blob: 30054f2a49d43082a1be356d030cdf2257658b68 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Daniel Dunbara8dfb792010-02-13 09:27:52 +000017#include "X86FixupKinds.h"
Chris Lattner45762472010-02-03 21:24:49 +000018#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000019#include "llvm/MC/MCExpr.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000020#include "llvm/MC/MCInst.h"
21#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000022using namespace llvm;
23
24namespace {
25class X86MCCodeEmitter : public MCCodeEmitter {
26 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
27 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000028 const TargetMachine &TM;
29 const TargetInstrInfo &TII;
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000030 MCContext &Ctx;
Chris Lattner1ac23b12010-02-05 02:18:40 +000031 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000032public:
Chris Lattner4a2e5ed2010-02-12 23:24:09 +000033 X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
34 : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000035 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000036 }
37
38 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000039
40 unsigned getNumFixupKinds() const {
Chris Lattner9fc05222010-07-07 22:27:31 +000041 return 5;
Daniel Dunbar73c55742010-02-09 22:59:55 +000042 }
43
Chris Lattner8d31de62010-02-11 21:27:18 +000044 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
45 const static MCFixupKindInfo Infos[] = {
Daniel Dunbarb36052f2010-03-19 10:43:23 +000046 { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
47 { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel },
Chris Lattner9fc05222010-07-07 22:27:31 +000048 { "reloc_pcrel_2byte", 0, 2 * 8, MCFixupKindInfo::FKF_IsPCRel },
Daniel Dunbarb36052f2010-03-19 10:43:23 +000049 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
50 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }
Daniel Dunbar73c55742010-02-09 22:59:55 +000051 };
Chris Lattner8d31de62010-02-11 21:27:18 +000052
53 if (Kind < FirstTargetFixupKind)
54 return MCCodeEmitter::getFixupKindInfo(Kind);
Daniel Dunbar73c55742010-02-09 22:59:55 +000055
Chris Lattner8d31de62010-02-11 21:27:18 +000056 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
Daniel Dunbar73c55742010-02-09 22:59:55 +000057 "Invalid kind!");
58 return Infos[Kind - FirstTargetFixupKind];
59 }
Chris Lattner45762472010-02-03 21:24:49 +000060
Chris Lattner28249d92010-02-05 01:53:19 +000061 static unsigned GetX86RegNum(const MCOperand &MO) {
62 return X86RegisterInfo::getX86RegNum(MO.getReg());
63 }
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +000064
65 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
66 // 0-7 and the difference between the 2 groups is given by the REX prefix.
67 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
68 // in 1's complement form, example:
69 //
70 // ModRM field => XMM9 => 1
71 // VEX.VVVV => XMM9 => ~9
72 //
73 // See table 4-35 of Intel AVX Programming Reference for details.
74 static unsigned char getVEXRegisterEncoding(const MCInst &MI,
75 unsigned OpNum) {
76 unsigned SrcReg = MI.getOperand(OpNum).getReg();
77 unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
78 if (SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15)
79 SrcRegNum += 8;
80
81 // The registers represented through VEX_VVVV should
82 // be encoded in 1's complement form.
83 return (~SrcRegNum) & 0xf;
84 }
Chris Lattner28249d92010-02-05 01:53:19 +000085
Chris Lattner37ce80e2010-02-10 06:41:02 +000086 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000087 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000088 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000089 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000090
Chris Lattner37ce80e2010-02-10 06:41:02 +000091 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
92 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000093 // Output the constant in little endian byte order.
94 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000095 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000096 Val >>= 8;
97 }
98 }
Chris Lattner0e73c392010-02-05 06:16:07 +000099
Chris Lattnercf653392010-02-12 22:36:47 +0000100 void EmitImmediate(const MCOperand &Disp,
101 unsigned ImmSize, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000102 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000103 SmallVectorImpl<MCFixup> &Fixups,
104 int ImmOffset = 0) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000105
106 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
107 unsigned RM) {
108 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
109 return RM | (RegOpcode << 3) | (Mod << 6);
110 }
111
112 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000113 unsigned &CurByte, raw_ostream &OS) const {
114 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000115 }
116
Chris Lattner0e73c392010-02-05 06:16:07 +0000117 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000118 unsigned &CurByte, raw_ostream &OS) const {
119 // SIB byte is in the same format as the ModRMByte.
120 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000121 }
122
123
Chris Lattner1ac23b12010-02-05 02:18:40 +0000124 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Chris Lattner1b670602010-02-11 06:49:52 +0000125 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000126 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000127 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000128
Daniel Dunbar73c55742010-02-09 22:59:55 +0000129 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
130 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000131
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000132 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
133 const MCInst &MI, const TargetInstrDesc &Desc,
134 raw_ostream &OS) const;
135
Chris Lattner834df192010-07-08 22:28:12 +0000136 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000137 const MCInst &MI, const TargetInstrDesc &Desc,
138 raw_ostream &OS) const;
Chris Lattner45762472010-02-03 21:24:49 +0000139};
140
141} // end anonymous namespace
142
143
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000144MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000145 TargetMachine &TM,
146 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000147 return new X86MCCodeEmitter(TM, Ctx, false);
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000148}
149
150MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
Chris Lattner86020e42010-02-12 23:12:47 +0000151 TargetMachine &TM,
152 MCContext &Ctx) {
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000153 return new X86MCCodeEmitter(TM, Ctx, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000154}
155
Chris Lattner1ac23b12010-02-05 02:18:40 +0000156/// isDisp8 - Return true if this signed displacement fits in a 8-bit
157/// sign-extended field.
158static bool isDisp8(int Value) {
159 return Value == (signed char)Value;
160}
161
Chris Lattnercf653392010-02-12 22:36:47 +0000162/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
163/// in an instruction with the specified TSFlags.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000164static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
Chris Lattnercf653392010-02-12 22:36:47 +0000165 unsigned Size = X86II::getSizeOfImm(TSFlags);
166 bool isPCRel = X86II::isImmPCRel(TSFlags);
167
Chris Lattnercf653392010-02-12 22:36:47 +0000168 switch (Size) {
169 default: assert(0 && "Unknown immediate size");
170 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
Chris Lattner9fc05222010-07-07 22:27:31 +0000171 case 2: return isPCRel ? MCFixupKind(X86::reloc_pcrel_2byte) : FK_Data_2;
Chris Lattnercf653392010-02-12 22:36:47 +0000172 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
Chris Lattnercf653392010-02-12 22:36:47 +0000173 case 8: assert(!isPCRel); return FK_Data_8;
174 }
175}
176
177
Chris Lattner0e73c392010-02-05 06:16:07 +0000178void X86MCCodeEmitter::
Chris Lattnercf653392010-02-12 22:36:47 +0000179EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
Chris Lattnera38c7072010-02-11 06:54:23 +0000180 unsigned &CurByte, raw_ostream &OS,
Chris Lattner835acab2010-02-12 23:00:36 +0000181 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000182 // If this is a simple integer displacement that doesn't require a relocation,
183 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000184 if (DispOp.isImm()) {
Chris Lattnera08b5872010-02-16 05:03:17 +0000185 // FIXME: is this right for pc-rel encoding?? Probably need to emit this as
186 // a fixup if so.
Chris Lattner835acab2010-02-12 23:00:36 +0000187 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000188 return;
189 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000190
Chris Lattner835acab2010-02-12 23:00:36 +0000191 // If we have an immoffset, add it to the expression.
192 const MCExpr *Expr = DispOp.getExpr();
Chris Lattnera08b5872010-02-16 05:03:17 +0000193
194 // If the fixup is pc-relative, we need to bias the value to be relative to
195 // the start of the field, not the end of the field.
196 if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000197 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
198 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
Chris Lattnera08b5872010-02-16 05:03:17 +0000199 ImmOffset -= 4;
Chris Lattner9fc05222010-07-07 22:27:31 +0000200 if (FixupKind == MCFixupKind(X86::reloc_pcrel_2byte))
Chris Lattnerda3051a2010-07-07 22:35:13 +0000201 ImmOffset -= 2;
Chris Lattnera08b5872010-02-16 05:03:17 +0000202 if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
203 ImmOffset -= 1;
204
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000205 if (ImmOffset)
Chris Lattnera08b5872010-02-16 05:03:17 +0000206 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
Chris Lattner4a2e5ed2010-02-12 23:24:09 +0000207 Ctx);
Chris Lattner835acab2010-02-12 23:00:36 +0000208
Chris Lattner5dccfad2010-02-10 06:52:12 +0000209 // Emit a symbolic constant as a fixup and 4 zeros.
Chris Lattner835acab2010-02-12 23:00:36 +0000210 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
Chris Lattnera38c7072010-02-11 06:54:23 +0000211 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000212}
213
Chris Lattner1ac23b12010-02-05 02:18:40 +0000214void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
215 unsigned RegOpcodeField,
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000216 uint64_t TSFlags, unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000217 raw_ostream &OS,
218 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000219 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000220 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000221 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000222 const MCOperand &IndexReg = MI.getOperand(Op+2);
223 unsigned BaseReg = Base.getReg();
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000224
225 // Handle %rip relative addressing.
226 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Eric Christopher497f1eb2010-06-08 22:57:33 +0000227 assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode");
228 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000229 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattner835acab2010-02-12 23:00:36 +0000230
Chris Lattner0f53cf22010-03-18 18:10:56 +0000231 unsigned FixupKind = X86::reloc_riprel_4byte;
232
233 // movq loads are handled with a special relocation form which allows the
234 // linker to eliminate some loads for GOT references which end up in the
235 // same linkage unit.
Daniel Dunbar9fdac902010-03-18 21:53:54 +0000236 if (MI.getOpcode() == X86::MOV64rm ||
237 MI.getOpcode() == X86::MOV64rm_TC)
Chris Lattner0f53cf22010-03-18 18:10:56 +0000238 FixupKind = X86::reloc_riprel_4byte_movq_load;
239
Chris Lattner835acab2010-02-12 23:00:36 +0000240 // rip-relative addressing is actually relative to the *next* instruction.
241 // Since an immediate can follow the mod/rm byte for an instruction, this
242 // means that we need to bias the immediate field of the instruction with
243 // the size of the immediate field. If we have this case, add it into the
244 // expression to emit.
245 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
Chris Lattnera08b5872010-02-16 05:03:17 +0000246
Chris Lattner0f53cf22010-03-18 18:10:56 +0000247 EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
Chris Lattner835acab2010-02-12 23:00:36 +0000248 CurByte, OS, Fixups, -ImmSize);
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000249 return;
250 }
251
252 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
Chris Lattnerecfb3c32010-02-11 08:45:56 +0000253
Chris Lattnera8168ec2010-02-09 21:57:34 +0000254 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000255 // If no BaseReg, issue a RIP relative instruction only if the MCE can
256 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
257 // 2-7) and absolute references.
Chris Lattner5526b692010-02-11 08:41:21 +0000258
Chris Lattnera8168ec2010-02-09 21:57:34 +0000259 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000260 IndexReg.getReg() == 0 &&
Chris Lattner5526b692010-02-11 08:41:21 +0000261 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
262 // encode to an R/M value of 4, which indicates that a SIB byte is
263 // present.
264 BaseRegNo != N86::ESP &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000265 // If there is no base register and we're in 64-bit mode, we need a SIB
266 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
267 (!Is64BitMode || BaseReg != 0)) {
268
Chris Lattner1e35d0e2010-02-12 22:47:55 +0000269 if (BaseReg == 0) { // [disp32] in X86-32 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000270 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000271 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000272 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000273 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000274
Chris Lattnera8168ec2010-02-09 21:57:34 +0000275 // If the base is not EBP/ESP and there is no displacement, use simple
276 // indirect register encoding, this handles addresses like [EAX]. The
277 // encoding for [EBP] with no displacement means [disp32] so we handle it
278 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000279 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000280 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000281 return;
282 }
283
284 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000285 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000286 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000287 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000288 return;
289 }
290
291 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000292 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnercf653392010-02-12 22:36:47 +0000293 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000294 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000295 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000296
297 // We need a SIB byte, so start by outputting the ModR/M byte first
298 assert(IndexReg.getReg() != X86::ESP &&
299 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
300
301 bool ForceDisp32 = false;
302 bool ForceDisp8 = false;
303 if (BaseReg == 0) {
304 // If there is no base register, we emit the special case SIB byte with
305 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000306 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000307 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000308 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000309 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000310 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000311 ForceDisp32 = true;
Chris Lattner618d0ed2010-03-18 20:04:36 +0000312 } else if (Disp.getImm() == 0 &&
313 // Base reg can't be anything that ends up with '5' as the base
314 // reg, it is the magic [*] nomenclature that indicates no base.
315 BaseRegNo != N86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000316 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000317 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000318 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000319 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000320 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000321 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
322 } else {
323 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000324 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000325 }
326
327 // Calculate what the SS field value should be...
328 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
329 unsigned SS = SSTable[Scale.getImm()];
330
331 if (BaseReg == 0) {
332 // Handle the SIB byte for the case where there is no base, see Intel
333 // Manual 2A, table 2-7. The displacement has already been output.
334 unsigned IndexRegNo;
335 if (IndexReg.getReg())
336 IndexRegNo = GetX86RegNum(IndexReg);
337 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
338 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000339 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000340 } else {
341 unsigned IndexRegNo;
342 if (IndexReg.getReg())
343 IndexRegNo = GetX86RegNum(IndexReg);
344 else
345 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000346 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000347 }
348
349 // Do we need to output a displacement?
350 if (ForceDisp8)
Chris Lattnercf653392010-02-12 22:36:47 +0000351 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000352 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnercf653392010-02-12 22:36:47 +0000353 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000354}
355
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000356/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
357/// called VEX.
358void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
359 const MCInst &MI, const TargetInstrDesc &Desc,
360 raw_ostream &OS) const {
361
362 // Pseudo instructions never have a VEX prefix.
363 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
364 return;
365
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000366 bool HasVEX_4V = false;
367 if ((TSFlags >> 32) & X86II::VEX_4V)
368 HasVEX_4V = true;
369
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000370 // VEX_R: opcode externsion equivalent to REX.R in
371 // 1's complement (inverted) form
372 //
373 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
374 // 0: Same as REX_R=1 (64 bit mode only)
375 //
376 unsigned char VEX_R = 0x1;
377
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000378 // VEX_X: equivalent to REX.X, only used when a
379 // register is used for index in SIB Byte.
380 //
381 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
382 // 0: Same as REX.X=1 (64-bit mode only)
383 unsigned char VEX_X = 0x1;
384
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000385 // VEX_B:
386 //
387 // 1: Same as REX_B=0 (ignored in 32-bit mode)
388 // 0: Same as REX_B=1 (64 bit mode only)
389 //
390 unsigned char VEX_B = 0x1;
391
392 // VEX_W: opcode specific (use like REX.W, or used for
393 // opcode extension, or ignored, depending on the opcode byte)
394 unsigned char VEX_W = 0;
395
396 // VEX_5M (VEX m-mmmmm field):
397 //
398 // 0b00000: Reserved for future use
399 // 0b00001: implied 0F leading opcode
400 // 0b00010: implied 0F 38 leading opcode bytes
401 // 0b00011: implied 0F 3A leading opcode bytes
402 // 0b00100-0b11111: Reserved for future use
403 //
404 unsigned char VEX_5M = 0x1;
405
406 // VEX_4V (VEX vvvv field): a register specifier
407 // (in 1's complement form) or 1111 if unused.
408 unsigned char VEX_4V = 0xf;
409
410 // VEX_L (Vector Length):
411 //
412 // 0: scalar or 128-bit vector
413 // 1: 256-bit vector
414 //
415 unsigned char VEX_L = 0;
416
417 // VEX_PP: opcode extension providing equivalent
418 // functionality of a SIMD prefix
419 //
420 // 0b00: None
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000421 // 0b01: 66
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000422 // 0b10: F3
423 // 0b11: F2
424 //
425 unsigned char VEX_PP = 0;
426
Bruno Cardoso Lopes7be0d2c2010-06-12 01:23:26 +0000427 // Encode the operand size opcode prefix as needed.
428 if (TSFlags & X86II::OpSize)
429 VEX_PP = 0x01;
430
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000431 if ((TSFlags >> 32) & X86II::VEX_W)
432 VEX_W = 1;
433
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000434 switch (TSFlags & X86II::Op0Mask) {
435 default: assert(0 && "Invalid prefix!");
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000436 case X86II::T8: // 0F 38
437 VEX_5M = 0x2;
438 break;
439 case X86II::TA: // 0F 3A
440 VEX_5M = 0x3;
441 break;
442 case X86II::TF: // F2 0F 38
443 VEX_PP = 0x3;
444 VEX_5M = 0x2;
445 break;
446 case X86II::XS: // F3 0F
447 VEX_PP = 0x2;
448 break;
449 case X86II::XD: // F2 0F
450 VEX_PP = 0x3;
451 break;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000452 case X86II::TB: // Bypass: Not used by VEX
453 case 0:
454 break; // No prefix!
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000455 }
456
457 unsigned NumOps = MI.getNumOperands();
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000458 unsigned CurOp = 0;
459
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000460 switch (TSFlags & X86II::FormMask) {
461 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000462 case X86II::MRM0m: case X86II::MRM1m:
463 case X86II::MRM2m: case X86II::MRM3m:
464 case X86II::MRM4m: case X86II::MRM5m:
465 case X86II::MRM6m: case X86II::MRM7m:
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000466 case X86II::MRMDestMem:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000467 NumOps = CurOp = X86AddrNumOperands;
468 case X86II::MRMSrcMem:
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000469 case X86II::MRMSrcReg:
Bruno Cardoso Lopes147b7ca2010-06-29 20:35:48 +0000470 if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000471 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000472 VEX_R = 0x0;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000473
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000474 // CurOp and NumOps are equal when VEX_R represents a register used
475 // to index a memory destination (which is the last operand)
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000476 CurOp = (CurOp == NumOps) ? 0 : CurOp+1;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000477
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000478 if (HasVEX_4V) {
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000479 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
Bruno Cardoso Lopes78818432010-06-24 20:48:23 +0000480 CurOp++;
481 }
482
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000483 // If the last register should be encoded in the immediate field
Bruno Cardoso Lopes01066802010-07-06 22:38:32 +0000484 // do not use any bit from VEX prefix to this register, ignore it
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000485 if ((TSFlags >> 32) & X86II::VEX_I8IMM)
486 NumOps--;
487
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000488 for (; CurOp != NumOps; ++CurOp) {
489 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000490 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
491 VEX_B = 0x0;
Bruno Cardoso Lopes161476e2010-06-25 23:33:42 +0000492 if (!VEX_B && MO.isReg() &&
493 ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000494 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
495 VEX_X = 0x0;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000496 }
497 break;
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000498 default: // MRMDestReg, MRM0r-MRM7r
499 if (MI.getOperand(CurOp).isReg() &&
500 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
501 VEX_B = 0;
502
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000503 if (HasVEX_4V)
504 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
505
506 CurOp++;
507 for (; CurOp != NumOps; ++CurOp) {
508 const MCOperand &MO = MI.getOperand(CurOp);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000509 if (MO.isReg() && !HasVEX_4V &&
510 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
511 VEX_R = 0x0;
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000512 }
513 break;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000514 assert(0 && "Not implemented!");
515 }
516
517 // VEX opcode prefix can have 2 or 3 bytes
518 //
519 // 3 bytes:
520 // +-----+ +--------------+ +-------------------+
521 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
522 // +-----+ +--------------+ +-------------------+
523 // 2 bytes:
524 // +-----+ +-------------------+
525 // | C5h | | R | vvvv | L | pp |
526 // +-----+ +-------------------+
527 //
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000528 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
529
Bruno Cardoso Lopesf5cd8c52010-07-02 22:06:54 +0000530 if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000531 EmitByte(0xC5, CurByte, OS);
532 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
533 return;
534 }
535
536 // 3 byte VEX prefix
537 EmitByte(0xC4, CurByte, OS);
Bruno Cardoso Lopes6596a622010-07-01 01:20:06 +0000538 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000539 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
540}
541
Chris Lattner39a612e2010-02-05 22:10:22 +0000542/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
543/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
544/// size, and 3) use of X86-64 extended registers.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000545static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
Chris Lattner39a612e2010-02-05 22:10:22 +0000546 const TargetInstrDesc &Desc) {
Chris Lattner1cea10a2010-02-13 19:16:53 +0000547 // Pseudo instructions never have a rex byte.
548 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
549 return 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000550
Chris Lattner7e851802010-02-11 22:39:10 +0000551 unsigned REX = 0;
Chris Lattner39a612e2010-02-05 22:10:22 +0000552 if (TSFlags & X86II::REX_W)
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000553 REX |= 1 << 3; // set REX.W
Chris Lattner39a612e2010-02-05 22:10:22 +0000554
555 if (MI.getNumOperands() == 0) return REX;
556
557 unsigned NumOps = MI.getNumOperands();
558 // FIXME: MCInst should explicitize the two-addrness.
559 bool isTwoAddr = NumOps > 1 &&
560 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
561
562 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
563 unsigned i = isTwoAddr ? 1 : 0;
564 for (; i != NumOps; ++i) {
565 const MCOperand &MO = MI.getOperand(i);
566 if (!MO.isReg()) continue;
567 unsigned Reg = MO.getReg();
568 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000569 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
570 // that returns non-zero.
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000571 REX |= 0x40; // REX fixed encoding prefix
Chris Lattner39a612e2010-02-05 22:10:22 +0000572 break;
573 }
574
575 switch (TSFlags & X86II::FormMask) {
576 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
577 case X86II::MRMSrcReg:
578 if (MI.getOperand(0).isReg() &&
579 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000580 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000581 i = isTwoAddr ? 2 : 1;
582 for (; i != NumOps; ++i) {
583 const MCOperand &MO = MI.getOperand(i);
584 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000585 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000586 }
587 break;
588 case X86II::MRMSrcMem: {
589 if (MI.getOperand(0).isReg() &&
590 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000591 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000592 unsigned Bit = 0;
593 i = isTwoAddr ? 2 : 1;
594 for (; i != NumOps; ++i) {
595 const MCOperand &MO = MI.getOperand(i);
596 if (MO.isReg()) {
597 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000598 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000599 Bit++;
600 }
601 }
602 break;
603 }
604 case X86II::MRM0m: case X86II::MRM1m:
605 case X86II::MRM2m: case X86II::MRM3m:
606 case X86II::MRM4m: case X86II::MRM5m:
607 case X86II::MRM6m: case X86II::MRM7m:
608 case X86II::MRMDestMem: {
609 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
610 i = isTwoAddr ? 1 : 0;
611 if (NumOps > e && MI.getOperand(e).isReg() &&
612 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000613 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000614 unsigned Bit = 0;
615 for (; i != e; ++i) {
616 const MCOperand &MO = MI.getOperand(i);
617 if (MO.isReg()) {
618 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000619 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
Chris Lattner39a612e2010-02-05 22:10:22 +0000620 Bit++;
621 }
622 }
623 break;
624 }
625 default:
626 if (MI.getOperand(0).isReg() &&
627 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000628 REX |= 1 << 0; // set REX.B
Chris Lattner39a612e2010-02-05 22:10:22 +0000629 i = isTwoAddr ? 2 : 1;
630 for (unsigned e = NumOps; i != e; ++i) {
631 const MCOperand &MO = MI.getOperand(i);
632 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
Bruno Cardoso Lopese4f69072010-06-12 00:03:52 +0000633 REX |= 1 << 2; // set REX.R
Chris Lattner39a612e2010-02-05 22:10:22 +0000634 }
635 break;
636 }
637 return REX;
638}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000639
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000640/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
Chris Lattner834df192010-07-08 22:28:12 +0000641///
642/// MemOperand is the operand # of the start of a memory operand if present. If
643/// Not present, it is -1.
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000644void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
Chris Lattner834df192010-07-08 22:28:12 +0000645 int MemOperand, const MCInst &MI,
Chris Lattner9d199892010-07-04 22:56:10 +0000646 const TargetInstrDesc &Desc,
647 raw_ostream &OS) const {
Chris Lattner1e80f402010-02-03 21:57:59 +0000648
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000649 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000650 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000651 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000652
653 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000654 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000655 default: assert(0 && "Invalid segment!");
Chris Lattner834df192010-07-08 22:28:12 +0000656 case 0:
657 // No segment override, check for explicit one on memory operand.
658 if (MemOperand != -1 && // If the instruction has a memory operand.
659 // FIXME: This is disgusting.
660 MI.getOpcode() != X86::LEA64r && MI.getOpcode() != X86::LEA64_32r &&
661 MI.getOpcode() != X86::LEA16r && MI.getOpcode() != X86::LEA32r) {
662 switch (MI.getOperand(MemOperand+X86AddrSegment).getReg()) {
663 default: assert(0 && "Unknown segment register!");
664 case 0: break;
665 case X86::CS: EmitByte(0x2E, CurByte, OS); break;
666 case X86::SS: EmitByte(0x36, CurByte, OS); break;
667 case X86::DS: EmitByte(0x3E, CurByte, OS); break;
668 case X86::ES: EmitByte(0x26, CurByte, OS); break;
669 case X86::FS: EmitByte(0x64, CurByte, OS); break;
670 case X86::GS: EmitByte(0x65, CurByte, OS); break;
671 }
672 }
673 break;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000674 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000675 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000676 break;
677 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000678 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000679 break;
680 }
681
Chris Lattner1e80f402010-02-03 21:57:59 +0000682 // Emit the repeat opcode prefix as needed.
683 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000684 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000685
Chris Lattner1e80f402010-02-03 21:57:59 +0000686 // Emit the operand size opcode prefix as needed.
687 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000688 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000689
690 // Emit the address size opcode prefix as needed.
691 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000692 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000693
694 bool Need0FPrefix = false;
695 switch (TSFlags & X86II::Op0Mask) {
696 default: assert(0 && "Invalid prefix!");
697 case 0: break; // No prefix!
698 case X86II::REP: break; // already handled.
699 case X86II::TB: // Two-byte opcode prefix
700 case X86II::T8: // 0F 38
701 case X86II::TA: // 0F 3A
702 Need0FPrefix = true;
703 break;
704 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000705 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000706 Need0FPrefix = true;
707 break;
708 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000709 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000710 Need0FPrefix = true;
711 break;
712 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000713 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000714 Need0FPrefix = true;
715 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000716 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
717 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
718 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
719 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
720 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
721 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
722 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
723 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000724 }
725
726 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000727 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000728 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000729 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000730 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000731 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000732
733 // 0x0F escape code must be emitted just before the opcode.
734 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000735 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000736
737 // FIXME: Pull this up into previous switch if REX can be moved earlier.
738 switch (TSFlags & X86II::Op0Mask) {
739 case X86II::TF: // F2 0F 38
740 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000741 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000742 break;
743 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000744 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000745 break;
746 }
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000747}
748
749void X86MCCodeEmitter::
750EncodeInstruction(const MCInst &MI, raw_ostream &OS,
751 SmallVectorImpl<MCFixup> &Fixups) const {
752 unsigned Opcode = MI.getOpcode();
753 const TargetInstrDesc &Desc = TII.get(Opcode);
754 uint64_t TSFlags = Desc.TSFlags;
755
Chris Lattner834df192010-07-08 22:28:12 +0000756
757 // If this is a two-address instruction, skip one of the register operands.
758 // FIXME: This should be handled during MCInst lowering.
759 unsigned NumOps = Desc.getNumOperands();
760 unsigned CurOp = 0;
761 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
762 ++CurOp;
763 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
764 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
765 --NumOps;
766
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000767 // Keep track of the current byte being emitted.
768 unsigned CurByte = 0;
769
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000770 // Is this instruction encoded using the AVX VEX prefix?
771 bool HasVEXPrefix = false;
772
773 // It uses the VEX.VVVV field?
774 bool HasVEX_4V = false;
775
776 if ((TSFlags >> 32) & X86II::VEX)
777 HasVEXPrefix = true;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000778 if ((TSFlags >> 32) & X86II::VEX_4V)
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000779 HasVEX_4V = true;
Chris Lattner1e80f402010-02-03 21:57:59 +0000780
Chris Lattner834df192010-07-08 22:28:12 +0000781 // Determine where the memory operand starts, if present.
782 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
783 if (MemoryOperand != -1) MemoryOperand += CurOp;
784
785 if (!HasVEXPrefix)
786 EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
787 else
788 // FIXME: Segment overrides??
789 EmitVEXOpcodePrefix(TSFlags, CurByte, MI, Desc, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000790
Chris Lattner74a21512010-02-05 19:24:13 +0000791 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000792 unsigned SrcRegNum = 0;
Chris Lattner1e80f402010-02-03 21:57:59 +0000793 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000794 case X86II::MRMInitReg:
795 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000796 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000797 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner1cea10a2010-02-13 19:16:53 +0000798 case X86II::Pseudo: return; // Pseudo instructions encode to nothing.
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000799 case X86II::RawFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000800 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000801 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000802
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000803 case X86II::AddRegFrm:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000804 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000805 break;
Chris Lattner28249d92010-02-05 01:53:19 +0000806
807 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000808 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000809 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000810 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000811 CurOp += 2;
Chris Lattner28249d92010-02-05 01:53:19 +0000812 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000813
814 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000815 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000816 EmitMemModRMByte(MI, CurOp,
817 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner835acab2010-02-12 23:00:36 +0000818 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000819 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000820 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000821
822 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000823 EmitByte(BaseOpcode, CurByte, OS);
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000824 SrcRegNum = CurOp + 1;
825
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000826 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000827 SrcRegNum++;
828
829 EmitRegModRMByte(MI.getOperand(SrcRegNum),
830 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
831 CurOp = SrcRegNum + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000832 break;
833
834 case X86II::MRMSrcMem: {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000835 int AddrOperands = X86AddrNumOperands;
836 unsigned FirstMemOp = CurOp+1;
Bruno Cardoso Lopesc3d57b12010-06-22 22:38:56 +0000837 if (HasVEX_4V) {
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000838 ++AddrOperands;
839 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
840 }
Chris Lattnerdaa45552010-02-05 19:04:37 +0000841
842 // FIXME: Maybe lea should have its own form? This is a horrible hack.
Chris Lattnerdaa45552010-02-05 19:04:37 +0000843 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
844 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000845 --AddrOperands; // No segment register
Bruno Cardoso Lopesc902a592010-06-11 23:50:47 +0000846
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000847 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1cf44fc2010-06-19 00:34:00 +0000848
849 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner835acab2010-02-12 23:00:36 +0000850 TSFlags, CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000851 CurOp += AddrOperands + 1;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000852 break;
853 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000854
855 case X86II::MRM0r: case X86II::MRM1r:
856 case X86II::MRM2r: case X86II::MRM3r:
857 case X86II::MRM4r: case X86II::MRM5r:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000858 case X86II::MRM6r: case X86II::MRM7r:
Bruno Cardoso Lopes5a3a4762010-06-30 01:58:37 +0000859 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
860 CurOp++;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000861 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnereaca5fa2010-02-12 23:54:57 +0000862 EmitRegModRMByte(MI.getOperand(CurOp++),
863 (TSFlags & X86II::FormMask)-X86II::MRM0r,
864 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000865 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000866 case X86II::MRM0m: case X86II::MRM1m:
867 case X86II::MRM2m: case X86II::MRM3m:
868 case X86II::MRM4m: case X86II::MRM5m:
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000869 case X86II::MRM6m: case X86II::MRM7m:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000870 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000871 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner835acab2010-02-12 23:00:36 +0000872 TSFlags, CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000873 CurOp += X86AddrNumOperands;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000874 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000875 case X86II::MRM_C1:
876 EmitByte(BaseOpcode, CurByte, OS);
877 EmitByte(0xC1, CurByte, OS);
878 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000879 case X86II::MRM_C2:
880 EmitByte(BaseOpcode, CurByte, OS);
881 EmitByte(0xC2, CurByte, OS);
882 break;
883 case X86II::MRM_C3:
884 EmitByte(BaseOpcode, CurByte, OS);
885 EmitByte(0xC3, CurByte, OS);
886 break;
887 case X86II::MRM_C4:
888 EmitByte(BaseOpcode, CurByte, OS);
889 EmitByte(0xC4, CurByte, OS);
890 break;
Chris Lattner0d8db8e2010-02-12 02:06:33 +0000891 case X86II::MRM_C8:
892 EmitByte(BaseOpcode, CurByte, OS);
893 EmitByte(0xC8, CurByte, OS);
894 break;
895 case X86II::MRM_C9:
896 EmitByte(BaseOpcode, CurByte, OS);
897 EmitByte(0xC9, CurByte, OS);
898 break;
899 case X86II::MRM_E8:
900 EmitByte(BaseOpcode, CurByte, OS);
901 EmitByte(0xE8, CurByte, OS);
902 break;
903 case X86II::MRM_F0:
904 EmitByte(BaseOpcode, CurByte, OS);
905 EmitByte(0xF0, CurByte, OS);
906 break;
Chris Lattnera599de22010-02-13 00:41:14 +0000907 case X86II::MRM_F8:
908 EmitByte(BaseOpcode, CurByte, OS);
909 EmitByte(0xF8, CurByte, OS);
910 break;
Chris Lattnerb7790332010-02-13 03:42:24 +0000911 case X86II::MRM_F9:
912 EmitByte(BaseOpcode, CurByte, OS);
913 EmitByte(0xF9, CurByte, OS);
914 break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000915 }
Chris Lattner8b0f7a72010-02-11 07:06:31 +0000916
917 // If there is a remaining operand, it must be a trailing immediate. Emit it
918 // according to the right size for the instruction.
Bruno Cardoso Lopes07de4062010-07-06 22:36:24 +0000919 if (CurOp != NumOps) {
920 // The last source register of a 4 operand instruction in AVX is encoded
921 // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
922 if ((TSFlags >> 32) & X86II::VEX_I8IMM) {
923 const MCOperand &MO = MI.getOperand(CurOp++);
924 bool IsExtReg =
925 X86InstrInfo::isX86_64ExtendedReg(MO.getReg());
926 unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
927 RegNum |= GetX86RegNum(MO) << 4;
928 EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
929 Fixups);
930 } else
931 EmitImmediate(MI.getOperand(CurOp++),
932 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
933 CurByte, OS, Fixups);
934 }
935
936
Chris Lattner28249d92010-02-05 01:53:19 +0000937#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000938 // FIXME: Verify.
939 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000940 errs() << "Cannot encode all operands of: ";
941 MI.dump();
942 errs() << '\n';
943 abort();
944 }
945#endif
Chris Lattner45762472010-02-03 21:24:49 +0000946}