blob: 97f14d21ea7c63880f8214db58b52b45369a3d16 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Chris Lattner44827152003-12-28 09:47:19 +000021#include "llvm/IntrinsicLowering.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000022#include "llvm/Pass.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000025#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000026#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000027#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000028#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000029#include "llvm/Target/TargetMachine.h"
Chris Lattner3f1e8e72004-02-22 07:04:00 +000030#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000031#include "llvm/Support/InstVisitor.h"
Chris Lattnercf93cdd2004-01-30 22:13:44 +000032#include "llvm/Support/CFG.h"
Chris Lattner44827152003-12-28 09:47:19 +000033using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000034
Chris Lattnercf93cdd2004-01-30 22:13:44 +000035//#define SMART_FP 1
36
Chris Lattner333b2fa2002-12-13 10:09:43 +000037/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000038/// instruction at as well as a basic block. This is the version for when you
39/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000040inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000041 MachineBasicBlock::iterator I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000042 int Opcode, unsigned NumOperands,
Chris Lattner333b2fa2002-12-13 10:09:43 +000043 unsigned DestReg) {
44 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000045 MBB->insert(I, MI);
Chris Lattner333b2fa2002-12-13 10:09:43 +000046 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
47}
48
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000049/// BMI - A special BuildMI variant that takes an iterator to insert the
50/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000051inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000052 MachineBasicBlock::iterator I,
Chris Lattner8cc72d22003-06-03 15:41:58 +000053 int Opcode, unsigned NumOperands) {
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000054 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +000055 MBB->insert(I, MI);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000056 return MachineInstrBuilder(MI);
57}
58
Chris Lattner333b2fa2002-12-13 10:09:43 +000059
Chris Lattner72614082002-10-25 22:55:53 +000060namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000061 struct ISel : public FunctionPass, InstVisitor<ISel> {
62 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000063 MachineFunction *F; // The function we are compiling into
64 MachineBasicBlock *BB; // The current MBB we are compiling
65 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner0e5b79c2004-02-15 01:04:03 +000066 int ReturnAddressIndex; // FrameIndex for the return address
Chris Lattner72614082002-10-25 22:55:53 +000067
Chris Lattner72614082002-10-25 22:55:53 +000068 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
69
Chris Lattner333b2fa2002-12-13 10:09:43 +000070 // MBBMap - Mapping between LLVM BB -> Machine BB
71 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
72
Chris Lattnerf70e0c22003-12-28 21:23:38 +000073 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000074
75 /// runOnFunction - Top level implementation of instruction selection for
76 /// the entire function.
77 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000078 bool runOnFunction(Function &Fn) {
Chris Lattner44827152003-12-28 09:47:19 +000079 // First pass over the function, lower any unknown intrinsic functions
80 // with the IntrinsicLowering class.
81 LowerUnknownIntrinsicFunctionCalls(Fn);
82
Chris Lattner36b36032002-10-29 23:40:58 +000083 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000084
Chris Lattner065faeb2002-12-28 20:24:02 +000085 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
87 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
88
Chris Lattner14aa7fe2002-12-16 22:54:46 +000089 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000090
Chris Lattner0e5b79c2004-02-15 01:04:03 +000091 // Set up a frame object for the return address. This is used by the
92 // llvm.returnaddress & llvm.frameaddress intrinisics.
93 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
94
Chris Lattnerdbd73722003-05-06 21:32:22 +000095 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000096 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000097
Chris Lattner333b2fa2002-12-13 10:09:43 +000098 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000099 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000100
101 // Select the PHI nodes
102 SelectPHINodes();
103
Chris Lattner72614082002-10-25 22:55:53 +0000104 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000105 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000106 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +0000107 // We always build a machine code representation for the function
108 return true;
Chris Lattner72614082002-10-25 22:55:53 +0000109 }
110
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000111 virtual const char *getPassName() const {
112 return "X86 Simple Instruction Selection";
113 }
114
Chris Lattner72614082002-10-25 22:55:53 +0000115 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000116 /// block. This simply creates a new MachineBasicBlock to emit code into
117 /// and adds it to the current MachineFunction. Subsequent visit* for
118 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000119 ///
120 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000121 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000122 }
123
Chris Lattner44827152003-12-28 09:47:19 +0000124 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
125 /// function, lowering any calls to unknown intrinsic functions into the
126 /// equivalent LLVM code.
127 void LowerUnknownIntrinsicFunctionCalls(Function &F);
128
Chris Lattner065faeb2002-12-28 20:24:02 +0000129 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
130 /// from the stack into virtual registers.
131 ///
132 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000133
134 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
135 /// because we have to generate our sources into the source basic blocks,
136 /// not the current one.
137 ///
138 void SelectPHINodes();
139
Chris Lattner72614082002-10-25 22:55:53 +0000140 // Visitation methods for various instructions. These methods simply emit
141 // fixed X86 code for each instruction.
142 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000143
144 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000145 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000146 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000147
148 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000149 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000150 unsigned Reg;
151 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000152 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
153 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000154 };
155 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000156 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000157 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000158 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000159
160 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000161 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000162 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
163 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000164 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000165 unsigned DestReg, const Type *DestTy,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000166 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000167 void doMultiplyConst(MachineBasicBlock *MBB,
168 MachineBasicBlock::iterator &MBBI,
169 unsigned DestReg, const Type *DestTy,
170 unsigned Op0Reg, unsigned Op1Val);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000171 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000172
Chris Lattnerf01729e2002-11-02 20:54:46 +0000173 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
174 void visitRem(BinaryOperator &B) { visitDivRem(B); }
175 void visitDivRem(BinaryOperator &B);
176
Chris Lattnere2954c82002-11-02 20:04:26 +0000177 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000178 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
179 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
180 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000181
Chris Lattner6d40c192003-01-16 16:43:00 +0000182 // Comparison operators...
183 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000184 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
185 MachineBasicBlock *MBB,
186 MachineBasicBlock::iterator &MBBI);
187
Chris Lattner6fc3c522002-11-17 21:11:55 +0000188 // Memory Instructions
189 void visitLoadInst(LoadInst &I);
190 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000191 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000192 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000193 void visitMallocInst(MallocInst &I);
194 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000195
Chris Lattnere2954c82002-11-02 20:04:26 +0000196 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000197 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000198 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000199 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000200 void visitVANextInst(VANextInst &I);
201 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000202
203 void visitInstruction(Instruction &I) {
204 std::cerr << "Cannot instruction select: " << I;
205 abort();
206 }
207
Brian Gaeke95780cc2002-12-13 07:56:18 +0000208 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000209 ///
210 void promote32(unsigned targetReg, const ValueRecord &VR);
211
Chris Lattner3e130a22003-01-13 00:32:26 +0000212 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
213 /// constant expression GEP support.
214 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000215 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000216 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000217 User::op_iterator IdxEnd, unsigned TargetReg);
218
Chris Lattner548f61d2003-04-23 17:22:12 +0000219 /// emitCastOperation - Common code shared between visitCastInst and
220 /// constant expression cast support.
221 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
222 Value *Src, const Type *DestTy, unsigned TargetReg);
223
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000224 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
225 /// and constant expression support.
226 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
227 MachineBasicBlock::iterator &IP,
228 Value *Op0, Value *Op1,
229 unsigned OperatorClass, unsigned TargetReg);
230
Chris Lattnercadff442003-10-23 17:21:43 +0000231 void emitDivRemOperation(MachineBasicBlock *BB,
232 MachineBasicBlock::iterator &IP,
233 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
234 const Type *Ty, unsigned TargetReg);
235
Chris Lattner58c41fe2003-08-24 19:19:47 +0000236 /// emitSetCCOperation - Common code shared between visitSetCondInst and
237 /// constant expression support.
238 void emitSetCCOperation(MachineBasicBlock *BB,
239 MachineBasicBlock::iterator &IP,
240 Value *Op0, Value *Op1, unsigned Opcode,
241 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000242
243 /// emitShiftOperation - Common code shared between visitShiftInst and
244 /// constant expression support.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000245 void emitShiftOperation(MachineBasicBlock *MBB,
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000246 MachineBasicBlock::iterator &IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000247 Value *Op, Value *ShiftAmount, bool isLeftShift,
248 const Type *ResultTy, unsigned DestReg);
249
Chris Lattner58c41fe2003-08-24 19:19:47 +0000250
Chris Lattnerc5291f52002-10-27 21:16:59 +0000251 /// copyConstantToRegister - Output the instructions required to put the
252 /// specified constant into the specified register.
253 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000254 void copyConstantToRegister(MachineBasicBlock *MBB,
255 MachineBasicBlock::iterator &MBBI,
256 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000257
Chris Lattner3e130a22003-01-13 00:32:26 +0000258 /// makeAnotherReg - This method returns the next register number we haven't
259 /// yet used.
260 ///
261 /// Long values are handled somewhat specially. They are always allocated
262 /// as pairs of 32 bit integer values. The register number returned is the
263 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
264 /// of the long value.
265 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000266 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000267 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
268 "Current target doesn't have X86 reg info??");
269 const X86RegisterInfo *MRI =
270 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000271 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000272 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
273 // Create the lower part
274 F->getSSARegMap()->createVirtualRegister(RC);
275 // Create the upper part.
276 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000277 }
278
Chris Lattnerc0812d82002-12-13 06:56:29 +0000279 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000280 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000281 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000282 }
283
Chris Lattner72614082002-10-25 22:55:53 +0000284 /// getReg - This method turns an LLVM value into a register number. This
285 /// is guaranteed to produce the same register number for a particular value
286 /// every time it is queried.
287 ///
288 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000289 unsigned getReg(Value *V) {
290 // Just append to the end of the current bb.
291 MachineBasicBlock::iterator It = BB->end();
292 return getReg(V, BB, It);
293 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000294 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000295 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000296 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000297 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000298 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000299 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000300 }
Chris Lattner72614082002-10-25 22:55:53 +0000301
Chris Lattner6f8fd252002-10-27 21:23:43 +0000302 // If this operand is a constant, emit the code to copy the constant into
303 // the register here...
304 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000305 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000306 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000307 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000308 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
309 // Move the address of the global into the register
Chris Lattner6e173a02004-02-17 06:16:44 +0000310 BMI(MBB, IPt, X86::MOVri32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000311 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000312 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000313
Chris Lattner72614082002-10-25 22:55:53 +0000314 return Reg;
315 }
Chris Lattner72614082002-10-25 22:55:53 +0000316 };
317}
318
Chris Lattner43189d12002-11-17 20:07:45 +0000319/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
320/// Representation.
321///
322enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000323 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000324};
325
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000326/// getClass - Turn a primitive type into a "class" number which is based on the
327/// size of the type, and whether or not it is floating point.
328///
Chris Lattner43189d12002-11-17 20:07:45 +0000329static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000330 switch (Ty->getPrimitiveID()) {
331 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000332 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000333 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000334 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000335 case Type::IntTyID:
336 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000337 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000338
Chris Lattner94af4142002-12-25 05:13:53 +0000339 case Type::FloatTyID:
340 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000341
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000342 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000343 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000344 default:
345 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000346 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000347 }
348}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000349
Chris Lattner6b993cc2002-12-15 08:02:15 +0000350// getClassB - Just like getClass, but treat boolean values as bytes.
351static inline TypeClass getClassB(const Type *Ty) {
352 if (Ty == Type::BoolTy) return cByte;
353 return getClass(Ty);
354}
355
Chris Lattner06925362002-11-17 21:56:38 +0000356
Chris Lattnerc5291f52002-10-27 21:16:59 +0000357/// copyConstantToRegister - Output the instructions required to put the
358/// specified constant into the specified register.
359///
Chris Lattner8a307e82002-12-16 19:32:50 +0000360void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
361 MachineBasicBlock::iterator &IP,
362 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000363 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000364 unsigned Class = 0;
365 switch (CE->getOpcode()) {
366 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000367 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000368 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000369 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000370 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000371 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000372 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000373
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000374 case Instruction::Xor: ++Class; // FALL THROUGH
375 case Instruction::Or: ++Class; // FALL THROUGH
376 case Instruction::And: ++Class; // FALL THROUGH
377 case Instruction::Sub: ++Class; // FALL THROUGH
378 case Instruction::Add:
379 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
380 Class, R);
381 return;
382
Chris Lattnercadff442003-10-23 17:21:43 +0000383 case Instruction::Mul: {
384 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
385 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
386 doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg);
387 return;
388 }
389 case Instruction::Div:
390 case Instruction::Rem: {
391 unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP);
392 unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP);
393 emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg,
394 CE->getOpcode() == Instruction::Div,
395 CE->getType(), R);
396 return;
397 }
398
Chris Lattner58c41fe2003-08-24 19:19:47 +0000399 case Instruction::SetNE:
400 case Instruction::SetEQ:
401 case Instruction::SetLT:
402 case Instruction::SetGT:
403 case Instruction::SetLE:
404 case Instruction::SetGE:
405 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
406 CE->getOpcode(), R);
407 return;
408
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000409 case Instruction::Shl:
410 case Instruction::Shr:
411 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000412 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
413 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000414
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000415 default:
416 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000417 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000418 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000419 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000420
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000421 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000422 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000423
424 if (Class == cLong) {
425 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000426 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Chris Lattner6e173a02004-02-17 06:16:44 +0000427 BMI(MBB, IP, X86::MOVri32, 1, R).addZImm(Val & 0xFFFFFFFF);
428 BMI(MBB, IP, X86::MOVri32, 1, R+1).addZImm(Val >> 32);
Chris Lattner3e130a22003-01-13 00:32:26 +0000429 return;
430 }
431
Chris Lattner94af4142002-12-25 05:13:53 +0000432 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000433
434 static const unsigned IntegralOpcodeTab[] = {
Chris Lattner6e173a02004-02-17 06:16:44 +0000435 X86::MOVri8, X86::MOVri16, X86::MOVri32
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000436 };
437
Chris Lattner6b993cc2002-12-15 08:02:15 +0000438 if (C->getType() == Type::BoolTy) {
Chris Lattner6e173a02004-02-17 06:16:44 +0000439 BMI(MBB, IP, X86::MOVri8, 1, R).addZImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000440 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000441 ConstantInt *CI = cast<ConstantInt>(C);
442 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000443 }
Chris Lattner94af4142002-12-25 05:13:53 +0000444 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Chris Lattneraf703622004-02-02 18:56:30 +0000445 if (CFP->isExactlyValue(+0.0))
Chris Lattner94af4142002-12-25 05:13:53 +0000446 BMI(MBB, IP, X86::FLD0, 0, R);
Chris Lattneraf703622004-02-02 18:56:30 +0000447 else if (CFP->isExactlyValue(+1.0))
Chris Lattner94af4142002-12-25 05:13:53 +0000448 BMI(MBB, IP, X86::FLD1, 0, R);
449 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000450 // Otherwise we need to spill the constant to memory...
451 MachineConstantPool *CP = F->getConstantPool();
452 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000453 const Type *Ty = CFP->getType();
454
455 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
456 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
457 addConstantPoolReference(BMI(MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000458 }
459
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000460 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000461 // Copy zero (null pointer) to the register.
Chris Lattner6e173a02004-02-17 06:16:44 +0000462 BMI(MBB, IP, X86::MOVri32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000463 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000464 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000465 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000466 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000467 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000468 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000469 }
470}
471
Chris Lattner065faeb2002-12-28 20:24:02 +0000472/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
473/// the stack into virtual registers.
474///
475void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
476 // Emit instructions to load the arguments... On entry to a function on the
477 // X86, the stack frame looks like this:
478 //
479 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000480 // [ESP + 4] -- first argument (leftmost lexically)
481 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000482 // ...
483 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000484 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000485 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000486
487 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
488 unsigned Reg = getReg(*I);
489
Chris Lattner065faeb2002-12-28 20:24:02 +0000490 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000491 switch (getClassB(I->getType())) {
492 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000493 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattnere87331d2004-02-17 06:28:19 +0000494 addFrameReference(BuildMI(BB, X86::MOVrm8, 4, Reg), FI);
Chris Lattner065faeb2002-12-28 20:24:02 +0000495 break;
496 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000497 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattnere87331d2004-02-17 06:28:19 +0000498 addFrameReference(BuildMI(BB, X86::MOVrm16, 4, Reg), FI);
Chris Lattner065faeb2002-12-28 20:24:02 +0000499 break;
500 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000501 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattnere87331d2004-02-17 06:28:19 +0000502 addFrameReference(BuildMI(BB, X86::MOVrm32, 4, Reg), FI);
Chris Lattner065faeb2002-12-28 20:24:02 +0000503 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000504 case cLong:
505 FI = MFI->CreateFixedObject(8, ArgOffset);
Chris Lattnere87331d2004-02-17 06:28:19 +0000506 addFrameReference(BuildMI(BB, X86::MOVrm32, 4, Reg), FI);
507 addFrameReference(BuildMI(BB, X86::MOVrm32, 4, Reg+1), FI, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +0000508 ArgOffset += 4; // longs require 4 additional bytes
509 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000510 case cFP:
511 unsigned Opcode;
512 if (I->getType() == Type::FloatTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000513 Opcode = X86::FLDr32;
514 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000515 } else {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000516 Opcode = X86::FLDr64;
517 FI = MFI->CreateFixedObject(8, ArgOffset);
518 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000519 }
520 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
521 break;
522 default:
523 assert(0 && "Unhandled argument type!");
524 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000525 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000526 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000527
528 // If the function takes variable number of arguments, add a frame offset for
529 // the start of the first vararg value... this is used to expand
530 // llvm.va_start.
531 if (Fn.getFunctionType()->isVarArg())
532 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000533}
534
535
Chris Lattner333b2fa2002-12-13 10:09:43 +0000536/// SelectPHINodes - Insert machine code to generate phis. This is tricky
537/// because we have to generate our sources into the source basic blocks, not
538/// the current one.
539///
540void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000541 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000542 const Function &LF = *F->getFunction(); // The LLVM function...
543 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
544 const BasicBlock *BB = I;
545 MachineBasicBlock *MBB = MBBMap[I];
546
547 // Loop over all of the PHI nodes in the LLVM basic block...
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000548 MachineInstr* instr = MBB->begin();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000549 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattnera81fc682003-10-19 00:26:11 +0000550 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000551
Chris Lattner333b2fa2002-12-13 10:09:43 +0000552 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000553 unsigned PHIReg = getReg(*PN);
554 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000555 MBB->insert(instr, PhiMI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000556
557 MachineInstr *LongPhiMI = 0;
558 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000559 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000560 MBB->insert(instr, LongPhiMI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000561 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000562
Chris Lattnera6e73f12003-05-12 14:22:21 +0000563 // PHIValues - Map of blocks to incoming virtual registers. We use this
564 // so that we only initialize one incoming value for a particular block,
565 // even if the block has multiple entries in the PHI node.
566 //
567 std::map<MachineBasicBlock*, unsigned> PHIValues;
568
Chris Lattner333b2fa2002-12-13 10:09:43 +0000569 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
570 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000571 unsigned ValReg;
572 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
573 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000574
Chris Lattnera6e73f12003-05-12 14:22:21 +0000575 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
576 // We already inserted an initialization of the register for this
577 // predecessor. Recycle it.
578 ValReg = EntryIt->second;
579
580 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000581 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000582 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000583 Value *Val = PN->getIncomingValue(i);
584
585 // If this is a constant or GlobalValue, we may have to insert code
586 // into the basic block to compute it into a virtual register.
587 if (isa<Constant>(Val) || isa<GlobalValue>(Val)) {
588 // Because we don't want to clobber any values which might be in
589 // physical registers with the computation of this constant (which
590 // might be arbitrarily complex if it is a constant expression),
591 // just insert the computation at the top of the basic block.
592 MachineBasicBlock::iterator PI = PredMBB->begin();
593
594 // Skip over any PHI nodes though!
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000595 while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
Chris Lattnera81fc682003-10-19 00:26:11 +0000596 ++PI;
597
598 ValReg = getReg(Val, PredMBB, PI);
599 } else {
600 ValReg = getReg(Val);
601 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000602
603 // Remember that we inserted a value for this PHI for this predecessor
604 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
605 }
606
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000607 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000608 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000609 if (LongPhiMI) {
610 LongPhiMI->addRegOperand(ValReg+1);
611 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
612 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000613 }
614 }
615 }
616}
617
Chris Lattner6d40c192003-01-16 16:43:00 +0000618// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
619// the conditional branch instruction which is the only user of the cc
620// instruction. This is the case if the conditional branch is the only user of
621// the setcc, and if the setcc is in the same basic block as the conditional
622// branch. We also don't handle long arguments below, so we reject them here as
623// well.
624//
625static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
626 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000627 if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) &&
Chris Lattner6d40c192003-01-16 16:43:00 +0000628 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
629 const Type *Ty = SCI->getOperand(0)->getType();
630 if (Ty != Type::LongTy && Ty != Type::ULongTy)
631 return SCI;
632 }
633 return 0;
634}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000635
Chris Lattner6d40c192003-01-16 16:43:00 +0000636// Return a fixed numbering for setcc instructions which does not depend on the
637// order of the opcodes.
638//
639static unsigned getSetCCNumber(unsigned Opcode) {
640 switch(Opcode) {
641 default: assert(0 && "Unknown setcc instruction!");
642 case Instruction::SetEQ: return 0;
643 case Instruction::SetNE: return 1;
644 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000645 case Instruction::SetGE: return 3;
646 case Instruction::SetGT: return 4;
647 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000648 }
649}
Chris Lattner06925362002-11-17 21:56:38 +0000650
Chris Lattner6d40c192003-01-16 16:43:00 +0000651// LLVM -> X86 signed X86 unsigned
652// ----- ---------- ------------
653// seteq -> sete sete
654// setne -> setne setne
655// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000656// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000657// setgt -> setg seta
658// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000659// ----
660// sets // Used by comparison with 0 optimization
661// setns
662static const unsigned SetCCOpcodeTab[2][8] = {
663 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
664 0, 0 },
665 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
666 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000667};
668
Chris Lattnerb2acc512003-10-19 21:09:10 +0000669// EmitComparison - This function emits a comparison of the two operands,
670// returning the extended setcc code to use.
671unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
672 MachineBasicBlock *MBB,
673 MachineBasicBlock::iterator &IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000674 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000675 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000676 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000677 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000678
679 // Special case handling of: cmp R, i
680 if (Class == cByte || Class == cShort || Class == cInt)
681 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000682 uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue();
683
Chris Lattner333864d2003-06-05 19:30:30 +0000684 // Mask off any upper bits of the constant, if there are any...
685 Op1v &= (1ULL << (8 << Class)) - 1;
686
Chris Lattnerb2acc512003-10-19 21:09:10 +0000687 // If this is a comparison against zero, emit more efficient code. We
688 // can't handle unsigned comparisons against zero unless they are == or
689 // !=. These should have been strength reduced already anyway.
690 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
691 static const unsigned TESTTab[] = {
692 X86::TESTrr8, X86::TESTrr16, X86::TESTrr32
693 };
694 BMI(MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
695
696 if (OpNum == 2) return 6; // Map jl -> js
697 if (OpNum == 3) return 7; // Map jg -> jns
698 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000699 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000700
701 static const unsigned CMPTab[] = {
702 X86::CMPri8, X86::CMPri16, X86::CMPri32
703 };
704
705 BMI(MBB, IP, CMPTab[Class], 2).addReg(Op0r).addZImm(Op1v);
706 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000707 }
708
Chris Lattner9f08a922004-02-03 18:54:04 +0000709 // Special case handling of comparison against +/- 0.0
710 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
711 if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
712 BMI(MBB, IP, X86::FTST, 1).addReg(Op0r);
713 BMI(MBB, IP, X86::FNSTSWr8, 0);
714 BMI(MBB, IP, X86::SAHF, 1);
715 return OpNum;
716 }
717
Chris Lattner58c41fe2003-08-24 19:19:47 +0000718 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000719 switch (Class) {
720 default: assert(0 && "Unknown type class!");
721 // Emit: cmp <var1>, <var2> (do the comparison). We can
722 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
723 // 32-bit.
724 case cByte:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000725 BMI(MBB, IP, X86::CMPrr8, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000726 break;
727 case cShort:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000728 BMI(MBB, IP, X86::CMPrr16, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000729 break;
730 case cInt:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000731 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000732 break;
733 case cFP:
Chris Lattner58c41fe2003-08-24 19:19:47 +0000734 BMI(MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
735 BMI(MBB, IP, X86::FNSTSWr8, 0);
736 BMI(MBB, IP, X86::SAHF, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +0000737 break;
738
739 case cLong:
740 if (OpNum < 2) { // seteq, setne
741 unsigned LoTmp = makeAnotherReg(Type::IntTy);
742 unsigned HiTmp = makeAnotherReg(Type::IntTy);
743 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000744 BMI(MBB, IP, X86::XORrr32, 2, LoTmp).addReg(Op0r).addReg(Op1r);
745 BMI(MBB, IP, X86::XORrr32, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
746 BMI(MBB, IP, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +0000747 break; // Allow the sete or setne to be generated from flags set by OR
748 } else {
749 // Emit a sequence of code which compares the high and low parts once
750 // each, then uses a conditional move to handle the overflow case. For
751 // example, a setlt for long would generate code like this:
752 //
753 // AL = lo(op1) < lo(op2) // Signedness depends on operands
754 // BL = hi(op1) < hi(op2) // Always unsigned comparison
755 // dest = hi(op1) == hi(op2) ? AL : BL;
756 //
757
Chris Lattner6d40c192003-01-16 16:43:00 +0000758 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000759 // classes! Until then, hardcode registers so that we can deal with their
760 // aliases (because we don't have conditional byte moves).
761 //
Chris Lattner58c41fe2003-08-24 19:19:47 +0000762 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r).addReg(Op1r);
763 BMI(MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
764 BMI(MBB, IP, X86::CMPrr32, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000765 BMI(MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000766 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
767 BMI(MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
768 BMI(MBB, IP, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000769 // NOTE: visitSetCondInst knows that the value is dumped into the BL
770 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +0000771 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +0000772 }
773 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000774 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +0000775}
Chris Lattner3e130a22003-01-13 00:32:26 +0000776
Chris Lattner6d40c192003-01-16 16:43:00 +0000777
778/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
779/// register, then move it to wherever the result should be.
780///
781void ISel::visitSetCondInst(SetCondInst &I) {
782 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
783
Chris Lattner6d40c192003-01-16 16:43:00 +0000784 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000785 MachineBasicBlock::iterator MII = BB->end();
786 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
787 DestReg);
788}
Chris Lattner6d40c192003-01-16 16:43:00 +0000789
Chris Lattner58c41fe2003-08-24 19:19:47 +0000790/// emitSetCCOperation - Common code shared between visitSetCondInst and
791/// constant expression support.
792void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
793 MachineBasicBlock::iterator &IP,
794 Value *Op0, Value *Op1, unsigned Opcode,
795 unsigned TargetReg) {
796 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000797 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000798
Chris Lattnerb2acc512003-10-19 21:09:10 +0000799 const Type *CompTy = Op0->getType();
800 unsigned CompClass = getClassB(CompTy);
801 bool isSigned = CompTy->isSigned() && CompClass != cFP;
802
803 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000804 // Handle normal comparisons with a setcc instruction...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000805 BMI(MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +0000806 } else {
807 // Handle long comparisons by copying the value which is already in BL into
808 // the register we want...
Chris Lattner58c41fe2003-08-24 19:19:47 +0000809 BMI(MBB, IP, X86::MOVrr8, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +0000810 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000811}
Chris Lattner51b49a92002-11-02 19:45:49 +0000812
Chris Lattner58c41fe2003-08-24 19:19:47 +0000813
814
815
Brian Gaekec2505982002-11-30 11:57:28 +0000816/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
817/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000818void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
819 bool isUnsigned = VR.Ty->isUnsigned();
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000820
821 // Make sure we have the register number for this value...
822 unsigned Reg = VR.Val ? getReg(VR.Val) : VR.Reg;
823
Chris Lattner3e130a22003-01-13 00:32:26 +0000824 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000825 case cByte:
826 // Extend value into target register (8->32)
827 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000828 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000829 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000830 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000831 break;
832 case cShort:
833 // Extend value into target register (16->32)
834 if (isUnsigned)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000835 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000836 else
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000837 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000838 break;
839 case cInt:
840 // Move value into target register (32->32)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000841 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000842 break;
843 default:
844 assert(0 && "Unpromotable operand class in promote32");
845 }
Brian Gaekec2505982002-11-30 11:57:28 +0000846}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000847
Chris Lattner72614082002-10-25 22:55:53 +0000848/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
849/// we have the following possibilities:
850///
851/// ret void: No return value, simply emit a 'ret' instruction
852/// ret sbyte, ubyte : Extend value into EAX and return
853/// ret short, ushort: Extend value into EAX and return
854/// ret int, uint : Move value into EAX and return
855/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000856/// ret long, ulong : Move value into EAX/EDX and return
857/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000858///
Chris Lattner3e130a22003-01-13 00:32:26 +0000859void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000860 if (I.getNumOperands() == 0) {
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000861#ifndef SMART_FP
Alkis Evlogimenos0ef76ca2003-12-21 16:47:43 +0000862 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000863#endif
Chris Lattner94af4142002-12-25 05:13:53 +0000864 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
865 return;
866 }
867
868 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000869 unsigned RetReg = getReg(RetVal);
870 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000871 case cByte: // integral return values: extend or move into EAX and return
872 case cShort:
873 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000874 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000875 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000876 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000877 break;
878 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000879 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000880 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000881 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000882 break;
883 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000884 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
885 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000886 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000887 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
888 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000889 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000890 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000891 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000892 }
Chris Lattner43189d12002-11-17 20:07:45 +0000893 // Emit a 'ret' instruction
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000894#ifndef SMART_FP
Alkis Evlogimenos0ef76ca2003-12-21 16:47:43 +0000895 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000896#endif
Chris Lattner94af4142002-12-25 05:13:53 +0000897 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000898}
899
Chris Lattner55f6fab2003-01-16 18:07:23 +0000900// getBlockAfter - Return the basic block which occurs lexically after the
901// specified one.
902static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
903 Function::iterator I = BB; ++I; // Get iterator to next block
904 return I != BB->getParent()->end() ? &*I : 0;
905}
906
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000907/// RequiresFPRegKill - The floating point stackifier pass cannot insert
908/// compensation code on critical edges. As such, it requires that we kill all
909/// FP registers on the exit from any blocks that either ARE critical edges, or
910/// branch to a block that has incoming critical edges.
911///
912/// Note that this kill instruction will eventually be eliminated when
913/// restrictions in the stackifier are relaxed.
914///
915static bool RequiresFPRegKill(const BasicBlock *BB) {
916#ifdef SMART_FP
917 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
918 const BasicBlock *Succ = *SI;
919 pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
920 ++PI; // Block have at least one predecessory
921 if (PI != PE) { // If it has exactly one, this isn't crit edge
922 // If this block has more than one predecessor, check all of the
923 // predecessors to see if they have multiple successors. If so, then the
924 // block we are analyzing needs an FPRegKill.
925 for (PI = pred_begin(Succ); PI != PE; ++PI) {
926 const BasicBlock *Pred = *PI;
927 succ_const_iterator SI2 = succ_begin(Pred);
928 ++SI2; // There must be at least one successor of this block.
929 if (SI2 != succ_end(Pred))
930 return true; // Yes, we must insert the kill on this edge.
931 }
932 }
933 }
934 // If we got this far, there is no need to insert the kill instruction.
935 return false;
936#else
937 return true;
938#endif
939}
940
Chris Lattner51b49a92002-11-02 19:45:49 +0000941/// visitBranchInst - Handle conditional and unconditional branches here. Note
942/// that since code layout is frozen at this point, that if we are trying to
943/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000944/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000945///
Chris Lattner94af4142002-12-25 05:13:53 +0000946void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000947 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
948
949 if (!BI.isConditional()) { // Unconditional branch?
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000950 if (RequiresFPRegKill(BI.getParent()))
Alkis Evlogimenos9abc8172003-12-20 17:28:15 +0000951 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000952 if (BI.getSuccessor(0) != NextBB)
Chris Lattner55f6fab2003-01-16 18:07:23 +0000953 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +0000954 return;
955 }
956
957 // See if we can fold the setcc into the branch itself...
958 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
959 if (SCI == 0) {
960 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
961 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000962 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000963 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattnercf93cdd2004-01-30 22:13:44 +0000964 if (RequiresFPRegKill(BI.getParent()))
965 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000966 if (BI.getSuccessor(1) == NextBB) {
967 if (BI.getSuccessor(0) != NextBB)
968 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
969 } else {
970 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
971
972 if (BI.getSuccessor(0) != NextBB)
973 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
974 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000975 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000976 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000977
978 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +0000979 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000980 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000981
982 const Type *CompTy = SCI->getOperand(0)->getType();
983 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +0000984
Chris Lattnerb2acc512003-10-19 21:09:10 +0000985
Chris Lattner6d40c192003-01-16 16:43:00 +0000986 // LLVM -> X86 signed X86 unsigned
987 // ----- ---------- ------------
988 // seteq -> je je
989 // setne -> jne jne
990 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000991 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000992 // setgt -> jg ja
993 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000994 // ----
995 // js // Used by comparison with 0 optimization
996 // jns
997
998 static const unsigned OpcodeTab[2][8] = {
999 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
1000 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
1001 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +00001002 };
1003
Chris Lattnercf93cdd2004-01-30 22:13:44 +00001004 if (RequiresFPRegKill(BI.getParent()))
1005 BuildMI(BB, X86::FP_REG_KILL, 0);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001006 if (BI.getSuccessor(0) != NextBB) {
1007 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
1008 if (BI.getSuccessor(1) != NextBB)
1009 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
1010 } else {
1011 // Change to the inverse condition...
1012 if (BI.getSuccessor(1) != NextBB) {
1013 OpNum ^= 1;
1014 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
1015 }
1016 }
Chris Lattner2df035b2002-11-02 19:27:56 +00001017}
1018
Chris Lattner3e130a22003-01-13 00:32:26 +00001019
1020/// doCall - This emits an abstract call instruction, setting up the arguments
1021/// and the return value as appropriate. For the actual function call itself,
1022/// it inserts the specified CallMI instruction into the stream.
1023///
1024void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001025 const std::vector<ValueRecord> &Args) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001026
Chris Lattner065faeb2002-12-28 20:24:02 +00001027 // Count how many bytes are to be pushed on the stack...
1028 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001029
Chris Lattner3e130a22003-01-13 00:32:26 +00001030 if (!Args.empty()) {
1031 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1032 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001033 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001034 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001035 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001036 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001037 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001038 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1039 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001040 default: assert(0 && "Unknown class!");
1041 }
1042
1043 // Adjust the stack pointer for the new arguments...
1044 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
1045
1046 // Arguments go on the stack in reverse order, as specified by the ABI.
1047 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +00001048 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001049 unsigned ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001050 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001051 case cByte:
1052 case cShort: {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001053 // Promote arg to 32 bits wide into a temporary register...
1054 unsigned R = makeAnotherReg(Type::UIntTy);
1055 promote32(R, Args[i]);
Chris Lattnere87331d2004-02-17 06:28:19 +00001056 addRegOffset(BuildMI(BB, X86::MOVmr32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001057 X86::ESP, ArgOffset).addReg(R);
1058 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001059 }
1060 case cInt:
Chris Lattnere87331d2004-02-17 06:28:19 +00001061 addRegOffset(BuildMI(BB, X86::MOVmr32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001062 X86::ESP, ArgOffset).addReg(ArgReg);
1063 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001064 case cLong:
Chris Lattnere87331d2004-02-17 06:28:19 +00001065 addRegOffset(BuildMI(BB, X86::MOVmr32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001066 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattnere87331d2004-02-17 06:28:19 +00001067 addRegOffset(BuildMI(BB, X86::MOVmr32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001068 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1069 ArgOffset += 4; // 8 byte entry, not 4.
1070 break;
1071
Chris Lattner065faeb2002-12-28 20:24:02 +00001072 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001073 if (Args[i].Ty == Type::FloatTy) {
1074 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
1075 X86::ESP, ArgOffset).addReg(ArgReg);
1076 } else {
1077 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
1078 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
1079 X86::ESP, ArgOffset).addReg(ArgReg);
1080 ArgOffset += 4; // 8 byte entry, not 4.
1081 }
1082 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001083
Chris Lattner3e130a22003-01-13 00:32:26 +00001084 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001085 }
1086 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001087 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001088 } else {
1089 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001090 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001091
Chris Lattner3e130a22003-01-13 00:32:26 +00001092 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001093
Chris Lattner065faeb2002-12-28 20:24:02 +00001094 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001095
1096 // If there is a return value, scavenge the result from the location the call
1097 // leaves it in...
1098 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001099 if (Ret.Ty != Type::VoidTy) {
1100 unsigned DestClass = getClassB(Ret.Ty);
1101 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001102 case cByte:
1103 case cShort:
1104 case cInt: {
1105 // Integral results are in %eax, or the appropriate portion
1106 // thereof.
1107 static const unsigned regRegMove[] = {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001108 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
Brian Gaeke20244b72002-12-12 15:33:40 +00001109 };
1110 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001111 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001112 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001113 }
Chris Lattner94af4142002-12-25 05:13:53 +00001114 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001115 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001116 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001117 case cLong: // Long values are left in EDX:EAX
1118 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
1119 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
1120 break;
1121 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001122 }
Chris Lattnera3243642002-12-04 23:45:28 +00001123 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001124}
Chris Lattner2df035b2002-11-02 19:27:56 +00001125
Chris Lattner3e130a22003-01-13 00:32:26 +00001126
1127/// visitCallInst - Push args on stack and do a procedure call instruction.
1128void ISel::visitCallInst(CallInst &CI) {
1129 MachineInstr *TheCall;
1130 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001131 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001132 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001133 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1134 return;
1135 }
1136
Chris Lattner3e130a22003-01-13 00:32:26 +00001137 // Emit a CALL instruction with PC-relative displacement.
1138 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1139 } else { // Emit an indirect call...
1140 unsigned Reg = getReg(CI.getCalledValue());
1141 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
1142 }
1143
1144 std::vector<ValueRecord> Args;
1145 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001146 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001147
1148 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1149 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001150}
Chris Lattner3e130a22003-01-13 00:32:26 +00001151
Chris Lattneraeb54b82003-08-28 21:23:43 +00001152
Chris Lattner44827152003-12-28 09:47:19 +00001153/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1154/// function, lowering any calls to unknown intrinsic functions into the
1155/// equivalent LLVM code.
1156void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1157 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1158 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1159 if (CallInst *CI = dyn_cast<CallInst>(I++))
1160 if (Function *F = CI->getCalledFunction())
1161 switch (F->getIntrinsicID()) {
Chris Lattneraed386e2003-12-28 09:53:23 +00001162 case Intrinsic::not_intrinsic:
Chris Lattner44827152003-12-28 09:47:19 +00001163 case Intrinsic::va_start:
1164 case Intrinsic::va_copy:
1165 case Intrinsic::va_end:
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001166 case Intrinsic::returnaddress:
1167 case Intrinsic::frameaddress:
Chris Lattner915e5e52004-02-12 17:53:22 +00001168 case Intrinsic::memcpy:
Chris Lattner2a0f2242004-02-14 04:46:05 +00001169 case Intrinsic::memset:
Chris Lattner44827152003-12-28 09:47:19 +00001170 // We directly implement these intrinsics
1171 break;
1172 default:
1173 // All other intrinsic calls we must lower.
1174 Instruction *Before = CI->getPrev();
Chris Lattnerf70e0c22003-12-28 21:23:38 +00001175 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
Chris Lattner44827152003-12-28 09:47:19 +00001176 if (Before) { // Move iterator to instruction after call
1177 I = Before; ++I;
1178 } else {
1179 I = BB->begin();
1180 }
1181 }
1182
1183}
1184
Brian Gaeked0fde302003-11-11 22:41:34 +00001185void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001186 unsigned TmpReg1, TmpReg2;
1187 switch (ID) {
Brian Gaeked0fde302003-11-11 22:41:34 +00001188 case Intrinsic::va_start:
Chris Lattnereca195e2003-05-08 19:44:13 +00001189 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001190 TmpReg1 = getReg(CI);
Chris Lattnereca195e2003-05-08 19:44:13 +00001191 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001192 return;
1193
Brian Gaeked0fde302003-11-11 22:41:34 +00001194 case Intrinsic::va_copy:
Chris Lattner73815062003-10-18 05:56:40 +00001195 TmpReg1 = getReg(CI);
1196 TmpReg2 = getReg(CI.getOperand(1));
1197 BuildMI(BB, X86::MOVrr32, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001198 return;
Brian Gaeked0fde302003-11-11 22:41:34 +00001199 case Intrinsic::va_end: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001200
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001201 case Intrinsic::returnaddress:
1202 case Intrinsic::frameaddress:
1203 TmpReg1 = getReg(CI);
1204 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1205 if (ID == Intrinsic::returnaddress) {
1206 // Just load the return address
Chris Lattnere87331d2004-02-17 06:28:19 +00001207 addFrameReference(BuildMI(BB, X86::MOVrm32, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001208 ReturnAddressIndex);
1209 } else {
1210 addFrameReference(BuildMI(BB, X86::LEAr32, 4, TmpReg1),
1211 ReturnAddressIndex, -4);
1212 }
1213 } else {
1214 // Values other than zero are not implemented yet.
Chris Lattner6e173a02004-02-17 06:16:44 +00001215 BuildMI(BB, X86::MOVri32, 1, TmpReg1).addZImm(0);
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001216 }
1217 return;
1218
Chris Lattner915e5e52004-02-12 17:53:22 +00001219 case Intrinsic::memcpy: {
1220 assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
1221 unsigned Align = 1;
1222 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1223 Align = AlignC->getRawValue();
1224 if (Align == 0) Align = 1;
1225 }
1226
1227 // Turn the byte code into # iterations
Chris Lattner07122832004-02-13 23:36:47 +00001228 unsigned ByteReg;
Chris Lattner915e5e52004-02-12 17:53:22 +00001229 unsigned CountReg;
Chris Lattner2a0f2242004-02-14 04:46:05 +00001230 unsigned Opcode;
Chris Lattner915e5e52004-02-12 17:53:22 +00001231 switch (Align & 3) {
1232 case 2: // WORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001233 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1234 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1235 } else {
1236 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001237 BuildMI(BB, X86::SHRri32, 2, CountReg).addReg(ByteReg).addZImm(1);
Chris Lattner07122832004-02-13 23:36:47 +00001238 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001239 Opcode = X86::REP_MOVSW;
Chris Lattner915e5e52004-02-12 17:53:22 +00001240 break;
1241 case 0: // DWORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001242 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1243 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1244 } else {
1245 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001246 BuildMI(BB, X86::SHRri32, 2, CountReg).addReg(ByteReg).addZImm(2);
Chris Lattner07122832004-02-13 23:36:47 +00001247 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001248 Opcode = X86::REP_MOVSD;
Chris Lattner915e5e52004-02-12 17:53:22 +00001249 break;
1250 case 1: // BYTE aligned
1251 case 3: // BYTE aligned
Chris Lattner07122832004-02-13 23:36:47 +00001252 CountReg = getReg(CI.getOperand(3));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001253 Opcode = X86::REP_MOVSB;
Chris Lattner915e5e52004-02-12 17:53:22 +00001254 break;
1255 }
1256
1257 // No matter what the alignment is, we put the source in ESI, the
1258 // destination in EDI, and the count in ECX.
1259 TmpReg1 = getReg(CI.getOperand(1));
1260 TmpReg2 = getReg(CI.getOperand(2));
1261 BuildMI(BB, X86::MOVrr32, 1, X86::ECX).addReg(CountReg);
1262 BuildMI(BB, X86::MOVrr32, 1, X86::EDI).addReg(TmpReg1);
1263 BuildMI(BB, X86::MOVrr32, 1, X86::ESI).addReg(TmpReg2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001264 BuildMI(BB, Opcode, 0);
1265 return;
1266 }
1267 case Intrinsic::memset: {
1268 assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
1269 unsigned Align = 1;
1270 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1271 Align = AlignC->getRawValue();
1272 if (Align == 0) Align = 1;
Chris Lattner915e5e52004-02-12 17:53:22 +00001273 }
1274
Chris Lattner2a0f2242004-02-14 04:46:05 +00001275 // Turn the byte code into # iterations
1276 unsigned ByteReg;
1277 unsigned CountReg;
1278 unsigned Opcode;
1279 if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
1280 unsigned Val = ValC->getRawValue() & 255;
1281
1282 // If the value is a constant, then we can potentially use larger copies.
1283 switch (Align & 3) {
1284 case 2: // WORD aligned
1285 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001286 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001287 } else {
1288 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001289 BuildMI(BB, X86::SHRri32, 2, CountReg).addReg(ByteReg).addZImm(1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001290 }
Chris Lattner6e173a02004-02-17 06:16:44 +00001291 BuildMI(BB, X86::MOVri16, 1, X86::AX).addZImm((Val << 8) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001292 Opcode = X86::REP_STOSW;
1293 break;
1294 case 0: // DWORD aligned
1295 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001296 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001297 } else {
1298 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001299 BuildMI(BB, X86::SHRri32, 2, CountReg).addReg(ByteReg).addZImm(2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001300 }
1301 Val = (Val << 8) | Val;
Chris Lattner6e173a02004-02-17 06:16:44 +00001302 BuildMI(BB, X86::MOVri32, 1, X86::EAX).addZImm((Val << 16) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001303 Opcode = X86::REP_STOSD;
1304 break;
1305 case 1: // BYTE aligned
1306 case 3: // BYTE aligned
1307 CountReg = getReg(CI.getOperand(3));
Chris Lattner6e173a02004-02-17 06:16:44 +00001308 BuildMI(BB, X86::MOVri8, 1, X86::AL).addZImm(Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001309 Opcode = X86::REP_STOSB;
1310 break;
1311 }
1312 } else {
1313 // If it's not a constant value we are storing, just fall back. We could
1314 // try to be clever to form 16 bit and 32 bit values, but we don't yet.
1315 unsigned ValReg = getReg(CI.getOperand(2));
1316 BuildMI(BB, X86::MOVrr8, 1, X86::AL).addReg(ValReg);
1317 CountReg = getReg(CI.getOperand(3));
1318 Opcode = X86::REP_STOSB;
1319 }
1320
1321 // No matter what the alignment is, we put the source in ESI, the
1322 // destination in EDI, and the count in ECX.
1323 TmpReg1 = getReg(CI.getOperand(1));
1324 //TmpReg2 = getReg(CI.getOperand(2));
1325 BuildMI(BB, X86::MOVrr32, 1, X86::ECX).addReg(CountReg);
1326 BuildMI(BB, X86::MOVrr32, 1, X86::EDI).addReg(TmpReg1);
1327 BuildMI(BB, Opcode, 0);
Chris Lattner915e5e52004-02-12 17:53:22 +00001328 return;
1329 }
1330
Chris Lattner44827152003-12-28 09:47:19 +00001331 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001332 }
1333}
1334
1335
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001336/// visitSimpleBinary - Implement simple binary operators for integral types...
1337/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1338/// Xor.
1339void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1340 unsigned DestReg = getReg(B);
1341 MachineBasicBlock::iterator MI = BB->end();
1342 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
1343 OperatorClass, DestReg);
1344}
Chris Lattner3e130a22003-01-13 00:32:26 +00001345
Chris Lattnerb2acc512003-10-19 21:09:10 +00001346/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1347/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1348/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00001349///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001350/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1351/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00001352///
1353void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001354 MachineBasicBlock::iterator &IP,
1355 Value *Op0, Value *Op1,
Chris Lattnerb2acc512003-10-19 21:09:10 +00001356 unsigned OperatorClass, unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001357 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00001358
1359 // sub 0, X -> neg X
1360 if (OperatorClass == 1 && Class != cLong)
Chris Lattneraf703622004-02-02 18:56:30 +00001361 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001362 if (CI->isNullValue()) {
1363 unsigned op1Reg = getReg(Op1, MBB, IP);
1364 switch (Class) {
1365 default: assert(0 && "Unknown class for this function!");
1366 case cByte:
1367 BMI(MBB, IP, X86::NEGr8, 1, DestReg).addReg(op1Reg);
1368 return;
1369 case cShort:
1370 BMI(MBB, IP, X86::NEGr16, 1, DestReg).addReg(op1Reg);
1371 return;
1372 case cInt:
1373 BMI(MBB, IP, X86::NEGr32, 1, DestReg).addReg(op1Reg);
1374 return;
1375 }
1376 }
Chris Lattner9f8fd6d2004-02-02 19:31:38 +00001377 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1378 if (CFP->isExactlyValue(-0.0)) {
1379 // -0.0 - X === -X
1380 unsigned op1Reg = getReg(Op1, MBB, IP);
1381 BMI(MBB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
1382 return;
1383 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001384
Chris Lattner35333e12003-06-05 18:28:55 +00001385 if (!isa<ConstantInt>(Op1) || Class == cLong) {
1386 static const unsigned OpcodeTab[][4] = {
1387 // Arithmetic operators
1388 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
1389 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
1390
1391 // Bitwise operators
1392 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
1393 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
1394 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
Chris Lattner3e130a22003-01-13 00:32:26 +00001395 };
Chris Lattner35333e12003-06-05 18:28:55 +00001396
1397 bool isLong = false;
1398 if (Class == cLong) {
1399 isLong = true;
1400 Class = cInt; // Bottom 32 bits are handled just like ints
1401 }
1402
1403 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1404 assert(Opcode && "Floating point arguments to logical inst?");
Chris Lattnerb2acc512003-10-19 21:09:10 +00001405 unsigned Op0r = getReg(Op0, MBB, IP);
1406 unsigned Op1r = getReg(Op1, MBB, IP);
1407 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Chris Lattner35333e12003-06-05 18:28:55 +00001408
1409 if (isLong) { // Handle the upper 32 bits of long values...
1410 static const unsigned TopTab[] = {
1411 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1412 };
Chris Lattnerb2acc512003-10-19 21:09:10 +00001413 BMI(MBB, IP, TopTab[OperatorClass], 2,
1414 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner35333e12003-06-05 18:28:55 +00001415 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001416 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001417 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001418
1419 // Special case: op Reg, <const>
1420 ConstantInt *Op1C = cast<ConstantInt>(Op1);
1421 unsigned Op0r = getReg(Op0, MBB, IP);
1422
1423 // xor X, -1 -> not X
1424 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1425 static unsigned const NOTTab[] = { X86::NOTr8, X86::NOTr16, X86::NOTr32 };
1426 BMI(MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
1427 return;
1428 }
1429
1430 // add X, -1 -> dec X
1431 if (OperatorClass == 0 && Op1C->isAllOnesValue()) {
1432 static unsigned const DECTab[] = { X86::DECr8, X86::DECr16, X86::DECr32 };
1433 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1434 return;
1435 }
1436
1437 // add X, 1 -> inc X
1438 if (OperatorClass == 0 && Op1C->equalsInt(1)) {
1439 static unsigned const DECTab[] = { X86::INCr8, X86::INCr16, X86::INCr32 };
1440 BMI(MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
1441 return;
1442 }
1443
1444 static const unsigned OpcodeTab[][3] = {
1445 // Arithmetic operators
1446 { X86::ADDri8, X86::ADDri16, X86::ADDri32 }, // ADD
1447 { X86::SUBri8, X86::SUBri16, X86::SUBri32 }, // SUB
1448
1449 // Bitwise operators
1450 { X86::ANDri8, X86::ANDri16, X86::ANDri32 }, // AND
1451 { X86:: ORri8, X86:: ORri16, X86:: ORri32 }, // OR
1452 { X86::XORri8, X86::XORri16, X86::XORri32 }, // XOR
1453 };
1454
1455 assert(Class < 3 && "General code handles 64-bit integer types!");
1456 unsigned Opcode = OpcodeTab[OperatorClass][Class];
1457 uint64_t Op1v = cast<ConstantInt>(Op1C)->getRawValue();
1458
1459 // Mask off any upper bits of the constant, if there are any...
1460 Op1v &= (1ULL << (8 << Class)) - 1;
1461 BMI(MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addZImm(Op1v);
Chris Lattnere2954c82002-11-02 20:04:26 +00001462}
1463
Chris Lattner3e130a22003-01-13 00:32:26 +00001464/// doMultiply - Emit appropriate instructions to multiply together the
1465/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1466/// result should be given as DestTy.
1467///
Chris Lattner8a307e82002-12-16 19:32:50 +00001468void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001469 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001470 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001471 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001472 switch (Class) {
1473 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001474 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001475 return;
Chris Lattner0f1c4612003-06-21 17:16:58 +00001476 case cInt:
1477 case cShort:
Chris Lattnerc01d1232003-10-20 03:42:58 +00001478 BMI(BB, MBBI, Class == cInt ? X86::IMULrr32 : X86::IMULrr16, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00001479 .addReg(op0Reg).addReg(op1Reg);
1480 return;
1481 case cByte:
1482 // Must use the MUL instruction, which forces use of AL...
1483 BMI(MBB, MBBI, X86::MOVrr8, 1, X86::AL).addReg(op0Reg);
1484 BMI(MBB, MBBI, X86::MULr8, 1).addReg(op1Reg);
1485 BMI(MBB, MBBI, X86::MOVrr8, 1, DestReg).addReg(X86::AL);
1486 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001487 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001488 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001489 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001490}
1491
Chris Lattnerb2acc512003-10-19 21:09:10 +00001492// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1493// returns zero when the input is not exactly a power of two.
1494static unsigned ExactLog2(unsigned Val) {
1495 if (Val == 0) return 0;
1496 unsigned Count = 0;
1497 while (Val != 1) {
1498 if (Val & 1) return 0;
1499 Val >>= 1;
1500 ++Count;
1501 }
1502 return Count+1;
1503}
1504
1505void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1506 MachineBasicBlock::iterator &IP,
1507 unsigned DestReg, const Type *DestTy,
1508 unsigned op0Reg, unsigned ConstRHS) {
1509 unsigned Class = getClass(DestTy);
1510
1511 // If the element size is exactly a power of 2, use a shift to get it.
1512 if (unsigned Shift = ExactLog2(ConstRHS)) {
1513 switch (Class) {
1514 default: assert(0 && "Unknown class for this function!");
1515 case cByte:
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001516 BMI(MBB, IP, X86::SHLri32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001517 return;
1518 case cShort:
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001519 BMI(MBB, IP, X86::SHLri32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001520 return;
1521 case cInt:
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001522 BMI(MBB, IP, X86::SHLri32, 2, DestReg).addReg(op0Reg).addZImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001523 return;
1524 }
1525 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00001526
1527 if (Class == cShort) {
Chris Lattner55b54812004-02-17 04:26:43 +00001528 BMI(MBB, IP, X86::IMULrri16, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00001529 return;
1530 } else if (Class == cInt) {
Chris Lattner55b54812004-02-17 04:26:43 +00001531 BMI(MBB, IP, X86::IMULrri32, 2, DestReg).addReg(op0Reg).addZImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00001532 return;
1533 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001534
1535 // Most general case, emit a normal multiply...
Chris Lattner6e173a02004-02-17 06:16:44 +00001536 static const unsigned MOVriTab[] = {
1537 X86::MOVri8, X86::MOVri16, X86::MOVri32
Chris Lattnerb2acc512003-10-19 21:09:10 +00001538 };
1539
1540 unsigned TmpReg = makeAnotherReg(DestTy);
Chris Lattner6e173a02004-02-17 06:16:44 +00001541 BMI(MBB, IP, MOVriTab[Class], 1, TmpReg).addZImm(ConstRHS);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001542
1543 // Emit a MUL to multiply the register holding the index by
1544 // elementSize, putting the result in OffsetReg.
1545 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
1546}
1547
Chris Lattnerca9671d2002-11-02 20:28:58 +00001548/// visitMul - Multiplies are not simple binary operators because they must deal
1549/// with the EAX register explicitly.
1550///
1551void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001552 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00001553 unsigned DestReg = getReg(I);
1554
1555 // Simple scalar multiply?
1556 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001557 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1))) {
1558 unsigned Val = (unsigned)CI->getRawValue(); // Cannot be 64-bit constant
1559 MachineBasicBlock::iterator MBBI = BB->end();
1560 doMultiplyConst(BB, MBBI, DestReg, I.getType(), Op0Reg, Val);
1561 } else {
1562 unsigned Op1Reg = getReg(I.getOperand(1));
1563 MachineBasicBlock::iterator MBBI = BB->end();
1564 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1565 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001566 } else {
Chris Lattnerb2acc512003-10-19 21:09:10 +00001567 unsigned Op1Reg = getReg(I.getOperand(1));
1568
Chris Lattner3e130a22003-01-13 00:32:26 +00001569 // Long value. We have to do things the hard way...
1570 // Multiply the two low parts... capturing carry into EDX
1571 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1572 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1573
1574 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1575 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1576 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1577
1578 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001579 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
Chris Lattnerc01d1232003-10-20 03:42:58 +00001580 BMI(BB, MBBI, X86::IMULrr32, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001581
1582 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1583 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001584 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001585
1586 MBBI = BB->end();
Chris Lattner034acf02003-06-21 18:15:27 +00001587 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattnerc01d1232003-10-20 03:42:58 +00001588 BMI(BB, MBBI, X86::IMULrr32, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001589
1590 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001591 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001592 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001593}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001594
Chris Lattner06925362002-11-17 21:56:38 +00001595
Chris Lattnerf01729e2002-11-02 20:54:46 +00001596/// visitDivRem - Handle division and remainder instructions... these
1597/// instruction both require the same instructions to be generated, they just
1598/// select the result from a different register. Note that both of these
1599/// instructions work differently for signed and unsigned operands.
1600///
1601void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00001602 unsigned Op0Reg = getReg(I.getOperand(0));
1603 unsigned Op1Reg = getReg(I.getOperand(1));
1604 unsigned ResultReg = getReg(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001605
Chris Lattnercadff442003-10-23 17:21:43 +00001606 MachineBasicBlock::iterator IP = BB->end();
1607 emitDivRemOperation(BB, IP, Op0Reg, Op1Reg, I.getOpcode() == Instruction::Div,
1608 I.getType(), ResultReg);
1609}
1610
1611void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1612 MachineBasicBlock::iterator &IP,
1613 unsigned Op0Reg, unsigned Op1Reg, bool isDiv,
1614 const Type *Ty, unsigned ResultReg) {
1615 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00001616 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001617 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00001618 if (isDiv) {
Chris Lattner62b767b2003-11-18 17:47:05 +00001619 BMI(BB, IP, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001620 } else { // Floating point remainder...
Chris Lattner3e130a22003-01-13 00:32:26 +00001621 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001622 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00001623 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001624 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1625 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001626 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1627 }
Chris Lattner94af4142002-12-25 05:13:53 +00001628 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001629 case cLong: {
1630 static const char *FnName[] =
1631 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1632
Chris Lattnercadff442003-10-23 17:21:43 +00001633 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00001634 MachineInstr *TheCall =
1635 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1636
1637 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00001638 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1639 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00001640 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1641 return;
1642 }
1643 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001644 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00001645 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001646 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001647
1648 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1649 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001650 static const unsigned SarOpcode[]={ X86::SARri8, X86::SARri16, X86::SARri32 };
Chris Lattner6e173a02004-02-17 06:16:44 +00001651 static const unsigned ClrOpcode[]={ X86::MOVri8, X86::MOVri16, X86::MOVri32 };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001652 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1653
1654 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001655 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1656 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001657 };
1658
Chris Lattnercadff442003-10-23 17:21:43 +00001659 bool isSigned = Ty->isSigned();
Chris Lattnerf01729e2002-11-02 20:54:46 +00001660 unsigned Reg = Regs[Class];
1661 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001662
1663 // Put the first operand into one of the A registers...
Chris Lattner62b767b2003-11-18 17:47:05 +00001664 BMI(BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001665
1666 if (isSigned) {
1667 // Emit a sign extension instruction...
Chris Lattnercadff442003-10-23 17:21:43 +00001668 unsigned ShiftResult = makeAnotherReg(Ty);
Chris Lattner62b767b2003-11-18 17:47:05 +00001669 BMI(BB, IP, SarOpcode[Class], 2, ShiftResult).addReg(Op0Reg).addZImm(31);
1670 BMI(BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001671 } else {
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00001672 // If unsigned, emit a zeroing instruction... (reg = 0)
1673 BMI(BB, IP, ClrOpcode[Class], 2, ExtReg).addZImm(0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001674 }
1675
Chris Lattner06925362002-11-17 21:56:38 +00001676 // Emit the appropriate divide or remainder instruction...
Chris Lattner62b767b2003-11-18 17:47:05 +00001677 BMI(BB, IP, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001678
Chris Lattnerf01729e2002-11-02 20:54:46 +00001679 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00001680 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00001681
Chris Lattnerf01729e2002-11-02 20:54:46 +00001682 // Put the result into the destination register...
Chris Lattner62b767b2003-11-18 17:47:05 +00001683 BMI(BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001684}
Chris Lattnere2954c82002-11-02 20:04:26 +00001685
Chris Lattner06925362002-11-17 21:56:38 +00001686
Brian Gaekea1719c92002-10-31 23:03:59 +00001687/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1688/// for constant immediate shift values, and for constant immediate
1689/// shift values equal to 1. Even the general case is sort of special,
1690/// because the shift amount has to be in CL, not just any old register.
1691///
Chris Lattner3e130a22003-01-13 00:32:26 +00001692void ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001693 MachineBasicBlock::iterator IP = BB->end ();
1694 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
1695 I.getOpcode () == Instruction::Shl, I.getType (),
1696 getReg (I));
1697}
1698
1699/// emitShiftOperation - Common code shared between visitShiftInst and
1700/// constant expression support.
1701void ISel::emitShiftOperation(MachineBasicBlock *MBB,
1702 MachineBasicBlock::iterator &IP,
1703 Value *Op, Value *ShiftAmount, bool isLeftShift,
1704 const Type *ResultTy, unsigned DestReg) {
1705 unsigned SrcReg = getReg (Op, MBB, IP);
1706 bool isSigned = ResultTy->isSigned ();
1707 unsigned Class = getClass (ResultTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001708
1709 static const unsigned ConstantOperand[][4] = {
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001710 { X86::SHRri8, X86::SHRri16, X86::SHRri32, X86::SHRDri32 }, // SHR
1711 { X86::SARri8, X86::SARri16, X86::SARri32, X86::SHRDri32 }, // SAR
1712 { X86::SHLri8, X86::SHLri16, X86::SHLri32, X86::SHLDri32 }, // SHL
1713 { X86::SHLri8, X86::SHLri16, X86::SHLri32, X86::SHLDri32 }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00001714 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001715
Chris Lattner3e130a22003-01-13 00:32:26 +00001716 static const unsigned NonConstantOperand[][4] = {
1717 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1718 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1719 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1720 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1721 };
Chris Lattner796df732002-11-02 00:44:25 +00001722
Chris Lattner3e130a22003-01-13 00:32:26 +00001723 // Longs, as usual, are handled specially...
1724 if (Class == cLong) {
1725 // If we have a constant shift, we can generate much more efficient code
1726 // than otherwise...
1727 //
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001728 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001729 unsigned Amount = CUI->getValue();
1730 if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001731 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1732 if (isLeftShift) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001733 BMI(MBB, IP, Opc[3], 3,
1734 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1735 BMI(MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001736 } else {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001737 BMI(MBB, IP, Opc[3], 3,
1738 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1739 BMI(MBB, IP, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001740 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001741 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001742 Amount -= 32;
1743 if (isLeftShift) {
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001744 BMI(MBB, IP, X86::SHLri32, 2,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001745 DestReg + 1).addReg(SrcReg).addZImm(Amount);
Chris Lattner6e173a02004-02-17 06:16:44 +00001746 BMI(MBB, IP, X86::MOVri32, 1,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001747 DestReg).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001748 } else {
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001749 unsigned Opcode = isSigned ? X86::SARri32 : X86::SHRri32;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001750 BMI(MBB, IP, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
Chris Lattner6e173a02004-02-17 06:16:44 +00001751 BMI(MBB, IP, X86::MOVri32, 1, DestReg+1).addZImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001752 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001753 }
1754 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00001755 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1756
1757 if (!isLeftShift && isSigned) {
1758 // If this is a SHR of a Long, then we need to do funny sign extension
1759 // stuff. TmpReg gets the value to use as the high-part if we are
1760 // shifting more than 32 bits.
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001761 BMI(MBB, IP, X86::SARri32, 2, TmpReg).addReg(SrcReg).addZImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00001762 } else {
1763 // Other shifts use a fixed zero value if the shift is more than 32
1764 // bits.
Chris Lattner6e173a02004-02-17 06:16:44 +00001765 BMI(MBB, IP, X86::MOVri32, 1, TmpReg).addZImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00001766 }
1767
1768 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001769 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
1770 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001771
1772 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
1773 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
1774 if (isLeftShift) {
1775 // TmpReg2 = shld inHi, inLo
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001776 BMI(MBB, IP, X86::SHLDrr32, 2, TmpReg2).addReg(SrcReg+1).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001777 // TmpReg3 = shl inLo, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001778 BMI(MBB, IP, X86::SHLrr32, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001779
1780 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001781 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001782
1783 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001784 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001785 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
1786 // DestLo = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001787 BMI(MBB, IP, X86::CMOVNErr32, 2,
1788 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00001789 } else {
1790 // TmpReg2 = shrd inLo, inHi
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001791 BMI(MBB, IP, X86::SHRDrr32, 2, TmpReg2).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00001792 // TmpReg3 = s[ah]r inHi, CL
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001793 BMI(MBB, IP, isSigned ? X86::SARrr32 : X86::SHRrr32, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00001794 .addReg(SrcReg+1);
1795
1796 // Set the flags to indicate whether the shift was by more than 32 bits.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001797 BMI(MBB, IP, X86::TESTri8, 2).addReg(X86::CL).addZImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00001798
1799 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001800 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001801 DestReg).addReg(TmpReg2).addReg(TmpReg3);
1802
1803 // DestHi = (>32) ? TmpReg : TmpReg3;
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001804 BMI(MBB, IP, X86::CMOVNErr32, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00001805 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
1806 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001807 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001808 return;
1809 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001810
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001811 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001812 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1813 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001814
Chris Lattner3e130a22003-01-13 00:32:26 +00001815 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001816 BMI(MBB, IP, Opc[Class], 2,
1817 DestReg).addReg(SrcReg).addZImm(CUI->getValue());
Chris Lattner3e130a22003-01-13 00:32:26 +00001818 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001819 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
1820 BMI(MBB, IP, X86::MOVrr8, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001821
Chris Lattner3e130a22003-01-13 00:32:26 +00001822 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00001823 BMI(MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001824 }
1825}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001826
Chris Lattner3e130a22003-01-13 00:32:26 +00001827
Chris Lattner6fc3c522002-11-17 21:11:55 +00001828/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001829/// instruction. The load and store instructions are the only place where we
1830/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001831///
1832void ISel::visitLoadInst(LoadInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001833 unsigned SrcAddrReg = getReg(I.getOperand(0));
1834 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001835
Brian Gaekebfedb912003-07-17 21:30:06 +00001836 unsigned Class = getClassB(I.getType());
Chris Lattner6ac1d712003-10-20 04:48:06 +00001837
1838 if (Class == cLong) {
Chris Lattnere87331d2004-02-17 06:28:19 +00001839 addDirectMem(BuildMI(BB, X86::MOVrm32, 4, DestReg), SrcAddrReg);
1840 addRegOffset(BuildMI(BB, X86::MOVrm32, 4, DestReg+1), SrcAddrReg, 4);
Chris Lattner94af4142002-12-25 05:13:53 +00001841 return;
1842 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001843
Chris Lattner6ac1d712003-10-20 04:48:06 +00001844 static const unsigned Opcodes[] = {
Chris Lattnere87331d2004-02-17 06:28:19 +00001845 X86::MOVrm8, X86::MOVrm16, X86::MOVrm32, X86::FLDr32
Chris Lattner3e130a22003-01-13 00:32:26 +00001846 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00001847 unsigned Opcode = Opcodes[Class];
1848 if (I.getType() == Type::DoubleTy) Opcode = X86::FLDr64;
1849 addDirectMem(BuildMI(BB, Opcode, 4, DestReg), SrcAddrReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001850}
1851
Chris Lattner6fc3c522002-11-17 21:11:55 +00001852/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1853/// instruction.
1854///
1855void ISel::visitStoreInst(StoreInst &I) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001856 unsigned ValReg = getReg(I.getOperand(0));
1857 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattner6c09db22003-10-20 04:11:23 +00001858
1859 const Type *ValTy = I.getOperand(0)->getType();
1860 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00001861
1862 if (Class == cLong) {
Chris Lattnere87331d2004-02-17 06:28:19 +00001863 addDirectMem(BuildMI(BB, X86::MOVmr32, 1+4), AddressReg).addReg(ValReg);
1864 addRegOffset(BuildMI(BB, X86::MOVmr32, 1+4), AddressReg,4).addReg(ValReg+1);
Chris Lattner94af4142002-12-25 05:13:53 +00001865 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001866 }
1867
Chris Lattner6ac1d712003-10-20 04:48:06 +00001868 static const unsigned Opcodes[] = {
Chris Lattnere87331d2004-02-17 06:28:19 +00001869 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, X86::FSTr32
Chris Lattner6ac1d712003-10-20 04:48:06 +00001870 };
1871 unsigned Opcode = Opcodes[Class];
1872 if (ValTy == Type::DoubleTy) Opcode = X86::FSTr64;
1873 addDirectMem(BuildMI(BB, Opcode, 1+4), AddressReg).addReg(ValReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +00001874}
1875
1876
Brian Gaekec11232a2002-11-26 10:43:30 +00001877/// visitCastInst - Here we have various kinds of copying with or without
1878/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001879void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00001880 Value *Op = CI.getOperand(0);
1881 // If this is a cast from a 32-bit integer to a Long type, and the only uses
1882 // of the case are GEP instructions, then the cast does not need to be
1883 // generated explicitly, it will be folded into the GEP.
1884 if (CI.getType() == Type::LongTy &&
1885 (Op->getType() == Type::IntTy || Op->getType() == Type::UIntTy)) {
1886 bool AllUsesAreGEPs = true;
1887 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
1888 if (!isa<GetElementPtrInst>(*I)) {
1889 AllUsesAreGEPs = false;
1890 break;
1891 }
1892
1893 // No need to codegen this cast if all users are getelementptr instrs...
1894 if (AllUsesAreGEPs) return;
1895 }
1896
Chris Lattner548f61d2003-04-23 17:22:12 +00001897 unsigned DestReg = getReg(CI);
1898 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00001899 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00001900}
1901
1902/// emitCastOperation - Common code shared between visitCastInst and
1903/// constant expression cast support.
1904void ISel::emitCastOperation(MachineBasicBlock *BB,
1905 MachineBasicBlock::iterator &IP,
1906 Value *Src, const Type *DestTy,
1907 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001908 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001909 const Type *SrcTy = Src->getType();
1910 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001911 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001912
Chris Lattner3e130a22003-01-13 00:32:26 +00001913 // Implement casts to bool by using compare on the operand followed by set if
1914 // not zero on the result.
1915 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00001916 switch (SrcClass) {
1917 case cByte:
1918 BMI(BB, IP, X86::TESTrr8, 2).addReg(SrcReg).addReg(SrcReg);
1919 break;
1920 case cShort:
1921 BMI(BB, IP, X86::TESTrr16, 2).addReg(SrcReg).addReg(SrcReg);
1922 break;
1923 case cInt:
1924 BMI(BB, IP, X86::TESTrr32, 2).addReg(SrcReg).addReg(SrcReg);
1925 break;
1926 case cLong: {
1927 unsigned TmpReg = makeAnotherReg(Type::IntTy);
1928 BMI(BB, IP, X86::ORrr32, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
1929 break;
1930 }
1931 case cFP:
1932 assert(0 && "FIXME: implement cast FP to bool");
1933 abort();
1934 }
1935
1936 // If the zero flag is not set, then the value is true, set the byte to
1937 // true.
Chris Lattner548f61d2003-04-23 17:22:12 +00001938 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001939 return;
1940 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001941
1942 static const unsigned RegRegMove[] = {
1943 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1944 };
1945
1946 // Implement casts between values of the same type class (as determined by
1947 // getClass) by using a register-to-register move.
1948 if (SrcClass == DestClass) {
1949 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001950 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001951 } else if (SrcClass == cFP) {
1952 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001953 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
1954 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001955 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001956 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1957 "Unknown cFP member!");
1958 // Truncate from double to float by storing to memory as short, then
1959 // reading it back.
1960 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00001961 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001962 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1963 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001964 }
1965 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001966 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1967 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001968 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00001969 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001970 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001971 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001972 return;
1973 }
1974
1975 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1976 // or zero extension, depending on whether the source type was signed.
1977 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1978 SrcClass < DestClass) {
1979 bool isLong = DestClass == cLong;
1980 if (isLong) DestClass = cInt;
1981
1982 static const unsigned Opc[][4] = {
1983 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1984 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1985 };
1986
1987 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001988 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1989 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001990
1991 if (isLong) { // Handle upper 32 bits as appropriate...
1992 if (isUnsigned) // Zero out top bits...
Chris Lattner6e173a02004-02-17 06:16:44 +00001993 BMI(BB, IP, X86::MOVri32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001994 else // Sign extend bottom half...
Chris Lattner7ddc3fb2004-02-17 06:24:02 +00001995 BMI(BB, IP, X86::SARri32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001996 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001997 return;
1998 }
1999
2000 // Special case long -> int ...
2001 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00002002 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002003 return;
2004 }
2005
2006 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
2007 // move out of AX or AL.
2008 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2009 && SrcClass > DestClass) {
2010 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00002011 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
2012 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00002013 return;
2014 }
2015
2016 // Handle casts from integer to floating point now...
2017 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002018 // Promote the integer to a type supported by FLD. We do this because there
2019 // are no unsigned FLD instructions, so we must promote an unsigned value to
2020 // a larger signed value, then use FLD on the larger value.
2021 //
2022 const Type *PromoteType = 0;
2023 unsigned PromoteOpcode;
2024 switch (SrcTy->getPrimitiveID()) {
2025 case Type::BoolTyID:
2026 case Type::SByteTyID:
2027 // We don't have the facilities for directly loading byte sized data from
2028 // memory (even signed). Promote it to 16 bits.
2029 PromoteType = Type::ShortTy;
2030 PromoteOpcode = X86::MOVSXr16r8;
2031 break;
2032 case Type::UByteTyID:
2033 PromoteType = Type::ShortTy;
2034 PromoteOpcode = X86::MOVZXr16r8;
2035 break;
2036 case Type::UShortTyID:
2037 PromoteType = Type::IntTy;
2038 PromoteOpcode = X86::MOVZXr32r16;
2039 break;
2040 case Type::UIntTyID: {
2041 // Make a 64 bit temporary... and zero out the top of it...
2042 unsigned TmpReg = makeAnotherReg(Type::LongTy);
2043 BMI(BB, IP, X86::MOVrr32, 1, TmpReg).addReg(SrcReg);
Chris Lattner6e173a02004-02-17 06:16:44 +00002044 BMI(BB, IP, X86::MOVri32, 1, TmpReg+1).addZImm(0);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002045 SrcTy = Type::LongTy;
2046 SrcClass = cLong;
2047 SrcReg = TmpReg;
2048 break;
2049 }
2050 case Type::ULongTyID:
2051 assert("FIXME: not implemented: cast ulong X to fp type!");
2052 default: // No promotion needed...
2053 break;
2054 }
2055
2056 if (PromoteType) {
2057 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner548f61d2003-04-23 17:22:12 +00002058 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
2059 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002060 SrcTy = PromoteType;
2061 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00002062 SrcReg = TmpReg;
2063 }
2064
2065 // Spill the integer to memory and reload it from there...
2066 int FrameIdx =
2067 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
2068
2069 if (SrcClass == cLong) {
Chris Lattnere87331d2004-02-17 06:28:19 +00002070 addFrameReference(BMI(BB, IP, X86::MOVmr32, 5), FrameIdx).addReg(SrcReg);
2071 addFrameReference(BMI(BB, IP, X86::MOVmr32, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002072 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00002073 } else {
Chris Lattnere87331d2004-02-17 06:28:19 +00002074 static const unsigned Op1[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00002075 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002076 }
2077
2078 static const unsigned Op2[] =
Chris Lattner4d5a50a2003-05-12 20:36:13 +00002079 { 0/*byte*/, X86::FILDr16, X86::FILDr32, 0/*FP*/, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00002080 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002081 return;
2082 }
2083
2084 // Handle casts from floating point to integer now...
2085 if (SrcClass == cFP) {
2086 // Change the floating point control register to use "round towards zero"
2087 // mode when truncating to an integer value.
2088 //
2089 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00002090 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002091
2092 // Load the old value of the high byte of the control word...
2093 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattnere87331d2004-02-17 06:28:19 +00002094 addFrameReference(BMI(BB, IP, X86::MOVrm8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00002095
2096 // Set the high part to be round to zero...
Chris Lattner6e173a02004-02-17 06:16:44 +00002097 addFrameReference(BMI(BB, IP, X86::MOVmi8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00002098
2099 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00002100 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002101
2102 // Restore the memory image of control word to original value
Chris Lattnere87331d2004-02-17 06:28:19 +00002103 addFrameReference(BMI(BB, IP, X86::MOVmr8, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002104 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00002105
2106 // We don't have the facilities for directly storing byte sized data to
2107 // memory. Promote it to 16 bits. We also must promote unsigned values to
2108 // larger classes because we only have signed FP stores.
2109 unsigned StoreClass = DestClass;
2110 const Type *StoreTy = DestTy;
2111 if (StoreClass == cByte || DestTy->isUnsigned())
2112 switch (StoreClass) {
2113 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
2114 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
2115 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00002116 // The following treatment of cLong may not be perfectly right,
2117 // but it survives chains of casts of the form
2118 // double->ulong->double.
2119 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00002120 default: assert(0 && "Unknown store class!");
2121 }
2122
2123 // Spill the integer to memory and reload it from there...
2124 int FrameIdx =
2125 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
2126
2127 static const unsigned Op1[] =
2128 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00002129 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002130
2131 if (DestClass == cLong) {
Chris Lattnere87331d2004-02-17 06:28:19 +00002132 addFrameReference(BMI(BB, IP, X86::MOVrm32, 4, DestReg), FrameIdx);
2133 addFrameReference(BMI(BB, IP, X86::MOVrm32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00002134 } else {
Chris Lattnere87331d2004-02-17 06:28:19 +00002135 static const unsigned Op2[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00002136 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002137 }
2138
2139 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00002140 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00002141 return;
2142 }
2143
Brian Gaeked474e9c2002-12-06 10:49:33 +00002144 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00002145 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00002146 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00002147}
Brian Gaekea1719c92002-10-31 23:03:59 +00002148
Chris Lattner73815062003-10-18 05:56:40 +00002149/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00002150///
Chris Lattner73815062003-10-18 05:56:40 +00002151void ISel::visitVANextInst(VANextInst &I) {
2152 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00002153 unsigned DestReg = getReg(I);
2154
Chris Lattnereca195e2003-05-08 19:44:13 +00002155 unsigned Size;
Chris Lattner73815062003-10-18 05:56:40 +00002156 switch (I.getArgType()->getPrimitiveID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00002157 default:
2158 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00002159 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00002160 return;
2161 case Type::PointerTyID:
2162 case Type::UIntTyID:
2163 case Type::IntTyID:
2164 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00002165 break;
2166 case Type::ULongTyID:
2167 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00002168 case Type::DoubleTyID:
2169 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00002170 break;
2171 }
2172
2173 // Increment the VAList pointer...
Chris Lattner73815062003-10-18 05:56:40 +00002174 BuildMI(BB, X86::ADDri32, 2, DestReg).addReg(VAList).addZImm(Size);
2175}
Chris Lattnereca195e2003-05-08 19:44:13 +00002176
Chris Lattner73815062003-10-18 05:56:40 +00002177void ISel::visitVAArgInst(VAArgInst &I) {
2178 unsigned VAList = getReg(I.getOperand(0));
2179 unsigned DestReg = getReg(I);
2180
2181 switch (I.getType()->getPrimitiveID()) {
2182 default:
2183 std::cerr << I;
2184 assert(0 && "Error: bad type for va_next instruction!");
2185 return;
2186 case Type::PointerTyID:
2187 case Type::UIntTyID:
2188 case Type::IntTyID:
Chris Lattnere87331d2004-02-17 06:28:19 +00002189 addDirectMem(BuildMI(BB, X86::MOVrm32, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00002190 break;
2191 case Type::ULongTyID:
2192 case Type::LongTyID:
Chris Lattnere87331d2004-02-17 06:28:19 +00002193 addDirectMem(BuildMI(BB, X86::MOVrm32, 4, DestReg), VAList);
2194 addRegOffset(BuildMI(BB, X86::MOVrm32, 4, DestReg+1), VAList, 4);
Chris Lattner73815062003-10-18 05:56:40 +00002195 break;
2196 case Type::DoubleTyID:
2197 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
2198 break;
2199 }
Chris Lattnereca195e2003-05-08 19:44:13 +00002200}
2201
2202
Chris Lattner3e130a22003-01-13 00:32:26 +00002203void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2204 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00002205 MachineBasicBlock::iterator MI = BB->end();
2206 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00002207 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00002208}
2209
Brian Gaeke71794c02002-12-13 11:22:48 +00002210void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00002211 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00002212 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00002213 User::op_iterator IdxEnd, unsigned TargetReg) {
2214 const TargetData &TD = TM.getTargetData();
Chris Lattnerc0812d82002-12-13 06:56:29 +00002215
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002216 std::vector<Value*> GEPOps;
2217 GEPOps.resize(IdxEnd-IdxBegin+1);
2218 GEPOps[0] = Src;
2219 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2220
2221 std::vector<const Type*> GEPTypes;
2222 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2223 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2224
2225 // Keep emitting instructions until we consume the entire GEP instruction.
2226 while (!GEPOps.empty()) {
2227 unsigned OldSize = GEPOps.size();
2228
2229 if (GEPTypes.empty()) {
2230 // The getGEPIndex operation didn't want to build an LEA. Check to see if
2231 // all operands are consumed but the base pointer. If so, just load it
2232 // into the register.
2233 unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
2234 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
2235 return; // we are now done
2236 } else if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
2237 // It's a struct access. CUI is the index into the structure,
2238 // which names the field. This index must have unsigned type.
2239 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
2240 GEPOps.pop_back(); // Consume a GEP operand
2241 GEPTypes.pop_back();
2242
2243 // Use the TargetData structure to pick out what the layout of the
2244 // structure is in memory. Since the structure index must be constant, we
2245 // can get its value and use it to find the right byte offset from the
2246 // StructLayout class's list of structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00002247 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00002248 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
2249 if (FieldOff) {
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002250 unsigned Reg = makeAnotherReg(Type::UIntTy);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002251 // Emit an ADD to add FieldOff to the basePtr.
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002252 BMI(MBB, IP, X86::ADDri32, 2, TargetReg).addReg(Reg).addZImm(FieldOff);
2253 --IP; // Insert the next instruction before this one.
2254 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner3e130a22003-01-13 00:32:26 +00002255 }
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002256
2257 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +00002258 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002259 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2260 Value *idx = GEPOps.back();
2261 GEPOps.pop_back(); // Consume a GEP operand
2262 GEPTypes.pop_back();
Chris Lattner8a307e82002-12-16 19:32:50 +00002263
Brian Gaeke20244b72002-12-12 15:33:40 +00002264 // idx is the index into the array. Unlike with structure
2265 // indices, we may not know its actual value at code-generation
2266 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00002267 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
2268
Chris Lattnerf5854472003-06-21 16:01:24 +00002269 // Most GEP instructions use a [cast (int/uint) to LongTy] as their
2270 // operand on X86. Handle this case directly now...
2271 if (CastInst *CI = dyn_cast<CastInst>(idx))
2272 if (CI->getOperand(0)->getType() == Type::IntTy ||
2273 CI->getOperand(0)->getType() == Type::UIntTy)
2274 idx = CI->getOperand(0);
2275
Chris Lattner3e130a22003-01-13 00:32:26 +00002276 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00002277 // must find the size of the pointed-to type (Not coincidentally, the next
2278 // type is the type of the elements in the array).
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002279 const Type *ElTy = SqTy->getElementType();
2280 unsigned elementSize = TD.getTypeSize(ElTy);
Chris Lattner8a307e82002-12-16 19:32:50 +00002281
2282 // If idxReg is a constant, we don't need to perform the multiply!
2283 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002284 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00002285 unsigned Offset = elementSize*CSI->getValue();
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002286 unsigned Reg = makeAnotherReg(Type::UIntTy);
2287 BMI(MBB, IP, X86::ADDri32, 2, TargetReg).addReg(Reg).addZImm(Offset);
2288 --IP; // Insert the next instruction before this one.
2289 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00002290 }
2291 } else if (elementSize == 1) {
2292 // If the element size is 1, we don't have to multiply, just add
2293 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002294 unsigned Reg = makeAnotherReg(Type::UIntTy);
2295 BMI(MBB, IP, X86::ADDrr32, 2, TargetReg).addReg(Reg).addReg(idxReg);
2296 --IP; // Insert the next instruction before this one.
2297 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00002298 } else {
2299 unsigned idxReg = getReg(idx, MBB, IP);
2300 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002301
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002302 // Make sure we can back the iterator up to point to the first
2303 // instruction emitted.
2304 MachineBasicBlock::iterator BeforeIt = IP;
2305 if (IP == MBB->begin())
2306 BeforeIt = MBB->end();
2307 else
2308 --BeforeIt;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002309 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
2310
Chris Lattner8a307e82002-12-16 19:32:50 +00002311 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3f1e8e72004-02-22 07:04:00 +00002312 unsigned Reg = makeAnotherReg(Type::UIntTy);
2313 BMI(MBB, IP, X86::ADDrr32, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
2314
2315 // Step to the first instruction of the multiply.
2316 if (BeforeIt == MBB->end())
2317 IP = MBB->begin();
2318 else
2319 IP = ++BeforeIt;
2320
2321 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00002322 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002323 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002324 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002325}
2326
2327
Chris Lattner065faeb2002-12-28 20:24:02 +00002328/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2329/// frame manager, otherwise do it the hard way.
2330///
2331void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00002332 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00002333 const Type *Ty = I.getAllocatedType();
2334 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2335
2336 // If this is a fixed size alloca in the entry block for the function,
2337 // statically stack allocate the space.
2338 //
2339 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
2340 if (I.getParent() == I.getParent()->getParent()->begin()) {
2341 TySize *= CUI->getValue(); // Get total allocated size...
2342 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
2343
2344 // Create a new stack object using the frame manager...
2345 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
2346 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
2347 return;
2348 }
2349 }
2350
2351 // Create a register to hold the temporary result of multiplying the type size
2352 // constant by the variable amount.
2353 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2354 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00002355
2356 // TotalSizeReg = mul <numelements>, <TypeSize>
2357 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002358 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002359
2360 // AddedSize = add <TotalSizeReg>, 15
2361 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2362 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
2363
2364 // AlignedSize = and <AddedSize>, ~15
2365 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
2366 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
2367
Brian Gaekee48ec012002-12-13 06:46:31 +00002368 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00002369 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00002370
Brian Gaekee48ec012002-12-13 06:46:31 +00002371 // Put a pointer to the space into the result register, by copying
2372 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00002373 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
2374
Misha Brukman48196b32003-05-03 02:18:17 +00002375 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00002376 // object.
2377 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00002378}
Chris Lattner3e130a22003-01-13 00:32:26 +00002379
2380/// visitMallocInst - Malloc instructions are code generated into direct calls
2381/// to the library malloc.
2382///
2383void ISel::visitMallocInst(MallocInst &I) {
2384 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2385 unsigned Arg;
2386
2387 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2388 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2389 } else {
2390 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002391 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00002392 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00002393 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00002394 }
2395
2396 std::vector<ValueRecord> Args;
2397 Args.push_back(ValueRecord(Arg, Type::UIntTy));
2398 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002399 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002400 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2401}
2402
2403
2404/// visitFreeInst - Free instructions are code gen'd to call the free libc
2405/// function.
2406///
2407void ISel::visitFreeInst(FreeInst &I) {
2408 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002409 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00002410 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002411 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002412 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2413}
2414
Chris Lattnerd281de22003-07-26 23:49:58 +00002415/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00002416/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00002417/// generated code sucks but the implementation is nice and simple.
2418///
Chris Lattnerf70e0c22003-12-28 21:23:38 +00002419FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
2420 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00002421}