blob: ef232a6374a257cc00b49dd27e6f8bded0b1285f [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Anton Korobeynikovc6c98af2007-04-29 18:02:48 +000027 <li><a href="#aliasstructure">Aliases</a>
Reid Spencerca86e162006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000029 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000030 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000031 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000032 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000033 </ol>
34 </li>
Chris Lattner00950542001-06-06 20:29:01 +000035 <li><a href="#typesystem">Type System</a>
36 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000038 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000039 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000040 <li><a href="#t_floating">Floating Point Types</a></li>
41 <li><a href="#t_void">Void Type</a></li>
42 <li><a href="#t_label">Label Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000043 </ol>
44 </li>
Chris Lattner00950542001-06-06 20:29:01 +000045 <li><a href="#t_derived">Derived Types</a>
46 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000047 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000048 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000049 <li><a href="#t_function">Function Type</a></li>
50 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000051 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000052 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000053 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000054 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000055 </ol>
56 </li>
57 </ol>
58 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000059 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000060 <ol>
61 <li><a href="#simpleconstants">Simple Constants</a>
62 <li><a href="#aggregateconstants">Aggregate Constants</a>
63 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
64 <li><a href="#undefvalues">Undefined Values</a>
65 <li><a href="#constantexprs">Constant Expressions</a>
66 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000067 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000068 <li><a href="#othervalues">Other Values</a>
69 <ol>
70 <li><a href="#inlineasm">Inline Assembler Expressions</a>
71 </ol>
72 </li>
Chris Lattner00950542001-06-06 20:29:01 +000073 <li><a href="#instref">Instruction Reference</a>
74 <ol>
75 <li><a href="#terminators">Terminator Instructions</a>
76 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000077 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
78 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000079 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
80 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000082 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000083 </ol>
84 </li>
Chris Lattner00950542001-06-06 20:29:01 +000085 <li><a href="#binaryops">Binary Operations</a>
86 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000087 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
88 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
89 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000090 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
91 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
92 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000093 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
94 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
95 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000096 </ol>
97 </li>
Chris Lattner00950542001-06-06 20:29:01 +000098 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
99 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000100 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
101 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
102 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000103 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000104 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000105 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000106 </ol>
107 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000108 <li><a href="#vectorops">Vector Operations</a>
109 <ol>
110 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
111 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
112 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000113 </ol>
114 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000115 <li><a href="#aggregateops">Aggregate Operations</a>
116 <ol>
117 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
118 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
119 </ol>
120 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000121 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000122 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000123 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
124 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
125 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000126 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
127 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
128 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000129 </ol>
130 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000131 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000132 <ol>
133 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
134 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
135 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
136 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
137 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000138 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
139 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
140 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
141 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000142 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
143 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000144 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000145 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000146 <li><a href="#otherops">Other Operations</a>
147 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000148 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
149 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000150 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
151 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000152 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000153 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000154 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000155 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000156 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000157 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000158 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000159 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000160 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000161 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000162 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
163 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000164 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
165 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
166 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000167 </ol>
168 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000169 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
170 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000171 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
172 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
173 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000174 </ol>
175 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000176 <li><a href="#int_codegen">Code Generator Intrinsics</a>
177 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000178 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
179 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
180 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
181 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
182 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
183 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
184 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000185 </ol>
186 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000187 <li><a href="#int_libc">Standard C Library Intrinsics</a>
188 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000189 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
190 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
191 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
192 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
193 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000194 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
195 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000197 </ol>
198 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000199 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000200 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000201 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000202 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
203 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
204 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000205 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
206 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000207 </ol>
208 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000209 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000210 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000211 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000212 <ol>
213 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000214 </ol>
215 </li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000216 <li><a href="#int_atomics">Atomic intrinsics</a>
217 <ol>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000218 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
Mon P Wang28873102008-06-25 08:15:39 +0000219 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
Andrew Lenharthab0b9492008-02-21 06:45:13 +0000220 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
Mon P Wang28873102008-06-25 08:15:39 +0000221 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
222 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
223 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
224 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
225 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
226 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
227 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
228 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
229 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
230 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +0000231 </ol>
232 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000233 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000234 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000235 <li><a href="#int_var_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000236 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000237 <li><a href="#int_annotation">
Tanya Lattner91d0b882007-09-22 00:01:26 +0000238 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000239 <li><a href="#int_trap">
240 <tt>llvm.trap</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000241 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000242 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000243 </ol>
244 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000245</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000246
247<div class="doc_author">
248 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
249 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000250</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000251
Chris Lattner00950542001-06-06 20:29:01 +0000252<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000253<div class="doc_section"> <a name="abstract">Abstract </a></div>
254<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000255
Misha Brukman9d0919f2003-11-08 01:05:38 +0000256<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000257<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000258LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000259type safety, low-level operations, flexibility, and the capability of
260representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000261representation used throughout all phases of the LLVM compilation
262strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000263</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000264
Chris Lattner00950542001-06-06 20:29:01 +0000265<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000266<div class="doc_section"> <a name="introduction">Introduction</a> </div>
267<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000268
Misha Brukman9d0919f2003-11-08 01:05:38 +0000269<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000270
Chris Lattner261efe92003-11-25 01:02:51 +0000271<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000272different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000273representation (suitable for fast loading by a Just-In-Time compiler),
274and as a human readable assembly language representation. This allows
275LLVM to provide a powerful intermediate representation for efficient
276compiler transformations and analysis, while providing a natural means
277to debug and visualize the transformations. The three different forms
278of LLVM are all equivalent. This document describes the human readable
279representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000280
John Criswellc1f786c2005-05-13 22:25:59 +0000281<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000282while being expressive, typed, and extensible at the same time. It
283aims to be a "universal IR" of sorts, by being at a low enough level
284that high-level ideas may be cleanly mapped to it (similar to how
285microprocessors are "universal IR's", allowing many source languages to
286be mapped to them). By providing type information, LLVM can be used as
287the target of optimizations: for example, through pointer analysis, it
288can be proven that a C automatic variable is never accessed outside of
289the current function... allowing it to be promoted to a simple SSA
290value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000291
Misha Brukman9d0919f2003-11-08 01:05:38 +0000292</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000293
Chris Lattner00950542001-06-06 20:29:01 +0000294<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000295<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000296
Misha Brukman9d0919f2003-11-08 01:05:38 +0000297<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000298
Chris Lattner261efe92003-11-25 01:02:51 +0000299<p>It is important to note that this document describes 'well formed'
300LLVM assembly language. There is a difference between what the parser
301accepts and what is considered 'well formed'. For example, the
302following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000303
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000304<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000305<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000306%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000307</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000308</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000309
Chris Lattner261efe92003-11-25 01:02:51 +0000310<p>...because the definition of <tt>%x</tt> does not dominate all of
311its uses. The LLVM infrastructure provides a verification pass that may
312be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000313automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000314the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000315by the verifier pass indicate bugs in transformation passes or input to
316the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000317</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000318
Chris Lattnercc689392007-10-03 17:34:29 +0000319<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000320
Chris Lattner00950542001-06-06 20:29:01 +0000321<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000322<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000323<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000324
Misha Brukman9d0919f2003-11-08 01:05:38 +0000325<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000326
Reid Spencer2c452282007-08-07 14:34:28 +0000327 <p>LLVM identifiers come in two basic types: global and local. Global
328 identifiers (functions, global variables) begin with the @ character. Local
329 identifiers (register names, types) begin with the % character. Additionally,
330 there are three different formats for identifiers, for different purposes:
Chris Lattnerd7923912004-05-23 21:06:01 +0000331
Chris Lattner00950542001-06-06 20:29:01 +0000332<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000333 <li>Named values are represented as a string of characters with their prefix.
334 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
335 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000336 Identifiers which require other characters in their names can be surrounded
Reid Spencer2c452282007-08-07 14:34:28 +0000337 with quotes. In this way, anything except a <tt>&quot;</tt> character can
338 be used in a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000339
Reid Spencer2c452282007-08-07 14:34:28 +0000340 <li>Unnamed values are represented as an unsigned numeric value with their
341 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000342
Reid Spencercc16dc32004-12-09 18:02:53 +0000343 <li>Constants, which are described in a <a href="#constants">section about
344 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000345</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000346
Reid Spencer2c452282007-08-07 14:34:28 +0000347<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000348don't need to worry about name clashes with reserved words, and the set of
349reserved words may be expanded in the future without penalty. Additionally,
350unnamed identifiers allow a compiler to quickly come up with a temporary
351variable without having to avoid symbol table conflicts.</p>
352
Chris Lattner261efe92003-11-25 01:02:51 +0000353<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000354languages. There are keywords for different opcodes
355('<tt><a href="#i_add">add</a></tt>',
356 '<tt><a href="#i_bitcast">bitcast</a></tt>',
357 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000358href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000359and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000360none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000361
362<p>Here is an example of LLVM code to multiply the integer variable
363'<tt>%X</tt>' by 8:</p>
364
Misha Brukman9d0919f2003-11-08 01:05:38 +0000365<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000366
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000367<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000368<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000369%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000370</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000371</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000372
Misha Brukman9d0919f2003-11-08 01:05:38 +0000373<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000374
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000375<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000376<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000377%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000378</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000379</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000380
Misha Brukman9d0919f2003-11-08 01:05:38 +0000381<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000382
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000383<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000384<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000385<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
386<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
387%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000388</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000389</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000390
Chris Lattner261efe92003-11-25 01:02:51 +0000391<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
392important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000393
Chris Lattner00950542001-06-06 20:29:01 +0000394<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000395
396 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
397 line.</li>
398
399 <li>Unnamed temporaries are created when the result of a computation is not
400 assigned to a named value.</li>
401
Misha Brukman9d0919f2003-11-08 01:05:38 +0000402 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000403
Misha Brukman9d0919f2003-11-08 01:05:38 +0000404</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000405
John Criswelle4c57cc2005-05-12 16:52:32 +0000406<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000407demonstrating instructions, we will follow an instruction with a comment that
408defines the type and name of value produced. Comments are shown in italic
409text.</p>
410
Misha Brukman9d0919f2003-11-08 01:05:38 +0000411</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000412
413<!-- *********************************************************************** -->
414<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
415<!-- *********************************************************************** -->
416
417<!-- ======================================================================= -->
418<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
419</div>
420
421<div class="doc_text">
422
423<p>LLVM programs are composed of "Module"s, each of which is a
424translation unit of the input programs. Each module consists of
425functions, global variables, and symbol table entries. Modules may be
426combined together with the LLVM linker, which merges function (and
427global variable) definitions, resolves forward declarations, and merges
428symbol table entries. Here is an example of the "hello world" module:</p>
429
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000430<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000431<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000432<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
433 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000434
435<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000436<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000437
438<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000439define i32 @main() { <i>; i32()* </i>
Reid Spencerca86e162006-12-31 07:07:53 +0000440 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000441 %cast210 = <a
Chris Lattner6c0955b2007-06-12 17:01:15 +0000442 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000443
444 <i>; Call puts function to write out the string to stdout...</i>
445 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000446 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000447 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000448 href="#i_ret">ret</a> i32 0<br>}<br>
449</pre>
450</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000451
452<p>This example is made up of a <a href="#globalvars">global variable</a>
453named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
454function, and a <a href="#functionstructure">function definition</a>
455for "<tt>main</tt>".</p>
456
Chris Lattnere5d947b2004-12-09 16:36:40 +0000457<p>In general, a module is made up of a list of global values,
458where both functions and global variables are global values. Global values are
459represented by a pointer to a memory location (in this case, a pointer to an
460array of char, and a pointer to a function), and have one of the following <a
461href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000462
Chris Lattnere5d947b2004-12-09 16:36:40 +0000463</div>
464
465<!-- ======================================================================= -->
466<div class="doc_subsection">
467 <a name="linkage">Linkage Types</a>
468</div>
469
470<div class="doc_text">
471
472<p>
473All Global Variables and Functions have one of the following types of linkage:
474</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000475
476<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000477
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000478 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000479
480 <dd>Global values with internal linkage are only directly accessible by
481 objects in the current module. In particular, linking code into a module with
482 an internal global value may cause the internal to be renamed as necessary to
483 avoid collisions. Because the symbol is internal to the module, all
484 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000485 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000486 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000487
Chris Lattnerfa730212004-12-09 16:11:40 +0000488 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000489
Chris Lattner4887bd82007-01-14 06:51:48 +0000490 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
491 the same name when linkage occurs. This is typically used to implement
492 inline functions, templates, or other code which must be generated in each
493 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
494 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000495 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000496
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000497 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
498
499 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
500 linkage, except that unreferenced <tt>common</tt> globals may not be
501 discarded. This is used for globals that may be emitted in multiple
502 translation units, but that are not guaranteed to be emitted into every
503 translation unit that uses them. One example of this is tentative
504 definitions in C, such as "<tt>int X;</tt>" at global scope.
505 </dd>
506
Chris Lattnerfa730212004-12-09 16:11:40 +0000507 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000508
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000509 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
510 that some targets may choose to emit different assembly sequences for them
511 for target-dependent reasons. This is used for globals that are declared
512 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000513 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000514
Chris Lattnerfa730212004-12-09 16:11:40 +0000515 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000516
517 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
518 pointer to array type. When two global variables with appending linkage are
519 linked together, the two global arrays are appended together. This is the
520 LLVM, typesafe, equivalent of having the system linker append together
521 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000522 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000523
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000524 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000525 <dd>The semantics of this linkage follow the ELF object file model: the
526 symbol is weak until linked, if not linked, the symbol becomes null instead
527 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000528 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000529
Chris Lattnerfa730212004-12-09 16:11:40 +0000530 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000531
532 <dd>If none of the above identifiers are used, the global is externally
533 visible, meaning that it participates in linkage and can be used to resolve
534 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000535 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000536</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000537
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000538 <p>
539 The next two types of linkage are targeted for Microsoft Windows platform
540 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000541 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000542 </p>
543
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000544 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000545 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
546
547 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
548 or variable via a global pointer to a pointer that is set up by the DLL
549 exporting the symbol. On Microsoft Windows targets, the pointer name is
550 formed by combining <code>_imp__</code> and the function or variable name.
551 </dd>
552
553 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
554
555 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
556 pointer to a pointer in a DLL, so that it can be referenced with the
557 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
558 name is formed by combining <code>_imp__</code> and the function or variable
559 name.
560 </dd>
561
Chris Lattnerfa730212004-12-09 16:11:40 +0000562</dl>
563
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000564<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000565variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
566variable and was linked with this one, one of the two would be renamed,
567preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
568external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000569outside of the current module.</p>
570<p>It is illegal for a function <i>declaration</i>
571to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000572or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000573<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
574linkages.
Chris Lattnerfa730212004-12-09 16:11:40 +0000575</div>
576
577<!-- ======================================================================= -->
578<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000579 <a name="callingconv">Calling Conventions</a>
580</div>
581
582<div class="doc_text">
583
584<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
585and <a href="#i_invoke">invokes</a> can all have an optional calling convention
586specified for the call. The calling convention of any pair of dynamic
587caller/callee must match, or the behavior of the program is undefined. The
588following calling conventions are supported by LLVM, and more may be added in
589the future:</p>
590
591<dl>
592 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
593
594 <dd>This calling convention (the default if no other calling convention is
595 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000596 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000597 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000598 </dd>
599
600 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
601
602 <dd>This calling convention attempts to make calls as fast as possible
603 (e.g. by passing things in registers). This calling convention allows the
604 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000605 without having to conform to an externally specified ABI (Application Binary
606 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000607 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
608 supported. This calling convention does not support varargs and requires the
609 prototype of all callees to exactly match the prototype of the function
610 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000611 </dd>
612
613 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
614
615 <dd>This calling convention attempts to make code in the caller as efficient
616 as possible under the assumption that the call is not commonly executed. As
617 such, these calls often preserve all registers so that the call does not break
618 any live ranges in the caller side. This calling convention does not support
619 varargs and requires the prototype of all callees to exactly match the
620 prototype of the function definition.
621 </dd>
622
Chris Lattnercfe6b372005-05-07 01:46:40 +0000623 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000624
625 <dd>Any calling convention may be specified by number, allowing
626 target-specific calling conventions to be used. Target specific calling
627 conventions start at 64.
628 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000629</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000630
631<p>More calling conventions can be added/defined on an as-needed basis, to
632support pascal conventions or any other well-known target-independent
633convention.</p>
634
635</div>
636
637<!-- ======================================================================= -->
638<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000639 <a name="visibility">Visibility Styles</a>
640</div>
641
642<div class="doc_text">
643
644<p>
645All Global Variables and Functions have one of the following visibility styles:
646</p>
647
648<dl>
649 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
650
Chris Lattnerd3eda892008-08-05 18:29:16 +0000651 <dd>On targets that use the ELF object file format, default visibility means
652 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000653 modules and, in shared libraries, means that the declared entity may be
654 overridden. On Darwin, default visibility means that the declaration is
655 visible to other modules. Default visibility corresponds to "external
656 linkage" in the language.
657 </dd>
658
659 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
660
661 <dd>Two declarations of an object with hidden visibility refer to the same
662 object if they are in the same shared object. Usually, hidden visibility
663 indicates that the symbol will not be placed into the dynamic symbol table,
664 so no other module (executable or shared library) can reference it
665 directly.
666 </dd>
667
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000668 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
669
670 <dd>On ELF, protected visibility indicates that the symbol will be placed in
671 the dynamic symbol table, but that references within the defining module will
672 bind to the local symbol. That is, the symbol cannot be overridden by another
673 module.
674 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000675</dl>
676
677</div>
678
679<!-- ======================================================================= -->
680<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000681 <a name="globalvars">Global Variables</a>
682</div>
683
684<div class="doc_text">
685
Chris Lattner3689a342005-02-12 19:30:21 +0000686<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000687instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000688an explicit section to be placed in, and may have an optional explicit alignment
689specified. A variable may be defined as "thread_local", which means that it
690will not be shared by threads (each thread will have a separated copy of the
691variable). A variable may be defined as a global "constant," which indicates
692that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000693optimization, allowing the global data to be placed in the read-only section of
694an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000695cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000696
697<p>
698LLVM explicitly allows <em>declarations</em> of global variables to be marked
699constant, even if the final definition of the global is not. This capability
700can be used to enable slightly better optimization of the program, but requires
701the language definition to guarantee that optimizations based on the
702'constantness' are valid for the translation units that do not include the
703definition.
704</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000705
706<p>As SSA values, global variables define pointer values that are in
707scope (i.e. they dominate) all basic blocks in the program. Global
708variables always define a pointer to their "content" type because they
709describe a region of memory, and all memory objects in LLVM are
710accessed through pointers.</p>
711
Christopher Lamb284d9922007-12-11 09:31:00 +0000712<p>A global variable may be declared to reside in a target-specifc numbered
713address space. For targets that support them, address spaces may affect how
714optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000715the variable. The default address space is zero. The address space qualifier
716must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000717
Chris Lattner88f6c462005-11-12 00:45:07 +0000718<p>LLVM allows an explicit section to be specified for globals. If the target
719supports it, it will emit globals to the section specified.</p>
720
Chris Lattner2cbdc452005-11-06 08:02:57 +0000721<p>An explicit alignment may be specified for a global. If not present, or if
722the alignment is set to zero, the alignment of the global is set by the target
723to whatever it feels convenient. If an explicit alignment is specified, the
724global is forced to have at least that much alignment. All alignments must be
725a power of 2.</p>
726
Christopher Lamb284d9922007-12-11 09:31:00 +0000727<p>For example, the following defines a global in a numbered address space with
728an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000729
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000730<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000731<pre>
Christopher Lamb284d9922007-12-11 09:31:00 +0000732@G = constant float 1.0 addrspace(5), section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000733</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000734</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000735
Chris Lattnerfa730212004-12-09 16:11:40 +0000736</div>
737
738
739<!-- ======================================================================= -->
740<div class="doc_subsection">
741 <a name="functionstructure">Functions</a>
742</div>
743
744<div class="doc_text">
745
Reid Spencerca86e162006-12-31 07:07:53 +0000746<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
747an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000748<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000749<a href="#callingconv">calling convention</a>, a return type, an optional
750<a href="#paramattrs">parameter attribute</a> for the return type, a function
751name, a (possibly empty) argument list (each with optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000752<a href="#paramattrs">parameter attributes</a>), an optional section, an
Devang Patelf8b94812008-09-04 23:05:13 +0000753optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000754an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000755
756LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
757optional <a href="#linkage">linkage type</a>, an optional
758<a href="#visibility">visibility style</a>, an optional
759<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000760<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000761name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000762<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000763
Chris Lattnerd3eda892008-08-05 18:29:16 +0000764<p>A function definition contains a list of basic blocks, forming the CFG
765(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000766the function. Each basic block may optionally start with a label (giving the
767basic block a symbol table entry), contains a list of instructions, and ends
768with a <a href="#terminators">terminator</a> instruction (such as a branch or
769function return).</p>
770
Chris Lattner4a3c9012007-06-08 16:52:14 +0000771<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000772executed on entrance to the function, and it is not allowed to have predecessor
773basic blocks (i.e. there can not be any branches to the entry block of a
774function). Because the block can have no predecessors, it also cannot have any
775<a href="#i_phi">PHI nodes</a>.</p>
776
Chris Lattner88f6c462005-11-12 00:45:07 +0000777<p>LLVM allows an explicit section to be specified for functions. If the target
778supports it, it will emit functions to the section specified.</p>
779
Chris Lattner2cbdc452005-11-06 08:02:57 +0000780<p>An explicit alignment may be specified for a function. If not present, or if
781the alignment is set to zero, the alignment of the function is set by the target
782to whatever it feels convenient. If an explicit alignment is specified, the
783function is forced to have at least that much alignment. All alignments must be
784a power of 2.</p>
785
Chris Lattnerfa730212004-12-09 16:11:40 +0000786</div>
787
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000788
789<!-- ======================================================================= -->
790<div class="doc_subsection">
791 <a name="aliasstructure">Aliases</a>
792</div>
793<div class="doc_text">
794 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000795 function, global variable, another alias or bitcast of global value). Aliases
796 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000797 optional <a href="#visibility">visibility style</a>.</p>
798
799 <h5>Syntax:</h5>
800
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000801<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000802<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000803@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000804</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000805</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000806
807</div>
808
809
810
Chris Lattner4e9aba72006-01-23 23:23:47 +0000811<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000812<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
813<div class="doc_text">
814 <p>The return type and each parameter of a function type may have a set of
815 <i>parameter attributes</i> associated with them. Parameter attributes are
816 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000817 a function. Parameter attributes are considered to be part of the function,
818 not of the function type, so functions with different parameter attributes
819 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000820
Reid Spencer950e9f82007-01-15 18:27:39 +0000821 <p>Parameter attributes are simple keywords that follow the type specified. If
822 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000823 example:</p>
824
825<div class="doc_code">
826<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000827declare i32 @printf(i8* noalias , ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000828declare i32 @atoi(i8 zeroext)
829declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000830</pre>
831</div>
832
Duncan Sandsdc024672007-11-27 13:23:08 +0000833 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
834 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000835
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000836 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000837 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000838 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000839 <dd>This indicates to the code generator that the parameter or return value
840 should be zero-extended to a 32-bit value by the caller (for a parameter)
841 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000842
Reid Spencer9445e9a2007-07-19 23:13:04 +0000843 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000844 <dd>This indicates to the code generator that the parameter or return value
845 should be sign-extended to a 32-bit value by the caller (for a parameter)
846 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000847
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000848 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000849 <dd>This indicates that this parameter or return value should be treated
850 in a special target-dependent fashion during while emitting code for a
851 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000852 to memory, though some targets use it to distinguish between two different
853 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000854
855 <dt><tt>byval</tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000856 <dd>This indicates that the pointer parameter should really be passed by
857 value to the function. The attribute implies that a hidden copy of the
858 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000859 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000860 pointer arguments. It is generally used to pass structs and arrays by
Chris Lattner66d922c2008-10-04 18:33:34 +0000861 value, but is also valid on pointers to scalars.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000862
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000863 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000864 <dd>This indicates that the pointer parameter specifies the address of a
865 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000866 This pointer must be guaranteed by the caller to be valid: loads and stores
867 to the structure may be assumed by the callee to not to trap. This may only
868 be applied to the first parameter.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000869
Zhou Shengfebca342007-06-05 05:28:26 +0000870 <dt><tt>noalias</tt></dt>
Owen Anderson117bbd32008-02-18 04:09:01 +0000871 <dd>This indicates that the parameter does not alias any global or any other
872 parameter. The caller is responsible for ensuring that this is the case,
873 usually by placing the value in a stack allocation.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000874
Duncan Sands50f19f52007-07-27 19:57:41 +0000875 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000876 <dd>This indicates that the pointer parameter can be excised using the
Duncan Sands50f19f52007-07-27 19:57:41 +0000877 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000878 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000879
Reid Spencerca86e162006-12-31 07:07:53 +0000880</div>
881
882<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000883<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000884 <a name="gc">Garbage Collector Names</a>
885</div>
886
887<div class="doc_text">
888<p>Each function may specify a garbage collector name, which is simply a
889string.</p>
890
891<div class="doc_code"><pre
892>define void @f() gc "name" { ...</pre></div>
893
894<p>The compiler declares the supported values of <i>name</i>. Specifying a
895collector which will cause the compiler to alter its output in order to support
896the named garbage collection algorithm.</p>
897</div>
898
899<!-- ======================================================================= -->
900<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000901 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +0000902</div>
903
904<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +0000905
906<p>Function attributes are set to communicate additional information about
907 a function. Function attributes are considered to be part of the function,
908 not of the function type, so functions with different parameter attributes
909 can have the same function type.</p>
910
911 <p>Function attributes are simple keywords that follow the type specified. If
912 multiple attributes are needed, they are space separated. For
913 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +0000914
915<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000916<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000917define void @f() noinline { ... }
918define void @f() alwaysinline { ... }
919define void @f() alwaysinline optsize { ... }
920define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000921</pre>
Devang Patelf8b94812008-09-04 23:05:13 +0000922</div>
923
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000924<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000925<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000926<dd>This attribute indicates that the inliner should attempt to inline this
927function into callers whenever possible, ignoring any active inlining size
928threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000929
Devang Patel2c9c3e72008-09-26 23:51:19 +0000930<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000931<dd>This attribute indicates that the inliner should never inline this function
932in any situation. This attribute may not be used together with
933<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000934
Devang Patel2c9c3e72008-09-26 23:51:19 +0000935<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +0000936<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +0000937make choices that keep the code size of this function low, and otherwise do
938optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000939
Devang Patel2c9c3e72008-09-26 23:51:19 +0000940<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000941<dd>This function attribute indicates that the function never returns normally.
942This produces undefined behavior at runtime if the function ever does
943dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +0000944
945<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000946<dd>This function attribute indicates that the function never returns with an
947unwind or exceptional control flow. If the function does unwind, its runtime
948behavior is undefined.</dd>
949
950<dt><tt>readnone</tt></dt>
951<dd>This attribute indicates that the function computes its result (or its
952thrown exception) based strictly on its arguments. It does not read any global
953mutable state (e.g. memory, control registers, etc) visible to caller functions.
954Furthermore, <tt>readnone</tt> functions never change any state visible to their
955caller.
Devang Patel2c9c3e72008-09-26 23:51:19 +0000956
957<dt><tt>readonly</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +0000958<dd>This function attribute indicates that the function has no side-effects on
959the calling function, but that it depends on state (memory state, control
960register state, etc) that may be set in the caller. A readonly function always
961returns the same value (or throws the same exception) whenever it is called with
962a particular set of arguments and global state.</dd>
963
Bill Wendlinge36dccc2008-09-07 10:26:33 +0000964</dl>
965
Devang Patelf8b94812008-09-04 23:05:13 +0000966</div>
967
968<!-- ======================================================================= -->
969<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000970 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000971</div>
972
973<div class="doc_text">
974<p>
975Modules may contain "module-level inline asm" blocks, which corresponds to the
976GCC "file scope inline asm" blocks. These blocks are internally concatenated by
977LLVM and treated as a single unit, but may be separated in the .ll file if
978desired. The syntax is very simple:
979</p>
980
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000981<div class="doc_code">
982<pre>
983module asm "inline asm code goes here"
984module asm "more can go here"
985</pre>
986</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000987
988<p>The strings can contain any character by escaping non-printable characters.
989 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
990 for the number.
991</p>
992
993<p>
994 The inline asm code is simply printed to the machine code .s file when
995 assembly code is generated.
996</p>
997</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000998
Reid Spencerde151942007-02-19 23:54:10 +0000999<!-- ======================================================================= -->
1000<div class="doc_subsection">
1001 <a name="datalayout">Data Layout</a>
1002</div>
1003
1004<div class="doc_text">
1005<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001006data is to be laid out in memory. The syntax for the data layout is simply:</p>
1007<pre> target datalayout = "<i>layout specification</i>"</pre>
1008<p>The <i>layout specification</i> consists of a list of specifications
1009separated by the minus sign character ('-'). Each specification starts with a
1010letter and may include other information after the letter to define some
1011aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001012<dl>
1013 <dt><tt>E</tt></dt>
1014 <dd>Specifies that the target lays out data in big-endian form. That is, the
1015 bits with the most significance have the lowest address location.</dd>
1016 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001017 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001018 the bits with the least significance have the lowest address location.</dd>
1019 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1020 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1021 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1022 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1023 too.</dd>
1024 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1025 <dd>This specifies the alignment for an integer type of a given bit
1026 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1027 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1028 <dd>This specifies the alignment for a vector type of a given bit
1029 <i>size</i>.</dd>
1030 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1031 <dd>This specifies the alignment for a floating point type of a given bit
1032 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1033 (double).</dd>
1034 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1035 <dd>This specifies the alignment for an aggregate type of a given bit
1036 <i>size</i>.</dd>
1037</dl>
1038<p>When constructing the data layout for a given target, LLVM starts with a
1039default set of specifications which are then (possibly) overriden by the
1040specifications in the <tt>datalayout</tt> keyword. The default specifications
1041are given in this list:</p>
1042<ul>
1043 <li><tt>E</tt> - big endian</li>
1044 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1045 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1046 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1047 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1048 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001049 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001050 alignment of 64-bits</li>
1051 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1052 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1053 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1054 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1055 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1056</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001057<p>When LLVM is determining the alignment for a given type, it uses the
Reid Spencerde151942007-02-19 23:54:10 +00001058following rules:
1059<ol>
1060 <li>If the type sought is an exact match for one of the specifications, that
1061 specification is used.</li>
1062 <li>If no match is found, and the type sought is an integer type, then the
1063 smallest integer type that is larger than the bitwidth of the sought type is
1064 used. If none of the specifications are larger than the bitwidth then the the
1065 largest integer type is used. For example, given the default specifications
1066 above, the i7 type will use the alignment of i8 (next largest) while both
1067 i65 and i256 will use the alignment of i64 (largest specified).</li>
1068 <li>If no match is found, and the type sought is a vector type, then the
1069 largest vector type that is smaller than the sought vector type will be used
1070 as a fall back. This happens because <128 x double> can be implemented in
1071 terms of 64 <2 x double>, for example.</li>
1072</ol>
1073</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001074
Chris Lattner00950542001-06-06 20:29:01 +00001075<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001076<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1077<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001078
Misha Brukman9d0919f2003-11-08 01:05:38 +00001079<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001080
Misha Brukman9d0919f2003-11-08 01:05:38 +00001081<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001082intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001083optimizations to be performed on the intermediate representation directly,
1084without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001085extra analyses on the side before the transformation. A strong type
1086system makes it easier to read the generated code and enables novel
1087analyses and transformations that are not feasible to perform on normal
1088three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001089
1090</div>
1091
Chris Lattner00950542001-06-06 20:29:01 +00001092<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001093<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001094Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001095<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001096<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001097classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001098
1099<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001100 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001101 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001102 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001103 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001104 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001105 </tr>
1106 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001107 <td><a href="#t_floating">floating point</a></td>
1108 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001109 </tr>
1110 <tr>
1111 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001112 <td><a href="#t_integer">integer</a>,
1113 <a href="#t_floating">floating point</a>,
1114 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001115 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001116 <a href="#t_struct">structure</a>,
1117 <a href="#t_array">array</a>,
Dan Gohmanade5faa2008-05-23 22:50:26 +00001118 <a href="#t_label">label</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001119 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001120 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001121 <tr>
1122 <td><a href="#t_primitive">primitive</a></td>
1123 <td><a href="#t_label">label</a>,
1124 <a href="#t_void">void</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001125 <a href="#t_floating">floating point</a>.</td>
1126 </tr>
1127 <tr>
1128 <td><a href="#t_derived">derived</a></td>
1129 <td><a href="#t_integer">integer</a>,
1130 <a href="#t_array">array</a>,
1131 <a href="#t_function">function</a>,
1132 <a href="#t_pointer">pointer</a>,
1133 <a href="#t_struct">structure</a>,
1134 <a href="#t_pstruct">packed structure</a>,
1135 <a href="#t_vector">vector</a>,
1136 <a href="#t_opaque">opaque</a>.
1137 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001138 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001139</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001140
Chris Lattner261efe92003-11-25 01:02:51 +00001141<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1142most important. Values of these types are the only ones which can be
1143produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001144instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001145</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001146
Chris Lattner00950542001-06-06 20:29:01 +00001147<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001148<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001149
Chris Lattner4f69f462008-01-04 04:32:38 +00001150<div class="doc_text">
1151<p>The primitive types are the fundamental building blocks of the LLVM
1152system.</p>
1153
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001154</div>
1155
Chris Lattner4f69f462008-01-04 04:32:38 +00001156<!-- _______________________________________________________________________ -->
1157<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1158
1159<div class="doc_text">
1160 <table>
1161 <tbody>
1162 <tr><th>Type</th><th>Description</th></tr>
1163 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1164 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1165 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1166 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1167 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1168 </tbody>
1169 </table>
1170</div>
1171
1172<!-- _______________________________________________________________________ -->
1173<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1174
1175<div class="doc_text">
1176<h5>Overview:</h5>
1177<p>The void type does not represent any value and has no size.</p>
1178
1179<h5>Syntax:</h5>
1180
1181<pre>
1182 void
1183</pre>
1184</div>
1185
1186<!-- _______________________________________________________________________ -->
1187<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1188
1189<div class="doc_text">
1190<h5>Overview:</h5>
1191<p>The label type represents code labels.</p>
1192
1193<h5>Syntax:</h5>
1194
1195<pre>
1196 label
1197</pre>
1198</div>
1199
1200
1201<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001202<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001203
Misha Brukman9d0919f2003-11-08 01:05:38 +00001204<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001205
Chris Lattner261efe92003-11-25 01:02:51 +00001206<p>The real power in LLVM comes from the derived types in the system.
1207This is what allows a programmer to represent arrays, functions,
1208pointers, and other useful types. Note that these derived types may be
1209recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001210
Misha Brukman9d0919f2003-11-08 01:05:38 +00001211</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001212
Chris Lattner00950542001-06-06 20:29:01 +00001213<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001214<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1215
1216<div class="doc_text">
1217
1218<h5>Overview:</h5>
1219<p>The integer type is a very simple derived type that simply specifies an
1220arbitrary bit width for the integer type desired. Any bit width from 1 bit to
12212^23-1 (about 8 million) can be specified.</p>
1222
1223<h5>Syntax:</h5>
1224
1225<pre>
1226 iN
1227</pre>
1228
1229<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1230value.</p>
1231
1232<h5>Examples:</h5>
1233<table class="layout">
Chris Lattnerb9488a62007-12-18 06:18:21 +00001234 <tbody>
1235 <tr>
1236 <td><tt>i1</tt></td>
1237 <td>a single-bit integer.</td>
1238 </tr><tr>
1239 <td><tt>i32</tt></td>
1240 <td>a 32-bit integer.</td>
1241 </tr><tr>
1242 <td><tt>i1942652</tt></td>
1243 <td>a really big integer of over 1 million bits.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001244 </tr>
Chris Lattnerb9488a62007-12-18 06:18:21 +00001245 </tbody>
Reid Spencer2b916312007-05-16 18:44:01 +00001246</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001247</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001248
1249<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001250<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001251
Misha Brukman9d0919f2003-11-08 01:05:38 +00001252<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001253
Chris Lattner00950542001-06-06 20:29:01 +00001254<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001255
Misha Brukman9d0919f2003-11-08 01:05:38 +00001256<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001257sequentially in memory. The array type requires a size (number of
1258elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001259
Chris Lattner7faa8832002-04-14 06:13:44 +00001260<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001261
1262<pre>
1263 [&lt;# elements&gt; x &lt;elementtype&gt;]
1264</pre>
1265
John Criswelle4c57cc2005-05-12 16:52:32 +00001266<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001267be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001268
Chris Lattner7faa8832002-04-14 06:13:44 +00001269<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001270<table class="layout">
1271 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001272 <td class="left"><tt>[40 x i32]</tt></td>
1273 <td class="left">Array of 40 32-bit integer values.</td>
1274 </tr>
1275 <tr class="layout">
1276 <td class="left"><tt>[41 x i32]</tt></td>
1277 <td class="left">Array of 41 32-bit integer values.</td>
1278 </tr>
1279 <tr class="layout">
1280 <td class="left"><tt>[4 x i8]</tt></td>
1281 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001282 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001283</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001284<p>Here are some examples of multidimensional arrays:</p>
1285<table class="layout">
1286 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001287 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1288 <td class="left">3x4 array of 32-bit integer values.</td>
1289 </tr>
1290 <tr class="layout">
1291 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1292 <td class="left">12x10 array of single precision floating point values.</td>
1293 </tr>
1294 <tr class="layout">
1295 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1296 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001297 </tr>
1298</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001299
John Criswell0ec250c2005-10-24 16:17:18 +00001300<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1301length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001302LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1303As a special case, however, zero length arrays are recognized to be variable
1304length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001305type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001306
Misha Brukman9d0919f2003-11-08 01:05:38 +00001307</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001308
Chris Lattner00950542001-06-06 20:29:01 +00001309<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001310<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001311<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001312
Chris Lattner00950542001-06-06 20:29:01 +00001313<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001314
Chris Lattner261efe92003-11-25 01:02:51 +00001315<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001316consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001317return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001318If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001319class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001320
Chris Lattner00950542001-06-06 20:29:01 +00001321<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001322
1323<pre>
1324 &lt;returntype list&gt; (&lt;parameter list&gt;)
1325</pre>
1326
John Criswell0ec250c2005-10-24 16:17:18 +00001327<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001328specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001329which indicates that the function takes a variable number of arguments.
1330Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001331 href="#int_varargs">variable argument handling intrinsic</a> functions.
1332'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1333<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001334
Chris Lattner00950542001-06-06 20:29:01 +00001335<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001336<table class="layout">
1337 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001338 <td class="left"><tt>i32 (i32)</tt></td>
1339 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001340 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001341 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001342 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001343 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001344 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1345 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001346 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001347 <tt>float</tt>.
1348 </td>
1349 </tr><tr class="layout">
1350 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1351 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001352 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001353 which returns an integer. This is the signature for <tt>printf</tt> in
1354 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001355 </td>
Devang Patela582f402008-03-24 05:35:41 +00001356 </tr><tr class="layout">
1357 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Devang Patel3a5bff82008-03-24 18:10:52 +00001358 <td class="left">A function taking an <tt>i32></tt>, returning two
1359 <tt> i32 </tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001360 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001361 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001362</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001363
Misha Brukman9d0919f2003-11-08 01:05:38 +00001364</div>
Chris Lattner00950542001-06-06 20:29:01 +00001365<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001366<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001367<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001368<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001369<p>The structure type is used to represent a collection of data members
1370together in memory. The packing of the field types is defined to match
1371the ABI of the underlying processor. The elements of a structure may
1372be any type that has a size.</p>
1373<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1374and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1375field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1376instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001377<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001378<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001379<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001380<table class="layout">
1381 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001382 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1383 <td class="left">A triple of three <tt>i32</tt> values</td>
1384 </tr><tr class="layout">
1385 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1386 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1387 second element is a <a href="#t_pointer">pointer</a> to a
1388 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1389 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001390 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001391</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001392</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001393
Chris Lattner00950542001-06-06 20:29:01 +00001394<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001395<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1396</div>
1397<div class="doc_text">
1398<h5>Overview:</h5>
1399<p>The packed structure type is used to represent a collection of data members
1400together in memory. There is no padding between fields. Further, the alignment
1401of a packed structure is 1 byte. The elements of a packed structure may
1402be any type that has a size.</p>
1403<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1404and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1405field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1406instruction.</p>
1407<h5>Syntax:</h5>
1408<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1409<h5>Examples:</h5>
1410<table class="layout">
1411 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001412 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1413 <td class="left">A triple of three <tt>i32</tt> values</td>
1414 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001415 <td class="left">
1416<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001417 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1418 second element is a <a href="#t_pointer">pointer</a> to a
1419 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1420 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001421 </tr>
1422</table>
1423</div>
1424
1425<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001426<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001427<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001428<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001429<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001430reference to another object, which must live in memory. Pointer types may have
1431an optional address space attribute defining the target-specific numbered
1432address space where the pointed-to object resides. The default address space is
1433zero.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001434<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001435<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001436<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001437<table class="layout">
1438 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001439 <td class="left"><tt>[4x i32]*</tt></td>
1440 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1441 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1442 </tr>
1443 <tr class="layout">
1444 <td class="left"><tt>i32 (i32 *) *</tt></td>
1445 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001446 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001447 <tt>i32</tt>.</td>
1448 </tr>
1449 <tr class="layout">
1450 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1451 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1452 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001453 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001454</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001455</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001456
Chris Lattnera58561b2004-08-12 19:12:28 +00001457<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001458<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001459<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001460
Chris Lattnera58561b2004-08-12 19:12:28 +00001461<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001462
Reid Spencer485bad12007-02-15 03:07:05 +00001463<p>A vector type is a simple derived type that represents a vector
1464of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001465are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001466A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001467elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001468of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001469considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001470
Chris Lattnera58561b2004-08-12 19:12:28 +00001471<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001472
1473<pre>
1474 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1475</pre>
1476
John Criswellc1f786c2005-05-13 22:25:59 +00001477<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001478be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001479
Chris Lattnera58561b2004-08-12 19:12:28 +00001480<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001481
Reid Spencerd3f876c2004-11-01 08:19:36 +00001482<table class="layout">
1483 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001484 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1485 <td class="left">Vector of 4 32-bit integer values.</td>
1486 </tr>
1487 <tr class="layout">
1488 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1489 <td class="left">Vector of 8 32-bit floating-point values.</td>
1490 </tr>
1491 <tr class="layout">
1492 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1493 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001494 </tr>
1495</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001496</div>
1497
Chris Lattner69c11bb2005-04-25 17:34:15 +00001498<!-- _______________________________________________________________________ -->
1499<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1500<div class="doc_text">
1501
1502<h5>Overview:</h5>
1503
1504<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001505corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001506In LLVM, opaque types can eventually be resolved to any type (not just a
1507structure type).</p>
1508
1509<h5>Syntax:</h5>
1510
1511<pre>
1512 opaque
1513</pre>
1514
1515<h5>Examples:</h5>
1516
1517<table class="layout">
1518 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001519 <td class="left"><tt>opaque</tt></td>
1520 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001521 </tr>
1522</table>
1523</div>
1524
1525
Chris Lattnerc3f59762004-12-09 17:30:23 +00001526<!-- *********************************************************************** -->
1527<div class="doc_section"> <a name="constants">Constants</a> </div>
1528<!-- *********************************************************************** -->
1529
1530<div class="doc_text">
1531
1532<p>LLVM has several different basic types of constants. This section describes
1533them all and their syntax.</p>
1534
1535</div>
1536
1537<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001538<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001539
1540<div class="doc_text">
1541
1542<dl>
1543 <dt><b>Boolean constants</b></dt>
1544
1545 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001546 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001547 </dd>
1548
1549 <dt><b>Integer constants</b></dt>
1550
Reid Spencercc16dc32004-12-09 18:02:53 +00001551 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001552 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001553 integer types.
1554 </dd>
1555
1556 <dt><b>Floating point constants</b></dt>
1557
1558 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1559 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001560 notation (see below). The assembler requires the exact decimal value of
1561 a floating-point constant. For example, the assembler accepts 1.25 but
1562 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1563 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001564
1565 <dt><b>Null pointer constants</b></dt>
1566
John Criswell9e2485c2004-12-10 15:51:16 +00001567 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001568 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1569
1570</dl>
1571
John Criswell9e2485c2004-12-10 15:51:16 +00001572<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001573of floating point constants. For example, the form '<tt>double
15740x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
15754.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001576(and the only time that they are generated by the disassembler) is when a
1577floating point constant must be emitted but it cannot be represented as a
1578decimal floating point number. For example, NaN's, infinities, and other
1579special values are represented in their IEEE hexadecimal format so that
1580assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001581
1582</div>
1583
1584<!-- ======================================================================= -->
1585<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1586</div>
1587
1588<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001589<p>Aggregate constants arise from aggregation of simple constants
1590and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001591
1592<dl>
1593 <dt><b>Structure constants</b></dt>
1594
1595 <dd>Structure constants are represented with notation similar to structure
1596 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001597 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1598 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001599 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001600 types of elements must match those specified by the type.
1601 </dd>
1602
1603 <dt><b>Array constants</b></dt>
1604
1605 <dd>Array constants are represented with notation similar to array type
1606 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001607 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001608 constants must have <a href="#t_array">array type</a>, and the number and
1609 types of elements must match those specified by the type.
1610 </dd>
1611
Reid Spencer485bad12007-02-15 03:07:05 +00001612 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001613
Reid Spencer485bad12007-02-15 03:07:05 +00001614 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001615 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001616 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001617 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001618 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001619 match those specified by the type.
1620 </dd>
1621
1622 <dt><b>Zero initialization</b></dt>
1623
1624 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1625 value to zero of <em>any</em> type, including scalar and aggregate types.
1626 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001627 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001628 initializers.
1629 </dd>
1630</dl>
1631
1632</div>
1633
1634<!-- ======================================================================= -->
1635<div class="doc_subsection">
1636 <a name="globalconstants">Global Variable and Function Addresses</a>
1637</div>
1638
1639<div class="doc_text">
1640
1641<p>The addresses of <a href="#globalvars">global variables</a> and <a
1642href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001643constants. These constants are explicitly referenced when the <a
1644href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001645href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1646file:</p>
1647
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001648<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001649<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001650@X = global i32 17
1651@Y = global i32 42
1652@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001653</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001654</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001655
1656</div>
1657
1658<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001659<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001660<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001661 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001662 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001663 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001664
Reid Spencer2dc45b82004-12-09 18:13:12 +00001665 <p>Undefined values indicate to the compiler that the program is well defined
1666 no matter what value is used, giving the compiler more freedom to optimize.
1667 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001668</div>
1669
1670<!-- ======================================================================= -->
1671<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1672</div>
1673
1674<div class="doc_text">
1675
1676<p>Constant expressions are used to allow expressions involving other constants
1677to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001678href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001679that does not have side effects (e.g. load and call are not supported). The
1680following is the syntax for constant expressions:</p>
1681
1682<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001683 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1684 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001685 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001686
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001687 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1688 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001689 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001690
1691 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1692 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001693 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001694
1695 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1696 <dd>Truncate a floating point constant to another floating point type. The
1697 size of CST must be larger than the size of TYPE. Both types must be
1698 floating point.</dd>
1699
1700 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1701 <dd>Floating point extend a constant to another type. The size of CST must be
1702 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1703
Reid Spencer1539a1c2007-07-31 14:40:14 +00001704 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001705 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001706 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1707 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1708 of the same number of elements. If the value won't fit in the integer type,
1709 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001710
Reid Spencerd4448792006-11-09 23:03:26 +00001711 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001712 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001713 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1714 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1715 of the same number of elements. If the value won't fit in the integer type,
1716 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001717
Reid Spencerd4448792006-11-09 23:03:26 +00001718 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001719 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001720 constant. TYPE must be a scalar or vector floating point type. CST must be of
1721 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1722 of the same number of elements. If the value won't fit in the floating point
1723 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001724
Reid Spencerd4448792006-11-09 23:03:26 +00001725 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001726 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001727 constant. TYPE must be a scalar or vector floating point type. CST must be of
1728 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
1729 of the same number of elements. If the value won't fit in the floating point
1730 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001731
Reid Spencer5c0ef472006-11-11 23:08:07 +00001732 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1733 <dd>Convert a pointer typed constant to the corresponding integer constant
1734 TYPE must be an integer type. CST must be of pointer type. The CST value is
1735 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1736
1737 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1738 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1739 pointer type. CST must be of integer type. The CST value is zero extended,
1740 truncated, or unchanged to make it fit in a pointer size. This one is
1741 <i>really</i> dangerous!</dd>
1742
1743 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001744 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1745 identical (same number of bits). The conversion is done as if the CST value
1746 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001747 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001748 vector types to any other type, as long as they have the same bit width. For
Dan Gohman500233a2008-09-08 16:45:59 +00001749 pointers it is only valid to cast to another pointer type. It is not valid
1750 to bitcast to or from an aggregate type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001751 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001752
1753 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1754
1755 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1756 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1757 instruction, the index list may have zero or more indexes, which are required
1758 to make sense for the type of "CSTPTR".</dd>
1759
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001760 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1761
1762 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001763 constants.</dd>
1764
1765 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1766 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1767
1768 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1769 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001770
Nate Begemanac80ade2008-05-12 19:01:56 +00001771 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
1772 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
1773
1774 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
1775 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
1776
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001777 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1778
1779 <dd>Perform the <a href="#i_extractelement">extractelement
1780 operation</a> on constants.
1781
Robert Bocchino05ccd702006-01-15 20:48:27 +00001782 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1783
1784 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001785 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001786
Chris Lattnerc1989542006-04-08 00:13:41 +00001787
1788 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1789
1790 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001791 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001792
Chris Lattnerc3f59762004-12-09 17:30:23 +00001793 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1794
Reid Spencer2dc45b82004-12-09 18:13:12 +00001795 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1796 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001797 binary</a> operations. The constraints on operands are the same as those for
1798 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001799 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001800</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001801</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001802
Chris Lattner00950542001-06-06 20:29:01 +00001803<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001804<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1805<!-- *********************************************************************** -->
1806
1807<!-- ======================================================================= -->
1808<div class="doc_subsection">
1809<a name="inlineasm">Inline Assembler Expressions</a>
1810</div>
1811
1812<div class="doc_text">
1813
1814<p>
1815LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1816Module-Level Inline Assembly</a>) through the use of a special value. This
1817value represents the inline assembler as a string (containing the instructions
1818to emit), a list of operand constraints (stored as a string), and a flag that
1819indicates whether or not the inline asm expression has side effects. An example
1820inline assembler expression is:
1821</p>
1822
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001823<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001824<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001825i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001826</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001827</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001828
1829<p>
1830Inline assembler expressions may <b>only</b> be used as the callee operand of
1831a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1832</p>
1833
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001834<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001835<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001836%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001837</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001838</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001839
1840<p>
1841Inline asms with side effects not visible in the constraint list must be marked
1842as having side effects. This is done through the use of the
1843'<tt>sideeffect</tt>' keyword, like so:
1844</p>
1845
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001846<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001847<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001848call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001849</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001850</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001851
1852<p>TODO: The format of the asm and constraints string still need to be
1853documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00001854need to be documented). This is probably best done by reference to another
1855document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00001856</p>
1857
1858</div>
1859
1860<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001861<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1862<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001863
Misha Brukman9d0919f2003-11-08 01:05:38 +00001864<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001865
Chris Lattner261efe92003-11-25 01:02:51 +00001866<p>The LLVM instruction set consists of several different
1867classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001868instructions</a>, <a href="#binaryops">binary instructions</a>,
1869<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001870 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1871instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001872
Misha Brukman9d0919f2003-11-08 01:05:38 +00001873</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001874
Chris Lattner00950542001-06-06 20:29:01 +00001875<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001876<div class="doc_subsection"> <a name="terminators">Terminator
1877Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001878
Misha Brukman9d0919f2003-11-08 01:05:38 +00001879<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001880
Chris Lattner261efe92003-11-25 01:02:51 +00001881<p>As mentioned <a href="#functionstructure">previously</a>, every
1882basic block in a program ends with a "Terminator" instruction, which
1883indicates which block should be executed after the current block is
1884finished. These terminator instructions typically yield a '<tt>void</tt>'
1885value: they produce control flow, not values (the one exception being
1886the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001887<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001888 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1889instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001890the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1891 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1892 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001893
Misha Brukman9d0919f2003-11-08 01:05:38 +00001894</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001895
Chris Lattner00950542001-06-06 20:29:01 +00001896<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001897<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1898Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001899<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001900<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001901<pre>
1902 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001903 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001904</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001905
Chris Lattner00950542001-06-06 20:29:01 +00001906<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001907
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001908<p>The '<tt>ret</tt>' instruction is used to return control flow (and
1909optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001910<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001911returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00001912control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001913
Chris Lattner00950542001-06-06 20:29:01 +00001914<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001915
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001916<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
1917the return value. The type of the return value must be a
1918'<a href="#t_firstclass">first class</a>' type.</p>
1919
1920<p>A function is not <a href="#wellformed">well formed</a> if
1921it it has a non-void return type and contains a '<tt>ret</tt>'
1922instruction with no return value or a return value with a type that
1923does not match its type, or if it has a void return type and contains
1924a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001925
Chris Lattner00950542001-06-06 20:29:01 +00001926<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001927
Chris Lattner261efe92003-11-25 01:02:51 +00001928<p>When the '<tt>ret</tt>' instruction is executed, control flow
1929returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001930 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001931the instruction after the call. If the caller was an "<a
1932 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001933at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001934returns a value, that value shall set the call or invoke instruction's
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001935return value.
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001936
Chris Lattner00950542001-06-06 20:29:01 +00001937<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001938
1939<pre>
1940 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001941 ret void <i>; Return from a void function</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00001942 ret { i32, i8 } { i32 4, i8 2 } <i>; Return an aggregate of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00001943</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001944</div>
Chris Lattner00950542001-06-06 20:29:01 +00001945<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001946<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001947<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001948<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001949<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001950</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001951<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001952<p>The '<tt>br</tt>' instruction is used to cause control flow to
1953transfer to a different basic block in the current function. There are
1954two forms of this instruction, corresponding to a conditional branch
1955and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001956<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001957<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00001958single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00001959unconditional form of the '<tt>br</tt>' instruction takes a single
1960'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001961<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001962<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001963argument is evaluated. If the value is <tt>true</tt>, control flows
1964to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1965control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001966<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001967<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00001968 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001969</div>
Chris Lattner00950542001-06-06 20:29:01 +00001970<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001971<div class="doc_subsubsection">
1972 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1973</div>
1974
Misha Brukman9d0919f2003-11-08 01:05:38 +00001975<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001976<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001977
1978<pre>
1979 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1980</pre>
1981
Chris Lattner00950542001-06-06 20:29:01 +00001982<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001983
1984<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1985several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001986instruction, allowing a branch to occur to one of many possible
1987destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001988
1989
Chris Lattner00950542001-06-06 20:29:01 +00001990<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001991
1992<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1993comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1994an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1995table is not allowed to contain duplicate constant entries.</p>
1996
Chris Lattner00950542001-06-06 20:29:01 +00001997<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001998
Chris Lattner261efe92003-11-25 01:02:51 +00001999<p>The <tt>switch</tt> instruction specifies a table of values and
2000destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002001table is searched for the given value. If the value is found, control flow is
2002transfered to the corresponding destination; otherwise, control flow is
2003transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002004
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002005<h5>Implementation:</h5>
2006
2007<p>Depending on properties of the target machine and the particular
2008<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002009ways. For example, it could be generated as a series of chained conditional
2010branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002011
2012<h5>Example:</h5>
2013
2014<pre>
2015 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002016 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00002017 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002018
2019 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002020 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002021
2022 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002023 switch i32 %val, label %otherwise [ i32 0, label %onzero
2024 i32 1, label %onone
2025 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002026</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002027</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002028
Chris Lattner00950542001-06-06 20:29:01 +00002029<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002030<div class="doc_subsubsection">
2031 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2032</div>
2033
Misha Brukman9d0919f2003-11-08 01:05:38 +00002034<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002035
Chris Lattner00950542001-06-06 20:29:01 +00002036<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002037
2038<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002039 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00002040 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002041</pre>
2042
Chris Lattner6536cfe2002-05-06 22:08:29 +00002043<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002044
2045<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2046function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002047'<tt>normal</tt>' label or the
2048'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002049"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2050"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002051href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002052continued at the dynamically nearest "exception" label.
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002053
Chris Lattner00950542001-06-06 20:29:01 +00002054<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002055
Misha Brukman9d0919f2003-11-08 01:05:38 +00002056<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002057
Chris Lattner00950542001-06-06 20:29:01 +00002058<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002059 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002060 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002061 convention</a> the call should use. If none is specified, the call defaults
2062 to using C calling conventions.
2063 </li>
2064 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2065 function value being invoked. In most cases, this is a direct function
2066 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2067 an arbitrary pointer to function value.
2068 </li>
2069
2070 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2071 function to be invoked. </li>
2072
2073 <li>'<tt>function args</tt>': argument list whose types match the function
2074 signature argument types. If the function signature indicates the function
2075 accepts a variable number of arguments, the extra arguments can be
2076 specified. </li>
2077
2078 <li>'<tt>normal label</tt>': the label reached when the called function
2079 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2080
2081 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2082 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2083
Chris Lattner00950542001-06-06 20:29:01 +00002084</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002085
Chris Lattner00950542001-06-06 20:29:01 +00002086<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002087
Misha Brukman9d0919f2003-11-08 01:05:38 +00002088<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002089href="#i_call">call</a></tt>' instruction in most regards. The primary
2090difference is that it establishes an association with a label, which is used by
2091the runtime library to unwind the stack.</p>
2092
2093<p>This instruction is used in languages with destructors to ensure that proper
2094cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2095exception. Additionally, this is important for implementation of
2096'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2097
Chris Lattner00950542001-06-06 20:29:01 +00002098<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002099<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002100 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002101 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002102 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002103 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002104</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002105</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002106
2107
Chris Lattner27f71f22003-09-03 00:41:47 +00002108<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002109
Chris Lattner261efe92003-11-25 01:02:51 +00002110<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2111Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002112
Misha Brukman9d0919f2003-11-08 01:05:38 +00002113<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002114
Chris Lattner27f71f22003-09-03 00:41:47 +00002115<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002116<pre>
2117 unwind
2118</pre>
2119
Chris Lattner27f71f22003-09-03 00:41:47 +00002120<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002121
2122<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2123at the first callee in the dynamic call stack which used an <a
2124href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2125primarily used to implement exception handling.</p>
2126
Chris Lattner27f71f22003-09-03 00:41:47 +00002127<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002128
Chris Lattner72ed2002008-04-19 21:01:16 +00002129<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002130immediately halt. The dynamic call stack is then searched for the first <a
2131href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2132execution continues at the "exceptional" destination block specified by the
2133<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2134dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002135</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002136
2137<!-- _______________________________________________________________________ -->
2138
2139<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2140Instruction</a> </div>
2141
2142<div class="doc_text">
2143
2144<h5>Syntax:</h5>
2145<pre>
2146 unreachable
2147</pre>
2148
2149<h5>Overview:</h5>
2150
2151<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2152instruction is used to inform the optimizer that a particular portion of the
2153code is not reachable. This can be used to indicate that the code after a
2154no-return function cannot be reached, and other facts.</p>
2155
2156<h5>Semantics:</h5>
2157
2158<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2159</div>
2160
2161
2162
Chris Lattner00950542001-06-06 20:29:01 +00002163<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002164<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002165<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002166<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002167program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002168produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002169multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002170The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002171<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002172</div>
Chris Lattner00950542001-06-06 20:29:01 +00002173<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002174<div class="doc_subsubsection">
2175 <a name="i_add">'<tt>add</tt>' Instruction</a>
2176</div>
2177
Misha Brukman9d0919f2003-11-08 01:05:38 +00002178<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002179
Chris Lattner00950542001-06-06 20:29:01 +00002180<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002181
2182<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002183 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002184</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002185
Chris Lattner00950542001-06-06 20:29:01 +00002186<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002187
Misha Brukman9d0919f2003-11-08 01:05:38 +00002188<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002189
Chris Lattner00950542001-06-06 20:29:01 +00002190<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002191
2192<p>The two arguments to the '<tt>add</tt>' instruction must be <a
2193 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or
2194 <a href="#t_vector">vector</a> values. Both arguments must have identical
2195 types.</p>
2196
Chris Lattner00950542001-06-06 20:29:01 +00002197<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002198
Misha Brukman9d0919f2003-11-08 01:05:38 +00002199<p>The value produced is the integer or floating point sum of the two
2200operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002201
Chris Lattner5ec89832008-01-28 00:36:27 +00002202<p>If an integer sum has unsigned overflow, the result returned is the
2203mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2204the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002205
Chris Lattner5ec89832008-01-28 00:36:27 +00002206<p>Because LLVM integers use a two's complement representation, this
2207instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002208
Chris Lattner00950542001-06-06 20:29:01 +00002209<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002210
2211<pre>
2212 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002213</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002214</div>
Chris Lattner00950542001-06-06 20:29:01 +00002215<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002216<div class="doc_subsubsection">
2217 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2218</div>
2219
Misha Brukman9d0919f2003-11-08 01:05:38 +00002220<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002221
Chris Lattner00950542001-06-06 20:29:01 +00002222<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002223
2224<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002225 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002226</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002227
Chris Lattner00950542001-06-06 20:29:01 +00002228<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002229
Misha Brukman9d0919f2003-11-08 01:05:38 +00002230<p>The '<tt>sub</tt>' instruction returns the difference of its two
2231operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002232
2233<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2234'<tt>neg</tt>' instruction present in most other intermediate
2235representations.</p>
2236
Chris Lattner00950542001-06-06 20:29:01 +00002237<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002238
2239<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
2240 href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2241 or <a href="#t_vector">vector</a> values. Both arguments must have identical
2242 types.</p>
2243
Chris Lattner00950542001-06-06 20:29:01 +00002244<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002245
Chris Lattner261efe92003-11-25 01:02:51 +00002246<p>The value produced is the integer or floating point difference of
2247the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002248
Chris Lattner5ec89832008-01-28 00:36:27 +00002249<p>If an integer difference has unsigned overflow, the result returned is the
2250mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2251the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002252
Chris Lattner5ec89832008-01-28 00:36:27 +00002253<p>Because LLVM integers use a two's complement representation, this
2254instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002255
Chris Lattner00950542001-06-06 20:29:01 +00002256<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002257<pre>
2258 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002259 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002260</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002261</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002262
Chris Lattner00950542001-06-06 20:29:01 +00002263<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002264<div class="doc_subsubsection">
2265 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2266</div>
2267
Misha Brukman9d0919f2003-11-08 01:05:38 +00002268<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002269
Chris Lattner00950542001-06-06 20:29:01 +00002270<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002271<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002272</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002273<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002274<p>The '<tt>mul</tt>' instruction returns the product of its two
2275operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002276
Chris Lattner00950542001-06-06 20:29:01 +00002277<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002278
2279<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
2280href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>,
2281or <a href="#t_vector">vector</a> values. Both arguments must have identical
2282types.</p>
2283
Chris Lattner00950542001-06-06 20:29:01 +00002284<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002285
Chris Lattner261efe92003-11-25 01:02:51 +00002286<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002287two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002288
Chris Lattner5ec89832008-01-28 00:36:27 +00002289<p>If the result of an integer multiplication has unsigned overflow,
2290the result returned is the mathematical result modulo
22912<sup>n</sup>, where n is the bit width of the result.</p>
2292<p>Because LLVM integers use a two's complement representation, and the
2293result is the same width as the operands, this instruction returns the
2294correct result for both signed and unsigned integers. If a full product
2295(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2296should be sign-extended or zero-extended as appropriate to the
2297width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002298<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002299<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002300</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002301</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002302
Chris Lattner00950542001-06-06 20:29:01 +00002303<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002304<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2305</a></div>
2306<div class="doc_text">
2307<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002308<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002309</pre>
2310<h5>Overview:</h5>
2311<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2312operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002313
Reid Spencer1628cec2006-10-26 06:15:43 +00002314<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002315
Reid Spencer1628cec2006-10-26 06:15:43 +00002316<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002317<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2318values. Both arguments must have identical types.</p>
2319
Reid Spencer1628cec2006-10-26 06:15:43 +00002320<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002321
Chris Lattner5ec89832008-01-28 00:36:27 +00002322<p>The value produced is the unsigned integer quotient of the two operands.</p>
2323<p>Note that unsigned integer division and signed integer division are distinct
2324operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2325<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002326<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002327<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002328</pre>
2329</div>
2330<!-- _______________________________________________________________________ -->
2331<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2332</a> </div>
2333<div class="doc_text">
2334<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002335<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002336 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002337</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002338
Reid Spencer1628cec2006-10-26 06:15:43 +00002339<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002340
Reid Spencer1628cec2006-10-26 06:15:43 +00002341<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2342operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002343
Reid Spencer1628cec2006-10-26 06:15:43 +00002344<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002345
2346<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2347<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2348values. Both arguments must have identical types.</p>
2349
Reid Spencer1628cec2006-10-26 06:15:43 +00002350<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002351<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002352<p>Note that signed integer division and unsigned integer division are distinct
2353operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2354<p>Division by zero leads to undefined behavior. Overflow also leads to
2355undefined behavior; this is a rare case, but can occur, for example,
2356by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002357<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002358<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002359</pre>
2360</div>
2361<!-- _______________________________________________________________________ -->
2362<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002363Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002364<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002365<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002366<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002367 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002368</pre>
2369<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002370
Reid Spencer1628cec2006-10-26 06:15:43 +00002371<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002372operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002373
Chris Lattner261efe92003-11-25 01:02:51 +00002374<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002375
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002376<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002377<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2378of floating point values. Both arguments must have identical types.</p>
2379
Chris Lattner261efe92003-11-25 01:02:51 +00002380<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002381
Reid Spencer1628cec2006-10-26 06:15:43 +00002382<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002383
Chris Lattner261efe92003-11-25 01:02:51 +00002384<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002385
2386<pre>
2387 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002388</pre>
2389</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002390
Chris Lattner261efe92003-11-25 01:02:51 +00002391<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002392<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2393</div>
2394<div class="doc_text">
2395<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002396<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002397</pre>
2398<h5>Overview:</h5>
2399<p>The '<tt>urem</tt>' instruction returns the remainder from the
2400unsigned division of its two arguments.</p>
2401<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002402<p>The two arguments to the '<tt>urem</tt>' instruction must be
2403<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2404values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002405<h5>Semantics:</h5>
2406<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002407This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002408<p>Note that unsigned integer remainder and signed integer remainder are
2409distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2410<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002411<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002412<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002413</pre>
2414
2415</div>
2416<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002417<div class="doc_subsubsection">
2418 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2419</div>
2420
Chris Lattner261efe92003-11-25 01:02:51 +00002421<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002422
Chris Lattner261efe92003-11-25 01:02:51 +00002423<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002424
2425<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002426 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002427</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002428
Chris Lattner261efe92003-11-25 01:02:51 +00002429<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002430
Reid Spencer0a783f72006-11-02 01:53:59 +00002431<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002432signed division of its two operands. This instruction can also take
2433<a href="#t_vector">vector</a> versions of the values in which case
2434the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002435
Chris Lattner261efe92003-11-25 01:02:51 +00002436<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002437
Reid Spencer0a783f72006-11-02 01:53:59 +00002438<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002439<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2440values. Both arguments must have identical types.</p>
2441
Chris Lattner261efe92003-11-25 01:02:51 +00002442<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002443
Reid Spencer0a783f72006-11-02 01:53:59 +00002444<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002445has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2446operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002447a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002448 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002449Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002450please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002451Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002452<p>Note that signed integer remainder and unsigned integer remainder are
2453distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2454<p>Taking the remainder of a division by zero leads to undefined behavior.
2455Overflow also leads to undefined behavior; this is a rare case, but can occur,
2456for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2457(The remainder doesn't actually overflow, but this rule lets srem be
2458implemented using instructions that return both the result of the division
2459and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002460<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002461<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002462</pre>
2463
2464</div>
2465<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002466<div class="doc_subsubsection">
2467 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2468
Reid Spencer0a783f72006-11-02 01:53:59 +00002469<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002470
Reid Spencer0a783f72006-11-02 01:53:59 +00002471<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002472<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002473</pre>
2474<h5>Overview:</h5>
2475<p>The '<tt>frem</tt>' instruction returns the remainder from the
2476division of its two operands.</p>
2477<h5>Arguments:</h5>
2478<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002479<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2480of floating point values. Both arguments must have identical types.</p>
2481
Reid Spencer0a783f72006-11-02 01:53:59 +00002482<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002483
Chris Lattnera73afe02008-04-01 18:45:27 +00002484<p>This instruction returns the <i>remainder</i> of a division.
2485The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002486
Reid Spencer0a783f72006-11-02 01:53:59 +00002487<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002488
2489<pre>
2490 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002491</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002492</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002493
Reid Spencer8e11bf82007-02-02 13:57:07 +00002494<!-- ======================================================================= -->
2495<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2496Operations</a> </div>
2497<div class="doc_text">
2498<p>Bitwise binary operators are used to do various forms of
2499bit-twiddling in a program. They are generally very efficient
2500instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002501instructions. They require two operands of the same type, execute an operation on them,
2502and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002503</div>
2504
Reid Spencer569f2fa2007-01-31 21:39:12 +00002505<!-- _______________________________________________________________________ -->
2506<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2507Instruction</a> </div>
2508<div class="doc_text">
2509<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002510<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002511</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002512
Reid Spencer569f2fa2007-01-31 21:39:12 +00002513<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002514
Reid Spencer569f2fa2007-01-31 21:39:12 +00002515<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2516the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002517
Reid Spencer569f2fa2007-01-31 21:39:12 +00002518<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002519
Reid Spencer569f2fa2007-01-31 21:39:12 +00002520<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002521 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002522type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002523
Reid Spencer569f2fa2007-01-31 21:39:12 +00002524<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002525
Gabor Greiffb224a22008-08-07 21:46:00 +00002526<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2527where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
2528equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002529
Reid Spencer569f2fa2007-01-31 21:39:12 +00002530<h5>Example:</h5><pre>
2531 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2532 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2533 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002534 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002535</pre>
2536</div>
2537<!-- _______________________________________________________________________ -->
2538<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2539Instruction</a> </div>
2540<div class="doc_text">
2541<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002542<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002543</pre>
2544
2545<h5>Overview:</h5>
2546<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002547operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002548
2549<h5>Arguments:</h5>
2550<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002551<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002552type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002553
2554<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002555
Reid Spencer569f2fa2007-01-31 21:39:12 +00002556<p>This instruction always performs a logical shift right operation. The most
2557significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002558shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
2559the number of bits in <tt>op1</tt>, the result is undefined.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002560
2561<h5>Example:</h5>
2562<pre>
2563 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2564 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2565 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2566 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002567 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002568</pre>
2569</div>
2570
Reid Spencer8e11bf82007-02-02 13:57:07 +00002571<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002572<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2573Instruction</a> </div>
2574<div class="doc_text">
2575
2576<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002577<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002578</pre>
2579
2580<h5>Overview:</h5>
2581<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002582operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002583
2584<h5>Arguments:</h5>
2585<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002586<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002587type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002588
2589<h5>Semantics:</h5>
2590<p>This instruction always performs an arithmetic shift right operation,
2591The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00002592of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
2593larger than the number of bits in <tt>op1</tt>, the result is undefined.
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002594</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002595
2596<h5>Example:</h5>
2597<pre>
2598 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2599 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2600 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2601 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002602 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002603</pre>
2604</div>
2605
Chris Lattner00950542001-06-06 20:29:01 +00002606<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002607<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2608Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00002609
Misha Brukman9d0919f2003-11-08 01:05:38 +00002610<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002611
Chris Lattner00950542001-06-06 20:29:01 +00002612<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002613
2614<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002615 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002616</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002617
Chris Lattner00950542001-06-06 20:29:01 +00002618<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002619
Chris Lattner261efe92003-11-25 01:02:51 +00002620<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2621its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002622
Chris Lattner00950542001-06-06 20:29:01 +00002623<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002624
2625<p>The two arguments to the '<tt>and</tt>' instruction must be
2626<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2627values. Both arguments must have identical types.</p>
2628
Chris Lattner00950542001-06-06 20:29:01 +00002629<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002630<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002631<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002632<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002633<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002634 <tbody>
2635 <tr>
2636 <td>In0</td>
2637 <td>In1</td>
2638 <td>Out</td>
2639 </tr>
2640 <tr>
2641 <td>0</td>
2642 <td>0</td>
2643 <td>0</td>
2644 </tr>
2645 <tr>
2646 <td>0</td>
2647 <td>1</td>
2648 <td>0</td>
2649 </tr>
2650 <tr>
2651 <td>1</td>
2652 <td>0</td>
2653 <td>0</td>
2654 </tr>
2655 <tr>
2656 <td>1</td>
2657 <td>1</td>
2658 <td>1</td>
2659 </tr>
2660 </tbody>
2661</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002662</div>
Chris Lattner00950542001-06-06 20:29:01 +00002663<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002664<pre>
2665 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002666 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2667 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002668</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002669</div>
Chris Lattner00950542001-06-06 20:29:01 +00002670<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002671<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002672<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002673<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002674<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002675</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002676<h5>Overview:</h5>
2677<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2678or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002679<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002680
2681<p>The two arguments to the '<tt>or</tt>' instruction must be
2682<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2683values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002684<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002685<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002686<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002687<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002688<table border="1" cellspacing="0" cellpadding="4">
2689 <tbody>
2690 <tr>
2691 <td>In0</td>
2692 <td>In1</td>
2693 <td>Out</td>
2694 </tr>
2695 <tr>
2696 <td>0</td>
2697 <td>0</td>
2698 <td>0</td>
2699 </tr>
2700 <tr>
2701 <td>0</td>
2702 <td>1</td>
2703 <td>1</td>
2704 </tr>
2705 <tr>
2706 <td>1</td>
2707 <td>0</td>
2708 <td>1</td>
2709 </tr>
2710 <tr>
2711 <td>1</td>
2712 <td>1</td>
2713 <td>1</td>
2714 </tr>
2715 </tbody>
2716</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002717</div>
Chris Lattner00950542001-06-06 20:29:01 +00002718<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002719<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2720 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2721 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002722</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002723</div>
Chris Lattner00950542001-06-06 20:29:01 +00002724<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002725<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2726Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002727<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002728<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002729<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002730</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002731<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002732<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2733or of its two operands. The <tt>xor</tt> is used to implement the
2734"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002735<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002736<p>The two arguments to the '<tt>xor</tt>' instruction must be
2737<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2738values. Both arguments must have identical types.</p>
2739
Chris Lattner00950542001-06-06 20:29:01 +00002740<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002741
Misha Brukman9d0919f2003-11-08 01:05:38 +00002742<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002743<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00002744<div>
Chris Lattner261efe92003-11-25 01:02:51 +00002745<table border="1" cellspacing="0" cellpadding="4">
2746 <tbody>
2747 <tr>
2748 <td>In0</td>
2749 <td>In1</td>
2750 <td>Out</td>
2751 </tr>
2752 <tr>
2753 <td>0</td>
2754 <td>0</td>
2755 <td>0</td>
2756 </tr>
2757 <tr>
2758 <td>0</td>
2759 <td>1</td>
2760 <td>1</td>
2761 </tr>
2762 <tr>
2763 <td>1</td>
2764 <td>0</td>
2765 <td>1</td>
2766 </tr>
2767 <tr>
2768 <td>1</td>
2769 <td>1</td>
2770 <td>0</td>
2771 </tr>
2772 </tbody>
2773</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002774</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002775<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002776<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002777<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2778 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2779 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2780 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002781</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002782</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002783
Chris Lattner00950542001-06-06 20:29:01 +00002784<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002785<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002786 <a name="vectorops">Vector Operations</a>
2787</div>
2788
2789<div class="doc_text">
2790
2791<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002792target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002793vector-specific operations needed to process vectors effectively. While LLVM
2794does directly support these vector operations, many sophisticated algorithms
2795will want to use target-specific intrinsics to take full advantage of a specific
2796target.</p>
2797
2798</div>
2799
2800<!-- _______________________________________________________________________ -->
2801<div class="doc_subsubsection">
2802 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2803</div>
2804
2805<div class="doc_text">
2806
2807<h5>Syntax:</h5>
2808
2809<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002810 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002811</pre>
2812
2813<h5>Overview:</h5>
2814
2815<p>
2816The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002817element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002818</p>
2819
2820
2821<h5>Arguments:</h5>
2822
2823<p>
2824The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002825value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002826an index indicating the position from which to extract the element.
2827The index may be a variable.</p>
2828
2829<h5>Semantics:</h5>
2830
2831<p>
2832The result is a scalar of the same type as the element type of
2833<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2834<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2835results are undefined.
2836</p>
2837
2838<h5>Example:</h5>
2839
2840<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002841 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002842</pre>
2843</div>
2844
2845
2846<!-- _______________________________________________________________________ -->
2847<div class="doc_subsubsection">
2848 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2849</div>
2850
2851<div class="doc_text">
2852
2853<h5>Syntax:</h5>
2854
2855<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00002856 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002857</pre>
2858
2859<h5>Overview:</h5>
2860
2861<p>
2862The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002863element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002864</p>
2865
2866
2867<h5>Arguments:</h5>
2868
2869<p>
2870The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002871value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002872scalar value whose type must equal the element type of the first
2873operand. The third operand is an index indicating the position at
2874which to insert the value. The index may be a variable.</p>
2875
2876<h5>Semantics:</h5>
2877
2878<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002879The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002880element values are those of <tt>val</tt> except at position
2881<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2882exceeds the length of <tt>val</tt>, the results are undefined.
2883</p>
2884
2885<h5>Example:</h5>
2886
2887<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002888 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002889</pre>
2890</div>
2891
2892<!-- _______________________________________________________________________ -->
2893<div class="doc_subsubsection">
2894 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2895</div>
2896
2897<div class="doc_text">
2898
2899<h5>Syntax:</h5>
2900
2901<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002902 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002903</pre>
2904
2905<h5>Overview:</h5>
2906
2907<p>
2908The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2909from two input vectors, returning a vector of the same type.
2910</p>
2911
2912<h5>Arguments:</h5>
2913
2914<p>
2915The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2916with types that match each other and types that match the result of the
2917instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerca86e162006-12-31 07:07:53 +00002918of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattner3df241e2006-04-08 23:07:04 +00002919</p>
2920
2921<p>
2922The shuffle mask operand is required to be a constant vector with either
2923constant integer or undef values.
2924</p>
2925
2926<h5>Semantics:</h5>
2927
2928<p>
2929The elements of the two input vectors are numbered from left to right across
2930both of the vectors. The shuffle mask operand specifies, for each element of
2931the result vector, which element of the two input registers the result element
2932gets. The element selector may be undef (meaning "don't care") and the second
2933operand may be undef if performing a shuffle from only one vector.
2934</p>
2935
2936<h5>Example:</h5>
2937
2938<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002939 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002940 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002941 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2942 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattner3df241e2006-04-08 23:07:04 +00002943</pre>
2944</div>
2945
Tanya Lattner09474292006-04-14 19:24:33 +00002946
Chris Lattner3df241e2006-04-08 23:07:04 +00002947<!-- ======================================================================= -->
2948<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00002949 <a name="aggregateops">Aggregate Operations</a>
2950</div>
2951
2952<div class="doc_text">
2953
2954<p>LLVM supports several instructions for working with aggregate values.
2955</p>
2956
2957</div>
2958
2959<!-- _______________________________________________________________________ -->
2960<div class="doc_subsubsection">
2961 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
2962</div>
2963
2964<div class="doc_text">
2965
2966<h5>Syntax:</h5>
2967
2968<pre>
2969 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
2970</pre>
2971
2972<h5>Overview:</h5>
2973
2974<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002975The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
2976or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00002977</p>
2978
2979
2980<h5>Arguments:</h5>
2981
2982<p>
2983The first operand of an '<tt>extractvalue</tt>' instruction is a
2984value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00002985type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00002986in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00002987'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2988</p>
2989
2990<h5>Semantics:</h5>
2991
2992<p>
2993The result is the value at the position in the aggregate specified by
2994the index operands.
2995</p>
2996
2997<h5>Example:</h5>
2998
2999<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003000 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003001</pre>
3002</div>
3003
3004
3005<!-- _______________________________________________________________________ -->
3006<div class="doc_subsubsection">
3007 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3008</div>
3009
3010<div class="doc_text">
3011
3012<h5>Syntax:</h5>
3013
3014<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003015 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003016</pre>
3017
3018<h5>Overview:</h5>
3019
3020<p>
3021The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003022into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003023</p>
3024
3025
3026<h5>Arguments:</h5>
3027
3028<p>
3029The first operand of an '<tt>insertvalue</tt>' instruction is a
3030value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3031The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003032The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003033indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003034indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003035'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3036The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003037by the indices.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003038
3039<h5>Semantics:</h5>
3040
3041<p>
3042The result is an aggregate of the same type as <tt>val</tt>. Its
3043value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003044specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003045</p>
3046
3047<h5>Example:</h5>
3048
3049<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003050 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003051</pre>
3052</div>
3053
3054
3055<!-- ======================================================================= -->
3056<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003057 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003058</div>
3059
Misha Brukman9d0919f2003-11-08 01:05:38 +00003060<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003061
Chris Lattner261efe92003-11-25 01:02:51 +00003062<p>A key design point of an SSA-based representation is how it
3063represents memory. In LLVM, no memory locations are in SSA form, which
3064makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003065allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003066
Misha Brukman9d0919f2003-11-08 01:05:38 +00003067</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003068
Chris Lattner00950542001-06-06 20:29:01 +00003069<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003070<div class="doc_subsubsection">
3071 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3072</div>
3073
Misha Brukman9d0919f2003-11-08 01:05:38 +00003074<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003075
Chris Lattner00950542001-06-06 20:29:01 +00003076<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003077
3078<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003079 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003080</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003081
Chris Lattner00950542001-06-06 20:29:01 +00003082<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003083
Chris Lattner261efe92003-11-25 01:02:51 +00003084<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003085heap and returns a pointer to it. The object is always allocated in the generic
3086address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003087
Chris Lattner00950542001-06-06 20:29:01 +00003088<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003089
3090<p>The '<tt>malloc</tt>' instruction allocates
3091<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003092bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003093appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003094number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003095If a constant alignment is specified, the value result of the allocation is guaranteed to
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003096be aligned to at least that boundary. If not specified, or if zero, the target can
3097choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003098
Misha Brukman9d0919f2003-11-08 01:05:38 +00003099<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003100
Chris Lattner00950542001-06-06 20:29:01 +00003101<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003102
Chris Lattner261efe92003-11-25 01:02:51 +00003103<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Chris Lattner72ed2002008-04-19 21:01:16 +00003104a pointer is returned. The result of a zero byte allocattion is undefined. The
3105result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003106
Chris Lattner2cbdc452005-11-06 08:02:57 +00003107<h5>Example:</h5>
3108
3109<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003110 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003111
Bill Wendlingaac388b2007-05-29 09:42:13 +00003112 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3113 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3114 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3115 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3116 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003117</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003118</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003119
Chris Lattner00950542001-06-06 20:29:01 +00003120<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003121<div class="doc_subsubsection">
3122 <a name="i_free">'<tt>free</tt>' Instruction</a>
3123</div>
3124
Misha Brukman9d0919f2003-11-08 01:05:38 +00003125<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003126
Chris Lattner00950542001-06-06 20:29:01 +00003127<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003128
3129<pre>
3130 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003131</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003132
Chris Lattner00950542001-06-06 20:29:01 +00003133<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003134
Chris Lattner261efe92003-11-25 01:02:51 +00003135<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003136memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003137
Chris Lattner00950542001-06-06 20:29:01 +00003138<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003139
Chris Lattner261efe92003-11-25 01:02:51 +00003140<p>'<tt>value</tt>' shall be a pointer value that points to a value
3141that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3142instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003143
Chris Lattner00950542001-06-06 20:29:01 +00003144<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003145
John Criswell9e2485c2004-12-10 15:51:16 +00003146<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003147after this instruction executes. If the pointer is null, the operation
3148is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003149
Chris Lattner00950542001-06-06 20:29:01 +00003150<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003151
3152<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003153 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
3154 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003155</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003156</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003157
Chris Lattner00950542001-06-06 20:29:01 +00003158<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003159<div class="doc_subsubsection">
3160 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3161</div>
3162
Misha Brukman9d0919f2003-11-08 01:05:38 +00003163<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003164
Chris Lattner00950542001-06-06 20:29:01 +00003165<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003166
3167<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003168 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003169</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003170
Chris Lattner00950542001-06-06 20:29:01 +00003171<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003172
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003173<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3174currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003175returns to its caller. The object is always allocated in the generic address
3176space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003177
Chris Lattner00950542001-06-06 20:29:01 +00003178<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003179
John Criswell9e2485c2004-12-10 15:51:16 +00003180<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003181bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003182appropriate type to the program. If "NumElements" is specified, it is the
3183number of elements allocated, otherwise "NumElements" is defaulted to be one.
Chris Lattner4316dec2008-04-02 00:38:26 +00003184If a constant alignment is specified, the value result of the allocation is guaranteed
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003185to be aligned to at least that boundary. If not specified, or if zero, the target
3186can choose to align the allocation on any convenient boundary.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003187
Misha Brukman9d0919f2003-11-08 01:05:38 +00003188<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003189
Chris Lattner00950542001-06-06 20:29:01 +00003190<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003191
Chris Lattner72ed2002008-04-19 21:01:16 +00003192<p>Memory is allocated; a pointer is returned. The operation is undefiend if
3193there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003194memory is automatically released when the function returns. The '<tt>alloca</tt>'
3195instruction is commonly used to represent automatic variables that must
3196have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003197 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003198instructions), the memory is reclaimed. Allocating zero bytes
3199is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003200
Chris Lattner00950542001-06-06 20:29:01 +00003201<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003202
3203<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003204 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003205 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3206 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003207 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003208</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003209</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003210
Chris Lattner00950542001-06-06 20:29:01 +00003211<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003212<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3213Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003214<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003215<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003216<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003217<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003218<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003219<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003220<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003221address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003222 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003223marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003224the number or order of execution of this <tt>load</tt> with other
3225volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3226instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003227<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003228The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003229(that is, the alignment of the memory address). A value of 0 or an
3230omitted "align" argument means that the operation has the preferential
3231alignment for the target. It is the responsibility of the code emitter
3232to ensure that the alignment information is correct. Overestimating
3233the alignment results in an undefined behavior. Underestimating the
3234alignment may produce less efficient code. An alignment of 1 is always
3235safe.
3236</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003237<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003238<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003239<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003240<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003241 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003242 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3243 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003244</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003245</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003246<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003247<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3248Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003249<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003250<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003251<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3252 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003253</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003254<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003255<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003256<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003257<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003258to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003259operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3260of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003261operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003262optimizer is not allowed to modify the number or order of execution of
3263this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3264 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003265<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003266The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003267(that is, the alignment of the memory address). A value of 0 or an
3268omitted "align" argument means that the operation has the preferential
3269alignment for the target. It is the responsibility of the code emitter
3270to ensure that the alignment information is correct. Overestimating
3271the alignment results in an undefined behavior. Underestimating the
3272alignment may produce less efficient code. An alignment of 1 is always
3273safe.
3274</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003275<h5>Semantics:</h5>
3276<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
3277at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003278<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003279<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003280 store i32 3, i32* %ptr <i>; yields {void}</i>
3281 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003282</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003283</div>
3284
Chris Lattner2b7d3202002-05-06 03:03:22 +00003285<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003286<div class="doc_subsubsection">
3287 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3288</div>
3289
Misha Brukman9d0919f2003-11-08 01:05:38 +00003290<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003291<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003292<pre>
3293 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
3294</pre>
3295
Chris Lattner7faa8832002-04-14 06:13:44 +00003296<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003297
3298<p>
3299The '<tt>getelementptr</tt>' instruction is used to get the address of a
3300subelement of an aggregate data structure.</p>
3301
Chris Lattner7faa8832002-04-14 06:13:44 +00003302<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003303
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003304<p>This instruction takes a list of integer operands that indicate what
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003305elements of the aggregate object to index to. The actual types of the arguments
3306provided depend on the type of the first pointer argument. The
3307'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00003308levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerca86e162006-12-31 07:07:53 +00003309structure, only <tt>i32</tt> integer constants are allowed. When indexing
Chris Lattner05d67092008-04-24 05:59:56 +00003310into an array or pointer, only integers of 32 or 64 bits are allowed; 32-bit
3311values will be sign extended to 64-bits if required.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003312
Chris Lattner261efe92003-11-25 01:02:51 +00003313<p>For example, let's consider a C code fragment and how it gets
3314compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003315
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003316<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003317<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003318struct RT {
3319 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003320 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003321 char C;
3322};
3323struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003324 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003325 double Y;
3326 struct RT Z;
3327};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003328
Chris Lattnercabc8462007-05-29 15:43:56 +00003329int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003330 return &amp;s[1].Z.B[5][13];
3331}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003332</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003333</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003334
Misha Brukman9d0919f2003-11-08 01:05:38 +00003335<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003336
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003337<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003338<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003339%RT = type { i8 , [10 x [20 x i32]], i8 }
3340%ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003341
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003342define i32* %foo(%ST* %s) {
3343entry:
3344 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3345 ret i32* %reg
3346}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003347</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003348</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003349
Chris Lattner7faa8832002-04-14 06:13:44 +00003350<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003351
3352<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00003353on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencer85f5b5b2006-12-04 21:29:24 +00003354and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencer42ddd842006-12-03 16:53:48 +00003355<a href="#t_integer">integer</a> type but the value will always be sign extended
Chris Lattner4316dec2008-04-02 00:38:26 +00003356to 64-bits. <a href="#t_struct">Structure</a> and <a href="#t_pstruct">packed
3357structure</a> types require <tt>i32</tt> <b>constants</b>.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003358
Misha Brukman9d0919f2003-11-08 01:05:38 +00003359<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003360type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003361}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003362the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3363i8 }</tt>' type, another structure. The third index indexes into the second
3364element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003365array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003366'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3367to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003368
Chris Lattner261efe92003-11-25 01:02:51 +00003369<p>Note that it is perfectly legal to index partially through a
3370structure, returning a pointer to an inner element. Because of this,
3371the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003372
3373<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003374 define i32* %foo(%ST* %s) {
3375 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003376 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3377 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003378 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3379 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3380 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003381 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003382</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003383
3384<p>Note that it is undefined to access an array out of bounds: array and
3385pointer indexes must always be within the defined bounds of the array type.
Chris Lattner05d67092008-04-24 05:59:56 +00003386The one exception for this rule is zero length arrays. These arrays are
Chris Lattnere67a9512005-06-24 17:22:57 +00003387defined to be accessible as variable length arrays, which requires access
3388beyond the zero'th element.</p>
3389
Chris Lattner884a9702006-08-15 00:45:58 +00003390<p>The getelementptr instruction is often confusing. For some more insight
3391into how it works, see <a href="GetElementPtr.html">the getelementptr
3392FAQ</a>.</p>
3393
Chris Lattner7faa8832002-04-14 06:13:44 +00003394<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003395
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003396<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003397 <i>; yields [12 x i8]*:aptr</i>
3398 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003399</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003400</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003401
Chris Lattner00950542001-06-06 20:29:01 +00003402<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003403<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003404</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003405<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003406<p>The instructions in this category are the conversion instructions (casting)
3407which all take a single operand and a type. They perform various bit conversions
3408on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003409</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003410
Chris Lattner6536cfe2002-05-06 22:08:29 +00003411<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003412<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003413 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3414</div>
3415<div class="doc_text">
3416
3417<h5>Syntax:</h5>
3418<pre>
3419 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3420</pre>
3421
3422<h5>Overview:</h5>
3423<p>
3424The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3425</p>
3426
3427<h5>Arguments:</h5>
3428<p>
3429The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3430be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003431and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003432type. The bit size of <tt>value</tt> must be larger than the bit size of
3433<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003434
3435<h5>Semantics:</h5>
3436<p>
3437The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003438and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3439larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3440It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003441
3442<h5>Example:</h5>
3443<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003444 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003445 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3446 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003447</pre>
3448</div>
3449
3450<!-- _______________________________________________________________________ -->
3451<div class="doc_subsubsection">
3452 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3453</div>
3454<div class="doc_text">
3455
3456<h5>Syntax:</h5>
3457<pre>
3458 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3459</pre>
3460
3461<h5>Overview:</h5>
3462<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3463<tt>ty2</tt>.</p>
3464
3465
3466<h5>Arguments:</h5>
3467<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003468<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3469also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003470<tt>value</tt> must be smaller than the bit size of the destination type,
3471<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003472
3473<h5>Semantics:</h5>
3474<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003475bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003476
Reid Spencerb5929522007-01-12 15:46:11 +00003477<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003478
3479<h5>Example:</h5>
3480<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003481 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003482 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003483</pre>
3484</div>
3485
3486<!-- _______________________________________________________________________ -->
3487<div class="doc_subsubsection">
3488 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3489</div>
3490<div class="doc_text">
3491
3492<h5>Syntax:</h5>
3493<pre>
3494 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3495</pre>
3496
3497<h5>Overview:</h5>
3498<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3499
3500<h5>Arguments:</h5>
3501<p>
3502The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003503<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3504also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003505<tt>value</tt> must be smaller than the bit size of the destination type,
3506<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003507
3508<h5>Semantics:</h5>
3509<p>
3510The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3511bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003512the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003513
Reid Spencerc78f3372007-01-12 03:35:51 +00003514<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003515
3516<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003517<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003518 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003519 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003520</pre>
3521</div>
3522
3523<!-- _______________________________________________________________________ -->
3524<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003525 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3526</div>
3527
3528<div class="doc_text">
3529
3530<h5>Syntax:</h5>
3531
3532<pre>
3533 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3534</pre>
3535
3536<h5>Overview:</h5>
3537<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3538<tt>ty2</tt>.</p>
3539
3540
3541<h5>Arguments:</h5>
3542<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3543 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3544cast it to. The size of <tt>value</tt> must be larger than the size of
3545<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3546<i>no-op cast</i>.</p>
3547
3548<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003549<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3550<a href="#t_floating">floating point</a> type to a smaller
3551<a href="#t_floating">floating point</a> type. If the value cannot fit within
3552the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003553
3554<h5>Example:</h5>
3555<pre>
3556 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3557 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3558</pre>
3559</div>
3560
3561<!-- _______________________________________________________________________ -->
3562<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003563 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3564</div>
3565<div class="doc_text">
3566
3567<h5>Syntax:</h5>
3568<pre>
3569 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3570</pre>
3571
3572<h5>Overview:</h5>
3573<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3574floating point value.</p>
3575
3576<h5>Arguments:</h5>
3577<p>The '<tt>fpext</tt>' instruction takes a
3578<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003579and a <a href="#t_floating">floating point</a> type to cast it to. The source
3580type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003581
3582<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003583<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003584<a href="#t_floating">floating point</a> type to a larger
3585<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003586used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003587<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003588
3589<h5>Example:</h5>
3590<pre>
3591 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3592 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3593</pre>
3594</div>
3595
3596<!-- _______________________________________________________________________ -->
3597<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003598 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003599</div>
3600<div class="doc_text">
3601
3602<h5>Syntax:</h5>
3603<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003604 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003605</pre>
3606
3607<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003608<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003609unsigned integer equivalent of type <tt>ty2</tt>.
3610</p>
3611
3612<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003613<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003614scalar or vector <a href="#t_floating">floating point</a> value, and a type
3615to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3616type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3617vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003618
3619<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003620<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003621<a href="#t_floating">floating point</a> operand into the nearest (rounding
3622towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3623the results are undefined.</p>
3624
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003625<h5>Example:</h5>
3626<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003627 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003628 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003629 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003630</pre>
3631</div>
3632
3633<!-- _______________________________________________________________________ -->
3634<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003635 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003636</div>
3637<div class="doc_text">
3638
3639<h5>Syntax:</h5>
3640<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003641 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003642</pre>
3643
3644<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003645<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003646<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003647</p>
3648
Chris Lattner6536cfe2002-05-06 22:08:29 +00003649<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003650<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00003651scalar or vector <a href="#t_floating">floating point</a> value, and a type
3652to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
3653type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
3654vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003655
Chris Lattner6536cfe2002-05-06 22:08:29 +00003656<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003657<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003658<a href="#t_floating">floating point</a> operand into the nearest (rounding
3659towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3660the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003661
Chris Lattner33ba0d92001-07-09 00:26:23 +00003662<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003663<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003664 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00003665 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003666 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003667</pre>
3668</div>
3669
3670<!-- _______________________________________________________________________ -->
3671<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003672 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003673</div>
3674<div class="doc_text">
3675
3676<h5>Syntax:</h5>
3677<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003678 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003679</pre>
3680
3681<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003682<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003683integer and converts that value to the <tt>ty2</tt> type.</p>
3684
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003685<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003686<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
3687scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3688to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3689type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3690floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003691
3692<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003693<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003694integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003695the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003696
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003697<h5>Example:</h5>
3698<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003699 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003700 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003701</pre>
3702</div>
3703
3704<!-- _______________________________________________________________________ -->
3705<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003706 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003707</div>
3708<div class="doc_text">
3709
3710<h5>Syntax:</h5>
3711<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003712 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003713</pre>
3714
3715<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003716<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003717integer and converts that value to the <tt>ty2</tt> type.</p>
3718
3719<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00003720<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
3721scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
3722to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
3723type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
3724floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003725
3726<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003727<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003728integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003729the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003730
3731<h5>Example:</h5>
3732<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003733 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003734 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003735</pre>
3736</div>
3737
3738<!-- _______________________________________________________________________ -->
3739<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003740 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3741</div>
3742<div class="doc_text">
3743
3744<h5>Syntax:</h5>
3745<pre>
3746 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3747</pre>
3748
3749<h5>Overview:</h5>
3750<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3751the integer type <tt>ty2</tt>.</p>
3752
3753<h5>Arguments:</h5>
3754<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003755must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Reid Spencer72679252006-11-11 21:00:47 +00003756<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3757
3758<h5>Semantics:</h5>
3759<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3760<tt>ty2</tt> by interpreting the pointer value as an integer and either
3761truncating or zero extending that value to the size of the integer type. If
3762<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3763<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003764are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3765change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003766
3767<h5>Example:</h5>
3768<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003769 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3770 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003771</pre>
3772</div>
3773
3774<!-- _______________________________________________________________________ -->
3775<div class="doc_subsubsection">
3776 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3777</div>
3778<div class="doc_text">
3779
3780<h5>Syntax:</h5>
3781<pre>
3782 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3783</pre>
3784
3785<h5>Overview:</h5>
3786<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3787a pointer type, <tt>ty2</tt>.</p>
3788
3789<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003790<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003791value to cast, and a type to cast it to, which must be a
Anton Korobeynikov7f705592007-01-12 19:20:47 +00003792<a href="#t_pointer">pointer</a> type.
Reid Spencer72679252006-11-11 21:00:47 +00003793
3794<h5>Semantics:</h5>
3795<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3796<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3797the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3798size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3799the size of a pointer then a zero extension is done. If they are the same size,
3800nothing is done (<i>no-op cast</i>).</p>
3801
3802<h5>Example:</h5>
3803<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003804 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3805 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3806 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003807</pre>
3808</div>
3809
3810<!-- _______________________________________________________________________ -->
3811<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003812 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003813</div>
3814<div class="doc_text">
3815
3816<h5>Syntax:</h5>
3817<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003818 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003819</pre>
3820
3821<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003822
Reid Spencer5c0ef472006-11-11 23:08:07 +00003823<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003824<tt>ty2</tt> without changing any bits.</p>
3825
3826<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003827
Reid Spencer5c0ef472006-11-11 23:08:07 +00003828<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00003829a non-aggregate first class value, and a type to cast it to, which must also be
3830a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
3831<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003832and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00003833type is a pointer, the destination type must also be a pointer. This
3834instruction supports bitwise conversion of vectors to integers and to vectors
3835of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003836
3837<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003838<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003839<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3840this conversion. The conversion is done as if the <tt>value</tt> had been
3841stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3842converted to other pointer types with this instruction. To convert pointers to
3843other types, use the <a href="#i_inttoptr">inttoptr</a> or
3844<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003845
3846<h5>Example:</h5>
3847<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003848 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003849 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3850 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003851</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003852</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003853
Reid Spencer2fd21e62006-11-08 01:18:52 +00003854<!-- ======================================================================= -->
3855<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3856<div class="doc_text">
3857<p>The instructions in this category are the "miscellaneous"
3858instructions, which defy better classification.</p>
3859</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003860
3861<!-- _______________________________________________________________________ -->
3862<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3863</div>
3864<div class="doc_text">
3865<h5>Syntax:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003866<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003867</pre>
3868<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003869<p>The '<tt>icmp</tt>' instruction returns a boolean value or
3870a vector of boolean values based on comparison
3871of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003872<h5>Arguments:</h5>
3873<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003874the condition code indicating the kind of comparison to perform. It is not
3875a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003876<ol>
3877 <li><tt>eq</tt>: equal</li>
3878 <li><tt>ne</tt>: not equal </li>
3879 <li><tt>ugt</tt>: unsigned greater than</li>
3880 <li><tt>uge</tt>: unsigned greater or equal</li>
3881 <li><tt>ult</tt>: unsigned less than</li>
3882 <li><tt>ule</tt>: unsigned less or equal</li>
3883 <li><tt>sgt</tt>: signed greater than</li>
3884 <li><tt>sge</tt>: signed greater or equal</li>
3885 <li><tt>slt</tt>: signed less than</li>
3886 <li><tt>sle</tt>: signed less or equal</li>
3887</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003888<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00003889<a href="#t_pointer">pointer</a>
3890or integer <a href="#t_vector">vector</a> typed.
3891They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003892<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003893<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00003894the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00003895yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003896<ol>
3897 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3898 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3899 </li>
3900 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3901 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3902 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003903 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003904 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003905 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003906 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003907 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003908 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003909 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003910 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003911 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003912 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003913 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003914 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003915 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003916 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00003917 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003918</ol>
3919<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00003920values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003921<p>If the operands are integer vectors, then they are compared
3922element by element. The result is an <tt>i1</tt> vector with
3923the same number of elements as the values being compared.
3924Otherwise, the result is an <tt>i1</tt>.
3925</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003926
3927<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003928<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3929 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3930 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3931 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3932 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3933 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003934</pre>
3935</div>
3936
3937<!-- _______________________________________________________________________ -->
3938<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3939</div>
3940<div class="doc_text">
3941<h5>Syntax:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003942<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003943</pre>
3944<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003945<p>The '<tt>fcmp</tt>' instruction returns a boolean value
3946or vector of boolean values based on comparison
3947of its operands.
3948<p>
3949If the operands are floating point scalars, then the result
3950type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
3951</p>
3952<p>If the operands are floating point vectors, then the result type
3953is a vector of boolean with the same number of elements as the
3954operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003955<h5>Arguments:</h5>
3956<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003957the condition code indicating the kind of comparison to perform. It is not
3958a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003959<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00003960 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003961 <li><tt>oeq</tt>: ordered and equal</li>
3962 <li><tt>ogt</tt>: ordered and greater than </li>
3963 <li><tt>oge</tt>: ordered and greater than or equal</li>
3964 <li><tt>olt</tt>: ordered and less than </li>
3965 <li><tt>ole</tt>: ordered and less than or equal</li>
3966 <li><tt>one</tt>: ordered and not equal</li>
3967 <li><tt>ord</tt>: ordered (no nans)</li>
3968 <li><tt>ueq</tt>: unordered or equal</li>
3969 <li><tt>ugt</tt>: unordered or greater than </li>
3970 <li><tt>uge</tt>: unordered or greater than or equal</li>
3971 <li><tt>ult</tt>: unordered or less than </li>
3972 <li><tt>ule</tt>: unordered or less than or equal</li>
3973 <li><tt>une</tt>: unordered or not equal</li>
3974 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003975 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003976</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003977<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00003978<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003979<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
3980either a <a href="#t_floating">floating point</a> type
3981or a <a href="#t_vector">vector</a> of floating point type.
3982They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003983<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003984<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00003985according to the condition code given as <tt>cond</tt>.
3986If the operands are vectors, then the vectors are compared
3987element by element.
3988Each comparison performed
3989always yields an <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003990<ol>
3991 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003992 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003993 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003994 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003995 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003996 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003997 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003998 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00003999 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004000 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004001 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004002 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004003 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004004 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4005 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004006 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004007 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004008 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004009 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004010 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004011 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004012 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004013 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004014 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004015 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004016 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004017 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004018 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4019</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004020
4021<h5>Example:</h5>
4022<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004023 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4024 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4025 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004026</pre>
4027</div>
4028
Reid Spencer2fd21e62006-11-08 01:18:52 +00004029<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004030<div class="doc_subsubsection">
4031 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4032</div>
4033<div class="doc_text">
4034<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004035<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004036</pre>
4037<h5>Overview:</h5>
4038<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4039element-wise comparison of its two integer vector operands.</p>
4040<h5>Arguments:</h5>
4041<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4042the condition code indicating the kind of comparison to perform. It is not
4043a value, just a keyword. The possible condition code are:
4044<ol>
4045 <li><tt>eq</tt>: equal</li>
4046 <li><tt>ne</tt>: not equal </li>
4047 <li><tt>ugt</tt>: unsigned greater than</li>
4048 <li><tt>uge</tt>: unsigned greater or equal</li>
4049 <li><tt>ult</tt>: unsigned less than</li>
4050 <li><tt>ule</tt>: unsigned less or equal</li>
4051 <li><tt>sgt</tt>: signed greater than</li>
4052 <li><tt>sge</tt>: signed greater or equal</li>
4053 <li><tt>slt</tt>: signed less than</li>
4054 <li><tt>sle</tt>: signed less or equal</li>
4055</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004056<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004057<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4058<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004059<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004060according to the condition code given as <tt>cond</tt>. The comparison yields a
4061<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4062identical type as the values being compared. The most significant bit in each
4063element is 1 if the element-wise comparison evaluates to true, and is 0
4064otherwise. All other bits of the result are undefined. The condition codes
4065are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
4066instruction</a>.
4067
4068<h5>Example:</h5>
4069<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004070 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4071 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004072</pre>
4073</div>
4074
4075<!-- _______________________________________________________________________ -->
4076<div class="doc_subsubsection">
4077 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4078</div>
4079<div class="doc_text">
4080<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004081<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004082<h5>Overview:</h5>
4083<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4084element-wise comparison of its two floating point vector operands. The output
4085elements have the same width as the input elements.</p>
4086<h5>Arguments:</h5>
4087<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4088the condition code indicating the kind of comparison to perform. It is not
4089a value, just a keyword. The possible condition code are:
4090<ol>
4091 <li><tt>false</tt>: no comparison, always returns false</li>
4092 <li><tt>oeq</tt>: ordered and equal</li>
4093 <li><tt>ogt</tt>: ordered and greater than </li>
4094 <li><tt>oge</tt>: ordered and greater than or equal</li>
4095 <li><tt>olt</tt>: ordered and less than </li>
4096 <li><tt>ole</tt>: ordered and less than or equal</li>
4097 <li><tt>one</tt>: ordered and not equal</li>
4098 <li><tt>ord</tt>: ordered (no nans)</li>
4099 <li><tt>ueq</tt>: unordered or equal</li>
4100 <li><tt>ugt</tt>: unordered or greater than </li>
4101 <li><tt>uge</tt>: unordered or greater than or equal</li>
4102 <li><tt>ult</tt>: unordered or less than </li>
4103 <li><tt>ule</tt>: unordered or less than or equal</li>
4104 <li><tt>une</tt>: unordered or not equal</li>
4105 <li><tt>uno</tt>: unordered (either nans)</li>
4106 <li><tt>true</tt>: no comparison, always returns true</li>
4107</ol>
4108<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4109<a href="#t_floating">floating point</a> typed. They must also be identical
4110types.</p>
4111<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004112<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004113according to the condition code given as <tt>cond</tt>. The comparison yields a
4114<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4115an identical number of elements as the values being compared, and each element
4116having identical with to the width of the floating point elements. The most
4117significant bit in each element is 1 if the element-wise comparison evaluates to
4118true, and is 0 otherwise. All other bits of the result are undefined. The
4119condition codes are evaluated identically to the
4120<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.
4121
4122<h5>Example:</h5>
4123<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004124 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4125 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt; <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004126</pre>
4127</div>
4128
4129<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004130<div class="doc_subsubsection">
4131 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4132</div>
4133
Reid Spencer2fd21e62006-11-08 01:18:52 +00004134<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004135
Reid Spencer2fd21e62006-11-08 01:18:52 +00004136<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004137
Reid Spencer2fd21e62006-11-08 01:18:52 +00004138<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4139<h5>Overview:</h5>
4140<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4141the SSA graph representing the function.</p>
4142<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004143
Jeff Cohenb627eab2007-04-29 01:07:00 +00004144<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004145field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4146as arguments, with one pair for each predecessor basic block of the
4147current block. Only values of <a href="#t_firstclass">first class</a>
4148type may be used as the value arguments to the PHI node. Only labels
4149may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004150
Reid Spencer2fd21e62006-11-08 01:18:52 +00004151<p>There must be no non-phi instructions between the start of a basic
4152block and the PHI instructions: i.e. PHI instructions must be first in
4153a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004154
Reid Spencer2fd21e62006-11-08 01:18:52 +00004155<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004156
Jeff Cohenb627eab2007-04-29 01:07:00 +00004157<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4158specified by the pair corresponding to the predecessor basic block that executed
4159just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004160
Reid Spencer2fd21e62006-11-08 01:18:52 +00004161<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004162<pre>
4163Loop: ; Infinite loop that counts from 0 on up...
4164 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4165 %nextindvar = add i32 %indvar, 1
4166 br label %Loop
4167</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004168</div>
4169
Chris Lattnercc37aae2004-03-12 05:50:16 +00004170<!-- _______________________________________________________________________ -->
4171<div class="doc_subsubsection">
4172 <a name="i_select">'<tt>select</tt>' Instruction</a>
4173</div>
4174
4175<div class="doc_text">
4176
4177<h5>Syntax:</h5>
4178
4179<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004180 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4181
4182 <i>selty</i> is either i1 or {&lt;N x i1&gt}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004183</pre>
4184
4185<h5>Overview:</h5>
4186
4187<p>
4188The '<tt>select</tt>' instruction is used to choose one value based on a
4189condition, without branching.
4190</p>
4191
4192
4193<h5>Arguments:</h5>
4194
4195<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004196The '<tt>select</tt>' instruction requires an 'i1' value or
4197a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004198condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004199type. If the val1/val2 are vectors and
4200the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004201individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004202</p>
4203
4204<h5>Semantics:</h5>
4205
4206<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004207If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004208value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004209</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004210<p>
4211If the condition is a vector of i1, then the value arguments must
4212be vectors of the same size, and the selection is done element
4213by element.
4214</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004215
4216<h5>Example:</h5>
4217
4218<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004219 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004220</pre>
4221</div>
4222
Robert Bocchino05ccd702006-01-15 20:48:27 +00004223
4224<!-- _______________________________________________________________________ -->
4225<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004226 <a name="i_call">'<tt>call</tt>' Instruction</a>
4227</div>
4228
Misha Brukman9d0919f2003-11-08 01:05:38 +00004229<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004230
Chris Lattner00950542001-06-06 20:29:01 +00004231<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004232<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004233 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00004234</pre>
4235
Chris Lattner00950542001-06-06 20:29:01 +00004236<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004237
Misha Brukman9d0919f2003-11-08 01:05:38 +00004238<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004239
Chris Lattner00950542001-06-06 20:29:01 +00004240<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004241
Misha Brukman9d0919f2003-11-08 01:05:38 +00004242<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004243
Chris Lattner6536cfe2002-05-06 22:08:29 +00004244<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004245 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004246 <p>The optional "tail" marker indicates whether the callee function accesses
4247 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004248 function call is eligible for tail call optimization. Note that calls may
4249 be marked "tail" even if they do not occur before a <a
4250 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00004251 </li>
4252 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004253 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004254 convention</a> the call should use. If none is specified, the call defaults
4255 to using C calling conventions.
4256 </li>
4257 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004258 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4259 the type of the return value. Functions that return no value are marked
4260 <tt><a href="#t_void">void</a></tt>.</p>
4261 </li>
4262 <li>
4263 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4264 value being invoked. The argument types must match the types implied by
4265 this signature. This type can be omitted if the function is not varargs
4266 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004267 </li>
4268 <li>
4269 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4270 be invoked. In most cases, this is a direct function invocation, but
4271 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004272 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004273 </li>
4274 <li>
4275 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004276 function signature argument types. All arguments must be of
4277 <a href="#t_firstclass">first class</a> type. If the function signature
4278 indicates the function accepts a variable number of arguments, the extra
4279 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004280 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004281</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004282
Chris Lattner00950542001-06-06 20:29:01 +00004283<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004284
Chris Lattner261efe92003-11-25 01:02:51 +00004285<p>The '<tt>call</tt>' instruction is used to cause control flow to
4286transfer to a specified function, with its incoming arguments bound to
4287the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4288instruction in the called function, control flow continues with the
4289instruction after the function call, and the return value of the
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004290function is bound to the result argument.
Chris Lattner2bff5242005-05-06 05:47:36 +00004291
Chris Lattner00950542001-06-06 20:29:01 +00004292<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004293
4294<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004295 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004296 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4297 %X = tail call i32 @foo() <i>; yields i32</i>
4298 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4299 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004300
4301 %struct.A = type { i32, i8 }
Chris Lattner772fccf2008-03-21 17:24:17 +00004302 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004303 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4304 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004305</pre>
4306
Misha Brukman9d0919f2003-11-08 01:05:38 +00004307</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004308
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004309<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004310<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004311 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004312</div>
4313
Misha Brukman9d0919f2003-11-08 01:05:38 +00004314<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004315
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004316<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004317
4318<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004319 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004320</pre>
4321
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004322<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004323
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004324<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004325the "variable argument" area of a function call. It is used to implement the
4326<tt>va_arg</tt> macro in C.</p>
4327
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004328<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004329
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004330<p>This instruction takes a <tt>va_list*</tt> value and the type of
4331the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004332increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004333actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004334
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004335<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004336
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004337<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4338type from the specified <tt>va_list</tt> and causes the
4339<tt>va_list</tt> to point to the next argument. For more information,
4340see the variable argument handling <a href="#int_varargs">Intrinsic
4341Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004342
4343<p>It is legal for this instruction to be called in a function which does not
4344take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004345function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004346
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004347<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004348href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004349argument.</p>
4350
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004351<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004352
4353<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4354
Misha Brukman9d0919f2003-11-08 01:05:38 +00004355</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004356
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004357<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004358<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4359<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004360
Misha Brukman9d0919f2003-11-08 01:05:38 +00004361<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004362
4363<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004364well known names and semantics and are required to follow certain restrictions.
4365Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004366language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004367adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004368
John Criswellfc6b8952005-05-16 16:17:45 +00004369<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004370prefix is reserved in LLVM for intrinsic names; thus, function names may not
4371begin with this prefix. Intrinsic functions must always be external functions:
4372you cannot define the body of intrinsic functions. Intrinsic functions may
4373only be used in call or invoke instructions: it is illegal to take the address
4374of an intrinsic function. Additionally, because intrinsic functions are part
4375of the LLVM language, it is required if any are added that they be documented
4376here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004377
Chandler Carruth69940402007-08-04 01:51:18 +00004378<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4379a family of functions that perform the same operation but on different data
4380types. Because LLVM can represent over 8 million different integer types,
4381overloading is used commonly to allow an intrinsic function to operate on any
4382integer type. One or more of the argument types or the result type can be
4383overloaded to accept any integer type. Argument types may also be defined as
4384exactly matching a previous argument's type or the result type. This allows an
4385intrinsic function which accepts multiple arguments, but needs all of them to
4386be of the same type, to only be overloaded with respect to a single argument or
4387the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004388
Chandler Carruth69940402007-08-04 01:51:18 +00004389<p>Overloaded intrinsics will have the names of its overloaded argument types
4390encoded into its function name, each preceded by a period. Only those types
4391which are overloaded result in a name suffix. Arguments whose type is matched
4392against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4393take an integer of any width and returns an integer of exactly the same integer
4394width. This leads to a family of functions such as
4395<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4396Only one type, the return type, is overloaded, and only one type suffix is
4397required. Because the argument's type is matched against the return type, it
4398does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004399
4400<p>To learn how to add an intrinsic function, please see the
4401<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004402</p>
4403
Misha Brukman9d0919f2003-11-08 01:05:38 +00004404</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004405
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004406<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004407<div class="doc_subsection">
4408 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4409</div>
4410
Misha Brukman9d0919f2003-11-08 01:05:38 +00004411<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004412
Misha Brukman9d0919f2003-11-08 01:05:38 +00004413<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004414 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004415intrinsic functions. These functions are related to the similarly
4416named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004417
Chris Lattner261efe92003-11-25 01:02:51 +00004418<p>All of these functions operate on arguments that use a
4419target-specific value type "<tt>va_list</tt>". The LLVM assembly
4420language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004421transformations should be prepared to handle these functions regardless of
4422the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004423
Chris Lattner374ab302006-05-15 17:26:46 +00004424<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004425instruction and the variable argument handling intrinsic functions are
4426used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004427
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004428<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004429<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004430define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004431 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004432 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004433 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004434 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004435
4436 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004437 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004438
4439 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004440 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004441 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004442 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004443 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004444
4445 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004446 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004447 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004448}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004449
4450declare void @llvm.va_start(i8*)
4451declare void @llvm.va_copy(i8*, i8*)
4452declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004453</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004454</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004455
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004456</div>
4457
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004458<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004459<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004460 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004461</div>
4462
4463
Misha Brukman9d0919f2003-11-08 01:05:38 +00004464<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004465<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004466<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004467<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004468<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
4469<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4470href="#i_va_arg">va_arg</a></tt>.</p>
4471
4472<h5>Arguments:</h5>
4473
4474<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
4475
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004476<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004477
4478<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
4479macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004480<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004481<tt>va_arg</tt> will produce the first variable argument passed to the function.
4482Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004483last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004484
Misha Brukman9d0919f2003-11-08 01:05:38 +00004485</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004486
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004487<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004488<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004489 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004490</div>
4491
Misha Brukman9d0919f2003-11-08 01:05:38 +00004492<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004493<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004494<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004495<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004496
Jeff Cohenb627eab2007-04-29 01:07:00 +00004497<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004498which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004499or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004500
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004501<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004502
Jeff Cohenb627eab2007-04-29 01:07:00 +00004503<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004504
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004505<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004506
Misha Brukman9d0919f2003-11-08 01:05:38 +00004507<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004508macro available in C. In a target-dependent way, it destroys the
4509<tt>va_list</tt> element to which the argument points. Calls to <a
4510href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4511<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4512<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004513
Misha Brukman9d0919f2003-11-08 01:05:38 +00004514</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004515
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004516<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004517<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004518 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004519</div>
4520
Misha Brukman9d0919f2003-11-08 01:05:38 +00004521<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004522
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004523<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004524
4525<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004526 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004527</pre>
4528
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004529<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004530
Jeff Cohenb627eab2007-04-29 01:07:00 +00004531<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4532from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004533
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004534<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004535
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004536<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004537The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004538
Chris Lattnerd7923912004-05-23 21:06:01 +00004539
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004540<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004541
Jeff Cohenb627eab2007-04-29 01:07:00 +00004542<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4543macro available in C. In a target-dependent way, it copies the source
4544<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4545intrinsic is necessary because the <tt><a href="#int_va_start">
4546llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4547example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004548
Misha Brukman9d0919f2003-11-08 01:05:38 +00004549</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004550
Chris Lattner33aec9e2004-02-12 17:01:32 +00004551<!-- ======================================================================= -->
4552<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004553 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4554</div>
4555
4556<div class="doc_text">
4557
4558<p>
4559LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004560Collection</a> (GC) requires the implementation and generation of these
4561intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004562These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004563stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004564href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004565Front-ends for type-safe garbage collected languages should generate these
4566intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4567href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4568</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004569
4570<p>The garbage collection intrinsics only operate on objects in the generic
4571 address space (address space zero).</p>
4572
Chris Lattnerd7923912004-05-23 21:06:01 +00004573</div>
4574
4575<!-- _______________________________________________________________________ -->
4576<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004577 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004578</div>
4579
4580<div class="doc_text">
4581
4582<h5>Syntax:</h5>
4583
4584<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004585 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004586</pre>
4587
4588<h5>Overview:</h5>
4589
John Criswell9e2485c2004-12-10 15:51:16 +00004590<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004591the code generator, and allows some metadata to be associated with it.</p>
4592
4593<h5>Arguments:</h5>
4594
4595<p>The first argument specifies the address of a stack object that contains the
4596root pointer. The second pointer (which must be either a constant or a global
4597value address) contains the meta-data to be associated with the root.</p>
4598
4599<h5>Semantics:</h5>
4600
Chris Lattner05d67092008-04-24 05:59:56 +00004601<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00004602location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00004603the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
4604intrinsic may only be used in a function which <a href="#gc">specifies a GC
4605algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004606
4607</div>
4608
4609
4610<!-- _______________________________________________________________________ -->
4611<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004612 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004613</div>
4614
4615<div class="doc_text">
4616
4617<h5>Syntax:</h5>
4618
4619<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004620 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00004621</pre>
4622
4623<h5>Overview:</h5>
4624
4625<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
4626locations, allowing garbage collector implementations that require read
4627barriers.</p>
4628
4629<h5>Arguments:</h5>
4630
Chris Lattner80626e92006-03-14 20:02:51 +00004631<p>The second argument is the address to read from, which should be an address
4632allocated from the garbage collector. The first object is a pointer to the
4633start of the referenced object, if needed by the language runtime (otherwise
4634null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004635
4636<h5>Semantics:</h5>
4637
4638<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
4639instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004640garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
4641may only be used in a function which <a href="#gc">specifies a GC
4642algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004643
4644</div>
4645
4646
4647<!-- _______________________________________________________________________ -->
4648<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004649 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004650</div>
4651
4652<div class="doc_text">
4653
4654<h5>Syntax:</h5>
4655
4656<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004657 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00004658</pre>
4659
4660<h5>Overview:</h5>
4661
4662<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4663locations, allowing garbage collector implementations that require write
4664barriers (such as generational or reference counting collectors).</p>
4665
4666<h5>Arguments:</h5>
4667
Chris Lattner80626e92006-03-14 20:02:51 +00004668<p>The first argument is the reference to store, the second is the start of the
4669object to store it to, and the third is the address of the field of Obj to
4670store to. If the runtime does not require a pointer to the object, Obj may be
4671null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004672
4673<h5>Semantics:</h5>
4674
4675<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4676instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00004677garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
4678may only be used in a function which <a href="#gc">specifies a GC
4679algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004680
4681</div>
4682
4683
4684
4685<!-- ======================================================================= -->
4686<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004687 <a name="int_codegen">Code Generator Intrinsics</a>
4688</div>
4689
4690<div class="doc_text">
4691<p>
4692These intrinsics are provided by LLVM to expose special features that may only
4693be implemented with code generator support.
4694</p>
4695
4696</div>
4697
4698<!-- _______________________________________________________________________ -->
4699<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004700 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004701</div>
4702
4703<div class="doc_text">
4704
4705<h5>Syntax:</h5>
4706<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004707 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004708</pre>
4709
4710<h5>Overview:</h5>
4711
4712<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004713The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4714target-specific value indicating the return address of the current function
4715or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004716</p>
4717
4718<h5>Arguments:</h5>
4719
4720<p>
4721The argument to this intrinsic indicates which function to return the address
4722for. Zero indicates the calling function, one indicates its caller, etc. The
4723argument is <b>required</b> to be a constant integer value.
4724</p>
4725
4726<h5>Semantics:</h5>
4727
4728<p>
4729The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4730the return address of the specified call frame, or zero if it cannot be
4731identified. The value returned by this intrinsic is likely to be incorrect or 0
4732for arguments other than zero, so it should only be used for debugging purposes.
4733</p>
4734
4735<p>
4736Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004737aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004738source-language caller.
4739</p>
4740</div>
4741
4742
4743<!-- _______________________________________________________________________ -->
4744<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004745 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004746</div>
4747
4748<div class="doc_text">
4749
4750<h5>Syntax:</h5>
4751<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004752 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004753</pre>
4754
4755<h5>Overview:</h5>
4756
4757<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004758The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4759target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004760</p>
4761
4762<h5>Arguments:</h5>
4763
4764<p>
4765The argument to this intrinsic indicates which function to return the frame
4766pointer for. Zero indicates the calling function, one indicates its caller,
4767etc. The argument is <b>required</b> to be a constant integer value.
4768</p>
4769
4770<h5>Semantics:</h5>
4771
4772<p>
4773The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4774the frame address of the specified call frame, or zero if it cannot be
4775identified. The value returned by this intrinsic is likely to be incorrect or 0
4776for arguments other than zero, so it should only be used for debugging purposes.
4777</p>
4778
4779<p>
4780Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004781aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004782source-language caller.
4783</p>
4784</div>
4785
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004786<!-- _______________________________________________________________________ -->
4787<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004788 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004789</div>
4790
4791<div class="doc_text">
4792
4793<h5>Syntax:</h5>
4794<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004795 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004796</pre>
4797
4798<h5>Overview:</h5>
4799
4800<p>
4801The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004802the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004803<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4804features like scoped automatic variable sized arrays in C99.
4805</p>
4806
4807<h5>Semantics:</h5>
4808
4809<p>
4810This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004811href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004812<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4813<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4814state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4815practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4816that were allocated after the <tt>llvm.stacksave</tt> was executed.
4817</p>
4818
4819</div>
4820
4821<!-- _______________________________________________________________________ -->
4822<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004823 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004824</div>
4825
4826<div class="doc_text">
4827
4828<h5>Syntax:</h5>
4829<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004830 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004831</pre>
4832
4833<h5>Overview:</h5>
4834
4835<p>
4836The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4837the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004838href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004839useful for implementing language features like scoped automatic variable sized
4840arrays in C99.
4841</p>
4842
4843<h5>Semantics:</h5>
4844
4845<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004846See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004847</p>
4848
4849</div>
4850
4851
4852<!-- _______________________________________________________________________ -->
4853<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004854 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004855</div>
4856
4857<div class="doc_text">
4858
4859<h5>Syntax:</h5>
4860<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004861 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004862</pre>
4863
4864<h5>Overview:</h5>
4865
4866
4867<p>
4868The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004869a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4870no
4871effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004872characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004873</p>
4874
4875<h5>Arguments:</h5>
4876
4877<p>
4878<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4879determining if the fetch should be for a read (0) or write (1), and
4880<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004881locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004882<tt>locality</tt> arguments must be constant integers.
4883</p>
4884
4885<h5>Semantics:</h5>
4886
4887<p>
4888This intrinsic does not modify the behavior of the program. In particular,
4889prefetches cannot trap and do not produce a value. On targets that support this
4890intrinsic, the prefetch can provide hints to the processor cache for better
4891performance.
4892</p>
4893
4894</div>
4895
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004896<!-- _______________________________________________________________________ -->
4897<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004898 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004899</div>
4900
4901<div class="doc_text">
4902
4903<h5>Syntax:</h5>
4904<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004905 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004906</pre>
4907
4908<h5>Overview:</h5>
4909
4910
4911<p>
John Criswellfc6b8952005-05-16 16:17:45 +00004912The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00004913(PC) in a region of
4914code to simulators and other tools. The method is target specific, but it is
4915expected that the marker will use exported symbols to transmit the PC of the
4916marker.
4917The marker makes no guarantees that it will remain with any specific instruction
4918after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00004919optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00004920correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004921</p>
4922
4923<h5>Arguments:</h5>
4924
4925<p>
4926<tt>id</tt> is a numerical id identifying the marker.
4927</p>
4928
4929<h5>Semantics:</h5>
4930
4931<p>
4932This intrinsic does not modify the behavior of the program. Backends that do not
4933support this intrinisic may ignore it.
4934</p>
4935
4936</div>
4937
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004938<!-- _______________________________________________________________________ -->
4939<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004940 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004941</div>
4942
4943<div class="doc_text">
4944
4945<h5>Syntax:</h5>
4946<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004947 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004948</pre>
4949
4950<h5>Overview:</h5>
4951
4952
4953<p>
4954The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4955counter register (or similar low latency, high accuracy clocks) on those targets
4956that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4957As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4958should only be used for small timings.
4959</p>
4960
4961<h5>Semantics:</h5>
4962
4963<p>
4964When directly supported, reading the cycle counter should not modify any memory.
4965Implementations are allowed to either return a application specific value or a
4966system wide value. On backends without support, this is lowered to a constant 0.
4967</p>
4968
4969</div>
4970
Chris Lattner10610642004-02-14 04:08:35 +00004971<!-- ======================================================================= -->
4972<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004973 <a name="int_libc">Standard C Library Intrinsics</a>
4974</div>
4975
4976<div class="doc_text">
4977<p>
Chris Lattner10610642004-02-14 04:08:35 +00004978LLVM provides intrinsics for a few important standard C library functions.
4979These intrinsics allow source-language front-ends to pass information about the
4980alignment of the pointer arguments to the code generator, providing opportunity
4981for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004982</p>
4983
4984</div>
4985
4986<!-- _______________________________________________________________________ -->
4987<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004988 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004989</div>
4990
4991<div class="doc_text">
4992
4993<h5>Syntax:</h5>
4994<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004995 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004996 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004997 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004998 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004999</pre>
5000
5001<h5>Overview:</h5>
5002
5003<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005004The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005005location to the destination location.
5006</p>
5007
5008<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005009Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5010intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005011</p>
5012
5013<h5>Arguments:</h5>
5014
5015<p>
5016The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005017the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005018specifying the number of bytes to copy, and the fourth argument is the alignment
5019of the source and destination locations.
5020</p>
5021
Chris Lattner3301ced2004-02-12 21:18:15 +00005022<p>
5023If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005024the caller guarantees that both the source and destination pointers are aligned
5025to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005026</p>
5027
Chris Lattner33aec9e2004-02-12 17:01:32 +00005028<h5>Semantics:</h5>
5029
5030<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005031The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005032location to the destination location, which are not allowed to overlap. It
5033copies "len" bytes of memory over. If the argument is known to be aligned to
5034some boundary, this can be specified as the fourth argument, otherwise it should
5035be set to 0 or 1.
5036</p>
5037</div>
5038
5039
Chris Lattner0eb51b42004-02-12 18:10:10 +00005040<!-- _______________________________________________________________________ -->
5041<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005042 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005043</div>
5044
5045<div class="doc_text">
5046
5047<h5>Syntax:</h5>
5048<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005049 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005050 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005051 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005052 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005053</pre>
5054
5055<h5>Overview:</h5>
5056
5057<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005058The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5059location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005060'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005061</p>
5062
5063<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005064Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5065intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005066</p>
5067
5068<h5>Arguments:</h5>
5069
5070<p>
5071The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005072the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005073specifying the number of bytes to copy, and the fourth argument is the alignment
5074of the source and destination locations.
5075</p>
5076
Chris Lattner3301ced2004-02-12 21:18:15 +00005077<p>
5078If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005079the caller guarantees that the source and destination pointers are aligned to
5080that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005081</p>
5082
Chris Lattner0eb51b42004-02-12 18:10:10 +00005083<h5>Semantics:</h5>
5084
5085<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005086The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005087location to the destination location, which may overlap. It
5088copies "len" bytes of memory over. If the argument is known to be aligned to
5089some boundary, this can be specified as the fourth argument, otherwise it should
5090be set to 0 or 1.
5091</p>
5092</div>
5093
Chris Lattner8ff75902004-01-06 05:31:32 +00005094
Chris Lattner10610642004-02-14 04:08:35 +00005095<!-- _______________________________________________________________________ -->
5096<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005097 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005098</div>
5099
5100<div class="doc_text">
5101
5102<h5>Syntax:</h5>
5103<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005104 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005105 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005106 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005107 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005108</pre>
5109
5110<h5>Overview:</h5>
5111
5112<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005113The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005114byte value.
5115</p>
5116
5117<p>
5118Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5119does not return a value, and takes an extra alignment argument.
5120</p>
5121
5122<h5>Arguments:</h5>
5123
5124<p>
5125The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005126byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005127argument specifying the number of bytes to fill, and the fourth argument is the
5128known alignment of destination location.
5129</p>
5130
5131<p>
5132If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005133the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005134</p>
5135
5136<h5>Semantics:</h5>
5137
5138<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005139The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5140the
Chris Lattner10610642004-02-14 04:08:35 +00005141destination location. If the argument is known to be aligned to some boundary,
5142this can be specified as the fourth argument, otherwise it should be set to 0 or
51431.
5144</p>
5145</div>
5146
5147
Chris Lattner32006282004-06-11 02:28:03 +00005148<!-- _______________________________________________________________________ -->
5149<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005150 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005151</div>
5152
5153<div class="doc_text">
5154
5155<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005156<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005157floating point or vector of floating point type. Not all targets support all
5158types however.
Chris Lattnera4d74142005-07-21 01:29:16 +00005159<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005160 declare float @llvm.sqrt.f32(float %Val)
5161 declare double @llvm.sqrt.f64(double %Val)
5162 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5163 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5164 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005165</pre>
5166
5167<h5>Overview:</h5>
5168
5169<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005170The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005171returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005172<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005173negative numbers other than -0.0 (which allows for better optimization, because
5174there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5175defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005176</p>
5177
5178<h5>Arguments:</h5>
5179
5180<p>
5181The argument and return value are floating point numbers of the same type.
5182</p>
5183
5184<h5>Semantics:</h5>
5185
5186<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005187This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005188floating point number.
5189</p>
5190</div>
5191
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005192<!-- _______________________________________________________________________ -->
5193<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005194 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005195</div>
5196
5197<div class="doc_text">
5198
5199<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005200<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005201floating point or vector of floating point type. Not all targets support all
5202types however.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005203<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005204 declare float @llvm.powi.f32(float %Val, i32 %power)
5205 declare double @llvm.powi.f64(double %Val, i32 %power)
5206 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5207 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5208 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005209</pre>
5210
5211<h5>Overview:</h5>
5212
5213<p>
5214The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5215specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005216multiplications is not defined. When a vector of floating point type is
5217used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005218</p>
5219
5220<h5>Arguments:</h5>
5221
5222<p>
5223The second argument is an integer power, and the first is a value to raise to
5224that power.
5225</p>
5226
5227<h5>Semantics:</h5>
5228
5229<p>
5230This function returns the first value raised to the second power with an
5231unspecified sequence of rounding operations.</p>
5232</div>
5233
Dan Gohman91c284c2007-10-15 20:30:11 +00005234<!-- _______________________________________________________________________ -->
5235<div class="doc_subsubsection">
5236 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5237</div>
5238
5239<div class="doc_text">
5240
5241<h5>Syntax:</h5>
5242<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5243floating point or vector of floating point type. Not all targets support all
5244types however.
5245<pre>
5246 declare float @llvm.sin.f32(float %Val)
5247 declare double @llvm.sin.f64(double %Val)
5248 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5249 declare fp128 @llvm.sin.f128(fp128 %Val)
5250 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5251</pre>
5252
5253<h5>Overview:</h5>
5254
5255<p>
5256The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5257</p>
5258
5259<h5>Arguments:</h5>
5260
5261<p>
5262The argument and return value are floating point numbers of the same type.
5263</p>
5264
5265<h5>Semantics:</h5>
5266
5267<p>
5268This function returns the sine of the specified operand, returning the
5269same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005270conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005271</div>
5272
5273<!-- _______________________________________________________________________ -->
5274<div class="doc_subsubsection">
5275 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5276</div>
5277
5278<div class="doc_text">
5279
5280<h5>Syntax:</h5>
5281<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5282floating point or vector of floating point type. Not all targets support all
5283types however.
5284<pre>
5285 declare float @llvm.cos.f32(float %Val)
5286 declare double @llvm.cos.f64(double %Val)
5287 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5288 declare fp128 @llvm.cos.f128(fp128 %Val)
5289 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5290</pre>
5291
5292<h5>Overview:</h5>
5293
5294<p>
5295The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5296</p>
5297
5298<h5>Arguments:</h5>
5299
5300<p>
5301The argument and return value are floating point numbers of the same type.
5302</p>
5303
5304<h5>Semantics:</h5>
5305
5306<p>
5307This function returns the cosine of the specified operand, returning the
5308same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005309conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005310</div>
5311
5312<!-- _______________________________________________________________________ -->
5313<div class="doc_subsubsection">
5314 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5315</div>
5316
5317<div class="doc_text">
5318
5319<h5>Syntax:</h5>
5320<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5321floating point or vector of floating point type. Not all targets support all
5322types however.
5323<pre>
5324 declare float @llvm.pow.f32(float %Val, float %Power)
5325 declare double @llvm.pow.f64(double %Val, double %Power)
5326 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5327 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5328 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5329</pre>
5330
5331<h5>Overview:</h5>
5332
5333<p>
5334The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5335specified (positive or negative) power.
5336</p>
5337
5338<h5>Arguments:</h5>
5339
5340<p>
5341The second argument is a floating point power, and the first is a value to
5342raise to that power.
5343</p>
5344
5345<h5>Semantics:</h5>
5346
5347<p>
5348This function returns the first value raised to the second power,
5349returning the
5350same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005351conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005352</div>
5353
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005354
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005355<!-- ======================================================================= -->
5356<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005357 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005358</div>
5359
5360<div class="doc_text">
5361<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005362LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005363These allow efficient code generation for some algorithms.
5364</p>
5365
5366</div>
5367
5368<!-- _______________________________________________________________________ -->
5369<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005370 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005371</div>
5372
5373<div class="doc_text">
5374
5375<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005376<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carruth69940402007-08-04 01:51:18 +00005377type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Nate Begeman7e36c472006-01-13 23:26:38 +00005378<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005379 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5380 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5381 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005382</pre>
5383
5384<h5>Overview:</h5>
5385
5386<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005387The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005388values with an even number of bytes (positive multiple of 16 bits). These are
5389useful for performing operations on data that is not in the target's native
5390byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005391</p>
5392
5393<h5>Semantics:</h5>
5394
5395<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005396The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005397and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5398intrinsic returns an i32 value that has the four bytes of the input i32
5399swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005400i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5401<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005402additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005403</p>
5404
5405</div>
5406
5407<!-- _______________________________________________________________________ -->
5408<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005409 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005410</div>
5411
5412<div class="doc_text">
5413
5414<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005415<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
5416width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005417<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005418 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
5419 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005420 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005421 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5422 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005423</pre>
5424
5425<h5>Overview:</h5>
5426
5427<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005428The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5429value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005430</p>
5431
5432<h5>Arguments:</h5>
5433
5434<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005435The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005436integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005437</p>
5438
5439<h5>Semantics:</h5>
5440
5441<p>
5442The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5443</p>
5444</div>
5445
5446<!-- _______________________________________________________________________ -->
5447<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005448 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005449</div>
5450
5451<div class="doc_text">
5452
5453<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005454<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5455integer bit width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005456<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005457 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5458 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005459 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005460 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5461 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005462</pre>
5463
5464<h5>Overview:</h5>
5465
5466<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005467The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5468leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005469</p>
5470
5471<h5>Arguments:</h5>
5472
5473<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005474The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005475integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005476</p>
5477
5478<h5>Semantics:</h5>
5479
5480<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005481The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5482in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005483of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005484</p>
5485</div>
Chris Lattner32006282004-06-11 02:28:03 +00005486
5487
Chris Lattnereff29ab2005-05-15 19:39:26 +00005488
5489<!-- _______________________________________________________________________ -->
5490<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005491 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005492</div>
5493
5494<div class="doc_text">
5495
5496<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005497<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5498integer bit width. Not all targets support all bit widths however.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005499<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005500 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5501 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005502 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005503 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5504 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005505</pre>
5506
5507<h5>Overview:</h5>
5508
5509<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005510The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5511trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005512</p>
5513
5514<h5>Arguments:</h5>
5515
5516<p>
5517The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005518integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005519</p>
5520
5521<h5>Semantics:</h5>
5522
5523<p>
5524The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5525in a variable. If the src == 0 then the result is the size in bits of the type
5526of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5527</p>
5528</div>
5529
Reid Spencer497d93e2007-04-01 08:27:01 +00005530<!-- _______________________________________________________________________ -->
5531<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00005532 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005533</div>
5534
5535<div class="doc_text">
5536
5537<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005538<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005539on any integer bit width.
5540<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005541 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
5542 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00005543</pre>
5544
5545<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005546<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00005547range of bits from an integer value and returns them in the same bit width as
5548the original value.</p>
5549
5550<h5>Arguments:</h5>
5551<p>The first argument, <tt>%val</tt> and the result may be integer types of
5552any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00005553arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005554
5555<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00005556<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00005557of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
5558<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
5559operates in forward mode.</p>
5560<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
5561right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00005562only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
5563<ol>
5564 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
5565 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
5566 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
5567 to determine the number of bits to retain.</li>
5568 <li>A mask of the retained bits is created by shifting a -1 value.</li>
5569 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
5570</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00005571<p>In reverse mode, a similar computation is made except that the bits are
5572returned in the reverse order. So, for example, if <tt>X</tt> has the value
5573<tt>i16 0x0ACF (101011001111)</tt> and we apply
5574<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
5575<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00005576</div>
5577
Reid Spencerf86037f2007-04-11 23:23:49 +00005578<div class="doc_subsubsection">
5579 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
5580</div>
5581
5582<div class="doc_text">
5583
5584<h5>Syntax:</h5>
5585<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
5586on any integer bit width.
5587<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005588 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
5589 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00005590</pre>
5591
5592<h5>Overview:</h5>
5593<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
5594of bits in an integer value with another integer value. It returns the integer
5595with the replaced bits.</p>
5596
5597<h5>Arguments:</h5>
5598<p>The first argument, <tt>%val</tt> and the result may be integer types of
5599any bit width but they must have the same bit width. <tt>%val</tt> is the value
5600whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
5601integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
5602type since they specify only a bit index.</p>
5603
5604<h5>Semantics:</h5>
5605<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
5606of operation: forwards and reverse. If <tt>%lo</tt> is greater than
5607<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
5608operates in forward mode.</p>
5609<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
5610truncating it down to the size of the replacement area or zero extending it
5611up to that size.</p>
5612<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
5613are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
5614in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
5615to the <tt>%hi</tt>th bit.
Reid Spencerc6749c42007-05-14 16:50:20 +00005616<p>In reverse mode, a similar computation is made except that the bits are
5617reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
5618<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
Reid Spencerf86037f2007-04-11 23:23:49 +00005619<h5>Examples:</h5>
5620<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00005621 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00005622 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
5623 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
5624 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00005625 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00005626</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00005627</div>
5628
Chris Lattner8ff75902004-01-06 05:31:32 +00005629<!-- ======================================================================= -->
5630<div class="doc_subsection">
5631 <a name="int_debugger">Debugger Intrinsics</a>
5632</div>
5633
5634<div class="doc_text">
5635<p>
5636The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
5637are described in the <a
5638href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
5639Debugging</a> document.
5640</p>
5641</div>
5642
5643
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005644<!-- ======================================================================= -->
5645<div class="doc_subsection">
5646 <a name="int_eh">Exception Handling Intrinsics</a>
5647</div>
5648
5649<div class="doc_text">
5650<p> The LLVM exception handling intrinsics (which all start with
5651<tt>llvm.eh.</tt> prefix), are described in the <a
5652href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5653Handling</a> document. </p>
5654</div>
5655
Tanya Lattner6d806e92007-06-15 20:50:54 +00005656<!-- ======================================================================= -->
5657<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00005658 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00005659</div>
5660
5661<div class="doc_text">
5662<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005663 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00005664 the <tt>nest</tt> attribute, from a function. The result is a callable
5665 function pointer lacking the nest parameter - the caller does not need
5666 to provide a value for it. Instead, the value to use is stored in
5667 advance in a "trampoline", a block of memory usually allocated
5668 on the stack, which also contains code to splice the nest value into the
5669 argument list. This is used to implement the GCC nested function address
5670 extension.
5671</p>
5672<p>
5673 For example, if the function is
5674 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00005675 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005676<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005677 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5678 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5679 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5680 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00005681</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00005682 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5683 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005684</div>
5685
5686<!-- _______________________________________________________________________ -->
5687<div class="doc_subsubsection">
5688 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5689</div>
5690<div class="doc_text">
5691<h5>Syntax:</h5>
5692<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005693declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00005694</pre>
5695<h5>Overview:</h5>
5696<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005697 This fills the memory pointed to by <tt>tramp</tt> with code
5698 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00005699</p>
5700<h5>Arguments:</h5>
5701<p>
5702 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5703 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5704 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005705 intrinsic. Note that the size and the alignment are target-specific - LLVM
5706 currently provides no portable way of determining them, so a front-end that
5707 generates this intrinsic needs to have some target-specific knowledge.
5708 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005709</p>
5710<h5>Semantics:</h5>
5711<p>
5712 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00005713 dependent code, turning it into a function. A pointer to this function is
5714 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00005715 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00005716 before being called. The new function's signature is the same as that of
5717 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5718 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5719 of pointer type. Calling the new function is equivalent to calling
5720 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5721 missing <tt>nest</tt> argument. If, after calling
5722 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5723 modified, then the effect of any later call to the returned function pointer is
5724 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00005725</p>
5726</div>
5727
5728<!-- ======================================================================= -->
5729<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005730 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
5731</div>
5732
5733<div class="doc_text">
5734<p>
5735 These intrinsic functions expand the "universal IR" of LLVM to represent
5736 hardware constructs for atomic operations and memory synchronization. This
5737 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00005738 is aimed at a low enough level to allow any programming models or APIs
5739 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00005740 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
5741 hardware behavior. Just as hardware provides a "universal IR" for source
5742 languages, it also provides a starting point for developing a "universal"
5743 atomic operation and synchronization IR.
5744</p>
5745<p>
5746 These do <em>not</em> form an API such as high-level threading libraries,
5747 software transaction memory systems, atomic primitives, and intrinsic
5748 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
5749 application libraries. The hardware interface provided by LLVM should allow
5750 a clean implementation of all of these APIs and parallel programming models.
5751 No one model or paradigm should be selected above others unless the hardware
5752 itself ubiquitously does so.
5753
5754</p>
5755</div>
5756
5757<!-- _______________________________________________________________________ -->
5758<div class="doc_subsubsection">
5759 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5760</div>
5761<div class="doc_text">
5762<h5>Syntax:</h5>
5763<pre>
5764declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
5765i1 &lt;device&gt; )
5766
5767</pre>
5768<h5>Overview:</h5>
5769<p>
5770 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5771 specific pairs of memory access types.
5772</p>
5773<h5>Arguments:</h5>
5774<p>
5775 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
5776 The first four arguments enables a specific barrier as listed below. The fith
5777 argument specifies that the barrier applies to io or device or uncached memory.
5778
5779</p>
5780 <ul>
5781 <li><tt>ll</tt>: load-load barrier</li>
5782 <li><tt>ls</tt>: load-store barrier</li>
5783 <li><tt>sl</tt>: store-load barrier</li>
5784 <li><tt>ss</tt>: store-store barrier</li>
5785 <li><tt>device</tt>: barrier applies to device and uncached memory also.
5786 </ul>
5787<h5>Semantics:</h5>
5788<p>
5789 This intrinsic causes the system to enforce some ordering constraints upon
5790 the loads and stores of the program. This barrier does not indicate
5791 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5792 which they occur. For any of the specified pairs of load and store operations
5793 (f.ex. load-load, or store-load), all of the first operations preceding the
5794 barrier will complete before any of the second operations succeeding the
5795 barrier begin. Specifically the semantics for each pairing is as follows:
5796</p>
5797 <ul>
5798 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5799 after the barrier begins.</li>
5800
5801 <li><tt>ls</tt>: All loads before the barrier must complete before any
5802 store after the barrier begins.</li>
5803 <li><tt>ss</tt>: All stores before the barrier must complete before any
5804 store after the barrier begins.</li>
5805 <li><tt>sl</tt>: All stores before the barrier must complete before any
5806 load after the barrier begins.</li>
5807 </ul>
5808<p>
5809 These semantics are applied with a logical "and" behavior when more than one
5810 is enabled in a single memory barrier intrinsic.
5811</p>
5812<p>
5813 Backends may implement stronger barriers than those requested when they do not
5814 support as fine grained a barrier as requested. Some architectures do not
5815 need all types of barriers and on such architectures, these become noops.
5816</p>
5817<h5>Example:</h5>
5818<pre>
5819%ptr = malloc i32
5820 store i32 4, %ptr
5821
5822%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5823 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5824 <i>; guarantee the above finishes</i>
5825 store i32 8, %ptr <i>; before this begins</i>
5826</pre>
5827</div>
5828
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005829<!-- _______________________________________________________________________ -->
5830<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00005831 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005832</div>
5833<div class="doc_text">
5834<h5>Syntax:</h5>
5835<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00005836 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
5837 any integer bit width and for different address spaces. Not all targets
5838 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005839
5840<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005841declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
5842declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
5843declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
5844declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005845
5846</pre>
5847<h5>Overview:</h5>
5848<p>
5849 This loads a value in memory and compares it to a given value. If they are
5850 equal, it stores a new value into the memory.
5851</p>
5852<h5>Arguments:</h5>
5853<p>
Mon P Wang28873102008-06-25 08:15:39 +00005854 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005855 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
5856 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
5857 this integer type. While any bit width integer may be used, targets may only
5858 lower representations they support in hardware.
5859
5860</p>
5861<h5>Semantics:</h5>
5862<p>
5863 This entire intrinsic must be executed atomically. It first loads the value
5864 in memory pointed to by <tt>ptr</tt> and compares it with the value
5865 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
5866 loaded value is yielded in all cases. This provides the equivalent of an
5867 atomic compare-and-swap operation within the SSA framework.
5868</p>
5869<h5>Examples:</h5>
5870
5871<pre>
5872%ptr = malloc i32
5873 store i32 4, %ptr
5874
5875%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00005876%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005877 <i>; yields {i32}:result1 = 4</i>
5878%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5879%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5880
5881%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00005882%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005883 <i>; yields {i32}:result2 = 8</i>
5884%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
5885
5886%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
5887</pre>
5888</div>
5889
5890<!-- _______________________________________________________________________ -->
5891<div class="doc_subsubsection">
5892 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
5893</div>
5894<div class="doc_text">
5895<h5>Syntax:</h5>
5896
5897<p>
5898 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
5899 integer bit width. Not all targets support all bit widths however.</p>
5900<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005901declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
5902declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
5903declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
5904declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005905
5906</pre>
5907<h5>Overview:</h5>
5908<p>
5909 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
5910 the value from memory. It then stores the value in <tt>val</tt> in the memory
5911 at <tt>ptr</tt>.
5912</p>
5913<h5>Arguments:</h5>
5914
5915<p>
Mon P Wang28873102008-06-25 08:15:39 +00005916 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005917 <tt>val</tt> argument and the result must be integers of the same bit width.
5918 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
5919 integer type. The targets may only lower integer representations they
5920 support.
5921</p>
5922<h5>Semantics:</h5>
5923<p>
5924 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
5925 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
5926 equivalent of an atomic swap operation within the SSA framework.
5927
5928</p>
5929<h5>Examples:</h5>
5930<pre>
5931%ptr = malloc i32
5932 store i32 4, %ptr
5933
5934%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00005935%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005936 <i>; yields {i32}:result1 = 4</i>
5937%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
5938%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
5939
5940%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00005941%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005942 <i>; yields {i32}:result2 = 8</i>
5943
5944%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
5945%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
5946</pre>
5947</div>
5948
5949<!-- _______________________________________________________________________ -->
5950<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00005951 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005952
5953</div>
5954<div class="doc_text">
5955<h5>Syntax:</h5>
5956<p>
Mon P Wang28873102008-06-25 08:15:39 +00005957 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005958 integer bit width. Not all targets support all bit widths however.</p>
5959<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00005960declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5961declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5962declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5963declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005964
5965</pre>
5966<h5>Overview:</h5>
5967<p>
5968 This intrinsic adds <tt>delta</tt> to the value stored in memory at
5969 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
5970</p>
5971<h5>Arguments:</h5>
5972<p>
5973
5974 The intrinsic takes two arguments, the first a pointer to an integer value
5975 and the second an integer value. The result is also an integer value. These
5976 integer types can have any bit width, but they must all have the same bit
5977 width. The targets may only lower integer representations they support.
5978</p>
5979<h5>Semantics:</h5>
5980<p>
5981 This intrinsic does a series of operations atomically. It first loads the
5982 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
5983 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
5984</p>
5985
5986<h5>Examples:</h5>
5987<pre>
5988%ptr = malloc i32
5989 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00005990%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005991 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00005992%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005993 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00005994%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005995 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00005996%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00005997</pre>
5998</div>
5999
Mon P Wang28873102008-06-25 08:15:39 +00006000<!-- _______________________________________________________________________ -->
6001<div class="doc_subsubsection">
6002 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6003
6004</div>
6005<div class="doc_text">
6006<h5>Syntax:</h5>
6007<p>
6008 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006009 any integer bit width and for different address spaces. Not all targets
6010 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006011<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006012declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6013declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6014declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6015declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006016
6017</pre>
6018<h5>Overview:</h5>
6019<p>
6020 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6021 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6022</p>
6023<h5>Arguments:</h5>
6024<p>
6025
6026 The intrinsic takes two arguments, the first a pointer to an integer value
6027 and the second an integer value. The result is also an integer value. These
6028 integer types can have any bit width, but they must all have the same bit
6029 width. The targets may only lower integer representations they support.
6030</p>
6031<h5>Semantics:</h5>
6032<p>
6033 This intrinsic does a series of operations atomically. It first loads the
6034 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6035 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6036</p>
6037
6038<h5>Examples:</h5>
6039<pre>
6040%ptr = malloc i32
6041 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006042%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006043 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006044%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006045 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006046%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006047 <i>; yields {i32}:result3 = 2</i>
6048%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6049</pre>
6050</div>
6051
6052<!-- _______________________________________________________________________ -->
6053<div class="doc_subsubsection">
6054 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6055 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6056 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6057 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6058
6059</div>
6060<div class="doc_text">
6061<h5>Syntax:</h5>
6062<p>
6063 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6064 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006065 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6066 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006067<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006068declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6069declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6070declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6071declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006072
6073</pre>
6074
6075<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006076declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6077declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6078declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6079declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006080
6081</pre>
6082
6083<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006084declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6085declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6086declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6087declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006088
6089</pre>
6090
6091<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006092declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6093declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6094declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6095declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006096
6097</pre>
6098<h5>Overview:</h5>
6099<p>
6100 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6101 the value stored in memory at <tt>ptr</tt>. It yields the original value
6102 at <tt>ptr</tt>.
6103</p>
6104<h5>Arguments:</h5>
6105<p>
6106
6107 These intrinsics take two arguments, the first a pointer to an integer value
6108 and the second an integer value. The result is also an integer value. These
6109 integer types can have any bit width, but they must all have the same bit
6110 width. The targets may only lower integer representations they support.
6111</p>
6112<h5>Semantics:</h5>
6113<p>
6114 These intrinsics does a series of operations atomically. They first load the
6115 value stored at <tt>ptr</tt>. They then do the bitwise operation
6116 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6117 value stored at <tt>ptr</tt>.
6118</p>
6119
6120<h5>Examples:</h5>
6121<pre>
6122%ptr = malloc i32
6123 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006124%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006125 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006126%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006127 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006128%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006129 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006130%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006131 <i>; yields {i32}:result3 = FF</i>
6132%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6133</pre>
6134</div>
6135
6136
6137<!-- _______________________________________________________________________ -->
6138<div class="doc_subsubsection">
6139 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6140 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6141 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6142 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6143
6144</div>
6145<div class="doc_text">
6146<h5>Syntax:</h5>
6147<p>
6148 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6149 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006150 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6151 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006152 support all bit widths however.</p>
6153<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006154declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6155declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6156declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6157declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006158
6159</pre>
6160
6161<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006162declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6163declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6164declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6165declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006166
6167</pre>
6168
6169<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006170declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6171declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6172declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6173declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006174
6175</pre>
6176
6177<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006178declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6179declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6180declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6181declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006182
6183</pre>
6184<h5>Overview:</h5>
6185<p>
6186 These intrinsics takes the signed or unsigned minimum or maximum of
6187 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6188 original value at <tt>ptr</tt>.
6189</p>
6190<h5>Arguments:</h5>
6191<p>
6192
6193 These intrinsics take two arguments, the first a pointer to an integer value
6194 and the second an integer value. The result is also an integer value. These
6195 integer types can have any bit width, but they must all have the same bit
6196 width. The targets may only lower integer representations they support.
6197</p>
6198<h5>Semantics:</h5>
6199<p>
6200 These intrinsics does a series of operations atomically. They first load the
6201 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6202 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6203 the original value stored at <tt>ptr</tt>.
6204</p>
6205
6206<h5>Examples:</h5>
6207<pre>
6208%ptr = malloc i32
6209 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006210%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006211 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006212%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006213 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006214%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006215 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006216%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006217 <i>; yields {i32}:result3 = 8</i>
6218%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6219</pre>
6220</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006221
6222<!-- ======================================================================= -->
6223<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006224 <a name="int_general">General Intrinsics</a>
6225</div>
6226
6227<div class="doc_text">
6228<p> This class of intrinsics is designed to be generic and has
6229no specific purpose. </p>
6230</div>
6231
6232<!-- _______________________________________________________________________ -->
6233<div class="doc_subsubsection">
6234 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6235</div>
6236
6237<div class="doc_text">
6238
6239<h5>Syntax:</h5>
6240<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006241 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006242</pre>
6243
6244<h5>Overview:</h5>
6245
6246<p>
6247The '<tt>llvm.var.annotation</tt>' intrinsic
6248</p>
6249
6250<h5>Arguments:</h5>
6251
6252<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006253The first argument is a pointer to a value, the second is a pointer to a
6254global string, the third is a pointer to a global string which is the source
6255file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006256</p>
6257
6258<h5>Semantics:</h5>
6259
6260<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006261This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006262This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006263annotations. These have no other defined use, they are ignored by code
6264generation and optimization.
6265</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006266</div>
6267
Tanya Lattnerb6367882007-09-21 22:59:12 +00006268<!-- _______________________________________________________________________ -->
6269<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006270 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006271</div>
6272
6273<div class="doc_text">
6274
6275<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006276<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6277any integer bit width.
6278</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006279<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006280 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6281 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6282 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6283 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6284 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006285</pre>
6286
6287<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006288
6289<p>
6290The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006291</p>
6292
6293<h5>Arguments:</h5>
6294
6295<p>
6296The first argument is an integer value (result of some expression),
6297the second is a pointer to a global string, the third is a pointer to a global
6298string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006299It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006300</p>
6301
6302<h5>Semantics:</h5>
6303
6304<p>
6305This intrinsic allows annotations to be put on arbitrary expressions
6306with arbitrary strings. This can be useful for special purpose optimizations
6307that want to look for these annotations. These have no other defined use, they
6308are ignored by code generation and optimization.
6309</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006310
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006311<!-- _______________________________________________________________________ -->
6312<div class="doc_subsubsection">
6313 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6314</div>
6315
6316<div class="doc_text">
6317
6318<h5>Syntax:</h5>
6319<pre>
6320 declare void @llvm.trap()
6321</pre>
6322
6323<h5>Overview:</h5>
6324
6325<p>
6326The '<tt>llvm.trap</tt>' intrinsic
6327</p>
6328
6329<h5>Arguments:</h5>
6330
6331<p>
6332None
6333</p>
6334
6335<h5>Semantics:</h5>
6336
6337<p>
6338This intrinsics is lowered to the target dependent trap instruction. If the
6339target does not have a trap instruction, this intrinsic will be lowered to the
6340call of the abort() function.
6341</p>
6342</div>
6343
Chris Lattner00950542001-06-06 20:29:01 +00006344<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00006345<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006346<address>
6347 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
6348 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
6349 <a href="http://validator.w3.org/check/referer"><img
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006350 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006351
6352 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00006353 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00006354 Last modified: $Date$
6355</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00006356
Misha Brukman9d0919f2003-11-08 01:05:38 +00006357</body>
6358</html>