blob: 6c8f3ba9c6e0efa261a7df33af26a3f7b1f39844 [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Sanjoy Dasc88f5d32015-10-28 21:27:14 +000086#include "llvm/IR/PatternMatch.h"
Chris Lattner996795b2006-06-28 23:17:24 +000087#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000088#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000089#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000090#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000091#include "llvm/Support/raw_ostream.h"
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +000092#include "llvm/Support/SaveAndRestore.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000093#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000094using namespace llvm;
95
Chandler Carruthf1221bd2014-04-22 02:48:03 +000096#define DEBUG_TYPE "scalar-evolution"
97
Chris Lattner57ef9422006-12-19 22:30:33 +000098STATISTIC(NumArrayLenItCounts,
99 "Number of trip counts computed with array length");
100STATISTIC(NumTripCountsComputed,
101 "Number of loops with predictable loop counts");
102STATISTIC(NumTripCountsNotComputed,
103 "Number of loops without predictable loop counts");
104STATISTIC(NumBruteForceTripCountsComputed,
105 "Number of loops with trip counts computed by force");
106
Dan Gohmand78c4002008-05-13 00:00:25 +0000107static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000108MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000110 "symbolically execute a constant "
111 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000112 cl::init(100));
113
Benjamin Kramer214935e2012-10-26 17:31:32 +0000114// FIXME: Enable this with XDEBUG when the test suite is clean.
115static cl::opt<bool>
116VerifySCEV("verify-scev",
117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
118
Chris Lattnerd934c702004-04-02 20:23:17 +0000119//===----------------------------------------------------------------------===//
120// SCEV class definitions
121//===----------------------------------------------------------------------===//
122
123//===----------------------------------------------------------------------===//
124// Implementation of the SCEV class.
125//
Dan Gohman3423e722009-06-30 20:13:32 +0000126
Davide Italiano2071f4c2015-10-25 19:55:24 +0000127LLVM_DUMP_METHOD
128void SCEV::dump() const {
129 print(dbgs());
130 dbgs() << '\n';
131}
132
Dan Gohman534749b2010-11-17 22:27:42 +0000133void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000134 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000135 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000137 return;
138 case scTruncate: {
139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
140 const SCEV *Op = Trunc->getOperand();
141 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
142 << *Trunc->getType() << ")";
143 return;
144 }
145 case scZeroExtend: {
146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
147 const SCEV *Op = ZExt->getOperand();
148 OS << "(zext " << *Op->getType() << " " << *Op << " to "
149 << *ZExt->getType() << ")";
150 return;
151 }
152 case scSignExtend: {
153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
154 const SCEV *Op = SExt->getOperand();
155 OS << "(sext " << *Op->getType() << " " << *Op << " to "
156 << *SExt->getType() << ")";
157 return;
158 }
159 case scAddRecExpr: {
160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
161 OS << "{" << *AR->getOperand(0);
162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
163 OS << ",+," << *AR->getOperand(i);
164 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000165 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000166 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000167 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000168 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000169 if (AR->getNoWrapFlags(FlagNW) &&
170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
171 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000173 OS << ">";
174 return;
175 }
176 case scAddExpr:
177 case scMulExpr:
178 case scUMaxExpr:
179 case scSMaxExpr: {
180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000181 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000182 switch (NAry->getSCEVType()) {
183 case scAddExpr: OpStr = " + "; break;
184 case scMulExpr: OpStr = " * "; break;
185 case scUMaxExpr: OpStr = " umax "; break;
186 case scSMaxExpr: OpStr = " smax "; break;
187 }
188 OS << "(";
189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
190 I != E; ++I) {
191 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000192 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000193 OS << OpStr;
194 }
195 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000196 switch (NAry->getSCEVType()) {
197 case scAddExpr:
198 case scMulExpr:
199 if (NAry->getNoWrapFlags(FlagNUW))
200 OS << "<nuw>";
201 if (NAry->getNoWrapFlags(FlagNSW))
202 OS << "<nsw>";
203 }
Dan Gohman534749b2010-11-17 22:27:42 +0000204 return;
205 }
206 case scUDivExpr: {
207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
209 return;
210 }
211 case scUnknown: {
212 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000213 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000214 if (U->isSizeOf(AllocTy)) {
215 OS << "sizeof(" << *AllocTy << ")";
216 return;
217 }
218 if (U->isAlignOf(AllocTy)) {
219 OS << "alignof(" << *AllocTy << ")";
220 return;
221 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000222
Chris Lattner229907c2011-07-18 04:54:35 +0000223 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000224 Constant *FieldNo;
225 if (U->isOffsetOf(CTy, FieldNo)) {
226 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000227 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000228 OS << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Dan Gohman534749b2010-11-17 22:27:42 +0000232 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000233 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000234 return;
235 }
236 case scCouldNotCompute:
237 OS << "***COULDNOTCOMPUTE***";
238 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000239 }
240 llvm_unreachable("Unknown SCEV kind!");
241}
242
Chris Lattner229907c2011-07-18 04:54:35 +0000243Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000244 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000245 case scConstant:
246 return cast<SCEVConstant>(this)->getType();
247 case scTruncate:
248 case scZeroExtend:
249 case scSignExtend:
250 return cast<SCEVCastExpr>(this)->getType();
251 case scAddRecExpr:
252 case scMulExpr:
253 case scUMaxExpr:
254 case scSMaxExpr:
255 return cast<SCEVNAryExpr>(this)->getType();
256 case scAddExpr:
257 return cast<SCEVAddExpr>(this)->getType();
258 case scUDivExpr:
259 return cast<SCEVUDivExpr>(this)->getType();
260 case scUnknown:
261 return cast<SCEVUnknown>(this)->getType();
262 case scCouldNotCompute:
263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000264 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000265 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000266}
267
Dan Gohmanbe928e32008-06-18 16:23:07 +0000268bool SCEV::isZero() const {
269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270 return SC->getValue()->isZero();
271 return false;
272}
273
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000274bool SCEV::isOne() const {
275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
276 return SC->getValue()->isOne();
277 return false;
278}
Chris Lattnerd934c702004-04-02 20:23:17 +0000279
Dan Gohman18a96bb2009-06-24 00:30:26 +0000280bool SCEV::isAllOnesValue() const {
281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
282 return SC->getValue()->isAllOnesValue();
283 return false;
284}
285
Andrew Trick881a7762012-01-07 00:27:31 +0000286/// isNonConstantNegative - Return true if the specified scev is negated, but
287/// not a constant.
288bool SCEV::isNonConstantNegative() const {
289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
290 if (!Mul) return false;
291
292 // If there is a constant factor, it will be first.
293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
294 if (!SC) return false;
295
296 // Return true if the value is negative, this matches things like (-42 * V).
297 return SC->getValue()->getValue().isNegative();
298}
299
Owen Anderson04052ec2009-06-22 21:57:23 +0000300SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000302
Chris Lattnerd934c702004-04-02 20:23:17 +0000303bool SCEVCouldNotCompute::classof(const SCEV *S) {
304 return S->getSCEVType() == scCouldNotCompute;
305}
306
Dan Gohmanaf752342009-07-07 17:06:11 +0000307const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000308 FoldingSetNodeID ID;
309 ID.AddInteger(scConstant);
310 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000311 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000314 UniqueSCEVs.InsertNode(S, IP);
315 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000316}
Chris Lattnerd934c702004-04-02 20:23:17 +0000317
Nick Lewycky31eaca52014-01-27 10:04:03 +0000318const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000319 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000320}
321
Dan Gohmanaf752342009-07-07 17:06:11 +0000322const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000323ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000325 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000326}
327
Dan Gohman24ceda82010-06-18 19:54:20 +0000328SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000329 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000331
Dan Gohman24ceda82010-06-18 19:54:20 +0000332SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000333 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000334 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
336 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000337 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000338}
Chris Lattnerd934c702004-04-02 20:23:17 +0000339
Dan Gohman24ceda82010-06-18 19:54:20 +0000340SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000341 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000342 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
344 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000345 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346}
347
Dan Gohman24ceda82010-06-18 19:54:20 +0000348SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000349 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000350 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
352 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000353 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000354}
355
Dan Gohman7cac9572010-08-02 23:49:30 +0000356void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000357 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000358 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000359
360 // Remove this SCEVUnknown from the uniquing map.
361 SE->UniqueSCEVs.RemoveNode(this);
362
363 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000364 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000365}
366
367void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000368 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000369 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000370
371 // Remove this SCEVUnknown from the uniquing map.
372 SE->UniqueSCEVs.RemoveNode(this);
373
374 // Update this SCEVUnknown to point to the new value. This is needed
375 // because there may still be outstanding SCEVs which still point to
376 // this SCEVUnknown.
377 setValPtr(New);
378}
379
Chris Lattner229907c2011-07-18 04:54:35 +0000380bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000382 if (VCE->getOpcode() == Instruction::PtrToInt)
383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000384 if (CE->getOpcode() == Instruction::GetElementPtr &&
385 CE->getOperand(0)->isNullValue() &&
386 CE->getNumOperands() == 2)
387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
388 if (CI->isOne()) {
389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
390 ->getElementType();
391 return true;
392 }
Dan Gohmancf913832010-01-28 02:15:55 +0000393
394 return false;
395}
396
Chris Lattner229907c2011-07-18 04:54:35 +0000397bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000399 if (VCE->getOpcode() == Instruction::PtrToInt)
400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000401 if (CE->getOpcode() == Instruction::GetElementPtr &&
402 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000403 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000405 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000406 if (!STy->isPacked() &&
407 CE->getNumOperands() == 3 &&
408 CE->getOperand(1)->isNullValue()) {
409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
410 if (CI->isOne() &&
411 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000412 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 AllocTy = STy->getElementType(1);
414 return true;
415 }
416 }
417 }
Dan Gohmancf913832010-01-28 02:15:55 +0000418
419 return false;
420}
421
Chris Lattner229907c2011-07-18 04:54:35 +0000422bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000424 if (VCE->getOpcode() == Instruction::PtrToInt)
425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
426 if (CE->getOpcode() == Instruction::GetElementPtr &&
427 CE->getNumOperands() == 3 &&
428 CE->getOperand(0)->isNullValue() &&
429 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000430 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
432 // Ignore vector types here so that ScalarEvolutionExpander doesn't
433 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000434 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000435 CTy = Ty;
436 FieldNo = CE->getOperand(2);
437 return true;
438 }
439 }
440
441 return false;
442}
443
Chris Lattnereb3e8402004-06-20 06:23:15 +0000444//===----------------------------------------------------------------------===//
445// SCEV Utilities
446//===----------------------------------------------------------------------===//
447
448namespace {
Sanjoy Das7881abd2015-12-08 04:32:51 +0000449/// SCEVComplexityCompare - Return true if the complexity of the LHS is less
450/// than the complexity of the RHS. This comparator is used to canonicalize
451/// expressions.
452class SCEVComplexityCompare {
453 const LoopInfo *const LI;
454public:
455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000456
Sanjoy Das7881abd2015-12-08 04:32:51 +0000457 // Return true or false if LHS is less than, or at least RHS, respectively.
458 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
459 return compare(LHS, RHS) < 0;
460 }
Dan Gohman27065672010-08-27 15:26:01 +0000461
Sanjoy Das7881abd2015-12-08 04:32:51 +0000462 // Return negative, zero, or positive, if LHS is less than, equal to, or
463 // greater than RHS, respectively. A three-way result allows recursive
464 // comparisons to be more efficient.
465 int compare(const SCEV *LHS, const SCEV *RHS) const {
466 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
467 if (LHS == RHS)
468 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000469
Sanjoy Das7881abd2015-12-08 04:32:51 +0000470 // Primarily, sort the SCEVs by their getSCEVType().
471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
472 if (LType != RType)
473 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000474
Sanjoy Das7881abd2015-12-08 04:32:51 +0000475 // Aside from the getSCEVType() ordering, the particular ordering
476 // isn't very important except that it's beneficial to be consistent,
477 // so that (a + b) and (b + a) don't end up as different expressions.
478 switch (static_cast<SCEVTypes>(LType)) {
479 case scUnknown: {
480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000482
Sanjoy Das7881abd2015-12-08 04:32:51 +0000483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
484 // not as complete as it could be.
485 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000486
Sanjoy Das7881abd2015-12-08 04:32:51 +0000487 // Order pointer values after integer values. This helps SCEVExpander
488 // form GEPs.
489 bool LIsPointer = LV->getType()->isPointerTy(),
490 RIsPointer = RV->getType()->isPointerTy();
491 if (LIsPointer != RIsPointer)
492 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000493
Sanjoy Das7881abd2015-12-08 04:32:51 +0000494 // Compare getValueID values.
495 unsigned LID = LV->getValueID(),
496 RID = RV->getValueID();
497 if (LID != RID)
498 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000499
Sanjoy Das7881abd2015-12-08 04:32:51 +0000500 // Sort arguments by their position.
501 if (const Argument *LA = dyn_cast<Argument>(LV)) {
502 const Argument *RA = cast<Argument>(RV);
503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
504 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000505 }
506
Sanjoy Das7881abd2015-12-08 04:32:51 +0000507 // For instructions, compare their loop depth, and their operand
508 // count. This is pretty loose.
509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
510 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000511
Sanjoy Das7881abd2015-12-08 04:32:51 +0000512 // Compare loop depths.
513 const BasicBlock *LParent = LInst->getParent(),
514 *RParent = RInst->getParent();
515 if (LParent != RParent) {
516 unsigned LDepth = LI->getLoopDepth(LParent),
517 RDepth = LI->getLoopDepth(RParent);
Dan Gohman0c436ab2010-08-13 21:24:58 +0000518 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000519 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000520 }
Dan Gohman27065672010-08-27 15:26:01 +0000521
Sanjoy Das7881abd2015-12-08 04:32:51 +0000522 // Compare the number of operands.
523 unsigned LNumOps = LInst->getNumOperands(),
524 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000525 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000526 }
527
Sanjoy Das7881abd2015-12-08 04:32:51 +0000528 return 0;
529 }
Dan Gohman27065672010-08-27 15:26:01 +0000530
Sanjoy Das7881abd2015-12-08 04:32:51 +0000531 case scConstant: {
532 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
533 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
534
535 // Compare constant values.
536 const APInt &LA = LC->getValue()->getValue();
537 const APInt &RA = RC->getValue()->getValue();
538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
539 if (LBitWidth != RBitWidth)
540 return (int)LBitWidth - (int)RBitWidth;
541 return LA.ult(RA) ? -1 : 1;
542 }
543
544 case scAddRecExpr: {
545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
547
548 // Compare addrec loop depths.
549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
550 if (LLoop != RLoop) {
551 unsigned LDepth = LLoop->getLoopDepth(),
552 RDepth = RLoop->getLoopDepth();
553 if (LDepth != RDepth)
554 return (int)LDepth - (int)RDepth;
555 }
556
557 // Addrec complexity grows with operand count.
558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
559 if (LNumOps != RNumOps)
560 return (int)LNumOps - (int)RNumOps;
561
562 // Lexicographically compare.
563 for (unsigned i = 0; i != LNumOps; ++i) {
564 long X = compare(LA->getOperand(i), RA->getOperand(i));
Dan Gohman27065672010-08-27 15:26:01 +0000565 if (X != 0)
566 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000567 }
568
Sanjoy Das7881abd2015-12-08 04:32:51 +0000569 return 0;
Chris Lattnereb3e8402004-06-20 06:23:15 +0000570 }
Sanjoy Das7881abd2015-12-08 04:32:51 +0000571
572 case scAddExpr:
573 case scMulExpr:
574 case scSMaxExpr:
575 case scUMaxExpr: {
576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
578
579 // Lexicographically compare n-ary expressions.
580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
581 if (LNumOps != RNumOps)
582 return (int)LNumOps - (int)RNumOps;
583
584 for (unsigned i = 0; i != LNumOps; ++i) {
585 if (i >= RNumOps)
586 return 1;
587 long X = compare(LC->getOperand(i), RC->getOperand(i));
588 if (X != 0)
589 return X;
590 }
591 return (int)LNumOps - (int)RNumOps;
592 }
593
594 case scUDivExpr: {
595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
597
598 // Lexicographically compare udiv expressions.
599 long X = compare(LC->getLHS(), RC->getLHS());
600 if (X != 0)
601 return X;
602 return compare(LC->getRHS(), RC->getRHS());
603 }
604
605 case scTruncate:
606 case scZeroExtend:
607 case scSignExtend: {
608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
610
611 // Compare cast expressions by operand.
612 return compare(LC->getOperand(), RC->getOperand());
613 }
614
615 case scCouldNotCompute:
616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
617 }
618 llvm_unreachable("Unknown SCEV kind!");
619 }
620};
621} // end anonymous namespace
Chris Lattnereb3e8402004-06-20 06:23:15 +0000622
623/// GroupByComplexity - Given a list of SCEV objects, order them by their
624/// complexity, and group objects of the same complexity together by value.
625/// When this routine is finished, we know that any duplicates in the vector are
626/// consecutive and that complexity is monotonically increasing.
627///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000628/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000629/// results from this routine. In other words, we don't want the results of
630/// this to depend on where the addresses of various SCEV objects happened to
631/// land in memory.
632///
Dan Gohmanaf752342009-07-07 17:06:11 +0000633static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000634 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000635 if (Ops.size() < 2) return; // Noop
636 if (Ops.size() == 2) {
637 // This is the common case, which also happens to be trivially simple.
638 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
640 if (SCEVComplexityCompare(LI)(RHS, LHS))
641 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000642 return;
643 }
644
Dan Gohman24ceda82010-06-18 19:54:20 +0000645 // Do the rough sort by complexity.
646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
647
648 // Now that we are sorted by complexity, group elements of the same
649 // complexity. Note that this is, at worst, N^2, but the vector is likely to
650 // be extremely short in practice. Note that we take this approach because we
651 // do not want to depend on the addresses of the objects we are grouping.
652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
653 const SCEV *S = Ops[i];
654 unsigned Complexity = S->getSCEVType();
655
656 // If there are any objects of the same complexity and same value as this
657 // one, group them.
658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
659 if (Ops[j] == S) { // Found a duplicate.
660 // Move it to immediately after i'th element.
661 std::swap(Ops[i+1], Ops[j]);
662 ++i; // no need to rescan it.
663 if (i == e-2) return; // Done!
664 }
665 }
666 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000667}
668
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000669// Returns the size of the SCEV S.
670static inline int sizeOfSCEV(const SCEV *S) {
Sanjoy Das7d752672015-12-08 04:32:54 +0000671 struct FindSCEVSize {
672 int Size;
673 FindSCEVSize() : Size(0) {}
674
675 bool follow(const SCEV *S) {
676 ++Size;
677 // Keep looking at all operands of S.
678 return true;
679 }
680 bool isDone() const {
681 return false;
682 }
683 };
684
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000685 FindSCEVSize F;
686 SCEVTraversal<FindSCEVSize> ST(F);
687 ST.visitAll(S);
688 return F.Size;
689}
690
691namespace {
692
David Majnemer4e879362014-12-14 09:12:33 +0000693struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000694public:
695 // Computes the Quotient and Remainder of the division of Numerator by
696 // Denominator.
697 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
698 const SCEV *Denominator, const SCEV **Quotient,
699 const SCEV **Remainder) {
700 assert(Numerator && Denominator && "Uninitialized SCEV");
701
David Majnemer4e879362014-12-14 09:12:33 +0000702 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000703
704 // Check for the trivial case here to avoid having to check for it in the
705 // rest of the code.
706 if (Numerator == Denominator) {
707 *Quotient = D.One;
708 *Remainder = D.Zero;
709 return;
710 }
711
712 if (Numerator->isZero()) {
713 *Quotient = D.Zero;
714 *Remainder = D.Zero;
715 return;
716 }
717
Brendon Cahoona57cc8b2015-04-20 16:03:28 +0000718 // A simple case when N/1. The quotient is N.
719 if (Denominator->isOne()) {
720 *Quotient = Numerator;
721 *Remainder = D.Zero;
722 return;
723 }
724
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000725 // Split the Denominator when it is a product.
726 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
727 const SCEV *Q, *R;
728 *Quotient = Numerator;
729 for (const SCEV *Op : T->operands()) {
730 divide(SE, *Quotient, Op, &Q, &R);
731 *Quotient = Q;
732
733 // Bail out when the Numerator is not divisible by one of the terms of
734 // the Denominator.
735 if (!R->isZero()) {
736 *Quotient = D.Zero;
737 *Remainder = Numerator;
738 return;
739 }
740 }
741 *Remainder = D.Zero;
742 return;
743 }
744
745 D.visit(Numerator);
746 *Quotient = D.Quotient;
747 *Remainder = D.Remainder;
748 }
749
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000750 // Except in the trivial case described above, we do not know how to divide
751 // Expr by Denominator for the following functions with empty implementation.
752 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
753 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
754 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
755 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
756 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
757 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
758 void visitUnknown(const SCEVUnknown *Numerator) {}
759 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
760
David Majnemer4e879362014-12-14 09:12:33 +0000761 void visitConstant(const SCEVConstant *Numerator) {
762 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
763 APInt NumeratorVal = Numerator->getValue()->getValue();
764 APInt DenominatorVal = D->getValue()->getValue();
765 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
766 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
767
768 if (NumeratorBW > DenominatorBW)
769 DenominatorVal = DenominatorVal.sext(NumeratorBW);
770 else if (NumeratorBW < DenominatorBW)
771 NumeratorVal = NumeratorVal.sext(DenominatorBW);
772
773 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
774 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
775 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
776 Quotient = SE.getConstant(QuotientVal);
777 Remainder = SE.getConstant(RemainderVal);
778 return;
779 }
780 }
781
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000782 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
783 const SCEV *StartQ, *StartR, *StepQ, *StepR;
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000784 if (!Numerator->isAffine())
785 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000786 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
787 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
Brendon Cahoonf9751ad2015-04-22 15:06:40 +0000788 // Bail out if the types do not match.
789 Type *Ty = Denominator->getType();
790 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000791 Ty != StepQ->getType() || Ty != StepR->getType())
792 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000793 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
794 Numerator->getNoWrapFlags());
795 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
796 Numerator->getNoWrapFlags());
797 }
798
799 void visitAddExpr(const SCEVAddExpr *Numerator) {
800 SmallVector<const SCEV *, 2> Qs, Rs;
801 Type *Ty = Denominator->getType();
802
803 for (const SCEV *Op : Numerator->operands()) {
804 const SCEV *Q, *R;
805 divide(SE, Op, Denominator, &Q, &R);
806
807 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000808 if (Ty != Q->getType() || Ty != R->getType())
809 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000810
811 Qs.push_back(Q);
812 Rs.push_back(R);
813 }
814
815 if (Qs.size() == 1) {
816 Quotient = Qs[0];
817 Remainder = Rs[0];
818 return;
819 }
820
821 Quotient = SE.getAddExpr(Qs);
822 Remainder = SE.getAddExpr(Rs);
823 }
824
825 void visitMulExpr(const SCEVMulExpr *Numerator) {
826 SmallVector<const SCEV *, 2> Qs;
827 Type *Ty = Denominator->getType();
828
829 bool FoundDenominatorTerm = false;
830 for (const SCEV *Op : Numerator->operands()) {
831 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000832 if (Ty != Op->getType())
833 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000834
835 if (FoundDenominatorTerm) {
836 Qs.push_back(Op);
837 continue;
838 }
839
840 // Check whether Denominator divides one of the product operands.
841 const SCEV *Q, *R;
842 divide(SE, Op, Denominator, &Q, &R);
843 if (!R->isZero()) {
844 Qs.push_back(Op);
845 continue;
846 }
847
848 // Bail out if types do not match.
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000849 if (Ty != Q->getType())
850 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000851
852 FoundDenominatorTerm = true;
853 Qs.push_back(Q);
854 }
855
856 if (FoundDenominatorTerm) {
857 Remainder = Zero;
858 if (Qs.size() == 1)
859 Quotient = Qs[0];
860 else
861 Quotient = SE.getMulExpr(Qs);
862 return;
863 }
864
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000865 if (!isa<SCEVUnknown>(Denominator))
866 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000867
868 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
869 ValueToValueMap RewriteMap;
870 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
871 cast<SCEVConstant>(Zero)->getValue();
872 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
873
874 if (Remainder->isZero()) {
875 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
876 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
877 cast<SCEVConstant>(One)->getValue();
878 Quotient =
879 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
880 return;
881 }
882
883 // Quotient is (Numerator - Remainder) divided by Denominator.
884 const SCEV *Q, *R;
885 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000886 // This SCEV does not seem to simplify: fail the division here.
887 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
888 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000889 divide(SE, Diff, Denominator, &Q, &R);
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000890 if (R != Zero)
891 return cannotDivide(Numerator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000892 Quotient = Q;
893 }
894
895private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000896 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
897 const SCEV *Denominator)
898 : SE(S), Denominator(Denominator) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +0000899 Zero = SE.getZero(Denominator->getType());
900 One = SE.getOne(Denominator->getType());
David Majnemer5d2670c2014-11-17 11:27:45 +0000901
Matthew Simpsonddb4d972015-09-10 18:12:47 +0000902 // We generally do not know how to divide Expr by Denominator. We
903 // initialize the division to a "cannot divide" state to simplify the rest
904 // of the code.
905 cannotDivide(Numerator);
906 }
907
908 // Convenience function for giving up on the division. We set the quotient to
909 // be equal to zero and the remainder to be equal to the numerator.
910 void cannotDivide(const SCEV *Numerator) {
David Majnemer5d2670c2014-11-17 11:27:45 +0000911 Quotient = Zero;
912 Remainder = Numerator;
913 }
914
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000915 ScalarEvolution &SE;
916 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000917};
918
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000919}
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000920
Chris Lattnerd934c702004-04-02 20:23:17 +0000921//===----------------------------------------------------------------------===//
922// Simple SCEV method implementations
923//===----------------------------------------------------------------------===//
924
Eli Friedman61f67622008-08-04 23:49:06 +0000925/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000926/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000927static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000928 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000929 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000930 // Handle the simplest case efficiently.
931 if (K == 1)
932 return SE.getTruncateOrZeroExtend(It, ResultTy);
933
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000934 // We are using the following formula for BC(It, K):
935 //
936 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
937 //
Eli Friedman61f67622008-08-04 23:49:06 +0000938 // Suppose, W is the bitwidth of the return value. We must be prepared for
939 // overflow. Hence, we must assure that the result of our computation is
940 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
941 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000942 //
Eli Friedman61f67622008-08-04 23:49:06 +0000943 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000944 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000945 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
946 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000947 //
Eli Friedman61f67622008-08-04 23:49:06 +0000948 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000949 //
Eli Friedman61f67622008-08-04 23:49:06 +0000950 // This formula is trivially equivalent to the previous formula. However,
951 // this formula can be implemented much more efficiently. The trick is that
952 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
953 // arithmetic. To do exact division in modular arithmetic, all we have
954 // to do is multiply by the inverse. Therefore, this step can be done at
955 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000956 //
Eli Friedman61f67622008-08-04 23:49:06 +0000957 // The next issue is how to safely do the division by 2^T. The way this
958 // is done is by doing the multiplication step at a width of at least W + T
959 // bits. This way, the bottom W+T bits of the product are accurate. Then,
960 // when we perform the division by 2^T (which is equivalent to a right shift
961 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
962 // truncated out after the division by 2^T.
963 //
964 // In comparison to just directly using the first formula, this technique
965 // is much more efficient; using the first formula requires W * K bits,
966 // but this formula less than W + K bits. Also, the first formula requires
967 // a division step, whereas this formula only requires multiplies and shifts.
968 //
969 // It doesn't matter whether the subtraction step is done in the calculation
970 // width or the input iteration count's width; if the subtraction overflows,
971 // the result must be zero anyway. We prefer here to do it in the width of
972 // the induction variable because it helps a lot for certain cases; CodeGen
973 // isn't smart enough to ignore the overflow, which leads to much less
974 // efficient code if the width of the subtraction is wider than the native
975 // register width.
976 //
977 // (It's possible to not widen at all by pulling out factors of 2 before
978 // the multiplication; for example, K=2 can be calculated as
979 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
980 // extra arithmetic, so it's not an obvious win, and it gets
981 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000982
Eli Friedman61f67622008-08-04 23:49:06 +0000983 // Protection from insane SCEVs; this bound is conservative,
984 // but it probably doesn't matter.
985 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000986 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000987
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000988 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000989
Eli Friedman61f67622008-08-04 23:49:06 +0000990 // Calculate K! / 2^T and T; we divide out the factors of two before
991 // multiplying for calculating K! / 2^T to avoid overflow.
992 // Other overflow doesn't matter because we only care about the bottom
993 // W bits of the result.
994 APInt OddFactorial(W, 1);
995 unsigned T = 1;
996 for (unsigned i = 3; i <= K; ++i) {
997 APInt Mult(W, i);
998 unsigned TwoFactors = Mult.countTrailingZeros();
999 T += TwoFactors;
1000 Mult = Mult.lshr(TwoFactors);
1001 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001002 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001003
Eli Friedman61f67622008-08-04 23:49:06 +00001004 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001005 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001006
Dan Gohman8b0a4192010-03-01 17:49:51 +00001007 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001008 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001009
1010 // Calculate the multiplicative inverse of K! / 2^T;
1011 // this multiplication factor will perform the exact division by
1012 // K! / 2^T.
1013 APInt Mod = APInt::getSignedMinValue(W+1);
1014 APInt MultiplyFactor = OddFactorial.zext(W+1);
1015 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1016 MultiplyFactor = MultiplyFactor.trunc(W);
1017
1018 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001019 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001020 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001021 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001022 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001023 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001024 Dividend = SE.getMulExpr(Dividend,
1025 SE.getTruncateOrZeroExtend(S, CalculationTy));
1026 }
1027
1028 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001029 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001030
1031 // Truncate the result, and divide by K! / 2^T.
1032
1033 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1034 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001035}
1036
Chris Lattnerd934c702004-04-02 20:23:17 +00001037/// evaluateAtIteration - Return the value of this chain of recurrences at
1038/// the specified iteration number. We can evaluate this recurrence by
1039/// multiplying each element in the chain by the binomial coefficient
1040/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1041///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001042/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001043///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001044/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001045///
Dan Gohmanaf752342009-07-07 17:06:11 +00001046const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001047 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001048 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001049 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001050 // The computation is correct in the face of overflow provided that the
1051 // multiplication is performed _after_ the evaluation of the binomial
1052 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001053 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001054 if (isa<SCEVCouldNotCompute>(Coeff))
1055 return Coeff;
1056
1057 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001058 }
1059 return Result;
1060}
1061
Chris Lattnerd934c702004-04-02 20:23:17 +00001062//===----------------------------------------------------------------------===//
1063// SCEV Expression folder implementations
1064//===----------------------------------------------------------------------===//
1065
Dan Gohmanaf752342009-07-07 17:06:11 +00001066const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001067 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001068 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001069 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001070 assert(isSCEVable(Ty) &&
1071 "This is not a conversion to a SCEVable type!");
1072 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001073
Dan Gohman3a302cb2009-07-13 20:50:19 +00001074 FoldingSetNodeID ID;
1075 ID.AddInteger(scTruncate);
1076 ID.AddPointer(Op);
1077 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001078 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001079 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1080
Dan Gohman3423e722009-06-30 20:13:32 +00001081 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001082 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001083 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001084 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001085
Dan Gohman79af8542009-04-22 16:20:48 +00001086 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001087 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001088 return getTruncateExpr(ST->getOperand(), Ty);
1089
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001090 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001091 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001092 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1093
1094 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001095 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001096 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1097
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001098 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
Nick Lewycky2ce28322015-03-20 02:52:23 +00001099 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001100 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1101 SmallVector<const SCEV *, 4> Operands;
1102 bool hasTrunc = false;
1103 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1104 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001105 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1106 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001107 Operands.push_back(S);
1108 }
1109 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001110 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001111 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001112 }
1113
Nick Lewycky5c901f32011-01-19 18:56:00 +00001114 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
Nick Lewyckybe8af482015-03-20 02:25:00 +00001115 // eliminate all the truncates, or we replace other casts with truncates.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001116 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1117 SmallVector<const SCEV *, 4> Operands;
1118 bool hasTrunc = false;
1119 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1120 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
Nick Lewyckybe8af482015-03-20 02:25:00 +00001121 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1122 hasTrunc = isa<SCEVTruncateExpr>(S);
Nick Lewycky5c901f32011-01-19 18:56:00 +00001123 Operands.push_back(S);
1124 }
1125 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001126 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001127 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001128 }
1129
Dan Gohman5a728c92009-06-18 16:24:47 +00001130 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001131 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001132 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00001133 for (const SCEV *Op : AddRec->operands())
1134 Operands.push_back(getTruncateExpr(Op, Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001135 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001136 }
1137
Dan Gohman89dd42a2010-06-25 18:47:08 +00001138 // The cast wasn't folded; create an explicit cast node. We can reuse
1139 // the existing insert position since if we get here, we won't have
1140 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001141 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1142 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001143 UniqueSCEVs.InsertNode(S, IP);
1144 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001145}
1146
Sanjoy Das4153f472015-02-18 01:47:07 +00001147// Get the limit of a recurrence such that incrementing by Step cannot cause
1148// signed overflow as long as the value of the recurrence within the
1149// loop does not exceed this limit before incrementing.
1150static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1151 ICmpInst::Predicate *Pred,
1152 ScalarEvolution *SE) {
1153 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1154 if (SE->isKnownPositive(Step)) {
1155 *Pred = ICmpInst::ICMP_SLT;
1156 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1157 SE->getSignedRange(Step).getSignedMax());
1158 }
1159 if (SE->isKnownNegative(Step)) {
1160 *Pred = ICmpInst::ICMP_SGT;
1161 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1162 SE->getSignedRange(Step).getSignedMin());
1163 }
1164 return nullptr;
1165}
1166
1167// Get the limit of a recurrence such that incrementing by Step cannot cause
1168// unsigned overflow as long as the value of the recurrence within the loop does
1169// not exceed this limit before incrementing.
1170static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1171 ICmpInst::Predicate *Pred,
1172 ScalarEvolution *SE) {
1173 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1174 *Pred = ICmpInst::ICMP_ULT;
1175
1176 return SE->getConstant(APInt::getMinValue(BitWidth) -
1177 SE->getUnsignedRange(Step).getUnsignedMax());
1178}
1179
1180namespace {
1181
1182struct ExtendOpTraitsBase {
1183 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1184};
1185
1186// Used to make code generic over signed and unsigned overflow.
1187template <typename ExtendOp> struct ExtendOpTraits {
1188 // Members present:
1189 //
1190 // static const SCEV::NoWrapFlags WrapType;
1191 //
1192 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1193 //
1194 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1195 // ICmpInst::Predicate *Pred,
1196 // ScalarEvolution *SE);
1197};
1198
1199template <>
1200struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1201 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1202
1203 static const GetExtendExprTy GetExtendExpr;
1204
1205 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1206 ICmpInst::Predicate *Pred,
1207 ScalarEvolution *SE) {
1208 return getSignedOverflowLimitForStep(Step, Pred, SE);
1209 }
1210};
1211
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001212const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001213 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1214
1215template <>
1216struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1217 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1218
1219 static const GetExtendExprTy GetExtendExpr;
1220
1221 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1222 ICmpInst::Predicate *Pred,
1223 ScalarEvolution *SE) {
1224 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1225 }
1226};
1227
Sanjoy Dasc1065b92015-02-18 08:03:22 +00001228const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
Sanjoy Das4153f472015-02-18 01:47:07 +00001229 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
Alexander Kornienkof00654e2015-06-23 09:49:53 +00001230}
Sanjoy Das4153f472015-02-18 01:47:07 +00001231
1232// The recurrence AR has been shown to have no signed/unsigned wrap or something
1233// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1234// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1235// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1236// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1237// expression "Step + sext/zext(PreIncAR)" is congruent with
1238// "sext/zext(PostIncAR)"
1239template <typename ExtendOpTy>
1240static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1241 ScalarEvolution *SE) {
1242 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1243 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1244
1245 const Loop *L = AR->getLoop();
1246 const SCEV *Start = AR->getStart();
1247 const SCEV *Step = AR->getStepRecurrence(*SE);
1248
1249 // Check for a simple looking step prior to loop entry.
1250 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1251 if (!SA)
1252 return nullptr;
1253
1254 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1255 // subtraction is expensive. For this purpose, perform a quick and dirty
1256 // difference, by checking for Step in the operand list.
1257 SmallVector<const SCEV *, 4> DiffOps;
1258 for (const SCEV *Op : SA->operands())
1259 if (Op != Step)
1260 DiffOps.push_back(Op);
1261
1262 if (DiffOps.size() == SA->getNumOperands())
1263 return nullptr;
1264
1265 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1266 // `Step`:
1267
1268 // 1. NSW/NUW flags on the step increment.
Sanjoy Das0714e3e2015-10-23 06:33:47 +00001269 auto PreStartFlags =
1270 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1271 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
Sanjoy Das4153f472015-02-18 01:47:07 +00001272 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1273 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1274
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001275 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1276 // "S+X does not sign/unsign-overflow".
Sanjoy Das4153f472015-02-18 01:47:07 +00001277 //
1278
Sanjoy Dasb14010d2015-02-24 01:02:42 +00001279 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1280 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1281 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
Sanjoy Das4153f472015-02-18 01:47:07 +00001282 return PreStart;
1283
1284 // 2. Direct overflow check on the step operation's expression.
1285 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1286 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1287 const SCEV *OperandExtendedStart =
1288 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1289 (SE->*GetExtendExpr)(Step, WideTy));
1290 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1291 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1292 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1293 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1294 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1295 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1296 }
1297 return PreStart;
1298 }
1299
1300 // 3. Loop precondition.
1301 ICmpInst::Predicate Pred;
1302 const SCEV *OverflowLimit =
1303 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1304
1305 if (OverflowLimit &&
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001306 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
Sanjoy Das4153f472015-02-18 01:47:07 +00001307 return PreStart;
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00001308
Sanjoy Das4153f472015-02-18 01:47:07 +00001309 return nullptr;
1310}
1311
1312// Get the normalized zero or sign extended expression for this AddRec's Start.
1313template <typename ExtendOpTy>
1314static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1315 ScalarEvolution *SE) {
1316 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1317
1318 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1319 if (!PreStart)
1320 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1321
1322 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1323 (SE->*GetExtendExpr)(PreStart, Ty));
1324}
1325
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001326// Try to prove away overflow by looking at "nearby" add recurrences. A
1327// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1328// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1329//
1330// Formally:
1331//
1332// {S,+,X} == {S-T,+,X} + T
1333// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1334//
1335// If ({S-T,+,X} + T) does not overflow ... (1)
1336//
1337// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1338//
1339// If {S-T,+,X} does not overflow ... (2)
1340//
1341// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1342// == {Ext(S-T)+Ext(T),+,Ext(X)}
1343//
1344// If (S-T)+T does not overflow ... (3)
1345//
1346// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1347// == {Ext(S),+,Ext(X)} == LHS
1348//
1349// Thus, if (1), (2) and (3) are true for some T, then
1350// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1351//
1352// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1353// does not overflow" restricted to the 0th iteration. Therefore we only need
1354// to check for (1) and (2).
1355//
1356// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1357// is `Delta` (defined below).
1358//
1359template <typename ExtendOpTy>
1360bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1361 const SCEV *Step,
1362 const Loop *L) {
1363 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1364
1365 // We restrict `Start` to a constant to prevent SCEV from spending too much
1366 // time here. It is correct (but more expensive) to continue with a
1367 // non-constant `Start` and do a general SCEV subtraction to compute
1368 // `PreStart` below.
1369 //
1370 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1371 if (!StartC)
1372 return false;
1373
1374 APInt StartAI = StartC->getValue()->getValue();
1375
1376 for (unsigned Delta : {-2, -1, 1, 2}) {
1377 const SCEV *PreStart = getConstant(StartAI - Delta);
1378
Sanjoy Das42801102015-10-23 06:57:21 +00001379 FoldingSetNodeID ID;
1380 ID.AddInteger(scAddRecExpr);
1381 ID.AddPointer(PreStart);
1382 ID.AddPointer(Step);
1383 ID.AddPointer(L);
1384 void *IP = nullptr;
1385 const auto *PreAR =
1386 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1387
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001388 // Give up if we don't already have the add recurrence we need because
1389 // actually constructing an add recurrence is relatively expensive.
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001390 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1391 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1392 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1393 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1394 DeltaS, &Pred, this);
1395 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1396 return true;
1397 }
1398 }
1399
1400 return false;
1401}
1402
Dan Gohmanaf752342009-07-07 17:06:11 +00001403const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001404 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001405 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001406 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001407 assert(isSCEVable(Ty) &&
1408 "This is not a conversion to a SCEVable type!");
1409 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001410
Dan Gohman3423e722009-06-30 20:13:32 +00001411 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001412 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1413 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001414 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001415
Dan Gohman79af8542009-04-22 16:20:48 +00001416 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001417 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001418 return getZeroExtendExpr(SZ->getOperand(), Ty);
1419
Dan Gohman74a0ba12009-07-13 20:55:53 +00001420 // Before doing any expensive analysis, check to see if we've already
1421 // computed a SCEV for this Op and Ty.
1422 FoldingSetNodeID ID;
1423 ID.AddInteger(scZeroExtend);
1424 ID.AddPointer(Op);
1425 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001426 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001427 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1428
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001429 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1430 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1431 // It's possible the bits taken off by the truncate were all zero bits. If
1432 // so, we should be able to simplify this further.
1433 const SCEV *X = ST->getOperand();
1434 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001435 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1436 unsigned NewBits = getTypeSizeInBits(Ty);
1437 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001438 CR.zextOrTrunc(NewBits)))
1439 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001440 }
1441
Dan Gohman76466372009-04-27 20:16:15 +00001442 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001443 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001444 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001445 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001446 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001447 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001448 const SCEV *Start = AR->getStart();
1449 const SCEV *Step = AR->getStepRecurrence(*this);
1450 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1451 const Loop *L = AR->getLoop();
1452
Dan Gohman62ef6a72009-07-25 01:22:26 +00001453 // If we have special knowledge that this addrec won't overflow,
1454 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001455 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001456 return getAddRecExpr(
1457 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1458 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001459
Dan Gohman76466372009-04-27 20:16:15 +00001460 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1461 // Note that this serves two purposes: It filters out loops that are
1462 // simply not analyzable, and it covers the case where this code is
1463 // being called from within backedge-taken count analysis, such that
1464 // attempting to ask for the backedge-taken count would likely result
1465 // in infinite recursion. In the later case, the analysis code will
1466 // cope with a conservative value, and it will take care to purge
1467 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001468 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001469 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001470 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001471 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001472
1473 // Check whether the backedge-taken count can be losslessly casted to
1474 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001475 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001476 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001477 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001478 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1479 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001480 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001481 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001482 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001483 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1484 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1485 const SCEV *WideMaxBECount =
1486 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001487 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001488 getAddExpr(WideStart,
1489 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001490 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001491 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001492 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1493 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001494 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001495 return getAddRecExpr(
1496 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1497 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001498 }
Dan Gohman76466372009-04-27 20:16:15 +00001499 // Similar to above, only this time treat the step value as signed.
1500 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001501 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001502 getAddExpr(WideStart,
1503 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001504 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001505 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001506 // Cache knowledge of AR NW, which is propagated to this AddRec.
1507 // Negative step causes unsigned wrap, but it still can't self-wrap.
1508 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001509 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001510 return getAddRecExpr(
1511 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1512 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001513 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001514 }
1515
1516 // If the backedge is guarded by a comparison with the pre-inc value
1517 // the addrec is safe. Also, if the entry is guarded by a comparison
1518 // with the start value and the backedge is guarded by a comparison
1519 // with the post-inc value, the addrec is safe.
1520 if (isKnownPositive(Step)) {
1521 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1522 getUnsignedRange(Step).getUnsignedMax());
1523 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001524 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001525 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001526 AR->getPostIncExpr(*this), N))) {
1527 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1528 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001529 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001530 return getAddRecExpr(
1531 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1532 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001533 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001534 } else if (isKnownNegative(Step)) {
1535 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1536 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001537 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1538 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001539 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001540 AR->getPostIncExpr(*this), N))) {
1541 // Cache knowledge of AR NW, which is propagated to this AddRec.
1542 // Negative step causes unsigned wrap, but it still can't self-wrap.
1543 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1544 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001545 return getAddRecExpr(
1546 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1547 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001548 }
Dan Gohman76466372009-04-27 20:16:15 +00001549 }
1550 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001551
1552 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1553 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1554 return getAddRecExpr(
1555 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1556 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1557 }
Dan Gohman76466372009-04-27 20:16:15 +00001558 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001559
Sanjoy Daseeca9f62015-10-22 19:57:38 +00001560 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1561 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1562 if (SA->getNoWrapFlags(SCEV::FlagNUW)) {
1563 // If the addition does not unsign overflow then we can, by definition,
1564 // commute the zero extension with the addition operation.
1565 SmallVector<const SCEV *, 4> Ops;
1566 for (const auto *Op : SA->operands())
1567 Ops.push_back(getZeroExtendExpr(Op, Ty));
1568 return getAddExpr(Ops, SCEV::FlagNUW);
1569 }
1570 }
1571
Dan Gohman74a0ba12009-07-13 20:55:53 +00001572 // The cast wasn't folded; create an explicit cast node.
1573 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001574 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001575 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1576 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001577 UniqueSCEVs.InsertNode(S, IP);
1578 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001579}
1580
Dan Gohmanaf752342009-07-07 17:06:11 +00001581const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001582 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001583 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001584 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001585 assert(isSCEVable(Ty) &&
1586 "This is not a conversion to a SCEVable type!");
1587 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001588
Dan Gohman3423e722009-06-30 20:13:32 +00001589 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001590 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1591 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001592 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001593
Dan Gohman79af8542009-04-22 16:20:48 +00001594 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001595 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001596 return getSignExtendExpr(SS->getOperand(), Ty);
1597
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001598 // sext(zext(x)) --> zext(x)
1599 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1600 return getZeroExtendExpr(SZ->getOperand(), Ty);
1601
Dan Gohman74a0ba12009-07-13 20:55:53 +00001602 // Before doing any expensive analysis, check to see if we've already
1603 // computed a SCEV for this Op and Ty.
1604 FoldingSetNodeID ID;
1605 ID.AddInteger(scSignExtend);
1606 ID.AddPointer(Op);
1607 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001608 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001609 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1610
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001611 // If the input value is provably positive, build a zext instead.
1612 if (isKnownNonNegative(Op))
1613 return getZeroExtendExpr(Op, Ty);
1614
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001615 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1616 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1617 // It's possible the bits taken off by the truncate were all sign bits. If
1618 // so, we should be able to simplify this further.
1619 const SCEV *X = ST->getOperand();
1620 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001621 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1622 unsigned NewBits = getTypeSizeInBits(Ty);
1623 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001624 CR.sextOrTrunc(NewBits)))
1625 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001626 }
1627
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001628 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001629 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001630 if (SA->getNumOperands() == 2) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001631 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1632 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001633 if (SMul && SC1) {
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001634 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001635 const APInt &C1 = SC1->getValue()->getValue();
1636 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001637 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001638 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001639 return getAddExpr(getSignExtendExpr(SC1, Ty),
1640 getSignExtendExpr(SMul, Ty));
1641 }
1642 }
1643 }
Sanjoy Dasa060e602015-10-22 19:57:25 +00001644
1645 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1646 if (SA->getNoWrapFlags(SCEV::FlagNSW)) {
1647 // If the addition does not sign overflow then we can, by definition,
1648 // commute the sign extension with the addition operation.
1649 SmallVector<const SCEV *, 4> Ops;
1650 for (const auto *Op : SA->operands())
1651 Ops.push_back(getSignExtendExpr(Op, Ty));
1652 return getAddExpr(Ops, SCEV::FlagNSW);
1653 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001654 }
Dan Gohman76466372009-04-27 20:16:15 +00001655 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001656 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001657 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001658 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001659 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001660 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001661 const SCEV *Start = AR->getStart();
1662 const SCEV *Step = AR->getStepRecurrence(*this);
1663 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1664 const Loop *L = AR->getLoop();
1665
Dan Gohman62ef6a72009-07-25 01:22:26 +00001666 // If we have special knowledge that this addrec won't overflow,
1667 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001668 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Sanjoy Das4153f472015-02-18 01:47:07 +00001669 return getAddRecExpr(
1670 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1671 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001672
Dan Gohman76466372009-04-27 20:16:15 +00001673 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1674 // Note that this serves two purposes: It filters out loops that are
1675 // simply not analyzable, and it covers the case where this code is
1676 // being called from within backedge-taken count analysis, such that
1677 // attempting to ask for the backedge-taken count would likely result
1678 // in infinite recursion. In the later case, the analysis code will
1679 // cope with a conservative value, and it will take care to purge
1680 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001681 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001682 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001683 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001684 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001685
1686 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001687 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001688 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001689 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001690 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001691 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1692 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001693 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001694 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001695 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001696 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1697 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1698 const SCEV *WideMaxBECount =
1699 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001700 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001701 getAddExpr(WideStart,
1702 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001703 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001704 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001705 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1706 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001707 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001708 return getAddRecExpr(
1709 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1710 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001711 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001712 // Similar to above, only this time treat the step value as unsigned.
1713 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001714 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001715 getAddExpr(WideStart,
1716 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001717 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001718 if (SAdd == OperandExtendedAdd) {
Sanjoy Dasbf5d8702015-02-09 18:34:55 +00001719 // If AR wraps around then
1720 //
1721 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1722 // => SAdd != OperandExtendedAdd
1723 //
1724 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1725 // (SAdd == OperandExtendedAdd => AR is NW)
1726
1727 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1728
Dan Gohman8c129d72009-07-16 17:34:36 +00001729 // Return the expression with the addrec on the outside.
Sanjoy Das4153f472015-02-18 01:47:07 +00001730 return getAddRecExpr(
1731 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1732 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001733 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001734 }
1735
1736 // If the backedge is guarded by a comparison with the pre-inc value
1737 // the addrec is safe. Also, if the entry is guarded by a comparison
1738 // with the start value and the backedge is guarded by a comparison
1739 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001740 ICmpInst::Predicate Pred;
Sanjoy Das4153f472015-02-18 01:47:07 +00001741 const SCEV *OverflowLimit =
1742 getSignedOverflowLimitForStep(Step, &Pred, this);
Andrew Trick812276e2011-05-31 21:17:47 +00001743 if (OverflowLimit &&
1744 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1745 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1746 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1747 OverflowLimit)))) {
1748 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1749 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Sanjoy Das4153f472015-02-18 01:47:07 +00001750 return getAddRecExpr(
1751 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1752 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001753 }
1754 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001755 // If Start and Step are constants, check if we can apply this
1756 // transformation:
1757 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
Sanjoy Das1195dbe2015-10-08 03:45:58 +00001758 auto *SC1 = dyn_cast<SCEVConstant>(Start);
1759 auto *SC2 = dyn_cast<SCEVConstant>(Step);
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001760 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001761 const APInt &C1 = SC1->getValue()->getValue();
1762 const APInt &C2 = SC2->getValue()->getValue();
1763 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1764 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001765 Start = getSignExtendExpr(Start, Ty);
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00001766 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1767 AR->getNoWrapFlags());
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001768 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1769 }
1770 }
Sanjoy Das9e2c5012015-03-04 22:24:17 +00001771
1772 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1773 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1774 return getAddRecExpr(
1775 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1776 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1777 }
Dan Gohman76466372009-04-27 20:16:15 +00001778 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001779
Dan Gohman74a0ba12009-07-13 20:55:53 +00001780 // The cast wasn't folded; create an explicit cast node.
1781 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001782 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001783 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1784 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001785 UniqueSCEVs.InsertNode(S, IP);
1786 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001787}
1788
Dan Gohman8db2edc2009-06-13 15:56:47 +00001789/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1790/// unspecified bits out to the given type.
1791///
Dan Gohmanaf752342009-07-07 17:06:11 +00001792const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001793 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001794 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1795 "This is not an extending conversion!");
1796 assert(isSCEVable(Ty) &&
1797 "This is not a conversion to a SCEVable type!");
1798 Ty = getEffectiveSCEVType(Ty);
1799
1800 // Sign-extend negative constants.
1801 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1802 if (SC->getValue()->getValue().isNegative())
1803 return getSignExtendExpr(Op, Ty);
1804
1805 // Peel off a truncate cast.
1806 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001807 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001808 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1809 return getAnyExtendExpr(NewOp, Ty);
1810 return getTruncateOrNoop(NewOp, Ty);
1811 }
1812
1813 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001814 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001815 if (!isa<SCEVZeroExtendExpr>(ZExt))
1816 return ZExt;
1817
1818 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001819 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001820 if (!isa<SCEVSignExtendExpr>(SExt))
1821 return SExt;
1822
Dan Gohman51ad99d2010-01-21 02:09:26 +00001823 // Force the cast to be folded into the operands of an addrec.
1824 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1825 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001826 for (const SCEV *Op : AR->operands())
1827 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001828 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001829 }
1830
Dan Gohman8db2edc2009-06-13 15:56:47 +00001831 // If the expression is obviously signed, use the sext cast value.
1832 if (isa<SCEVSMaxExpr>(Op))
1833 return SExt;
1834
1835 // Absent any other information, use the zext cast value.
1836 return ZExt;
1837}
1838
Dan Gohman038d02e2009-06-14 22:58:51 +00001839/// CollectAddOperandsWithScales - Process the given Ops list, which is
1840/// a list of operands to be added under the given scale, update the given
1841/// map. This is a helper function for getAddRecExpr. As an example of
1842/// what it does, given a sequence of operands that would form an add
1843/// expression like this:
1844///
Tobias Grosserba49e422014-03-05 10:37:17 +00001845/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001846///
1847/// where A and B are constants, update the map with these values:
1848///
1849/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1850///
1851/// and add 13 + A*B*29 to AccumulatedConstant.
1852/// This will allow getAddRecExpr to produce this:
1853///
1854/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1855///
1856/// This form often exposes folding opportunities that are hidden in
1857/// the original operand list.
1858///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001859/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001860/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1861/// the common case where no interesting opportunities are present, and
1862/// is also used as a check to avoid infinite recursion.
1863///
1864static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001865CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001866 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001867 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001868 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001869 const APInt &Scale,
1870 ScalarEvolution &SE) {
1871 bool Interesting = false;
1872
Dan Gohman45073042010-06-18 19:12:32 +00001873 // Iterate over the add operands. They are sorted, with constants first.
1874 unsigned i = 0;
1875 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1876 ++i;
1877 // Pull a buried constant out to the outside.
1878 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1879 Interesting = true;
1880 AccumulatedConstant += Scale * C->getValue()->getValue();
1881 }
1882
1883 // Next comes everything else. We're especially interested in multiplies
1884 // here, but they're in the middle, so just visit the rest with one loop.
1885 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001886 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1887 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1888 APInt NewScale =
1889 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1890 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1891 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001892 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001893 Interesting |=
1894 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001895 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001896 NewScale, SE);
1897 } else {
1898 // A multiplication of a constant with some other value. Update
1899 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001900 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1901 const SCEV *Key = SE.getMulExpr(MulOps);
Sanjoy Das7a9f8bb2015-09-17 19:04:09 +00001902 auto Pair = M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001903 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001904 NewOps.push_back(Pair.first->first);
1905 } else {
1906 Pair.first->second += NewScale;
1907 // The map already had an entry for this value, which may indicate
1908 // a folding opportunity.
1909 Interesting = true;
1910 }
1911 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001912 } else {
1913 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001914 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001915 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001916 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001917 NewOps.push_back(Pair.first->first);
1918 } else {
1919 Pair.first->second += Scale;
1920 // The map already had an entry for this value, which may indicate
1921 // a folding opportunity.
1922 Interesting = true;
1923 }
1924 }
1925 }
1926
1927 return Interesting;
1928}
1929
Sanjoy Das81401d42015-01-10 23:41:24 +00001930// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1931// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1932// can't-overflow flags for the operation if possible.
1933static SCEV::NoWrapFlags
1934StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1935 const SmallVectorImpl<const SCEV *> &Ops,
Sanjoy Das8f274152015-10-22 19:57:19 +00001936 SCEV::NoWrapFlags Flags) {
Sanjoy Das81401d42015-01-10 23:41:24 +00001937 using namespace std::placeholders;
Sanjoy Das8f274152015-10-22 19:57:19 +00001938 typedef OverflowingBinaryOperator OBO;
Sanjoy Das81401d42015-01-10 23:41:24 +00001939
1940 bool CanAnalyze =
1941 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1942 (void)CanAnalyze;
1943 assert(CanAnalyze && "don't call from other places!");
1944
1945 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1946 SCEV::NoWrapFlags SignOrUnsignWrap =
Sanjoy Das8f274152015-10-22 19:57:19 +00001947 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001948
1949 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Sanjoy Das9b0015f2015-11-29 23:40:57 +00001950 auto IsKnownNonNegative = [&](const SCEV *S) {
1951 return SE->isKnownNonNegative(S);
1952 };
Sanjoy Das81401d42015-01-10 23:41:24 +00001953
Sanjoy Das3b827c72015-11-29 23:40:53 +00001954 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
Sanjoy Das8f274152015-10-22 19:57:19 +00001955 Flags =
1956 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Sanjoy Das81401d42015-01-10 23:41:24 +00001957
Sanjoy Das8f274152015-10-22 19:57:19 +00001958 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1959
1960 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1961 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1962
1963 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
1964 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
1965
1966 const APInt &C = cast<SCEVConstant>(Ops[0])->getValue()->getValue();
1967 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
1968 auto NSWRegion =
1969 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap);
1970 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
1971 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
1972 }
1973 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
1974 auto NUWRegion =
1975 ConstantRange::makeNoWrapRegion(Instruction::Add, C,
1976 OBO::NoUnsignedWrap);
1977 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
1978 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
1979 }
1980 }
1981
1982 return Flags;
Sanjoy Das81401d42015-01-10 23:41:24 +00001983}
1984
Dan Gohman4d5435d2009-05-24 23:45:28 +00001985/// getAddExpr - Get a canonical add expression, or something simpler if
1986/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001987const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001988 SCEV::NoWrapFlags Flags) {
1989 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1990 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001991 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001992 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001993#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001994 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001995 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001996 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001997 "SCEVAddExpr operand types don't match!");
1998#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001999
2000 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002001 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002002
Sanjoy Das64895612015-10-09 02:44:45 +00002003 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2004
Chris Lattnerd934c702004-04-02 20:23:17 +00002005 // If there are any constants, fold them together.
2006 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002007 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002008 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00002009 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002010 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002011 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00002012 Ops[0] = getConstant(LHSC->getValue()->getValue() +
2013 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00002014 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002015 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002016 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002017 }
2018
2019 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002020 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002021 Ops.erase(Ops.begin());
2022 --Idx;
2023 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002024
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002025 if (Ops.size() == 1) return Ops[0];
2026 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002027
Dan Gohman15871f22010-08-27 21:39:59 +00002028 // Okay, check to see if the same value occurs in the operand list more than
2029 // once. If so, merge them together into an multiply expression. Since we
2030 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00002031 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00002032 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00002033 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00002034 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00002035 // Scan ahead to count how many equal operands there are.
2036 unsigned Count = 2;
2037 while (i+Count != e && Ops[i+Count] == Ops[i])
2038 ++Count;
2039 // Merge the values into a multiply.
2040 const SCEV *Scale = getConstant(Ty, Count);
2041 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2042 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00002043 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00002044 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00002045 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00002046 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00002047 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00002048 }
Dan Gohmane67b2872010-08-12 14:46:54 +00002049 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00002050 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002051
Dan Gohman2e55cc52009-05-08 21:03:19 +00002052 // Check for truncates. If all the operands are truncated from the same
2053 // type, see if factoring out the truncate would permit the result to be
2054 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2055 // if the contents of the resulting outer trunc fold to something simple.
2056 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2057 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00002058 Type *DstType = Trunc->getType();
2059 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00002060 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002061 bool Ok = true;
2062 // Check all the operands to see if they can be represented in the
2063 // source type of the truncate.
2064 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2065 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2066 if (T->getOperand()->getType() != SrcType) {
2067 Ok = false;
2068 break;
2069 }
2070 LargeOps.push_back(T->getOperand());
2071 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002072 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002073 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002074 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00002075 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2076 if (const SCEVTruncateExpr *T =
2077 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2078 if (T->getOperand()->getType() != SrcType) {
2079 Ok = false;
2080 break;
2081 }
2082 LargeMulOps.push_back(T->getOperand());
Sanjoy Das63914592015-10-18 00:29:20 +00002083 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00002084 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00002085 } else {
2086 Ok = false;
2087 break;
2088 }
2089 }
2090 if (Ok)
2091 LargeOps.push_back(getMulExpr(LargeMulOps));
2092 } else {
2093 Ok = false;
2094 break;
2095 }
2096 }
2097 if (Ok) {
2098 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00002099 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00002100 // If it folds to something simple, use it. Otherwise, don't.
2101 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2102 return getTruncateExpr(Fold, DstType);
2103 }
2104 }
2105
2106 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00002107 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2108 ++Idx;
2109
2110 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00002111 if (Idx < Ops.size()) {
2112 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002113 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002114 // If we have an add, expand the add operands onto the end of the operands
2115 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002116 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002117 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002118 DeletedAdd = true;
2119 }
2120
2121 // If we deleted at least one add, we added operands to the end of the list,
2122 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002123 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002124 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002125 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002126 }
2127
2128 // Skip over the add expression until we get to a multiply.
2129 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2130 ++Idx;
2131
Dan Gohman038d02e2009-06-14 22:58:51 +00002132 // Check to see if there are any folding opportunities present with
2133 // operands multiplied by constant values.
2134 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2135 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00002136 DenseMap<const SCEV *, APInt> M;
2137 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00002138 APInt AccumulatedConstant(BitWidth, 0);
2139 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00002140 Ops.data(), Ops.size(),
2141 APInt(BitWidth, 1), *this)) {
Sanjoy Das7d752672015-12-08 04:32:54 +00002142 struct APIntCompare {
2143 bool operator()(const APInt &LHS, const APInt &RHS) const {
2144 return LHS.ult(RHS);
2145 }
2146 };
2147
Dan Gohman038d02e2009-06-14 22:58:51 +00002148 // Some interesting folding opportunity is present, so its worthwhile to
2149 // re-generate the operands list. Group the operands by constant scale,
2150 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00002151 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002152 for (const SCEV *NewOp : NewOps)
2153 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
Dan Gohman038d02e2009-06-14 22:58:51 +00002154 // Re-generate the operands list.
2155 Ops.clear();
2156 if (AccumulatedConstant != 0)
2157 Ops.push_back(getConstant(AccumulatedConstant));
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002158 for (auto &MulOp : MulOpLists)
2159 if (MulOp.first != 0)
2160 Ops.push_back(getMulExpr(getConstant(MulOp.first),
2161 getAddExpr(MulOp.second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00002162 if (Ops.empty())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002163 return getZero(Ty);
Dan Gohman038d02e2009-06-14 22:58:51 +00002164 if (Ops.size() == 1)
2165 return Ops[0];
2166 return getAddExpr(Ops);
2167 }
2168 }
2169
Chris Lattnerd934c702004-04-02 20:23:17 +00002170 // If we are adding something to a multiply expression, make sure the
2171 // something is not already an operand of the multiply. If so, merge it into
2172 // the multiply.
2173 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002174 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002175 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00002176 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00002177 if (isa<SCEVConstant>(MulOpSCEV))
2178 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00002179 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00002180 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002181 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00002182 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002183 if (Mul->getNumOperands() != 2) {
2184 // If the multiply has more than two operands, we must get the
2185 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00002186 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2187 Mul->op_begin()+MulOp);
2188 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002189 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002190 }
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002191 const SCEV *One = getOne(Ty);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00002192 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00002193 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00002194 if (Ops.size() == 2) return OuterMul;
2195 if (AddOp < Idx) {
2196 Ops.erase(Ops.begin()+AddOp);
2197 Ops.erase(Ops.begin()+Idx-1);
2198 } else {
2199 Ops.erase(Ops.begin()+Idx);
2200 Ops.erase(Ops.begin()+AddOp-1);
2201 }
2202 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002203 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002204 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002205
Chris Lattnerd934c702004-04-02 20:23:17 +00002206 // Check this multiply against other multiplies being added together.
2207 for (unsigned OtherMulIdx = Idx+1;
2208 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2209 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002210 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002211 // If MulOp occurs in OtherMul, we can fold the two multiplies
2212 // together.
2213 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2214 OMulOp != e; ++OMulOp)
2215 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2216 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002217 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002218 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002219 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002220 Mul->op_begin()+MulOp);
2221 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002222 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002223 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002224 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002225 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002226 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002227 OtherMul->op_begin()+OMulOp);
2228 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002229 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002230 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002231 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2232 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002233 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002234 Ops.erase(Ops.begin()+Idx);
2235 Ops.erase(Ops.begin()+OtherMulIdx-1);
2236 Ops.push_back(OuterMul);
2237 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002238 }
2239 }
2240 }
2241 }
2242
2243 // If there are any add recurrences in the operands list, see if any other
2244 // added values are loop invariant. If so, we can fold them into the
2245 // recurrence.
2246 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2247 ++Idx;
2248
2249 // Scan over all recurrences, trying to fold loop invariants into them.
2250 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2251 // Scan all of the other operands to this add and add them to the vector if
2252 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002253 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002254 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002255 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002256 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002257 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002258 LIOps.push_back(Ops[i]);
2259 Ops.erase(Ops.begin()+i);
2260 --i; --e;
2261 }
2262
2263 // If we found some loop invariants, fold them into the recurrence.
2264 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002265 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002266 LIOps.push_back(AddRec->getStart());
2267
Dan Gohmanaf752342009-07-07 17:06:11 +00002268 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002269 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002270 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002271
Dan Gohman16206132010-06-30 07:16:37 +00002272 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002273 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002274 // Always propagate NW.
2275 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002276 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002277
Chris Lattnerd934c702004-04-02 20:23:17 +00002278 // If all of the other operands were loop invariant, we are done.
2279 if (Ops.size() == 1) return NewRec;
2280
Nick Lewyckydb66b822011-09-06 05:08:09 +00002281 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002282 for (unsigned i = 0;; ++i)
2283 if (Ops[i] == AddRec) {
2284 Ops[i] = NewRec;
2285 break;
2286 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002287 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002288 }
2289
2290 // Okay, if there weren't any loop invariants to be folded, check to see if
2291 // there are multiple AddRec's with the same loop induction variable being
2292 // added together. If so, we can fold them.
2293 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002294 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2295 ++OtherIdx)
2296 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2297 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2298 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2299 AddRec->op_end());
2300 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2301 ++OtherIdx)
Sanjoy Dasf25d25a2015-10-31 23:21:32 +00002302 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002303 if (OtherAddRec->getLoop() == AddRecLoop) {
2304 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2305 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002306 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002307 AddRecOps.append(OtherAddRec->op_begin()+i,
2308 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002309 break;
2310 }
Dan Gohman028c1812010-08-29 14:53:34 +00002311 AddRecOps[i] = getAddExpr(AddRecOps[i],
2312 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002313 }
2314 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002315 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002316 // Step size has changed, so we cannot guarantee no self-wraparound.
2317 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002318 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002319 }
2320
2321 // Otherwise couldn't fold anything into this recurrence. Move onto the
2322 // next one.
2323 }
2324
2325 // Okay, it looks like we really DO need an add expr. Check to see if we
2326 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002327 FoldingSetNodeID ID;
2328 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002329 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2330 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002331 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002332 SCEVAddExpr *S =
2333 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2334 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002335 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2336 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002337 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2338 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002339 UniqueSCEVs.InsertNode(S, IP);
2340 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002341 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002342 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002343}
2344
Nick Lewycky287682e2011-10-04 06:51:26 +00002345static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2346 uint64_t k = i*j;
2347 if (j > 1 && k / j != i) Overflow = true;
2348 return k;
2349}
2350
2351/// Compute the result of "n choose k", the binomial coefficient. If an
2352/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002353/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002354static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2355 // We use the multiplicative formula:
2356 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2357 // At each iteration, we take the n-th term of the numeral and divide by the
2358 // (k-n)th term of the denominator. This division will always produce an
2359 // integral result, and helps reduce the chance of overflow in the
2360 // intermediate computations. However, we can still overflow even when the
2361 // final result would fit.
2362
2363 if (n == 0 || n == k) return 1;
2364 if (k > n) return 0;
2365
2366 if (k > n/2)
2367 k = n-k;
2368
2369 uint64_t r = 1;
2370 for (uint64_t i = 1; i <= k; ++i) {
2371 r = umul_ov(r, n-(i-1), Overflow);
2372 r /= i;
2373 }
2374 return r;
2375}
2376
Nick Lewycky05044c22014-12-06 00:45:50 +00002377/// Determine if any of the operands in this SCEV are a constant or if
2378/// any of the add or multiply expressions in this SCEV contain a constant.
2379static bool containsConstantSomewhere(const SCEV *StartExpr) {
2380 SmallVector<const SCEV *, 4> Ops;
2381 Ops.push_back(StartExpr);
2382 while (!Ops.empty()) {
2383 const SCEV *CurrentExpr = Ops.pop_back_val();
2384 if (isa<SCEVConstant>(*CurrentExpr))
2385 return true;
2386
2387 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2388 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002389 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
Nick Lewycky05044c22014-12-06 00:45:50 +00002390 }
2391 }
2392 return false;
2393}
2394
Dan Gohman4d5435d2009-05-24 23:45:28 +00002395/// getMulExpr - Get a canonical multiply expression, or something simpler if
2396/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002397const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002398 SCEV::NoWrapFlags Flags) {
2399 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2400 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002401 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002402 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002403#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002404 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002405 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002406 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002407 "SCEVMulExpr operand types don't match!");
2408#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002409
2410 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002411 GroupByComplexity(Ops, &LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002412
Sanjoy Das64895612015-10-09 02:44:45 +00002413 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2414
Chris Lattnerd934c702004-04-02 20:23:17 +00002415 // If there are any constants, fold them together.
2416 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002417 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002418
2419 // C1*(C2+V) -> C1*C2 + C1*V
2420 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002421 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2422 // If any of Add's ops are Adds or Muls with a constant,
2423 // apply this transformation as well.
2424 if (Add->getNumOperands() == 2)
2425 if (containsConstantSomewhere(Add))
2426 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2427 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002428
Chris Lattnerd934c702004-04-02 20:23:17 +00002429 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002430 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002431 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002432 ConstantInt *Fold = ConstantInt::get(getContext(),
2433 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002434 RHSC->getValue()->getValue());
2435 Ops[0] = getConstant(Fold);
2436 Ops.erase(Ops.begin()+1); // Erase the folded element
2437 if (Ops.size() == 1) return Ops[0];
2438 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002439 }
2440
2441 // If we are left with a constant one being multiplied, strip it off.
2442 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2443 Ops.erase(Ops.begin());
2444 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002445 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002446 // If we have a multiply of zero, it will always be zero.
2447 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002448 } else if (Ops[0]->isAllOnesValue()) {
2449 // If we have a mul by -1 of an add, try distributing the -1 among the
2450 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002451 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002452 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2453 SmallVector<const SCEV *, 4> NewOps;
2454 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002455 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2456 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002457 const SCEV *Mul = getMulExpr(Ops[0], *I);
2458 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2459 NewOps.push_back(Mul);
2460 }
2461 if (AnyFolded)
2462 return getAddExpr(NewOps);
Sanjoy Das63914592015-10-18 00:29:20 +00002463 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
Andrew Tricke92dcce2011-03-14 17:38:54 +00002464 // Negation preserves a recurrence's no self-wrap property.
2465 SmallVector<const SCEV *, 4> Operands;
2466 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2467 E = AddRec->op_end(); I != E; ++I) {
2468 Operands.push_back(getMulExpr(Ops[0], *I));
2469 }
2470 return getAddRecExpr(Operands, AddRec->getLoop(),
2471 AddRec->getNoWrapFlags(SCEV::FlagNW));
2472 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002473 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002474 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002475
2476 if (Ops.size() == 1)
2477 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002478 }
2479
2480 // Skip over the add expression until we get to a multiply.
2481 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2482 ++Idx;
2483
Chris Lattnerd934c702004-04-02 20:23:17 +00002484 // If there are mul operands inline them all into this expression.
2485 if (Idx < Ops.size()) {
2486 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002487 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002488 // If we have an mul, expand the mul operands onto the end of the operands
2489 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002490 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002491 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002492 DeletedMul = true;
2493 }
2494
2495 // If we deleted at least one mul, we added operands to the end of the list,
2496 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002497 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002498 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002499 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002500 }
2501
2502 // If there are any add recurrences in the operands list, see if any other
2503 // added values are loop invariant. If so, we can fold them into the
2504 // recurrence.
2505 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2506 ++Idx;
2507
2508 // Scan over all recurrences, trying to fold loop invariants into them.
2509 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2510 // Scan all of the other operands to this mul and add them to the vector if
2511 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002512 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002513 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002514 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002515 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002516 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002517 LIOps.push_back(Ops[i]);
2518 Ops.erase(Ops.begin()+i);
2519 --i; --e;
2520 }
2521
2522 // If we found some loop invariants, fold them into the recurrence.
2523 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002524 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002525 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002526 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002527 const SCEV *Scale = getMulExpr(LIOps);
2528 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2529 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002530
Dan Gohman16206132010-06-30 07:16:37 +00002531 // Build the new addrec. Propagate the NUW and NSW flags if both the
2532 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002533 //
2534 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002535 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002536 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2537 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002538
2539 // If all of the other operands were loop invariant, we are done.
2540 if (Ops.size() == 1) return NewRec;
2541
Nick Lewyckydb66b822011-09-06 05:08:09 +00002542 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002543 for (unsigned i = 0;; ++i)
2544 if (Ops[i] == AddRec) {
2545 Ops[i] = NewRec;
2546 break;
2547 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002548 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002549 }
2550
2551 // Okay, if there weren't any loop invariants to be folded, check to see if
2552 // there are multiple AddRec's with the same loop induction variable being
2553 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002554
2555 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2556 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2557 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2558 // ]]],+,...up to x=2n}.
2559 // Note that the arguments to choose() are always integers with values
2560 // known at compile time, never SCEV objects.
2561 //
2562 // The implementation avoids pointless extra computations when the two
2563 // addrec's are of different length (mathematically, it's equivalent to
2564 // an infinite stream of zeros on the right).
2565 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002566 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002567 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002568 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002569 const SCEVAddRecExpr *OtherAddRec =
2570 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2571 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002572 continue;
2573
Nick Lewycky97756402014-09-01 05:17:15 +00002574 bool Overflow = false;
2575 Type *Ty = AddRec->getType();
2576 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2577 SmallVector<const SCEV*, 7> AddRecOps;
2578 for (int x = 0, xe = AddRec->getNumOperands() +
2579 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002580 const SCEV *Term = getZero(Ty);
Nick Lewycky97756402014-09-01 05:17:15 +00002581 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2582 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2583 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2584 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2585 z < ze && !Overflow; ++z) {
2586 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2587 uint64_t Coeff;
2588 if (LargerThan64Bits)
2589 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2590 else
2591 Coeff = Coeff1*Coeff2;
2592 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2593 const SCEV *Term1 = AddRec->getOperand(y-z);
2594 const SCEV *Term2 = OtherAddRec->getOperand(z);
2595 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002596 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002597 }
Nick Lewycky97756402014-09-01 05:17:15 +00002598 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002599 }
Nick Lewycky97756402014-09-01 05:17:15 +00002600 if (!Overflow) {
2601 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2602 SCEV::FlagAnyWrap);
2603 if (Ops.size() == 2) return NewAddRec;
2604 Ops[Idx] = NewAddRec;
2605 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2606 OpsModified = true;
2607 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2608 if (!AddRec)
2609 break;
2610 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002611 }
Nick Lewycky97756402014-09-01 05:17:15 +00002612 if (OpsModified)
2613 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002614
2615 // Otherwise couldn't fold anything into this recurrence. Move onto the
2616 // next one.
2617 }
2618
2619 // Okay, it looks like we really DO need an mul expr. Check to see if we
2620 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002621 FoldingSetNodeID ID;
2622 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002623 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2624 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002625 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002626 SCEVMulExpr *S =
2627 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2628 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002629 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2630 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002631 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2632 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002633 UniqueSCEVs.InsertNode(S, IP);
2634 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002635 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002636 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002637}
2638
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002639/// getUDivExpr - Get a canonical unsigned division expression, or something
2640/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002641const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2642 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002643 assert(getEffectiveSCEVType(LHS->getType()) ==
2644 getEffectiveSCEVType(RHS->getType()) &&
2645 "SCEVUDivExpr operand types don't match!");
2646
Dan Gohmana30370b2009-05-04 22:02:23 +00002647 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002648 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002649 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002650 // If the denominator is zero, the result of the udiv is undefined. Don't
2651 // try to analyze it, because the resolution chosen here may differ from
2652 // the resolution chosen in other parts of the compiler.
2653 if (!RHSC->getValue()->isZero()) {
2654 // Determine if the division can be folded into the operands of
2655 // its operands.
2656 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002657 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002658 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002659 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002660 // For non-power-of-two values, effectively round the value up to the
2661 // nearest power of two.
2662 if (!RHSC->getValue()->getValue().isPowerOf2())
2663 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002664 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002665 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002666 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2667 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002668 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2669 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2670 const APInt &StepInt = Step->getValue()->getValue();
2671 const APInt &DivInt = RHSC->getValue()->getValue();
2672 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002673 getZeroExtendExpr(AR, ExtTy) ==
2674 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2675 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002676 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002677 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002678 for (const SCEV *Op : AR->operands())
2679 Operands.push_back(getUDivExpr(Op, RHS));
2680 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002681 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002682 /// Get a canonical UDivExpr for a recurrence.
2683 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2684 // We can currently only fold X%N if X is constant.
2685 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2686 if (StartC && !DivInt.urem(StepInt) &&
2687 getZeroExtendExpr(AR, ExtTy) ==
2688 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2689 getZeroExtendExpr(Step, ExtTy),
2690 AR->getLoop(), SCEV::FlagAnyWrap)) {
2691 const APInt &StartInt = StartC->getValue()->getValue();
2692 const APInt &StartRem = StartInt.urem(StepInt);
2693 if (StartRem != 0)
2694 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2695 AR->getLoop(), SCEV::FlagNW);
2696 }
2697 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002698 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2699 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2700 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002701 for (const SCEV *Op : M->operands())
2702 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002703 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2704 // Find an operand that's safely divisible.
2705 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2706 const SCEV *Op = M->getOperand(i);
2707 const SCEV *Div = getUDivExpr(Op, RHSC);
2708 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2709 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2710 M->op_end());
2711 Operands[i] = Div;
2712 return getMulExpr(Operands);
2713 }
2714 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002715 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002716 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002717 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002718 SmallVector<const SCEV *, 4> Operands;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00002719 for (const SCEV *Op : A->operands())
2720 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
Dan Gohmanacd700a2010-04-22 01:35:11 +00002721 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2722 Operands.clear();
2723 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2724 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2725 if (isa<SCEVUDivExpr>(Op) ||
2726 getMulExpr(Op, RHS) != A->getOperand(i))
2727 break;
2728 Operands.push_back(Op);
2729 }
2730 if (Operands.size() == A->getNumOperands())
2731 return getAddExpr(Operands);
2732 }
2733 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002734
Dan Gohmanacd700a2010-04-22 01:35:11 +00002735 // Fold if both operands are constant.
2736 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2737 Constant *LHSCV = LHSC->getValue();
2738 Constant *RHSCV = RHSC->getValue();
2739 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2740 RHSCV)));
2741 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002742 }
2743 }
2744
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002745 FoldingSetNodeID ID;
2746 ID.AddInteger(scUDivExpr);
2747 ID.AddPointer(LHS);
2748 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002749 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002750 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002751 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2752 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002753 UniqueSCEVs.InsertNode(S, IP);
2754 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002755}
2756
Nick Lewycky31eaca52014-01-27 10:04:03 +00002757static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2758 APInt A = C1->getValue()->getValue().abs();
2759 APInt B = C2->getValue()->getValue().abs();
2760 uint32_t ABW = A.getBitWidth();
2761 uint32_t BBW = B.getBitWidth();
2762
2763 if (ABW > BBW)
2764 B = B.zext(ABW);
2765 else if (ABW < BBW)
2766 A = A.zext(BBW);
2767
2768 return APIntOps::GreatestCommonDivisor(A, B);
2769}
2770
2771/// getUDivExactExpr - Get a canonical unsigned division expression, or
2772/// something simpler if possible. There is no representation for an exact udiv
2773/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2774/// We can't do this when it's not exact because the udiv may be clearing bits.
2775const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2776 const SCEV *RHS) {
2777 // TODO: we could try to find factors in all sorts of things, but for now we
2778 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2779 // end of this file for inspiration.
2780
2781 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2782 if (!Mul)
2783 return getUDivExpr(LHS, RHS);
2784
2785 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2786 // If the mulexpr multiplies by a constant, then that constant must be the
2787 // first element of the mulexpr.
Sanjoy Das63914592015-10-18 00:29:20 +00002788 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
Nick Lewycky31eaca52014-01-27 10:04:03 +00002789 if (LHSCst == RHSCst) {
2790 SmallVector<const SCEV *, 2> Operands;
2791 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2792 return getMulExpr(Operands);
2793 }
2794
2795 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2796 // that there's a factor provided by one of the other terms. We need to
2797 // check.
2798 APInt Factor = gcd(LHSCst, RHSCst);
2799 if (!Factor.isIntN(1)) {
2800 LHSCst = cast<SCEVConstant>(
2801 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2802 RHSCst = cast<SCEVConstant>(
2803 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2804 SmallVector<const SCEV *, 2> Operands;
2805 Operands.push_back(LHSCst);
2806 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2807 LHS = getMulExpr(Operands);
2808 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002809 Mul = dyn_cast<SCEVMulExpr>(LHS);
2810 if (!Mul)
2811 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002812 }
2813 }
2814 }
2815
2816 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2817 if (Mul->getOperand(i) == RHS) {
2818 SmallVector<const SCEV *, 2> Operands;
2819 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2820 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2821 return getMulExpr(Operands);
2822 }
2823 }
2824
2825 return getUDivExpr(LHS, RHS);
2826}
Chris Lattnerd934c702004-04-02 20:23:17 +00002827
Dan Gohman4d5435d2009-05-24 23:45:28 +00002828/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2829/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002830const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2831 const Loop *L,
2832 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002833 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002834 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002835 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002836 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002837 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002838 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002839 }
2840
2841 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002842 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002843}
2844
Dan Gohman4d5435d2009-05-24 23:45:28 +00002845/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2846/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002847const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002848ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002849 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002850 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002851#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002852 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002853 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002854 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002855 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002856 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002857 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002858 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002859#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002860
Dan Gohmanbe928e32008-06-18 16:23:07 +00002861 if (Operands.back()->isZero()) {
2862 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002863 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002864 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002865
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002866 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2867 // use that information to infer NUW and NSW flags. However, computing a
2868 // BE count requires calling getAddRecExpr, so we may not yet have a
2869 // meaningful BE count at this point (and if we don't, we'd be stuck
2870 // with a SCEVCouldNotCompute as the cached BE count).
2871
Sanjoy Das81401d42015-01-10 23:41:24 +00002872 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002873
Dan Gohman223a5d22008-08-08 18:33:12 +00002874 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002875 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002876 const Loop *NestedLoop = NestedAR->getLoop();
Chandler Carruth2f1fd162015-08-17 02:08:17 +00002877 if (L->contains(NestedLoop)
2878 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2879 : (!NestedLoop->contains(L) &&
2880 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002881 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002882 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002883 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002884 // AddRecs require their operands be loop-invariant with respect to their
2885 // loops. Don't perform this transformation if it would break this
2886 // requirement.
Sanjoy Das3b827c72015-11-29 23:40:53 +00002887 bool AllInvariant = all_of(
2888 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002889
Dan Gohmancc030b72009-06-26 22:36:20 +00002890 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002891 // Create a recurrence for the outer loop with the same step size.
2892 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002893 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2894 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002895 SCEV::NoWrapFlags OuterFlags =
2896 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002897
2898 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Sanjoy Das3b827c72015-11-29 23:40:53 +00002899 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2900 return isLoopInvariant(Op, NestedLoop);
2901 });
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00002902
Andrew Trick8b55b732011-03-14 16:50:06 +00002903 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002904 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002905 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002906 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2907 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002908 SCEV::NoWrapFlags InnerFlags =
2909 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002910 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2911 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002912 }
2913 // Reset Operands to its original state.
2914 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002915 }
2916 }
2917
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002918 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2919 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002920 FoldingSetNodeID ID;
2921 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002922 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2923 ID.AddPointer(Operands[i]);
2924 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002925 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002926 SCEVAddRecExpr *S =
2927 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2928 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002929 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2930 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002931 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2932 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002933 UniqueSCEVs.InsertNode(S, IP);
2934 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002935 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002936 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002937}
2938
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002939const SCEV *
2940ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2941 const SmallVectorImpl<const SCEV *> &IndexExprs,
2942 bool InBounds) {
2943 // getSCEV(Base)->getType() has the same address space as Base->getType()
2944 // because SCEV::getType() preserves the address space.
2945 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2946 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2947 // instruction to its SCEV, because the Instruction may be guarded by control
2948 // flow and the no-overflow bits may not be valid for the expression in any
Jingyue Wu42f1d672015-07-28 18:22:40 +00002949 // context. This can be fixed similarly to how these flags are handled for
2950 // adds.
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002951 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2952
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00002953 const SCEV *TotalOffset = getZero(IntPtrTy);
Jingyue Wu2982d4d2015-05-18 17:03:25 +00002954 // The address space is unimportant. The first thing we do on CurTy is getting
2955 // its element type.
2956 Type *CurTy = PointerType::getUnqual(PointeeType);
2957 for (const SCEV *IndexExpr : IndexExprs) {
2958 // Compute the (potentially symbolic) offset in bytes for this index.
2959 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2960 // For a struct, add the member offset.
2961 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2962 unsigned FieldNo = Index->getZExtValue();
2963 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2964
2965 // Add the field offset to the running total offset.
2966 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2967
2968 // Update CurTy to the type of the field at Index.
2969 CurTy = STy->getTypeAtIndex(Index);
2970 } else {
2971 // Update CurTy to its element type.
2972 CurTy = cast<SequentialType>(CurTy)->getElementType();
2973 // For an array, add the element offset, explicitly scaled.
2974 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2975 // Getelementptr indices are signed.
2976 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2977
2978 // Multiply the index by the element size to compute the element offset.
2979 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2980
2981 // Add the element offset to the running total offset.
2982 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2983 }
2984 }
2985
2986 // Add the total offset from all the GEP indices to the base.
2987 return getAddExpr(BaseExpr, TotalOffset, Wrap);
2988}
2989
Dan Gohmanabd17092009-06-24 14:49:00 +00002990const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2991 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002992 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002993 Ops.push_back(LHS);
2994 Ops.push_back(RHS);
2995 return getSMaxExpr(Ops);
2996}
2997
Dan Gohmanaf752342009-07-07 17:06:11 +00002998const SCEV *
2999ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003000 assert(!Ops.empty() && "Cannot get empty smax!");
3001 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003002#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003003 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003004 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003005 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003006 "SCEVSMaxExpr operand types don't match!");
3007#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003008
3009 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003010 GroupByComplexity(Ops, &LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003011
3012 // If there are any constants, fold them together.
3013 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003014 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003015 ++Idx;
3016 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003017 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003018 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003019 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003020 APIntOps::smax(LHSC->getValue()->getValue(),
3021 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003022 Ops[0] = getConstant(Fold);
3023 Ops.erase(Ops.begin()+1); // Erase the folded element
3024 if (Ops.size() == 1) return Ops[0];
3025 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003026 }
3027
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003028 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003029 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3030 Ops.erase(Ops.begin());
3031 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003032 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3033 // If we have an smax with a constant maximum-int, it will always be
3034 // maximum-int.
3035 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003036 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003037
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003038 if (Ops.size() == 1) return Ops[0];
3039 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003040
3041 // Find the first SMax
3042 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3043 ++Idx;
3044
3045 // Check to see if one of the operands is an SMax. If so, expand its operands
3046 // onto our operand list, and recurse to simplify.
3047 if (Idx < Ops.size()) {
3048 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003049 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003050 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003051 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003052 DeletedSMax = true;
3053 }
3054
3055 if (DeletedSMax)
3056 return getSMaxExpr(Ops);
3057 }
3058
3059 // Okay, check to see if the same value occurs in the operand list twice. If
3060 // so, delete one. Since we sorted the list, these values are required to
3061 // be adjacent.
3062 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003063 // X smax Y smax Y --> X smax Y
3064 // X smax Y --> X, if X is always greater than Y
3065 if (Ops[i] == Ops[i+1] ||
3066 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3067 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3068 --i; --e;
3069 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003070 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3071 --i; --e;
3072 }
3073
3074 if (Ops.size() == 1) return Ops[0];
3075
3076 assert(!Ops.empty() && "Reduced smax down to nothing!");
3077
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003078 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003079 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003080 FoldingSetNodeID ID;
3081 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003082 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3083 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003084 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003085 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003086 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3087 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003088 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3089 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003090 UniqueSCEVs.InsertNode(S, IP);
3091 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003092}
3093
Dan Gohmanabd17092009-06-24 14:49:00 +00003094const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3095 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003096 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003097 Ops.push_back(LHS);
3098 Ops.push_back(RHS);
3099 return getUMaxExpr(Ops);
3100}
3101
Dan Gohmanaf752342009-07-07 17:06:11 +00003102const SCEV *
3103ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003104 assert(!Ops.empty() && "Cannot get empty umax!");
3105 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00003106#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00003107 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00003108 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00003109 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00003110 "SCEVUMaxExpr operand types don't match!");
3111#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003112
3113 // Sort by complexity, this groups all similar expression types together.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003114 GroupByComplexity(Ops, &LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003115
3116 // If there are any constants, fold them together.
3117 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00003118 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003119 ++Idx;
3120 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00003121 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003122 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00003123 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003124 APIntOps::umax(LHSC->getValue()->getValue(),
3125 RHSC->getValue()->getValue()));
3126 Ops[0] = getConstant(Fold);
3127 Ops.erase(Ops.begin()+1); // Erase the folded element
3128 if (Ops.size() == 1) return Ops[0];
3129 LHSC = cast<SCEVConstant>(Ops[0]);
3130 }
3131
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003132 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003133 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3134 Ops.erase(Ops.begin());
3135 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00003136 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3137 // If we have an umax with a constant maximum-int, it will always be
3138 // maximum-int.
3139 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003140 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003141
Dan Gohmanfe4b2912010-04-13 16:49:23 +00003142 if (Ops.size() == 1) return Ops[0];
3143 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003144
3145 // Find the first UMax
3146 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3147 ++Idx;
3148
3149 // Check to see if one of the operands is a UMax. If so, expand its operands
3150 // onto our operand list, and recurse to simplify.
3151 if (Idx < Ops.size()) {
3152 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00003153 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003154 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00003155 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003156 DeletedUMax = true;
3157 }
3158
3159 if (DeletedUMax)
3160 return getUMaxExpr(Ops);
3161 }
3162
3163 // Okay, check to see if the same value occurs in the operand list twice. If
3164 // so, delete one. Since we sorted the list, these values are required to
3165 // be adjacent.
3166 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00003167 // X umax Y umax Y --> X umax Y
3168 // X umax Y --> X, if X is always greater than Y
3169 if (Ops[i] == Ops[i+1] ||
3170 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3171 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3172 --i; --e;
3173 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003174 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3175 --i; --e;
3176 }
3177
3178 if (Ops.size() == 1) return Ops[0];
3179
3180 assert(!Ops.empty() && "Reduced umax down to nothing!");
3181
3182 // Okay, it looks like we really DO need a umax expr. Check to see if we
3183 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003184 FoldingSetNodeID ID;
3185 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003186 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3187 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00003188 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003189 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00003190 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3191 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00003192 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3193 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003194 UniqueSCEVs.InsertNode(S, IP);
3195 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003196}
3197
Dan Gohmanabd17092009-06-24 14:49:00 +00003198const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3199 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003200 // ~smax(~x, ~y) == smin(x, y).
3201 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3202}
3203
Dan Gohmanabd17092009-06-24 14:49:00 +00003204const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3205 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00003206 // ~umax(~x, ~y) == umin(x, y)
3207 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3208}
3209
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003210const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003211 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003212 // constant expression and then folding it back into a ConstantInt.
3213 // This is just a compile-time optimization.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003214 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003215}
3216
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003217const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3218 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003219 unsigned FieldNo) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003220 // We can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00003221 // constant expression and then folding it back into a ConstantInt.
3222 // This is just a compile-time optimization.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003223 return getConstant(
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003224 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003225}
3226
Dan Gohmanaf752342009-07-07 17:06:11 +00003227const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003228 // Don't attempt to do anything other than create a SCEVUnknown object
3229 // here. createSCEV only calls getUnknown after checking for all other
3230 // interesting possibilities, and any other code that calls getUnknown
3231 // is doing so in order to hide a value from SCEV canonicalization.
3232
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003233 FoldingSetNodeID ID;
3234 ID.AddInteger(scUnknown);
3235 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003236 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003237 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3238 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3239 "Stale SCEVUnknown in uniquing map!");
3240 return S;
3241 }
3242 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3243 FirstUnknown);
3244 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003245 UniqueSCEVs.InsertNode(S, IP);
3246 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003247}
3248
Chris Lattnerd934c702004-04-02 20:23:17 +00003249//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003250// Basic SCEV Analysis and PHI Idiom Recognition Code
3251//
3252
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003253/// isSCEVable - Test if values of the given type are analyzable within
3254/// the SCEV framework. This primarily includes integer types, and it
3255/// can optionally include pointer types if the ScalarEvolution class
3256/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003257bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003258 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003259 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003260}
3261
3262/// getTypeSizeInBits - Return the size in bits of the specified type,
3263/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003264uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003265 assert(isSCEVable(Ty) && "Type is not SCEVable!");
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003266 return getDataLayout().getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003267}
3268
3269/// getEffectiveSCEVType - Return a type with the same bitwidth as
3270/// the given type and which represents how SCEV will treat the given
3271/// type, for which isSCEVable must return true. For pointer types,
3272/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003273Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003274 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3275
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003276 if (Ty->isIntegerTy())
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003277 return Ty;
3278
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003279 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003280 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003281 return getDataLayout().getIntPtrType(Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003282}
Chris Lattnerd934c702004-04-02 20:23:17 +00003283
Dan Gohmanaf752342009-07-07 17:06:11 +00003284const SCEV *ScalarEvolution::getCouldNotCompute() {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003285 return CouldNotCompute.get();
Dan Gohman31efa302009-04-18 17:58:19 +00003286}
3287
Sanjoy Das7d752672015-12-08 04:32:54 +00003288
3289bool ScalarEvolution::checkValidity(const SCEV *S) const {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003290 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3291 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3292 // is set iff if find such SCEVUnknown.
3293 //
3294 struct FindInvalidSCEVUnknown {
3295 bool FindOne;
3296 FindInvalidSCEVUnknown() { FindOne = false; }
3297 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003298 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003299 case scConstant:
3300 return false;
3301 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003302 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003303 FindOne = true;
3304 return false;
3305 default:
3306 return true;
3307 }
3308 }
3309 bool isDone() const { return FindOne; }
3310 };
Shuxin Yangefc4c012013-07-08 17:33:13 +00003311
Shuxin Yangefc4c012013-07-08 17:33:13 +00003312 FindInvalidSCEVUnknown F;
3313 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3314 ST.visitAll(S);
3315
3316 return !F.FindOne;
3317}
3318
Chris Lattnerd934c702004-04-02 20:23:17 +00003319/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3320/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003321const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003322 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003323
Jingyue Wu42f1d672015-07-28 18:22:40 +00003324 const SCEV *S = getExistingSCEV(V);
3325 if (S == nullptr) {
3326 S = createSCEV(V);
3327 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
3328 }
3329 return S;
3330}
3331
3332const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3333 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3334
Shuxin Yangefc4c012013-07-08 17:33:13 +00003335 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3336 if (I != ValueExprMap.end()) {
3337 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003338 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003339 return S;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003340 ValueExprMap.erase(I);
Shuxin Yangefc4c012013-07-08 17:33:13 +00003341 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003342 return nullptr;
Chris Lattnerd934c702004-04-02 20:23:17 +00003343}
3344
Dan Gohman0a40ad92009-04-16 03:18:22 +00003345/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3346///
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003347const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3348 SCEV::NoWrapFlags Flags) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003349 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003350 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003351 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003352
Chris Lattner229907c2011-07-18 04:54:35 +00003353 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003354 Ty = getEffectiveSCEVType(Ty);
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003355 return getMulExpr(
3356 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003357}
3358
3359/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003360const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003361 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003362 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003363 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003364
Chris Lattner229907c2011-07-18 04:54:35 +00003365 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003366 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003367 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003368 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003369 return getMinusSCEV(AllOnes, V);
3370}
3371
Andrew Trick8b55b732011-03-14 16:50:06 +00003372/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003373const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003374 SCEV::NoWrapFlags Flags) {
Dan Gohman46f00a22010-07-20 16:53:00 +00003375 // Fast path: X - X --> 0.
3376 if (LHS == RHS)
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00003377 return getZero(LHS->getType());
Dan Gohman46f00a22010-07-20 16:53:00 +00003378
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00003379 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3380 // makes it so that we cannot make much use of NUW.
3381 auto AddFlags = SCEV::FlagAnyWrap;
3382 const bool RHSIsNotMinSigned =
3383 !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3384 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3385 // Let M be the minimum representable signed value. Then (-1)*RHS
3386 // signed-wraps if and only if RHS is M. That can happen even for
3387 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3388 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3389 // (-1)*RHS, we need to prove that RHS != M.
3390 //
3391 // If LHS is non-negative and we know that LHS - RHS does not
3392 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3393 // either by proving that RHS > M or that LHS >= 0.
3394 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3395 AddFlags = SCEV::FlagNSW;
3396 }
3397 }
3398
3399 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3400 // RHS is NSW and LHS >= 0.
3401 //
3402 // The difficulty here is that the NSW flag may have been proven
3403 // relative to a loop that is to be found in a recurrence in LHS and
3404 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3405 // larger scope than intended.
3406 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3407
3408 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003409}
3410
3411/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3412/// input value to the specified type. If the type must be extended, it is zero
3413/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003414const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003415ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3416 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003417 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3418 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003419 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003420 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003421 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003422 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003423 return getTruncateExpr(V, Ty);
3424 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003425}
3426
3427/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3428/// input value to the specified type. If the type must be extended, it is sign
3429/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003430const SCEV *
3431ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003432 Type *Ty) {
3433 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003434 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3435 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003436 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003437 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003438 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003439 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003440 return getTruncateExpr(V, Ty);
3441 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003442}
3443
Dan Gohmane712a2f2009-05-13 03:46:30 +00003444/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3445/// input value to the specified type. If the type must be extended, it is zero
3446/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003447const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003448ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3449 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003450 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3451 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003452 "Cannot noop or zero extend with non-integer arguments!");
3453 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3454 "getNoopOrZeroExtend cannot truncate!");
3455 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3456 return V; // No conversion
3457 return getZeroExtendExpr(V, Ty);
3458}
3459
3460/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3461/// input value to the specified type. If the type must be extended, it is sign
3462/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003463const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003464ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3465 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003466 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3467 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003468 "Cannot noop or sign extend with non-integer arguments!");
3469 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3470 "getNoopOrSignExtend cannot truncate!");
3471 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3472 return V; // No conversion
3473 return getSignExtendExpr(V, Ty);
3474}
3475
Dan Gohman8db2edc2009-06-13 15:56:47 +00003476/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3477/// the input value to the specified type. If the type must be extended,
3478/// it is extended with unspecified bits. The conversion must not be
3479/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003480const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003481ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3482 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003483 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3484 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003485 "Cannot noop or any extend with non-integer arguments!");
3486 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3487 "getNoopOrAnyExtend cannot truncate!");
3488 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3489 return V; // No conversion
3490 return getAnyExtendExpr(V, Ty);
3491}
3492
Dan Gohmane712a2f2009-05-13 03:46:30 +00003493/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3494/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003495const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003496ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3497 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003498 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3499 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003500 "Cannot truncate or noop with non-integer arguments!");
3501 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3502 "getTruncateOrNoop cannot extend!");
3503 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3504 return V; // No conversion
3505 return getTruncateExpr(V, Ty);
3506}
3507
Dan Gohman96212b62009-06-22 00:31:57 +00003508/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3509/// the types using zero-extension, and then perform a umax operation
3510/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003511const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3512 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003513 const SCEV *PromotedLHS = LHS;
3514 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003515
3516 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3517 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3518 else
3519 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3520
3521 return getUMaxExpr(PromotedLHS, PromotedRHS);
3522}
3523
Dan Gohman2bc22302009-06-22 15:03:27 +00003524/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3525/// the types using zero-extension, and then perform a umin operation
3526/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003527const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3528 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003529 const SCEV *PromotedLHS = LHS;
3530 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003531
3532 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3533 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3534 else
3535 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3536
3537 return getUMinExpr(PromotedLHS, PromotedRHS);
3538}
3539
Andrew Trick87716c92011-03-17 23:51:11 +00003540/// getPointerBase - Transitively follow the chain of pointer-type operands
3541/// until reaching a SCEV that does not have a single pointer operand. This
3542/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3543/// but corner cases do exist.
3544const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3545 // A pointer operand may evaluate to a nonpointer expression, such as null.
3546 if (!V->getType()->isPointerTy())
3547 return V;
3548
3549 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3550 return getPointerBase(Cast->getOperand());
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003551 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003552 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003553 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3554 I != E; ++I) {
3555 if ((*I)->getType()->isPointerTy()) {
3556 // Cannot find the base of an expression with multiple pointer operands.
3557 if (PtrOp)
3558 return V;
3559 PtrOp = *I;
3560 }
3561 }
3562 if (!PtrOp)
3563 return V;
3564 return getPointerBase(PtrOp);
3565 }
3566 return V;
3567}
3568
Dan Gohman0b89dff2009-07-25 01:13:03 +00003569/// PushDefUseChildren - Push users of the given Instruction
3570/// onto the given Worklist.
3571static void
3572PushDefUseChildren(Instruction *I,
3573 SmallVectorImpl<Instruction *> &Worklist) {
3574 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003575 for (User *U : I->users())
3576 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003577}
3578
3579/// ForgetSymbolicValue - This looks up computed SCEV values for all
3580/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003581/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003582/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003583void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003584ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003585 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003586 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003587
Dan Gohman0b89dff2009-07-25 01:13:03 +00003588 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003589 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003590 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003591 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003592 if (!Visited.insert(I).second)
3593 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003594
Sanjoy Das63914592015-10-18 00:29:20 +00003595 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003596 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003597 const SCEV *Old = It->second;
3598
Dan Gohman0b89dff2009-07-25 01:13:03 +00003599 // Short-circuit the def-use traversal if the symbolic name
3600 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003601 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003602 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003603
Dan Gohman0b89dff2009-07-25 01:13:03 +00003604 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003605 // structure, it's a PHI that's in the progress of being computed
3606 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3607 // additional loop trip count information isn't going to change anything.
3608 // In the second case, createNodeForPHI will perform the necessary
3609 // updates on its own when it gets to that point. In the third, we do
3610 // want to forget the SCEVUnknown.
3611 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003612 !isa<SCEVUnknown>(Old) ||
3613 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003614 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003615 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003616 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003617 }
3618
3619 PushDefUseChildren(I, Worklist);
3620 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003621}
Chris Lattnerd934c702004-04-02 20:23:17 +00003622
Benjamin Kramer83709b12015-11-16 09:01:28 +00003623namespace {
Silviu Barangaf91c8072015-10-30 15:02:28 +00003624class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3625public:
3626 static const SCEV *rewrite(const SCEV *Scev, const Loop *L,
3627 ScalarEvolution &SE) {
3628 SCEVInitRewriter Rewriter(L, SE);
3629 const SCEV *Result = Rewriter.visit(Scev);
3630 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3631 }
3632
3633 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3634 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3635
3636 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3637 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3638 Valid = false;
3639 return Expr;
3640 }
3641
3642 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3643 // Only allow AddRecExprs for this loop.
3644 if (Expr->getLoop() == L)
3645 return Expr->getStart();
3646 Valid = false;
3647 return Expr;
3648 }
3649
3650 bool isValid() { return Valid; }
3651
3652private:
3653 const Loop *L;
3654 bool Valid;
3655};
3656
3657class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3658public:
3659 static const SCEV *rewrite(const SCEV *Scev, const Loop *L,
3660 ScalarEvolution &SE) {
3661 SCEVShiftRewriter Rewriter(L, SE);
3662 const SCEV *Result = Rewriter.visit(Scev);
3663 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3664 }
3665
3666 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3667 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3668
3669 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3670 // Only allow AddRecExprs for this loop.
3671 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3672 Valid = false;
3673 return Expr;
3674 }
3675
3676 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3677 if (Expr->getLoop() == L && Expr->isAffine())
3678 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3679 Valid = false;
3680 return Expr;
3681 }
3682 bool isValid() { return Valid; }
3683
3684private:
3685 const Loop *L;
3686 bool Valid;
3687};
Benjamin Kramer83709b12015-11-16 09:01:28 +00003688} // end anonymous namespace
Silviu Barangaf91c8072015-10-30 15:02:28 +00003689
Sanjoy Das55015d22015-10-02 23:09:44 +00003690const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3691 const Loop *L = LI.getLoopFor(PN->getParent());
3692 if (!L || L->getHeader() != PN->getParent())
3693 return nullptr;
3694
3695 // The loop may have multiple entrances or multiple exits; we can analyze
3696 // this phi as an addrec if it has a unique entry value and a unique
3697 // backedge value.
3698 Value *BEValueV = nullptr, *StartValueV = nullptr;
3699 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3700 Value *V = PN->getIncomingValue(i);
3701 if (L->contains(PN->getIncomingBlock(i))) {
3702 if (!BEValueV) {
3703 BEValueV = V;
3704 } else if (BEValueV != V) {
3705 BEValueV = nullptr;
3706 break;
3707 }
3708 } else if (!StartValueV) {
3709 StartValueV = V;
3710 } else if (StartValueV != V) {
3711 StartValueV = nullptr;
3712 break;
3713 }
3714 }
3715 if (BEValueV && StartValueV) {
3716 // While we are analyzing this PHI node, handle its value symbolically.
3717 const SCEV *SymbolicName = getUnknown(PN);
3718 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3719 "PHI node already processed?");
3720 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3721
3722 // Using this symbolic name for the PHI, analyze the value coming around
3723 // the back-edge.
3724 const SCEV *BEValue = getSCEV(BEValueV);
3725
3726 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3727 // has a special value for the first iteration of the loop.
3728
3729 // If the value coming around the backedge is an add with the symbolic
3730 // value we just inserted, then we found a simple induction variable!
3731 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3732 // If there is a single occurrence of the symbolic value, replace it
3733 // with a recurrence.
3734 unsigned FoundIndex = Add->getNumOperands();
3735 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3736 if (Add->getOperand(i) == SymbolicName)
3737 if (FoundIndex == e) {
3738 FoundIndex = i;
Dan Gohman6635bb22010-04-12 07:49:36 +00003739 break;
3740 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003741
3742 if (FoundIndex != Add->getNumOperands()) {
3743 // Create an add with everything but the specified operand.
3744 SmallVector<const SCEV *, 8> Ops;
3745 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3746 if (i != FoundIndex)
3747 Ops.push_back(Add->getOperand(i));
3748 const SCEV *Accum = getAddExpr(Ops);
3749
3750 // This is not a valid addrec if the step amount is varying each
3751 // loop iteration, but is not itself an addrec in this loop.
3752 if (isLoopInvariant(Accum, L) ||
3753 (isa<SCEVAddRecExpr>(Accum) &&
3754 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3755 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3756
3757 // If the increment doesn't overflow, then neither the addrec nor
3758 // the post-increment will overflow.
3759 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3760 if (OBO->getOperand(0) == PN) {
3761 if (OBO->hasNoUnsignedWrap())
3762 Flags = setFlags(Flags, SCEV::FlagNUW);
3763 if (OBO->hasNoSignedWrap())
3764 Flags = setFlags(Flags, SCEV::FlagNSW);
3765 }
3766 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3767 // If the increment is an inbounds GEP, then we know the address
3768 // space cannot be wrapped around. We cannot make any guarantee
3769 // about signed or unsigned overflow because pointers are
3770 // unsigned but we may have a negative index from the base
3771 // pointer. We can guarantee that no unsigned wrap occurs if the
3772 // indices form a positive value.
3773 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3774 Flags = setFlags(Flags, SCEV::FlagNW);
3775
3776 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3777 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3778 Flags = setFlags(Flags, SCEV::FlagNUW);
3779 }
3780
3781 // We cannot transfer nuw and nsw flags from subtraction
3782 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3783 // for instance.
3784 }
3785
3786 const SCEV *StartVal = getSCEV(StartValueV);
3787 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3788
3789 // Since the no-wrap flags are on the increment, they apply to the
3790 // post-incremented value as well.
3791 if (isLoopInvariant(Accum, L))
3792 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
3793
3794 // Okay, for the entire analysis of this edge we assumed the PHI
3795 // to be symbolic. We now need to go back and purge all of the
3796 // entries for the scalars that use the symbolic expression.
3797 ForgetSymbolicName(PN, SymbolicName);
3798 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3799 return PHISCEV;
Dan Gohman6635bb22010-04-12 07:49:36 +00003800 }
3801 }
Silviu Barangaf91c8072015-10-30 15:02:28 +00003802 } else {
Sanjoy Das55015d22015-10-02 23:09:44 +00003803 // Otherwise, this could be a loop like this:
3804 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3805 // In this case, j = {1,+,1} and BEValue is j.
3806 // Because the other in-value of i (0) fits the evolution of BEValue
3807 // i really is an addrec evolution.
Silviu Barangaf91c8072015-10-30 15:02:28 +00003808 //
3809 // We can generalize this saying that i is the shifted value of BEValue
3810 // by one iteration:
3811 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
3812 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
3813 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
3814 if (Shifted != getCouldNotCompute() &&
3815 Start != getCouldNotCompute()) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003816 const SCEV *StartVal = getSCEV(StartValueV);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003817 if (Start == StartVal) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003818 // Okay, for the entire analysis of this edge we assumed the PHI
3819 // to be symbolic. We now need to go back and purge all of the
3820 // entries for the scalars that use the symbolic expression.
3821 ForgetSymbolicName(PN, SymbolicName);
Silviu Barangaf91c8072015-10-30 15:02:28 +00003822 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
3823 return Shifted;
Chris Lattnerd934c702004-04-02 20:23:17 +00003824 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003825 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003826 }
Sanjoy Das55015d22015-10-02 23:09:44 +00003827 }
3828
3829 return nullptr;
3830}
3831
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003832// Checks if the SCEV S is available at BB. S is considered available at BB
3833// if S can be materialized at BB without introducing a fault.
3834static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
3835 BasicBlock *BB) {
3836 struct CheckAvailable {
3837 bool TraversalDone = false;
3838 bool Available = true;
Sanjoy Das55015d22015-10-02 23:09:44 +00003839
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003840 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
3841 BasicBlock *BB = nullptr;
3842 DominatorTree &DT;
Sanjoy Das55015d22015-10-02 23:09:44 +00003843
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003844 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
3845 : L(L), BB(BB), DT(DT) {}
Sanjoy Das55015d22015-10-02 23:09:44 +00003846
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003847 bool setUnavailable() {
3848 TraversalDone = true;
3849 Available = false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003850 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003851 }
3852
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003853 bool follow(const SCEV *S) {
3854 switch (S->getSCEVType()) {
3855 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
3856 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
Sanjoy Dasbb5ffc52015-10-24 05:37:28 +00003857 // These expressions are available if their operand(s) is/are.
3858 return true;
Sanjoy Das55015d22015-10-02 23:09:44 +00003859
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003860 case scAddRecExpr: {
3861 // We allow add recurrences that are on the loop BB is in, or some
3862 // outer loop. This guarantees availability because the value of the
3863 // add recurrence at BB is simply the "current" value of the induction
3864 // variable. We can relax this in the future; for instance an add
3865 // recurrence on a sibling dominating loop is also available at BB.
3866 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
3867 if (L && (ARLoop == L || ARLoop->contains(L)))
Sanjoy Das55015d22015-10-02 23:09:44 +00003868 return true;
3869
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003870 return setUnavailable();
Sanjoy Das55015d22015-10-02 23:09:44 +00003871 }
3872
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003873 case scUnknown: {
3874 // For SCEVUnknown, we check for simple dominance.
3875 const auto *SU = cast<SCEVUnknown>(S);
3876 Value *V = SU->getValue();
Sanjoy Das55015d22015-10-02 23:09:44 +00003877
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003878 if (isa<Argument>(V))
3879 return false;
Sanjoy Das55015d22015-10-02 23:09:44 +00003880
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003881 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
3882 return false;
3883
3884 return setUnavailable();
3885 }
3886
3887 case scUDivExpr:
3888 case scCouldNotCompute:
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00003889 // We do not try to smart about these at all.
3890 return setUnavailable();
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003891 }
3892 llvm_unreachable("switch should be fully covered!");
3893 }
3894
3895 bool isDone() { return TraversalDone; }
Sanjoy Das55015d22015-10-02 23:09:44 +00003896 };
3897
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003898 CheckAvailable CA(L, BB, DT);
3899 SCEVTraversal<CheckAvailable> ST(CA);
3900
3901 ST.visitAll(S);
3902 return CA.Available;
3903}
3904
3905// Try to match a control flow sequence that branches out at BI and merges back
3906// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
3907// match.
3908static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
3909 Value *&C, Value *&LHS, Value *&RHS) {
3910 C = BI->getCondition();
3911
3912 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
3913 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
3914
3915 if (!LeftEdge.isSingleEdge())
3916 return false;
3917
3918 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
3919
3920 Use &LeftUse = Merge->getOperandUse(0);
3921 Use &RightUse = Merge->getOperandUse(1);
3922
3923 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
3924 LHS = LeftUse;
3925 RHS = RightUse;
3926 return true;
3927 }
3928
3929 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
3930 LHS = RightUse;
3931 RHS = LeftUse;
3932 return true;
3933 }
3934
3935 return false;
3936}
3937
3938const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
Sanjoy Das55015d22015-10-02 23:09:44 +00003939 if (PN->getNumIncomingValues() == 2) {
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003940 const Loop *L = LI.getLoopFor(PN->getParent());
3941
Sanjoy Das337d4782015-10-31 23:21:40 +00003942 // We don't want to break LCSSA, even in a SCEV expression tree.
3943 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3944 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
3945 return nullptr;
3946
Sanjoy Das55015d22015-10-02 23:09:44 +00003947 // Try to match
3948 //
3949 // br %cond, label %left, label %right
3950 // left:
3951 // br label %merge
3952 // right:
3953 // br label %merge
3954 // merge:
3955 // V = phi [ %x, %left ], [ %y, %right ]
3956 //
3957 // as "select %cond, %x, %y"
3958
3959 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
3960 assert(IDom && "At least the entry block should dominate PN");
3961
3962 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
3963 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
3964
Sanjoy Das1cd930b2015-10-03 00:34:19 +00003965 if (BI && BI->isConditional() &&
3966 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
3967 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
3968 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
Sanjoy Das55015d22015-10-02 23:09:44 +00003969 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
3970 }
3971
3972 return nullptr;
3973}
3974
3975const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3976 if (const SCEV *S = createAddRecFromPHI(PN))
3977 return S;
3978
3979 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
3980 return S;
Misha Brukman01808ca2005-04-21 21:13:18 +00003981
Dan Gohmana9c205c2010-02-25 06:57:05 +00003982 // If the PHI has a single incoming value, follow that value, unless the
3983 // PHI's incoming blocks are in a different loop, in which case doing so
3984 // risks breaking LCSSA form. Instcombine would normally zap these, but
3985 // it doesn't have DominatorTree information, so it may miss cases.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00003986 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
Chandler Carruth2f1fd162015-08-17 02:08:17 +00003987 if (LI.replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003988 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003989
Chris Lattnerd934c702004-04-02 20:23:17 +00003990 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003991 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003992}
3993
Sanjoy Das55015d22015-10-02 23:09:44 +00003994const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
3995 Value *Cond,
3996 Value *TrueVal,
3997 Value *FalseVal) {
Mehdi Amini044cb342015-10-07 18:14:25 +00003998 // Handle "constant" branch or select. This can occur for instance when a
3999 // loop pass transforms an inner loop and moves on to process the outer loop.
4000 if (auto *CI = dyn_cast<ConstantInt>(Cond))
4001 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4002
Sanjoy Dasd0671342015-10-02 19:39:59 +00004003 // Try to match some simple smax or umax patterns.
4004 auto *ICI = dyn_cast<ICmpInst>(Cond);
4005 if (!ICI)
4006 return getUnknown(I);
4007
4008 Value *LHS = ICI->getOperand(0);
4009 Value *RHS = ICI->getOperand(1);
4010
4011 switch (ICI->getPredicate()) {
4012 case ICmpInst::ICMP_SLT:
4013 case ICmpInst::ICMP_SLE:
4014 std::swap(LHS, RHS);
4015 // fall through
4016 case ICmpInst::ICMP_SGT:
4017 case ICmpInst::ICMP_SGE:
4018 // a >s b ? a+x : b+x -> smax(a, b)+x
4019 // a >s b ? b+x : a+x -> smin(a, b)+x
4020 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4021 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4022 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4023 const SCEV *LA = getSCEV(TrueVal);
4024 const SCEV *RA = getSCEV(FalseVal);
4025 const SCEV *LDiff = getMinusSCEV(LA, LS);
4026 const SCEV *RDiff = getMinusSCEV(RA, RS);
4027 if (LDiff == RDiff)
4028 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4029 LDiff = getMinusSCEV(LA, RS);
4030 RDiff = getMinusSCEV(RA, LS);
4031 if (LDiff == RDiff)
4032 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4033 }
4034 break;
4035 case ICmpInst::ICMP_ULT:
4036 case ICmpInst::ICMP_ULE:
4037 std::swap(LHS, RHS);
4038 // fall through
4039 case ICmpInst::ICMP_UGT:
4040 case ICmpInst::ICMP_UGE:
4041 // a >u b ? a+x : b+x -> umax(a, b)+x
4042 // a >u b ? b+x : a+x -> umin(a, b)+x
4043 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4044 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4045 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4046 const SCEV *LA = getSCEV(TrueVal);
4047 const SCEV *RA = getSCEV(FalseVal);
4048 const SCEV *LDiff = getMinusSCEV(LA, LS);
4049 const SCEV *RDiff = getMinusSCEV(RA, RS);
4050 if (LDiff == RDiff)
4051 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4052 LDiff = getMinusSCEV(LA, RS);
4053 RDiff = getMinusSCEV(RA, LS);
4054 if (LDiff == RDiff)
4055 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4056 }
4057 break;
4058 case ICmpInst::ICMP_NE:
4059 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4060 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4061 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4062 const SCEV *One = getOne(I->getType());
4063 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4064 const SCEV *LA = getSCEV(TrueVal);
4065 const SCEV *RA = getSCEV(FalseVal);
4066 const SCEV *LDiff = getMinusSCEV(LA, LS);
4067 const SCEV *RDiff = getMinusSCEV(RA, One);
4068 if (LDiff == RDiff)
4069 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4070 }
4071 break;
4072 case ICmpInst::ICMP_EQ:
4073 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4074 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4075 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4076 const SCEV *One = getOne(I->getType());
4077 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4078 const SCEV *LA = getSCEV(TrueVal);
4079 const SCEV *RA = getSCEV(FalseVal);
4080 const SCEV *LDiff = getMinusSCEV(LA, One);
4081 const SCEV *RDiff = getMinusSCEV(RA, LS);
4082 if (LDiff == RDiff)
4083 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4084 }
4085 break;
4086 default:
4087 break;
4088 }
4089
4090 return getUnknown(I);
4091}
4092
Dan Gohmanee750d12009-05-08 20:26:55 +00004093/// createNodeForGEP - Expand GEP instructions into add and multiply
4094/// operations. This allows them to be analyzed by regular SCEV code.
4095///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004096const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman2173bd32009-05-08 20:36:47 +00004097 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00004098 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00004099 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00004100 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00004101
Jingyue Wu2982d4d2015-05-18 17:03:25 +00004102 SmallVector<const SCEV *, 4> IndexExprs;
4103 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4104 IndexExprs.push_back(getSCEV(*Index));
4105 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs,
4106 GEP->isInBounds());
Dan Gohmanee750d12009-05-08 20:26:55 +00004107}
4108
Nick Lewycky3783b462007-11-22 07:59:40 +00004109/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4110/// guaranteed to end in (at every loop iteration). It is, at the same time,
4111/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
4112/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004113uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00004114ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00004115 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00004116 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00004117
Dan Gohmana30370b2009-05-04 22:02:23 +00004118 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00004119 return std::min(GetMinTrailingZeros(T->getOperand()),
4120 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00004121
Dan Gohmana30370b2009-05-04 22:02:23 +00004122 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004123 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4124 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4125 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004126 }
4127
Dan Gohmana30370b2009-05-04 22:02:23 +00004128 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00004129 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4130 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4131 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00004132 }
4133
Dan Gohmana30370b2009-05-04 22:02:23 +00004134 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004135 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004136 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004137 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004138 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004139 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004140 }
4141
Dan Gohmana30370b2009-05-04 22:02:23 +00004142 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004143 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004144 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4145 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00004146 for (unsigned i = 1, e = M->getNumOperands();
4147 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004148 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00004149 BitWidth);
4150 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004151 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004152
Dan Gohmana30370b2009-05-04 22:02:23 +00004153 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00004154 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004155 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00004156 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004157 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00004158 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00004159 }
Nick Lewycky3783b462007-11-22 07:59:40 +00004160
Dan Gohmana30370b2009-05-04 22:02:23 +00004161 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004162 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004163 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004164 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004165 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00004166 return MinOpRes;
4167 }
4168
Dan Gohmana30370b2009-05-04 22:02:23 +00004169 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004170 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00004171 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004172 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00004173 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00004174 return MinOpRes;
4175 }
4176
Dan Gohmanc702fc02009-06-19 23:29:04 +00004177 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4178 // For a SCEVUnknown, ask ValueTracking.
4179 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00004180 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004181 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4182 nullptr, &DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004183 return Zeros.countTrailingOnes();
4184 }
4185
4186 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00004187 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00004188}
Chris Lattnerd934c702004-04-02 20:23:17 +00004189
Sanjoy Das1f05c512014-10-10 21:22:34 +00004190/// GetRangeFromMetadata - Helper method to assign a range to V from
4191/// metadata present in the IR.
4192static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004193 if (Instruction *I = dyn_cast<Instruction>(V))
4194 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4195 return getConstantRangeFromMetadata(*MD);
Sanjoy Das1f05c512014-10-10 21:22:34 +00004196
4197 return None;
4198}
4199
Sanjoy Das91b54772015-03-09 21:43:43 +00004200/// getRange - Determine the range for a particular SCEV. If SignHint is
4201/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4202/// with a "cleaner" unsigned (resp. signed) representation.
Dan Gohmane65c9172009-07-13 21:35:55 +00004203///
4204ConstantRange
Sanjoy Das91b54772015-03-09 21:43:43 +00004205ScalarEvolution::getRange(const SCEV *S,
4206 ScalarEvolution::RangeSignHint SignHint) {
4207 DenseMap<const SCEV *, ConstantRange> &Cache =
4208 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4209 : SignedRanges;
4210
Dan Gohman761065e2010-11-17 02:44:44 +00004211 // See if we've computed this range already.
Sanjoy Das91b54772015-03-09 21:43:43 +00004212 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4213 if (I != Cache.end())
Dan Gohman761065e2010-11-17 02:44:44 +00004214 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00004215
4216 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Sanjoy Das91b54772015-03-09 21:43:43 +00004217 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004218
Dan Gohman85be4332010-01-26 19:19:05 +00004219 unsigned BitWidth = getTypeSizeInBits(S->getType());
4220 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4221
Sanjoy Das91b54772015-03-09 21:43:43 +00004222 // If the value has known zeros, the maximum value will have those known zeros
4223 // as well.
Dan Gohman85be4332010-01-26 19:19:05 +00004224 uint32_t TZ = GetMinTrailingZeros(S);
Sanjoy Das91b54772015-03-09 21:43:43 +00004225 if (TZ != 0) {
4226 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4227 ConservativeResult =
4228 ConstantRange(APInt::getMinValue(BitWidth),
4229 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4230 else
4231 ConservativeResult = ConstantRange(
4232 APInt::getSignedMinValue(BitWidth),
4233 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4234 }
Dan Gohman85be4332010-01-26 19:19:05 +00004235
Dan Gohmane65c9172009-07-13 21:35:55 +00004236 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004237 ConstantRange X = getRange(Add->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004238 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004239 X = X.add(getRange(Add->getOperand(i), SignHint));
4240 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004241 }
4242
4243 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004244 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004245 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004246 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4247 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004248 }
4249
4250 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004251 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004252 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004253 X = X.smax(getRange(SMax->getOperand(i), SignHint));
4254 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004255 }
4256
4257 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004258 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
Dan Gohmane65c9172009-07-13 21:35:55 +00004259 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
Sanjoy Das91b54772015-03-09 21:43:43 +00004260 X = X.umax(getRange(UMax->getOperand(i), SignHint));
4261 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00004262 }
4263
4264 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004265 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4266 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4267 return setRange(UDiv, SignHint,
4268 ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004269 }
4270
4271 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004272 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4273 return setRange(ZExt, SignHint,
4274 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004275 }
4276
4277 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004278 ConstantRange X = getRange(SExt->getOperand(), SignHint);
4279 return setRange(SExt, SignHint,
4280 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004281 }
4282
4283 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004284 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4285 return setRange(Trunc, SignHint,
4286 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004287 }
4288
Dan Gohmane65c9172009-07-13 21:35:55 +00004289 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004290 // If there's no unsigned wrap, the value will never be less than its
4291 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00004292 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00004293 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00004294 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00004295 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00004296 ConservativeResult.intersectWith(
4297 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00004298
Dan Gohman51ad99d2010-01-21 02:09:26 +00004299 // If there's no signed wrap, and all the operands have the same sign or
4300 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00004301 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00004302 bool AllNonNeg = true;
4303 bool AllNonPos = true;
4304 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4305 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4306 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4307 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004308 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00004309 ConservativeResult = ConservativeResult.intersectWith(
4310 ConstantRange(APInt(BitWidth, 0),
4311 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004312 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00004313 ConservativeResult = ConservativeResult.intersectWith(
4314 ConstantRange(APInt::getSignedMinValue(BitWidth),
4315 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00004316 }
Dan Gohmane65c9172009-07-13 21:35:55 +00004317
4318 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00004319 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00004320 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00004321 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00004322 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4323 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Sanjoy Das91b54772015-03-09 21:43:43 +00004324
4325 // Check for overflow. This must be done with ConstantRange arithmetic
4326 // because we could be called from within the ScalarEvolution overflow
4327 // checking code.
4328
Dan Gohmane65c9172009-07-13 21:35:55 +00004329 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
Sanjoy Das91b54772015-03-09 21:43:43 +00004330 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4331 ConstantRange ZExtMaxBECountRange =
4332 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004333
4334 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00004335 const SCEV *Step = AddRec->getStepRecurrence(*this);
Sanjoy Das91b54772015-03-09 21:43:43 +00004336 ConstantRange StepSRange = getSignedRange(Step);
4337 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
Dan Gohmane65c9172009-07-13 21:35:55 +00004338
Sanjoy Das91b54772015-03-09 21:43:43 +00004339 ConstantRange StartURange = getUnsignedRange(Start);
4340 ConstantRange EndURange =
4341 StartURange.add(MaxBECountRange.multiply(StepSRange));
Dan Gohmanf76210e2010-04-12 07:39:33 +00004342
Sanjoy Das91b54772015-03-09 21:43:43 +00004343 // Check for unsigned overflow.
4344 ConstantRange ZExtStartURange =
4345 StartURange.zextOrTrunc(BitWidth * 2 + 1);
4346 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4347 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4348 ZExtEndURange) {
4349 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4350 EndURange.getUnsignedMin());
4351 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4352 EndURange.getUnsignedMax());
4353 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4354 if (!IsFullRange)
4355 ConservativeResult =
4356 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4357 }
Dan Gohmanf76210e2010-04-12 07:39:33 +00004358
Sanjoy Das91b54772015-03-09 21:43:43 +00004359 ConstantRange StartSRange = getSignedRange(Start);
4360 ConstantRange EndSRange =
4361 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4362
4363 // Check for signed overflow. This must be done with ConstantRange
4364 // arithmetic because we could be called from within the ScalarEvolution
4365 // overflow checking code.
4366 ConstantRange SExtStartSRange =
4367 StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4368 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4369 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4370 SExtEndSRange) {
4371 APInt Min = APIntOps::smin(StartSRange.getSignedMin(),
4372 EndSRange.getSignedMin());
4373 APInt Max = APIntOps::smax(StartSRange.getSignedMax(),
4374 EndSRange.getSignedMax());
4375 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4376 if (!IsFullRange)
4377 ConservativeResult =
4378 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1));
4379 }
Dan Gohmand261d272009-06-24 01:05:09 +00004380 }
Dan Gohmand261d272009-06-24 01:05:09 +00004381 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00004382
Sanjoy Das91b54772015-03-09 21:43:43 +00004383 return setRange(AddRec, SignHint, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00004384 }
4385
Dan Gohmanc702fc02009-06-19 23:29:04 +00004386 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00004387 // Check if the IR explicitly contains !range metadata.
4388 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4389 if (MDRange.hasValue())
4390 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4391
Sanjoy Das91b54772015-03-09 21:43:43 +00004392 // Split here to avoid paying the compile-time cost of calling both
4393 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4394 // if needed.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004395 const DataLayout &DL = getDataLayout();
Sanjoy Das91b54772015-03-09 21:43:43 +00004396 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4397 // For a SCEVUnknown, ask ValueTracking.
4398 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004399 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
Sanjoy Das91b54772015-03-09 21:43:43 +00004400 if (Ones != ~Zeros + 1)
4401 ConservativeResult =
4402 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4403 } else {
4404 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4405 "generalize as needed!");
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004406 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00004407 if (NS > 1)
4408 ConservativeResult = ConservativeResult.intersectWith(
4409 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4410 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
Sanjoy Das91b54772015-03-09 21:43:43 +00004411 }
4412
4413 return setRange(U, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004414 }
4415
Sanjoy Das91b54772015-03-09 21:43:43 +00004416 return setRange(S, SignHint, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004417}
4418
Jingyue Wu42f1d672015-07-28 18:22:40 +00004419SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004420 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004421 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4422
4423 // Return early if there are no flags to propagate to the SCEV.
4424 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4425 if (BinOp->hasNoUnsignedWrap())
4426 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4427 if (BinOp->hasNoSignedWrap())
4428 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4429 if (Flags == SCEV::FlagAnyWrap) {
4430 return SCEV::FlagAnyWrap;
4431 }
4432
4433 // Here we check that BinOp is in the header of the innermost loop
4434 // containing BinOp, since we only deal with instructions in the loop
4435 // header. The actual loop we need to check later will come from an add
4436 // recurrence, but getting that requires computing the SCEV of the operands,
4437 // which can be expensive. This check we can do cheaply to rule out some
4438 // cases early.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004439 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00004440 if (innermostContainingLoop == nullptr ||
4441 innermostContainingLoop->getHeader() != BinOp->getParent())
4442 return SCEV::FlagAnyWrap;
4443
4444 // Only proceed if we can prove that BinOp does not yield poison.
4445 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4446
4447 // At this point we know that if V is executed, then it does not wrap
4448 // according to at least one of NSW or NUW. If V is not executed, then we do
4449 // not know if the calculation that V represents would wrap. Multiple
4450 // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4451 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4452 // derived from other instructions that map to the same SCEV. We cannot make
4453 // that guarantee for cases where V is not executed. So we need to find the
4454 // loop that V is considered in relation to and prove that V is executed for
4455 // every iteration of that loop. That implies that the value that V
4456 // calculates does not wrap anywhere in the loop, so then we can apply the
4457 // flags to the SCEV.
4458 //
4459 // We check isLoopInvariant to disambiguate in case we are adding two
4460 // recurrences from different loops, so that we know which loop to prove
4461 // that V is executed in.
4462 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4463 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4464 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4465 const int OtherOpIndex = 1 - OpIndex;
4466 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4467 if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4468 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4469 return Flags;
4470 }
4471 }
4472 return SCEV::FlagAnyWrap;
4473}
4474
4475/// createSCEV - We know that there is no SCEV for the specified value. Analyze
4476/// the expression.
Chris Lattnerd934c702004-04-02 20:23:17 +00004477///
Dan Gohmanaf752342009-07-07 17:06:11 +00004478const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004479 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004480 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004481
Dan Gohman05e89732008-06-22 19:56:46 +00004482 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004483 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004484 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004485
4486 // Don't attempt to analyze instructions in blocks that aren't
4487 // reachable. Such instructions don't matter, and they aren't required
4488 // to obey basic rules for definitions dominating uses which this
4489 // analysis depends on.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00004490 if (!DT.isReachableFromEntry(I->getParent()))
Dan Gohman69451a02010-03-09 23:46:50 +00004491 return getUnknown(V);
4492 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004493 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004494 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4495 return getConstant(CI);
4496 else if (isa<ConstantPointerNull>(V))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004497 return getZero(V->getType());
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004498 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4499 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004500 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004501 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004502
Dan Gohman80ca01c2009-07-17 20:47:02 +00004503 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004504 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004505 case Instruction::Add: {
4506 // The simple thing to do would be to just call getSCEV on both operands
4507 // and call getAddExpr with the result. However if we're looking at a
4508 // bunch of things all added together, this can be quite inefficient,
4509 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4510 // Instead, gather up all the operands and make a single getAddExpr call.
4511 // LLVM IR canonical form means we need only traverse the left operands.
4512 SmallVector<const SCEV *, 4> AddOps;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004513 for (Value *Op = U;; Op = U->getOperand(0)) {
4514 U = dyn_cast<Operator>(Op);
4515 unsigned Opcode = U ? U->getOpcode() : 0;
4516 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) {
4517 assert(Op != V && "V should be an add");
4518 AddOps.push_back(getSCEV(Op));
Dan Gohman47308d52010-08-31 22:53:17 +00004519 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004520 }
4521
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004522 if (auto *OpSCEV = getExistingSCEV(U)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00004523 AddOps.push_back(OpSCEV);
4524 break;
4525 }
4526
4527 // If a NUW or NSW flag can be applied to the SCEV for this
4528 // addition, then compute the SCEV for this addition by itself
4529 // with a separate call to getAddExpr. We need to do that
4530 // instead of pushing the operands of the addition onto AddOps,
4531 // since the flags are only known to apply to this particular
4532 // addition - they may not apply to other additions that can be
4533 // formed with operands from AddOps.
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004534 const SCEV *RHS = getSCEV(U->getOperand(1));
4535 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4536 if (Flags != SCEV::FlagAnyWrap) {
4537 const SCEV *LHS = getSCEV(U->getOperand(0));
4538 if (Opcode == Instruction::Sub)
4539 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4540 else
4541 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4542 break;
Jingyue Wu42f1d672015-07-28 18:22:40 +00004543 }
4544
Dan Gohman47308d52010-08-31 22:53:17 +00004545 if (Opcode == Instruction::Sub)
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004546 AddOps.push_back(getNegativeSCEV(RHS));
Dan Gohman47308d52010-08-31 22:53:17 +00004547 else
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004548 AddOps.push_back(RHS);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004549 }
Andrew Trickd25089f2011-11-29 02:16:38 +00004550 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004551 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00004552
Dan Gohmane5fb1032010-08-16 16:03:49 +00004553 case Instruction::Mul: {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004554 SmallVector<const SCEV *, 4> MulOps;
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004555 for (Value *Op = U;; Op = U->getOperand(0)) {
4556 U = dyn_cast<Operator>(Op);
4557 if (!U || U->getOpcode() != Instruction::Mul) {
4558 assert(Op != V && "V should be a mul");
4559 MulOps.push_back(getSCEV(Op));
4560 break;
4561 }
4562
4563 if (auto *OpSCEV = getExistingSCEV(U)) {
4564 MulOps.push_back(OpSCEV);
4565 break;
4566 }
4567
4568 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U);
4569 if (Flags != SCEV::FlagAnyWrap) {
4570 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)),
4571 getSCEV(U->getOperand(1)), Flags));
4572 break;
4573 }
4574
Dan Gohmane5fb1032010-08-16 16:03:49 +00004575 MulOps.push_back(getSCEV(U->getOperand(1)));
4576 }
Dan Gohmane5fb1032010-08-16 16:03:49 +00004577 return getMulExpr(MulOps);
4578 }
Dan Gohman05e89732008-06-22 19:56:46 +00004579 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004580 return getUDivExpr(getSCEV(U->getOperand(0)),
4581 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004582 case Instruction::Sub:
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004583 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)),
4584 getNoWrapFlagsFromUB(U));
Dan Gohman0ec05372009-04-21 02:26:00 +00004585 case Instruction::And:
4586 // For an expression like x&255 that merely masks off the high bits,
4587 // use zext(trunc(x)) as the SCEV expression.
4588 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004589 if (CI->isNullValue())
4590 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004591 if (CI->isAllOnesValue())
4592 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004593 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004594
4595 // Instcombine's ShrinkDemandedConstant may strip bits out of
4596 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004597 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004598 // knew about to reconstruct a low-bits mask value.
4599 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004600 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004601 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004602 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Sanjoy Das49edd3b2015-10-27 00:52:09 +00004603 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, getDataLayout(),
4604 0, &AC, nullptr, &DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004605
Nick Lewycky31eaca52014-01-27 10:04:03 +00004606 APInt EffectiveMask =
4607 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4608 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4609 const SCEV *MulCount = getConstant(
4610 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4611 return getMulExpr(
4612 getZeroExtendExpr(
4613 getTruncateExpr(
4614 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4615 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4616 U->getType()),
4617 MulCount);
4618 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004619 }
4620 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004621
Dan Gohman05e89732008-06-22 19:56:46 +00004622 case Instruction::Or:
4623 // If the RHS of the Or is a constant, we may have something like:
4624 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4625 // optimizations will transparently handle this case.
4626 //
4627 // In order for this transformation to be safe, the LHS must be of the
4628 // form X*(2^n) and the Or constant must be less than 2^n.
4629 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004630 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004631 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004632 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004633 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4634 // Build a plain add SCEV.
4635 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4636 // If the LHS of the add was an addrec and it has no-wrap flags,
4637 // transfer the no-wrap flags, since an or won't introduce a wrap.
4638 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4639 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004640 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4641 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004642 }
4643 return S;
4644 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004645 }
Dan Gohman05e89732008-06-22 19:56:46 +00004646 break;
4647 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004648 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004649 // If the RHS of the xor is a signbit, then this is just an add.
4650 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004651 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004652 return getAddExpr(getSCEV(U->getOperand(0)),
4653 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004654
4655 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004656 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004657 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004658
4659 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4660 // This is a variant of the check for xor with -1, and it handles
4661 // the case where instcombine has trimmed non-demanded bits out
4662 // of an xor with -1.
4663 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4664 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4665 if (BO->getOpcode() == Instruction::And &&
4666 LCI->getValue() == CI->getValue())
4667 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004668 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004669 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004670 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004671 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004672 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4673
Dan Gohman8b0a4192010-03-01 17:49:51 +00004674 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004675 // mask off the high bits. Complement the operand and
4676 // re-apply the zext.
4677 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4678 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4679
4680 // If C is a single bit, it may be in the sign-bit position
4681 // before the zero-extend. In this case, represent the xor
4682 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004683 APInt Trunc = CI->getValue().trunc(Z0TySize);
4684 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004685 Trunc.isSignBit())
4686 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4687 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004688 }
Dan Gohman05e89732008-06-22 19:56:46 +00004689 }
4690 break;
4691
4692 case Instruction::Shl:
4693 // Turn shift left of a constant amount into a multiply.
4694 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004695 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004696
4697 // If the shift count is not less than the bitwidth, the result of
4698 // the shift is undefined. Don't try to analyze it, because the
4699 // resolution chosen here may differ from the resolution chosen in
4700 // other parts of the compiler.
4701 if (SA->getValue().uge(BitWidth))
4702 break;
4703
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004704 // It is currently not resolved how to interpret NSW for left
4705 // shift by BitWidth - 1, so we avoid applying flags in that
4706 // case. Remove this check (or this comment) once the situation
4707 // is resolved. See
4708 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
4709 // and http://reviews.llvm.org/D8890 .
4710 auto Flags = SCEV::FlagAnyWrap;
4711 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U);
4712
Owen Andersonedb4a702009-07-24 23:12:02 +00004713 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004714 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Bjarke Hammersholt Roune9791ed42015-08-14 22:45:26 +00004715 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags);
Dan Gohman05e89732008-06-22 19:56:46 +00004716 }
4717 break;
4718
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004719 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004720 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004721 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004722 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004723
4724 // If the shift count is not less than the bitwidth, the result of
4725 // the shift is undefined. Don't try to analyze it, because the
4726 // resolution chosen here may differ from the resolution chosen in
4727 // other parts of the compiler.
4728 if (SA->getValue().uge(BitWidth))
4729 break;
4730
Owen Andersonedb4a702009-07-24 23:12:02 +00004731 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004732 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004733 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004734 }
4735 break;
4736
Dan Gohman0ec05372009-04-21 02:26:00 +00004737 case Instruction::AShr:
4738 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4739 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004740 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004741 if (L->getOpcode() == Instruction::Shl &&
4742 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004743 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4744
4745 // If the shift count is not less than the bitwidth, the result of
4746 // the shift is undefined. Don't try to analyze it, because the
4747 // resolution chosen here may differ from the resolution chosen in
4748 // other parts of the compiler.
4749 if (CI->getValue().uge(BitWidth))
4750 break;
4751
Dan Gohmandf199482009-04-25 17:05:40 +00004752 uint64_t Amt = BitWidth - CI->getZExtValue();
4753 if (Amt == BitWidth)
4754 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004755 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004756 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004757 IntegerType::get(getContext(),
4758 Amt)),
4759 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004760 }
4761 break;
4762
Dan Gohman05e89732008-06-22 19:56:46 +00004763 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004764 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004765
4766 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004767 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004768
4769 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004770 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004771
4772 case Instruction::BitCast:
4773 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004774 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004775 return getSCEV(U->getOperand(0));
4776 break;
4777
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004778 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4779 // lead to pointer expressions which cannot safely be expanded to GEPs,
4780 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4781 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004782
Dan Gohmanee750d12009-05-08 20:26:55 +00004783 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004784 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004785
Dan Gohman05e89732008-06-22 19:56:46 +00004786 case Instruction::PHI:
4787 return createNodeForPHI(cast<PHINode>(U));
4788
4789 case Instruction::Select:
Sanjoy Dasd0671342015-10-02 19:39:59 +00004790 // U can also be a select constant expr, which let fall through. Since
4791 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
4792 // constant expressions cannot have instructions as operands, we'd have
4793 // returned getUnknown for a select constant expressions anyway.
4794 if (isa<Instruction>(U))
Sanjoy Das55015d22015-10-02 23:09:44 +00004795 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
4796 U->getOperand(1), U->getOperand(2));
Dan Gohman05e89732008-06-22 19:56:46 +00004797
4798 default: // We cannot analyze this expression.
4799 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004800 }
4801
Dan Gohmanc8e23622009-04-21 23:15:49 +00004802 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004803}
4804
4805
4806
4807//===----------------------------------------------------------------------===//
4808// Iteration Count Computation Code
4809//
4810
Chandler Carruth6666c272014-10-11 00:12:11 +00004811unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4812 if (BasicBlock *ExitingBB = L->getExitingBlock())
4813 return getSmallConstantTripCount(L, ExitingBB);
4814
4815 // No trip count information for multiple exits.
4816 return 0;
4817}
4818
Andrew Trick2b6860f2011-08-11 23:36:16 +00004819/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004820/// normal unsigned value. Returns 0 if the trip count is unknown or not
4821/// constant. Will also return 0 if the maximum trip count is very large (>=
4822/// 2^32).
4823///
4824/// This "trip count" assumes that control exits via ExitingBlock. More
4825/// precisely, it is the number of times that control may reach ExitingBlock
4826/// before taking the branch. For loops with multiple exits, it may not be the
4827/// number times that the loop header executes because the loop may exit
4828/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004829unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4830 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004831 assert(ExitingBlock && "Must pass a non-null exiting block!");
4832 assert(L->isLoopExiting(ExitingBlock) &&
4833 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004834 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004835 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004836 if (!ExitCount)
4837 return 0;
4838
4839 ConstantInt *ExitConst = ExitCount->getValue();
4840
4841 // Guard against huge trip counts.
4842 if (ExitConst->getValue().getActiveBits() > 32)
4843 return 0;
4844
4845 // In case of integer overflow, this returns 0, which is correct.
4846 return ((unsigned)ExitConst->getZExtValue()) + 1;
4847}
4848
Chandler Carruth6666c272014-10-11 00:12:11 +00004849unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4850 if (BasicBlock *ExitingBB = L->getExitingBlock())
4851 return getSmallConstantTripMultiple(L, ExitingBB);
4852
4853 // No trip multiple information for multiple exits.
4854 return 0;
4855}
4856
Andrew Trick2b6860f2011-08-11 23:36:16 +00004857/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4858/// trip count of this loop as a normal unsigned value, if possible. This
4859/// means that the actual trip count is always a multiple of the returned
4860/// value (don't forget the trip count could very well be zero as well!).
4861///
4862/// Returns 1 if the trip count is unknown or not guaranteed to be the
4863/// multiple of a constant (which is also the case if the trip count is simply
4864/// constant, use getSmallConstantTripCount for that case), Will also return 1
4865/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004866///
4867/// As explained in the comments for getSmallConstantTripCount, this assumes
4868/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004869unsigned
4870ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4871 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004872 assert(ExitingBlock && "Must pass a non-null exiting block!");
4873 assert(L->isLoopExiting(ExitingBlock) &&
4874 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004875 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004876 if (ExitCount == getCouldNotCompute())
4877 return 1;
4878
4879 // Get the trip count from the BE count by adding 1.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00004880 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004881 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4882 // to factor simple cases.
4883 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4884 TCMul = Mul->getOperand(0);
4885
4886 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4887 if (!MulC)
4888 return 1;
4889
4890 ConstantInt *Result = MulC->getValue();
4891
Hal Finkel30bd9342012-10-24 19:46:44 +00004892 // Guard against huge trip counts (this requires checking
4893 // for zero to handle the case where the trip count == -1 and the
4894 // addition wraps).
4895 if (!Result || Result->getValue().getActiveBits() > 32 ||
4896 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004897 return 1;
4898
4899 return (unsigned)Result->getZExtValue();
4900}
4901
Andrew Trick3ca3f982011-07-26 17:19:55 +00004902// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004903// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004904// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004905const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4906 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004907}
4908
Dan Gohman0bddac12009-02-24 18:55:53 +00004909/// getBackedgeTakenCount - If the specified loop has a predictable
4910/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4911/// object. The backedge-taken count is the number of times the loop header
4912/// will be branched to from within the loop. This is one less than the
4913/// trip count of the loop, since it doesn't count the first iteration,
4914/// when the header is branched to from outside the loop.
4915///
4916/// Note that it is not valid to call this method on a loop without a
4917/// loop-invariant backedge-taken count (see
4918/// hasLoopInvariantBackedgeTakenCount).
4919///
Dan Gohmanaf752342009-07-07 17:06:11 +00004920const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004921 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004922}
4923
4924/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4925/// return the least SCEV value that is known never to be less than the
4926/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004927const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004928 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004929}
4930
Dan Gohmandc191042009-07-08 19:23:34 +00004931/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4932/// onto the given Worklist.
4933static void
4934PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4935 BasicBlock *Header = L->getHeader();
4936
4937 // Push all Loop-header PHIs onto the Worklist stack.
4938 for (BasicBlock::iterator I = Header->begin();
4939 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4940 Worklist.push_back(PN);
4941}
4942
Dan Gohman2b8da352009-04-30 20:47:05 +00004943const ScalarEvolution::BackedgeTakenInfo &
4944ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004945 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004946 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004947 // update the value. The temporary CouldNotCompute value tells SCEV
4948 // code elsewhere that it shouldn't attempt to request a new
4949 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004950 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004951 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004952 if (!Pair.second)
4953 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004954
Sanjoy Das413dbbb2015-10-08 18:46:59 +00004955 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
Andrew Trick3ca3f982011-07-26 17:19:55 +00004956 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4957 // must be cleared in this scope.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00004958 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004959
4960 if (Result.getExact(this) != getCouldNotCompute()) {
4961 assert(isLoopInvariant(Result.getExact(this), L) &&
4962 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004963 "Computed backedge-taken count isn't loop invariant for loop!");
4964 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004965 }
4966 else if (Result.getMax(this) == getCouldNotCompute() &&
4967 isa<PHINode>(L->getHeader()->begin())) {
4968 // Only count loops that have phi nodes as not being computable.
4969 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004970 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004971
Chris Lattnera337f5e2011-01-09 02:16:18 +00004972 // Now that we know more about the trip count for this loop, forget any
4973 // existing SCEV values for PHI nodes in this loop since they are only
4974 // conservative estimates made without the benefit of trip count
4975 // information. This is similar to the code in forgetLoop, except that
4976 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004977 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004978 SmallVector<Instruction *, 16> Worklist;
4979 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004980
Chris Lattnera337f5e2011-01-09 02:16:18 +00004981 SmallPtrSet<Instruction *, 8> Visited;
4982 while (!Worklist.empty()) {
4983 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004984 if (!Visited.insert(I).second)
4985 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004986
Chris Lattnera337f5e2011-01-09 02:16:18 +00004987 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004988 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004989 if (It != ValueExprMap.end()) {
4990 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004991
Chris Lattnera337f5e2011-01-09 02:16:18 +00004992 // SCEVUnknown for a PHI either means that it has an unrecognized
4993 // structure, or it's a PHI that's in the progress of being computed
4994 // by createNodeForPHI. In the former case, additional loop trip
4995 // count information isn't going to change anything. In the later
4996 // case, createNodeForPHI will perform the necessary updates on its
4997 // own when it gets to that point.
4998 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4999 forgetMemoizedResults(Old);
5000 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00005001 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00005002 if (PHINode *PN = dyn_cast<PHINode>(I))
5003 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00005004 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00005005
5006 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00005007 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005008 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00005009
5010 // Re-lookup the insert position, since the call to
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005011 // computeBackedgeTakenCount above could result in a
Dan Gohman6acd95b2011-04-25 22:48:29 +00005012 // recusive call to getBackedgeTakenInfo (on a different
5013 // loop), which would invalidate the iterator computed
5014 // earlier.
5015 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00005016}
5017
Dan Gohman880c92a2009-10-31 15:04:55 +00005018/// forgetLoop - This method should be called by the client when it has
5019/// changed a loop in a way that may effect ScalarEvolution's ability to
5020/// compute a trip count, or if the loop is deleted.
5021void ScalarEvolution::forgetLoop(const Loop *L) {
5022 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005023 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
5024 BackedgeTakenCounts.find(L);
5025 if (BTCPos != BackedgeTakenCounts.end()) {
5026 BTCPos->second.clear();
5027 BackedgeTakenCounts.erase(BTCPos);
5028 }
Dan Gohmanf1505722009-05-02 17:43:35 +00005029
Dan Gohman880c92a2009-10-31 15:04:55 +00005030 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00005031 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00005032 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00005033
Dan Gohmandc191042009-07-08 19:23:34 +00005034 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00005035 while (!Worklist.empty()) {
5036 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005037 if (!Visited.insert(I).second)
5038 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00005039
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005040 ValueExprMapType::iterator It =
5041 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005042 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005043 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005044 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00005045 if (PHINode *PN = dyn_cast<PHINode>(I))
5046 ConstantEvolutionLoopExitValue.erase(PN);
5047 }
5048
5049 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00005050 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00005051
5052 // Forget all contained loops too, to avoid dangling entries in the
5053 // ValuesAtScopes map.
5054 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5055 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00005056}
5057
Eric Christopheref6d5932010-07-29 01:25:38 +00005058/// forgetValue - This method should be called by the client when it has
5059/// changed a value in a way that may effect its value, or which may
5060/// disconnect it from a def-use chain linking it to a loop.
5061void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005062 Instruction *I = dyn_cast<Instruction>(V);
5063 if (!I) return;
5064
5065 // Drop information about expressions based on loop-header PHIs.
5066 SmallVector<Instruction *, 16> Worklist;
5067 Worklist.push_back(I);
5068
5069 SmallPtrSet<Instruction *, 8> Visited;
5070 while (!Worklist.empty()) {
5071 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00005072 if (!Visited.insert(I).second)
5073 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005074
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00005075 ValueExprMapType::iterator It =
5076 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005077 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00005078 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00005079 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00005080 if (PHINode *PN = dyn_cast<PHINode>(I))
5081 ConstantEvolutionLoopExitValue.erase(PN);
5082 }
5083
5084 PushDefUseChildren(I, Worklist);
5085 }
5086}
5087
Andrew Trick3ca3f982011-07-26 17:19:55 +00005088/// getExact - Get the exact loop backedge taken count considering all loop
Sanjoy Das135e5b92015-07-21 20:59:22 +00005089/// exits. A computable result can only be returned for loops with a single
5090/// exit. Returning the minimum taken count among all exits is incorrect
5091/// because one of the loop's exit limit's may have been skipped. HowFarToZero
5092/// assumes that the limit of each loop test is never skipped. This is a valid
5093/// assumption as long as the loop exits via that test. For precise results, it
5094/// is the caller's responsibility to specify the relevant loop exit using
Andrew Trick90c7a102011-11-16 00:52:40 +00005095/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00005096const SCEV *
5097ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
5098 // If any exits were not computable, the loop is not computable.
5099 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5100
Andrew Trick90c7a102011-11-16 00:52:40 +00005101 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00005102 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005103 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5104
Craig Topper9f008862014-04-15 04:59:12 +00005105 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005106 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005107 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005108
5109 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5110
5111 if (!BECount)
5112 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00005113 else if (BECount != ENT->ExactNotTaken)
5114 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00005115 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00005116 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005117 return BECount;
5118}
5119
5120/// getExact - Get the exact not taken count for this loop exit.
5121const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00005122ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005123 ScalarEvolution *SE) const {
5124 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005125 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005126
Andrew Trick77c55422011-08-02 04:23:35 +00005127 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005128 return ENT->ExactNotTaken;
5129 }
5130 return SE->getCouldNotCompute();
5131}
5132
5133/// getMax - Get the max backedge taken count for the loop.
5134const SCEV *
5135ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5136 return Max ? Max : SE->getCouldNotCompute();
5137}
5138
Andrew Trick9093e152013-03-26 03:14:53 +00005139bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5140 ScalarEvolution *SE) const {
5141 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5142 return true;
5143
5144 if (!ExitNotTaken.ExitingBlock)
5145 return false;
5146
5147 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00005148 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00005149
5150 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
5151 && SE->hasOperand(ENT->ExactNotTaken, S)) {
5152 return true;
5153 }
5154 }
5155 return false;
5156}
5157
Andrew Trick3ca3f982011-07-26 17:19:55 +00005158/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5159/// computable exit into a persistent ExitNotTakenInfo array.
5160ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5161 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
5162 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
5163
5164 if (!Complete)
5165 ExitNotTaken.setIncomplete();
5166
5167 unsigned NumExits = ExitCounts.size();
5168 if (NumExits == 0) return;
5169
Andrew Trick77c55422011-08-02 04:23:35 +00005170 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005171 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
5172 if (NumExits == 1) return;
5173
5174 // Handle the rare case of multiple computable exits.
5175 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
5176
5177 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
5178 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
5179 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00005180 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005181 ENT->ExactNotTaken = ExitCounts[i].second;
5182 }
5183}
5184
5185/// clear - Invalidate this result and free the ExitNotTakenInfo array.
5186void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00005187 ExitNotTaken.ExitingBlock = nullptr;
5188 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005189 delete[] ExitNotTaken.getNextExit();
5190}
5191
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005192/// computeBackedgeTakenCount - Compute the number of times the backedge
Dan Gohman0bddac12009-02-24 18:55:53 +00005193/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00005194ScalarEvolution::BackedgeTakenInfo
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005195ScalarEvolution::computeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00005196 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00005197 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00005198
Andrew Trick839e30b2014-05-23 19:47:13 +00005199 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00005200 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005201 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00005202 const SCEV *MustExitMaxBECount = nullptr;
5203 const SCEV *MayExitMaxBECount = nullptr;
5204
5205 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5206 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00005207 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005208 BasicBlock *ExitBB = ExitingBlocks[i];
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005209 ExitLimit EL = computeExitLimit(L, ExitBB);
Andrew Trick839e30b2014-05-23 19:47:13 +00005210
5211 // 1. For each exit that can be computed, add an entry to ExitCounts.
5212 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005213 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00005214 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00005215 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005216 CouldComputeBECount = false;
5217 else
Andrew Trick839e30b2014-05-23 19:47:13 +00005218 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00005219
Andrew Trick839e30b2014-05-23 19:47:13 +00005220 // 2. Derive the loop's MaxBECount from each exit's max number of
5221 // non-exiting iterations. Partition the loop exits into two kinds:
5222 // LoopMustExits and LoopMayExits.
5223 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005224 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5225 // is a LoopMayExit. If any computable LoopMustExit is found, then
5226 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5227 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5228 // considered greater than any computable EL.Max.
5229 if (EL.Max != getCouldNotCompute() && Latch &&
Chandler Carruth2f1fd162015-08-17 02:08:17 +00005230 DT.dominates(ExitBB, Latch)) {
Andrew Trick839e30b2014-05-23 19:47:13 +00005231 if (!MustExitMaxBECount)
5232 MustExitMaxBECount = EL.Max;
5233 else {
5234 MustExitMaxBECount =
5235 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00005236 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005237 } else if (MayExitMaxBECount != getCouldNotCompute()) {
5238 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5239 MayExitMaxBECount = EL.Max;
5240 else {
5241 MayExitMaxBECount =
5242 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5243 }
Andrew Trick90c7a102011-11-16 00:52:40 +00005244 }
Dan Gohman96212b62009-06-22 00:31:57 +00005245 }
Andrew Trick839e30b2014-05-23 19:47:13 +00005246 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5247 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00005248 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005249}
5250
Andrew Trick3ca3f982011-07-26 17:19:55 +00005251ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005252ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00005253
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005254 // Okay, we've chosen an exiting block. See what condition causes us to exit
5255 // at this block and remember the exit block and whether all other targets
Benjamin Kramer5a188542014-02-11 15:44:32 +00005256 // lead to the loop header.
5257 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00005258 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005259 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
5260 SI != SE; ++SI)
5261 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005262 if (Exit) // Multiple exit successors.
5263 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00005264 Exit = *SI;
5265 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005266 MustExecuteLoopHeader = false;
5267 }
Dan Gohmance973df2009-06-24 04:48:43 +00005268
Chris Lattner18954852007-01-07 02:24:26 +00005269 // At this point, we know we have a conditional branch that determines whether
5270 // the loop is exited. However, we don't know if the branch is executed each
5271 // time through the loop. If not, then the execution count of the branch will
5272 // not be equal to the trip count of the loop.
5273 //
5274 // Currently we check for this by checking to see if the Exit branch goes to
5275 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00005276 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00005277 // loop header. This is common for un-rotated loops.
5278 //
5279 // If both of those tests fail, walk up the unique predecessor chain to the
5280 // header, stopping if there is an edge that doesn't exit the loop. If the
5281 // header is reached, the execution count of the branch will be equal to the
5282 // trip count of the loop.
5283 //
5284 // More extensive analysis could be done to handle more cases here.
5285 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00005286 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005287 // The simple checks failed, try climbing the unique predecessor chain
5288 // up to the header.
5289 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00005290 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00005291 BasicBlock *Pred = BB->getUniquePredecessor();
5292 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005293 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005294 TerminatorInst *PredTerm = Pred->getTerminator();
Pete Cooperebcd7482015-08-06 20:22:46 +00005295 for (const BasicBlock *PredSucc : PredTerm->successors()) {
Dan Gohman96212b62009-06-22 00:31:57 +00005296 if (PredSucc == BB)
5297 continue;
5298 // If the predecessor has a successor that isn't BB and isn't
5299 // outside the loop, assume the worst.
5300 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005301 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005302 }
5303 if (Pred == L->getHeader()) {
5304 Ok = true;
5305 break;
5306 }
5307 BB = Pred;
5308 }
5309 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005310 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005311 }
5312
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005313 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005314 TerminatorInst *Term = ExitingBlock->getTerminator();
5315 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5316 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5317 // Proceed to the next level to examine the exit condition expression.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005318 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
Benjamin Kramer5a188542014-02-11 15:44:32 +00005319 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005320 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005321 }
5322
5323 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005324 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005325 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005326
5327 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00005328}
5329
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005330/// computeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005331/// backedge of the specified loop will execute if its exit condition
5332/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00005333///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005334/// @param ControlsExit is true if ExitCond directly controls the exit
5335/// branch. In this case, we can assume that the loop exits only if the
5336/// condition is true and can infer that failing to meet the condition prior to
5337/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005338ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005339ScalarEvolution::computeExitLimitFromCond(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005340 Value *ExitCond,
5341 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005342 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005343 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00005344 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00005345 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5346 if (BO->getOpcode() == Instruction::And) {
5347 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00005348 bool EitherMayExit = L->contains(TBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005349 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005350 ControlsExit && !EitherMayExit);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005351 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005352 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005353 const SCEV *BECount = getCouldNotCompute();
5354 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005355 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005356 // Both conditions must be true for the loop to continue executing.
5357 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005358 if (EL0.Exact == getCouldNotCompute() ||
5359 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005360 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005361 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005362 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5363 if (EL0.Max == getCouldNotCompute())
5364 MaxBECount = EL1.Max;
5365 else if (EL1.Max == getCouldNotCompute())
5366 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005367 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005368 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005369 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005370 // Both conditions must be true at the same time for the loop to exit.
5371 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005372 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005373 if (EL0.Max == EL1.Max)
5374 MaxBECount = EL0.Max;
5375 if (EL0.Exact == EL1.Exact)
5376 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005377 }
5378
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005379 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005380 }
5381 if (BO->getOpcode() == Instruction::Or) {
5382 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00005383 bool EitherMayExit = L->contains(FBB);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005384 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005385 ControlsExit && !EitherMayExit);
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005386 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005387 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00005388 const SCEV *BECount = getCouldNotCompute();
5389 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00005390 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00005391 // Both conditions must be false for the loop to continue executing.
5392 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005393 if (EL0.Exact == getCouldNotCompute() ||
5394 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005395 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00005396 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005397 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5398 if (EL0.Max == getCouldNotCompute())
5399 MaxBECount = EL1.Max;
5400 else if (EL1.Max == getCouldNotCompute())
5401 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00005402 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00005403 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00005404 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00005405 // Both conditions must be false at the same time for the loop to exit.
5406 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00005407 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00005408 if (EL0.Max == EL1.Max)
5409 MaxBECount = EL0.Max;
5410 if (EL0.Exact == EL1.Exact)
5411 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00005412 }
5413
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005414 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00005415 }
5416 }
5417
5418 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005419 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005420 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005421 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005422
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005423 // Check for a constant condition. These are normally stripped out by
5424 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5425 // preserve the CFG and is temporarily leaving constant conditions
5426 // in place.
5427 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5428 if (L->contains(FBB) == !CI->getZExtValue())
5429 // The backedge is always taken.
5430 return getCouldNotCompute();
5431 else
5432 // The backedge is never taken.
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00005433 return getZero(CI->getType());
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005434 }
5435
Eli Friedmanebf98b02009-05-09 12:32:42 +00005436 // If it's not an integer or pointer comparison then compute it the hard way.
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005437 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005438}
5439
Andrew Trick3ca3f982011-07-26 17:19:55 +00005440ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005441ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
Andrew Trick3ca3f982011-07-26 17:19:55 +00005442 ICmpInst *ExitCond,
5443 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005444 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005445 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005446
Reid Spencer266e42b2006-12-23 06:05:41 +00005447 // If the condition was exit on true, convert the condition to exit on false
5448 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005449 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005450 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005451 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005452 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005453
5454 // Handle common loops like: for (X = "string"; *X; ++X)
5455 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5456 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005457 ExitLimit ItCnt =
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005458 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005459 if (ItCnt.hasAnyInfo())
5460 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005461 }
5462
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00005463 ExitLimit ShiftEL = computeShiftCompareExitLimit(
5464 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
5465 if (ShiftEL.hasAnyInfo())
5466 return ShiftEL;
5467
Dan Gohmanaf752342009-07-07 17:06:11 +00005468 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5469 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005470
5471 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005472 LHS = getSCEVAtScope(LHS, L);
5473 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005474
Dan Gohmance973df2009-06-24 04:48:43 +00005475 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005476 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005477 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005478 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005479 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005480 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005481 }
5482
Dan Gohman81585c12010-05-03 16:35:17 +00005483 // Simplify the operands before analyzing them.
5484 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5485
Chris Lattnerd934c702004-04-02 20:23:17 +00005486 // If we have a comparison of a chrec against a constant, try to use value
5487 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005488 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5489 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005490 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005491 // Form the constant range.
5492 ConstantRange CompRange(
5493 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005494
Dan Gohmanaf752342009-07-07 17:06:11 +00005495 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005496 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005497 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005498
Chris Lattnerd934c702004-04-02 20:23:17 +00005499 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005500 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005501 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005502 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005503 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005504 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005505 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005506 case ICmpInst::ICMP_EQ: { // while (X == Y)
5507 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005508 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5509 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005510 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005511 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005512 case ICmpInst::ICMP_SLT:
5513 case ICmpInst::ICMP_ULT: { // while (X < Y)
5514 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005515 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005516 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005517 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005518 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005519 case ICmpInst::ICMP_SGT:
5520 case ICmpInst::ICMP_UGT: { // while (X > Y)
5521 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005522 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005523 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005524 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005525 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005526 default:
Chris Lattner0defaa12004-04-03 00:43:03 +00005527 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005528 }
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005529 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005530}
5531
Benjamin Kramer5a188542014-02-11 15:44:32 +00005532ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005533ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
Benjamin Kramer5a188542014-02-11 15:44:32 +00005534 SwitchInst *Switch,
5535 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005536 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005537 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5538
5539 // Give up if the exit is the default dest of a switch.
5540 if (Switch->getDefaultDest() == ExitingBlock)
5541 return getCouldNotCompute();
5542
5543 assert(L->contains(Switch->getDefaultDest()) &&
5544 "Default case must not exit the loop!");
5545 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5546 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5547
5548 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005549 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005550 if (EL.hasAnyInfo())
5551 return EL;
5552
5553 return getCouldNotCompute();
5554}
5555
Chris Lattnerec901cc2004-10-12 01:49:27 +00005556static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005557EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5558 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005559 const SCEV *InVal = SE.getConstant(C);
5560 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005561 assert(isa<SCEVConstant>(Val) &&
5562 "Evaluation of SCEV at constant didn't fold correctly?");
5563 return cast<SCEVConstant>(Val)->getValue();
5564}
5565
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005566/// computeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005567/// 'icmp op load X, cst', try to see if we can compute the backedge
5568/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005569ScalarEvolution::ExitLimit
Sanjoy Das413dbbb2015-10-08 18:46:59 +00005570ScalarEvolution::computeLoadConstantCompareExitLimit(
Andrew Trick3ca3f982011-07-26 17:19:55 +00005571 LoadInst *LI,
5572 Constant *RHS,
5573 const Loop *L,
5574 ICmpInst::Predicate predicate) {
5575
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005576 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005577
5578 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005579 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005580 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005581 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005582
5583 // Make sure that it is really a constant global we are gepping, with an
5584 // initializer, and make sure the first IDX is really 0.
5585 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005586 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005587 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5588 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005589 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005590
5591 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005592 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005593 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005594 unsigned VarIdxNum = 0;
5595 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5596 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5597 Indexes.push_back(CI);
5598 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005599 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005600 VarIdx = GEP->getOperand(i);
5601 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005602 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005603 }
5604
Andrew Trick7004e4b2012-03-26 22:33:59 +00005605 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5606 if (!VarIdx)
5607 return getCouldNotCompute();
5608
Chris Lattnerec901cc2004-10-12 01:49:27 +00005609 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5610 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005611 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005612 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005613
5614 // We can only recognize very limited forms of loop index expressions, in
5615 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005616 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005617 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005618 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5619 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005620 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005621
5622 unsigned MaxSteps = MaxBruteForceIterations;
5623 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005624 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005625 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005626 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005627
5628 // Form the GEP offset.
5629 Indexes[VarIdxNum] = Val;
5630
Chris Lattnere166a852012-01-24 05:49:24 +00005631 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5632 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005633 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005634
5635 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005636 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005637 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005638 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005639 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005640 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005641 }
5642 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005643 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005644}
5645
Sanjoy Dasc88f5d32015-10-28 21:27:14 +00005646ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
5647 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
5648 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
5649 if (!RHS)
5650 return getCouldNotCompute();
5651
5652 const BasicBlock *Latch = L->getLoopLatch();
5653 if (!Latch)
5654 return getCouldNotCompute();
5655
5656 const BasicBlock *Predecessor = L->getLoopPredecessor();
5657 if (!Predecessor)
5658 return getCouldNotCompute();
5659
5660 // Return true if V is of the form "LHS `shift_op` <positive constant>".
5661 // Return LHS in OutLHS and shift_opt in OutOpCode.
5662 auto MatchPositiveShift =
5663 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
5664
5665 using namespace PatternMatch;
5666
5667 ConstantInt *ShiftAmt;
5668 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5669 OutOpCode = Instruction::LShr;
5670 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5671 OutOpCode = Instruction::AShr;
5672 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5673 OutOpCode = Instruction::Shl;
5674 else
5675 return false;
5676
5677 return ShiftAmt->getValue().isStrictlyPositive();
5678 };
5679
5680 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
5681 //
5682 // loop:
5683 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
5684 // %iv.shifted = lshr i32 %iv, <positive constant>
5685 //
5686 // Return true on a succesful match. Return the corresponding PHI node (%iv
5687 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
5688 auto MatchShiftRecurrence =
5689 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
5690 Optional<Instruction::BinaryOps> PostShiftOpCode;
5691
5692 {
5693 Instruction::BinaryOps OpC;
5694 Value *V;
5695
5696 // If we encounter a shift instruction, "peel off" the shift operation,
5697 // and remember that we did so. Later when we inspect %iv's backedge
5698 // value, we will make sure that the backedge value uses the same
5699 // operation.
5700 //
5701 // Note: the peeled shift operation does not have to be the same
5702 // instruction as the one feeding into the PHI's backedge value. We only
5703 // really care about it being the same *kind* of shift instruction --
5704 // that's all that is required for our later inferences to hold.
5705 if (MatchPositiveShift(LHS, V, OpC)) {
5706 PostShiftOpCode = OpC;
5707 LHS = V;
5708 }
5709 }
5710
5711 PNOut = dyn_cast<PHINode>(LHS);
5712 if (!PNOut || PNOut->getParent() != L->getHeader())
5713 return false;
5714
5715 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
5716 Value *OpLHS;
5717
5718 return
5719 // The backedge value for the PHI node must be a shift by a positive
5720 // amount
5721 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
5722
5723 // of the PHI node itself
5724 OpLHS == PNOut &&
5725
5726 // and the kind of shift should be match the kind of shift we peeled
5727 // off, if any.
5728 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
5729 };
5730
5731 PHINode *PN;
5732 Instruction::BinaryOps OpCode;
5733 if (!MatchShiftRecurrence(LHS, PN, OpCode))
5734 return getCouldNotCompute();
5735
5736 const DataLayout &DL = getDataLayout();
5737
5738 // The key rationale for this optimization is that for some kinds of shift
5739 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
5740 // within a finite number of iterations. If the condition guarding the
5741 // backedge (in the sense that the backedge is taken if the condition is true)
5742 // is false for the value the shift recurrence stabilizes to, then we know
5743 // that the backedge is taken only a finite number of times.
5744
5745 ConstantInt *StableValue = nullptr;
5746 switch (OpCode) {
5747 default:
5748 llvm_unreachable("Impossible case!");
5749
5750 case Instruction::AShr: {
5751 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
5752 // bitwidth(K) iterations.
5753 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
5754 bool KnownZero, KnownOne;
5755 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
5756 Predecessor->getTerminator(), &DT);
5757 auto *Ty = cast<IntegerType>(RHS->getType());
5758 if (KnownZero)
5759 StableValue = ConstantInt::get(Ty, 0);
5760 else if (KnownOne)
5761 StableValue = ConstantInt::get(Ty, -1, true);
5762 else
5763 return getCouldNotCompute();
5764
5765 break;
5766 }
5767 case Instruction::LShr:
5768 case Instruction::Shl:
5769 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
5770 // stabilize to 0 in at most bitwidth(K) iterations.
5771 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
5772 break;
5773 }
5774
5775 auto *Result =
5776 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
5777 assert(Result->getType()->isIntegerTy(1) &&
5778 "Otherwise cannot be an operand to a branch instruction");
5779
5780 if (Result->isZeroValue()) {
5781 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
5782 const SCEV *UpperBound =
5783 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
5784 return ExitLimit(getCouldNotCompute(), UpperBound);
5785 }
5786
5787 return getCouldNotCompute();
5788}
Chris Lattnerec901cc2004-10-12 01:49:27 +00005789
Chris Lattnerdd730472004-04-17 22:58:41 +00005790/// CanConstantFold - Return true if we can constant fold an instruction of the
5791/// specified type, assuming that all operands were constants.
5792static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005793 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005794 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5795 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005796 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005797
Chris Lattnerdd730472004-04-17 22:58:41 +00005798 if (const CallInst *CI = dyn_cast<CallInst>(I))
5799 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005800 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005801 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005802}
5803
Andrew Trick3a86ba72011-10-05 03:25:31 +00005804/// Determine whether this instruction can constant evolve within this loop
5805/// assuming its operands can all constant evolve.
5806static bool canConstantEvolve(Instruction *I, const Loop *L) {
5807 // An instruction outside of the loop can't be derived from a loop PHI.
5808 if (!L->contains(I)) return false;
5809
5810 if (isa<PHINode>(I)) {
David Blaikie19ef0d32015-03-24 16:33:19 +00005811 // We don't currently keep track of the control flow needed to evaluate
5812 // PHIs, so we cannot handle PHIs inside of loops.
5813 return L->getHeader() == I->getParent();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005814 }
5815
5816 // If we won't be able to constant fold this expression even if the operands
5817 // are constants, bail early.
5818 return CanConstantFold(I);
5819}
5820
5821/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5822/// recursing through each instruction operand until reaching a loop header phi.
5823static PHINode *
5824getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005825 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005826
5827 // Otherwise, we can evaluate this instruction if all of its operands are
5828 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005829 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005830 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5831 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5832
5833 if (isa<Constant>(*OpI)) continue;
5834
5835 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005836 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005837
5838 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005839 if (!P)
5840 // If this operand is already visited, reuse the prior result.
5841 // We may have P != PHI if this is the deepest point at which the
5842 // inconsistent paths meet.
5843 P = PHIMap.lookup(OpInst);
5844 if (!P) {
5845 // Recurse and memoize the results, whether a phi is found or not.
5846 // This recursive call invalidates pointers into PHIMap.
5847 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5848 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005849 }
Craig Topper9f008862014-04-15 04:59:12 +00005850 if (!P)
5851 return nullptr; // Not evolving from PHI
5852 if (PHI && PHI != P)
5853 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005854 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005855 }
5856 // This is a expression evolving from a constant PHI!
5857 return PHI;
5858}
5859
Chris Lattnerdd730472004-04-17 22:58:41 +00005860/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5861/// in the loop that V is derived from. We allow arbitrary operations along the
5862/// way, but the operands of an operation must either be constants or a value
5863/// derived from a constant PHI. If this expression does not fit with these
5864/// constraints, return null.
5865static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005866 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005867 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005868
Sanjoy Dasd295f2c2015-10-18 00:29:27 +00005869 if (PHINode *PN = dyn_cast<PHINode>(I))
Andrew Trick3a86ba72011-10-05 03:25:31 +00005870 return PN;
Chris Lattnerdd730472004-04-17 22:58:41 +00005871
Andrew Trick3a86ba72011-10-05 03:25:31 +00005872 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005873 DenseMap<Instruction *, PHINode *> PHIMap;
5874 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005875}
5876
5877/// EvaluateExpression - Given an expression that passes the
5878/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5879/// in the loop has the value PHIVal. If we can't fold this expression for some
5880/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005881static Constant *EvaluateExpression(Value *V, const Loop *L,
5882 DenseMap<Instruction *, Constant *> &Vals,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00005883 const DataLayout &DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005884 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005885 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005886 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005887 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005888 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005889
Andrew Trick3a86ba72011-10-05 03:25:31 +00005890 if (Constant *C = Vals.lookup(I)) return C;
5891
Nick Lewyckya6674c72011-10-22 19:58:20 +00005892 // An instruction inside the loop depends on a value outside the loop that we
5893 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005894 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005895
5896 // An unmapped PHI can be due to a branch or another loop inside this loop,
5897 // or due to this not being the initial iteration through a loop where we
5898 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005899 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005900
Dan Gohmanf820bd32010-06-22 13:15:46 +00005901 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005902
5903 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005904 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5905 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005906 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005907 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005908 continue;
5909 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005910 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005911 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005912 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005913 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005914 }
5915
Nick Lewyckya6674c72011-10-22 19:58:20 +00005916 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005917 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005918 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005919 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5920 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005921 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005922 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005923 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005924 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005925}
5926
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00005927
5928// If every incoming value to PN except the one for BB is a specific Constant,
5929// return that, else return nullptr.
5930static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
5931 Constant *IncomingVal = nullptr;
5932
5933 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5934 if (PN->getIncomingBlock(i) == BB)
5935 continue;
5936
5937 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
5938 if (!CurrentVal)
5939 return nullptr;
5940
5941 if (IncomingVal != CurrentVal) {
5942 if (IncomingVal)
5943 return nullptr;
5944 IncomingVal = CurrentVal;
5945 }
5946 }
5947
5948 return IncomingVal;
5949}
5950
Chris Lattnerdd730472004-04-17 22:58:41 +00005951/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5952/// in the header of its containing loop, we know the loop executes a
5953/// constant number of times, and the PHI node is just a recurrence
5954/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005955Constant *
5956ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005957 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005958 const Loop *L) {
Sanjoy Das4493b402015-10-07 17:38:25 +00005959 auto I = ConstantEvolutionLoopExitValue.find(PN);
Chris Lattnerdd730472004-04-17 22:58:41 +00005960 if (I != ConstantEvolutionLoopExitValue.end())
5961 return I->second;
5962
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005963 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005964 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005965
5966 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5967
Andrew Trick3a86ba72011-10-05 03:25:31 +00005968 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005969 BasicBlock *Header = L->getHeader();
5970 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005971
Sanjoy Dasdd709962015-10-08 18:28:36 +00005972 BasicBlock *Latch = L->getLoopLatch();
5973 if (!Latch)
5974 return nullptr;
5975
Sanjoy Das4493b402015-10-07 17:38:25 +00005976 for (auto &I : *Header) {
5977 PHINode *PHI = dyn_cast<PHINode>(&I);
5978 if (!PHI) break;
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00005979 auto *StartCST = getOtherIncomingValue(PHI, Latch);
Craig Topper9f008862014-04-15 04:59:12 +00005980 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005981 CurrentIterVals[PHI] = StartCST;
5982 }
5983 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005984 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005985
Sanjoy Dasdd709962015-10-08 18:28:36 +00005986 Value *BEValue = PN->getIncomingValueForBlock(Latch);
Chris Lattnerdd730472004-04-17 22:58:41 +00005987
5988 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005989 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005990 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005991
Dan Gohman0bddac12009-02-24 18:55:53 +00005992 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005993 unsigned IterationNum = 0;
Sanjoy Das49edd3b2015-10-27 00:52:09 +00005994 const DataLayout &DL = getDataLayout();
Andrew Trick3a86ba72011-10-05 03:25:31 +00005995 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005996 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005997 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005998
Nick Lewyckya6674c72011-10-22 19:58:20 +00005999 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00006000 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006001 DenseMap<Instruction *, Constant *> NextIterVals;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006002 Constant *NextPHI =
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006003 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Craig Topper9f008862014-04-15 04:59:12 +00006004 if (!NextPHI)
6005 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00006006 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006007
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006008 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6009
Nick Lewyckya6674c72011-10-22 19:58:20 +00006010 // Also evaluate the other PHI nodes. However, we don't get to stop if we
6011 // cease to be able to evaluate one of them or if they stop evolving,
6012 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006013 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00006014 for (const auto &I : CurrentIterVals) {
6015 PHINode *PHI = dyn_cast<PHINode>(I.first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00006016 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Sanjoy Das4493b402015-10-07 17:38:25 +00006017 PHIsToCompute.emplace_back(PHI, I.second);
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006018 }
6019 // We use two distinct loops because EvaluateExpression may invalidate any
6020 // iterators into CurrentIterVals.
Sanjoy Das4493b402015-10-07 17:38:25 +00006021 for (const auto &I : PHIsToCompute) {
6022 PHINode *PHI = I.first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006023 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006024 if (!NextPHI) { // Not already computed.
Sanjoy Dasdd709962015-10-08 18:28:36 +00006025 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006026 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006027 }
Sanjoy Das4493b402015-10-07 17:38:25 +00006028 if (NextPHI != I.second)
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006029 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006030 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006031
6032 // If all entries in CurrentIterVals == NextIterVals then we can stop
6033 // iterating, the loop can't continue to change.
6034 if (StoppedEvolving)
6035 return RetVal = CurrentIterVals[PN];
6036
Andrew Trick3a86ba72011-10-05 03:25:31 +00006037 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00006038 }
6039}
6040
Sanjoy Das413dbbb2015-10-08 18:46:59 +00006041const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
Nick Lewyckya6674c72011-10-22 19:58:20 +00006042 Value *Cond,
6043 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00006044 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00006045 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00006046
Dan Gohman866971e2010-06-19 14:17:24 +00006047 // If the loop is canonicalized, the PHI will have exactly two entries.
6048 // That's the only form we support here.
6049 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6050
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006051 DenseMap<Instruction *, Constant *> CurrentIterVals;
6052 BasicBlock *Header = L->getHeader();
6053 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6054
Sanjoy Dasdd709962015-10-08 18:28:36 +00006055 BasicBlock *Latch = L->getLoopLatch();
6056 assert(Latch && "Should follow from NumIncomingValues == 2!");
6057
Sanjoy Das4493b402015-10-07 17:38:25 +00006058 for (auto &I : *Header) {
6059 PHINode *PHI = dyn_cast<PHINode>(&I);
6060 if (!PHI)
6061 break;
Sanjoy Das52bfa0f2015-11-02 02:06:01 +00006062 auto *StartCST = getOtherIncomingValue(PHI, Latch);
Craig Topper9f008862014-04-15 04:59:12 +00006063 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006064 CurrentIterVals[PHI] = StartCST;
6065 }
6066 if (!CurrentIterVals.count(PN))
6067 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00006068
6069 // Okay, we find a PHI node that defines the trip count of this loop. Execute
6070 // the loop symbolically to determine when the condition gets a value of
6071 // "ExitWhen".
Andrew Trick90c7a102011-11-16 00:52:40 +00006072 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006073 const DataLayout &DL = getDataLayout();
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006074 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Sanjoy Das4493b402015-10-07 17:38:25 +00006075 auto *CondVal = dyn_cast_or_null<ConstantInt>(
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006076 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00006077
Zhou Sheng75b871f2007-01-11 12:24:14 +00006078 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006079 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00006080
Reid Spencer983e3b32007-03-01 07:25:48 +00006081 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00006082 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00006083 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006084 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006085
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006086 // Update all the PHI nodes for the next iteration.
6087 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006088
6089 // Create a list of which PHIs we need to compute. We want to do this before
6090 // calling EvaluateExpression on them because that may invalidate iterators
6091 // into CurrentIterVals.
6092 SmallVector<PHINode *, 8> PHIsToCompute;
Sanjoy Das4493b402015-10-07 17:38:25 +00006093 for (const auto &I : CurrentIterVals) {
6094 PHINode *PHI = dyn_cast<PHINode>(I.first);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006095 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00006096 PHIsToCompute.push_back(PHI);
6097 }
Sanjoy Das4493b402015-10-07 17:38:25 +00006098 for (PHINode *PHI : PHIsToCompute) {
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006099 Constant *&NextPHI = NextIterVals[PHI];
6100 if (NextPHI) continue; // Already computed!
6101
Sanjoy Dasdd709962015-10-08 18:28:36 +00006102 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006103 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00006104 }
6105 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00006106 }
6107
6108 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006109 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006110}
6111
Dan Gohman237d9e52009-09-03 15:00:26 +00006112/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006113/// at the specified scope in the program. The L value specifies a loop
6114/// nest to evaluate the expression at, where null is the top-level or a
6115/// specified loop is immediately inside of the loop.
6116///
6117/// This method can be used to compute the exit value for a variable defined
6118/// in a loop by querying what the value will hold in the parent loop.
6119///
Dan Gohman8ca08852009-05-24 23:25:42 +00006120/// In the case that a relevant loop exit value cannot be computed, the
6121/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006122const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Sanjoy Das01947432015-11-22 21:20:13 +00006123 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6124 ValuesAtScopes[V];
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006125 // Check to see if we've folded this expression at this loop before.
Sanjoy Das01947432015-11-22 21:20:13 +00006126 for (auto &LS : Values)
6127 if (LS.first == L)
6128 return LS.second ? LS.second : V;
6129
6130 Values.emplace_back(L, nullptr);
6131
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006132 // Otherwise compute it.
6133 const SCEV *C = computeSCEVAtScope(V, L);
Sanjoy Das01947432015-11-22 21:20:13 +00006134 for (auto &LS : reverse(ValuesAtScopes[V]))
6135 if (LS.first == L) {
6136 LS.second = C;
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00006137 break;
6138 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006139 return C;
6140}
6141
Nick Lewyckya6674c72011-10-22 19:58:20 +00006142/// This builds up a Constant using the ConstantExpr interface. That way, we
6143/// will return Constants for objects which aren't represented by a
6144/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6145/// Returns NULL if the SCEV isn't representable as a Constant.
6146static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00006147 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00006148 case scCouldNotCompute:
6149 case scAddRecExpr:
6150 break;
6151 case scConstant:
6152 return cast<SCEVConstant>(V)->getValue();
6153 case scUnknown:
6154 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6155 case scSignExtend: {
6156 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6157 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6158 return ConstantExpr::getSExt(CastOp, SS->getType());
6159 break;
6160 }
6161 case scZeroExtend: {
6162 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6163 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6164 return ConstantExpr::getZExt(CastOp, SZ->getType());
6165 break;
6166 }
6167 case scTruncate: {
6168 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6169 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6170 return ConstantExpr::getTrunc(CastOp, ST->getType());
6171 break;
6172 }
6173 case scAddExpr: {
6174 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6175 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006176 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6177 unsigned AS = PTy->getAddressSpace();
6178 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6179 C = ConstantExpr::getBitCast(C, DestPtrTy);
6180 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00006181 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6182 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006183 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006184
6185 // First pointer!
6186 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006187 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00006188 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006189 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006190 // The offsets have been converted to bytes. We can add bytes to an
6191 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006192 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006193 }
6194
6195 // Don't bother trying to sum two pointers. We probably can't
6196 // statically compute a load that results from it anyway.
6197 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00006198 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006199
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00006200 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6201 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00006202 C2 = ConstantExpr::getIntegerCast(
6203 C2, Type::getInt32Ty(C->getContext()), true);
David Blaikie4a2e73b2015-04-02 18:55:32 +00006204 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006205 } else
6206 C = ConstantExpr::getAdd(C, C2);
6207 }
6208 return C;
6209 }
6210 break;
6211 }
6212 case scMulExpr: {
6213 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6214 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6215 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00006216 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006217 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6218 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00006219 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006220 C = ConstantExpr::getMul(C, C2);
6221 }
6222 return C;
6223 }
6224 break;
6225 }
6226 case scUDivExpr: {
6227 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6228 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6229 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6230 if (LHS->getType() == RHS->getType())
6231 return ConstantExpr::getUDiv(LHS, RHS);
6232 break;
6233 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00006234 case scSMaxExpr:
6235 case scUMaxExpr:
6236 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00006237 }
Craig Topper9f008862014-04-15 04:59:12 +00006238 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00006239}
6240
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00006241const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006242 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00006243
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006244 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00006245 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00006246 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006247 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006248 const Loop *LI = this->LI[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00006249 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
6250 if (PHINode *PN = dyn_cast<PHINode>(I))
6251 if (PN->getParent() == LI->getHeader()) {
6252 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00006253 // to see if the loop that contains it has a known backedge-taken
6254 // count. If so, we may be able to force computation of the exit
6255 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00006256 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00006257 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00006258 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006259 // Okay, we know how many times the containing loop executes. If
6260 // this is a constant evolving PHI node, get the final value at
6261 // the specified iteration number.
6262 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00006263 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00006264 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00006265 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00006266 }
6267 }
6268
Reid Spencere6328ca2006-12-04 21:33:23 +00006269 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00006270 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00006271 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00006272 // result. This is particularly useful for computing loop exit values.
6273 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006274 SmallVector<Constant *, 4> Operands;
6275 bool MadeImprovement = false;
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00006276 for (Value *Op : I->operands()) {
Chris Lattnerdd730472004-04-17 22:58:41 +00006277 if (Constant *C = dyn_cast<Constant>(Op)) {
6278 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006279 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00006280 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006281
6282 // If any of the operands is non-constant and if they are
6283 // non-integer and non-pointer, don't even try to analyze them
6284 // with scev techniques.
6285 if (!isSCEVable(Op->getType()))
6286 return V;
6287
6288 const SCEV *OrigV = getSCEV(Op);
6289 const SCEV *OpV = getSCEVAtScope(OrigV, L);
6290 MadeImprovement |= OrigV != OpV;
6291
Nick Lewyckya6674c72011-10-22 19:58:20 +00006292 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006293 if (!C) return V;
6294 if (C->getType() != Op->getType())
6295 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6296 Op->getType(),
6297 false),
6298 C, Op->getType());
6299 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00006300 }
Dan Gohmance973df2009-06-24 04:48:43 +00006301
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006302 // Check to see if getSCEVAtScope actually made an improvement.
6303 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00006304 Constant *C = nullptr;
Sanjoy Das49edd3b2015-10-27 00:52:09 +00006305 const DataLayout &DL = getDataLayout();
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006306 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006307 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006308 Operands[1], DL, &TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006309 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6310 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00006311 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00006312 } else
Mehdi Aminia28d91d2015-03-10 02:37:25 +00006313 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands,
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006314 DL, &TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006315 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00006316 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006317 }
Chris Lattnerdd730472004-04-17 22:58:41 +00006318 }
6319 }
6320
6321 // This is some other type of SCEVUnknown, just return it.
6322 return V;
6323 }
6324
Dan Gohmana30370b2009-05-04 22:02:23 +00006325 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006326 // Avoid performing the look-up in the common case where the specified
6327 // expression has no loop-variant portions.
6328 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006329 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006330 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006331 // Okay, at least one of these operands is loop variant but might be
6332 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00006333 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6334 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00006335 NewOps.push_back(OpAtScope);
6336
6337 for (++i; i != e; ++i) {
6338 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00006339 NewOps.push_back(OpAtScope);
6340 }
6341 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006342 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006343 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006344 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00006345 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006346 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00006347 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00006348 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00006349 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006350 }
6351 }
6352 // If we got here, all operands are loop invariant.
6353 return Comm;
6354 }
6355
Dan Gohmana30370b2009-05-04 22:02:23 +00006356 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006357 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6358 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00006359 if (LHS == Div->getLHS() && RHS == Div->getRHS())
6360 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00006361 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00006362 }
6363
6364 // If this is a loop recurrence for a loop that does not contain L, then we
6365 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00006366 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006367 // First, attempt to evaluate each operand.
6368 // Avoid performing the look-up in the common case where the specified
6369 // expression has no loop-variant portions.
6370 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6371 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6372 if (OpAtScope == AddRec->getOperand(i))
6373 continue;
6374
6375 // Okay, at least one of these operands is loop variant but might be
6376 // foldable. Build a new instance of the folded commutative expression.
6377 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6378 AddRec->op_begin()+i);
6379 NewOps.push_back(OpAtScope);
6380 for (++i; i != e; ++i)
6381 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6382
Andrew Trick759ba082011-04-27 01:21:25 +00006383 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00006384 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00006385 AddRec->getNoWrapFlags(SCEV::FlagNW));
6386 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00006387 // The addrec may be folded to a nonrecurrence, for example, if the
6388 // induction variable is multiplied by zero after constant folding. Go
6389 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00006390 if (!AddRec)
6391 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006392 break;
6393 }
6394
6395 // If the scope is outside the addrec's loop, evaluate it by using the
6396 // loop exit value of the addrec.
6397 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006398 // To evaluate this recurrence, we need to know how many times the AddRec
6399 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00006400 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006401 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00006402
Eli Friedman61f67622008-08-04 23:49:06 +00006403 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006404 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00006405 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00006406
Dan Gohman8ca08852009-05-24 23:25:42 +00006407 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00006408 }
6409
Dan Gohmana30370b2009-05-04 22:02:23 +00006410 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006411 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006412 if (Op == Cast->getOperand())
6413 return Cast; // must be loop invariant
6414 return getZeroExtendExpr(Op, Cast->getType());
6415 }
6416
Dan Gohmana30370b2009-05-04 22:02:23 +00006417 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006418 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006419 if (Op == Cast->getOperand())
6420 return Cast; // must be loop invariant
6421 return getSignExtendExpr(Op, Cast->getType());
6422 }
6423
Dan Gohmana30370b2009-05-04 22:02:23 +00006424 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006425 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00006426 if (Op == Cast->getOperand())
6427 return Cast; // must be loop invariant
6428 return getTruncateExpr(Op, Cast->getType());
6429 }
6430
Torok Edwinfbcc6632009-07-14 16:55:14 +00006431 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00006432}
6433
Dan Gohmanb81f47d2009-05-08 20:38:54 +00006434/// getSCEVAtScope - This is a convenience function which does
6435/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00006436const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00006437 return getSCEVAtScope(getSCEV(V), L);
6438}
6439
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006440/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6441/// following equation:
6442///
6443/// A * X = B (mod N)
6444///
6445/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6446/// A and B isn't important.
6447///
6448/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006449static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006450 ScalarEvolution &SE) {
6451 uint32_t BW = A.getBitWidth();
6452 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6453 assert(A != 0 && "A must be non-zero.");
6454
6455 // 1. D = gcd(A, N)
6456 //
6457 // The gcd of A and N may have only one prime factor: 2. The number of
6458 // trailing zeros in A is its multiplicity
6459 uint32_t Mult2 = A.countTrailingZeros();
6460 // D = 2^Mult2
6461
6462 // 2. Check if B is divisible by D.
6463 //
6464 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6465 // is not less than multiplicity of this prime factor for D.
6466 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00006467 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006468
6469 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6470 // modulo (N / D).
6471 //
6472 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6473 // bit width during computations.
6474 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6475 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00006476 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00006477 APInt I = AD.multiplicativeInverse(Mod);
6478
6479 // 4. Compute the minimum unsigned root of the equation:
6480 // I * (B / D) mod (N / D)
6481 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6482
6483 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6484 // bits.
6485 return SE.getConstant(Result.trunc(BW));
6486}
Chris Lattnerd934c702004-04-02 20:23:17 +00006487
6488/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6489/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
6490/// might be the same) or two SCEVCouldNotCompute objects.
6491///
Dan Gohmanaf752342009-07-07 17:06:11 +00006492static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00006493SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006494 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00006495 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6496 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6497 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00006498
Chris Lattnerd934c702004-04-02 20:23:17 +00006499 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00006500 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00006501 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006502 return std::make_pair(CNC, CNC);
6503 }
6504
Reid Spencer983e3b32007-03-01 07:25:48 +00006505 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00006506 const APInt &L = LC->getValue()->getValue();
6507 const APInt &M = MC->getValue()->getValue();
6508 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00006509 APInt Two(BitWidth, 2);
6510 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00006511
Dan Gohmance973df2009-06-24 04:48:43 +00006512 {
Reid Spencer983e3b32007-03-01 07:25:48 +00006513 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00006514 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00006515 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6516 // The B coefficient is M-N/2
6517 APInt B(M);
6518 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00006519
Reid Spencer983e3b32007-03-01 07:25:48 +00006520 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00006521 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00006522
Reid Spencer983e3b32007-03-01 07:25:48 +00006523 // Compute the B^2-4ac term.
6524 APInt SqrtTerm(B);
6525 SqrtTerm *= B;
6526 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00006527
Nick Lewyckyfb780832012-08-01 09:14:36 +00006528 if (SqrtTerm.isNegative()) {
6529 // The loop is provably infinite.
6530 const SCEV *CNC = SE.getCouldNotCompute();
6531 return std::make_pair(CNC, CNC);
6532 }
6533
Reid Spencer983e3b32007-03-01 07:25:48 +00006534 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6535 // integer value or else APInt::sqrt() will assert.
6536 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00006537
Dan Gohmance973df2009-06-24 04:48:43 +00006538 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00006539 // The divisions must be performed as signed divisions.
6540 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00006541 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00006542 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00006543 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00006544 return std::make_pair(CNC, CNC);
6545 }
6546
Owen Anderson47db9412009-07-22 00:24:57 +00006547 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00006548
6549 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006550 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00006551 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00006552 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00006553
Dan Gohmance973df2009-06-24 04:48:43 +00006554 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00006555 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00006556 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00006557}
6558
6559/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006560/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006561///
6562/// This is only used for loops with a "x != y" exit test. The exit condition is
6563/// now expressed as a single expression, V = x-y. So the exit test is
6564/// effectively V != 0. We know and take advantage of the fact that this
6565/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006566ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006567ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006568 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006569 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006570 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006571 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006572 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006573 }
6574
Dan Gohman48f82222009-05-04 22:30:44 +00006575 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006576 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006577 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006578
Chris Lattnerdff679f2011-01-09 22:39:48 +00006579 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6580 // the quadratic equation to solve it.
6581 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6582 std::pair<const SCEV *,const SCEV *> Roots =
6583 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006584 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6585 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006586 if (R1 && R2) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006587 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006588 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006589 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6590 R1->getValue(),
6591 R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00006592 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00006593 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006594
Chris Lattnerd934c702004-04-02 20:23:17 +00006595 // We can only use this value if the chrec ends up with an exact zero
6596 // value at this index. When solving for "X*X != 5", for example, we
6597 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006598 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006599 if (Val->isZero())
6600 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006601 }
6602 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006603 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006604 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006605
Chris Lattnerdff679f2011-01-09 22:39:48 +00006606 // Otherwise we can only handle this if it is affine.
6607 if (!AddRec->isAffine())
6608 return getCouldNotCompute();
6609
6610 // If this is an affine expression, the execution count of this branch is
6611 // the minimum unsigned root of the following equation:
6612 //
6613 // Start + Step*N = 0 (mod 2^BW)
6614 //
6615 // equivalent to:
6616 //
6617 // Step*N = -Start (mod 2^BW)
6618 //
6619 // where BW is the common bit width of Start and Step.
6620
6621 // Get the initial value for the loop.
6622 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6623 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6624
6625 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006626 //
6627 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6628 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6629 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6630 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006631 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006632 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006633 return getCouldNotCompute();
6634
Andrew Trick8b55b732011-03-14 16:50:06 +00006635 // For positive steps (counting up until unsigned overflow):
6636 // N = -Start/Step (as unsigned)
6637 // For negative steps (counting down to zero):
6638 // N = Start/-Step
6639 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006640 bool CountDown = StepC->getValue()->getValue().isNegative();
6641 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006642
6643 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006644 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6645 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006646 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6647 ConstantRange CR = getUnsignedRange(Start);
6648 const SCEV *MaxBECount;
6649 if (!CountDown && CR.getUnsignedMin().isMinValue())
6650 // When counting up, the worst starting value is 1, not 0.
6651 MaxBECount = CR.getUnsignedMax().isMinValue()
6652 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6653 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6654 else
6655 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6656 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006657 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006658 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006659
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006660 // As a special case, handle the instance where Step is a positive power of
6661 // two. In this case, determining whether Step divides Distance evenly can be
6662 // done by counting and comparing the number of trailing zeros of Step and
6663 // Distance.
6664 if (!CountDown) {
6665 const APInt &StepV = StepC->getValue()->getValue();
6666 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6667 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6668 // case is not handled as this code is guarded by !CountDown.
6669 if (StepV.isPowerOf2() &&
Sanjoy Dasf3132d32015-09-10 05:27:38 +00006670 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
6671 // Here we've constrained the equation to be of the form
6672 //
6673 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
6674 //
6675 // where we're operating on a W bit wide integer domain and k is
6676 // non-negative. The smallest unsigned solution for X is the trip count.
6677 //
6678 // (0) is equivalent to:
6679 //
6680 // 2^(N + k) * Distance' - 2^N * X = L * 2^W
6681 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
6682 // <=> 2^k * Distance' - X = L * 2^(W - N)
6683 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
6684 //
6685 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
6686 // by 2^(W - N).
6687 //
6688 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
6689 //
6690 // E.g. say we're solving
6691 //
6692 // 2 * Val = 2 * X (in i8) ... (3)
6693 //
6694 // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
6695 //
6696 // Note: It is tempting to solve (3) by setting X = Val, but Val is not
6697 // necessarily the smallest unsigned value of X that satisfies (3).
6698 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
6699 // is i8 1, not i8 -127
6700
6701 const auto *ModuloResult = getUDivExactExpr(Distance, Step);
6702
6703 // Since SCEV does not have a URem node, we construct one using a truncate
6704 // and a zero extend.
6705
6706 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
6707 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
6708 auto *WideTy = Distance->getType();
6709
6710 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
6711 }
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006712 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006713
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006714 // If the condition controls loop exit (the loop exits only if the expression
6715 // is true) and the addition is no-wrap we can use unsigned divide to
6716 // compute the backedge count. In this case, the step may not divide the
6717 // distance, but we don't care because if the condition is "missed" the loop
6718 // will have undefined behavior due to wrapping.
6719 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6720 const SCEV *Exact =
6721 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6722 return ExitLimit(Exact, Exact);
6723 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006724
Chris Lattnerdff679f2011-01-09 22:39:48 +00006725 // Then, try to solve the above equation provided that Start is constant.
6726 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6727 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6728 -StartC->getValue()->getValue(),
6729 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006730 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006731}
6732
6733/// HowFarToNonZero - Return the number of times a backedge checking the
6734/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006735/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006736ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006737ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006738 // Loops that look like: while (X == 0) are very strange indeed. We don't
6739 // handle them yet except for the trivial case. This could be expanded in the
6740 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006741
Chris Lattnerd934c702004-04-02 20:23:17 +00006742 // If the value is a constant, check to see if it is known to be non-zero
6743 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006744 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006745 if (!C->getValue()->isNullValue())
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00006746 return getZero(C->getType());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006747 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006748 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006749
Chris Lattnerd934c702004-04-02 20:23:17 +00006750 // We could implement others, but I really doubt anyone writes loops like
6751 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006752 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006753}
6754
Dan Gohmanf9081a22008-09-15 22:18:04 +00006755/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6756/// (which may not be an immediate predecessor) which has exactly one
6757/// successor from which BB is reachable, or null if no such block is
6758/// found.
6759///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006760std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006761ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006762 // If the block has a unique predecessor, then there is no path from the
6763 // predecessor to the block that does not go through the direct edge
6764 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006765 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006766 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006767
6768 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006769 // If the header has a unique predecessor outside the loop, it must be
6770 // a block that has exactly one successor that can reach the loop.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00006771 if (Loop *L = LI.getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006772 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006773
Dan Gohman4e3c1132010-04-15 16:19:08 +00006774 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006775}
6776
Dan Gohman450f4e02009-06-20 00:35:32 +00006777/// HasSameValue - SCEV structural equivalence is usually sufficient for
6778/// testing whether two expressions are equal, however for the purposes of
6779/// looking for a condition guarding a loop, it can be useful to be a little
6780/// more general, since a front-end may have replicated the controlling
6781/// expression.
6782///
Dan Gohmanaf752342009-07-07 17:06:11 +00006783static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006784 // Quick check to see if they are the same SCEV.
6785 if (A == B) return true;
6786
Sanjoy Dasf1090b62015-09-27 21:09:48 +00006787 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
6788 // Not all instructions that are "identical" compute the same value. For
6789 // instance, two distinct alloca instructions allocating the same type are
6790 // identical and do not read memory; but compute distinct values.
6791 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
6792 };
6793
Dan Gohman450f4e02009-06-20 00:35:32 +00006794 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6795 // two different instructions with the same value. Check for this case.
6796 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6797 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6798 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6799 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Sanjoy Dasf1090b62015-09-27 21:09:48 +00006800 if (ComputesEqualValues(AI, BI))
Dan Gohman450f4e02009-06-20 00:35:32 +00006801 return true;
6802
6803 // Otherwise assume they may have a different value.
6804 return false;
6805}
6806
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006807/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006808/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006809///
6810bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006811 const SCEV *&LHS, const SCEV *&RHS,
6812 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006813 bool Changed = false;
6814
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006815 // If we hit the max recursion limit bail out.
6816 if (Depth >= 3)
6817 return false;
6818
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006819 // Canonicalize a constant to the right side.
6820 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6821 // Check for both operands constant.
6822 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6823 if (ConstantExpr::getICmp(Pred,
6824 LHSC->getValue(),
6825 RHSC->getValue())->isNullValue())
6826 goto trivially_false;
6827 else
6828 goto trivially_true;
6829 }
6830 // Otherwise swap the operands to put the constant on the right.
6831 std::swap(LHS, RHS);
6832 Pred = ICmpInst::getSwappedPredicate(Pred);
6833 Changed = true;
6834 }
6835
6836 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006837 // addrec's loop, put the addrec on the left. Also make a dominance check,
6838 // as both operands could be addrecs loop-invariant in each other's loop.
6839 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6840 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006841 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006842 std::swap(LHS, RHS);
6843 Pred = ICmpInst::getSwappedPredicate(Pred);
6844 Changed = true;
6845 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006846 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006847
6848 // If there's a constant operand, canonicalize comparisons with boundary
6849 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6850 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6851 const APInt &RA = RC->getValue()->getValue();
6852 switch (Pred) {
6853 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6854 case ICmpInst::ICMP_EQ:
6855 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006856 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6857 if (!RA)
6858 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6859 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006860 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6861 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006862 RHS = AE->getOperand(1);
6863 LHS = ME->getOperand(1);
6864 Changed = true;
6865 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006866 break;
6867 case ICmpInst::ICMP_UGE:
6868 if ((RA - 1).isMinValue()) {
6869 Pred = ICmpInst::ICMP_NE;
6870 RHS = getConstant(RA - 1);
6871 Changed = true;
6872 break;
6873 }
6874 if (RA.isMaxValue()) {
6875 Pred = ICmpInst::ICMP_EQ;
6876 Changed = true;
6877 break;
6878 }
6879 if (RA.isMinValue()) goto trivially_true;
6880
6881 Pred = ICmpInst::ICMP_UGT;
6882 RHS = getConstant(RA - 1);
6883 Changed = true;
6884 break;
6885 case ICmpInst::ICMP_ULE:
6886 if ((RA + 1).isMaxValue()) {
6887 Pred = ICmpInst::ICMP_NE;
6888 RHS = getConstant(RA + 1);
6889 Changed = true;
6890 break;
6891 }
6892 if (RA.isMinValue()) {
6893 Pred = ICmpInst::ICMP_EQ;
6894 Changed = true;
6895 break;
6896 }
6897 if (RA.isMaxValue()) goto trivially_true;
6898
6899 Pred = ICmpInst::ICMP_ULT;
6900 RHS = getConstant(RA + 1);
6901 Changed = true;
6902 break;
6903 case ICmpInst::ICMP_SGE:
6904 if ((RA - 1).isMinSignedValue()) {
6905 Pred = ICmpInst::ICMP_NE;
6906 RHS = getConstant(RA - 1);
6907 Changed = true;
6908 break;
6909 }
6910 if (RA.isMaxSignedValue()) {
6911 Pred = ICmpInst::ICMP_EQ;
6912 Changed = true;
6913 break;
6914 }
6915 if (RA.isMinSignedValue()) goto trivially_true;
6916
6917 Pred = ICmpInst::ICMP_SGT;
6918 RHS = getConstant(RA - 1);
6919 Changed = true;
6920 break;
6921 case ICmpInst::ICMP_SLE:
6922 if ((RA + 1).isMaxSignedValue()) {
6923 Pred = ICmpInst::ICMP_NE;
6924 RHS = getConstant(RA + 1);
6925 Changed = true;
6926 break;
6927 }
6928 if (RA.isMinSignedValue()) {
6929 Pred = ICmpInst::ICMP_EQ;
6930 Changed = true;
6931 break;
6932 }
6933 if (RA.isMaxSignedValue()) goto trivially_true;
6934
6935 Pred = ICmpInst::ICMP_SLT;
6936 RHS = getConstant(RA + 1);
6937 Changed = true;
6938 break;
6939 case ICmpInst::ICMP_UGT:
6940 if (RA.isMinValue()) {
6941 Pred = ICmpInst::ICMP_NE;
6942 Changed = true;
6943 break;
6944 }
6945 if ((RA + 1).isMaxValue()) {
6946 Pred = ICmpInst::ICMP_EQ;
6947 RHS = getConstant(RA + 1);
6948 Changed = true;
6949 break;
6950 }
6951 if (RA.isMaxValue()) goto trivially_false;
6952 break;
6953 case ICmpInst::ICMP_ULT:
6954 if (RA.isMaxValue()) {
6955 Pred = ICmpInst::ICMP_NE;
6956 Changed = true;
6957 break;
6958 }
6959 if ((RA - 1).isMinValue()) {
6960 Pred = ICmpInst::ICMP_EQ;
6961 RHS = getConstant(RA - 1);
6962 Changed = true;
6963 break;
6964 }
6965 if (RA.isMinValue()) goto trivially_false;
6966 break;
6967 case ICmpInst::ICMP_SGT:
6968 if (RA.isMinSignedValue()) {
6969 Pred = ICmpInst::ICMP_NE;
6970 Changed = true;
6971 break;
6972 }
6973 if ((RA + 1).isMaxSignedValue()) {
6974 Pred = ICmpInst::ICMP_EQ;
6975 RHS = getConstant(RA + 1);
6976 Changed = true;
6977 break;
6978 }
6979 if (RA.isMaxSignedValue()) goto trivially_false;
6980 break;
6981 case ICmpInst::ICMP_SLT:
6982 if (RA.isMaxSignedValue()) {
6983 Pred = ICmpInst::ICMP_NE;
6984 Changed = true;
6985 break;
6986 }
6987 if ((RA - 1).isMinSignedValue()) {
6988 Pred = ICmpInst::ICMP_EQ;
6989 RHS = getConstant(RA - 1);
6990 Changed = true;
6991 break;
6992 }
6993 if (RA.isMinSignedValue()) goto trivially_false;
6994 break;
6995 }
6996 }
6997
6998 // Check for obvious equality.
6999 if (HasSameValue(LHS, RHS)) {
7000 if (ICmpInst::isTrueWhenEqual(Pred))
7001 goto trivially_true;
7002 if (ICmpInst::isFalseWhenEqual(Pred))
7003 goto trivially_false;
7004 }
7005
Dan Gohman81585c12010-05-03 16:35:17 +00007006 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7007 // adding or subtracting 1 from one of the operands.
7008 switch (Pred) {
7009 case ICmpInst::ICMP_SLE:
7010 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7011 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007012 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007013 Pred = ICmpInst::ICMP_SLT;
7014 Changed = true;
7015 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007016 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007017 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007018 Pred = ICmpInst::ICMP_SLT;
7019 Changed = true;
7020 }
7021 break;
7022 case ICmpInst::ICMP_SGE:
7023 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007024 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007025 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007026 Pred = ICmpInst::ICMP_SGT;
7027 Changed = true;
7028 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7029 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007030 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00007031 Pred = ICmpInst::ICMP_SGT;
7032 Changed = true;
7033 }
7034 break;
7035 case ICmpInst::ICMP_ULE:
7036 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007037 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007038 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007039 Pred = ICmpInst::ICMP_ULT;
7040 Changed = true;
7041 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Peter Collingbournec85f4ce2015-11-20 01:26:13 +00007042 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
Dan Gohman81585c12010-05-03 16:35:17 +00007043 Pred = ICmpInst::ICMP_ULT;
7044 Changed = true;
7045 }
7046 break;
7047 case ICmpInst::ICMP_UGE:
7048 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Peter Collingbournec85f4ce2015-11-20 01:26:13 +00007049 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
Dan Gohman81585c12010-05-03 16:35:17 +00007050 Pred = ICmpInst::ICMP_UGT;
7051 Changed = true;
7052 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00007053 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00007054 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00007055 Pred = ICmpInst::ICMP_UGT;
7056 Changed = true;
7057 }
7058 break;
7059 default:
7060 break;
7061 }
7062
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007063 // TODO: More simplifications are possible here.
7064
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00007065 // Recursively simplify until we either hit a recursion limit or nothing
7066 // changes.
7067 if (Changed)
7068 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7069
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007070 return Changed;
7071
7072trivially_true:
7073 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00007074 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007075 Pred = ICmpInst::ICMP_EQ;
7076 return true;
7077
7078trivially_false:
7079 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00007080 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00007081 Pred = ICmpInst::ICMP_NE;
7082 return true;
7083}
7084
Dan Gohmane65c9172009-07-13 21:35:55 +00007085bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7086 return getSignedRange(S).getSignedMax().isNegative();
7087}
7088
7089bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7090 return getSignedRange(S).getSignedMin().isStrictlyPositive();
7091}
7092
7093bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7094 return !getSignedRange(S).getSignedMin().isNegative();
7095}
7096
7097bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7098 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7099}
7100
7101bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7102 return isKnownNegative(S) || isKnownPositive(S);
7103}
7104
7105bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7106 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00007107 // Canonicalize the inputs first.
7108 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7109
Dan Gohman07591692010-04-11 22:16:48 +00007110 // If LHS or RHS is an addrec, check to see if the condition is true in
7111 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00007112 // If LHS and RHS are both addrec, both conditions must be true in
7113 // every iteration of the loop.
7114 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7115 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7116 bool LeftGuarded = false;
7117 bool RightGuarded = false;
7118 if (LAR) {
7119 const Loop *L = LAR->getLoop();
7120 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7121 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7122 if (!RAR) return true;
7123 LeftGuarded = true;
7124 }
7125 }
7126 if (RAR) {
7127 const Loop *L = RAR->getLoop();
7128 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7129 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7130 if (!LAR) return true;
7131 RightGuarded = true;
7132 }
7133 }
7134 if (LeftGuarded && RightGuarded)
7135 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007136
Sanjoy Das7d910f22015-10-02 18:50:30 +00007137 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7138 return true;
7139
Dan Gohman07591692010-04-11 22:16:48 +00007140 // Otherwise see what can be done with known constant ranges.
7141 return isKnownPredicateWithRanges(Pred, LHS, RHS);
7142}
7143
Sanjoy Das5dab2052015-07-27 21:42:49 +00007144bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7145 ICmpInst::Predicate Pred,
7146 bool &Increasing) {
7147 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7148
7149#ifndef NDEBUG
7150 // Verify an invariant: inverting the predicate should turn a monotonically
7151 // increasing change to a monotonically decreasing one, and vice versa.
7152 bool IncreasingSwapped;
7153 bool ResultSwapped = isMonotonicPredicateImpl(
7154 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7155
7156 assert(Result == ResultSwapped && "should be able to analyze both!");
7157 if (ResultSwapped)
7158 assert(Increasing == !IncreasingSwapped &&
7159 "monotonicity should flip as we flip the predicate");
7160#endif
7161
7162 return Result;
7163}
7164
7165bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7166 ICmpInst::Predicate Pred,
7167 bool &Increasing) {
Sanjoy Das5dab2052015-07-27 21:42:49 +00007168
7169 // A zero step value for LHS means the induction variable is essentially a
7170 // loop invariant value. We don't really depend on the predicate actually
7171 // flipping from false to true (for increasing predicates, and the other way
7172 // around for decreasing predicates), all we care about is that *if* the
7173 // predicate changes then it only changes from false to true.
7174 //
7175 // A zero step value in itself is not very useful, but there may be places
7176 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7177 // as general as possible.
7178
Sanjoy Das366acc12015-08-06 20:43:41 +00007179 switch (Pred) {
7180 default:
7181 return false; // Conservative answer
7182
7183 case ICmpInst::ICMP_UGT:
7184 case ICmpInst::ICMP_UGE:
7185 case ICmpInst::ICMP_ULT:
7186 case ICmpInst::ICMP_ULE:
7187 if (!LHS->getNoWrapFlags(SCEV::FlagNUW))
7188 return false;
7189
7190 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007191 return true;
Sanjoy Das366acc12015-08-06 20:43:41 +00007192
7193 case ICmpInst::ICMP_SGT:
7194 case ICmpInst::ICMP_SGE:
7195 case ICmpInst::ICMP_SLT:
7196 case ICmpInst::ICMP_SLE: {
7197 if (!LHS->getNoWrapFlags(SCEV::FlagNSW))
7198 return false;
7199
7200 const SCEV *Step = LHS->getStepRecurrence(*this);
7201
7202 if (isKnownNonNegative(Step)) {
7203 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7204 return true;
7205 }
7206
7207 if (isKnownNonPositive(Step)) {
7208 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7209 return true;
7210 }
7211
7212 return false;
Sanjoy Das5dab2052015-07-27 21:42:49 +00007213 }
7214
Sanjoy Das5dab2052015-07-27 21:42:49 +00007215 }
7216
Sanjoy Das366acc12015-08-06 20:43:41 +00007217 llvm_unreachable("switch has default clause!");
Sanjoy Das5dab2052015-07-27 21:42:49 +00007218}
7219
7220bool ScalarEvolution::isLoopInvariantPredicate(
7221 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7222 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7223 const SCEV *&InvariantRHS) {
7224
7225 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7226 if (!isLoopInvariant(RHS, L)) {
7227 if (!isLoopInvariant(LHS, L))
7228 return false;
7229
7230 std::swap(LHS, RHS);
7231 Pred = ICmpInst::getSwappedPredicate(Pred);
7232 }
7233
7234 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7235 if (!ArLHS || ArLHS->getLoop() != L)
7236 return false;
7237
7238 bool Increasing;
7239 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7240 return false;
7241
7242 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7243 // true as the loop iterates, and the backedge is control dependent on
7244 // "ArLHS `Pred` RHS" == true then we can reason as follows:
7245 //
7246 // * if the predicate was false in the first iteration then the predicate
7247 // is never evaluated again, since the loop exits without taking the
7248 // backedge.
7249 // * if the predicate was true in the first iteration then it will
7250 // continue to be true for all future iterations since it is
7251 // monotonically increasing.
7252 //
7253 // For both the above possibilities, we can replace the loop varying
7254 // predicate with its value on the first iteration of the loop (which is
7255 // loop invariant).
7256 //
7257 // A similar reasoning applies for a monotonically decreasing predicate, by
7258 // replacing true with false and false with true in the above two bullets.
7259
7260 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7261
7262 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7263 return false;
7264
7265 InvariantPred = Pred;
7266 InvariantLHS = ArLHS->getStart();
7267 InvariantRHS = RHS;
7268 return true;
7269}
7270
Dan Gohman07591692010-04-11 22:16:48 +00007271bool
7272ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
7273 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007274 if (HasSameValue(LHS, RHS))
7275 return ICmpInst::isTrueWhenEqual(Pred);
7276
Dan Gohman07591692010-04-11 22:16:48 +00007277 // This code is split out from isKnownPredicate because it is called from
7278 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00007279 switch (Pred) {
7280 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00007281 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00007282 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00007283 std::swap(LHS, RHS);
7284 case ICmpInst::ICMP_SLT: {
7285 ConstantRange LHSRange = getSignedRange(LHS);
7286 ConstantRange RHSRange = getSignedRange(RHS);
7287 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
7288 return true;
7289 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
7290 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007291 break;
7292 }
7293 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00007294 std::swap(LHS, RHS);
7295 case ICmpInst::ICMP_SLE: {
7296 ConstantRange LHSRange = getSignedRange(LHS);
7297 ConstantRange RHSRange = getSignedRange(RHS);
7298 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
7299 return true;
7300 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
7301 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007302 break;
7303 }
7304 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00007305 std::swap(LHS, RHS);
7306 case ICmpInst::ICMP_ULT: {
7307 ConstantRange LHSRange = getUnsignedRange(LHS);
7308 ConstantRange RHSRange = getUnsignedRange(RHS);
7309 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
7310 return true;
7311 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
7312 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007313 break;
7314 }
7315 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00007316 std::swap(LHS, RHS);
7317 case ICmpInst::ICMP_ULE: {
7318 ConstantRange LHSRange = getUnsignedRange(LHS);
7319 ConstantRange RHSRange = getUnsignedRange(RHS);
7320 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
7321 return true;
7322 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
7323 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007324 break;
7325 }
7326 case ICmpInst::ICMP_NE: {
7327 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
7328 return true;
7329 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
7330 return true;
7331
7332 const SCEV *Diff = getMinusSCEV(LHS, RHS);
7333 if (isKnownNonZero(Diff))
7334 return true;
7335 break;
7336 }
7337 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00007338 // The check at the top of the function catches the case where
7339 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00007340 break;
7341 }
7342 return false;
7343}
7344
Sanjoy Dasc1a29772015-11-05 23:45:38 +00007345bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7346 const SCEV *LHS,
7347 const SCEV *RHS) {
7348
7349 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7350 // Return Y via OutY.
7351 auto MatchBinaryAddToConst =
7352 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7353 SCEV::NoWrapFlags ExpectedFlags) {
7354 const SCEV *NonConstOp, *ConstOp;
7355 SCEV::NoWrapFlags FlagsPresent;
7356
7357 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7358 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7359 return false;
7360
7361 OutY = cast<SCEVConstant>(ConstOp)->getValue()->getValue();
7362 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7363 };
7364
7365 APInt C;
7366
7367 switch (Pred) {
7368 default:
7369 break;
7370
7371 case ICmpInst::ICMP_SGE:
7372 std::swap(LHS, RHS);
7373 case ICmpInst::ICMP_SLE:
7374 // X s<= (X + C)<nsw> if C >= 0
7375 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7376 return true;
7377
7378 // (X + C)<nsw> s<= X if C <= 0
7379 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7380 !C.isStrictlyPositive())
7381 return true;
7382 break;
7383
7384 case ICmpInst::ICMP_SGT:
7385 std::swap(LHS, RHS);
7386 case ICmpInst::ICMP_SLT:
7387 // X s< (X + C)<nsw> if C > 0
7388 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7389 C.isStrictlyPositive())
7390 return true;
7391
7392 // (X + C)<nsw> s< X if C < 0
7393 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7394 return true;
7395 break;
7396 }
7397
7398 return false;
7399}
7400
Sanjoy Das7d910f22015-10-02 18:50:30 +00007401bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7402 const SCEV *LHS,
7403 const SCEV *RHS) {
Sanjoy Das10dffcb2015-10-08 03:46:00 +00007404 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
Sanjoy Das7d910f22015-10-02 18:50:30 +00007405 return false;
7406
7407 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7408 // the stack can result in exponential time complexity.
7409 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7410
7411 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7412 //
7413 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7414 // isKnownPredicate. isKnownPredicate is more powerful, but also more
7415 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7416 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
7417 // use isKnownPredicate later if needed.
Alexander Kornienko484e48e32015-11-05 21:07:12 +00007418 return isKnownNonNegative(RHS) &&
7419 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7420 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
Sanjoy Das7d910f22015-10-02 18:50:30 +00007421}
7422
Dan Gohmane65c9172009-07-13 21:35:55 +00007423/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7424/// protected by a conditional between LHS and RHS. This is used to
7425/// to eliminate casts.
7426bool
7427ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7428 ICmpInst::Predicate Pred,
7429 const SCEV *LHS, const SCEV *RHS) {
7430 // Interpret a null as meaning no loop, where there is obviously no guard
7431 // (interprocedural conditions notwithstanding).
7432 if (!L) return true;
7433
Sanjoy Das1f05c512014-10-10 21:22:34 +00007434 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7435
Dan Gohmane65c9172009-07-13 21:35:55 +00007436 BasicBlock *Latch = L->getLoopLatch();
7437 if (!Latch)
7438 return false;
7439
7440 BranchInst *LoopContinuePredicate =
7441 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007442 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7443 isImpliedCond(Pred, LHS, RHS,
7444 LoopContinuePredicate->getCondition(),
7445 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7446 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00007447
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007448 // We don't want more than one activation of the following loops on the stack
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007449 // -- that can lead to O(n!) time complexity.
7450 if (WalkingBEDominatingConds)
7451 return false;
7452
Sanjoy Das5d9a8cb2015-09-22 00:10:57 +00007453 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007454
Sanjoy Dasb174f9a2015-09-25 23:53:50 +00007455 // See if we can exploit a trip count to prove the predicate.
7456 const auto &BETakenInfo = getBackedgeTakenInfo(L);
7457 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7458 if (LatchBECount != getCouldNotCompute()) {
7459 // We know that Latch branches back to the loop header exactly
7460 // LatchBECount times. This means the backdege condition at Latch is
7461 // equivalent to "{0,+,1} u< LatchBECount".
7462 Type *Ty = LatchBECount->getType();
7463 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7464 const SCEV *LoopCounter =
7465 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7466 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7467 LatchBECount))
7468 return true;
7469 }
7470
Piotr Padlewski0dde00d22015-09-09 20:47:30 +00007471 // Check conditions due to any @llvm.assume intrinsics.
7472 for (auto &AssumeVH : AC.assumptions()) {
7473 if (!AssumeVH)
7474 continue;
7475 auto *CI = cast<CallInst>(AssumeVH);
7476 if (!DT.dominates(CI, Latch->getTerminator()))
7477 continue;
7478
7479 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7480 return true;
7481 }
7482
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007483 // If the loop is not reachable from the entry block, we risk running into an
7484 // infinite loop as we walk up into the dom tree. These loops do not matter
7485 // anyway, so we just return a conservative answer when we see them.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007486 if (!DT.isReachableFromEntry(L->getHeader()))
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007487 return false;
7488
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007489 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7490 DTN != HeaderDTN; DTN = DTN->getIDom()) {
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007491
7492 assert(DTN && "should reach the loop header before reaching the root!");
7493
7494 BasicBlock *BB = DTN->getBlock();
7495 BasicBlock *PBB = BB->getSinglePredecessor();
7496 if (!PBB)
7497 continue;
7498
7499 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7500 if (!ContinuePredicate || !ContinuePredicate->isConditional())
7501 continue;
7502
7503 Value *Condition = ContinuePredicate->getCondition();
7504
7505 // If we have an edge `E` within the loop body that dominates the only
7506 // latch, the condition guarding `E` also guards the backedge. This
7507 // reasoning works only for loops with a single latch.
7508
7509 BasicBlockEdge DominatingEdge(PBB, BB);
7510 if (DominatingEdge.isSingleEdge()) {
7511 // We're constructively (and conservatively) enumerating edges within the
7512 // loop body that dominate the latch. The dominator tree better agree
7513 // with us on this:
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007514 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00007515
7516 if (isImpliedCond(Pred, LHS, RHS, Condition,
7517 BB != ContinuePredicate->getSuccessor(0)))
7518 return true;
7519 }
7520 }
7521
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007522 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007523}
7524
Dan Gohmanb50349a2010-04-11 19:27:13 +00007525/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00007526/// by a conditional between LHS and RHS. This is used to help avoid max
7527/// expressions in loop trip counts, and to eliminate casts.
7528bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00007529ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7530 ICmpInst::Predicate Pred,
7531 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00007532 // Interpret a null as meaning no loop, where there is obviously no guard
7533 // (interprocedural conditions notwithstanding).
7534 if (!L) return false;
7535
Sanjoy Das1f05c512014-10-10 21:22:34 +00007536 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
7537
Dan Gohman8c77f1a2009-05-18 15:36:09 +00007538 // Starting at the loop predecessor, climb up the predecessor chain, as long
7539 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00007540 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00007541 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00007542 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00007543 Pair.first;
7544 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00007545
7546 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00007547 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00007548 if (!LoopEntryPredicate ||
7549 LoopEntryPredicate->isUnconditional())
7550 continue;
7551
Dan Gohmane18c2d62010-08-10 23:46:30 +00007552 if (isImpliedCond(Pred, LHS, RHS,
7553 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00007554 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00007555 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007556 }
7557
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007558 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007559 for (auto &AssumeVH : AC.assumptions()) {
Chandler Carruth66b31302015-01-04 12:03:27 +00007560 if (!AssumeVH)
7561 continue;
7562 auto *CI = cast<CallInst>(AssumeVH);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00007563 if (!DT.dominates(CI, L->getHeader()))
Hal Finkelcebf0cc2014-09-07 21:37:59 +00007564 continue;
7565
7566 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7567 return true;
7568 }
7569
Dan Gohman2a62fd92008-08-12 20:17:31 +00007570 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00007571}
7572
Benjamin Kramer039b1042015-10-28 13:54:36 +00007573namespace {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007574/// RAII wrapper to prevent recursive application of isImpliedCond.
7575/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7576/// currently evaluating isImpliedCond.
7577struct MarkPendingLoopPredicate {
7578 Value *Cond;
7579 DenseSet<Value*> &LoopPreds;
7580 bool Pending;
7581
7582 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7583 : Cond(C), LoopPreds(LP) {
7584 Pending = !LoopPreds.insert(Cond).second;
7585 }
7586 ~MarkPendingLoopPredicate() {
7587 if (!Pending)
7588 LoopPreds.erase(Cond);
7589 }
7590};
Benjamin Kramer039b1042015-10-28 13:54:36 +00007591} // end anonymous namespace
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007592
Dan Gohman430f0cc2009-07-21 23:03:19 +00007593/// isImpliedCond - Test whether the condition described by Pred, LHS,
7594/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007595bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007596 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00007597 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007598 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007599 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7600 if (Mark.Pending)
7601 return false;
7602
Dan Gohman8b0a4192010-03-01 17:49:51 +00007603 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00007604 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007605 if (BO->getOpcode() == Instruction::And) {
7606 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007607 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7608 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007609 } else if (BO->getOpcode() == Instruction::Or) {
7610 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00007611 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7612 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007613 }
7614 }
7615
Dan Gohmane18c2d62010-08-10 23:46:30 +00007616 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007617 if (!ICI) return false;
7618
Andrew Trickfa594032012-11-29 18:35:13 +00007619 // Now that we found a conditional branch that dominates the loop or controls
7620 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00007621 ICmpInst::Predicate FoundPred;
7622 if (Inverse)
7623 FoundPred = ICI->getInversePredicate();
7624 else
7625 FoundPred = ICI->getPredicate();
7626
7627 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7628 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00007629
Sanjoy Dasdf1635d2015-09-25 19:59:52 +00007630 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
7631}
7632
7633bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
7634 const SCEV *RHS,
7635 ICmpInst::Predicate FoundPred,
7636 const SCEV *FoundLHS,
7637 const SCEV *FoundRHS) {
Sanjoy Das14598832015-03-26 17:28:26 +00007638 // Balance the types.
7639 if (getTypeSizeInBits(LHS->getType()) <
7640 getTypeSizeInBits(FoundLHS->getType())) {
7641 if (CmpInst::isSigned(Pred)) {
7642 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7643 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7644 } else {
7645 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7646 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7647 }
7648 } else if (getTypeSizeInBits(LHS->getType()) >
Dan Gohmane65c9172009-07-13 21:35:55 +00007649 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00007650 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00007651 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7652 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7653 } else {
7654 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7655 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7656 }
7657 }
7658
Dan Gohman430f0cc2009-07-21 23:03:19 +00007659 // Canonicalize the query to match the way instcombine will have
7660 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00007661 if (SimplifyICmpOperands(Pred, LHS, RHS))
7662 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00007663 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00007664 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7665 if (FoundLHS == FoundRHS)
7666 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00007667
7668 // Check to see if we can make the LHS or RHS match.
7669 if (LHS == FoundRHS || RHS == FoundLHS) {
7670 if (isa<SCEVConstant>(RHS)) {
7671 std::swap(FoundLHS, FoundRHS);
7672 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7673 } else {
7674 std::swap(LHS, RHS);
7675 Pred = ICmpInst::getSwappedPredicate(Pred);
7676 }
7677 }
7678
7679 // Check whether the found predicate is the same as the desired predicate.
7680 if (FoundPred == Pred)
7681 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7682
7683 // Check whether swapping the found predicate makes it the same as the
7684 // desired predicate.
7685 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7686 if (isa<SCEVConstant>(RHS))
7687 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7688 else
7689 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7690 RHS, LHS, FoundLHS, FoundRHS);
7691 }
7692
Sanjoy Das6e78b172015-10-22 19:57:34 +00007693 // Unsigned comparison is the same as signed comparison when both the operands
7694 // are non-negative.
7695 if (CmpInst::isUnsigned(FoundPred) &&
7696 CmpInst::getSignedPredicate(FoundPred) == Pred &&
7697 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
7698 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7699
Sanjoy Dasc5676df2014-11-13 00:00:58 +00007700 // Check if we can make progress by sharpening ranges.
7701 if (FoundPred == ICmpInst::ICMP_NE &&
7702 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7703
7704 const SCEVConstant *C = nullptr;
7705 const SCEV *V = nullptr;
7706
7707 if (isa<SCEVConstant>(FoundLHS)) {
7708 C = cast<SCEVConstant>(FoundLHS);
7709 V = FoundRHS;
7710 } else {
7711 C = cast<SCEVConstant>(FoundRHS);
7712 V = FoundLHS;
7713 }
7714
7715 // The guarding predicate tells us that C != V. If the known range
7716 // of V is [C, t), we can sharpen the range to [C + 1, t). The
7717 // range we consider has to correspond to same signedness as the
7718 // predicate we're interested in folding.
7719
7720 APInt Min = ICmpInst::isSigned(Pred) ?
7721 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7722
7723 if (Min == C->getValue()->getValue()) {
7724 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
7725 // This is true even if (Min + 1) wraps around -- in case of
7726 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
7727
7728 APInt SharperMin = Min + 1;
7729
7730 switch (Pred) {
7731 case ICmpInst::ICMP_SGE:
7732 case ICmpInst::ICMP_UGE:
7733 // We know V `Pred` SharperMin. If this implies LHS `Pred`
7734 // RHS, we're done.
7735 if (isImpliedCondOperands(Pred, LHS, RHS, V,
7736 getConstant(SharperMin)))
7737 return true;
7738
7739 case ICmpInst::ICMP_SGT:
7740 case ICmpInst::ICMP_UGT:
7741 // We know from the range information that (V `Pred` Min ||
7742 // V == Min). We know from the guarding condition that !(V
7743 // == Min). This gives us
7744 //
7745 // V `Pred` Min || V == Min && !(V == Min)
7746 // => V `Pred` Min
7747 //
7748 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
7749
7750 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
7751 return true;
7752
7753 default:
7754 // No change
7755 break;
7756 }
7757 }
7758 }
7759
Dan Gohman430f0cc2009-07-21 23:03:19 +00007760 // Check whether the actual condition is beyond sufficient.
7761 if (FoundPred == ICmpInst::ICMP_EQ)
7762 if (ICmpInst::isTrueWhenEqual(Pred))
7763 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
7764 return true;
7765 if (Pred == ICmpInst::ICMP_NE)
7766 if (!ICmpInst::isTrueWhenEqual(FoundPred))
7767 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
7768 return true;
7769
7770 // Otherwise assume the worst.
7771 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00007772}
7773
Sanjoy Das1ed69102015-10-13 02:53:27 +00007774bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
7775 const SCEV *&L, const SCEV *&R,
7776 SCEV::NoWrapFlags &Flags) {
7777 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
7778 if (!AE || AE->getNumOperands() != 2)
7779 return false;
7780
7781 L = AE->getOperand(0);
7782 R = AE->getOperand(1);
7783 Flags = AE->getNoWrapFlags();
7784 return true;
7785}
7786
7787bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
7788 const SCEV *More,
7789 APInt &C) {
Sanjoy Das96709c42015-09-25 23:53:45 +00007790 // We avoid subtracting expressions here because this function is usually
7791 // fairly deep in the call stack (i.e. is called many times).
7792
Sanjoy Das96709c42015-09-25 23:53:45 +00007793 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
7794 const auto *LAR = cast<SCEVAddRecExpr>(Less);
7795 const auto *MAR = cast<SCEVAddRecExpr>(More);
7796
7797 if (LAR->getLoop() != MAR->getLoop())
7798 return false;
7799
7800 // We look at affine expressions only; not for correctness but to keep
7801 // getStepRecurrence cheap.
7802 if (!LAR->isAffine() || !MAR->isAffine())
7803 return false;
7804
Sanjoy Das1ed69102015-10-13 02:53:27 +00007805 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
Sanjoy Das96709c42015-09-25 23:53:45 +00007806 return false;
7807
7808 Less = LAR->getStart();
7809 More = MAR->getStart();
7810
7811 // fall through
7812 }
7813
7814 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
7815 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue();
7816 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue();
7817 C = M - L;
7818 return true;
7819 }
7820
7821 const SCEV *L, *R;
Sanjoy Das1ed69102015-10-13 02:53:27 +00007822 SCEV::NoWrapFlags Flags;
7823 if (splitBinaryAdd(Less, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00007824 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7825 if (R == More) {
7826 C = -(LC->getValue()->getValue());
7827 return true;
7828 }
7829
Sanjoy Das1ed69102015-10-13 02:53:27 +00007830 if (splitBinaryAdd(More, L, R, Flags))
Sanjoy Das96709c42015-09-25 23:53:45 +00007831 if (const auto *LC = dyn_cast<SCEVConstant>(L))
7832 if (R == Less) {
7833 C = LC->getValue()->getValue();
7834 return true;
7835 }
7836
7837 return false;
7838}
7839
7840bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
7841 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
7842 const SCEV *FoundLHS, const SCEV *FoundRHS) {
7843 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
7844 return false;
7845
7846 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7847 if (!AddRecLHS)
7848 return false;
7849
7850 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
7851 if (!AddRecFoundLHS)
7852 return false;
7853
7854 // We'd like to let SCEV reason about control dependencies, so we constrain
7855 // both the inequalities to be about add recurrences on the same loop. This
7856 // way we can use isLoopEntryGuardedByCond later.
7857
7858 const Loop *L = AddRecFoundLHS->getLoop();
7859 if (L != AddRecLHS->getLoop())
7860 return false;
7861
7862 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
7863 //
7864 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
7865 // ... (2)
7866 //
7867 // Informal proof for (2), assuming (1) [*]:
7868 //
7869 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
7870 //
7871 // Then
7872 //
7873 // FoundLHS s< FoundRHS s< INT_MIN - C
7874 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
7875 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
7876 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
7877 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
7878 // <=> FoundLHS + C s< FoundRHS + C
7879 //
7880 // [*]: (1) can be proved by ruling out overflow.
7881 //
7882 // [**]: This can be proved by analyzing all the four possibilities:
7883 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
7884 // (A s>= 0, B s>= 0).
7885 //
7886 // Note:
7887 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
7888 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
7889 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
7890 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
7891 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
7892 // C)".
7893
7894 APInt LDiff, RDiff;
Sanjoy Das1ed69102015-10-13 02:53:27 +00007895 if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
7896 !computeConstantDifference(FoundRHS, RHS, RDiff) ||
Sanjoy Das96709c42015-09-25 23:53:45 +00007897 LDiff != RDiff)
7898 return false;
7899
7900 if (LDiff == 0)
7901 return true;
7902
Sanjoy Das96709c42015-09-25 23:53:45 +00007903 APInt FoundRHSLimit;
7904
7905 if (Pred == CmpInst::ICMP_ULT) {
7906 FoundRHSLimit = -RDiff;
7907 } else {
7908 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
Sanjoy Das4f1c4592015-09-28 21:14:32 +00007909 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
Sanjoy Das96709c42015-09-25 23:53:45 +00007910 }
7911
7912 // Try to prove (1) or (2), as needed.
7913 return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
7914 getConstant(FoundRHSLimit));
7915}
7916
Dan Gohman430f0cc2009-07-21 23:03:19 +00007917/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00007918/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00007919/// and FoundRHS is true.
7920bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
7921 const SCEV *LHS, const SCEV *RHS,
7922 const SCEV *FoundLHS,
7923 const SCEV *FoundRHS) {
Sanjoy Dascb8bca12015-03-18 00:41:29 +00007924 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
7925 return true;
7926
Sanjoy Das96709c42015-09-25 23:53:45 +00007927 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
7928 return true;
7929
Dan Gohman430f0cc2009-07-21 23:03:19 +00007930 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
7931 FoundLHS, FoundRHS) ||
7932 // ~x < ~y --> x > y
7933 isImpliedCondOperandsHelper(Pred, LHS, RHS,
7934 getNotSCEV(FoundRHS),
7935 getNotSCEV(FoundLHS));
7936}
7937
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007938
7939/// If Expr computes ~A, return A else return nullptr
7940static const SCEV *MatchNotExpr(const SCEV *Expr) {
7941 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
Sanjoy Das16e7ff12015-10-13 23:28:31 +00007942 if (!Add || Add->getNumOperands() != 2 ||
7943 !Add->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007944 return nullptr;
7945
7946 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
Sanjoy Das16e7ff12015-10-13 23:28:31 +00007947 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
7948 !AddRHS->getOperand(0)->isAllOnesValue())
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007949 return nullptr;
7950
7951 return AddRHS->getOperand(1);
7952}
7953
7954
7955/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
7956template<typename MaxExprType>
7957static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
7958 const SCEV *Candidate) {
7959 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
7960 if (!MaxExpr) return false;
7961
Sanjoy Das347d2722015-12-01 07:49:27 +00007962 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007963}
7964
7965
7966/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
7967template<typename MaxExprType>
7968static bool IsMinConsistingOf(ScalarEvolution &SE,
7969 const SCEV *MaybeMinExpr,
7970 const SCEV *Candidate) {
7971 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
7972 if (!MaybeMaxExpr)
7973 return false;
7974
7975 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
7976}
7977
Hal Finkela8d205f2015-08-19 01:51:51 +00007978static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
7979 ICmpInst::Predicate Pred,
7980 const SCEV *LHS, const SCEV *RHS) {
7981
7982 // If both sides are affine addrecs for the same loop, with equal
7983 // steps, and we know the recurrences don't wrap, then we only
7984 // need to check the predicate on the starting values.
7985
7986 if (!ICmpInst::isRelational(Pred))
7987 return false;
7988
7989 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7990 if (!LAR)
7991 return false;
7992 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7993 if (!RAR)
7994 return false;
7995 if (LAR->getLoop() != RAR->getLoop())
7996 return false;
7997 if (!LAR->isAffine() || !RAR->isAffine())
7998 return false;
7999
8000 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8001 return false;
8002
Hal Finkelff08a2e2015-08-19 17:26:07 +00008003 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8004 SCEV::FlagNSW : SCEV::FlagNUW;
8005 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
Hal Finkela8d205f2015-08-19 01:51:51 +00008006 return false;
8007
8008 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8009}
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008010
8011/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8012/// expression?
8013static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8014 ICmpInst::Predicate Pred,
8015 const SCEV *LHS, const SCEV *RHS) {
8016 switch (Pred) {
8017 default:
8018 return false;
8019
8020 case ICmpInst::ICMP_SGE:
8021 std::swap(LHS, RHS);
8022 // fall through
8023 case ICmpInst::ICMP_SLE:
8024 return
8025 // min(A, ...) <= A
8026 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8027 // A <= max(A, ...)
8028 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8029
8030 case ICmpInst::ICMP_UGE:
8031 std::swap(LHS, RHS);
8032 // fall through
8033 case ICmpInst::ICMP_ULE:
8034 return
8035 // min(A, ...) <= A
8036 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8037 // A <= max(A, ...)
8038 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8039 }
8040
8041 llvm_unreachable("covered switch fell through?!");
8042}
8043
Dan Gohman430f0cc2009-07-21 23:03:19 +00008044/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00008045/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00008046/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00008047bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00008048ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8049 const SCEV *LHS, const SCEV *RHS,
8050 const SCEV *FoundLHS,
8051 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008052 auto IsKnownPredicateFull =
8053 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8054 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
Sanjoy Das11231482015-10-22 19:57:29 +00008055 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
Sanjoy Dasc1a29772015-11-05 23:45:38 +00008056 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8057 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008058 };
8059
Dan Gohmane65c9172009-07-13 21:35:55 +00008060 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00008061 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8062 case ICmpInst::ICMP_EQ:
8063 case ICmpInst::ICMP_NE:
8064 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8065 return true;
8066 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00008067 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008068 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008069 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8070 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008071 return true;
8072 break;
8073 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008074 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008075 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8076 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008077 return true;
8078 break;
8079 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008080 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008081 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8082 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008083 return true;
8084 break;
8085 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00008086 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00008087 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8088 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00008089 return true;
8090 break;
8091 }
8092
8093 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00008094}
8095
Sanjoy Dascb8bca12015-03-18 00:41:29 +00008096/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
8097/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
8098bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8099 const SCEV *LHS,
8100 const SCEV *RHS,
8101 const SCEV *FoundLHS,
8102 const SCEV *FoundRHS) {
8103 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8104 // The restriction on `FoundRHS` be lifted easily -- it exists only to
8105 // reduce the compile time impact of this optimization.
8106 return false;
8107
8108 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8109 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8110 !isa<SCEVConstant>(AddLHS->getOperand(0)))
8111 return false;
8112
8113 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue();
8114
8115 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8116 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8117 ConstantRange FoundLHSRange =
8118 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8119
8120 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8121 // for `LHS`:
8122 APInt Addend =
8123 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue();
8124 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8125
8126 // We can also compute the range of values for `LHS` that satisfy the
8127 // consequent, "`LHS` `Pred` `RHS`":
8128 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue();
8129 ConstantRange SatisfyingLHSRange =
8130 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8131
8132 // The antecedent implies the consequent if every value of `LHS` that
8133 // satisfies the antecedent also satisfies the consequent.
8134 return SatisfyingLHSRange.contains(LHSRange);
8135}
8136
Johannes Doerfert2683e562015-02-09 12:34:23 +00008137// Verify if an linear IV with positive stride can overflow when in a
8138// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008139// stride and the knowledge of NSW/NUW flags on the recurrence.
8140bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8141 bool IsSigned, bool NoWrap) {
8142 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00008143
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008144 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008145 const SCEV *One = getOne(Stride->getType());
Andrew Trick2afa3252011-03-09 17:29:58 +00008146
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008147 if (IsSigned) {
8148 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8149 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8150 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8151 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00008152
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008153 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8154 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00008155 }
Dan Gohman01048422009-06-21 23:46:38 +00008156
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008157 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8158 APInt MaxValue = APInt::getMaxValue(BitWidth);
8159 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8160 .getUnsignedMax();
8161
8162 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8163 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8164}
8165
Johannes Doerfert2683e562015-02-09 12:34:23 +00008166// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008167// greater-than comparison, knowing the invariant term of the comparison,
8168// the stride and the knowledge of NSW/NUW flags on the recurrence.
8169bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8170 bool IsSigned, bool NoWrap) {
8171 if (NoWrap) return false;
8172
8173 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008174 const SCEV *One = getOne(Stride->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008175
8176 if (IsSigned) {
8177 APInt MinRHS = getSignedRange(RHS).getSignedMin();
8178 APInt MinValue = APInt::getSignedMinValue(BitWidth);
8179 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8180 .getSignedMax();
8181
8182 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8183 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8184 }
8185
8186 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8187 APInt MinValue = APInt::getMinValue(BitWidth);
8188 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8189 .getUnsignedMax();
8190
8191 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8192 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8193}
8194
8195// Compute the backedge taken count knowing the interval difference, the
8196// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00008197const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008198 bool Equality) {
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008199 const SCEV *One = getOne(Step->getType());
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008200 Delta = Equality ? getAddExpr(Delta, Step)
8201 : getAddExpr(Delta, getMinusSCEV(Step, One));
8202 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00008203}
8204
Chris Lattner587a75b2005-08-15 23:33:51 +00008205/// HowManyLessThans - Return the number of times a backedge containing the
8206/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00008207/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00008208///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008209/// @param ControlsExit is true when the LHS < RHS condition directly controls
8210/// the branch (loops exits only if condition is true). In this case, we can use
8211/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00008212ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00008213ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008214 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008215 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008216 // We handle only IV < Invariant
8217 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00008218 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008219
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008220 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00008221
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008222 // Avoid weird loops
8223 if (!IV || IV->getLoop() != L || !IV->isAffine())
8224 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00008225
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008226 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008227 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008228
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008229 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00008230
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008231 // Avoid negative or zero stride values
8232 if (!isKnownPositive(Stride))
8233 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008234
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008235 // Avoid proven overflow cases: this will ensure that the backedge taken count
8236 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008237 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008238 // behaviors like the case of C language.
8239 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8240 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00008241
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008242 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8243 : ICmpInst::ICMP_ULT;
8244 const SCEV *Start = IV->getStart();
8245 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008246 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8247 const SCEV *Diff = getMinusSCEV(RHS, Start);
8248 // If we have NoWrap set, then we can assume that the increment won't
8249 // overflow, in which case if RHS - Start is a constant, we don't need to
8250 // do a max operation since we can just figure it out statically
8251 if (NoWrap && isa<SCEVConstant>(Diff)) {
8252 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
8253 if (D.isNegative())
8254 End = Start;
8255 } else
8256 End = IsSigned ? getSMaxExpr(RHS, Start)
8257 : getUMaxExpr(RHS, Start);
8258 }
Dan Gohman51aaf022010-01-26 04:40:18 +00008259
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008260 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00008261
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008262 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8263 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00008264
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008265 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8266 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00008267
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008268 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8269 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8270 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00008271
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008272 // Although End can be a MAX expression we estimate MaxEnd considering only
8273 // the case End = RHS. This is safe because in the other case (End - Start)
8274 // is zero, leading to a zero maximum backedge taken count.
8275 APInt MaxEnd =
8276 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8277 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8278
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00008279 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008280 if (isa<SCEVConstant>(BECount))
8281 MaxBECount = BECount;
8282 else
8283 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8284 getConstant(MinStride), false);
8285
8286 if (isa<SCEVCouldNotCompute>(MaxBECount))
8287 MaxBECount = BECount;
8288
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008289 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008290}
8291
8292ScalarEvolution::ExitLimit
8293ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8294 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008295 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008296 // We handle only IV > Invariant
8297 if (!isLoopInvariant(RHS, L))
8298 return getCouldNotCompute();
8299
8300 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8301
8302 // Avoid weird loops
8303 if (!IV || IV->getLoop() != L || !IV->isAffine())
8304 return getCouldNotCompute();
8305
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008306 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008307 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8308
8309 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8310
8311 // Avoid negative or zero stride values
8312 if (!isKnownPositive(Stride))
8313 return getCouldNotCompute();
8314
8315 // Avoid proven overflow cases: this will ensure that the backedge taken count
8316 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00008317 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008318 // behaviors like the case of C language.
8319 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8320 return getCouldNotCompute();
8321
8322 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8323 : ICmpInst::ICMP_UGT;
8324
8325 const SCEV *Start = IV->getStart();
8326 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00008327 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8328 const SCEV *Diff = getMinusSCEV(RHS, Start);
8329 // If we have NoWrap set, then we can assume that the increment won't
8330 // overflow, in which case if RHS - Start is a constant, we don't need to
8331 // do a max operation since we can just figure it out statically
8332 if (NoWrap && isa<SCEVConstant>(Diff)) {
8333 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
8334 if (!D.isNegative())
8335 End = Start;
8336 } else
8337 End = IsSigned ? getSMinExpr(RHS, Start)
8338 : getUMinExpr(RHS, Start);
8339 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008340
8341 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8342
8343 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8344 : getUnsignedRange(Start).getUnsignedMax();
8345
8346 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8347 : getUnsignedRange(Stride).getUnsignedMin();
8348
8349 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8350 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8351 : APInt::getMinValue(BitWidth) + (MinStride - 1);
8352
8353 // Although End can be a MIN expression we estimate MinEnd considering only
8354 // the case End = RHS. This is safe because in the other case (Start - End)
8355 // is zero, leading to a zero maximum backedge taken count.
8356 APInt MinEnd =
8357 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8358 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8359
8360
8361 const SCEV *MaxBECount = getCouldNotCompute();
8362 if (isa<SCEVConstant>(BECount))
8363 MaxBECount = BECount;
8364 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00008365 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00008366 getConstant(MinStride), false);
8367
8368 if (isa<SCEVCouldNotCompute>(MaxBECount))
8369 MaxBECount = BECount;
8370
Mark Heffernan2beab5f2014-10-10 17:39:11 +00008371 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00008372}
8373
Chris Lattnerd934c702004-04-02 20:23:17 +00008374/// getNumIterationsInRange - Return the number of iterations of this loop that
8375/// produce values in the specified constant range. Another way of looking at
8376/// this is that it returns the first iteration number where the value is not in
8377/// the condition, thus computing the exit count. If the iteration count can't
8378/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00008379const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00008380 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00008381 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00008382 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008383
8384 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00008385 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00008386 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00008387 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008388 Operands[0] = SE.getZero(SC->getType());
Andrew Trick8b55b732011-03-14 16:50:06 +00008389 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00008390 getNoWrapFlags(FlagNW));
Sanjoy Das63914592015-10-18 00:29:20 +00008391 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00008392 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00008393 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00008394 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00008395 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008396 }
8397
8398 // The only time we can solve this is when we have all constant indices.
8399 // Otherwise, we cannot determine the overflow conditions.
Sanjoy Dasff3b8b42015-12-01 07:49:23 +00008400 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
Sanjoy Dasf07d2a72015-10-18 00:29:23 +00008401 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008402
8403 // Okay at this point we know that all elements of the chrec are constants and
8404 // that the start element is zero.
8405
8406 // First check to see if the range contains zero. If not, the first
8407 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00008408 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00008409 if (!Range.contains(APInt(BitWidth, 0)))
Sanjoy Das2aacc0e2015-09-23 01:59:04 +00008410 return SE.getZero(getType());
Misha Brukman01808ca2005-04-21 21:13:18 +00008411
Chris Lattnerd934c702004-04-02 20:23:17 +00008412 if (isAffine()) {
8413 // If this is an affine expression then we have this situation:
8414 // Solve {0,+,A} in Range === Ax in Range
8415
Nick Lewycky52460262007-07-16 02:08:00 +00008416 // We know that zero is in the range. If A is positive then we know that
8417 // the upper value of the range must be the first possible exit value.
8418 // If A is negative then the lower of the range is the last possible loop
8419 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00008420 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00008421 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
8422 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00008423
Nick Lewycky52460262007-07-16 02:08:00 +00008424 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00008425 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00008426 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00008427
8428 // Evaluate at the exit value. If we really did fall out of the valid
8429 // range, then we computed our trip count, otherwise wrap around or other
8430 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00008431 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008432 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00008433 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008434
8435 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00008436 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00008437 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00008438 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00008439 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00008440 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00008441 } else if (isQuadratic()) {
8442 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8443 // quadratic equation to solve it. To do this, we must frame our problem in
8444 // terms of figuring out when zero is crossed, instead of when
8445 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00008446 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00008447 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00008448 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8449 // getNoWrapFlags(FlagNW)
8450 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00008451
8452 // Next, solve the constructed addrec
Sanjoy Das01947432015-11-22 21:20:13 +00008453 auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00008454 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8455 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00008456 if (R1) {
8457 // Pick the smallest positive root value.
Sanjoy Das01947432015-11-22 21:20:13 +00008458 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8459 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
David Blaikiedc3f01e2015-03-09 01:57:13 +00008460 if (!CB->getZExtValue())
Chris Lattnerd934c702004-04-02 20:23:17 +00008461 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00008462
Chris Lattnerd934c702004-04-02 20:23:17 +00008463 // Make sure the root is not off by one. The returned iteration should
8464 // not be in the range, but the previous one should be. When solving
8465 // for "X*X < 5", for example, we should not return a root of 2.
8466 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00008467 R1->getValue(),
8468 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008469 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008470 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00008471 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00008472 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00008473
Dan Gohmana37eaf22007-10-22 18:31:58 +00008474 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008475 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00008476 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00008477 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008478 }
Misha Brukman01808ca2005-04-21 21:13:18 +00008479
Chris Lattnerd934c702004-04-02 20:23:17 +00008480 // If R1 was not in the range, then it is a good return value. Make
8481 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00008482 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00008483 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00008484 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00008485 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00008486 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00008487 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00008488 }
8489 }
8490 }
8491
Dan Gohman31efa302009-04-18 17:58:19 +00008492 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00008493}
8494
Sebastian Pop448712b2014-05-07 18:01:20 +00008495namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008496struct FindUndefs {
8497 bool Found;
8498 FindUndefs() : Found(false) {}
8499
8500 bool follow(const SCEV *S) {
8501 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8502 if (isa<UndefValue>(C->getValue()))
8503 Found = true;
8504 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8505 if (isa<UndefValue>(C->getValue()))
8506 Found = true;
8507 }
8508
8509 // Keep looking if we haven't found it yet.
8510 return !Found;
8511 }
8512 bool isDone() const {
8513 // Stop recursion if we have found an undef.
8514 return Found;
8515 }
8516};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008517}
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008518
8519// Return true when S contains at least an undef value.
8520static inline bool
8521containsUndefs(const SCEV *S) {
8522 FindUndefs F;
8523 SCEVTraversal<FindUndefs> ST(F);
8524 ST.visitAll(S);
8525
8526 return F.Found;
8527}
8528
8529namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00008530// Collect all steps of SCEV expressions.
8531struct SCEVCollectStrides {
8532 ScalarEvolution &SE;
8533 SmallVectorImpl<const SCEV *> &Strides;
8534
8535 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8536 : SE(SE), Strides(S) {}
8537
8538 bool follow(const SCEV *S) {
8539 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8540 Strides.push_back(AR->getStepRecurrence(SE));
8541 return true;
8542 }
8543 bool isDone() const { return false; }
8544};
8545
8546// Collect all SCEVUnknown and SCEVMulExpr expressions.
8547struct SCEVCollectTerms {
8548 SmallVectorImpl<const SCEV *> &Terms;
8549
8550 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8551 : Terms(T) {}
8552
8553 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008554 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00008555 if (!containsUndefs(S))
8556 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00008557
8558 // Stop recursion: once we collected a term, do not walk its operands.
8559 return false;
8560 }
8561
8562 // Keep looking.
8563 return true;
8564 }
8565 bool isDone() const { return false; }
8566};
Tobias Grosser374bce02015-10-12 08:02:00 +00008567
8568// Check if a SCEV contains an AddRecExpr.
8569struct SCEVHasAddRec {
8570 bool &ContainsAddRec;
8571
8572 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8573 ContainsAddRec = false;
8574 }
8575
8576 bool follow(const SCEV *S) {
8577 if (isa<SCEVAddRecExpr>(S)) {
8578 ContainsAddRec = true;
8579
8580 // Stop recursion: once we collected a term, do not walk its operands.
8581 return false;
8582 }
8583
8584 // Keep looking.
8585 return true;
8586 }
8587 bool isDone() const { return false; }
8588};
8589
8590// Find factors that are multiplied with an expression that (possibly as a
8591// subexpression) contains an AddRecExpr. In the expression:
8592//
8593// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
8594//
8595// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
8596// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
8597// parameters as they form a product with an induction variable.
8598//
8599// This collector expects all array size parameters to be in the same MulExpr.
8600// It might be necessary to later add support for collecting parameters that are
8601// spread over different nested MulExpr.
8602struct SCEVCollectAddRecMultiplies {
8603 SmallVectorImpl<const SCEV *> &Terms;
8604 ScalarEvolution &SE;
8605
8606 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
8607 : Terms(T), SE(SE) {}
8608
8609 bool follow(const SCEV *S) {
8610 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
8611 bool HasAddRec = false;
8612 SmallVector<const SCEV *, 0> Operands;
8613 for (auto Op : Mul->operands()) {
8614 if (isa<SCEVUnknown>(Op)) {
8615 Operands.push_back(Op);
8616 } else {
8617 bool ContainsAddRec;
8618 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
8619 visitAll(Op, ContiansAddRec);
8620 HasAddRec |= ContainsAddRec;
8621 }
8622 }
8623 if (Operands.size() == 0)
8624 return true;
8625
8626 if (!HasAddRec)
8627 return false;
8628
8629 Terms.push_back(SE.getMulExpr(Operands));
8630 // Stop recursion: once we collected a term, do not walk its operands.
8631 return false;
8632 }
8633
8634 // Keep looking.
8635 return true;
8636 }
8637 bool isDone() const { return false; }
8638};
Alexander Kornienkof00654e2015-06-23 09:49:53 +00008639}
Sebastian Pop448712b2014-05-07 18:01:20 +00008640
Tobias Grosser374bce02015-10-12 08:02:00 +00008641/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
8642/// two places:
8643/// 1) The strides of AddRec expressions.
8644/// 2) Unknowns that are multiplied with AddRec expressions.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008645void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
8646 SmallVectorImpl<const SCEV *> &Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008647 SmallVector<const SCEV *, 4> Strides;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008648 SCEVCollectStrides StrideCollector(*this, Strides);
8649 visitAll(Expr, StrideCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00008650
8651 DEBUG({
8652 dbgs() << "Strides:\n";
8653 for (const SCEV *S : Strides)
8654 dbgs() << *S << "\n";
8655 });
8656
8657 for (const SCEV *S : Strides) {
8658 SCEVCollectTerms TermCollector(Terms);
8659 visitAll(S, TermCollector);
8660 }
8661
8662 DEBUG({
8663 dbgs() << "Terms:\n";
8664 for (const SCEV *T : Terms)
8665 dbgs() << *T << "\n";
8666 });
Tobias Grosser374bce02015-10-12 08:02:00 +00008667
8668 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
8669 visitAll(Expr, MulCollector);
Sebastian Pop448712b2014-05-07 18:01:20 +00008670}
8671
Sebastian Popb1a548f2014-05-12 19:01:53 +00008672static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00008673 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00008674 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00008675 int Last = Terms.size() - 1;
8676 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00008677
Sebastian Pop448712b2014-05-07 18:01:20 +00008678 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00008679 if (Last == 0) {
8680 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008681 SmallVector<const SCEV *, 2> Qs;
8682 for (const SCEV *Op : M->operands())
8683 if (!isa<SCEVConstant>(Op))
8684 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00008685
Sebastian Pope30bd352014-05-27 22:41:56 +00008686 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00008687 }
8688
Sebastian Pope30bd352014-05-27 22:41:56 +00008689 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008690 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00008691 }
8692
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008693 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008694 // Normalize the terms before the next call to findArrayDimensionsRec.
8695 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008696 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008697
8698 // Bail out when GCD does not evenly divide one of the terms.
8699 if (!R->isZero())
8700 return false;
8701
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00008702 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00008703 }
8704
Tobias Grosser3080cf12014-05-08 07:55:34 +00008705 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00008706 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
8707 return isa<SCEVConstant>(E);
8708 }),
8709 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00008710
Sebastian Pop448712b2014-05-07 18:01:20 +00008711 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00008712 if (!findArrayDimensionsRec(SE, Terms, Sizes))
8713 return false;
8714
Sebastian Pope30bd352014-05-27 22:41:56 +00008715 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00008716 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00008717}
Sebastian Popc62c6792013-11-12 22:47:20 +00008718
Sebastian Pop448712b2014-05-07 18:01:20 +00008719// Returns true when S contains at least a SCEVUnknown parameter.
8720static inline bool
8721containsParameters(const SCEV *S) {
Sanjoy Das7d752672015-12-08 04:32:54 +00008722 struct FindParameter {
8723 bool FoundParameter;
8724 FindParameter() : FoundParameter(false) {}
8725
8726 bool follow(const SCEV *S) {
8727 if (isa<SCEVUnknown>(S)) {
8728 FoundParameter = true;
8729 // Stop recursion: we found a parameter.
8730 return false;
8731 }
8732 // Keep looking.
8733 return true;
8734 }
8735 bool isDone() const {
8736 // Stop recursion if we have found a parameter.
8737 return FoundParameter;
8738 }
8739 };
8740
Sebastian Pop448712b2014-05-07 18:01:20 +00008741 FindParameter F;
8742 SCEVTraversal<FindParameter> ST(F);
8743 ST.visitAll(S);
8744
8745 return F.FoundParameter;
8746}
8747
8748// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
8749static inline bool
8750containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
8751 for (const SCEV *T : Terms)
8752 if (containsParameters(T))
8753 return true;
8754 return false;
8755}
8756
8757// Return the number of product terms in S.
8758static inline int numberOfTerms(const SCEV *S) {
8759 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
8760 return Expr->getNumOperands();
8761 return 1;
8762}
8763
Sebastian Popa6e58602014-05-27 22:41:45 +00008764static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
8765 if (isa<SCEVConstant>(T))
8766 return nullptr;
8767
8768 if (isa<SCEVUnknown>(T))
8769 return T;
8770
8771 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
8772 SmallVector<const SCEV *, 2> Factors;
8773 for (const SCEV *Op : M->operands())
8774 if (!isa<SCEVConstant>(Op))
8775 Factors.push_back(Op);
8776
8777 return SE.getMulExpr(Factors);
8778 }
8779
8780 return T;
8781}
8782
8783/// Return the size of an element read or written by Inst.
8784const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
8785 Type *Ty;
8786 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
8787 Ty = Store->getValueOperand()->getType();
8788 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00008789 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00008790 else
8791 return nullptr;
8792
8793 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
8794 return getSizeOfExpr(ETy, Ty);
8795}
8796
Sebastian Pop448712b2014-05-07 18:01:20 +00008797/// Second step of delinearization: compute the array dimensions Sizes from the
8798/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00008799void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
8800 SmallVectorImpl<const SCEV *> &Sizes,
8801 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00008802
Sebastian Pop53524082014-05-29 19:44:05 +00008803 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00008804 return;
8805
8806 // Early return when Terms do not contain parameters: we do not delinearize
8807 // non parametric SCEVs.
8808 if (!containsParameters(Terms))
8809 return;
8810
8811 DEBUG({
8812 dbgs() << "Terms:\n";
8813 for (const SCEV *T : Terms)
8814 dbgs() << *T << "\n";
8815 });
8816
8817 // Remove duplicates.
8818 std::sort(Terms.begin(), Terms.end());
8819 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
8820
8821 // Put larger terms first.
8822 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
8823 return numberOfTerms(LHS) > numberOfTerms(RHS);
8824 });
8825
Sebastian Popa6e58602014-05-27 22:41:45 +00008826 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8827
Tobias Grosser374bce02015-10-12 08:02:00 +00008828 // Try to divide all terms by the element size. If term is not divisible by
8829 // element size, proceed with the original term.
Sebastian Popa6e58602014-05-27 22:41:45 +00008830 for (const SCEV *&Term : Terms) {
8831 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00008832 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Tobias Grosser374bce02015-10-12 08:02:00 +00008833 if (!Q->isZero())
8834 Term = Q;
Sebastian Popa6e58602014-05-27 22:41:45 +00008835 }
8836
8837 SmallVector<const SCEV *, 4> NewTerms;
8838
8839 // Remove constant factors.
8840 for (const SCEV *T : Terms)
8841 if (const SCEV *NewT = removeConstantFactors(SE, T))
8842 NewTerms.push_back(NewT);
8843
Sebastian Pop448712b2014-05-07 18:01:20 +00008844 DEBUG({
8845 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00008846 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00008847 dbgs() << *T << "\n";
8848 });
8849
Sebastian Popa6e58602014-05-27 22:41:45 +00008850 if (NewTerms.empty() ||
8851 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00008852 Sizes.clear();
8853 return;
8854 }
Sebastian Pop448712b2014-05-07 18:01:20 +00008855
Sebastian Popa6e58602014-05-27 22:41:45 +00008856 // The last element to be pushed into Sizes is the size of an element.
8857 Sizes.push_back(ElementSize);
8858
Sebastian Pop448712b2014-05-07 18:01:20 +00008859 DEBUG({
8860 dbgs() << "Sizes:\n";
8861 for (const SCEV *S : Sizes)
8862 dbgs() << *S << "\n";
8863 });
8864}
8865
8866/// Third step of delinearization: compute the access functions for the
8867/// Subscripts based on the dimensions in Sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008868void ScalarEvolution::computeAccessFunctions(
8869 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
8870 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008871
Sebastian Popb1a548f2014-05-12 19:01:53 +00008872 // Early exit in case this SCEV is not an affine multivariate function.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008873 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008874 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008875
Sanjoy Das1195dbe2015-10-08 03:45:58 +00008876 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008877 if (!AR->isAffine())
8878 return;
8879
8880 const SCEV *Res = Expr;
Sebastian Pop448712b2014-05-07 18:01:20 +00008881 int Last = Sizes.size() - 1;
8882 for (int i = Last; i >= 0; i--) {
8883 const SCEV *Q, *R;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008884 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00008885
8886 DEBUG({
8887 dbgs() << "Res: " << *Res << "\n";
8888 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
8889 dbgs() << "Res divided by Sizes[i]:\n";
8890 dbgs() << "Quotient: " << *Q << "\n";
8891 dbgs() << "Remainder: " << *R << "\n";
8892 });
8893
8894 Res = Q;
8895
Sebastian Popa6e58602014-05-27 22:41:45 +00008896 // Do not record the last subscript corresponding to the size of elements in
8897 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00008898 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00008899
8900 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00008901 if (isa<SCEVAddRecExpr>(R)) {
8902 Subscripts.clear();
8903 Sizes.clear();
8904 return;
8905 }
Sebastian Popa6e58602014-05-27 22:41:45 +00008906
Sebastian Pop448712b2014-05-07 18:01:20 +00008907 continue;
8908 }
8909
8910 // Record the access function for the current subscript.
8911 Subscripts.push_back(R);
8912 }
8913
8914 // Also push in last position the remainder of the last division: it will be
8915 // the access function of the innermost dimension.
8916 Subscripts.push_back(Res);
8917
8918 std::reverse(Subscripts.begin(), Subscripts.end());
8919
8920 DEBUG({
8921 dbgs() << "Subscripts:\n";
8922 for (const SCEV *S : Subscripts)
8923 dbgs() << *S << "\n";
8924 });
Sebastian Pop448712b2014-05-07 18:01:20 +00008925}
8926
Sebastian Popc62c6792013-11-12 22:47:20 +00008927/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
8928/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00008929/// is the offset start of the array. The SCEV->delinearize algorithm computes
8930/// the multiples of SCEV coefficients: that is a pattern matching of sub
8931/// expressions in the stride and base of a SCEV corresponding to the
8932/// computation of a GCD (greatest common divisor) of base and stride. When
8933/// SCEV->delinearize fails, it returns the SCEV unchanged.
8934///
8935/// For example: when analyzing the memory access A[i][j][k] in this loop nest
8936///
8937/// void foo(long n, long m, long o, double A[n][m][o]) {
8938///
8939/// for (long i = 0; i < n; i++)
8940/// for (long j = 0; j < m; j++)
8941/// for (long k = 0; k < o; k++)
8942/// A[i][j][k] = 1.0;
8943/// }
8944///
8945/// the delinearization input is the following AddRec SCEV:
8946///
8947/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
8948///
8949/// From this SCEV, we are able to say that the base offset of the access is %A
8950/// because it appears as an offset that does not divide any of the strides in
8951/// the loops:
8952///
8953/// CHECK: Base offset: %A
8954///
8955/// and then SCEV->delinearize determines the size of some of the dimensions of
8956/// the array as these are the multiples by which the strides are happening:
8957///
8958/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
8959///
8960/// Note that the outermost dimension remains of UnknownSize because there are
8961/// no strides that would help identifying the size of the last dimension: when
8962/// the array has been statically allocated, one could compute the size of that
8963/// dimension by dividing the overall size of the array by the size of the known
8964/// dimensions: %m * %o * 8.
8965///
8966/// Finally delinearize provides the access functions for the array reference
8967/// that does correspond to A[i][j][k] of the above C testcase:
8968///
8969/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
8970///
8971/// The testcases are checking the output of a function pass:
8972/// DelinearizationPass that walks through all loads and stores of a function
8973/// asking for the SCEV of the memory access with respect to all enclosing
8974/// loops, calling SCEV->delinearize on that and printing the results.
8975
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008976void ScalarEvolution::delinearize(const SCEV *Expr,
Sebastian Pop28e6b972014-05-27 22:41:51 +00008977 SmallVectorImpl<const SCEV *> &Subscripts,
8978 SmallVectorImpl<const SCEV *> &Sizes,
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008979 const SCEV *ElementSize) {
Sebastian Pop448712b2014-05-07 18:01:20 +00008980 // First step: collect parametric terms.
8981 SmallVector<const SCEV *, 4> Terms;
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008982 collectParametricTerms(Expr, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00008983
Sebastian Popb1a548f2014-05-12 19:01:53 +00008984 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008985 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008986
Sebastian Pop448712b2014-05-07 18:01:20 +00008987 // Second step: find subscript sizes.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008988 findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00008989
Sebastian Popb1a548f2014-05-12 19:01:53 +00008990 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00008991 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008992
Sebastian Pop448712b2014-05-07 18:01:20 +00008993 // Third step: compute the access functions for each subscript.
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00008994 computeAccessFunctions(Expr, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00008995
Sebastian Pop28e6b972014-05-27 22:41:51 +00008996 if (Subscripts.empty())
8997 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00008998
Sebastian Pop448712b2014-05-07 18:01:20 +00008999 DEBUG({
Tobias Grosser3cdc37c2015-06-29 14:42:48 +00009000 dbgs() << "succeeded to delinearize " << *Expr << "\n";
Sebastian Pop448712b2014-05-07 18:01:20 +00009001 dbgs() << "ArrayDecl[UnknownSize]";
9002 for (const SCEV *S : Sizes)
9003 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00009004
Sebastian Pop444621a2014-05-09 22:45:02 +00009005 dbgs() << "\nArrayRef";
9006 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00009007 dbgs() << "[" << *S << "]";
9008 dbgs() << "\n";
9009 });
Sebastian Popc62c6792013-11-12 22:47:20 +00009010}
Chris Lattnerd934c702004-04-02 20:23:17 +00009011
9012//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00009013// SCEVCallbackVH Class Implementation
9014//===----------------------------------------------------------------------===//
9015
Dan Gohmand33a0902009-05-19 19:22:47 +00009016void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00009017 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00009018 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9019 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009020 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00009021 // this now dangles!
9022}
9023
Dan Gohman7a066722010-07-28 01:09:07 +00009024void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00009025 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00009026
Dan Gohman48f82222009-05-04 22:30:44 +00009027 // Forget all the expressions associated with users of the old value,
9028 // so that future queries will recompute the expressions using the new
9029 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00009030 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00009031 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00009032 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00009033 while (!Worklist.empty()) {
9034 User *U = Worklist.pop_back_val();
9035 // Deleting the Old value will cause this to dangle. Postpone
9036 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009037 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00009038 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00009039 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00009040 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00009041 if (PHINode *PN = dyn_cast<PHINode>(U))
9042 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009043 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00009044 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00009045 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009046 // Delete the Old value.
9047 if (PHINode *PN = dyn_cast<PHINode>(Old))
9048 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009049 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00009050 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00009051}
9052
Dan Gohmand33a0902009-05-19 19:22:47 +00009053ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00009054 : CallbackVH(V), SE(se) {}
9055
9056//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00009057// ScalarEvolution Class Implementation
9058//===----------------------------------------------------------------------===//
9059
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009060ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9061 AssumptionCache &AC, DominatorTree &DT,
9062 LoopInfo &LI)
9063 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9064 CouldNotCompute(new SCEVCouldNotCompute()),
Sanjoy Das7d910f22015-10-02 18:50:30 +00009065 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9066 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9067 FirstUnknown(nullptr) {}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009068
9069ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9070 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
9071 CouldNotCompute(std::move(Arg.CouldNotCompute)),
9072 ValueExprMap(std::move(Arg.ValueExprMap)),
Sanjoy Das7d910f22015-10-02 18:50:30 +00009073 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009074 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9075 ConstantEvolutionLoopExitValue(
9076 std::move(Arg.ConstantEvolutionLoopExitValue)),
9077 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9078 LoopDispositions(std::move(Arg.LoopDispositions)),
9079 BlockDispositions(std::move(Arg.BlockDispositions)),
9080 UnsignedRanges(std::move(Arg.UnsignedRanges)),
9081 SignedRanges(std::move(Arg.SignedRanges)),
9082 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
Silviu Barangae3c05342015-11-02 14:41:02 +00009083 UniquePreds(std::move(Arg.UniquePreds)),
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009084 SCEVAllocator(std::move(Arg.SCEVAllocator)),
9085 FirstUnknown(Arg.FirstUnknown) {
9086 Arg.FirstUnknown = nullptr;
Dan Gohmanc8e23622009-04-21 23:15:49 +00009087}
9088
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009089ScalarEvolution::~ScalarEvolution() {
Dan Gohman7cac9572010-08-02 23:49:30 +00009090 // Iterate through all the SCEVUnknown instances and call their
9091 // destructors, so that they release their references to their values.
Naomi Musgravef90c1be2015-09-16 23:46:40 +00009092 for (SCEVUnknown *U = FirstUnknown; U;) {
9093 SCEVUnknown *Tmp = U;
9094 U = U->Next;
9095 Tmp->~SCEVUnknown();
9096 }
Craig Topper9f008862014-04-15 04:59:12 +00009097 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00009098
Dan Gohman9bad2fb2010-08-27 18:55:03 +00009099 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00009100
9101 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9102 // that a loop had multiple computable exits.
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009103 for (auto &BTCI : BackedgeTakenCounts)
9104 BTCI.second.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00009105
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00009106 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
Sanjoy Dasb864c1f2015-04-01 18:24:06 +00009107 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
Sanjoy Das7d910f22015-10-02 18:50:30 +00009108 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
Dan Gohman0a40ad92009-04-16 03:18:22 +00009109}
9110
Dan Gohmanc8e23622009-04-21 23:15:49 +00009111bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00009112 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00009113}
9114
Dan Gohmanc8e23622009-04-21 23:15:49 +00009115static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00009116 const Loop *L) {
9117 // Print all inner loops first
9118 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9119 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00009120
Dan Gohmanbc694912010-01-09 18:17:45 +00009121 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00009122 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009123 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00009124
Dan Gohmancb0efec2009-12-18 01:14:11 +00009125 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00009126 L->getExitBlocks(ExitBlocks);
9127 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00009128 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00009129
Dan Gohman0bddac12009-02-24 18:55:53 +00009130 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9131 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00009132 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00009133 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00009134 }
9135
Dan Gohmanbc694912010-01-09 18:17:45 +00009136 OS << "\n"
9137 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00009138 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009139 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00009140
9141 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9142 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9143 } else {
9144 OS << "Unpredictable max backedge-taken count. ";
9145 }
9146
9147 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00009148}
9149
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009150void ScalarEvolution::print(raw_ostream &OS) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00009151 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00009152 // out SCEV values of all instructions that are interesting. Doing
9153 // this potentially causes it to create new SCEV objects though,
9154 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00009155 // observable from outside the class though, so casting away the
9156 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00009157 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00009158
Dan Gohmanbc694912010-01-09 18:17:45 +00009159 OS << "Classifying expressions for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009160 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009161 OS << "\n";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009162 for (Instruction &I : instructions(F))
9163 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9164 OS << I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00009165 OS << " --> ";
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009166 const SCEV *SV = SE.getSCEV(&I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009167 SV->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009168 if (!isa<SCEVCouldNotCompute>(SV)) {
9169 OS << " U: ";
9170 SE.getUnsignedRange(SV).print(OS);
9171 OS << " S: ";
9172 SE.getSignedRange(SV).print(OS);
9173 }
Misha Brukman01808ca2005-04-21 21:13:18 +00009174
Sanjoy Dasd9f6d332015-10-18 00:29:16 +00009175 const Loop *L = LI.getLoopFor(I.getParent());
Dan Gohmanb9063a82009-06-19 17:49:54 +00009176
Dan Gohmanaf752342009-07-07 17:06:11 +00009177 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00009178 if (AtUse != SV) {
9179 OS << " --> ";
9180 AtUse->print(OS);
Sanjoy Dasf2574522015-03-09 21:43:39 +00009181 if (!isa<SCEVCouldNotCompute>(AtUse)) {
9182 OS << " U: ";
9183 SE.getUnsignedRange(AtUse).print(OS);
9184 OS << " S: ";
9185 SE.getSignedRange(AtUse).print(OS);
9186 }
Dan Gohmanb9063a82009-06-19 17:49:54 +00009187 }
9188
9189 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00009190 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00009191 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00009192 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00009193 OS << "<<Unknown>>";
9194 } else {
9195 OS << *ExitValue;
9196 }
9197 }
9198
Chris Lattnerd934c702004-04-02 20:23:17 +00009199 OS << "\n";
9200 }
9201
Dan Gohmanbc694912010-01-09 18:17:45 +00009202 OS << "Determining loop execution counts for: ";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009203 F.printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00009204 OS << "\n";
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009205 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
Dan Gohmanc8e23622009-04-21 23:15:49 +00009206 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00009207}
Dan Gohmane20f8242009-04-21 00:47:46 +00009208
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009209ScalarEvolution::LoopDisposition
9210ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009211 auto &Values = LoopDispositions[S];
9212 for (auto &V : Values) {
9213 if (V.getPointer() == L)
9214 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009215 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009216 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009217 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009218 auto &Values2 = LoopDispositions[S];
9219 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9220 if (V.getPointer() == L) {
9221 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009222 break;
9223 }
9224 }
9225 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009226}
9227
9228ScalarEvolution::LoopDisposition
9229ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009230 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009231 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009232 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009233 case scTruncate:
9234 case scZeroExtend:
9235 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009236 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00009237 case scAddRecExpr: {
9238 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9239
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009240 // If L is the addrec's loop, it's computable.
9241 if (AR->getLoop() == L)
9242 return LoopComputable;
9243
Dan Gohmanafd6db92010-11-17 21:23:15 +00009244 // Add recurrences are never invariant in the function-body (null loop).
9245 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009246 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009247
9248 // This recurrence is variant w.r.t. L if L contains AR's loop.
9249 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009250 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009251
9252 // This recurrence is invariant w.r.t. L if AR's loop contains L.
9253 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009254 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009255
9256 // This recurrence is variant w.r.t. L if any of its operands
9257 // are variant.
Sanjoy Das01947432015-11-22 21:20:13 +00009258 for (auto *Op : AR->operands())
9259 if (!isLoopInvariant(Op, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009260 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009261
9262 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009263 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009264 }
9265 case scAddExpr:
9266 case scMulExpr:
9267 case scUMaxExpr:
9268 case scSMaxExpr: {
Dan Gohmanafd6db92010-11-17 21:23:15 +00009269 bool HasVarying = false;
Sanjoy Das01947432015-11-22 21:20:13 +00009270 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9271 LoopDisposition D = getLoopDisposition(Op, L);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009272 if (D == LoopVariant)
9273 return LoopVariant;
9274 if (D == LoopComputable)
9275 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009276 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009277 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009278 }
9279 case scUDivExpr: {
9280 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009281 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9282 if (LD == LoopVariant)
9283 return LoopVariant;
9284 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9285 if (RD == LoopVariant)
9286 return LoopVariant;
9287 return (LD == LoopInvariant && RD == LoopInvariant) ?
9288 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009289 }
9290 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009291 // All non-instruction values are loop invariant. All instructions are loop
9292 // invariant if they are not contained in the specified loop.
9293 // Instructions are never considered invariant in the function body
9294 // (null loop) because they are defined within the "loop".
Sanjoy Das01947432015-11-22 21:20:13 +00009295 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009296 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9297 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009298 case scCouldNotCompute:
9299 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00009300 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009301 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00009302}
9303
9304bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9305 return getLoopDisposition(S, L) == LoopInvariant;
9306}
9307
9308bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9309 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00009310}
Dan Gohman20d9ce22010-11-17 21:41:58 +00009311
Dan Gohman8ea83d82010-11-18 00:34:22 +00009312ScalarEvolution::BlockDisposition
9313ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009314 auto &Values = BlockDispositions[S];
9315 for (auto &V : Values) {
9316 if (V.getPointer() == BB)
9317 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009318 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009319 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009320 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00009321 auto &Values2 = BlockDispositions[S];
9322 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9323 if (V.getPointer() == BB) {
9324 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00009325 break;
9326 }
9327 }
9328 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009329}
9330
Dan Gohman8ea83d82010-11-18 00:34:22 +00009331ScalarEvolution::BlockDisposition
9332ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00009333 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00009334 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009335 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009336 case scTruncate:
9337 case scZeroExtend:
9338 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00009339 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00009340 case scAddRecExpr: {
9341 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00009342 // to test for proper dominance too, because the instruction which
9343 // produces the addrec's value is a PHI, and a PHI effectively properly
9344 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00009345 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009346 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009347 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009348 }
9349 // FALL THROUGH into SCEVNAryExpr handling.
9350 case scAddExpr:
9351 case scMulExpr:
9352 case scUMaxExpr:
9353 case scSMaxExpr: {
9354 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009355 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009356 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00009357 I != E; ++I) {
9358 BlockDisposition D = getBlockDisposition(*I, BB);
9359 if (D == DoesNotDominateBlock)
9360 return DoesNotDominateBlock;
9361 if (D == DominatesBlock)
9362 Proper = false;
9363 }
9364 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009365 }
9366 case scUDivExpr: {
9367 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009368 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9369 BlockDisposition LD = getBlockDisposition(LHS, BB);
9370 if (LD == DoesNotDominateBlock)
9371 return DoesNotDominateBlock;
9372 BlockDisposition RD = getBlockDisposition(RHS, BB);
9373 if (RD == DoesNotDominateBlock)
9374 return DoesNotDominateBlock;
9375 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9376 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009377 }
9378 case scUnknown:
9379 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00009380 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9381 if (I->getParent() == BB)
9382 return DominatesBlock;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009383 if (DT.properlyDominates(I->getParent(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00009384 return ProperlyDominatesBlock;
9385 return DoesNotDominateBlock;
9386 }
9387 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009388 case scCouldNotCompute:
9389 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00009390 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00009391 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00009392}
9393
9394bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9395 return getBlockDisposition(S, BB) >= DominatesBlock;
9396}
9397
9398bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9399 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00009400}
Dan Gohman534749b2010-11-17 22:27:42 +00009401
9402bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Sanjoy Das7d752672015-12-08 04:32:54 +00009403 // Search for a SCEV expression node within an expression tree.
9404 // Implements SCEVTraversal::Visitor.
9405 struct SCEVSearch {
9406 const SCEV *Node;
9407 bool IsFound;
9408
9409 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9410
9411 bool follow(const SCEV *S) {
9412 IsFound |= (S == Node);
9413 return !IsFound;
9414 }
9415 bool isDone() const { return IsFound; }
9416 };
9417
Andrew Trick365e31c2012-07-13 23:33:03 +00009418 SCEVSearch Search(Op);
9419 visitAll(S, Search);
9420 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00009421}
Dan Gohman7e6b3932010-11-17 23:28:48 +00009422
9423void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9424 ValuesAtScopes.erase(S);
9425 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00009426 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00009427 UnsignedRanges.erase(S);
9428 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00009429
9430 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
9431 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
9432 BackedgeTakenInfo &BEInfo = I->second;
9433 if (BEInfo.hasOperand(S, this)) {
9434 BEInfo.clear();
9435 BackedgeTakenCounts.erase(I++);
9436 }
9437 else
9438 ++I;
9439 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00009440}
Benjamin Kramer214935e2012-10-26 17:31:32 +00009441
9442typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009443
Alp Tokercb402912014-01-24 17:20:08 +00009444/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009445static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9446 size_t Pos = 0;
9447 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9448 Str.replace(Pos, From.size(), To.data(), To.size());
9449 Pos += To.size();
9450 }
9451}
9452
Benjamin Kramer214935e2012-10-26 17:31:32 +00009453/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9454static void
9455getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9456 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
9457 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
9458
9459 std::string &S = Map[L];
9460 if (S.empty()) {
9461 raw_string_ostream OS(S);
9462 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00009463
9464 // false and 0 are semantically equivalent. This can happen in dead loops.
9465 replaceSubString(OS.str(), "false", "0");
9466 // Remove wrap flags, their use in SCEV is highly fragile.
9467 // FIXME: Remove this when SCEV gets smarter about them.
9468 replaceSubString(OS.str(), "<nw>", "");
9469 replaceSubString(OS.str(), "<nsw>", "");
9470 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00009471 }
9472 }
9473}
9474
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009475void ScalarEvolution::verify() const {
Benjamin Kramer214935e2012-10-26 17:31:32 +00009476 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9477
9478 // Gather stringified backedge taken counts for all loops using SCEV's caches.
9479 // FIXME: It would be much better to store actual values instead of strings,
9480 // but SCEV pointers will change if we drop the caches.
9481 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009482 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
Benjamin Kramer214935e2012-10-26 17:31:32 +00009483 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9484
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009485 // Gather stringified backedge taken counts for all loops using a fresh
9486 // ScalarEvolution object.
9487 ScalarEvolution SE2(F, TLI, AC, DT, LI);
9488 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9489 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
Benjamin Kramer214935e2012-10-26 17:31:32 +00009490
9491 // Now compare whether they're the same with and without caches. This allows
9492 // verifying that no pass changed the cache.
9493 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
9494 "New loops suddenly appeared!");
9495
9496 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9497 OldE = BackedgeDumpsOld.end(),
9498 NewI = BackedgeDumpsNew.begin();
9499 OldI != OldE; ++OldI, ++NewI) {
9500 assert(OldI->first == NewI->first && "Loop order changed!");
9501
9502 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9503 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009504 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00009505 // means that a pass is buggy or SCEV has to learn a new pattern but is
9506 // usually not harmful.
9507 if (OldI->second != NewI->second &&
9508 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009509 NewI->second.find("undef") == std::string::npos &&
9510 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00009511 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009512 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00009513 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00009514 << "' changed from '" << OldI->second
9515 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00009516 std::abort();
9517 }
9518 }
9519
9520 // TODO: Verify more things.
9521}
Chandler Carruth2f1fd162015-08-17 02:08:17 +00009522
9523char ScalarEvolutionAnalysis::PassID;
9524
9525ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
9526 AnalysisManager<Function> *AM) {
9527 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F),
9528 AM->getResult<AssumptionAnalysis>(F),
9529 AM->getResult<DominatorTreeAnalysis>(F),
9530 AM->getResult<LoopAnalysis>(F));
9531}
9532
9533PreservedAnalyses
9534ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) {
9535 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS);
9536 return PreservedAnalyses::all();
9537}
9538
9539INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
9540 "Scalar Evolution Analysis", false, true)
9541INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
9542INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
9543INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
9544INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
9545INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
9546 "Scalar Evolution Analysis", false, true)
9547char ScalarEvolutionWrapperPass::ID = 0;
9548
9549ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
9550 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
9551}
9552
9553bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
9554 SE.reset(new ScalarEvolution(
9555 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
9556 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
9557 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
9558 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
9559 return false;
9560}
9561
9562void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
9563
9564void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
9565 SE->print(OS);
9566}
9567
9568void ScalarEvolutionWrapperPass::verifyAnalysis() const {
9569 if (!VerifySCEV)
9570 return;
9571
9572 SE->verify();
9573}
9574
9575void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
9576 AU.setPreservesAll();
9577 AU.addRequiredTransitive<AssumptionCacheTracker>();
9578 AU.addRequiredTransitive<LoopInfoWrapperPass>();
9579 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
9580 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
9581}
Silviu Barangae3c05342015-11-02 14:41:02 +00009582
9583const SCEVPredicate *
9584ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
9585 const SCEVConstant *RHS) {
9586 FoldingSetNodeID ID;
9587 // Unique this node based on the arguments
9588 ID.AddInteger(SCEVPredicate::P_Equal);
9589 ID.AddPointer(LHS);
9590 ID.AddPointer(RHS);
9591 void *IP = nullptr;
9592 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
9593 return S;
9594 SCEVEqualPredicate *Eq = new (SCEVAllocator)
9595 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
9596 UniquePreds.InsertNode(Eq, IP);
9597 return Eq;
9598}
9599
Benjamin Kramer83709b12015-11-16 09:01:28 +00009600namespace {
Silviu Barangae3c05342015-11-02 14:41:02 +00009601class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
9602public:
9603 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
9604 SCEVUnionPredicate &A) {
9605 SCEVPredicateRewriter Rewriter(SE, A);
9606 return Rewriter.visit(Scev);
9607 }
9608
9609 SCEVPredicateRewriter(ScalarEvolution &SE, SCEVUnionPredicate &P)
9610 : SCEVRewriteVisitor(SE), P(P) {}
9611
9612 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
9613 auto ExprPreds = P.getPredicatesForExpr(Expr);
9614 for (auto *Pred : ExprPreds)
9615 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
9616 if (IPred->getLHS() == Expr)
9617 return IPred->getRHS();
9618
9619 return Expr;
9620 }
9621
9622private:
9623 SCEVUnionPredicate &P;
9624};
Benjamin Kramer83709b12015-11-16 09:01:28 +00009625} // end anonymous namespace
Silviu Barangae3c05342015-11-02 14:41:02 +00009626
9627const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *Scev,
9628 SCEVUnionPredicate &Preds) {
9629 return SCEVPredicateRewriter::rewrite(Scev, *this, Preds);
9630}
9631
9632/// SCEV predicates
9633SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
9634 SCEVPredicateKind Kind)
9635 : FastID(ID), Kind(Kind) {}
9636
Andy Gibbs81b1a272015-12-03 08:20:20 +00009637SCEVPredicate::~SCEVPredicate() {}
9638
Silviu Barangae3c05342015-11-02 14:41:02 +00009639SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
9640 const SCEVUnknown *LHS,
9641 const SCEVConstant *RHS)
9642 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
9643
9644bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
9645 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
9646
9647 if (!Op)
9648 return false;
9649
9650 return Op->LHS == LHS && Op->RHS == RHS;
9651}
9652
9653bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
9654
9655const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
9656
9657void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
9658 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
9659}
9660
9661/// Union predicates don't get cached so create a dummy set ID for it.
9662SCEVUnionPredicate::SCEVUnionPredicate()
9663 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
9664
9665bool SCEVUnionPredicate::isAlwaysTrue() const {
Sanjoy Das3b827c72015-11-29 23:40:53 +00009666 return all_of(Preds,
9667 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
Silviu Barangae3c05342015-11-02 14:41:02 +00009668}
9669
9670ArrayRef<const SCEVPredicate *>
9671SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
9672 auto I = SCEVToPreds.find(Expr);
9673 if (I == SCEVToPreds.end())
9674 return ArrayRef<const SCEVPredicate *>();
9675 return I->second;
9676}
9677
9678bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
9679 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
Sanjoy Das3b827c72015-11-29 23:40:53 +00009680 return all_of(Set->Preds,
9681 [this](const SCEVPredicate *I) { return this->implies(I); });
Silviu Barangae3c05342015-11-02 14:41:02 +00009682
9683 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
9684 if (ScevPredsIt == SCEVToPreds.end())
9685 return false;
9686 auto &SCEVPreds = ScevPredsIt->second;
9687
Sanjoy Dasff3b8b42015-12-01 07:49:23 +00009688 return any_of(SCEVPreds,
9689 [N](const SCEVPredicate *I) { return I->implies(N); });
Silviu Barangae3c05342015-11-02 14:41:02 +00009690}
9691
9692const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
9693
9694void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
9695 for (auto Pred : Preds)
9696 Pred->print(OS, Depth);
9697}
9698
9699void SCEVUnionPredicate::add(const SCEVPredicate *N) {
9700 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
9701 for (auto Pred : Set->Preds)
9702 add(Pred);
9703 return;
9704 }
9705
9706 if (implies(N))
9707 return;
9708
9709 const SCEV *Key = N->getExpr();
9710 assert(Key && "Only SCEVUnionPredicate doesn't have an "
9711 " associated expression!");
9712
9713 SCEVToPreds[Key].push_back(N);
9714 Preds.push_back(N);
9715}