if
3148a variable has internal linkage and no references other than that from the
3149``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3150references from inline asms and other things the compiler cannot "see", and
3151corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003152
3153On some targets, the code generator must emit a directive to the
3154assembler or object file to prevent the assembler and linker from
3155molesting the symbol.
3156
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003157.. _gv_llvmcompilerused:
3158
Sean Silvab084af42012-12-07 10:36:55 +00003159The '``llvm.compiler.used``' Global Variable
3160--------------------------------------------
3161
3162The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3163directive, except that it only prevents the compiler from touching the
3164symbol. On targets that support it, this allows an intelligent linker to
3165optimize references to the symbol without being impeded as it would be
3166by ``@llvm.used``.
3167
3168This is a rare construct that should only be used in rare circumstances,
3169and should not be exposed to source languages.
3170
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003171.. _gv_llvmglobalctors:
3172
Sean Silvab084af42012-12-07 10:36:55 +00003173The '``llvm.global_ctors``' Global Variable
3174-------------------------------------------
3175
3176.. code-block:: llvm
3177
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003178 %0 = type { i32, void ()*, i8* }
3179 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003180
3181The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003182functions, priorities, and an optional associated global or function.
3183The functions referenced by this array will be called in ascending order
3184of priority (i.e. lowest first) when the module is loaded. The order of
3185functions with the same priority is not defined.
3186
3187If the third field is present, non-null, and points to a global variable
3188or function, the initializer function will only run if the associated
3189data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003190
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003191.. _llvmglobaldtors:
3192
Sean Silvab084af42012-12-07 10:36:55 +00003193The '``llvm.global_dtors``' Global Variable
3194-------------------------------------------
3195
3196.. code-block:: llvm
3197
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003198 %0 = type { i32, void ()*, i8* }
3199 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003200
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003201The ``@llvm.global_dtors`` array contains a list of destructor
3202functions, priorities, and an optional associated global or function.
3203The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003204order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003205order of functions with the same priority is not defined.
3206
3207If the third field is present, non-null, and points to a global variable
3208or function, the destructor function will only run if the associated
3209data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003210
3211Instruction Reference
3212=====================
3213
3214The LLVM instruction set consists of several different classifications
3215of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3216instructions <binaryops>`, :ref:`bitwise binary
3217instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3218:ref:`other instructions <otherops>`.
3219
3220.. _terminators:
3221
3222Terminator Instructions
3223-----------------------
3224
3225As mentioned :ref:`previously <functionstructure>`, every basic block in a
3226program ends with a "Terminator" instruction, which indicates which
3227block should be executed after the current block is finished. These
3228terminator instructions typically yield a '``void``' value: they produce
3229control flow, not values (the one exception being the
3230':ref:`invoke <i_invoke>`' instruction).
3231
3232The terminator instructions are: ':ref:`ret <i_ret>`',
3233':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3234':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3235':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3236
3237.. _i_ret:
3238
3239'``ret``' Instruction
3240^^^^^^^^^^^^^^^^^^^^^
3241
3242Syntax:
3243"""""""
3244
3245::
3246
3247 ret <type> <value> ; Return a value from a non-void function
3248 ret void ; Return from void function
3249
3250Overview:
3251"""""""""
3252
3253The '``ret``' instruction is used to return control flow (and optionally
3254a value) from a function back to the caller.
3255
3256There are two forms of the '``ret``' instruction: one that returns a
3257value and then causes control flow, and one that just causes control
3258flow to occur.
3259
3260Arguments:
3261""""""""""
3262
3263The '``ret``' instruction optionally accepts a single argument, the
3264return value. The type of the return value must be a ':ref:`first
3265class <t_firstclass>`' type.
3266
3267A function is not :ref:`well formed <wellformed>` if it it has a non-void
3268return type and contains a '``ret``' instruction with no return value or
3269a return value with a type that does not match its type, or if it has a
3270void return type and contains a '``ret``' instruction with a return
3271value.
3272
3273Semantics:
3274""""""""""
3275
3276When the '``ret``' instruction is executed, control flow returns back to
3277the calling function's context. If the caller is a
3278":ref:`call <i_call>`" instruction, execution continues at the
3279instruction after the call. If the caller was an
3280":ref:`invoke <i_invoke>`" instruction, execution continues at the
3281beginning of the "normal" destination block. If the instruction returns
3282a value, that value shall set the call or invoke instruction's return
3283value.
3284
3285Example:
3286""""""""
3287
3288.. code-block:: llvm
3289
3290 ret i32 5 ; Return an integer value of 5
3291 ret void ; Return from a void function
3292 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3293
3294.. _i_br:
3295
3296'``br``' Instruction
3297^^^^^^^^^^^^^^^^^^^^
3298
3299Syntax:
3300"""""""
3301
3302::
3303
3304 br i1 <cond>, label <iftrue>, label <iffalse>
3305 br label <dest> ; Unconditional branch
3306
3307Overview:
3308"""""""""
3309
3310The '``br``' instruction is used to cause control flow to transfer to a
3311different basic block in the current function. There are two forms of
3312this instruction, corresponding to a conditional branch and an
3313unconditional branch.
3314
3315Arguments:
3316""""""""""
3317
3318The conditional branch form of the '``br``' instruction takes a single
3319'``i1``' value and two '``label``' values. The unconditional form of the
3320'``br``' instruction takes a single '``label``' value as a target.
3321
3322Semantics:
3323""""""""""
3324
3325Upon execution of a conditional '``br``' instruction, the '``i1``'
3326argument is evaluated. If the value is ``true``, control flows to the
3327'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3328to the '``iffalse``' ``label`` argument.
3329
3330Example:
3331""""""""
3332
3333.. code-block:: llvm
3334
3335 Test:
3336 %cond = icmp eq i32 %a, %b
3337 br i1 %cond, label %IfEqual, label %IfUnequal
3338 IfEqual:
3339 ret i32 1
3340 IfUnequal:
3341 ret i32 0
3342
3343.. _i_switch:
3344
3345'``switch``' Instruction
3346^^^^^^^^^^^^^^^^^^^^^^^^
3347
3348Syntax:
3349"""""""
3350
3351::
3352
3353 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3354
3355Overview:
3356"""""""""
3357
3358The '``switch``' instruction is used to transfer control flow to one of
3359several different places. It is a generalization of the '``br``'
3360instruction, allowing a branch to occur to one of many possible
3361destinations.
3362
3363Arguments:
3364""""""""""
3365
3366The '``switch``' instruction uses three parameters: an integer
3367comparison value '``value``', a default '``label``' destination, and an
3368array of pairs of comparison value constants and '``label``'s. The table
3369is not allowed to contain duplicate constant entries.
3370
3371Semantics:
3372""""""""""
3373
3374The ``switch`` instruction specifies a table of values and destinations.
3375When the '``switch``' instruction is executed, this table is searched
3376for the given value. If the value is found, control flow is transferred
3377to the corresponding destination; otherwise, control flow is transferred
3378to the default destination.
3379
3380Implementation:
3381"""""""""""""""
3382
3383Depending on properties of the target machine and the particular
3384``switch`` instruction, this instruction may be code generated in
3385different ways. For example, it could be generated as a series of
3386chained conditional branches or with a lookup table.
3387
3388Example:
3389""""""""
3390
3391.. code-block:: llvm
3392
3393 ; Emulate a conditional br instruction
3394 %Val = zext i1 %value to i32
3395 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3396
3397 ; Emulate an unconditional br instruction
3398 switch i32 0, label %dest [ ]
3399
3400 ; Implement a jump table:
3401 switch i32 %val, label %otherwise [ i32 0, label %onzero
3402 i32 1, label %onone
3403 i32 2, label %ontwo ]
3404
3405.. _i_indirectbr:
3406
3407'``indirectbr``' Instruction
3408^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3409
3410Syntax:
3411"""""""
3412
3413::
3414
3415 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3416
3417Overview:
3418"""""""""
3419
3420The '``indirectbr``' instruction implements an indirect branch to a
3421label within the current function, whose address is specified by
3422"``address``". Address must be derived from a
3423:ref:`blockaddress <blockaddress>` constant.
3424
3425Arguments:
3426""""""""""
3427
3428The '``address``' argument is the address of the label to jump to. The
3429rest of the arguments indicate the full set of possible destinations
3430that the address may point to. Blocks are allowed to occur multiple
3431times in the destination list, though this isn't particularly useful.
3432
3433This destination list is required so that dataflow analysis has an
3434accurate understanding of the CFG.
3435
3436Semantics:
3437""""""""""
3438
3439Control transfers to the block specified in the address argument. All
3440possible destination blocks must be listed in the label list, otherwise
3441this instruction has undefined behavior. This implies that jumps to
3442labels defined in other functions have undefined behavior as well.
3443
3444Implementation:
3445"""""""""""""""
3446
3447This is typically implemented with a jump through a register.
3448
3449Example:
3450""""""""
3451
3452.. code-block:: llvm
3453
3454 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3455
3456.. _i_invoke:
3457
3458'``invoke``' Instruction
3459^^^^^^^^^^^^^^^^^^^^^^^^
3460
3461Syntax:
3462"""""""
3463
3464::
3465
3466 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3467 to label <normal label> unwind label <exception label>
3468
3469Overview:
3470"""""""""
3471
3472The '``invoke``' instruction causes control to transfer to a specified
3473function, with the possibility of control flow transfer to either the
3474'``normal``' label or the '``exception``' label. If the callee function
3475returns with the "``ret``" instruction, control flow will return to the
3476"normal" label. If the callee (or any indirect callees) returns via the
3477":ref:`resume <i_resume>`" instruction or other exception handling
3478mechanism, control is interrupted and continued at the dynamically
3479nearest "exception" label.
3480
3481The '``exception``' label is a `landing
3482pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3483'``exception``' label is required to have the
3484":ref:`landingpad <i_landingpad>`" instruction, which contains the
3485information about the behavior of the program after unwinding happens,
3486as its first non-PHI instruction. The restrictions on the
3487"``landingpad``" instruction's tightly couples it to the "``invoke``"
3488instruction, so that the important information contained within the
3489"``landingpad``" instruction can't be lost through normal code motion.
3490
3491Arguments:
3492""""""""""
3493
3494This instruction requires several arguments:
3495
3496#. The optional "cconv" marker indicates which :ref:`calling
3497 convention <callingconv>` the call should use. If none is
3498 specified, the call defaults to using C calling conventions.
3499#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3500 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3501 are valid here.
3502#. '``ptr to function ty``': shall be the signature of the pointer to
3503 function value being invoked. In most cases, this is a direct
3504 function invocation, but indirect ``invoke``'s are just as possible,
3505 branching off an arbitrary pointer to function value.
3506#. '``function ptr val``': An LLVM value containing a pointer to a
3507 function to be invoked.
3508#. '``function args``': argument list whose types match the function
3509 signature argument types and parameter attributes. All arguments must
3510 be of :ref:`first class <t_firstclass>` type. If the function signature
3511 indicates the function accepts a variable number of arguments, the
3512 extra arguments can be specified.
3513#. '``normal label``': the label reached when the called function
3514 executes a '``ret``' instruction.
3515#. '``exception label``': the label reached when a callee returns via
3516 the :ref:`resume <i_resume>` instruction or other exception handling
3517 mechanism.
3518#. The optional :ref:`function attributes <fnattrs>` list. Only
3519 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3520 attributes are valid here.
3521
3522Semantics:
3523""""""""""
3524
3525This instruction is designed to operate as a standard '``call``'
3526instruction in most regards. The primary difference is that it
3527establishes an association with a label, which is used by the runtime
3528library to unwind the stack.
3529
3530This instruction is used in languages with destructors to ensure that
3531proper cleanup is performed in the case of either a ``longjmp`` or a
3532thrown exception. Additionally, this is important for implementation of
3533'``catch``' clauses in high-level languages that support them.
3534
3535For the purposes of the SSA form, the definition of the value returned
3536by the '``invoke``' instruction is deemed to occur on the edge from the
3537current block to the "normal" label. If the callee unwinds then no
3538return value is available.
3539
3540Example:
3541""""""""
3542
3543.. code-block:: llvm
3544
3545 %retval = invoke i32 @Test(i32 15) to label %Continue
3546 unwind label %TestCleanup ; {i32}:retval set
3547 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3548 unwind label %TestCleanup ; {i32}:retval set
3549
3550.. _i_resume:
3551
3552'``resume``' Instruction
3553^^^^^^^^^^^^^^^^^^^^^^^^
3554
3555Syntax:
3556"""""""
3557
3558::
3559
3560 resume <type> <value>
3561
3562Overview:
3563"""""""""
3564
3565The '``resume``' instruction is a terminator instruction that has no
3566successors.
3567
3568Arguments:
3569""""""""""
3570
3571The '``resume``' instruction requires one argument, which must have the
3572same type as the result of any '``landingpad``' instruction in the same
3573function.
3574
3575Semantics:
3576""""""""""
3577
3578The '``resume``' instruction resumes propagation of an existing
3579(in-flight) exception whose unwinding was interrupted with a
3580:ref:`landingpad <i_landingpad>` instruction.
3581
3582Example:
3583""""""""
3584
3585.. code-block:: llvm
3586
3587 resume { i8*, i32 } %exn
3588
3589.. _i_unreachable:
3590
3591'``unreachable``' Instruction
3592^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3593
3594Syntax:
3595"""""""
3596
3597::
3598
3599 unreachable
3600
3601Overview:
3602"""""""""
3603
3604The '``unreachable``' instruction has no defined semantics. This
3605instruction is used to inform the optimizer that a particular portion of
3606the code is not reachable. This can be used to indicate that the code
3607after a no-return function cannot be reached, and other facts.
3608
3609Semantics:
3610""""""""""
3611
3612The '``unreachable``' instruction has no defined semantics.
3613
3614.. _binaryops:
3615
3616Binary Operations
3617-----------------
3618
3619Binary operators are used to do most of the computation in a program.
3620They require two operands of the same type, execute an operation on
3621them, and produce a single value. The operands might represent multiple
3622data, as is the case with the :ref:`vector <t_vector>` data type. The
3623result value has the same type as its operands.
3624
3625There are several different binary operators:
3626
3627.. _i_add:
3628
3629'``add``' Instruction
3630^^^^^^^^^^^^^^^^^^^^^
3631
3632Syntax:
3633"""""""
3634
3635::
3636
3637 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3638 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3639 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3640 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3641
3642Overview:
3643"""""""""
3644
3645The '``add``' instruction returns the sum of its two operands.
3646
3647Arguments:
3648""""""""""
3649
3650The two arguments to the '``add``' instruction must be
3651:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3652arguments must have identical types.
3653
3654Semantics:
3655""""""""""
3656
3657The value produced is the integer sum of the two operands.
3658
3659If the sum has unsigned overflow, the result returned is the
3660mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3661the result.
3662
3663Because LLVM integers use a two's complement representation, this
3664instruction is appropriate for both signed and unsigned integers.
3665
3666``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3667respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3668result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3669unsigned and/or signed overflow, respectively, occurs.
3670
3671Example:
3672""""""""
3673
3674.. code-block:: llvm
3675
3676 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3677
3678.. _i_fadd:
3679
3680'``fadd``' Instruction
3681^^^^^^^^^^^^^^^^^^^^^^
3682
3683Syntax:
3684"""""""
3685
3686::
3687
3688 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3689
3690Overview:
3691"""""""""
3692
3693The '``fadd``' instruction returns the sum of its two operands.
3694
3695Arguments:
3696""""""""""
3697
3698The two arguments to the '``fadd``' instruction must be :ref:`floating
3699point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3700Both arguments must have identical types.
3701
3702Semantics:
3703""""""""""
3704
3705The value produced is the floating point sum of the two operands. This
3706instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3707which are optimization hints to enable otherwise unsafe floating point
3708optimizations:
3709
3710Example:
3711""""""""
3712
3713.. code-block:: llvm
3714
3715 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3716
3717'``sub``' Instruction
3718^^^^^^^^^^^^^^^^^^^^^
3719
3720Syntax:
3721"""""""
3722
3723::
3724
3725 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3726 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3727 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3728 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3729
3730Overview:
3731"""""""""
3732
3733The '``sub``' instruction returns the difference of its two operands.
3734
3735Note that the '``sub``' instruction is used to represent the '``neg``'
3736instruction present in most other intermediate representations.
3737
3738Arguments:
3739""""""""""
3740
3741The two arguments to the '``sub``' instruction must be
3742:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3743arguments must have identical types.
3744
3745Semantics:
3746""""""""""
3747
3748The value produced is the integer difference of the two operands.
3749
3750If the difference has unsigned overflow, the result returned is the
3751mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3752the result.
3753
3754Because LLVM integers use a two's complement representation, this
3755instruction is appropriate for both signed and unsigned integers.
3756
3757``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3758respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3759result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3760unsigned and/or signed overflow, respectively, occurs.
3761
3762Example:
3763""""""""
3764
3765.. code-block:: llvm
3766
3767 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3768 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3769
3770.. _i_fsub:
3771
3772'``fsub``' Instruction
3773^^^^^^^^^^^^^^^^^^^^^^
3774
3775Syntax:
3776"""""""
3777
3778::
3779
3780 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3781
3782Overview:
3783"""""""""
3784
3785The '``fsub``' instruction returns the difference of its two operands.
3786
3787Note that the '``fsub``' instruction is used to represent the '``fneg``'
3788instruction present in most other intermediate representations.
3789
3790Arguments:
3791""""""""""
3792
3793The two arguments to the '``fsub``' instruction must be :ref:`floating
3794point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3795Both arguments must have identical types.
3796
3797Semantics:
3798""""""""""
3799
3800The value produced is the floating point difference of the two operands.
3801This instruction can also take any number of :ref:`fast-math
3802flags <fastmath>`, which are optimization hints to enable otherwise
3803unsafe floating point optimizations:
3804
3805Example:
3806""""""""
3807
3808.. code-block:: llvm
3809
3810 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3811 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3812
3813'``mul``' Instruction
3814^^^^^^^^^^^^^^^^^^^^^
3815
3816Syntax:
3817"""""""
3818
3819::
3820
3821 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3822 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3823 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3824 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3825
3826Overview:
3827"""""""""
3828
3829The '``mul``' instruction returns the product of its two operands.
3830
3831Arguments:
3832""""""""""
3833
3834The two arguments to the '``mul``' instruction must be
3835:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3836arguments must have identical types.
3837
3838Semantics:
3839""""""""""
3840
3841The value produced is the integer product of the two operands.
3842
3843If the result of the multiplication has unsigned overflow, the result
3844returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3845bit width of the result.
3846
3847Because LLVM integers use a two's complement representation, and the
3848result is the same width as the operands, this instruction returns the
3849correct result for both signed and unsigned integers. If a full product
3850(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3851sign-extended or zero-extended as appropriate to the width of the full
3852product.
3853
3854``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3855respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3856result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3857unsigned and/or signed overflow, respectively, occurs.
3858
3859Example:
3860""""""""
3861
3862.. code-block:: llvm
3863
3864 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3865
3866.. _i_fmul:
3867
3868'``fmul``' Instruction
3869^^^^^^^^^^^^^^^^^^^^^^
3870
3871Syntax:
3872"""""""
3873
3874::
3875
3876 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3877
3878Overview:
3879"""""""""
3880
3881The '``fmul``' instruction returns the product of its two operands.
3882
3883Arguments:
3884""""""""""
3885
3886The two arguments to the '``fmul``' instruction must be :ref:`floating
3887point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3888Both arguments must have identical types.
3889
3890Semantics:
3891""""""""""
3892
3893The value produced is the floating point product of the two operands.
3894This instruction can also take any number of :ref:`fast-math
3895flags <fastmath>`, which are optimization hints to enable otherwise
3896unsafe floating point optimizations:
3897
3898Example:
3899""""""""
3900
3901.. code-block:: llvm
3902
3903 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3904
3905'``udiv``' Instruction
3906^^^^^^^^^^^^^^^^^^^^^^
3907
3908Syntax:
3909"""""""
3910
3911::
3912
3913 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3914 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3915
3916Overview:
3917"""""""""
3918
3919The '``udiv``' instruction returns the quotient of its two operands.
3920
3921Arguments:
3922""""""""""
3923
3924The two arguments to the '``udiv``' instruction must be
3925:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3926arguments must have identical types.
3927
3928Semantics:
3929""""""""""
3930
3931The value produced is the unsigned integer quotient of the two operands.
3932
3933Note that unsigned integer division and signed integer division are
3934distinct operations; for signed integer division, use '``sdiv``'.
3935
3936Division by zero leads to undefined behavior.
3937
3938If the ``exact`` keyword is present, the result value of the ``udiv`` is
3939a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3940such, "((a udiv exact b) mul b) == a").
3941
3942Example:
3943""""""""
3944
3945.. code-block:: llvm
3946
3947 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3948
3949'``sdiv``' Instruction
3950^^^^^^^^^^^^^^^^^^^^^^
3951
3952Syntax:
3953"""""""
3954
3955::
3956
3957 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3958 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3959
3960Overview:
3961"""""""""
3962
3963The '``sdiv``' instruction returns the quotient of its two operands.
3964
3965Arguments:
3966""""""""""
3967
3968The two arguments to the '``sdiv``' instruction must be
3969:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3970arguments must have identical types.
3971
3972Semantics:
3973""""""""""
3974
3975The value produced is the signed integer quotient of the two operands
3976rounded towards zero.
3977
3978Note that signed integer division and unsigned integer division are
3979distinct operations; for unsigned integer division, use '``udiv``'.
3980
3981Division by zero leads to undefined behavior. Overflow also leads to
3982undefined behavior; this is a rare case, but can occur, for example, by
3983doing a 32-bit division of -2147483648 by -1.
3984
3985If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3986a :ref:`poison value <poisonvalues>` if the result would be rounded.
3987
3988Example:
3989""""""""
3990
3991.. code-block:: llvm
3992
3993 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3994
3995.. _i_fdiv:
3996
3997'``fdiv``' Instruction
3998^^^^^^^^^^^^^^^^^^^^^^
3999
4000Syntax:
4001"""""""
4002
4003::
4004
4005 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4006
4007Overview:
4008"""""""""
4009
4010The '``fdiv``' instruction returns the quotient of its two operands.
4011
4012Arguments:
4013""""""""""
4014
4015The two arguments to the '``fdiv``' instruction must be :ref:`floating
4016point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4017Both arguments must have identical types.
4018
4019Semantics:
4020""""""""""
4021
4022The value produced is the floating point quotient of the two operands.
4023This instruction can also take any number of :ref:`fast-math
4024flags <fastmath>`, which are optimization hints to enable otherwise
4025unsafe floating point optimizations:
4026
4027Example:
4028""""""""
4029
4030.. code-block:: llvm
4031
4032 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
4033
4034'``urem``' Instruction
4035^^^^^^^^^^^^^^^^^^^^^^
4036
4037Syntax:
4038"""""""
4039
4040::
4041
4042 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
4043
4044Overview:
4045"""""""""
4046
4047The '``urem``' instruction returns the remainder from the unsigned
4048division of its two arguments.
4049
4050Arguments:
4051""""""""""
4052
4053The two arguments to the '``urem``' instruction must be
4054:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4055arguments must have identical types.
4056
4057Semantics:
4058""""""""""
4059
4060This instruction returns the unsigned integer *remainder* of a division.
4061This instruction always performs an unsigned division to get the
4062remainder.
4063
4064Note that unsigned integer remainder and signed integer remainder are
4065distinct operations; for signed integer remainder, use '``srem``'.
4066
4067Taking the remainder of a division by zero leads to undefined behavior.
4068
4069Example:
4070""""""""
4071
4072.. code-block:: llvm
4073
4074 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
4075
4076'``srem``' Instruction
4077^^^^^^^^^^^^^^^^^^^^^^
4078
4079Syntax:
4080"""""""
4081
4082::
4083
4084 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
4085
4086Overview:
4087"""""""""
4088
4089The '``srem``' instruction returns the remainder from the signed
4090division of its two operands. This instruction can also take
4091:ref:`vector <t_vector>` versions of the values in which case the elements
4092must be integers.
4093
4094Arguments:
4095""""""""""
4096
4097The two arguments to the '``srem``' instruction must be
4098:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4099arguments must have identical types.
4100
4101Semantics:
4102""""""""""
4103
4104This instruction returns the *remainder* of a division (where the result
4105is either zero or has the same sign as the dividend, ``op1``), not the
4106*modulo* operator (where the result is either zero or has the same sign
4107as the divisor, ``op2``) of a value. For more information about the
4108difference, see `The Math
4109Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4110table of how this is implemented in various languages, please see
4111`Wikipedia: modulo
4112operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4113
4114Note that signed integer remainder and unsigned integer remainder are
4115distinct operations; for unsigned integer remainder, use '``urem``'.
4116
4117Taking the remainder of a division by zero leads to undefined behavior.
4118Overflow also leads to undefined behavior; this is a rare case, but can
4119occur, for example, by taking the remainder of a 32-bit division of
4120-2147483648 by -1. (The remainder doesn't actually overflow, but this
4121rule lets srem be implemented using instructions that return both the
4122result of the division and the remainder.)
4123
4124Example:
4125""""""""
4126
4127.. code-block:: llvm
4128
4129 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4130
4131.. _i_frem:
4132
4133'``frem``' Instruction
4134^^^^^^^^^^^^^^^^^^^^^^
4135
4136Syntax:
4137"""""""
4138
4139::
4140
4141 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4142
4143Overview:
4144"""""""""
4145
4146The '``frem``' instruction returns the remainder from the division of
4147its two operands.
4148
4149Arguments:
4150""""""""""
4151
4152The two arguments to the '``frem``' instruction must be :ref:`floating
4153point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4154Both arguments must have identical types.
4155
4156Semantics:
4157""""""""""
4158
4159This instruction returns the *remainder* of a division. The remainder
4160has the same sign as the dividend. This instruction can also take any
4161number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4162to enable otherwise unsafe floating point optimizations:
4163
4164Example:
4165""""""""
4166
4167.. code-block:: llvm
4168
4169 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4170
4171.. _bitwiseops:
4172
4173Bitwise Binary Operations
4174-------------------------
4175
4176Bitwise binary operators are used to do various forms of bit-twiddling
4177in a program. They are generally very efficient instructions and can
4178commonly be strength reduced from other instructions. They require two
4179operands of the same type, execute an operation on them, and produce a
4180single value. The resulting value is the same type as its operands.
4181
4182'``shl``' Instruction
4183^^^^^^^^^^^^^^^^^^^^^
4184
4185Syntax:
4186"""""""
4187
4188::
4189
4190 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4191 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4192 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4193 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4194
4195Overview:
4196"""""""""
4197
4198The '``shl``' instruction returns the first operand shifted to the left
4199a specified number of bits.
4200
4201Arguments:
4202""""""""""
4203
4204Both arguments to the '``shl``' instruction must be the same
4205:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4206'``op2``' is treated as an unsigned value.
4207
4208Semantics:
4209""""""""""
4210
4211The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4212where ``n`` is the width of the result. If ``op2`` is (statically or
4213dynamically) negative or equal to or larger than the number of bits in
4214``op1``, the result is undefined. If the arguments are vectors, each
4215vector element of ``op1`` is shifted by the corresponding shift amount
4216in ``op2``.
4217
4218If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4219value <poisonvalues>` if it shifts out any non-zero bits. If the
4220``nsw`` keyword is present, then the shift produces a :ref:`poison
4221value <poisonvalues>` if it shifts out any bits that disagree with the
4222resultant sign bit. As such, NUW/NSW have the same semantics as they
4223would if the shift were expressed as a mul instruction with the same
4224nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4225
4226Example:
4227""""""""
4228
4229.. code-block:: llvm
4230
4231 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4232 <result> = shl i32 4, 2 ; yields {i32}: 16
4233 <result> = shl i32 1, 10 ; yields {i32}: 1024
4234 <result> = shl i32 1, 32 ; undefined
4235 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4236
4237'``lshr``' Instruction
4238^^^^^^^^^^^^^^^^^^^^^^
4239
4240Syntax:
4241"""""""
4242
4243::
4244
4245 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4246 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4247
4248Overview:
4249"""""""""
4250
4251The '``lshr``' instruction (logical shift right) returns the first
4252operand shifted to the right a specified number of bits with zero fill.
4253
4254Arguments:
4255""""""""""
4256
4257Both arguments to the '``lshr``' instruction must be the same
4258:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4259'``op2``' is treated as an unsigned value.
4260
4261Semantics:
4262""""""""""
4263
4264This instruction always performs a logical shift right operation. The
4265most significant bits of the result will be filled with zero bits after
4266the shift. If ``op2`` is (statically or dynamically) equal to or larger
4267than the number of bits in ``op1``, the result is undefined. If the
4268arguments are vectors, each vector element of ``op1`` is shifted by the
4269corresponding shift amount in ``op2``.
4270
4271If the ``exact`` keyword is present, the result value of the ``lshr`` is
4272a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4273non-zero.
4274
4275Example:
4276""""""""
4277
4278.. code-block:: llvm
4279
4280 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4281 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4282 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004283 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004284 <result> = lshr i32 1, 32 ; undefined
4285 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4286
4287'``ashr``' Instruction
4288^^^^^^^^^^^^^^^^^^^^^^
4289
4290Syntax:
4291"""""""
4292
4293::
4294
4295 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4296 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4297
4298Overview:
4299"""""""""
4300
4301The '``ashr``' instruction (arithmetic shift right) returns the first
4302operand shifted to the right a specified number of bits with sign
4303extension.
4304
4305Arguments:
4306""""""""""
4307
4308Both arguments to the '``ashr``' instruction must be the same
4309:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4310'``op2``' is treated as an unsigned value.
4311
4312Semantics:
4313""""""""""
4314
4315This instruction always performs an arithmetic shift right operation,
4316The most significant bits of the result will be filled with the sign bit
4317of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4318than the number of bits in ``op1``, the result is undefined. If the
4319arguments are vectors, each vector element of ``op1`` is shifted by the
4320corresponding shift amount in ``op2``.
4321
4322If the ``exact`` keyword is present, the result value of the ``ashr`` is
4323a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4324non-zero.
4325
4326Example:
4327""""""""
4328
4329.. code-block:: llvm
4330
4331 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4332 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4333 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4334 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4335 <result> = ashr i32 1, 32 ; undefined
4336 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4337
4338'``and``' Instruction
4339^^^^^^^^^^^^^^^^^^^^^
4340
4341Syntax:
4342"""""""
4343
4344::
4345
4346 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4347
4348Overview:
4349"""""""""
4350
4351The '``and``' instruction returns the bitwise logical and of its two
4352operands.
4353
4354Arguments:
4355""""""""""
4356
4357The two arguments to the '``and``' instruction must be
4358:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4359arguments must have identical types.
4360
4361Semantics:
4362""""""""""
4363
4364The truth table used for the '``and``' instruction is:
4365
4366+-----+-----+-----+
4367| In0 | In1 | Out |
4368+-----+-----+-----+
4369| 0 | 0 | 0 |
4370+-----+-----+-----+
4371| 0 | 1 | 0 |
4372+-----+-----+-----+
4373| 1 | 0 | 0 |
4374+-----+-----+-----+
4375| 1 | 1 | 1 |
4376+-----+-----+-----+
4377
4378Example:
4379""""""""
4380
4381.. code-block:: llvm
4382
4383 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4384 <result> = and i32 15, 40 ; yields {i32}:result = 8
4385 <result> = and i32 4, 8 ; yields {i32}:result = 0
4386
4387'``or``' Instruction
4388^^^^^^^^^^^^^^^^^^^^
4389
4390Syntax:
4391"""""""
4392
4393::
4394
4395 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4396
4397Overview:
4398"""""""""
4399
4400The '``or``' instruction returns the bitwise logical inclusive or of its
4401two operands.
4402
4403Arguments:
4404""""""""""
4405
4406The two arguments to the '``or``' instruction must be
4407:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4408arguments must have identical types.
4409
4410Semantics:
4411""""""""""
4412
4413The truth table used for the '``or``' instruction is:
4414
4415+-----+-----+-----+
4416| In0 | In1 | Out |
4417+-----+-----+-----+
4418| 0 | 0 | 0 |
4419+-----+-----+-----+
4420| 0 | 1 | 1 |
4421+-----+-----+-----+
4422| 1 | 0 | 1 |
4423+-----+-----+-----+
4424| 1 | 1 | 1 |
4425+-----+-----+-----+
4426
4427Example:
4428""""""""
4429
4430::
4431
4432 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4433 <result> = or i32 15, 40 ; yields {i32}:result = 47
4434 <result> = or i32 4, 8 ; yields {i32}:result = 12
4435
4436'``xor``' Instruction
4437^^^^^^^^^^^^^^^^^^^^^
4438
4439Syntax:
4440"""""""
4441
4442::
4443
4444 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4445
4446Overview:
4447"""""""""
4448
4449The '``xor``' instruction returns the bitwise logical exclusive or of
4450its two operands. The ``xor`` is used to implement the "one's
4451complement" operation, which is the "~" operator in C.
4452
4453Arguments:
4454""""""""""
4455
4456The two arguments to the '``xor``' instruction must be
4457:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4458arguments must have identical types.
4459
4460Semantics:
4461""""""""""
4462
4463The truth table used for the '``xor``' instruction is:
4464
4465+-----+-----+-----+
4466| In0 | In1 | Out |
4467+-----+-----+-----+
4468| 0 | 0 | 0 |
4469+-----+-----+-----+
4470| 0 | 1 | 1 |
4471+-----+-----+-----+
4472| 1 | 0 | 1 |
4473+-----+-----+-----+
4474| 1 | 1 | 0 |
4475+-----+-----+-----+
4476
4477Example:
4478""""""""
4479
4480.. code-block:: llvm
4481
4482 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4483 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4484 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4485 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4486
4487Vector Operations
4488-----------------
4489
4490LLVM supports several instructions to represent vector operations in a
4491target-independent manner. These instructions cover the element-access
4492and vector-specific operations needed to process vectors effectively.
4493While LLVM does directly support these vector operations, many
4494sophisticated algorithms will want to use target-specific intrinsics to
4495take full advantage of a specific target.
4496
4497.. _i_extractelement:
4498
4499'``extractelement``' Instruction
4500^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4501
4502Syntax:
4503"""""""
4504
4505::
4506
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004507 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004508
4509Overview:
4510"""""""""
4511
4512The '``extractelement``' instruction extracts a single scalar element
4513from a vector at a specified index.
4514
4515Arguments:
4516""""""""""
4517
4518The first operand of an '``extractelement``' instruction is a value of
4519:ref:`vector <t_vector>` type. The second operand is an index indicating
4520the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004521variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004522
4523Semantics:
4524""""""""""
4525
4526The result is a scalar of the same type as the element type of ``val``.
4527Its value is the value at position ``idx`` of ``val``. If ``idx``
4528exceeds the length of ``val``, the results are undefined.
4529
4530Example:
4531""""""""
4532
4533.. code-block:: llvm
4534
4535 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4536
4537.. _i_insertelement:
4538
4539'``insertelement``' Instruction
4540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4541
4542Syntax:
4543"""""""
4544
4545::
4546
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004547 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004548
4549Overview:
4550"""""""""
4551
4552The '``insertelement``' instruction inserts a scalar element into a
4553vector at a specified index.
4554
4555Arguments:
4556""""""""""
4557
4558The first operand of an '``insertelement``' instruction is a value of
4559:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4560type must equal the element type of the first operand. The third operand
4561is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004562index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004563
4564Semantics:
4565""""""""""
4566
4567The result is a vector of the same type as ``val``. Its element values
4568are those of ``val`` except at position ``idx``, where it gets the value
4569``elt``. If ``idx`` exceeds the length of ``val``, the results are
4570undefined.
4571
4572Example:
4573""""""""
4574
4575.. code-block:: llvm
4576
4577 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4578
4579.. _i_shufflevector:
4580
4581'``shufflevector``' Instruction
4582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4583
4584Syntax:
4585"""""""
4586
4587::
4588
4589 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4590
4591Overview:
4592"""""""""
4593
4594The '``shufflevector``' instruction constructs a permutation of elements
4595from two input vectors, returning a vector with the same element type as
4596the input and length that is the same as the shuffle mask.
4597
4598Arguments:
4599""""""""""
4600
4601The first two operands of a '``shufflevector``' instruction are vectors
4602with the same type. The third argument is a shuffle mask whose element
4603type is always 'i32'. The result of the instruction is a vector whose
4604length is the same as the shuffle mask and whose element type is the
4605same as the element type of the first two operands.
4606
4607The shuffle mask operand is required to be a constant vector with either
4608constant integer or undef values.
4609
4610Semantics:
4611""""""""""
4612
4613The elements of the two input vectors are numbered from left to right
4614across both of the vectors. The shuffle mask operand specifies, for each
4615element of the result vector, which element of the two input vectors the
4616result element gets. The element selector may be undef (meaning "don't
4617care") and the second operand may be undef if performing a shuffle from
4618only one vector.
4619
4620Example:
4621""""""""
4622
4623.. code-block:: llvm
4624
4625 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4626 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4627 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4628 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4629 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4630 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4631 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4632 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4633
4634Aggregate Operations
4635--------------------
4636
4637LLVM supports several instructions for working with
4638:ref:`aggregate <t_aggregate>` values.
4639
4640.. _i_extractvalue:
4641
4642'``extractvalue``' Instruction
4643^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4644
4645Syntax:
4646"""""""
4647
4648::
4649
4650 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4651
4652Overview:
4653"""""""""
4654
4655The '``extractvalue``' instruction extracts the value of a member field
4656from an :ref:`aggregate <t_aggregate>` value.
4657
4658Arguments:
4659""""""""""
4660
4661The first operand of an '``extractvalue``' instruction is a value of
4662:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4663constant indices to specify which value to extract in a similar manner
4664as indices in a '``getelementptr``' instruction.
4665
4666The major differences to ``getelementptr`` indexing are:
4667
4668- Since the value being indexed is not a pointer, the first index is
4669 omitted and assumed to be zero.
4670- At least one index must be specified.
4671- Not only struct indices but also array indices must be in bounds.
4672
4673Semantics:
4674""""""""""
4675
4676The result is the value at the position in the aggregate specified by
4677the index operands.
4678
4679Example:
4680""""""""
4681
4682.. code-block:: llvm
4683
4684 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4685
4686.. _i_insertvalue:
4687
4688'``insertvalue``' Instruction
4689^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4690
4691Syntax:
4692"""""""
4693
4694::
4695
4696 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4697
4698Overview:
4699"""""""""
4700
4701The '``insertvalue``' instruction inserts a value into a member field in
4702an :ref:`aggregate <t_aggregate>` value.
4703
4704Arguments:
4705""""""""""
4706
4707The first operand of an '``insertvalue``' instruction is a value of
4708:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4709a first-class value to insert. The following operands are constant
4710indices indicating the position at which to insert the value in a
4711similar manner as indices in a '``extractvalue``' instruction. The value
4712to insert must have the same type as the value identified by the
4713indices.
4714
4715Semantics:
4716""""""""""
4717
4718The result is an aggregate of the same type as ``val``. Its value is
4719that of ``val`` except that the value at the position specified by the
4720indices is that of ``elt``.
4721
4722Example:
4723""""""""
4724
4725.. code-block:: llvm
4726
4727 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4728 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4729 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4730
4731.. _memoryops:
4732
4733Memory Access and Addressing Operations
4734---------------------------------------
4735
4736A key design point of an SSA-based representation is how it represents
4737memory. In LLVM, no memory locations are in SSA form, which makes things
4738very simple. This section describes how to read, write, and allocate
4739memory in LLVM.
4740
4741.. _i_alloca:
4742
4743'``alloca``' Instruction
4744^^^^^^^^^^^^^^^^^^^^^^^^
4745
4746Syntax:
4747"""""""
4748
4749::
4750
David Majnemerc4ab61c2014-03-09 06:41:58 +00004751 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields {type*}:result
Sean Silvab084af42012-12-07 10:36:55 +00004752
4753Overview:
4754"""""""""
4755
4756The '``alloca``' instruction allocates memory on the stack frame of the
4757currently executing function, to be automatically released when this
4758function returns to its caller. The object is always allocated in the
4759generic address space (address space zero).
4760
4761Arguments:
4762""""""""""
4763
4764The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4765bytes of memory on the runtime stack, returning a pointer of the
4766appropriate type to the program. If "NumElements" is specified, it is
4767the number of elements allocated, otherwise "NumElements" is defaulted
4768to be one. If a constant alignment is specified, the value result of the
4769allocation is guaranteed to be aligned to at least that boundary. If not
4770specified, or if zero, the target can choose to align the allocation on
4771any convenient boundary compatible with the type.
4772
4773'``type``' may be any sized type.
4774
4775Semantics:
4776""""""""""
4777
4778Memory is allocated; a pointer is returned. The operation is undefined
4779if there is insufficient stack space for the allocation. '``alloca``'d
4780memory is automatically released when the function returns. The
4781'``alloca``' instruction is commonly used to represent automatic
4782variables that must have an address available. When the function returns
4783(either with the ``ret`` or ``resume`` instructions), the memory is
4784reclaimed. Allocating zero bytes is legal, but the result is undefined.
4785The order in which memory is allocated (ie., which way the stack grows)
4786is not specified.
4787
4788Example:
4789""""""""
4790
4791.. code-block:: llvm
4792
4793 %ptr = alloca i32 ; yields {i32*}:ptr
4794 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4795 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4796 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4797
4798.. _i_load:
4799
4800'``load``' Instruction
4801^^^^^^^^^^^^^^^^^^^^^^
4802
4803Syntax:
4804"""""""
4805
4806::
4807
4808 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4809 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4810 !<index> = !{ i32 1 }
4811
4812Overview:
4813"""""""""
4814
4815The '``load``' instruction is used to read from memory.
4816
4817Arguments:
4818""""""""""
4819
Eli Bendersky239a78b2013-04-17 20:17:08 +00004820The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004821from which to load. The pointer must point to a :ref:`first
4822class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4823then the optimizer is not allowed to modify the number or order of
4824execution of this ``load`` with other :ref:`volatile
4825operations <volatile>`.
4826
4827If the ``load`` is marked as ``atomic``, it takes an extra
4828:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4829``release`` and ``acq_rel`` orderings are not valid on ``load``
4830instructions. Atomic loads produce :ref:`defined <memmodel>` results
4831when they may see multiple atomic stores. The type of the pointee must
4832be an integer type whose bit width is a power of two greater than or
4833equal to eight and less than or equal to a target-specific size limit.
4834``align`` must be explicitly specified on atomic loads, and the load has
4835undefined behavior if the alignment is not set to a value which is at
4836least the size in bytes of the pointee. ``!nontemporal`` does not have
4837any defined semantics for atomic loads.
4838
4839The optional constant ``align`` argument specifies the alignment of the
4840operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004841or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004842alignment for the target. It is the responsibility of the code emitter
4843to ensure that the alignment information is correct. Overestimating the
4844alignment results in undefined behavior. Underestimating the alignment
4845may produce less efficient code. An alignment of 1 is always safe.
4846
4847The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004848metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004849``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004850metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004851that this load is not expected to be reused in the cache. The code
4852generator may select special instructions to save cache bandwidth, such
4853as the ``MOVNT`` instruction on x86.
4854
4855The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004856metadata name ``<index>`` corresponding to a metadata node with no
4857entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004858instruction tells the optimizer and code generator that this load
4859address points to memory which does not change value during program
4860execution. The optimizer may then move this load around, for example, by
4861hoisting it out of loops using loop invariant code motion.
4862
4863Semantics:
4864""""""""""
4865
4866The location of memory pointed to is loaded. If the value being loaded
4867is of scalar type then the number of bytes read does not exceed the
4868minimum number of bytes needed to hold all bits of the type. For
4869example, loading an ``i24`` reads at most three bytes. When loading a
4870value of a type like ``i20`` with a size that is not an integral number
4871of bytes, the result is undefined if the value was not originally
4872written using a store of the same type.
4873
4874Examples:
4875"""""""""
4876
4877.. code-block:: llvm
4878
4879 %ptr = alloca i32 ; yields {i32*}:ptr
4880 store i32 3, i32* %ptr ; yields {void}
4881 %val = load i32* %ptr ; yields {i32}:val = i32 3
4882
4883.. _i_store:
4884
4885'``store``' Instruction
4886^^^^^^^^^^^^^^^^^^^^^^^
4887
4888Syntax:
4889"""""""
4890
4891::
4892
4893 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4894 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4895
4896Overview:
4897"""""""""
4898
4899The '``store``' instruction is used to write to memory.
4900
4901Arguments:
4902""""""""""
4903
Eli Benderskyca380842013-04-17 17:17:20 +00004904There are two arguments to the ``store`` instruction: a value to store
4905and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004906operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004907the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004908then the optimizer is not allowed to modify the number or order of
4909execution of this ``store`` with other :ref:`volatile
4910operations <volatile>`.
4911
4912If the ``store`` is marked as ``atomic``, it takes an extra
4913:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4914``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4915instructions. Atomic loads produce :ref:`defined <memmodel>` results
4916when they may see multiple atomic stores. The type of the pointee must
4917be an integer type whose bit width is a power of two greater than or
4918equal to eight and less than or equal to a target-specific size limit.
4919``align`` must be explicitly specified on atomic stores, and the store
4920has undefined behavior if the alignment is not set to a value which is
4921at least the size in bytes of the pointee. ``!nontemporal`` does not
4922have any defined semantics for atomic stores.
4923
Eli Benderskyca380842013-04-17 17:17:20 +00004924The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004925operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004926or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004927alignment for the target. It is the responsibility of the code emitter
4928to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004929alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004930alignment may produce less efficient code. An alignment of 1 is always
4931safe.
4932
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004933The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004934name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004935value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004936tells the optimizer and code generator that this load is not expected to
4937be reused in the cache. The code generator may select special
4938instructions to save cache bandwidth, such as the MOVNT instruction on
4939x86.
4940
4941Semantics:
4942""""""""""
4943
Eli Benderskyca380842013-04-17 17:17:20 +00004944The contents of memory are updated to contain ``<value>`` at the
4945location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004946of scalar type then the number of bytes written does not exceed the
4947minimum number of bytes needed to hold all bits of the type. For
4948example, storing an ``i24`` writes at most three bytes. When writing a
4949value of a type like ``i20`` with a size that is not an integral number
4950of bytes, it is unspecified what happens to the extra bits that do not
4951belong to the type, but they will typically be overwritten.
4952
4953Example:
4954""""""""
4955
4956.. code-block:: llvm
4957
4958 %ptr = alloca i32 ; yields {i32*}:ptr
4959 store i32 3, i32* %ptr ; yields {void}
4960 %val = load i32* %ptr ; yields {i32}:val = i32 3
4961
4962.. _i_fence:
4963
4964'``fence``' Instruction
4965^^^^^^^^^^^^^^^^^^^^^^^
4966
4967Syntax:
4968"""""""
4969
4970::
4971
4972 fence [singlethread] <ordering> ; yields {void}
4973
4974Overview:
4975"""""""""
4976
4977The '``fence``' instruction is used to introduce happens-before edges
4978between operations.
4979
4980Arguments:
4981""""""""""
4982
4983'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4984defines what *synchronizes-with* edges they add. They can only be given
4985``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4986
4987Semantics:
4988""""""""""
4989
4990A fence A which has (at least) ``release`` ordering semantics
4991*synchronizes with* a fence B with (at least) ``acquire`` ordering
4992semantics if and only if there exist atomic operations X and Y, both
4993operating on some atomic object M, such that A is sequenced before X, X
4994modifies M (either directly or through some side effect of a sequence
4995headed by X), Y is sequenced before B, and Y observes M. This provides a
4996*happens-before* dependency between A and B. Rather than an explicit
4997``fence``, one (but not both) of the atomic operations X or Y might
4998provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4999still *synchronize-with* the explicit ``fence`` and establish the
5000*happens-before* edge.
5001
5002A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5003``acquire`` and ``release`` semantics specified above, participates in
5004the global program order of other ``seq_cst`` operations and/or fences.
5005
5006The optional ":ref:`singlethread <singlethread>`" argument specifies
5007that the fence only synchronizes with other fences in the same thread.
5008(This is useful for interacting with signal handlers.)
5009
5010Example:
5011""""""""
5012
5013.. code-block:: llvm
5014
5015 fence acquire ; yields {void}
5016 fence singlethread seq_cst ; yields {void}
5017
5018.. _i_cmpxchg:
5019
5020'``cmpxchg``' Instruction
5021^^^^^^^^^^^^^^^^^^^^^^^^^
5022
5023Syntax:
5024"""""""
5025
5026::
5027
Tim Northovere94a5182014-03-11 10:48:52 +00005028 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields {ty}
Sean Silvab084af42012-12-07 10:36:55 +00005029
5030Overview:
5031"""""""""
5032
5033The '``cmpxchg``' instruction is used to atomically modify memory. It
5034loads a value in memory and compares it to a given value. If they are
5035equal, it stores a new value into the memory.
5036
5037Arguments:
5038""""""""""
5039
5040There are three arguments to the '``cmpxchg``' instruction: an address
5041to operate on, a value to compare to the value currently be at that
5042address, and a new value to place at that address if the compared values
5043are equal. The type of '<cmp>' must be an integer type whose bit width
5044is a power of two greater than or equal to eight and less than or equal
5045to a target-specific size limit. '<cmp>' and '<new>' must have the same
5046type, and the type of '<pointer>' must be a pointer to that type. If the
5047``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5048to modify the number or order of execution of this ``cmpxchg`` with
5049other :ref:`volatile operations <volatile>`.
5050
Tim Northovere94a5182014-03-11 10:48:52 +00005051The success and failure :ref:`ordering <ordering>` arguments specify how this
5052``cmpxchg`` synchronizes with other atomic operations. The both ordering
5053parameters must be at least ``monotonic``, the ordering constraint on failure
5054must be no stronger than that on success, and the failure ordering cannot be
5055either ``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005056
5057The optional "``singlethread``" argument declares that the ``cmpxchg``
5058is only atomic with respect to code (usually signal handlers) running in
5059the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5060respect to all other code in the system.
5061
5062The pointer passed into cmpxchg must have alignment greater than or
5063equal to the size in memory of the operand.
5064
5065Semantics:
5066""""""""""
5067
5068The contents of memory at the location specified by the '``<pointer>``'
5069operand is read and compared to '``<cmp>``'; if the read value is the
5070equal, '``<new>``' is written. The original value at the location is
5071returned.
5072
Tim Northovere94a5182014-03-11 10:48:52 +00005073A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5074identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5075load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005076
5077Example:
5078""""""""
5079
5080.. code-block:: llvm
5081
5082 entry:
5083 %orig = atomic load i32* %ptr unordered ; yields {i32}
5084 br label %loop
5085
5086 loop:
5087 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5088 %squared = mul i32 %cmp, %cmp
Tim Northovere94a5182014-03-11 10:48:52 +00005089 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields {i32}
Sean Silvab084af42012-12-07 10:36:55 +00005090 %success = icmp eq i32 %cmp, %old
5091 br i1 %success, label %done, label %loop
5092
5093 done:
5094 ...
5095
5096.. _i_atomicrmw:
5097
5098'``atomicrmw``' Instruction
5099^^^^^^^^^^^^^^^^^^^^^^^^^^^
5100
5101Syntax:
5102"""""""
5103
5104::
5105
5106 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5107
5108Overview:
5109"""""""""
5110
5111The '``atomicrmw``' instruction is used to atomically modify memory.
5112
5113Arguments:
5114""""""""""
5115
5116There are three arguments to the '``atomicrmw``' instruction: an
5117operation to apply, an address whose value to modify, an argument to the
5118operation. The operation must be one of the following keywords:
5119
5120- xchg
5121- add
5122- sub
5123- and
5124- nand
5125- or
5126- xor
5127- max
5128- min
5129- umax
5130- umin
5131
5132The type of '<value>' must be an integer type whose bit width is a power
5133of two greater than or equal to eight and less than or equal to a
5134target-specific size limit. The type of the '``<pointer>``' operand must
5135be a pointer to that type. If the ``atomicrmw`` is marked as
5136``volatile``, then the optimizer is not allowed to modify the number or
5137order of execution of this ``atomicrmw`` with other :ref:`volatile
5138operations <volatile>`.
5139
5140Semantics:
5141""""""""""
5142
5143The contents of memory at the location specified by the '``<pointer>``'
5144operand are atomically read, modified, and written back. The original
5145value at the location is returned. The modification is specified by the
5146operation argument:
5147
5148- xchg: ``*ptr = val``
5149- add: ``*ptr = *ptr + val``
5150- sub: ``*ptr = *ptr - val``
5151- and: ``*ptr = *ptr & val``
5152- nand: ``*ptr = ~(*ptr & val)``
5153- or: ``*ptr = *ptr | val``
5154- xor: ``*ptr = *ptr ^ val``
5155- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5156- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5157- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5158 comparison)
5159- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5160 comparison)
5161
5162Example:
5163""""""""
5164
5165.. code-block:: llvm
5166
5167 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5168
5169.. _i_getelementptr:
5170
5171'``getelementptr``' Instruction
5172^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5173
5174Syntax:
5175"""""""
5176
5177::
5178
5179 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5180 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5181 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5182
5183Overview:
5184"""""""""
5185
5186The '``getelementptr``' instruction is used to get the address of a
5187subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5188address calculation only and does not access memory.
5189
5190Arguments:
5191""""""""""
5192
5193The first argument is always a pointer or a vector of pointers, and
5194forms the basis of the calculation. The remaining arguments are indices
5195that indicate which of the elements of the aggregate object are indexed.
5196The interpretation of each index is dependent on the type being indexed
5197into. The first index always indexes the pointer value given as the
5198first argument, the second index indexes a value of the type pointed to
5199(not necessarily the value directly pointed to, since the first index
5200can be non-zero), etc. The first type indexed into must be a pointer
5201value, subsequent types can be arrays, vectors, and structs. Note that
5202subsequent types being indexed into can never be pointers, since that
5203would require loading the pointer before continuing calculation.
5204
5205The type of each index argument depends on the type it is indexing into.
5206When indexing into a (optionally packed) structure, only ``i32`` integer
5207**constants** are allowed (when using a vector of indices they must all
5208be the **same** ``i32`` integer constant). When indexing into an array,
5209pointer or vector, integers of any width are allowed, and they are not
5210required to be constant. These integers are treated as signed values
5211where relevant.
5212
5213For example, let's consider a C code fragment and how it gets compiled
5214to LLVM:
5215
5216.. code-block:: c
5217
5218 struct RT {
5219 char A;
5220 int B[10][20];
5221 char C;
5222 };
5223 struct ST {
5224 int X;
5225 double Y;
5226 struct RT Z;
5227 };
5228
5229 int *foo(struct ST *s) {
5230 return &s[1].Z.B[5][13];
5231 }
5232
5233The LLVM code generated by Clang is:
5234
5235.. code-block:: llvm
5236
5237 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5238 %struct.ST = type { i32, double, %struct.RT }
5239
5240 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5241 entry:
5242 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5243 ret i32* %arrayidx
5244 }
5245
5246Semantics:
5247""""""""""
5248
5249In the example above, the first index is indexing into the
5250'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5251= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5252indexes into the third element of the structure, yielding a
5253'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5254structure. The third index indexes into the second element of the
5255structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5256dimensions of the array are subscripted into, yielding an '``i32``'
5257type. The '``getelementptr``' instruction returns a pointer to this
5258element, thus computing a value of '``i32*``' type.
5259
5260Note that it is perfectly legal to index partially through a structure,
5261returning a pointer to an inner element. Because of this, the LLVM code
5262for the given testcase is equivalent to:
5263
5264.. code-block:: llvm
5265
5266 define i32* @foo(%struct.ST* %s) {
5267 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5268 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5269 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5270 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5271 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5272 ret i32* %t5
5273 }
5274
5275If the ``inbounds`` keyword is present, the result value of the
5276``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5277pointer is not an *in bounds* address of an allocated object, or if any
5278of the addresses that would be formed by successive addition of the
5279offsets implied by the indices to the base address with infinitely
5280precise signed arithmetic are not an *in bounds* address of that
5281allocated object. The *in bounds* addresses for an allocated object are
5282all the addresses that point into the object, plus the address one byte
5283past the end. In cases where the base is a vector of pointers the
5284``inbounds`` keyword applies to each of the computations element-wise.
5285
5286If the ``inbounds`` keyword is not present, the offsets are added to the
5287base address with silently-wrapping two's complement arithmetic. If the
5288offsets have a different width from the pointer, they are sign-extended
5289or truncated to the width of the pointer. The result value of the
5290``getelementptr`` may be outside the object pointed to by the base
5291pointer. The result value may not necessarily be used to access memory
5292though, even if it happens to point into allocated storage. See the
5293:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5294information.
5295
5296The getelementptr instruction is often confusing. For some more insight
5297into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5298
5299Example:
5300""""""""
5301
5302.. code-block:: llvm
5303
5304 ; yields [12 x i8]*:aptr
5305 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5306 ; yields i8*:vptr
5307 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5308 ; yields i8*:eptr
5309 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5310 ; yields i32*:iptr
5311 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5312
5313In cases where the pointer argument is a vector of pointers, each index
5314must be a vector with the same number of elements. For example:
5315
5316.. code-block:: llvm
5317
5318 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5319
5320Conversion Operations
5321---------------------
5322
5323The instructions in this category are the conversion instructions
5324(casting) which all take a single operand and a type. They perform
5325various bit conversions on the operand.
5326
5327'``trunc .. to``' Instruction
5328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5329
5330Syntax:
5331"""""""
5332
5333::
5334
5335 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5336
5337Overview:
5338"""""""""
5339
5340The '``trunc``' instruction truncates its operand to the type ``ty2``.
5341
5342Arguments:
5343""""""""""
5344
5345The '``trunc``' instruction takes a value to trunc, and a type to trunc
5346it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5347of the same number of integers. The bit size of the ``value`` must be
5348larger than the bit size of the destination type, ``ty2``. Equal sized
5349types are not allowed.
5350
5351Semantics:
5352""""""""""
5353
5354The '``trunc``' instruction truncates the high order bits in ``value``
5355and converts the remaining bits to ``ty2``. Since the source size must
5356be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5357It will always truncate bits.
5358
5359Example:
5360""""""""
5361
5362.. code-block:: llvm
5363
5364 %X = trunc i32 257 to i8 ; yields i8:1
5365 %Y = trunc i32 123 to i1 ; yields i1:true
5366 %Z = trunc i32 122 to i1 ; yields i1:false
5367 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5368
5369'``zext .. to``' Instruction
5370^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5371
5372Syntax:
5373"""""""
5374
5375::
5376
5377 <result> = zext <ty> <value> to <ty2> ; yields ty2
5378
5379Overview:
5380"""""""""
5381
5382The '``zext``' instruction zero extends its operand to type ``ty2``.
5383
5384Arguments:
5385""""""""""
5386
5387The '``zext``' instruction takes a value to cast, and a type to cast it
5388to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5389the same number of integers. The bit size of the ``value`` must be
5390smaller than the bit size of the destination type, ``ty2``.
5391
5392Semantics:
5393""""""""""
5394
5395The ``zext`` fills the high order bits of the ``value`` with zero bits
5396until it reaches the size of the destination type, ``ty2``.
5397
5398When zero extending from i1, the result will always be either 0 or 1.
5399
5400Example:
5401""""""""
5402
5403.. code-block:: llvm
5404
5405 %X = zext i32 257 to i64 ; yields i64:257
5406 %Y = zext i1 true to i32 ; yields i32:1
5407 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5408
5409'``sext .. to``' Instruction
5410^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5411
5412Syntax:
5413"""""""
5414
5415::
5416
5417 <result> = sext <ty> <value> to <ty2> ; yields ty2
5418
5419Overview:
5420"""""""""
5421
5422The '``sext``' sign extends ``value`` to the type ``ty2``.
5423
5424Arguments:
5425""""""""""
5426
5427The '``sext``' instruction takes a value to cast, and a type to cast it
5428to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5429the same number of integers. The bit size of the ``value`` must be
5430smaller than the bit size of the destination type, ``ty2``.
5431
5432Semantics:
5433""""""""""
5434
5435The '``sext``' instruction performs a sign extension by copying the sign
5436bit (highest order bit) of the ``value`` until it reaches the bit size
5437of the type ``ty2``.
5438
5439When sign extending from i1, the extension always results in -1 or 0.
5440
5441Example:
5442""""""""
5443
5444.. code-block:: llvm
5445
5446 %X = sext i8 -1 to i16 ; yields i16 :65535
5447 %Y = sext i1 true to i32 ; yields i32:-1
5448 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5449
5450'``fptrunc .. to``' Instruction
5451^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5452
5453Syntax:
5454"""""""
5455
5456::
5457
5458 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5459
5460Overview:
5461"""""""""
5462
5463The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5464
5465Arguments:
5466""""""""""
5467
5468The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5469value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5470The size of ``value`` must be larger than the size of ``ty2``. This
5471implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5472
5473Semantics:
5474""""""""""
5475
5476The '``fptrunc``' instruction truncates a ``value`` from a larger
5477:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5478point <t_floating>` type. If the value cannot fit within the
5479destination type, ``ty2``, then the results are undefined.
5480
5481Example:
5482""""""""
5483
5484.. code-block:: llvm
5485
5486 %X = fptrunc double 123.0 to float ; yields float:123.0
5487 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5488
5489'``fpext .. to``' Instruction
5490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5491
5492Syntax:
5493"""""""
5494
5495::
5496
5497 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5498
5499Overview:
5500"""""""""
5501
5502The '``fpext``' extends a floating point ``value`` to a larger floating
5503point value.
5504
5505Arguments:
5506""""""""""
5507
5508The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5509``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5510to. The source type must be smaller than the destination type.
5511
5512Semantics:
5513""""""""""
5514
5515The '``fpext``' instruction extends the ``value`` from a smaller
5516:ref:`floating point <t_floating>` type to a larger :ref:`floating
5517point <t_floating>` type. The ``fpext`` cannot be used to make a
5518*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5519*no-op cast* for a floating point cast.
5520
5521Example:
5522""""""""
5523
5524.. code-block:: llvm
5525
5526 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5527 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5528
5529'``fptoui .. to``' Instruction
5530^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5531
5532Syntax:
5533"""""""
5534
5535::
5536
5537 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5538
5539Overview:
5540"""""""""
5541
5542The '``fptoui``' converts a floating point ``value`` to its unsigned
5543integer equivalent of type ``ty2``.
5544
5545Arguments:
5546""""""""""
5547
5548The '``fptoui``' instruction takes a value to cast, which must be a
5549scalar or vector :ref:`floating point <t_floating>` value, and a type to
5550cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5551``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5552type with the same number of elements as ``ty``
5553
5554Semantics:
5555""""""""""
5556
5557The '``fptoui``' instruction converts its :ref:`floating
5558point <t_floating>` operand into the nearest (rounding towards zero)
5559unsigned integer value. If the value cannot fit in ``ty2``, the results
5560are undefined.
5561
5562Example:
5563""""""""
5564
5565.. code-block:: llvm
5566
5567 %X = fptoui double 123.0 to i32 ; yields i32:123
5568 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5569 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5570
5571'``fptosi .. to``' Instruction
5572^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5573
5574Syntax:
5575"""""""
5576
5577::
5578
5579 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5580
5581Overview:
5582"""""""""
5583
5584The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5585``value`` to type ``ty2``.
5586
5587Arguments:
5588""""""""""
5589
5590The '``fptosi``' instruction takes a value to cast, which must be a
5591scalar or vector :ref:`floating point <t_floating>` value, and a type to
5592cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5593``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5594type with the same number of elements as ``ty``
5595
5596Semantics:
5597""""""""""
5598
5599The '``fptosi``' instruction converts its :ref:`floating
5600point <t_floating>` operand into the nearest (rounding towards zero)
5601signed integer value. If the value cannot fit in ``ty2``, the results
5602are undefined.
5603
5604Example:
5605""""""""
5606
5607.. code-block:: llvm
5608
5609 %X = fptosi double -123.0 to i32 ; yields i32:-123
5610 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5611 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5612
5613'``uitofp .. to``' Instruction
5614^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5615
5616Syntax:
5617"""""""
5618
5619::
5620
5621 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5622
5623Overview:
5624"""""""""
5625
5626The '``uitofp``' instruction regards ``value`` as an unsigned integer
5627and converts that value to the ``ty2`` type.
5628
5629Arguments:
5630""""""""""
5631
5632The '``uitofp``' instruction takes a value to cast, which must be a
5633scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5634``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5635``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5636type with the same number of elements as ``ty``
5637
5638Semantics:
5639""""""""""
5640
5641The '``uitofp``' instruction interprets its operand as an unsigned
5642integer quantity and converts it to the corresponding floating point
5643value. If the value cannot fit in the floating point value, the results
5644are undefined.
5645
5646Example:
5647""""""""
5648
5649.. code-block:: llvm
5650
5651 %X = uitofp i32 257 to float ; yields float:257.0
5652 %Y = uitofp i8 -1 to double ; yields double:255.0
5653
5654'``sitofp .. to``' Instruction
5655^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5656
5657Syntax:
5658"""""""
5659
5660::
5661
5662 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5663
5664Overview:
5665"""""""""
5666
5667The '``sitofp``' instruction regards ``value`` as a signed integer and
5668converts that value to the ``ty2`` type.
5669
5670Arguments:
5671""""""""""
5672
5673The '``sitofp``' instruction takes a value to cast, which must be a
5674scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5675``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5676``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5677type with the same number of elements as ``ty``
5678
5679Semantics:
5680""""""""""
5681
5682The '``sitofp``' instruction interprets its operand as a signed integer
5683quantity and converts it to the corresponding floating point value. If
5684the value cannot fit in the floating point value, the results are
5685undefined.
5686
5687Example:
5688""""""""
5689
5690.. code-block:: llvm
5691
5692 %X = sitofp i32 257 to float ; yields float:257.0
5693 %Y = sitofp i8 -1 to double ; yields double:-1.0
5694
5695.. _i_ptrtoint:
5696
5697'``ptrtoint .. to``' Instruction
5698^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5699
5700Syntax:
5701"""""""
5702
5703::
5704
5705 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5706
5707Overview:
5708"""""""""
5709
5710The '``ptrtoint``' instruction converts the pointer or a vector of
5711pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5712
5713Arguments:
5714""""""""""
5715
5716The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5717a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5718type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5719a vector of integers type.
5720
5721Semantics:
5722""""""""""
5723
5724The '``ptrtoint``' instruction converts ``value`` to integer type
5725``ty2`` by interpreting the pointer value as an integer and either
5726truncating or zero extending that value to the size of the integer type.
5727If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5728``value`` is larger than ``ty2`` then a truncation is done. If they are
5729the same size, then nothing is done (*no-op cast*) other than a type
5730change.
5731
5732Example:
5733""""""""
5734
5735.. code-block:: llvm
5736
5737 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5738 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5739 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5740
5741.. _i_inttoptr:
5742
5743'``inttoptr .. to``' Instruction
5744^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5745
5746Syntax:
5747"""""""
5748
5749::
5750
5751 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5752
5753Overview:
5754"""""""""
5755
5756The '``inttoptr``' instruction converts an integer ``value`` to a
5757pointer type, ``ty2``.
5758
5759Arguments:
5760""""""""""
5761
5762The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5763cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5764type.
5765
5766Semantics:
5767""""""""""
5768
5769The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5770applying either a zero extension or a truncation depending on the size
5771of the integer ``value``. If ``value`` is larger than the size of a
5772pointer then a truncation is done. If ``value`` is smaller than the size
5773of a pointer then a zero extension is done. If they are the same size,
5774nothing is done (*no-op cast*).
5775
5776Example:
5777""""""""
5778
5779.. code-block:: llvm
5780
5781 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5782 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5783 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5784 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5785
5786.. _i_bitcast:
5787
5788'``bitcast .. to``' Instruction
5789^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5790
5791Syntax:
5792"""""""
5793
5794::
5795
5796 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5797
5798Overview:
5799"""""""""
5800
5801The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5802changing any bits.
5803
5804Arguments:
5805""""""""""
5806
5807The '``bitcast``' instruction takes a value to cast, which must be a
5808non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005809also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5810bit sizes of ``value`` and the destination type, ``ty2``, must be
5811identical. If the source type is a pointer, the destination type must
5812also be a pointer of the same size. This instruction supports bitwise
5813conversion of vectors to integers and to vectors of other types (as
5814long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005815
5816Semantics:
5817""""""""""
5818
Matt Arsenault24b49c42013-07-31 17:49:08 +00005819The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5820is always a *no-op cast* because no bits change with this
5821conversion. The conversion is done as if the ``value`` had been stored
5822to memory and read back as type ``ty2``. Pointer (or vector of
5823pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005824pointers) types with the same address space through this instruction.
5825To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5826or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005827
5828Example:
5829""""""""
5830
5831.. code-block:: llvm
5832
5833 %X = bitcast i8 255 to i8 ; yields i8 :-1
5834 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5835 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5836 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5837
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005838.. _i_addrspacecast:
5839
5840'``addrspacecast .. to``' Instruction
5841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5842
5843Syntax:
5844"""""""
5845
5846::
5847
5848 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5849
5850Overview:
5851"""""""""
5852
5853The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5854address space ``n`` to type ``pty2`` in address space ``m``.
5855
5856Arguments:
5857""""""""""
5858
5859The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5860to cast and a pointer type to cast it to, which must have a different
5861address space.
5862
5863Semantics:
5864""""""""""
5865
5866The '``addrspacecast``' instruction converts the pointer value
5867``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005868value modification, depending on the target and the address space
5869pair. Pointer conversions within the same address space must be
5870performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005871conversion is legal then both result and operand refer to the same memory
5872location.
5873
5874Example:
5875""""""""
5876
5877.. code-block:: llvm
5878
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005879 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5880 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5881 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005882
Sean Silvab084af42012-12-07 10:36:55 +00005883.. _otherops:
5884
5885Other Operations
5886----------------
5887
5888The instructions in this category are the "miscellaneous" instructions,
5889which defy better classification.
5890
5891.. _i_icmp:
5892
5893'``icmp``' Instruction
5894^^^^^^^^^^^^^^^^^^^^^^
5895
5896Syntax:
5897"""""""
5898
5899::
5900
5901 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5902
5903Overview:
5904"""""""""
5905
5906The '``icmp``' instruction returns a boolean value or a vector of
5907boolean values based on comparison of its two integer, integer vector,
5908pointer, or pointer vector operands.
5909
5910Arguments:
5911""""""""""
5912
5913The '``icmp``' instruction takes three operands. The first operand is
5914the condition code indicating the kind of comparison to perform. It is
5915not a value, just a keyword. The possible condition code are:
5916
5917#. ``eq``: equal
5918#. ``ne``: not equal
5919#. ``ugt``: unsigned greater than
5920#. ``uge``: unsigned greater or equal
5921#. ``ult``: unsigned less than
5922#. ``ule``: unsigned less or equal
5923#. ``sgt``: signed greater than
5924#. ``sge``: signed greater or equal
5925#. ``slt``: signed less than
5926#. ``sle``: signed less or equal
5927
5928The remaining two arguments must be :ref:`integer <t_integer>` or
5929:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5930must also be identical types.
5931
5932Semantics:
5933""""""""""
5934
5935The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5936code given as ``cond``. The comparison performed always yields either an
5937:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5938
5939#. ``eq``: yields ``true`` if the operands are equal, ``false``
5940 otherwise. No sign interpretation is necessary or performed.
5941#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5942 otherwise. No sign interpretation is necessary or performed.
5943#. ``ugt``: interprets the operands as unsigned values and yields
5944 ``true`` if ``op1`` is greater than ``op2``.
5945#. ``uge``: interprets the operands as unsigned values and yields
5946 ``true`` if ``op1`` is greater than or equal to ``op2``.
5947#. ``ult``: interprets the operands as unsigned values and yields
5948 ``true`` if ``op1`` is less than ``op2``.
5949#. ``ule``: interprets the operands as unsigned values and yields
5950 ``true`` if ``op1`` is less than or equal to ``op2``.
5951#. ``sgt``: interprets the operands as signed values and yields ``true``
5952 if ``op1`` is greater than ``op2``.
5953#. ``sge``: interprets the operands as signed values and yields ``true``
5954 if ``op1`` is greater than or equal to ``op2``.
5955#. ``slt``: interprets the operands as signed values and yields ``true``
5956 if ``op1`` is less than ``op2``.
5957#. ``sle``: interprets the operands as signed values and yields ``true``
5958 if ``op1`` is less than or equal to ``op2``.
5959
5960If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5961are compared as if they were integers.
5962
5963If the operands are integer vectors, then they are compared element by
5964element. The result is an ``i1`` vector with the same number of elements
5965as the values being compared. Otherwise, the result is an ``i1``.
5966
5967Example:
5968""""""""
5969
5970.. code-block:: llvm
5971
5972 <result> = icmp eq i32 4, 5 ; yields: result=false
5973 <result> = icmp ne float* %X, %X ; yields: result=false
5974 <result> = icmp ult i16 4, 5 ; yields: result=true
5975 <result> = icmp sgt i16 4, 5 ; yields: result=false
5976 <result> = icmp ule i16 -4, 5 ; yields: result=false
5977 <result> = icmp sge i16 4, 5 ; yields: result=false
5978
5979Note that the code generator does not yet support vector types with the
5980``icmp`` instruction.
5981
5982.. _i_fcmp:
5983
5984'``fcmp``' Instruction
5985^^^^^^^^^^^^^^^^^^^^^^
5986
5987Syntax:
5988"""""""
5989
5990::
5991
5992 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5993
5994Overview:
5995"""""""""
5996
5997The '``fcmp``' instruction returns a boolean value or vector of boolean
5998values based on comparison of its operands.
5999
6000If the operands are floating point scalars, then the result type is a
6001boolean (:ref:`i1 <t_integer>`).
6002
6003If the operands are floating point vectors, then the result type is a
6004vector of boolean with the same number of elements as the operands being
6005compared.
6006
6007Arguments:
6008""""""""""
6009
6010The '``fcmp``' instruction takes three operands. The first operand is
6011the condition code indicating the kind of comparison to perform. It is
6012not a value, just a keyword. The possible condition code are:
6013
6014#. ``false``: no comparison, always returns false
6015#. ``oeq``: ordered and equal
6016#. ``ogt``: ordered and greater than
6017#. ``oge``: ordered and greater than or equal
6018#. ``olt``: ordered and less than
6019#. ``ole``: ordered and less than or equal
6020#. ``one``: ordered and not equal
6021#. ``ord``: ordered (no nans)
6022#. ``ueq``: unordered or equal
6023#. ``ugt``: unordered or greater than
6024#. ``uge``: unordered or greater than or equal
6025#. ``ult``: unordered or less than
6026#. ``ule``: unordered or less than or equal
6027#. ``une``: unordered or not equal
6028#. ``uno``: unordered (either nans)
6029#. ``true``: no comparison, always returns true
6030
6031*Ordered* means that neither operand is a QNAN while *unordered* means
6032that either operand may be a QNAN.
6033
6034Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6035point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6036type. They must have identical types.
6037
6038Semantics:
6039""""""""""
6040
6041The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6042condition code given as ``cond``. If the operands are vectors, then the
6043vectors are compared element by element. Each comparison performed
6044always yields an :ref:`i1 <t_integer>` result, as follows:
6045
6046#. ``false``: always yields ``false``, regardless of operands.
6047#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6048 is equal to ``op2``.
6049#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6050 is greater than ``op2``.
6051#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6052 is greater than or equal to ``op2``.
6053#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6054 is less than ``op2``.
6055#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6056 is less than or equal to ``op2``.
6057#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6058 is not equal to ``op2``.
6059#. ``ord``: yields ``true`` if both operands are not a QNAN.
6060#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6061 equal to ``op2``.
6062#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6063 greater than ``op2``.
6064#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6065 greater than or equal to ``op2``.
6066#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6067 less than ``op2``.
6068#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6069 less than or equal to ``op2``.
6070#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6071 not equal to ``op2``.
6072#. ``uno``: yields ``true`` if either operand is a QNAN.
6073#. ``true``: always yields ``true``, regardless of operands.
6074
6075Example:
6076""""""""
6077
6078.. code-block:: llvm
6079
6080 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6081 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6082 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6083 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6084
6085Note that the code generator does not yet support vector types with the
6086``fcmp`` instruction.
6087
6088.. _i_phi:
6089
6090'``phi``' Instruction
6091^^^^^^^^^^^^^^^^^^^^^
6092
6093Syntax:
6094"""""""
6095
6096::
6097
6098 <result> = phi <ty> [ <val0>, <label0>], ...
6099
6100Overview:
6101"""""""""
6102
6103The '``phi``' instruction is used to implement the φ node in the SSA
6104graph representing the function.
6105
6106Arguments:
6107""""""""""
6108
6109The type of the incoming values is specified with the first type field.
6110After this, the '``phi``' instruction takes a list of pairs as
6111arguments, with one pair for each predecessor basic block of the current
6112block. Only values of :ref:`first class <t_firstclass>` type may be used as
6113the value arguments to the PHI node. Only labels may be used as the
6114label arguments.
6115
6116There must be no non-phi instructions between the start of a basic block
6117and the PHI instructions: i.e. PHI instructions must be first in a basic
6118block.
6119
6120For the purposes of the SSA form, the use of each incoming value is
6121deemed to occur on the edge from the corresponding predecessor block to
6122the current block (but after any definition of an '``invoke``'
6123instruction's return value on the same edge).
6124
6125Semantics:
6126""""""""""
6127
6128At runtime, the '``phi``' instruction logically takes on the value
6129specified by the pair corresponding to the predecessor basic block that
6130executed just prior to the current block.
6131
6132Example:
6133""""""""
6134
6135.. code-block:: llvm
6136
6137 Loop: ; Infinite loop that counts from 0 on up...
6138 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6139 %nextindvar = add i32 %indvar, 1
6140 br label %Loop
6141
6142.. _i_select:
6143
6144'``select``' Instruction
6145^^^^^^^^^^^^^^^^^^^^^^^^
6146
6147Syntax:
6148"""""""
6149
6150::
6151
6152 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6153
6154 selty is either i1 or {<N x i1>}
6155
6156Overview:
6157"""""""""
6158
6159The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006160condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006161
6162Arguments:
6163""""""""""
6164
6165The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6166values indicating the condition, and two values of the same :ref:`first
6167class <t_firstclass>` type. If the val1/val2 are vectors and the
6168condition is a scalar, then entire vectors are selected, not individual
6169elements.
6170
6171Semantics:
6172""""""""""
6173
6174If the condition is an i1 and it evaluates to 1, the instruction returns
6175the first value argument; otherwise, it returns the second value
6176argument.
6177
6178If the condition is a vector of i1, then the value arguments must be
6179vectors of the same size, and the selection is done element by element.
6180
6181Example:
6182""""""""
6183
6184.. code-block:: llvm
6185
6186 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6187
6188.. _i_call:
6189
6190'``call``' Instruction
6191^^^^^^^^^^^^^^^^^^^^^^
6192
6193Syntax:
6194"""""""
6195
6196::
6197
Reid Kleckner5772b772014-04-24 20:14:34 +00006198 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006199
6200Overview:
6201"""""""""
6202
6203The '``call``' instruction represents a simple function call.
6204
6205Arguments:
6206""""""""""
6207
6208This instruction requires several arguments:
6209
Reid Kleckner5772b772014-04-24 20:14:34 +00006210#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6211 should perform tail call optimization. The ``tail`` marker is a hint that
6212 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6213 means that the call must be tail call optimized in order for the program to
6214 be correct. The ``musttail`` marker provides these guarantees:
6215
6216 #. The call will not cause unbounded stack growth if it is part of a
6217 recursive cycle in the call graph.
6218 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6219 forwarded in place.
6220
6221 Both markers imply that the callee does not access allocas or varargs from
6222 the caller. Calls marked ``musttail`` must obey the following additional
6223 rules:
6224
6225 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6226 or a pointer bitcast followed by a ret instruction.
6227 - The ret instruction must return the (possibly bitcasted) value
6228 produced by the call or void.
6229 - The caller and callee prototypes must match. Pointer types of
6230 parameters or return types may differ in pointee type, but not
6231 in address space.
6232 - The calling conventions of the caller and callee must match.
6233 - All ABI-impacting function attributes, such as sret, byval, inreg,
6234 returned, and inalloca, must match.
6235
6236 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6237 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006238
6239 - Caller and callee both have the calling convention ``fastcc``.
6240 - The call is in tail position (ret immediately follows call and ret
6241 uses value of call or is void).
6242 - Option ``-tailcallopt`` is enabled, or
6243 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6244 - `Platform specific constraints are
6245 met. <CodeGenerator.html#tailcallopt>`_
6246
6247#. The optional "cconv" marker indicates which :ref:`calling
6248 convention <callingconv>` the call should use. If none is
6249 specified, the call defaults to using C calling conventions. The
6250 calling convention of the call must match the calling convention of
6251 the target function, or else the behavior is undefined.
6252#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6253 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6254 are valid here.
6255#. '``ty``': the type of the call instruction itself which is also the
6256 type of the return value. Functions that return no value are marked
6257 ``void``.
6258#. '``fnty``': shall be the signature of the pointer to function value
6259 being invoked. The argument types must match the types implied by
6260 this signature. This type can be omitted if the function is not
6261 varargs and if the function type does not return a pointer to a
6262 function.
6263#. '``fnptrval``': An LLVM value containing a pointer to a function to
6264 be invoked. In most cases, this is a direct function invocation, but
6265 indirect ``call``'s are just as possible, calling an arbitrary pointer
6266 to function value.
6267#. '``function args``': argument list whose types match the function
6268 signature argument types and parameter attributes. All arguments must
6269 be of :ref:`first class <t_firstclass>` type. If the function signature
6270 indicates the function accepts a variable number of arguments, the
6271 extra arguments can be specified.
6272#. The optional :ref:`function attributes <fnattrs>` list. Only
6273 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6274 attributes are valid here.
6275
6276Semantics:
6277""""""""""
6278
6279The '``call``' instruction is used to cause control flow to transfer to
6280a specified function, with its incoming arguments bound to the specified
6281values. Upon a '``ret``' instruction in the called function, control
6282flow continues with the instruction after the function call, and the
6283return value of the function is bound to the result argument.
6284
6285Example:
6286""""""""
6287
6288.. code-block:: llvm
6289
6290 %retval = call i32 @test(i32 %argc)
6291 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6292 %X = tail call i32 @foo() ; yields i32
6293 %Y = tail call fastcc i32 @foo() ; yields i32
6294 call void %foo(i8 97 signext)
6295
6296 %struct.A = type { i32, i8 }
6297 %r = call %struct.A @foo() ; yields { 32, i8 }
6298 %gr = extractvalue %struct.A %r, 0 ; yields i32
6299 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6300 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6301 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6302
6303llvm treats calls to some functions with names and arguments that match
6304the standard C99 library as being the C99 library functions, and may
6305perform optimizations or generate code for them under that assumption.
6306This is something we'd like to change in the future to provide better
6307support for freestanding environments and non-C-based languages.
6308
6309.. _i_va_arg:
6310
6311'``va_arg``' Instruction
6312^^^^^^^^^^^^^^^^^^^^^^^^
6313
6314Syntax:
6315"""""""
6316
6317::
6318
6319 <resultval> = va_arg <va_list*> <arglist>, <argty>
6320
6321Overview:
6322"""""""""
6323
6324The '``va_arg``' instruction is used to access arguments passed through
6325the "variable argument" area of a function call. It is used to implement
6326the ``va_arg`` macro in C.
6327
6328Arguments:
6329""""""""""
6330
6331This instruction takes a ``va_list*`` value and the type of the
6332argument. It returns a value of the specified argument type and
6333increments the ``va_list`` to point to the next argument. The actual
6334type of ``va_list`` is target specific.
6335
6336Semantics:
6337""""""""""
6338
6339The '``va_arg``' instruction loads an argument of the specified type
6340from the specified ``va_list`` and causes the ``va_list`` to point to
6341the next argument. For more information, see the variable argument
6342handling :ref:`Intrinsic Functions <int_varargs>`.
6343
6344It is legal for this instruction to be called in a function which does
6345not take a variable number of arguments, for example, the ``vfprintf``
6346function.
6347
6348``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6349function <intrinsics>` because it takes a type as an argument.
6350
6351Example:
6352""""""""
6353
6354See the :ref:`variable argument processing <int_varargs>` section.
6355
6356Note that the code generator does not yet fully support va\_arg on many
6357targets. Also, it does not currently support va\_arg with aggregate
6358types on any target.
6359
6360.. _i_landingpad:
6361
6362'``landingpad``' Instruction
6363^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6364
6365Syntax:
6366"""""""
6367
6368::
6369
6370 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6371 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6372
6373 <clause> := catch <type> <value>
6374 <clause> := filter <array constant type> <array constant>
6375
6376Overview:
6377"""""""""
6378
6379The '``landingpad``' instruction is used by `LLVM's exception handling
6380system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006381is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006382code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6383defines values supplied by the personality function (``pers_fn``) upon
6384re-entry to the function. The ``resultval`` has the type ``resultty``.
6385
6386Arguments:
6387""""""""""
6388
6389This instruction takes a ``pers_fn`` value. This is the personality
6390function associated with the unwinding mechanism. The optional
6391``cleanup`` flag indicates that the landing pad block is a cleanup.
6392
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006393A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006394contains the global variable representing the "type" that may be caught
6395or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6396clause takes an array constant as its argument. Use
6397"``[0 x i8**] undef``" for a filter which cannot throw. The
6398'``landingpad``' instruction must contain *at least* one ``clause`` or
6399the ``cleanup`` flag.
6400
6401Semantics:
6402""""""""""
6403
6404The '``landingpad``' instruction defines the values which are set by the
6405personality function (``pers_fn``) upon re-entry to the function, and
6406therefore the "result type" of the ``landingpad`` instruction. As with
6407calling conventions, how the personality function results are
6408represented in LLVM IR is target specific.
6409
6410The clauses are applied in order from top to bottom. If two
6411``landingpad`` instructions are merged together through inlining, the
6412clauses from the calling function are appended to the list of clauses.
6413When the call stack is being unwound due to an exception being thrown,
6414the exception is compared against each ``clause`` in turn. If it doesn't
6415match any of the clauses, and the ``cleanup`` flag is not set, then
6416unwinding continues further up the call stack.
6417
6418The ``landingpad`` instruction has several restrictions:
6419
6420- A landing pad block is a basic block which is the unwind destination
6421 of an '``invoke``' instruction.
6422- A landing pad block must have a '``landingpad``' instruction as its
6423 first non-PHI instruction.
6424- There can be only one '``landingpad``' instruction within the landing
6425 pad block.
6426- A basic block that is not a landing pad block may not include a
6427 '``landingpad``' instruction.
6428- All '``landingpad``' instructions in a function must have the same
6429 personality function.
6430
6431Example:
6432""""""""
6433
6434.. code-block:: llvm
6435
6436 ;; A landing pad which can catch an integer.
6437 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6438 catch i8** @_ZTIi
6439 ;; A landing pad that is a cleanup.
6440 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6441 cleanup
6442 ;; A landing pad which can catch an integer and can only throw a double.
6443 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6444 catch i8** @_ZTIi
6445 filter [1 x i8**] [@_ZTId]
6446
6447.. _intrinsics:
6448
6449Intrinsic Functions
6450===================
6451
6452LLVM supports the notion of an "intrinsic function". These functions
6453have well known names and semantics and are required to follow certain
6454restrictions. Overall, these intrinsics represent an extension mechanism
6455for the LLVM language that does not require changing all of the
6456transformations in LLVM when adding to the language (or the bitcode
6457reader/writer, the parser, etc...).
6458
6459Intrinsic function names must all start with an "``llvm.``" prefix. This
6460prefix is reserved in LLVM for intrinsic names; thus, function names may
6461not begin with this prefix. Intrinsic functions must always be external
6462functions: you cannot define the body of intrinsic functions. Intrinsic
6463functions may only be used in call or invoke instructions: it is illegal
6464to take the address of an intrinsic function. Additionally, because
6465intrinsic functions are part of the LLVM language, it is required if any
6466are added that they be documented here.
6467
6468Some intrinsic functions can be overloaded, i.e., the intrinsic
6469represents a family of functions that perform the same operation but on
6470different data types. Because LLVM can represent over 8 million
6471different integer types, overloading is used commonly to allow an
6472intrinsic function to operate on any integer type. One or more of the
6473argument types or the result type can be overloaded to accept any
6474integer type. Argument types may also be defined as exactly matching a
6475previous argument's type or the result type. This allows an intrinsic
6476function which accepts multiple arguments, but needs all of them to be
6477of the same type, to only be overloaded with respect to a single
6478argument or the result.
6479
6480Overloaded intrinsics will have the names of its overloaded argument
6481types encoded into its function name, each preceded by a period. Only
6482those types which are overloaded result in a name suffix. Arguments
6483whose type is matched against another type do not. For example, the
6484``llvm.ctpop`` function can take an integer of any width and returns an
6485integer of exactly the same integer width. This leads to a family of
6486functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6487``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6488overloaded, and only one type suffix is required. Because the argument's
6489type is matched against the return type, it does not require its own
6490name suffix.
6491
6492To learn how to add an intrinsic function, please see the `Extending
6493LLVM Guide <ExtendingLLVM.html>`_.
6494
6495.. _int_varargs:
6496
6497Variable Argument Handling Intrinsics
6498-------------------------------------
6499
6500Variable argument support is defined in LLVM with the
6501:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6502functions. These functions are related to the similarly named macros
6503defined in the ``<stdarg.h>`` header file.
6504
6505All of these functions operate on arguments that use a target-specific
6506value type "``va_list``". The LLVM assembly language reference manual
6507does not define what this type is, so all transformations should be
6508prepared to handle these functions regardless of the type used.
6509
6510This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6511variable argument handling intrinsic functions are used.
6512
6513.. code-block:: llvm
6514
6515 define i32 @test(i32 %X, ...) {
6516 ; Initialize variable argument processing
6517 %ap = alloca i8*
6518 %ap2 = bitcast i8** %ap to i8*
6519 call void @llvm.va_start(i8* %ap2)
6520
6521 ; Read a single integer argument
6522 %tmp = va_arg i8** %ap, i32
6523
6524 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6525 %aq = alloca i8*
6526 %aq2 = bitcast i8** %aq to i8*
6527 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6528 call void @llvm.va_end(i8* %aq2)
6529
6530 ; Stop processing of arguments.
6531 call void @llvm.va_end(i8* %ap2)
6532 ret i32 %tmp
6533 }
6534
6535 declare void @llvm.va_start(i8*)
6536 declare void @llvm.va_copy(i8*, i8*)
6537 declare void @llvm.va_end(i8*)
6538
6539.. _int_va_start:
6540
6541'``llvm.va_start``' Intrinsic
6542^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6543
6544Syntax:
6545"""""""
6546
6547::
6548
Nick Lewycky04f6de02013-09-11 22:04:52 +00006549 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006550
6551Overview:
6552"""""""""
6553
6554The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6555subsequent use by ``va_arg``.
6556
6557Arguments:
6558""""""""""
6559
6560The argument is a pointer to a ``va_list`` element to initialize.
6561
6562Semantics:
6563""""""""""
6564
6565The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6566available in C. In a target-dependent way, it initializes the
6567``va_list`` element to which the argument points, so that the next call
6568to ``va_arg`` will produce the first variable argument passed to the
6569function. Unlike the C ``va_start`` macro, this intrinsic does not need
6570to know the last argument of the function as the compiler can figure
6571that out.
6572
6573'``llvm.va_end``' Intrinsic
6574^^^^^^^^^^^^^^^^^^^^^^^^^^^
6575
6576Syntax:
6577"""""""
6578
6579::
6580
6581 declare void @llvm.va_end(i8* <arglist>)
6582
6583Overview:
6584"""""""""
6585
6586The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6587initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6588
6589Arguments:
6590""""""""""
6591
6592The argument is a pointer to a ``va_list`` to destroy.
6593
6594Semantics:
6595""""""""""
6596
6597The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6598available in C. In a target-dependent way, it destroys the ``va_list``
6599element to which the argument points. Calls to
6600:ref:`llvm.va_start <int_va_start>` and
6601:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6602``llvm.va_end``.
6603
6604.. _int_va_copy:
6605
6606'``llvm.va_copy``' Intrinsic
6607^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6608
6609Syntax:
6610"""""""
6611
6612::
6613
6614 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6615
6616Overview:
6617"""""""""
6618
6619The '``llvm.va_copy``' intrinsic copies the current argument position
6620from the source argument list to the destination argument list.
6621
6622Arguments:
6623""""""""""
6624
6625The first argument is a pointer to a ``va_list`` element to initialize.
6626The second argument is a pointer to a ``va_list`` element to copy from.
6627
6628Semantics:
6629""""""""""
6630
6631The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6632available in C. In a target-dependent way, it copies the source
6633``va_list`` element into the destination ``va_list`` element. This
6634intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6635arbitrarily complex and require, for example, memory allocation.
6636
6637Accurate Garbage Collection Intrinsics
6638--------------------------------------
6639
6640LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6641(GC) requires the implementation and generation of these intrinsics.
6642These intrinsics allow identification of :ref:`GC roots on the
6643stack <int_gcroot>`, as well as garbage collector implementations that
6644require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6645Front-ends for type-safe garbage collected languages should generate
6646these intrinsics to make use of the LLVM garbage collectors. For more
6647details, see `Accurate Garbage Collection with
6648LLVM <GarbageCollection.html>`_.
6649
6650The garbage collection intrinsics only operate on objects in the generic
6651address space (address space zero).
6652
6653.. _int_gcroot:
6654
6655'``llvm.gcroot``' Intrinsic
6656^^^^^^^^^^^^^^^^^^^^^^^^^^^
6657
6658Syntax:
6659"""""""
6660
6661::
6662
6663 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6664
6665Overview:
6666"""""""""
6667
6668The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6669the code generator, and allows some metadata to be associated with it.
6670
6671Arguments:
6672""""""""""
6673
6674The first argument specifies the address of a stack object that contains
6675the root pointer. The second pointer (which must be either a constant or
6676a global value address) contains the meta-data to be associated with the
6677root.
6678
6679Semantics:
6680""""""""""
6681
6682At runtime, a call to this intrinsic stores a null pointer into the
6683"ptrloc" location. At compile-time, the code generator generates
6684information to allow the runtime to find the pointer at GC safe points.
6685The '``llvm.gcroot``' intrinsic may only be used in a function which
6686:ref:`specifies a GC algorithm <gc>`.
6687
6688.. _int_gcread:
6689
6690'``llvm.gcread``' Intrinsic
6691^^^^^^^^^^^^^^^^^^^^^^^^^^^
6692
6693Syntax:
6694"""""""
6695
6696::
6697
6698 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6699
6700Overview:
6701"""""""""
6702
6703The '``llvm.gcread``' intrinsic identifies reads of references from heap
6704locations, allowing garbage collector implementations that require read
6705barriers.
6706
6707Arguments:
6708""""""""""
6709
6710The second argument is the address to read from, which should be an
6711address allocated from the garbage collector. The first object is a
6712pointer to the start of the referenced object, if needed by the language
6713runtime (otherwise null).
6714
6715Semantics:
6716""""""""""
6717
6718The '``llvm.gcread``' intrinsic has the same semantics as a load
6719instruction, but may be replaced with substantially more complex code by
6720the garbage collector runtime, as needed. The '``llvm.gcread``'
6721intrinsic may only be used in a function which :ref:`specifies a GC
6722algorithm <gc>`.
6723
6724.. _int_gcwrite:
6725
6726'``llvm.gcwrite``' Intrinsic
6727^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6728
6729Syntax:
6730"""""""
6731
6732::
6733
6734 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6735
6736Overview:
6737"""""""""
6738
6739The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6740locations, allowing garbage collector implementations that require write
6741barriers (such as generational or reference counting collectors).
6742
6743Arguments:
6744""""""""""
6745
6746The first argument is the reference to store, the second is the start of
6747the object to store it to, and the third is the address of the field of
6748Obj to store to. If the runtime does not require a pointer to the
6749object, Obj may be null.
6750
6751Semantics:
6752""""""""""
6753
6754The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6755instruction, but may be replaced with substantially more complex code by
6756the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6757intrinsic may only be used in a function which :ref:`specifies a GC
6758algorithm <gc>`.
6759
6760Code Generator Intrinsics
6761-------------------------
6762
6763These intrinsics are provided by LLVM to expose special features that
6764may only be implemented with code generator support.
6765
6766'``llvm.returnaddress``' Intrinsic
6767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6768
6769Syntax:
6770"""""""
6771
6772::
6773
6774 declare i8 *@llvm.returnaddress(i32 <level>)
6775
6776Overview:
6777"""""""""
6778
6779The '``llvm.returnaddress``' intrinsic attempts to compute a
6780target-specific value indicating the return address of the current
6781function or one of its callers.
6782
6783Arguments:
6784""""""""""
6785
6786The argument to this intrinsic indicates which function to return the
6787address for. Zero indicates the calling function, one indicates its
6788caller, etc. The argument is **required** to be a constant integer
6789value.
6790
6791Semantics:
6792""""""""""
6793
6794The '``llvm.returnaddress``' intrinsic either returns a pointer
6795indicating the return address of the specified call frame, or zero if it
6796cannot be identified. The value returned by this intrinsic is likely to
6797be incorrect or 0 for arguments other than zero, so it should only be
6798used for debugging purposes.
6799
6800Note that calling this intrinsic does not prevent function inlining or
6801other aggressive transformations, so the value returned may not be that
6802of the obvious source-language caller.
6803
6804'``llvm.frameaddress``' Intrinsic
6805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6806
6807Syntax:
6808"""""""
6809
6810::
6811
6812 declare i8* @llvm.frameaddress(i32 <level>)
6813
6814Overview:
6815"""""""""
6816
6817The '``llvm.frameaddress``' intrinsic attempts to return the
6818target-specific frame pointer value for the specified stack frame.
6819
6820Arguments:
6821""""""""""
6822
6823The argument to this intrinsic indicates which function to return the
6824frame pointer for. Zero indicates the calling function, one indicates
6825its caller, etc. The argument is **required** to be a constant integer
6826value.
6827
6828Semantics:
6829""""""""""
6830
6831The '``llvm.frameaddress``' intrinsic either returns a pointer
6832indicating the frame address of the specified call frame, or zero if it
6833cannot be identified. The value returned by this intrinsic is likely to
6834be incorrect or 0 for arguments other than zero, so it should only be
6835used for debugging purposes.
6836
6837Note that calling this intrinsic does not prevent function inlining or
6838other aggressive transformations, so the value returned may not be that
6839of the obvious source-language caller.
6840
Renato Golinc7aea402014-05-06 16:51:25 +00006841.. _int_read_register:
6842.. _int_write_register:
6843
6844'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
6845^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6846
6847Syntax:
6848"""""""
6849
6850::
6851
6852 declare i32 @llvm.read_register.i32(metadata)
6853 declare i64 @llvm.read_register.i64(metadata)
6854 declare void @llvm.write_register.i32(metadata, i32 @value)
6855 declare void @llvm.write_register.i64(metadata, i64 @value)
6856 !0 = metadata !{metadata !"sp\00"}
6857
6858Overview:
6859"""""""""
6860
6861The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
6862provides access to the named register. The register must be valid on
6863the architecture being compiled to. The type needs to be compatible
6864with the register being read.
6865
6866Semantics:
6867""""""""""
6868
6869The '``llvm.read_register``' intrinsic returns the current value of the
6870register, where possible. The '``llvm.write_register``' intrinsic sets
6871the current value of the register, where possible.
6872
6873This is useful to implement named register global variables that need
6874to always be mapped to a specific register, as is common practice on
6875bare-metal programs including OS kernels.
6876
6877The compiler doesn't check for register availability or use of the used
6878register in surrounding code, including inline assembly. Because of that,
6879allocatable registers are not supported.
6880
6881Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00006882architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00006883work is needed to support other registers and even more so, allocatable
6884registers.
6885
Sean Silvab084af42012-12-07 10:36:55 +00006886.. _int_stacksave:
6887
6888'``llvm.stacksave``' Intrinsic
6889^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6890
6891Syntax:
6892"""""""
6893
6894::
6895
6896 declare i8* @llvm.stacksave()
6897
6898Overview:
6899"""""""""
6900
6901The '``llvm.stacksave``' intrinsic is used to remember the current state
6902of the function stack, for use with
6903:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6904implementing language features like scoped automatic variable sized
6905arrays in C99.
6906
6907Semantics:
6908""""""""""
6909
6910This intrinsic returns a opaque pointer value that can be passed to
6911:ref:`llvm.stackrestore <int_stackrestore>`. When an
6912``llvm.stackrestore`` intrinsic is executed with a value saved from
6913``llvm.stacksave``, it effectively restores the state of the stack to
6914the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6915practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6916were allocated after the ``llvm.stacksave`` was executed.
6917
6918.. _int_stackrestore:
6919
6920'``llvm.stackrestore``' Intrinsic
6921^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6922
6923Syntax:
6924"""""""
6925
6926::
6927
6928 declare void @llvm.stackrestore(i8* %ptr)
6929
6930Overview:
6931"""""""""
6932
6933The '``llvm.stackrestore``' intrinsic is used to restore the state of
6934the function stack to the state it was in when the corresponding
6935:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6936useful for implementing language features like scoped automatic variable
6937sized arrays in C99.
6938
6939Semantics:
6940""""""""""
6941
6942See the description for :ref:`llvm.stacksave <int_stacksave>`.
6943
6944'``llvm.prefetch``' Intrinsic
6945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6946
6947Syntax:
6948"""""""
6949
6950::
6951
6952 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6953
6954Overview:
6955"""""""""
6956
6957The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6958insert a prefetch instruction if supported; otherwise, it is a noop.
6959Prefetches have no effect on the behavior of the program but can change
6960its performance characteristics.
6961
6962Arguments:
6963""""""""""
6964
6965``address`` is the address to be prefetched, ``rw`` is the specifier
6966determining if the fetch should be for a read (0) or write (1), and
6967``locality`` is a temporal locality specifier ranging from (0) - no
6968locality, to (3) - extremely local keep in cache. The ``cache type``
6969specifies whether the prefetch is performed on the data (1) or
6970instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6971arguments must be constant integers.
6972
6973Semantics:
6974""""""""""
6975
6976This intrinsic does not modify the behavior of the program. In
6977particular, prefetches cannot trap and do not produce a value. On
6978targets that support this intrinsic, the prefetch can provide hints to
6979the processor cache for better performance.
6980
6981'``llvm.pcmarker``' Intrinsic
6982^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6983
6984Syntax:
6985"""""""
6986
6987::
6988
6989 declare void @llvm.pcmarker(i32 <id>)
6990
6991Overview:
6992"""""""""
6993
6994The '``llvm.pcmarker``' intrinsic is a method to export a Program
6995Counter (PC) in a region of code to simulators and other tools. The
6996method is target specific, but it is expected that the marker will use
6997exported symbols to transmit the PC of the marker. The marker makes no
6998guarantees that it will remain with any specific instruction after
6999optimizations. It is possible that the presence of a marker will inhibit
7000optimizations. The intended use is to be inserted after optimizations to
7001allow correlations of simulation runs.
7002
7003Arguments:
7004""""""""""
7005
7006``id`` is a numerical id identifying the marker.
7007
7008Semantics:
7009""""""""""
7010
7011This intrinsic does not modify the behavior of the program. Backends
7012that do not support this intrinsic may ignore it.
7013
7014'``llvm.readcyclecounter``' Intrinsic
7015^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7016
7017Syntax:
7018"""""""
7019
7020::
7021
7022 declare i64 @llvm.readcyclecounter()
7023
7024Overview:
7025"""""""""
7026
7027The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7028counter register (or similar low latency, high accuracy clocks) on those
7029targets that support it. On X86, it should map to RDTSC. On Alpha, it
7030should map to RPCC. As the backing counters overflow quickly (on the
7031order of 9 seconds on alpha), this should only be used for small
7032timings.
7033
7034Semantics:
7035""""""""""
7036
7037When directly supported, reading the cycle counter should not modify any
7038memory. Implementations are allowed to either return a application
7039specific value or a system wide value. On backends without support, this
7040is lowered to a constant 0.
7041
Tim Northoverbc933082013-05-23 19:11:20 +00007042Note that runtime support may be conditional on the privilege-level code is
7043running at and the host platform.
7044
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007045'``llvm.clear_cache``' Intrinsic
7046^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7047
7048Syntax:
7049"""""""
7050
7051::
7052
7053 declare void @llvm.clear_cache(i8*, i8*)
7054
7055Overview:
7056"""""""""
7057
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007058The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7059in the specified range to the execution unit of the processor. On
7060targets with non-unified instruction and data cache, the implementation
7061flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007062
7063Semantics:
7064""""""""""
7065
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007066On platforms with coherent instruction and data caches (e.g. x86), this
7067intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007068cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007069instructions or a system call, if cache flushing requires special
7070privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007071
Sean Silvad02bf3e2014-04-07 22:29:53 +00007072The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007073time library.
Renato Golin93010e62014-03-26 14:01:32 +00007074
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007075This instrinsic does *not* empty the instruction pipeline. Modifications
7076of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007077
Sean Silvab084af42012-12-07 10:36:55 +00007078Standard C Library Intrinsics
7079-----------------------------
7080
7081LLVM provides intrinsics for a few important standard C library
7082functions. These intrinsics allow source-language front-ends to pass
7083information about the alignment of the pointer arguments to the code
7084generator, providing opportunity for more efficient code generation.
7085
7086.. _int_memcpy:
7087
7088'``llvm.memcpy``' Intrinsic
7089^^^^^^^^^^^^^^^^^^^^^^^^^^^
7090
7091Syntax:
7092"""""""
7093
7094This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7095integer bit width and for different address spaces. Not all targets
7096support all bit widths however.
7097
7098::
7099
7100 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7101 i32 <len>, i32 <align>, i1 <isvolatile>)
7102 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7103 i64 <len>, i32 <align>, i1 <isvolatile>)
7104
7105Overview:
7106"""""""""
7107
7108The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7109source location to the destination location.
7110
7111Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7112intrinsics do not return a value, takes extra alignment/isvolatile
7113arguments and the pointers can be in specified address spaces.
7114
7115Arguments:
7116""""""""""
7117
7118The first argument is a pointer to the destination, the second is a
7119pointer to the source. The third argument is an integer argument
7120specifying the number of bytes to copy, the fourth argument is the
7121alignment of the source and destination locations, and the fifth is a
7122boolean indicating a volatile access.
7123
7124If the call to this intrinsic has an alignment value that is not 0 or 1,
7125then the caller guarantees that both the source and destination pointers
7126are aligned to that boundary.
7127
7128If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7129a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7130very cleanly specified and it is unwise to depend on it.
7131
7132Semantics:
7133""""""""""
7134
7135The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7136source location to the destination location, which are not allowed to
7137overlap. It copies "len" bytes of memory over. If the argument is known
7138to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007139argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007140
7141'``llvm.memmove``' Intrinsic
7142^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7143
7144Syntax:
7145"""""""
7146
7147This is an overloaded intrinsic. You can use llvm.memmove on any integer
7148bit width and for different address space. Not all targets support all
7149bit widths however.
7150
7151::
7152
7153 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7154 i32 <len>, i32 <align>, i1 <isvolatile>)
7155 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7156 i64 <len>, i32 <align>, i1 <isvolatile>)
7157
7158Overview:
7159"""""""""
7160
7161The '``llvm.memmove.*``' intrinsics move a block of memory from the
7162source location to the destination location. It is similar to the
7163'``llvm.memcpy``' intrinsic but allows the two memory locations to
7164overlap.
7165
7166Note that, unlike the standard libc function, the ``llvm.memmove.*``
7167intrinsics do not return a value, takes extra alignment/isvolatile
7168arguments and the pointers can be in specified address spaces.
7169
7170Arguments:
7171""""""""""
7172
7173The first argument is a pointer to the destination, the second is a
7174pointer to the source. The third argument is an integer argument
7175specifying the number of bytes to copy, the fourth argument is the
7176alignment of the source and destination locations, and the fifth is a
7177boolean indicating a volatile access.
7178
7179If the call to this intrinsic has an alignment value that is not 0 or 1,
7180then the caller guarantees that the source and destination pointers are
7181aligned to that boundary.
7182
7183If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7184is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7185not very cleanly specified and it is unwise to depend on it.
7186
7187Semantics:
7188""""""""""
7189
7190The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7191source location to the destination location, which may overlap. It
7192copies "len" bytes of memory over. If the argument is known to be
7193aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007194otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007195
7196'``llvm.memset.*``' Intrinsics
7197^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7198
7199Syntax:
7200"""""""
7201
7202This is an overloaded intrinsic. You can use llvm.memset on any integer
7203bit width and for different address spaces. However, not all targets
7204support all bit widths.
7205
7206::
7207
7208 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7209 i32 <len>, i32 <align>, i1 <isvolatile>)
7210 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7211 i64 <len>, i32 <align>, i1 <isvolatile>)
7212
7213Overview:
7214"""""""""
7215
7216The '``llvm.memset.*``' intrinsics fill a block of memory with a
7217particular byte value.
7218
7219Note that, unlike the standard libc function, the ``llvm.memset``
7220intrinsic does not return a value and takes extra alignment/volatile
7221arguments. Also, the destination can be in an arbitrary address space.
7222
7223Arguments:
7224""""""""""
7225
7226The first argument is a pointer to the destination to fill, the second
7227is the byte value with which to fill it, the third argument is an
7228integer argument specifying the number of bytes to fill, and the fourth
7229argument is the known alignment of the destination location.
7230
7231If the call to this intrinsic has an alignment value that is not 0 or 1,
7232then the caller guarantees that the destination pointer is aligned to
7233that boundary.
7234
7235If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7236a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7237very cleanly specified and it is unwise to depend on it.
7238
7239Semantics:
7240""""""""""
7241
7242The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7243at the destination location. If the argument is known to be aligned to
7244some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007245it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007246
7247'``llvm.sqrt.*``' Intrinsic
7248^^^^^^^^^^^^^^^^^^^^^^^^^^^
7249
7250Syntax:
7251"""""""
7252
7253This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7254floating point or vector of floating point type. Not all targets support
7255all types however.
7256
7257::
7258
7259 declare float @llvm.sqrt.f32(float %Val)
7260 declare double @llvm.sqrt.f64(double %Val)
7261 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7262 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7263 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7264
7265Overview:
7266"""""""""
7267
7268The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7269returning the same value as the libm '``sqrt``' functions would. Unlike
7270``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7271negative numbers other than -0.0 (which allows for better optimization,
7272because there is no need to worry about errno being set).
7273``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7274
7275Arguments:
7276""""""""""
7277
7278The argument and return value are floating point numbers of the same
7279type.
7280
7281Semantics:
7282""""""""""
7283
7284This function returns the sqrt of the specified operand if it is a
7285nonnegative floating point number.
7286
7287'``llvm.powi.*``' Intrinsic
7288^^^^^^^^^^^^^^^^^^^^^^^^^^^
7289
7290Syntax:
7291"""""""
7292
7293This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7294floating point or vector of floating point type. Not all targets support
7295all types however.
7296
7297::
7298
7299 declare float @llvm.powi.f32(float %Val, i32 %power)
7300 declare double @llvm.powi.f64(double %Val, i32 %power)
7301 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7302 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7303 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7304
7305Overview:
7306"""""""""
7307
7308The '``llvm.powi.*``' intrinsics return the first operand raised to the
7309specified (positive or negative) power. The order of evaluation of
7310multiplications is not defined. When a vector of floating point type is
7311used, the second argument remains a scalar integer value.
7312
7313Arguments:
7314""""""""""
7315
7316The second argument is an integer power, and the first is a value to
7317raise to that power.
7318
7319Semantics:
7320""""""""""
7321
7322This function returns the first value raised to the second power with an
7323unspecified sequence of rounding operations.
7324
7325'``llvm.sin.*``' Intrinsic
7326^^^^^^^^^^^^^^^^^^^^^^^^^^
7327
7328Syntax:
7329"""""""
7330
7331This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7332floating point or vector of floating point type. Not all targets support
7333all types however.
7334
7335::
7336
7337 declare float @llvm.sin.f32(float %Val)
7338 declare double @llvm.sin.f64(double %Val)
7339 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7340 declare fp128 @llvm.sin.f128(fp128 %Val)
7341 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7342
7343Overview:
7344"""""""""
7345
7346The '``llvm.sin.*``' intrinsics return the sine of the operand.
7347
7348Arguments:
7349""""""""""
7350
7351The argument and return value are floating point numbers of the same
7352type.
7353
7354Semantics:
7355""""""""""
7356
7357This function returns the sine of the specified operand, returning the
7358same values as the libm ``sin`` functions would, and handles error
7359conditions in the same way.
7360
7361'``llvm.cos.*``' Intrinsic
7362^^^^^^^^^^^^^^^^^^^^^^^^^^
7363
7364Syntax:
7365"""""""
7366
7367This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7368floating point or vector of floating point type. Not all targets support
7369all types however.
7370
7371::
7372
7373 declare float @llvm.cos.f32(float %Val)
7374 declare double @llvm.cos.f64(double %Val)
7375 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7376 declare fp128 @llvm.cos.f128(fp128 %Val)
7377 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7378
7379Overview:
7380"""""""""
7381
7382The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7383
7384Arguments:
7385""""""""""
7386
7387The argument and return value are floating point numbers of the same
7388type.
7389
7390Semantics:
7391""""""""""
7392
7393This function returns the cosine of the specified operand, returning the
7394same values as the libm ``cos`` functions would, and handles error
7395conditions in the same way.
7396
7397'``llvm.pow.*``' Intrinsic
7398^^^^^^^^^^^^^^^^^^^^^^^^^^
7399
7400Syntax:
7401"""""""
7402
7403This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7404floating point or vector of floating point type. Not all targets support
7405all types however.
7406
7407::
7408
7409 declare float @llvm.pow.f32(float %Val, float %Power)
7410 declare double @llvm.pow.f64(double %Val, double %Power)
7411 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7412 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7413 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7414
7415Overview:
7416"""""""""
7417
7418The '``llvm.pow.*``' intrinsics return the first operand raised to the
7419specified (positive or negative) power.
7420
7421Arguments:
7422""""""""""
7423
7424The second argument is a floating point power, and the first is a value
7425to raise to that power.
7426
7427Semantics:
7428""""""""""
7429
7430This function returns the first value raised to the second power,
7431returning the same values as the libm ``pow`` functions would, and
7432handles error conditions in the same way.
7433
7434'``llvm.exp.*``' Intrinsic
7435^^^^^^^^^^^^^^^^^^^^^^^^^^
7436
7437Syntax:
7438"""""""
7439
7440This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7441floating point or vector of floating point type. Not all targets support
7442all types however.
7443
7444::
7445
7446 declare float @llvm.exp.f32(float %Val)
7447 declare double @llvm.exp.f64(double %Val)
7448 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7449 declare fp128 @llvm.exp.f128(fp128 %Val)
7450 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7451
7452Overview:
7453"""""""""
7454
7455The '``llvm.exp.*``' intrinsics perform the exp function.
7456
7457Arguments:
7458""""""""""
7459
7460The argument and return value are floating point numbers of the same
7461type.
7462
7463Semantics:
7464""""""""""
7465
7466This function returns the same values as the libm ``exp`` functions
7467would, and handles error conditions in the same way.
7468
7469'``llvm.exp2.*``' Intrinsic
7470^^^^^^^^^^^^^^^^^^^^^^^^^^^
7471
7472Syntax:
7473"""""""
7474
7475This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7476floating point or vector of floating point type. Not all targets support
7477all types however.
7478
7479::
7480
7481 declare float @llvm.exp2.f32(float %Val)
7482 declare double @llvm.exp2.f64(double %Val)
7483 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7484 declare fp128 @llvm.exp2.f128(fp128 %Val)
7485 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7486
7487Overview:
7488"""""""""
7489
7490The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7491
7492Arguments:
7493""""""""""
7494
7495The argument and return value are floating point numbers of the same
7496type.
7497
7498Semantics:
7499""""""""""
7500
7501This function returns the same values as the libm ``exp2`` functions
7502would, and handles error conditions in the same way.
7503
7504'``llvm.log.*``' Intrinsic
7505^^^^^^^^^^^^^^^^^^^^^^^^^^
7506
7507Syntax:
7508"""""""
7509
7510This is an overloaded intrinsic. You can use ``llvm.log`` on any
7511floating point or vector of floating point type. Not all targets support
7512all types however.
7513
7514::
7515
7516 declare float @llvm.log.f32(float %Val)
7517 declare double @llvm.log.f64(double %Val)
7518 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7519 declare fp128 @llvm.log.f128(fp128 %Val)
7520 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7521
7522Overview:
7523"""""""""
7524
7525The '``llvm.log.*``' intrinsics perform the log function.
7526
7527Arguments:
7528""""""""""
7529
7530The argument and return value are floating point numbers of the same
7531type.
7532
7533Semantics:
7534""""""""""
7535
7536This function returns the same values as the libm ``log`` functions
7537would, and handles error conditions in the same way.
7538
7539'``llvm.log10.*``' Intrinsic
7540^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7541
7542Syntax:
7543"""""""
7544
7545This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7546floating point or vector of floating point type. Not all targets support
7547all types however.
7548
7549::
7550
7551 declare float @llvm.log10.f32(float %Val)
7552 declare double @llvm.log10.f64(double %Val)
7553 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7554 declare fp128 @llvm.log10.f128(fp128 %Val)
7555 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7556
7557Overview:
7558"""""""""
7559
7560The '``llvm.log10.*``' intrinsics perform the log10 function.
7561
7562Arguments:
7563""""""""""
7564
7565The argument and return value are floating point numbers of the same
7566type.
7567
7568Semantics:
7569""""""""""
7570
7571This function returns the same values as the libm ``log10`` functions
7572would, and handles error conditions in the same way.
7573
7574'``llvm.log2.*``' Intrinsic
7575^^^^^^^^^^^^^^^^^^^^^^^^^^^
7576
7577Syntax:
7578"""""""
7579
7580This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7581floating point or vector of floating point type. Not all targets support
7582all types however.
7583
7584::
7585
7586 declare float @llvm.log2.f32(float %Val)
7587 declare double @llvm.log2.f64(double %Val)
7588 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7589 declare fp128 @llvm.log2.f128(fp128 %Val)
7590 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7591
7592Overview:
7593"""""""""
7594
7595The '``llvm.log2.*``' intrinsics perform the log2 function.
7596
7597Arguments:
7598""""""""""
7599
7600The argument and return value are floating point numbers of the same
7601type.
7602
7603Semantics:
7604""""""""""
7605
7606This function returns the same values as the libm ``log2`` functions
7607would, and handles error conditions in the same way.
7608
7609'``llvm.fma.*``' Intrinsic
7610^^^^^^^^^^^^^^^^^^^^^^^^^^
7611
7612Syntax:
7613"""""""
7614
7615This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7616floating point or vector of floating point type. Not all targets support
7617all types however.
7618
7619::
7620
7621 declare float @llvm.fma.f32(float %a, float %b, float %c)
7622 declare double @llvm.fma.f64(double %a, double %b, double %c)
7623 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7624 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7625 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7626
7627Overview:
7628"""""""""
7629
7630The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7631operation.
7632
7633Arguments:
7634""""""""""
7635
7636The argument and return value are floating point numbers of the same
7637type.
7638
7639Semantics:
7640""""""""""
7641
7642This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00007643would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00007644
7645'``llvm.fabs.*``' Intrinsic
7646^^^^^^^^^^^^^^^^^^^^^^^^^^^
7647
7648Syntax:
7649"""""""
7650
7651This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7652floating point or vector of floating point type. Not all targets support
7653all types however.
7654
7655::
7656
7657 declare float @llvm.fabs.f32(float %Val)
7658 declare double @llvm.fabs.f64(double %Val)
7659 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7660 declare fp128 @llvm.fabs.f128(fp128 %Val)
7661 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7662
7663Overview:
7664"""""""""
7665
7666The '``llvm.fabs.*``' intrinsics return the absolute value of the
7667operand.
7668
7669Arguments:
7670""""""""""
7671
7672The argument and return value are floating point numbers of the same
7673type.
7674
7675Semantics:
7676""""""""""
7677
7678This function returns the same values as the libm ``fabs`` functions
7679would, and handles error conditions in the same way.
7680
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007681'``llvm.copysign.*``' Intrinsic
7682^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7683
7684Syntax:
7685"""""""
7686
7687This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7688floating point or vector of floating point type. Not all targets support
7689all types however.
7690
7691::
7692
7693 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7694 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7695 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7696 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7697 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7698
7699Overview:
7700"""""""""
7701
7702The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7703first operand and the sign of the second operand.
7704
7705Arguments:
7706""""""""""
7707
7708The arguments and return value are floating point numbers of the same
7709type.
7710
7711Semantics:
7712""""""""""
7713
7714This function returns the same values as the libm ``copysign``
7715functions would, and handles error conditions in the same way.
7716
Sean Silvab084af42012-12-07 10:36:55 +00007717'``llvm.floor.*``' Intrinsic
7718^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7719
7720Syntax:
7721"""""""
7722
7723This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7724floating point or vector of floating point type. Not all targets support
7725all types however.
7726
7727::
7728
7729 declare float @llvm.floor.f32(float %Val)
7730 declare double @llvm.floor.f64(double %Val)
7731 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7732 declare fp128 @llvm.floor.f128(fp128 %Val)
7733 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7734
7735Overview:
7736"""""""""
7737
7738The '``llvm.floor.*``' intrinsics return the floor of the operand.
7739
7740Arguments:
7741""""""""""
7742
7743The argument and return value are floating point numbers of the same
7744type.
7745
7746Semantics:
7747""""""""""
7748
7749This function returns the same values as the libm ``floor`` functions
7750would, and handles error conditions in the same way.
7751
7752'``llvm.ceil.*``' Intrinsic
7753^^^^^^^^^^^^^^^^^^^^^^^^^^^
7754
7755Syntax:
7756"""""""
7757
7758This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7759floating point or vector of floating point type. Not all targets support
7760all types however.
7761
7762::
7763
7764 declare float @llvm.ceil.f32(float %Val)
7765 declare double @llvm.ceil.f64(double %Val)
7766 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7767 declare fp128 @llvm.ceil.f128(fp128 %Val)
7768 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7769
7770Overview:
7771"""""""""
7772
7773The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7774
7775Arguments:
7776""""""""""
7777
7778The argument and return value are floating point numbers of the same
7779type.
7780
7781Semantics:
7782""""""""""
7783
7784This function returns the same values as the libm ``ceil`` functions
7785would, and handles error conditions in the same way.
7786
7787'``llvm.trunc.*``' Intrinsic
7788^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7789
7790Syntax:
7791"""""""
7792
7793This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7794floating point or vector of floating point type. Not all targets support
7795all types however.
7796
7797::
7798
7799 declare float @llvm.trunc.f32(float %Val)
7800 declare double @llvm.trunc.f64(double %Val)
7801 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7802 declare fp128 @llvm.trunc.f128(fp128 %Val)
7803 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7804
7805Overview:
7806"""""""""
7807
7808The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7809nearest integer not larger in magnitude than the operand.
7810
7811Arguments:
7812""""""""""
7813
7814The argument and return value are floating point numbers of the same
7815type.
7816
7817Semantics:
7818""""""""""
7819
7820This function returns the same values as the libm ``trunc`` functions
7821would, and handles error conditions in the same way.
7822
7823'``llvm.rint.*``' Intrinsic
7824^^^^^^^^^^^^^^^^^^^^^^^^^^^
7825
7826Syntax:
7827"""""""
7828
7829This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7830floating point or vector of floating point type. Not all targets support
7831all types however.
7832
7833::
7834
7835 declare float @llvm.rint.f32(float %Val)
7836 declare double @llvm.rint.f64(double %Val)
7837 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7838 declare fp128 @llvm.rint.f128(fp128 %Val)
7839 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7840
7841Overview:
7842"""""""""
7843
7844The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7845nearest integer. It may raise an inexact floating-point exception if the
7846operand isn't an integer.
7847
7848Arguments:
7849""""""""""
7850
7851The argument and return value are floating point numbers of the same
7852type.
7853
7854Semantics:
7855""""""""""
7856
7857This function returns the same values as the libm ``rint`` functions
7858would, and handles error conditions in the same way.
7859
7860'``llvm.nearbyint.*``' Intrinsic
7861^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7862
7863Syntax:
7864"""""""
7865
7866This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7867floating point or vector of floating point type. Not all targets support
7868all types however.
7869
7870::
7871
7872 declare float @llvm.nearbyint.f32(float %Val)
7873 declare double @llvm.nearbyint.f64(double %Val)
7874 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7875 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7876 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7877
7878Overview:
7879"""""""""
7880
7881The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7882nearest integer.
7883
7884Arguments:
7885""""""""""
7886
7887The argument and return value are floating point numbers of the same
7888type.
7889
7890Semantics:
7891""""""""""
7892
7893This function returns the same values as the libm ``nearbyint``
7894functions would, and handles error conditions in the same way.
7895
Hal Finkel171817e2013-08-07 22:49:12 +00007896'``llvm.round.*``' Intrinsic
7897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7898
7899Syntax:
7900"""""""
7901
7902This is an overloaded intrinsic. You can use ``llvm.round`` on any
7903floating point or vector of floating point type. Not all targets support
7904all types however.
7905
7906::
7907
7908 declare float @llvm.round.f32(float %Val)
7909 declare double @llvm.round.f64(double %Val)
7910 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7911 declare fp128 @llvm.round.f128(fp128 %Val)
7912 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7913
7914Overview:
7915"""""""""
7916
7917The '``llvm.round.*``' intrinsics returns the operand rounded to the
7918nearest integer.
7919
7920Arguments:
7921""""""""""
7922
7923The argument and return value are floating point numbers of the same
7924type.
7925
7926Semantics:
7927""""""""""
7928
7929This function returns the same values as the libm ``round``
7930functions would, and handles error conditions in the same way.
7931
Sean Silvab084af42012-12-07 10:36:55 +00007932Bit Manipulation Intrinsics
7933---------------------------
7934
7935LLVM provides intrinsics for a few important bit manipulation
7936operations. These allow efficient code generation for some algorithms.
7937
7938'``llvm.bswap.*``' Intrinsics
7939^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7940
7941Syntax:
7942"""""""
7943
7944This is an overloaded intrinsic function. You can use bswap on any
7945integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7946
7947::
7948
7949 declare i16 @llvm.bswap.i16(i16 <id>)
7950 declare i32 @llvm.bswap.i32(i32 <id>)
7951 declare i64 @llvm.bswap.i64(i64 <id>)
7952
7953Overview:
7954"""""""""
7955
7956The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7957values with an even number of bytes (positive multiple of 16 bits).
7958These are useful for performing operations on data that is not in the
7959target's native byte order.
7960
7961Semantics:
7962""""""""""
7963
7964The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7965and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7966intrinsic returns an i32 value that has the four bytes of the input i32
7967swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7968returned i32 will have its bytes in 3, 2, 1, 0 order. The
7969``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7970concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7971respectively).
7972
7973'``llvm.ctpop.*``' Intrinsic
7974^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7975
7976Syntax:
7977"""""""
7978
7979This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7980bit width, or on any vector with integer elements. Not all targets
7981support all bit widths or vector types, however.
7982
7983::
7984
7985 declare i8 @llvm.ctpop.i8(i8 <src>)
7986 declare i16 @llvm.ctpop.i16(i16 <src>)
7987 declare i32 @llvm.ctpop.i32(i32 <src>)
7988 declare i64 @llvm.ctpop.i64(i64 <src>)
7989 declare i256 @llvm.ctpop.i256(i256 <src>)
7990 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7991
7992Overview:
7993"""""""""
7994
7995The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7996in a value.
7997
7998Arguments:
7999""""""""""
8000
8001The only argument is the value to be counted. The argument may be of any
8002integer type, or a vector with integer elements. The return type must
8003match the argument type.
8004
8005Semantics:
8006""""""""""
8007
8008The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8009each element of a vector.
8010
8011'``llvm.ctlz.*``' Intrinsic
8012^^^^^^^^^^^^^^^^^^^^^^^^^^^
8013
8014Syntax:
8015"""""""
8016
8017This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8018integer bit width, or any vector whose elements are integers. Not all
8019targets support all bit widths or vector types, however.
8020
8021::
8022
8023 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8024 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8025 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8026 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8027 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8028 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8029
8030Overview:
8031"""""""""
8032
8033The '``llvm.ctlz``' family of intrinsic functions counts the number of
8034leading zeros in a variable.
8035
8036Arguments:
8037""""""""""
8038
8039The first argument is the value to be counted. This argument may be of
8040any integer type, or a vectory with integer element type. The return
8041type must match the first argument type.
8042
8043The second argument must be a constant and is a flag to indicate whether
8044the intrinsic should ensure that a zero as the first argument produces a
8045defined result. Historically some architectures did not provide a
8046defined result for zero values as efficiently, and many algorithms are
8047now predicated on avoiding zero-value inputs.
8048
8049Semantics:
8050""""""""""
8051
8052The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8053zeros in a variable, or within each element of the vector. If
8054``src == 0`` then the result is the size in bits of the type of ``src``
8055if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8056``llvm.ctlz(i32 2) = 30``.
8057
8058'``llvm.cttz.*``' Intrinsic
8059^^^^^^^^^^^^^^^^^^^^^^^^^^^
8060
8061Syntax:
8062"""""""
8063
8064This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8065integer bit width, or any vector of integer elements. Not all targets
8066support all bit widths or vector types, however.
8067
8068::
8069
8070 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8071 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8072 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8073 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8074 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8075 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8076
8077Overview:
8078"""""""""
8079
8080The '``llvm.cttz``' family of intrinsic functions counts the number of
8081trailing zeros.
8082
8083Arguments:
8084""""""""""
8085
8086The first argument is the value to be counted. This argument may be of
8087any integer type, or a vectory with integer element type. The return
8088type must match the first argument type.
8089
8090The second argument must be a constant and is a flag to indicate whether
8091the intrinsic should ensure that a zero as the first argument produces a
8092defined result. Historically some architectures did not provide a
8093defined result for zero values as efficiently, and many algorithms are
8094now predicated on avoiding zero-value inputs.
8095
8096Semantics:
8097""""""""""
8098
8099The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8100zeros in a variable, or within each element of a vector. If ``src == 0``
8101then the result is the size in bits of the type of ``src`` if
8102``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8103``llvm.cttz(2) = 1``.
8104
8105Arithmetic with Overflow Intrinsics
8106-----------------------------------
8107
8108LLVM provides intrinsics for some arithmetic with overflow operations.
8109
8110'``llvm.sadd.with.overflow.*``' Intrinsics
8111^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8112
8113Syntax:
8114"""""""
8115
8116This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8117on any integer bit width.
8118
8119::
8120
8121 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8122 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8123 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8124
8125Overview:
8126"""""""""
8127
8128The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8129a signed addition of the two arguments, and indicate whether an overflow
8130occurred during the signed summation.
8131
8132Arguments:
8133""""""""""
8134
8135The arguments (%a and %b) and the first element of the result structure
8136may be of integer types of any bit width, but they must have the same
8137bit width. The second element of the result structure must be of type
8138``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8139addition.
8140
8141Semantics:
8142""""""""""
8143
8144The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008145a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008146first element of which is the signed summation, and the second element
8147of which is a bit specifying if the signed summation resulted in an
8148overflow.
8149
8150Examples:
8151"""""""""
8152
8153.. code-block:: llvm
8154
8155 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8156 %sum = extractvalue {i32, i1} %res, 0
8157 %obit = extractvalue {i32, i1} %res, 1
8158 br i1 %obit, label %overflow, label %normal
8159
8160'``llvm.uadd.with.overflow.*``' Intrinsics
8161^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8162
8163Syntax:
8164"""""""
8165
8166This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8167on any integer bit width.
8168
8169::
8170
8171 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8172 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8173 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8174
8175Overview:
8176"""""""""
8177
8178The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8179an unsigned addition of the two arguments, and indicate whether a carry
8180occurred during the unsigned summation.
8181
8182Arguments:
8183""""""""""
8184
8185The arguments (%a and %b) and the first element of the result structure
8186may be of integer types of any bit width, but they must have the same
8187bit width. The second element of the result structure must be of type
8188``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8189addition.
8190
8191Semantics:
8192""""""""""
8193
8194The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008195an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008196first element of which is the sum, and the second element of which is a
8197bit specifying if the unsigned summation resulted in a carry.
8198
8199Examples:
8200"""""""""
8201
8202.. code-block:: llvm
8203
8204 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8205 %sum = extractvalue {i32, i1} %res, 0
8206 %obit = extractvalue {i32, i1} %res, 1
8207 br i1 %obit, label %carry, label %normal
8208
8209'``llvm.ssub.with.overflow.*``' Intrinsics
8210^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8211
8212Syntax:
8213"""""""
8214
8215This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8216on any integer bit width.
8217
8218::
8219
8220 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8221 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8222 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8223
8224Overview:
8225"""""""""
8226
8227The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8228a signed subtraction of the two arguments, and indicate whether an
8229overflow occurred during the signed subtraction.
8230
8231Arguments:
8232""""""""""
8233
8234The arguments (%a and %b) and the first element of the result structure
8235may be of integer types of any bit width, but they must have the same
8236bit width. The second element of the result structure must be of type
8237``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8238subtraction.
8239
8240Semantics:
8241""""""""""
8242
8243The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008244a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008245first element of which is the subtraction, and the second element of
8246which is a bit specifying if the signed subtraction resulted in an
8247overflow.
8248
8249Examples:
8250"""""""""
8251
8252.. code-block:: llvm
8253
8254 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8255 %sum = extractvalue {i32, i1} %res, 0
8256 %obit = extractvalue {i32, i1} %res, 1
8257 br i1 %obit, label %overflow, label %normal
8258
8259'``llvm.usub.with.overflow.*``' Intrinsics
8260^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8261
8262Syntax:
8263"""""""
8264
8265This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8266on any integer bit width.
8267
8268::
8269
8270 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8271 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8272 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8273
8274Overview:
8275"""""""""
8276
8277The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8278an unsigned subtraction of the two arguments, and indicate whether an
8279overflow occurred during the unsigned subtraction.
8280
8281Arguments:
8282""""""""""
8283
8284The arguments (%a and %b) and the first element of the result structure
8285may be of integer types of any bit width, but they must have the same
8286bit width. The second element of the result structure must be of type
8287``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8288subtraction.
8289
8290Semantics:
8291""""""""""
8292
8293The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008294an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008295the first element of which is the subtraction, and the second element of
8296which is a bit specifying if the unsigned subtraction resulted in an
8297overflow.
8298
8299Examples:
8300"""""""""
8301
8302.. code-block:: llvm
8303
8304 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8305 %sum = extractvalue {i32, i1} %res, 0
8306 %obit = extractvalue {i32, i1} %res, 1
8307 br i1 %obit, label %overflow, label %normal
8308
8309'``llvm.smul.with.overflow.*``' Intrinsics
8310^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8311
8312Syntax:
8313"""""""
8314
8315This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8316on any integer bit width.
8317
8318::
8319
8320 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8321 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8322 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8323
8324Overview:
8325"""""""""
8326
8327The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8328a signed multiplication of the two arguments, and indicate whether an
8329overflow occurred during the signed multiplication.
8330
8331Arguments:
8332""""""""""
8333
8334The arguments (%a and %b) and the first element of the result structure
8335may be of integer types of any bit width, but they must have the same
8336bit width. The second element of the result structure must be of type
8337``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8338multiplication.
8339
8340Semantics:
8341""""""""""
8342
8343The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008344a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008345the first element of which is the multiplication, and the second element
8346of which is a bit specifying if the signed multiplication resulted in an
8347overflow.
8348
8349Examples:
8350"""""""""
8351
8352.. code-block:: llvm
8353
8354 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8355 %sum = extractvalue {i32, i1} %res, 0
8356 %obit = extractvalue {i32, i1} %res, 1
8357 br i1 %obit, label %overflow, label %normal
8358
8359'``llvm.umul.with.overflow.*``' Intrinsics
8360^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8361
8362Syntax:
8363"""""""
8364
8365This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8366on any integer bit width.
8367
8368::
8369
8370 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8371 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8372 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8373
8374Overview:
8375"""""""""
8376
8377The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8378a unsigned multiplication of the two arguments, and indicate whether an
8379overflow occurred during the unsigned multiplication.
8380
8381Arguments:
8382""""""""""
8383
8384The arguments (%a and %b) and the first element of the result structure
8385may be of integer types of any bit width, but they must have the same
8386bit width. The second element of the result structure must be of type
8387``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8388multiplication.
8389
8390Semantics:
8391""""""""""
8392
8393The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008394an unsigned multiplication of the two arguments. They return a structure ---
8395the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008396element of which is a bit specifying if the unsigned multiplication
8397resulted in an overflow.
8398
8399Examples:
8400"""""""""
8401
8402.. code-block:: llvm
8403
8404 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8405 %sum = extractvalue {i32, i1} %res, 0
8406 %obit = extractvalue {i32, i1} %res, 1
8407 br i1 %obit, label %overflow, label %normal
8408
8409Specialised Arithmetic Intrinsics
8410---------------------------------
8411
8412'``llvm.fmuladd.*``' Intrinsic
8413^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8414
8415Syntax:
8416"""""""
8417
8418::
8419
8420 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8421 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8422
8423Overview:
8424"""""""""
8425
8426The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008427expressions that can be fused if the code generator determines that (a) the
8428target instruction set has support for a fused operation, and (b) that the
8429fused operation is more efficient than the equivalent, separate pair of mul
8430and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008431
8432Arguments:
8433""""""""""
8434
8435The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8436multiplicands, a and b, and an addend c.
8437
8438Semantics:
8439""""""""""
8440
8441The expression:
8442
8443::
8444
8445 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8446
8447is equivalent to the expression a \* b + c, except that rounding will
8448not be performed between the multiplication and addition steps if the
8449code generator fuses the operations. Fusion is not guaranteed, even if
8450the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008451corresponding llvm.fma.\* intrinsic function should be used
8452instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008453
8454Examples:
8455"""""""""
8456
8457.. code-block:: llvm
8458
8459 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8460
8461Half Precision Floating Point Intrinsics
8462----------------------------------------
8463
8464For most target platforms, half precision floating point is a
8465storage-only format. This means that it is a dense encoding (in memory)
8466but does not support computation in the format.
8467
8468This means that code must first load the half-precision floating point
8469value as an i16, then convert it to float with
8470:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8471then be performed on the float value (including extending to double
8472etc). To store the value back to memory, it is first converted to float
8473if needed, then converted to i16 with
8474:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8475i16 value.
8476
8477.. _int_convert_to_fp16:
8478
8479'``llvm.convert.to.fp16``' Intrinsic
8480^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8481
8482Syntax:
8483"""""""
8484
8485::
8486
8487 declare i16 @llvm.convert.to.fp16(f32 %a)
8488
8489Overview:
8490"""""""""
8491
8492The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8493from single precision floating point format to half precision floating
8494point format.
8495
8496Arguments:
8497""""""""""
8498
8499The intrinsic function contains single argument - the value to be
8500converted.
8501
8502Semantics:
8503""""""""""
8504
8505The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8506from single precision floating point format to half precision floating
8507point format. The return value is an ``i16`` which contains the
8508converted number.
8509
8510Examples:
8511"""""""""
8512
8513.. code-block:: llvm
8514
8515 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8516 store i16 %res, i16* @x, align 2
8517
8518.. _int_convert_from_fp16:
8519
8520'``llvm.convert.from.fp16``' Intrinsic
8521^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8522
8523Syntax:
8524"""""""
8525
8526::
8527
8528 declare f32 @llvm.convert.from.fp16(i16 %a)
8529
8530Overview:
8531"""""""""
8532
8533The '``llvm.convert.from.fp16``' intrinsic function performs a
8534conversion from half precision floating point format to single precision
8535floating point format.
8536
8537Arguments:
8538""""""""""
8539
8540The intrinsic function contains single argument - the value to be
8541converted.
8542
8543Semantics:
8544""""""""""
8545
8546The '``llvm.convert.from.fp16``' intrinsic function performs a
8547conversion from half single precision floating point format to single
8548precision floating point format. The input half-float value is
8549represented by an ``i16`` value.
8550
8551Examples:
8552"""""""""
8553
8554.. code-block:: llvm
8555
8556 %a = load i16* @x, align 2
8557 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8558
8559Debugger Intrinsics
8560-------------------
8561
8562The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8563prefix), are described in the `LLVM Source Level
8564Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8565document.
8566
8567Exception Handling Intrinsics
8568-----------------------------
8569
8570The LLVM exception handling intrinsics (which all start with
8571``llvm.eh.`` prefix), are described in the `LLVM Exception
8572Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8573
8574.. _int_trampoline:
8575
8576Trampoline Intrinsics
8577---------------------
8578
8579These intrinsics make it possible to excise one parameter, marked with
8580the :ref:`nest <nest>` attribute, from a function. The result is a
8581callable function pointer lacking the nest parameter - the caller does
8582not need to provide a value for it. Instead, the value to use is stored
8583in advance in a "trampoline", a block of memory usually allocated on the
8584stack, which also contains code to splice the nest value into the
8585argument list. This is used to implement the GCC nested function address
8586extension.
8587
8588For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8589then the resulting function pointer has signature ``i32 (i32, i32)*``.
8590It can be created as follows:
8591
8592.. code-block:: llvm
8593
8594 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8595 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8596 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8597 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8598 %fp = bitcast i8* %p to i32 (i32, i32)*
8599
8600The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8601``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8602
8603.. _int_it:
8604
8605'``llvm.init.trampoline``' Intrinsic
8606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8607
8608Syntax:
8609"""""""
8610
8611::
8612
8613 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8614
8615Overview:
8616"""""""""
8617
8618This fills the memory pointed to by ``tramp`` with executable code,
8619turning it into a trampoline.
8620
8621Arguments:
8622""""""""""
8623
8624The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8625pointers. The ``tramp`` argument must point to a sufficiently large and
8626sufficiently aligned block of memory; this memory is written to by the
8627intrinsic. Note that the size and the alignment are target-specific -
8628LLVM currently provides no portable way of determining them, so a
8629front-end that generates this intrinsic needs to have some
8630target-specific knowledge. The ``func`` argument must hold a function
8631bitcast to an ``i8*``.
8632
8633Semantics:
8634""""""""""
8635
8636The block of memory pointed to by ``tramp`` is filled with target
8637dependent code, turning it into a function. Then ``tramp`` needs to be
8638passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8639be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8640function's signature is the same as that of ``func`` with any arguments
8641marked with the ``nest`` attribute removed. At most one such ``nest``
8642argument is allowed, and it must be of pointer type. Calling the new
8643function is equivalent to calling ``func`` with the same argument list,
8644but with ``nval`` used for the missing ``nest`` argument. If, after
8645calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8646modified, then the effect of any later call to the returned function
8647pointer is undefined.
8648
8649.. _int_at:
8650
8651'``llvm.adjust.trampoline``' Intrinsic
8652^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8653
8654Syntax:
8655"""""""
8656
8657::
8658
8659 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8660
8661Overview:
8662"""""""""
8663
8664This performs any required machine-specific adjustment to the address of
8665a trampoline (passed as ``tramp``).
8666
8667Arguments:
8668""""""""""
8669
8670``tramp`` must point to a block of memory which already has trampoline
8671code filled in by a previous call to
8672:ref:`llvm.init.trampoline <int_it>`.
8673
8674Semantics:
8675""""""""""
8676
8677On some architectures the address of the code to be executed needs to be
8678different to the address where the trampoline is actually stored. This
8679intrinsic returns the executable address corresponding to ``tramp``
8680after performing the required machine specific adjustments. The pointer
8681returned can then be :ref:`bitcast and executed <int_trampoline>`.
8682
8683Memory Use Markers
8684------------------
8685
8686This class of intrinsics exists to information about the lifetime of
8687memory objects and ranges where variables are immutable.
8688
Reid Klecknera534a382013-12-19 02:14:12 +00008689.. _int_lifestart:
8690
Sean Silvab084af42012-12-07 10:36:55 +00008691'``llvm.lifetime.start``' Intrinsic
8692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8693
8694Syntax:
8695"""""""
8696
8697::
8698
8699 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8700
8701Overview:
8702"""""""""
8703
8704The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8705object's lifetime.
8706
8707Arguments:
8708""""""""""
8709
8710The first argument is a constant integer representing the size of the
8711object, or -1 if it is variable sized. The second argument is a pointer
8712to the object.
8713
8714Semantics:
8715""""""""""
8716
8717This intrinsic indicates that before this point in the code, the value
8718of the memory pointed to by ``ptr`` is dead. This means that it is known
8719to never be used and has an undefined value. A load from the pointer
8720that precedes this intrinsic can be replaced with ``'undef'``.
8721
Reid Klecknera534a382013-12-19 02:14:12 +00008722.. _int_lifeend:
8723
Sean Silvab084af42012-12-07 10:36:55 +00008724'``llvm.lifetime.end``' Intrinsic
8725^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8726
8727Syntax:
8728"""""""
8729
8730::
8731
8732 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8733
8734Overview:
8735"""""""""
8736
8737The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8738object's lifetime.
8739
8740Arguments:
8741""""""""""
8742
8743The first argument is a constant integer representing the size of the
8744object, or -1 if it is variable sized. The second argument is a pointer
8745to the object.
8746
8747Semantics:
8748""""""""""
8749
8750This intrinsic indicates that after this point in the code, the value of
8751the memory pointed to by ``ptr`` is dead. This means that it is known to
8752never be used and has an undefined value. Any stores into the memory
8753object following this intrinsic may be removed as dead.
8754
8755'``llvm.invariant.start``' Intrinsic
8756^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8757
8758Syntax:
8759"""""""
8760
8761::
8762
8763 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8764
8765Overview:
8766"""""""""
8767
8768The '``llvm.invariant.start``' intrinsic specifies that the contents of
8769a memory object will not change.
8770
8771Arguments:
8772""""""""""
8773
8774The first argument is a constant integer representing the size of the
8775object, or -1 if it is variable sized. The second argument is a pointer
8776to the object.
8777
8778Semantics:
8779""""""""""
8780
8781This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8782the return value, the referenced memory location is constant and
8783unchanging.
8784
8785'``llvm.invariant.end``' Intrinsic
8786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8787
8788Syntax:
8789"""""""
8790
8791::
8792
8793 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8794
8795Overview:
8796"""""""""
8797
8798The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8799memory object are mutable.
8800
8801Arguments:
8802""""""""""
8803
8804The first argument is the matching ``llvm.invariant.start`` intrinsic.
8805The second argument is a constant integer representing the size of the
8806object, or -1 if it is variable sized and the third argument is a
8807pointer to the object.
8808
8809Semantics:
8810""""""""""
8811
8812This intrinsic indicates that the memory is mutable again.
8813
8814General Intrinsics
8815------------------
8816
8817This class of intrinsics is designed to be generic and has no specific
8818purpose.
8819
8820'``llvm.var.annotation``' Intrinsic
8821^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8822
8823Syntax:
8824"""""""
8825
8826::
8827
8828 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8829
8830Overview:
8831"""""""""
8832
8833The '``llvm.var.annotation``' intrinsic.
8834
8835Arguments:
8836""""""""""
8837
8838The first argument is a pointer to a value, the second is a pointer to a
8839global string, the third is a pointer to a global string which is the
8840source file name, and the last argument is the line number.
8841
8842Semantics:
8843""""""""""
8844
8845This intrinsic allows annotation of local variables with arbitrary
8846strings. This can be useful for special purpose optimizations that want
8847to look for these annotations. These have no other defined use; they are
8848ignored by code generation and optimization.
8849
Michael Gottesman88d18832013-03-26 00:34:27 +00008850'``llvm.ptr.annotation.*``' Intrinsic
8851^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8852
8853Syntax:
8854"""""""
8855
8856This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8857pointer to an integer of any width. *NOTE* you must specify an address space for
8858the pointer. The identifier for the default address space is the integer
8859'``0``'.
8860
8861::
8862
8863 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8864 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8865 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8866 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8867 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8868
8869Overview:
8870"""""""""
8871
8872The '``llvm.ptr.annotation``' intrinsic.
8873
8874Arguments:
8875""""""""""
8876
8877The first argument is a pointer to an integer value of arbitrary bitwidth
8878(result of some expression), the second is a pointer to a global string, the
8879third is a pointer to a global string which is the source file name, and the
8880last argument is the line number. It returns the value of the first argument.
8881
8882Semantics:
8883""""""""""
8884
8885This intrinsic allows annotation of a pointer to an integer with arbitrary
8886strings. This can be useful for special purpose optimizations that want to look
8887for these annotations. These have no other defined use; they are ignored by code
8888generation and optimization.
8889
Sean Silvab084af42012-12-07 10:36:55 +00008890'``llvm.annotation.*``' Intrinsic
8891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8892
8893Syntax:
8894"""""""
8895
8896This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8897any integer bit width.
8898
8899::
8900
8901 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8902 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8903 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8904 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8905 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8906
8907Overview:
8908"""""""""
8909
8910The '``llvm.annotation``' intrinsic.
8911
8912Arguments:
8913""""""""""
8914
8915The first argument is an integer value (result of some expression), the
8916second is a pointer to a global string, the third is a pointer to a
8917global string which is the source file name, and the last argument is
8918the line number. It returns the value of the first argument.
8919
8920Semantics:
8921""""""""""
8922
8923This intrinsic allows annotations to be put on arbitrary expressions
8924with arbitrary strings. This can be useful for special purpose
8925optimizations that want to look for these annotations. These have no
8926other defined use; they are ignored by code generation and optimization.
8927
8928'``llvm.trap``' Intrinsic
8929^^^^^^^^^^^^^^^^^^^^^^^^^
8930
8931Syntax:
8932"""""""
8933
8934::
8935
8936 declare void @llvm.trap() noreturn nounwind
8937
8938Overview:
8939"""""""""
8940
8941The '``llvm.trap``' intrinsic.
8942
8943Arguments:
8944""""""""""
8945
8946None.
8947
8948Semantics:
8949""""""""""
8950
8951This intrinsic is lowered to the target dependent trap instruction. If
8952the target does not have a trap instruction, this intrinsic will be
8953lowered to a call of the ``abort()`` function.
8954
8955'``llvm.debugtrap``' Intrinsic
8956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8957
8958Syntax:
8959"""""""
8960
8961::
8962
8963 declare void @llvm.debugtrap() nounwind
8964
8965Overview:
8966"""""""""
8967
8968The '``llvm.debugtrap``' intrinsic.
8969
8970Arguments:
8971""""""""""
8972
8973None.
8974
8975Semantics:
8976""""""""""
8977
8978This intrinsic is lowered to code which is intended to cause an
8979execution trap with the intention of requesting the attention of a
8980debugger.
8981
8982'``llvm.stackprotector``' Intrinsic
8983^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8984
8985Syntax:
8986"""""""
8987
8988::
8989
8990 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8991
8992Overview:
8993"""""""""
8994
8995The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8996onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8997is placed on the stack before local variables.
8998
8999Arguments:
9000""""""""""
9001
9002The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9003The first argument is the value loaded from the stack guard
9004``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9005enough space to hold the value of the guard.
9006
9007Semantics:
9008""""""""""
9009
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009010This intrinsic causes the prologue/epilogue inserter to force the position of
9011the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9012to ensure that if a local variable on the stack is overwritten, it will destroy
9013the value of the guard. When the function exits, the guard on the stack is
9014checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9015different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9016calling the ``__stack_chk_fail()`` function.
9017
9018'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009019^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009020
9021Syntax:
9022"""""""
9023
9024::
9025
9026 declare void @llvm.stackprotectorcheck(i8** <guard>)
9027
9028Overview:
9029"""""""""
9030
9031The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009032created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009033``__stack_chk_fail()`` function.
9034
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009035Arguments:
9036""""""""""
9037
9038The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9039the variable ``@__stack_chk_guard``.
9040
9041Semantics:
9042""""""""""
9043
9044This intrinsic is provided to perform the stack protector check by comparing
9045``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9046values do not match call the ``__stack_chk_fail()`` function.
9047
9048The reason to provide this as an IR level intrinsic instead of implementing it
9049via other IR operations is that in order to perform this operation at the IR
9050level without an intrinsic, one would need to create additional basic blocks to
9051handle the success/failure cases. This makes it difficult to stop the stack
9052protector check from disrupting sibling tail calls in Codegen. With this
9053intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009054codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009055
Sean Silvab084af42012-12-07 10:36:55 +00009056'``llvm.objectsize``' Intrinsic
9057^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9058
9059Syntax:
9060"""""""
9061
9062::
9063
9064 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9065 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9066
9067Overview:
9068"""""""""
9069
9070The ``llvm.objectsize`` intrinsic is designed to provide information to
9071the optimizers to determine at compile time whether a) an operation
9072(like memcpy) will overflow a buffer that corresponds to an object, or
9073b) that a runtime check for overflow isn't necessary. An object in this
9074context means an allocation of a specific class, structure, array, or
9075other object.
9076
9077Arguments:
9078""""""""""
9079
9080The ``llvm.objectsize`` intrinsic takes two arguments. The first
9081argument is a pointer to or into the ``object``. The second argument is
9082a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9083or -1 (if false) when the object size is unknown. The second argument
9084only accepts constants.
9085
9086Semantics:
9087""""""""""
9088
9089The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9090the size of the object concerned. If the size cannot be determined at
9091compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9092on the ``min`` argument).
9093
9094'``llvm.expect``' Intrinsic
9095^^^^^^^^^^^^^^^^^^^^^^^^^^^
9096
9097Syntax:
9098"""""""
9099
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009100This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9101integer bit width.
9102
Sean Silvab084af42012-12-07 10:36:55 +00009103::
9104
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009105 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009106 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9107 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9108
9109Overview:
9110"""""""""
9111
9112The ``llvm.expect`` intrinsic provides information about expected (the
9113most probable) value of ``val``, which can be used by optimizers.
9114
9115Arguments:
9116""""""""""
9117
9118The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9119a value. The second argument is an expected value, this needs to be a
9120constant value, variables are not allowed.
9121
9122Semantics:
9123""""""""""
9124
9125This intrinsic is lowered to the ``val``.
9126
9127'``llvm.donothing``' Intrinsic
9128^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9129
9130Syntax:
9131"""""""
9132
9133::
9134
9135 declare void @llvm.donothing() nounwind readnone
9136
9137Overview:
9138"""""""""
9139
9140The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9141only intrinsic that can be called with an invoke instruction.
9142
9143Arguments:
9144""""""""""
9145
9146None.
9147
9148Semantics:
9149""""""""""
9150
9151This intrinsic does nothing, and it's removed by optimizers and ignored
9152by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009153
9154Stack Map Intrinsics
9155--------------------
9156
9157LLVM provides experimental intrinsics to support runtime patching
9158mechanisms commonly desired in dynamic language JITs. These intrinsics
9159are described in :doc:`StackMaps`.