blob: 922751fe3d13fd5ee859b81613584a3e48654eea [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Duncan Sandsa0c52442010-11-17 04:18:45 +000072#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000073#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000074#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000075#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000076#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000077#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000078#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000079#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000080#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000081#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000082#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000083#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000084#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000085#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000086#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000087#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000088#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000089using namespace llvm;
90
Chris Lattner3b27d682006-12-19 22:30:33 +000091STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000101MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000103 "symbolically execute a constant "
104 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000105 cl::init(100));
106
Owen Anderson2ab36d32010-10-12 19:48:12 +0000107INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersonce665bd2010-10-07 22:25:06 +0000112 "Scalar Evolution Analysis", false, true)
Devang Patel19974732007-05-03 01:11:54 +0000113char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000114
115//===----------------------------------------------------------------------===//
116// SCEV class definitions
117//===----------------------------------------------------------------------===//
118
119//===----------------------------------------------------------------------===//
120// Implementation of the SCEV class.
121//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000122
Chris Lattner53e677a2004-04-02 20:23:17 +0000123void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000124 print(dbgs());
125 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000126}
127
Dan Gohman4ce32db2010-11-17 22:27:42 +0000128void SCEV::print(raw_ostream &OS) const {
129 switch (getSCEVType()) {
130 case scConstant:
131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132 return;
133 case scTruncate: {
134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135 const SCEV *Op = Trunc->getOperand();
136 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137 << *Trunc->getType() << ")";
138 return;
139 }
140 case scZeroExtend: {
141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142 const SCEV *Op = ZExt->getOperand();
143 OS << "(zext " << *Op->getType() << " " << *Op << " to "
144 << *ZExt->getType() << ")";
145 return;
146 }
147 case scSignExtend: {
148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149 const SCEV *Op = SExt->getOperand();
150 OS << "(sext " << *Op->getType() << " " << *Op << " to "
151 << *SExt->getType() << ")";
152 return;
153 }
154 case scAddRecExpr: {
155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156 OS << "{" << *AR->getOperand(0);
157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158 OS << ",+," << *AR->getOperand(i);
159 OS << "}<";
Chris Lattnerf1859892011-01-09 02:16:18 +0000160 if (AR->hasNoUnsignedWrap())
161 OS << "nuw><";
162 if (AR->hasNoSignedWrap())
163 OS << "nsw><";
Dan Gohman4ce32db2010-11-17 22:27:42 +0000164 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
165 OS << ">";
166 return;
167 }
168 case scAddExpr:
169 case scMulExpr:
170 case scUMaxExpr:
171 case scSMaxExpr: {
172 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerb458b152010-11-19 11:37:26 +0000173 const char *OpStr = 0;
Dan Gohman4ce32db2010-11-17 22:27:42 +0000174 switch (NAry->getSCEVType()) {
175 case scAddExpr: OpStr = " + "; break;
176 case scMulExpr: OpStr = " * "; break;
177 case scUMaxExpr: OpStr = " umax "; break;
178 case scSMaxExpr: OpStr = " smax "; break;
179 }
180 OS << "(";
181 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
182 I != E; ++I) {
183 OS << **I;
184 if (llvm::next(I) != E)
185 OS << OpStr;
186 }
187 OS << ")";
188 return;
189 }
190 case scUDivExpr: {
191 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
192 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
193 return;
194 }
195 case scUnknown: {
196 const SCEVUnknown *U = cast<SCEVUnknown>(this);
197 const Type *AllocTy;
198 if (U->isSizeOf(AllocTy)) {
199 OS << "sizeof(" << *AllocTy << ")";
200 return;
201 }
202 if (U->isAlignOf(AllocTy)) {
203 OS << "alignof(" << *AllocTy << ")";
204 return;
205 }
206
207 const Type *CTy;
208 Constant *FieldNo;
209 if (U->isOffsetOf(CTy, FieldNo)) {
210 OS << "offsetof(" << *CTy << ", ";
211 WriteAsOperand(OS, FieldNo, false);
212 OS << ")";
213 return;
214 }
215
216 // Otherwise just print it normally.
217 WriteAsOperand(OS, U->getValue(), false);
218 return;
219 }
220 case scCouldNotCompute:
221 OS << "***COULDNOTCOMPUTE***";
222 return;
223 default: break;
224 }
225 llvm_unreachable("Unknown SCEV kind!");
226}
227
228const Type *SCEV::getType() const {
229 switch (getSCEVType()) {
230 case scConstant:
231 return cast<SCEVConstant>(this)->getType();
232 case scTruncate:
233 case scZeroExtend:
234 case scSignExtend:
235 return cast<SCEVCastExpr>(this)->getType();
236 case scAddRecExpr:
237 case scMulExpr:
238 case scUMaxExpr:
239 case scSMaxExpr:
240 return cast<SCEVNAryExpr>(this)->getType();
241 case scAddExpr:
242 return cast<SCEVAddExpr>(this)->getType();
243 case scUDivExpr:
244 return cast<SCEVUDivExpr>(this)->getType();
245 case scUnknown:
246 return cast<SCEVUnknown>(this)->getType();
247 case scCouldNotCompute:
248 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
249 return 0;
250 default: break;
251 }
252 llvm_unreachable("Unknown SCEV kind!");
253 return 0;
254}
255
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000256bool SCEV::isZero() const {
257 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
258 return SC->getValue()->isZero();
259 return false;
260}
261
Dan Gohman70a1fe72009-05-18 15:22:39 +0000262bool SCEV::isOne() const {
263 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
264 return SC->getValue()->isOne();
265 return false;
266}
Chris Lattner53e677a2004-04-02 20:23:17 +0000267
Dan Gohman4d289bf2009-06-24 00:30:26 +0000268bool SCEV::isAllOnesValue() const {
269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270 return SC->getValue()->isAllOnesValue();
271 return false;
272}
273
Owen Anderson753ad612009-06-22 21:57:23 +0000274SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000275 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000276
Chris Lattner53e677a2004-04-02 20:23:17 +0000277bool SCEVCouldNotCompute::classof(const SCEV *S) {
278 return S->getSCEVType() == scCouldNotCompute;
279}
280
Dan Gohman0bba49c2009-07-07 17:06:11 +0000281const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000282 FoldingSetNodeID ID;
283 ID.AddInteger(scConstant);
284 ID.AddPointer(V);
285 void *IP = 0;
286 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000287 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000288 UniqueSCEVs.InsertNode(S, IP);
289 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000290}
Chris Lattner53e677a2004-04-02 20:23:17 +0000291
Dan Gohman0bba49c2009-07-07 17:06:11 +0000292const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000293 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000294}
295
Dan Gohman0bba49c2009-07-07 17:06:11 +0000296const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000297ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000298 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
299 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000300}
301
Dan Gohman3bf63762010-06-18 19:54:20 +0000302SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000303 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000304 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000305
Dan Gohman3bf63762010-06-18 19:54:20 +0000306SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000307 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000308 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000309 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
310 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000311 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000312}
Chris Lattner53e677a2004-04-02 20:23:17 +0000313
Dan Gohman3bf63762010-06-18 19:54:20 +0000314SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000315 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000316 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000317 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
318 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000319 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000320}
321
Dan Gohman3bf63762010-06-18 19:54:20 +0000322SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000323 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000324 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000325 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
326 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000327 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000328}
329
Dan Gohmanab37f502010-08-02 23:49:30 +0000330void SCEVUnknown::deleted() {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000331 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000332 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000333
334 // Remove this SCEVUnknown from the uniquing map.
335 SE->UniqueSCEVs.RemoveNode(this);
336
337 // Release the value.
338 setValPtr(0);
339}
340
341void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman6678e7b2010-11-17 02:44:44 +0000342 // Clear this SCEVUnknown from various maps.
Dan Gohman56a75682010-11-17 23:28:48 +0000343 SE->forgetMemoizedResults(this);
Dan Gohmanab37f502010-08-02 23:49:30 +0000344
345 // Remove this SCEVUnknown from the uniquing map.
346 SE->UniqueSCEVs.RemoveNode(this);
347
348 // Update this SCEVUnknown to point to the new value. This is needed
349 // because there may still be outstanding SCEVs which still point to
350 // this SCEVUnknown.
351 setValPtr(New);
352}
353
Dan Gohman0f5efe52010-01-28 02:15:55 +0000354bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000355 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000356 if (VCE->getOpcode() == Instruction::PtrToInt)
357 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000358 if (CE->getOpcode() == Instruction::GetElementPtr &&
359 CE->getOperand(0)->isNullValue() &&
360 CE->getNumOperands() == 2)
361 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
362 if (CI->isOne()) {
363 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
364 ->getElementType();
365 return true;
366 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000367
368 return false;
369}
370
371bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000372 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000373 if (VCE->getOpcode() == Instruction::PtrToInt)
374 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000375 if (CE->getOpcode() == Instruction::GetElementPtr &&
376 CE->getOperand(0)->isNullValue()) {
377 const Type *Ty =
378 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
379 if (const StructType *STy = dyn_cast<StructType>(Ty))
380 if (!STy->isPacked() &&
381 CE->getNumOperands() == 3 &&
382 CE->getOperand(1)->isNullValue()) {
383 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
384 if (CI->isOne() &&
385 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000386 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 AllocTy = STy->getElementType(1);
388 return true;
389 }
390 }
391 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000392
393 return false;
394}
395
Dan Gohman4f8eea82010-02-01 18:27:38 +0000396bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000398 if (VCE->getOpcode() == Instruction::PtrToInt)
399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
400 if (CE->getOpcode() == Instruction::GetElementPtr &&
401 CE->getNumOperands() == 3 &&
402 CE->getOperand(0)->isNullValue() &&
403 CE->getOperand(1)->isNullValue()) {
404 const Type *Ty =
405 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
406 // Ignore vector types here so that ScalarEvolutionExpander doesn't
407 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000408 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000409 CTy = Ty;
410 FieldNo = CE->getOperand(2);
411 return true;
412 }
413 }
414
415 return false;
416}
417
Chris Lattner8d741b82004-06-20 06:23:15 +0000418//===----------------------------------------------------------------------===//
419// SCEV Utilities
420//===----------------------------------------------------------------------===//
421
422namespace {
423 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
424 /// than the complexity of the RHS. This comparator is used to canonicalize
425 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000426 class SCEVComplexityCompare {
Dan Gohman9f1fb422010-08-13 20:17:27 +0000427 const LoopInfo *const LI;
Dan Gohman72861302009-05-07 14:39:04 +0000428 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000429 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000430
Dan Gohman67ef74e2010-08-27 15:26:01 +0000431 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000432 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman67ef74e2010-08-27 15:26:01 +0000433 return compare(LHS, RHS) < 0;
434 }
435
436 // Return negative, zero, or positive, if LHS is less than, equal to, or
437 // greater than RHS, respectively. A three-way result allows recursive
438 // comparisons to be more efficient.
439 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000440 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
441 if (LHS == RHS)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000442 return 0;
Dan Gohman42214892009-08-31 21:15:23 +0000443
Dan Gohman72861302009-05-07 14:39:04 +0000444 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000445 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
446 if (LType != RType)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000447 return (int)LType - (int)RType;
Dan Gohman72861302009-05-07 14:39:04 +0000448
Dan Gohman3bf63762010-06-18 19:54:20 +0000449 // Aside from the getSCEVType() ordering, the particular ordering
450 // isn't very important except that it's beneficial to be consistent,
451 // so that (a + b) and (b + a) don't end up as different expressions.
Dan Gohman67ef74e2010-08-27 15:26:01 +0000452 switch (LType) {
453 case scUnknown: {
454 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000455 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000456
457 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
458 // not as complete as it could be.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000459 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman3bf63762010-06-18 19:54:20 +0000460
461 // Order pointer values after integer values. This helps SCEVExpander
462 // form GEPs.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000463 bool LIsPointer = LV->getType()->isPointerTy(),
464 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman304a7a62010-07-23 21:20:52 +0000465 if (LIsPointer != RIsPointer)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000466 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000467
468 // Compare getValueID values.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000469 unsigned LID = LV->getValueID(),
470 RID = RV->getValueID();
Dan Gohman304a7a62010-07-23 21:20:52 +0000471 if (LID != RID)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000472 return (int)LID - (int)RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000473
474 // Sort arguments by their position.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000475 if (const Argument *LA = dyn_cast<Argument>(LV)) {
476 const Argument *RA = cast<Argument>(RV);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000477 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
478 return (int)LArgNo - (int)RArgNo;
Dan Gohman3bf63762010-06-18 19:54:20 +0000479 }
480
Dan Gohman67ef74e2010-08-27 15:26:01 +0000481 // For instructions, compare their loop depth, and their operand
482 // count. This is pretty loose.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000483 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
484 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman3bf63762010-06-18 19:54:20 +0000485
486 // Compare loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000487 const BasicBlock *LParent = LInst->getParent(),
488 *RParent = RInst->getParent();
489 if (LParent != RParent) {
490 unsigned LDepth = LI->getLoopDepth(LParent),
491 RDepth = LI->getLoopDepth(RParent);
492 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000493 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000494 }
Dan Gohman3bf63762010-06-18 19:54:20 +0000495
496 // Compare the number of operands.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000497 unsigned LNumOps = LInst->getNumOperands(),
498 RNumOps = RInst->getNumOperands();
Dan Gohman67ef74e2010-08-27 15:26:01 +0000499 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000500 }
501
Dan Gohman67ef74e2010-08-27 15:26:01 +0000502 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000503 }
504
Dan Gohman67ef74e2010-08-27 15:26:01 +0000505 case scConstant: {
506 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000507 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000508
509 // Compare constant values.
Dan Gohmane28d7922010-08-16 16:25:35 +0000510 const APInt &LA = LC->getValue()->getValue();
511 const APInt &RA = RC->getValue()->getValue();
512 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman304a7a62010-07-23 21:20:52 +0000513 if (LBitWidth != RBitWidth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000514 return (int)LBitWidth - (int)RBitWidth;
515 return LA.ult(RA) ? -1 : 1;
Dan Gohman3bf63762010-06-18 19:54:20 +0000516 }
517
Dan Gohman67ef74e2010-08-27 15:26:01 +0000518 case scAddRecExpr: {
519 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000520 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000521
522 // Compare addrec loop depths.
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000523 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
524 if (LLoop != RLoop) {
525 unsigned LDepth = LLoop->getLoopDepth(),
526 RDepth = RLoop->getLoopDepth();
527 if (LDepth != RDepth)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0ad2c7a2010-08-13 21:24:58 +0000529 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000530
531 // Addrec complexity grows with operand count.
532 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
533 if (LNumOps != RNumOps)
534 return (int)LNumOps - (int)RNumOps;
535
536 // Lexicographically compare.
537 for (unsigned i = 0; i != LNumOps; ++i) {
538 long X = compare(LA->getOperand(i), RA->getOperand(i));
539 if (X != 0)
540 return X;
541 }
542
543 return 0;
Dan Gohman3bf63762010-06-18 19:54:20 +0000544 }
545
Dan Gohman67ef74e2010-08-27 15:26:01 +0000546 case scAddExpr:
547 case scMulExpr:
548 case scSMaxExpr:
549 case scUMaxExpr: {
550 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000551 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000552
553 // Lexicographically compare n-ary expressions.
Dan Gohman304a7a62010-07-23 21:20:52 +0000554 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
555 for (unsigned i = 0; i != LNumOps; ++i) {
556 if (i >= RNumOps)
Dan Gohman67ef74e2010-08-27 15:26:01 +0000557 return 1;
558 long X = compare(LC->getOperand(i), RC->getOperand(i));
559 if (X != 0)
560 return X;
Dan Gohman3bf63762010-06-18 19:54:20 +0000561 }
Dan Gohman67ef74e2010-08-27 15:26:01 +0000562 return (int)LNumOps - (int)RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000563 }
564
Dan Gohman67ef74e2010-08-27 15:26:01 +0000565 case scUDivExpr: {
566 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000567 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000568
569 // Lexicographically compare udiv expressions.
570 long X = compare(LC->getLHS(), RC->getLHS());
571 if (X != 0)
572 return X;
573 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman3bf63762010-06-18 19:54:20 +0000574 }
575
Dan Gohman67ef74e2010-08-27 15:26:01 +0000576 case scTruncate:
577 case scZeroExtend:
578 case scSignExtend: {
579 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman3bf63762010-06-18 19:54:20 +0000580 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman67ef74e2010-08-27 15:26:01 +0000581
582 // Compare cast expressions by operand.
583 return compare(LC->getOperand(), RC->getOperand());
584 }
585
586 default:
587 break;
Dan Gohman3bf63762010-06-18 19:54:20 +0000588 }
589
590 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman67ef74e2010-08-27 15:26:01 +0000591 return 0;
Chris Lattner8d741b82004-06-20 06:23:15 +0000592 }
593 };
594}
595
596/// GroupByComplexity - Given a list of SCEV objects, order them by their
597/// complexity, and group objects of the same complexity together by value.
598/// When this routine is finished, we know that any duplicates in the vector are
599/// consecutive and that complexity is monotonically increasing.
600///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000601/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000602/// results from this routine. In other words, we don't want the results of
603/// this to depend on where the addresses of various SCEV objects happened to
604/// land in memory.
605///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000606static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000607 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000608 if (Ops.size() < 2) return; // Noop
609 if (Ops.size() == 2) {
610 // This is the common case, which also happens to be trivially simple.
611 // Special case it.
Dan Gohmanc6a8e992010-08-29 15:07:13 +0000612 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
613 if (SCEVComplexityCompare(LI)(RHS, LHS))
614 std::swap(LHS, RHS);
Chris Lattner8d741b82004-06-20 06:23:15 +0000615 return;
616 }
617
Dan Gohman3bf63762010-06-18 19:54:20 +0000618 // Do the rough sort by complexity.
619 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
620
621 // Now that we are sorted by complexity, group elements of the same
622 // complexity. Note that this is, at worst, N^2, but the vector is likely to
623 // be extremely short in practice. Note that we take this approach because we
624 // do not want to depend on the addresses of the objects we are grouping.
625 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
626 const SCEV *S = Ops[i];
627 unsigned Complexity = S->getSCEVType();
628
629 // If there are any objects of the same complexity and same value as this
630 // one, group them.
631 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
632 if (Ops[j] == S) { // Found a duplicate.
633 // Move it to immediately after i'th element.
634 std::swap(Ops[i+1], Ops[j]);
635 ++i; // no need to rescan it.
636 if (i == e-2) return; // Done!
637 }
638 }
639 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000640}
641
Chris Lattner53e677a2004-04-02 20:23:17 +0000642
Chris Lattner53e677a2004-04-02 20:23:17 +0000643
644//===----------------------------------------------------------------------===//
645// Simple SCEV method implementations
646//===----------------------------------------------------------------------===//
647
Eli Friedmanb42a6262008-08-04 23:49:06 +0000648/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000649/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000650static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000651 ScalarEvolution &SE,
652 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000653 // Handle the simplest case efficiently.
654 if (K == 1)
655 return SE.getTruncateOrZeroExtend(It, ResultTy);
656
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000657 // We are using the following formula for BC(It, K):
658 //
659 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
660 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000661 // Suppose, W is the bitwidth of the return value. We must be prepared for
662 // overflow. Hence, we must assure that the result of our computation is
663 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
664 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000665 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000666 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000667 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000668 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
669 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000670 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000672 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000673 // This formula is trivially equivalent to the previous formula. However,
674 // this formula can be implemented much more efficiently. The trick is that
675 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
676 // arithmetic. To do exact division in modular arithmetic, all we have
677 // to do is multiply by the inverse. Therefore, this step can be done at
678 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000679 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000680 // The next issue is how to safely do the division by 2^T. The way this
681 // is done is by doing the multiplication step at a width of at least W + T
682 // bits. This way, the bottom W+T bits of the product are accurate. Then,
683 // when we perform the division by 2^T (which is equivalent to a right shift
684 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
685 // truncated out after the division by 2^T.
686 //
687 // In comparison to just directly using the first formula, this technique
688 // is much more efficient; using the first formula requires W * K bits,
689 // but this formula less than W + K bits. Also, the first formula requires
690 // a division step, whereas this formula only requires multiplies and shifts.
691 //
692 // It doesn't matter whether the subtraction step is done in the calculation
693 // width or the input iteration count's width; if the subtraction overflows,
694 // the result must be zero anyway. We prefer here to do it in the width of
695 // the induction variable because it helps a lot for certain cases; CodeGen
696 // isn't smart enough to ignore the overflow, which leads to much less
697 // efficient code if the width of the subtraction is wider than the native
698 // register width.
699 //
700 // (It's possible to not widen at all by pulling out factors of 2 before
701 // the multiplication; for example, K=2 can be calculated as
702 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
703 // extra arithmetic, so it's not an obvious win, and it gets
704 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000705
Eli Friedmanb42a6262008-08-04 23:49:06 +0000706 // Protection from insane SCEVs; this bound is conservative,
707 // but it probably doesn't matter.
708 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000709 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000710
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000711 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000712
Eli Friedmanb42a6262008-08-04 23:49:06 +0000713 // Calculate K! / 2^T and T; we divide out the factors of two before
714 // multiplying for calculating K! / 2^T to avoid overflow.
715 // Other overflow doesn't matter because we only care about the bottom
716 // W bits of the result.
717 APInt OddFactorial(W, 1);
718 unsigned T = 1;
719 for (unsigned i = 3; i <= K; ++i) {
720 APInt Mult(W, i);
721 unsigned TwoFactors = Mult.countTrailingZeros();
722 T += TwoFactors;
723 Mult = Mult.lshr(TwoFactors);
724 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000725 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000726
Eli Friedmanb42a6262008-08-04 23:49:06 +0000727 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000728 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000729
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000730 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000731 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
732
733 // Calculate the multiplicative inverse of K! / 2^T;
734 // this multiplication factor will perform the exact division by
735 // K! / 2^T.
736 APInt Mod = APInt::getSignedMinValue(W+1);
737 APInt MultiplyFactor = OddFactorial.zext(W+1);
738 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
739 MultiplyFactor = MultiplyFactor.trunc(W);
740
741 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000742 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
743 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000744 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000746 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747 Dividend = SE.getMulExpr(Dividend,
748 SE.getTruncateOrZeroExtend(S, CalculationTy));
749 }
750
751 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000752 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000753
754 // Truncate the result, and divide by K! / 2^T.
755
756 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
757 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000758}
759
Chris Lattner53e677a2004-04-02 20:23:17 +0000760/// evaluateAtIteration - Return the value of this chain of recurrences at
761/// the specified iteration number. We can evaluate this recurrence by
762/// multiplying each element in the chain by the binomial coefficient
763/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
764///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000765/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000766///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000767/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000768///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000769const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000770 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000771 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000772 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000773 // The computation is correct in the face of overflow provided that the
774 // multiplication is performed _after_ the evaluation of the binomial
775 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000776 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000777 if (isa<SCEVCouldNotCompute>(Coeff))
778 return Coeff;
779
780 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000781 }
782 return Result;
783}
784
Chris Lattner53e677a2004-04-02 20:23:17 +0000785//===----------------------------------------------------------------------===//
786// SCEV Expression folder implementations
787//===----------------------------------------------------------------------===//
788
Dan Gohman0bba49c2009-07-07 17:06:11 +0000789const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000790 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000791 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000792 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000793 assert(isSCEVable(Ty) &&
794 "This is not a conversion to a SCEVable type!");
795 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000796
Dan Gohmanc050fd92009-07-13 20:50:19 +0000797 FoldingSetNodeID ID;
798 ID.AddInteger(scTruncate);
799 ID.AddPointer(Op);
800 ID.AddPointer(Ty);
801 void *IP = 0;
802 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
803
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000804 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000805 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000806 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000807 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
808 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000809
Dan Gohman20900ca2009-04-22 16:20:48 +0000810 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000811 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000812 return getTruncateExpr(ST->getOperand(), Ty);
813
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000814 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000815 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000816 return getTruncateOrSignExtend(SS->getOperand(), Ty);
817
818 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000819 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000820 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
821
Dan Gohman6864db62009-06-18 16:24:47 +0000822 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000823 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000824 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000825 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000826 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
827 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000828 }
829
Dan Gohmanf53462d2010-07-15 20:02:11 +0000830 // As a special case, fold trunc(undef) to undef. We don't want to
831 // know too much about SCEVUnknowns, but this special case is handy
832 // and harmless.
833 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
834 if (isa<UndefValue>(U->getValue()))
835 return getSCEV(UndefValue::get(Ty));
836
Dan Gohman420ab912010-06-25 18:47:08 +0000837 // The cast wasn't folded; create an explicit cast node. We can reuse
838 // the existing insert position since if we get here, we won't have
839 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000840 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
841 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000842 UniqueSCEVs.InsertNode(S, IP);
843 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000844}
845
Dan Gohman0bba49c2009-07-07 17:06:11 +0000846const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000847 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000848 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000849 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000850 assert(isSCEVable(Ty) &&
851 "This is not a conversion to a SCEVable type!");
852 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000853
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000854 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000855 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
856 return getConstant(
857 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
858 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000859
Dan Gohman20900ca2009-04-22 16:20:48 +0000860 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000861 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000862 return getZeroExtendExpr(SZ->getOperand(), Ty);
863
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000864 // Before doing any expensive analysis, check to see if we've already
865 // computed a SCEV for this Op and Ty.
866 FoldingSetNodeID ID;
867 ID.AddInteger(scZeroExtend);
868 ID.AddPointer(Op);
869 ID.AddPointer(Ty);
870 void *IP = 0;
871 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
872
Dan Gohman01ecca22009-04-27 20:16:15 +0000873 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000874 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000875 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000876 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000877 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000878 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000879 const SCEV *Start = AR->getStart();
880 const SCEV *Step = AR->getStepRecurrence(*this);
881 unsigned BitWidth = getTypeSizeInBits(AR->getType());
882 const Loop *L = AR->getLoop();
883
Dan Gohmaneb490a72009-07-25 01:22:26 +0000884 // If we have special knowledge that this addrec won't overflow,
885 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000886 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000887 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
888 getZeroExtendExpr(Step, Ty),
889 L);
890
Dan Gohman01ecca22009-04-27 20:16:15 +0000891 // Check whether the backedge-taken count is SCEVCouldNotCompute.
892 // Note that this serves two purposes: It filters out loops that are
893 // simply not analyzable, and it covers the case where this code is
894 // being called from within backedge-taken count analysis, such that
895 // attempting to ask for the backedge-taken count would likely result
896 // in infinite recursion. In the later case, the analysis code will
897 // cope with a conservative value, and it will take care to purge
898 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000899 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000900 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000901 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000902 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000903
904 // Check whether the backedge-taken count can be losslessly casted to
905 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000906 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000907 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000908 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000909 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
910 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000911 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000912 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000913 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000914 const SCEV *Add = getAddExpr(Start, ZMul);
915 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000916 getAddExpr(getZeroExtendExpr(Start, WideTy),
917 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
918 getZeroExtendExpr(Step, WideTy)));
919 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000920 // Return the expression with the addrec on the outside.
921 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
922 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000923 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000924
925 // Similar to above, only this time treat the step value as signed.
926 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000927 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000928 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000929 OperandExtendedAdd =
930 getAddExpr(getZeroExtendExpr(Start, WideTy),
931 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
932 getSignExtendExpr(Step, WideTy)));
933 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000934 // Return the expression with the addrec on the outside.
935 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
936 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000937 L);
938 }
939
940 // If the backedge is guarded by a comparison with the pre-inc value
941 // the addrec is safe. Also, if the entry is guarded by a comparison
942 // with the start value and the backedge is guarded by a comparison
943 // with the post-inc value, the addrec is safe.
944 if (isKnownPositive(Step)) {
945 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
946 getUnsignedRange(Step).getUnsignedMax());
947 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000948 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000949 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
950 AR->getPostIncExpr(*this), N)))
951 // Return the expression with the addrec on the outside.
952 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
953 getZeroExtendExpr(Step, Ty),
954 L);
955 } else if (isKnownNegative(Step)) {
956 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
957 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +0000958 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
959 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000960 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
961 AR->getPostIncExpr(*this), N)))
962 // Return the expression with the addrec on the outside.
963 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
964 getSignExtendExpr(Step, Ty),
965 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000966 }
967 }
968 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000969
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000970 // The cast wasn't folded; create an explicit cast node.
971 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000972 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000973 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
974 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000975 UniqueSCEVs.InsertNode(S, IP);
976 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000977}
978
Dan Gohman0bba49c2009-07-07 17:06:11 +0000979const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000980 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000981 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000982 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000983 assert(isSCEVable(Ty) &&
984 "This is not a conversion to a SCEVable type!");
985 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000986
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000987 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000988 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
989 return getConstant(
990 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
991 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +0000992
Dan Gohman20900ca2009-04-22 16:20:48 +0000993 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000994 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000995 return getSignExtendExpr(SS->getOperand(), Ty);
996
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000997 // Before doing any expensive analysis, check to see if we've already
998 // computed a SCEV for this Op and Ty.
999 FoldingSetNodeID ID;
1000 ID.AddInteger(scSignExtend);
1001 ID.AddPointer(Op);
1002 ID.AddPointer(Ty);
1003 void *IP = 0;
1004 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1005
Dan Gohman01ecca22009-04-27 20:16:15 +00001006 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001007 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001008 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001009 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001010 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001011 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001012 const SCEV *Start = AR->getStart();
1013 const SCEV *Step = AR->getStepRecurrence(*this);
1014 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1015 const Loop *L = AR->getLoop();
1016
Dan Gohmaneb490a72009-07-25 01:22:26 +00001017 // If we have special knowledge that this addrec won't overflow,
1018 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001019 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001020 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1021 getSignExtendExpr(Step, Ty),
1022 L);
1023
Dan Gohman01ecca22009-04-27 20:16:15 +00001024 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1025 // Note that this serves two purposes: It filters out loops that are
1026 // simply not analyzable, and it covers the case where this code is
1027 // being called from within backedge-taken count analysis, such that
1028 // attempting to ask for the backedge-taken count would likely result
1029 // in infinite recursion. In the later case, the analysis code will
1030 // cope with a conservative value, and it will take care to purge
1031 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001032 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001033 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001034 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001035 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001036
1037 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001038 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001039 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001040 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001041 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001042 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1043 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001044 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001045 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001046 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001047 const SCEV *Add = getAddExpr(Start, SMul);
1048 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001049 getAddExpr(getSignExtendExpr(Start, WideTy),
1050 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1051 getSignExtendExpr(Step, WideTy)));
1052 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001053 // Return the expression with the addrec on the outside.
1054 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1055 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001056 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001057
1058 // Similar to above, only this time treat the step value as unsigned.
1059 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001060 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001061 Add = getAddExpr(Start, UMul);
1062 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001063 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001064 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1065 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001066 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001067 // Return the expression with the addrec on the outside.
1068 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1069 getZeroExtendExpr(Step, Ty),
1070 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001071 }
1072
1073 // If the backedge is guarded by a comparison with the pre-inc value
1074 // the addrec is safe. Also, if the entry is guarded by a comparison
1075 // with the start value and the backedge is guarded by a comparison
1076 // with the post-inc value, the addrec is safe.
1077 if (isKnownPositive(Step)) {
1078 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1079 getSignedRange(Step).getSignedMax());
1080 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001081 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001082 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1083 AR->getPostIncExpr(*this), N)))
1084 // Return the expression with the addrec on the outside.
1085 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1086 getSignExtendExpr(Step, Ty),
1087 L);
1088 } else if (isKnownNegative(Step)) {
1089 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1090 getSignedRange(Step).getSignedMin());
1091 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001092 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001093 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1094 AR->getPostIncExpr(*this), N)))
1095 // Return the expression with the addrec on the outside.
1096 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1097 getSignExtendExpr(Step, Ty),
1098 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001099 }
1100 }
1101 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001102
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001103 // The cast wasn't folded; create an explicit cast node.
1104 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001105 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001106 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1107 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001108 UniqueSCEVs.InsertNode(S, IP);
1109 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001110}
1111
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001112/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1113/// unspecified bits out to the given type.
1114///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001115const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001116 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001117 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1118 "This is not an extending conversion!");
1119 assert(isSCEVable(Ty) &&
1120 "This is not a conversion to a SCEVable type!");
1121 Ty = getEffectiveSCEVType(Ty);
1122
1123 // Sign-extend negative constants.
1124 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1125 if (SC->getValue()->getValue().isNegative())
1126 return getSignExtendExpr(Op, Ty);
1127
1128 // Peel off a truncate cast.
1129 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001130 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001131 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1132 return getAnyExtendExpr(NewOp, Ty);
1133 return getTruncateOrNoop(NewOp, Ty);
1134 }
1135
1136 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001137 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001138 if (!isa<SCEVZeroExtendExpr>(ZExt))
1139 return ZExt;
1140
1141 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001142 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001143 if (!isa<SCEVSignExtendExpr>(SExt))
1144 return SExt;
1145
Dan Gohmana10756e2010-01-21 02:09:26 +00001146 // Force the cast to be folded into the operands of an addrec.
1147 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1148 SmallVector<const SCEV *, 4> Ops;
1149 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1150 I != E; ++I)
1151 Ops.push_back(getAnyExtendExpr(*I, Ty));
1152 return getAddRecExpr(Ops, AR->getLoop());
1153 }
1154
Dan Gohmanf53462d2010-07-15 20:02:11 +00001155 // As a special case, fold anyext(undef) to undef. We don't want to
1156 // know too much about SCEVUnknowns, but this special case is handy
1157 // and harmless.
1158 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1159 if (isa<UndefValue>(U->getValue()))
1160 return getSCEV(UndefValue::get(Ty));
1161
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001162 // If the expression is obviously signed, use the sext cast value.
1163 if (isa<SCEVSMaxExpr>(Op))
1164 return SExt;
1165
1166 // Absent any other information, use the zext cast value.
1167 return ZExt;
1168}
1169
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001170/// CollectAddOperandsWithScales - Process the given Ops list, which is
1171/// a list of operands to be added under the given scale, update the given
1172/// map. This is a helper function for getAddRecExpr. As an example of
1173/// what it does, given a sequence of operands that would form an add
1174/// expression like this:
1175///
1176/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1177///
1178/// where A and B are constants, update the map with these values:
1179///
1180/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1181///
1182/// and add 13 + A*B*29 to AccumulatedConstant.
1183/// This will allow getAddRecExpr to produce this:
1184///
1185/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1186///
1187/// This form often exposes folding opportunities that are hidden in
1188/// the original operand list.
1189///
1190/// Return true iff it appears that any interesting folding opportunities
1191/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1192/// the common case where no interesting opportunities are present, and
1193/// is also used as a check to avoid infinite recursion.
1194///
1195static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001196CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1197 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001198 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001199 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001200 const APInt &Scale,
1201 ScalarEvolution &SE) {
1202 bool Interesting = false;
1203
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001204 // Iterate over the add operands. They are sorted, with constants first.
1205 unsigned i = 0;
1206 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1207 ++i;
1208 // Pull a buried constant out to the outside.
1209 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1210 Interesting = true;
1211 AccumulatedConstant += Scale * C->getValue()->getValue();
1212 }
1213
1214 // Next comes everything else. We're especially interested in multiplies
1215 // here, but they're in the middle, so just visit the rest with one loop.
1216 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001217 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1218 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1219 APInt NewScale =
1220 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1221 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1222 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001223 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001224 Interesting |=
1225 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001226 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001227 NewScale, SE);
1228 } else {
1229 // A multiplication of a constant with some other value. Update
1230 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001231 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1232 const SCEV *Key = SE.getMulExpr(MulOps);
1233 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001234 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001235 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001236 NewOps.push_back(Pair.first->first);
1237 } else {
1238 Pair.first->second += NewScale;
1239 // The map already had an entry for this value, which may indicate
1240 // a folding opportunity.
1241 Interesting = true;
1242 }
1243 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001244 } else {
1245 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001246 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001247 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001248 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001249 NewOps.push_back(Pair.first->first);
1250 } else {
1251 Pair.first->second += Scale;
1252 // The map already had an entry for this value, which may indicate
1253 // a folding opportunity.
1254 Interesting = true;
1255 }
1256 }
1257 }
1258
1259 return Interesting;
1260}
1261
1262namespace {
1263 struct APIntCompare {
1264 bool operator()(const APInt &LHS, const APInt &RHS) const {
1265 return LHS.ult(RHS);
1266 }
1267 };
1268}
1269
Dan Gohman6c0866c2009-05-24 23:45:28 +00001270/// getAddExpr - Get a canonical add expression, or something simpler if
1271/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001272const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1273 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001274 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001275 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001276#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001277 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001278 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001279 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001280 "SCEVAddExpr operand types don't match!");
1281#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001282
Dan Gohmana10756e2010-01-21 02:09:26 +00001283 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1284 if (!HasNUW && HasNSW) {
1285 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001286 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1287 E = Ops.end(); I != E; ++I)
1288 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001289 All = false;
1290 break;
1291 }
1292 if (All) HasNUW = true;
1293 }
1294
Chris Lattner53e677a2004-04-02 20:23:17 +00001295 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001296 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001297
1298 // If there are any constants, fold them together.
1299 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001300 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001301 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001302 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001303 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001304 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001305 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1306 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001307 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001308 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001309 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001310 }
1311
1312 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001313 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001314 Ops.erase(Ops.begin());
1315 --Idx;
1316 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001317
Dan Gohmanbca091d2010-04-12 23:08:18 +00001318 if (Ops.size() == 1) return Ops[0];
1319 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001320
Dan Gohman68ff7762010-08-27 21:39:59 +00001321 // Okay, check to see if the same value occurs in the operand list more than
1322 // once. If so, merge them together into an multiply expression. Since we
1323 // sorted the list, these values are required to be adjacent.
Chris Lattner53e677a2004-04-02 20:23:17 +00001324 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001325 bool FoundMatch = false;
Dan Gohman68ff7762010-08-27 21:39:59 +00001326 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattner53e677a2004-04-02 20:23:17 +00001327 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman68ff7762010-08-27 21:39:59 +00001328 // Scan ahead to count how many equal operands there are.
1329 unsigned Count = 2;
1330 while (i+Count != e && Ops[i+Count] == Ops[i])
1331 ++Count;
1332 // Merge the values into a multiply.
1333 const SCEV *Scale = getConstant(Ty, Count);
1334 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1335 if (Ops.size() == Count)
Chris Lattner53e677a2004-04-02 20:23:17 +00001336 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001337 Ops[i] = Mul;
Dan Gohman68ff7762010-08-27 21:39:59 +00001338 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohman5bb307d2010-08-28 00:39:27 +00001339 --i; e -= Count - 1;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001340 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001341 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001342 if (FoundMatch)
1343 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001344
Dan Gohman728c7f32009-05-08 21:03:19 +00001345 // Check for truncates. If all the operands are truncated from the same
1346 // type, see if factoring out the truncate would permit the result to be
1347 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1348 // if the contents of the resulting outer trunc fold to something simple.
1349 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1350 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1351 const Type *DstType = Trunc->getType();
1352 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001353 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001354 bool Ok = true;
1355 // Check all the operands to see if they can be represented in the
1356 // source type of the truncate.
1357 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1358 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1359 if (T->getOperand()->getType() != SrcType) {
1360 Ok = false;
1361 break;
1362 }
1363 LargeOps.push_back(T->getOperand());
1364 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001365 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001366 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001367 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001368 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1369 if (const SCEVTruncateExpr *T =
1370 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1371 if (T->getOperand()->getType() != SrcType) {
1372 Ok = false;
1373 break;
1374 }
1375 LargeMulOps.push_back(T->getOperand());
1376 } else if (const SCEVConstant *C =
1377 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001378 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001379 } else {
1380 Ok = false;
1381 break;
1382 }
1383 }
1384 if (Ok)
1385 LargeOps.push_back(getMulExpr(LargeMulOps));
1386 } else {
1387 Ok = false;
1388 break;
1389 }
1390 }
1391 if (Ok) {
1392 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001393 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001394 // If it folds to something simple, use it. Otherwise, don't.
1395 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1396 return getTruncateExpr(Fold, DstType);
1397 }
1398 }
1399
1400 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001401 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1402 ++Idx;
1403
1404 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001405 if (Idx < Ops.size()) {
1406 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001407 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001408 // If we have an add, expand the add operands onto the end of the operands
1409 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001410 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001411 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001412 DeletedAdd = true;
1413 }
1414
1415 // If we deleted at least one add, we added operands to the end of the list,
1416 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001417 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001418 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001419 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001420 }
1421
1422 // Skip over the add expression until we get to a multiply.
1423 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1424 ++Idx;
1425
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001426 // Check to see if there are any folding opportunities present with
1427 // operands multiplied by constant values.
1428 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1429 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001430 DenseMap<const SCEV *, APInt> M;
1431 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001432 APInt AccumulatedConstant(BitWidth, 0);
1433 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001434 Ops.data(), Ops.size(),
1435 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001436 // Some interesting folding opportunity is present, so its worthwhile to
1437 // re-generate the operands list. Group the operands by constant scale,
1438 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001439 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Dan Gohman8d9c7a62010-08-16 16:30:01 +00001440 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001441 E = NewOps.end(); I != E; ++I)
1442 MulOpLists[M.find(*I)->second].push_back(*I);
1443 // Re-generate the operands list.
1444 Ops.clear();
1445 if (AccumulatedConstant != 0)
1446 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001447 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1448 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001449 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001450 Ops.push_back(getMulExpr(getConstant(I->first),
1451 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001452 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001453 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001454 if (Ops.size() == 1)
1455 return Ops[0];
1456 return getAddExpr(Ops);
1457 }
1458 }
1459
Chris Lattner53e677a2004-04-02 20:23:17 +00001460 // If we are adding something to a multiply expression, make sure the
1461 // something is not already an operand of the multiply. If so, merge it into
1462 // the multiply.
1463 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001464 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001465 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001466 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman918e76b2010-08-12 14:52:55 +00001467 if (isa<SCEVConstant>(MulOpSCEV))
1468 continue;
Chris Lattner53e677a2004-04-02 20:23:17 +00001469 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman918e76b2010-08-12 14:52:55 +00001470 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001471 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001472 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001473 if (Mul->getNumOperands() != 2) {
1474 // If the multiply has more than two operands, we must get the
1475 // Y*Z term.
Dan Gohman18959912010-08-16 16:57:24 +00001476 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1477 Mul->op_begin()+MulOp);
1478 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001479 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001480 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001481 const SCEV *One = getConstant(Ty, 1);
Dan Gohman58a85b92010-08-13 20:17:14 +00001482 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman918e76b2010-08-12 14:52:55 +00001483 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattner53e677a2004-04-02 20:23:17 +00001484 if (Ops.size() == 2) return OuterMul;
1485 if (AddOp < Idx) {
1486 Ops.erase(Ops.begin()+AddOp);
1487 Ops.erase(Ops.begin()+Idx-1);
1488 } else {
1489 Ops.erase(Ops.begin()+Idx);
1490 Ops.erase(Ops.begin()+AddOp-1);
1491 }
1492 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001493 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001494 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001495
Chris Lattner53e677a2004-04-02 20:23:17 +00001496 // Check this multiply against other multiplies being added together.
1497 for (unsigned OtherMulIdx = Idx+1;
1498 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1499 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001500 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001501 // If MulOp occurs in OtherMul, we can fold the two multiplies
1502 // together.
1503 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1504 OMulOp != e; ++OMulOp)
1505 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1506 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001507 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001509 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001510 Mul->op_begin()+MulOp);
1511 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001512 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001513 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001514 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001515 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001516 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman18959912010-08-16 16:57:24 +00001517 OtherMul->op_begin()+OMulOp);
1518 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001519 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001520 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001521 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1522 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001523 if (Ops.size() == 2) return OuterMul;
Dan Gohman90b5f252010-08-31 22:50:31 +00001524 Ops.erase(Ops.begin()+Idx);
1525 Ops.erase(Ops.begin()+OtherMulIdx-1);
1526 Ops.push_back(OuterMul);
1527 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001528 }
1529 }
1530 }
1531 }
1532
1533 // If there are any add recurrences in the operands list, see if any other
1534 // added values are loop invariant. If so, we can fold them into the
1535 // recurrence.
1536 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1537 ++Idx;
1538
1539 // Scan over all recurrences, trying to fold loop invariants into them.
1540 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1541 // Scan all of the other operands to this add and add them to the vector if
1542 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001543 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001544 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001545 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001546 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001547 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001548 LIOps.push_back(Ops[i]);
1549 Ops.erase(Ops.begin()+i);
1550 --i; --e;
1551 }
1552
1553 // If we found some loop invariants, fold them into the recurrence.
1554 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001555 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001556 LIOps.push_back(AddRec->getStart());
1557
Dan Gohman0bba49c2009-07-07 17:06:11 +00001558 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001559 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001560 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001561
Dan Gohmanb9f96512010-06-30 07:16:37 +00001562 // Build the new addrec. Propagate the NUW and NSW flags if both the
Chris Lattnerad19c8c2011-01-09 22:31:26 +00001563 // outer add and the inner addrec are guaranteed to have no overflow or if
1564 // there is no outer part.
1565 if (Ops.size() != 1) {
1566 HasNUW &= AddRec->hasNoUnsignedWrap();
1567 HasNSW &= AddRec->hasNoSignedWrap();
1568 }
1569
1570 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, HasNUW, HasNSW);
Dan Gohman59de33e2009-12-18 18:45:31 +00001571
Chris Lattner53e677a2004-04-02 20:23:17 +00001572 // If all of the other operands were loop invariant, we are done.
1573 if (Ops.size() == 1) return NewRec;
1574
1575 // Otherwise, add the folded AddRec by the non-liv parts.
1576 for (unsigned i = 0;; ++i)
1577 if (Ops[i] == AddRec) {
1578 Ops[i] = NewRec;
1579 break;
1580 }
Dan Gohman246b2562007-10-22 18:31:58 +00001581 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001582 }
1583
1584 // Okay, if there weren't any loop invariants to be folded, check to see if
1585 // there are multiple AddRec's with the same loop induction variable being
1586 // added together. If so, we can fold them.
1587 for (unsigned OtherIdx = Idx+1;
Dan Gohman32527152010-08-27 20:45:56 +00001588 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1589 ++OtherIdx)
1590 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1591 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1592 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1593 AddRec->op_end());
1594 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1595 ++OtherIdx)
Dan Gohman30cbc862010-08-29 14:53:34 +00001596 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohman32527152010-08-27 20:45:56 +00001597 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman30cbc862010-08-29 14:53:34 +00001598 if (OtherAddRec->getLoop() == AddRecLoop) {
1599 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1600 i != e; ++i) {
Dan Gohman32527152010-08-27 20:45:56 +00001601 if (i >= AddRecOps.size()) {
Dan Gohman30cbc862010-08-29 14:53:34 +00001602 AddRecOps.append(OtherAddRec->op_begin()+i,
1603 OtherAddRec->op_end());
Dan Gohman32527152010-08-27 20:45:56 +00001604 break;
1605 }
Dan Gohman30cbc862010-08-29 14:53:34 +00001606 AddRecOps[i] = getAddExpr(AddRecOps[i],
1607 OtherAddRec->getOperand(i));
Dan Gohman32527152010-08-27 20:45:56 +00001608 }
1609 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattner53e677a2004-04-02 20:23:17 +00001610 }
Dan Gohman32527152010-08-27 20:45:56 +00001611 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1612 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001613 }
1614
1615 // Otherwise couldn't fold anything into this recurrence. Move onto the
1616 // next one.
1617 }
1618
1619 // Okay, it looks like we really DO need an add expr. Check to see if we
1620 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001621 FoldingSetNodeID ID;
1622 ID.AddInteger(scAddExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001623 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1624 ID.AddPointer(Ops[i]);
1625 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001626 SCEVAddExpr *S =
1627 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1628 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001629 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1630 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001631 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1632 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001633 UniqueSCEVs.InsertNode(S, IP);
1634 }
Dan Gohman3645b012009-10-09 00:10:36 +00001635 if (HasNUW) S->setHasNoUnsignedWrap(true);
1636 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001637 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001638}
1639
Dan Gohman6c0866c2009-05-24 23:45:28 +00001640/// getMulExpr - Get a canonical multiply expression, or something simpler if
1641/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001642const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1643 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001644 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001645 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001646#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001647 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001648 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001649 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001650 "SCEVMulExpr operand types don't match!");
1651#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001652
Dan Gohmana10756e2010-01-21 02:09:26 +00001653 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1654 if (!HasNUW && HasNSW) {
1655 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001656 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1657 E = Ops.end(); I != E; ++I)
1658 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001659 All = false;
1660 break;
1661 }
1662 if (All) HasNUW = true;
1663 }
1664
Chris Lattner53e677a2004-04-02 20:23:17 +00001665 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001666 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001667
1668 // If there are any constants, fold them together.
1669 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001670 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001671
1672 // C1*(C2+V) -> C1*C2 + C1*V
1673 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001674 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001675 if (Add->getNumOperands() == 2 &&
1676 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001677 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1678 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001679
Chris Lattner53e677a2004-04-02 20:23:17 +00001680 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001681 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001682 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001683 ConstantInt *Fold = ConstantInt::get(getContext(),
1684 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001685 RHSC->getValue()->getValue());
1686 Ops[0] = getConstant(Fold);
1687 Ops.erase(Ops.begin()+1); // Erase the folded element
1688 if (Ops.size() == 1) return Ops[0];
1689 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001690 }
1691
1692 // If we are left with a constant one being multiplied, strip it off.
1693 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1694 Ops.erase(Ops.begin());
1695 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001696 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001697 // If we have a multiply of zero, it will always be zero.
1698 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001699 } else if (Ops[0]->isAllOnesValue()) {
1700 // If we have a mul by -1 of an add, try distributing the -1 among the
1701 // add operands.
1702 if (Ops.size() == 2)
1703 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1704 SmallVector<const SCEV *, 4> NewOps;
1705 bool AnyFolded = false;
1706 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1707 I != E; ++I) {
1708 const SCEV *Mul = getMulExpr(Ops[0], *I);
1709 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1710 NewOps.push_back(Mul);
1711 }
1712 if (AnyFolded)
1713 return getAddExpr(NewOps);
1714 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001715 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001716
1717 if (Ops.size() == 1)
1718 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001719 }
1720
1721 // Skip over the add expression until we get to a multiply.
1722 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1723 ++Idx;
1724
Chris Lattner53e677a2004-04-02 20:23:17 +00001725 // If there are mul operands inline them all into this expression.
1726 if (Idx < Ops.size()) {
1727 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001728 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001729 // If we have an mul, expand the mul operands onto the end of the operands
1730 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001731 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001732 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001733 DeletedMul = true;
1734 }
1735
1736 // If we deleted at least one mul, we added operands to the end of the list,
1737 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001738 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001739 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001740 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001741 }
1742
1743 // If there are any add recurrences in the operands list, see if any other
1744 // added values are loop invariant. If so, we can fold them into the
1745 // recurrence.
1746 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1747 ++Idx;
1748
1749 // Scan over all recurrences, trying to fold loop invariants into them.
1750 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1751 // Scan all of the other operands to this mul and add them to the vector if
1752 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001753 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001754 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f32ae32010-08-29 14:55:19 +00001755 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001756 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001757 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001758 LIOps.push_back(Ops[i]);
1759 Ops.erase(Ops.begin()+i);
1760 --i; --e;
1761 }
1762
1763 // If we found some loop invariants, fold them into the recurrence.
1764 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001765 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001766 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001767 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001768 const SCEV *Scale = getMulExpr(LIOps);
1769 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1770 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001771
Dan Gohmanb9f96512010-06-30 07:16:37 +00001772 // Build the new addrec. Propagate the NUW and NSW flags if both the
1773 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohman0f32ae32010-08-29 14:55:19 +00001774 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
Dan Gohmana10756e2010-01-21 02:09:26 +00001775 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001776 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001777
1778 // If all of the other operands were loop invariant, we are done.
1779 if (Ops.size() == 1) return NewRec;
1780
1781 // Otherwise, multiply the folded AddRec by the non-liv parts.
1782 for (unsigned i = 0;; ++i)
1783 if (Ops[i] == AddRec) {
1784 Ops[i] = NewRec;
1785 break;
1786 }
Dan Gohman246b2562007-10-22 18:31:58 +00001787 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001788 }
1789
1790 // Okay, if there weren't any loop invariants to be folded, check to see if
1791 // there are multiple AddRec's with the same loop induction variable being
1792 // multiplied together. If so, we can fold them.
1793 for (unsigned OtherIdx = Idx+1;
Dan Gohman6a0c1252010-08-31 22:52:12 +00001794 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1795 ++OtherIdx)
1796 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1797 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1798 // {A*C,+,F*D + G*B + B*D}<L>
1799 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1800 ++OtherIdx)
1801 if (const SCEVAddRecExpr *OtherAddRec =
1802 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1803 if (OtherAddRec->getLoop() == AddRecLoop) {
1804 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1805 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1806 const SCEV *B = F->getStepRecurrence(*this);
1807 const SCEV *D = G->getStepRecurrence(*this);
1808 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1809 getMulExpr(G, B),
1810 getMulExpr(B, D));
1811 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1812 F->getLoop());
1813 if (Ops.size() == 2) return NewAddRec;
1814 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1815 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1816 }
1817 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001818 }
1819
1820 // Otherwise couldn't fold anything into this recurrence. Move onto the
1821 // next one.
1822 }
1823
1824 // Okay, it looks like we really DO need an mul expr. Check to see if we
1825 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001826 FoldingSetNodeID ID;
1827 ID.AddInteger(scMulExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00001828 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1829 ID.AddPointer(Ops[i]);
1830 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001831 SCEVMulExpr *S =
1832 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1833 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001834 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1835 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001836 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1837 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001838 UniqueSCEVs.InsertNode(S, IP);
1839 }
Dan Gohman3645b012009-10-09 00:10:36 +00001840 if (HasNUW) S->setHasNoUnsignedWrap(true);
1841 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001842 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001843}
1844
Andreas Bolka8a11c982009-08-07 22:55:26 +00001845/// getUDivExpr - Get a canonical unsigned division expression, or something
1846/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001847const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1848 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001849 assert(getEffectiveSCEVType(LHS->getType()) ==
1850 getEffectiveSCEVType(RHS->getType()) &&
1851 "SCEVUDivExpr operand types don't match!");
1852
Dan Gohman622ed672009-05-04 22:02:23 +00001853 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001854 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001855 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001856 // If the denominator is zero, the result of the udiv is undefined. Don't
1857 // try to analyze it, because the resolution chosen here may differ from
1858 // the resolution chosen in other parts of the compiler.
1859 if (!RHSC->getValue()->isZero()) {
1860 // Determine if the division can be folded into the operands of
1861 // its operands.
1862 // TODO: Generalize this to non-constants by using known-bits information.
1863 const Type *Ty = LHS->getType();
1864 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001865 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001866 // For non-power-of-two values, effectively round the value up to the
1867 // nearest power of two.
1868 if (!RHSC->getValue()->getValue().isPowerOf2())
1869 ++MaxShiftAmt;
1870 const IntegerType *ExtTy =
1871 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1872 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1873 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1874 if (const SCEVConstant *Step =
1875 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1876 if (!Step->getValue()->getValue()
1877 .urem(RHSC->getValue()->getValue()) &&
1878 getZeroExtendExpr(AR, ExtTy) ==
1879 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1880 getZeroExtendExpr(Step, ExtTy),
1881 AR->getLoop())) {
1882 SmallVector<const SCEV *, 4> Operands;
1883 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1884 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1885 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001886 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001887 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1888 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1889 SmallVector<const SCEV *, 4> Operands;
1890 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1891 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1892 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1893 // Find an operand that's safely divisible.
1894 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1895 const SCEV *Op = M->getOperand(i);
1896 const SCEV *Div = getUDivExpr(Op, RHSC);
1897 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1898 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1899 M->op_end());
1900 Operands[i] = Div;
1901 return getMulExpr(Operands);
1902 }
1903 }
Dan Gohman185cf032009-05-08 20:18:49 +00001904 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001905 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1906 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1907 SmallVector<const SCEV *, 4> Operands;
1908 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1909 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1910 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1911 Operands.clear();
1912 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1913 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1914 if (isa<SCEVUDivExpr>(Op) ||
1915 getMulExpr(Op, RHS) != A->getOperand(i))
1916 break;
1917 Operands.push_back(Op);
1918 }
1919 if (Operands.size() == A->getNumOperands())
1920 return getAddExpr(Operands);
1921 }
1922 }
Dan Gohman185cf032009-05-08 20:18:49 +00001923
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001924 // Fold if both operands are constant.
1925 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1926 Constant *LHSCV = LHSC->getValue();
1927 Constant *RHSCV = RHSC->getValue();
1928 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1929 RHSCV)));
1930 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001931 }
1932 }
1933
Dan Gohman1c343752009-06-27 21:21:31 +00001934 FoldingSetNodeID ID;
1935 ID.AddInteger(scUDivExpr);
1936 ID.AddPointer(LHS);
1937 ID.AddPointer(RHS);
1938 void *IP = 0;
1939 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001940 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1941 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001942 UniqueSCEVs.InsertNode(S, IP);
1943 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001944}
1945
1946
Dan Gohman6c0866c2009-05-24 23:45:28 +00001947/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1948/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001949const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001950 const SCEV *Step, const Loop *L,
1951 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001952 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001953 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001954 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001955 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001956 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001957 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001958 }
1959
1960 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001961 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001962}
1963
Dan Gohman6c0866c2009-05-24 23:45:28 +00001964/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1965/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001966const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001967ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001968 const Loop *L,
1969 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001970 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001971#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00001972 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001973 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00001974 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001975 "SCEVAddRecExpr operand types don't match!");
Dan Gohman203a7232010-11-17 20:48:38 +00001976 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00001977 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohman203a7232010-11-17 20:48:38 +00001978 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmanf78a9782009-05-18 15:44:58 +00001979#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001980
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001981 if (Operands.back()->isZero()) {
1982 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001983 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001984 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001985
Dan Gohmanbc028532010-02-19 18:49:22 +00001986 // It's tempting to want to call getMaxBackedgeTakenCount count here and
1987 // use that information to infer NUW and NSW flags. However, computing a
1988 // BE count requires calling getAddRecExpr, so we may not yet have a
1989 // meaningful BE count at this point (and if we don't, we'd be stuck
1990 // with a SCEVCouldNotCompute as the cached BE count).
1991
Dan Gohmana10756e2010-01-21 02:09:26 +00001992 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1993 if (!HasNUW && HasNSW) {
1994 bool All = true;
Dan Gohman2d16fc52010-08-16 16:27:53 +00001995 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
1996 E = Operands.end(); I != E; ++I)
1997 if (!isKnownNonNegative(*I)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00001998 All = false;
1999 break;
2000 }
2001 if (All) HasNUW = true;
2002 }
2003
Dan Gohmand9cc7492008-08-08 18:33:12 +00002004 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002005 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002006 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman9cba9782010-08-13 20:23:25 +00002007 if (L->contains(NestedLoop) ?
Dan Gohmana10756e2010-01-21 02:09:26 +00002008 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman9cba9782010-08-13 20:23:25 +00002009 (!NestedLoop->contains(L) &&
Dan Gohmana10756e2010-01-21 02:09:26 +00002010 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002011 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002012 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002013 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002014 // AddRecs require their operands be loop-invariant with respect to their
2015 // loops. Don't perform this transformation if it would break this
2016 // requirement.
2017 bool AllInvariant = true;
2018 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002019 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002020 AllInvariant = false;
2021 break;
2022 }
2023 if (AllInvariant) {
2024 NestedOperands[0] = getAddRecExpr(Operands, L);
2025 AllInvariant = true;
2026 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohman17ead4f2010-11-17 21:23:15 +00002027 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohman9a80b452009-06-26 22:36:20 +00002028 AllInvariant = false;
2029 break;
2030 }
2031 if (AllInvariant)
2032 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002033 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002034 }
2035 // Reset Operands to its original state.
2036 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002037 }
2038 }
2039
Dan Gohman67847532010-01-19 22:27:22 +00002040 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2041 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002042 FoldingSetNodeID ID;
2043 ID.AddInteger(scAddRecExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002044 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2045 ID.AddPointer(Operands[i]);
2046 ID.AddPointer(L);
2047 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002048 SCEVAddRecExpr *S =
2049 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2050 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002051 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2052 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002053 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2054 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002055 UniqueSCEVs.InsertNode(S, IP);
2056 }
Dan Gohman3645b012009-10-09 00:10:36 +00002057 if (HasNUW) S->setHasNoUnsignedWrap(true);
2058 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002059 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002060}
2061
Dan Gohman9311ef62009-06-24 14:49:00 +00002062const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2063 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002064 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002065 Ops.push_back(LHS);
2066 Ops.push_back(RHS);
2067 return getSMaxExpr(Ops);
2068}
2069
Dan Gohman0bba49c2009-07-07 17:06:11 +00002070const SCEV *
2071ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002072 assert(!Ops.empty() && "Cannot get empty smax!");
2073 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002074#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002075 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002076 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002077 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002078 "SCEVSMaxExpr operand types don't match!");
2079#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002080
2081 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002082 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002083
2084 // If there are any constants, fold them together.
2085 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002086 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002087 ++Idx;
2088 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002089 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002090 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002091 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002092 APIntOps::smax(LHSC->getValue()->getValue(),
2093 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002094 Ops[0] = getConstant(Fold);
2095 Ops.erase(Ops.begin()+1); // Erase the folded element
2096 if (Ops.size() == 1) return Ops[0];
2097 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002098 }
2099
Dan Gohmane5aceed2009-06-24 14:46:22 +00002100 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002101 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2102 Ops.erase(Ops.begin());
2103 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002104 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2105 // If we have an smax with a constant maximum-int, it will always be
2106 // maximum-int.
2107 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002108 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002109
Dan Gohman3ab13122010-04-13 16:49:23 +00002110 if (Ops.size() == 1) return Ops[0];
2111 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002112
2113 // Find the first SMax
2114 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2115 ++Idx;
2116
2117 // Check to see if one of the operands is an SMax. If so, expand its operands
2118 // onto our operand list, and recurse to simplify.
2119 if (Idx < Ops.size()) {
2120 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002121 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002122 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002123 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002124 DeletedSMax = true;
2125 }
2126
2127 if (DeletedSMax)
2128 return getSMaxExpr(Ops);
2129 }
2130
2131 // Okay, check to see if the same value occurs in the operand list twice. If
2132 // so, delete one. Since we sorted the list, these values are required to
2133 // be adjacent.
2134 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002135 // X smax Y smax Y --> X smax Y
2136 // X smax Y --> X, if X is always greater than Y
2137 if (Ops[i] == Ops[i+1] ||
2138 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2139 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2140 --i; --e;
2141 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002142 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2143 --i; --e;
2144 }
2145
2146 if (Ops.size() == 1) return Ops[0];
2147
2148 assert(!Ops.empty() && "Reduced smax down to nothing!");
2149
Nick Lewycky3e630762008-02-20 06:48:22 +00002150 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002151 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002152 FoldingSetNodeID ID;
2153 ID.AddInteger(scSMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002154 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2155 ID.AddPointer(Ops[i]);
2156 void *IP = 0;
2157 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002158 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2159 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002160 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2161 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002162 UniqueSCEVs.InsertNode(S, IP);
2163 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002164}
2165
Dan Gohman9311ef62009-06-24 14:49:00 +00002166const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2167 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002168 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002169 Ops.push_back(LHS);
2170 Ops.push_back(RHS);
2171 return getUMaxExpr(Ops);
2172}
2173
Dan Gohman0bba49c2009-07-07 17:06:11 +00002174const SCEV *
2175ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002176 assert(!Ops.empty() && "Cannot get empty umax!");
2177 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002178#ifndef NDEBUG
Dan Gohmanc4f77982010-08-16 16:13:54 +00002179 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00002180 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc4f77982010-08-16 16:13:54 +00002181 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00002182 "SCEVUMaxExpr operand types don't match!");
2183#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002184
2185 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002186 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002187
2188 // If there are any constants, fold them together.
2189 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002190 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002191 ++Idx;
2192 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002193 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002194 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002195 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002196 APIntOps::umax(LHSC->getValue()->getValue(),
2197 RHSC->getValue()->getValue()));
2198 Ops[0] = getConstant(Fold);
2199 Ops.erase(Ops.begin()+1); // Erase the folded element
2200 if (Ops.size() == 1) return Ops[0];
2201 LHSC = cast<SCEVConstant>(Ops[0]);
2202 }
2203
Dan Gohmane5aceed2009-06-24 14:46:22 +00002204 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002205 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2206 Ops.erase(Ops.begin());
2207 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002208 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2209 // If we have an umax with a constant maximum-int, it will always be
2210 // maximum-int.
2211 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002212 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002213
Dan Gohman3ab13122010-04-13 16:49:23 +00002214 if (Ops.size() == 1) return Ops[0];
2215 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002216
2217 // Find the first UMax
2218 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2219 ++Idx;
2220
2221 // Check to see if one of the operands is a UMax. If so, expand its operands
2222 // onto our operand list, and recurse to simplify.
2223 if (Idx < Ops.size()) {
2224 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002225 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002226 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002227 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002228 DeletedUMax = true;
2229 }
2230
2231 if (DeletedUMax)
2232 return getUMaxExpr(Ops);
2233 }
2234
2235 // Okay, check to see if the same value occurs in the operand list twice. If
2236 // so, delete one. Since we sorted the list, these values are required to
2237 // be adjacent.
2238 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002239 // X umax Y umax Y --> X umax Y
2240 // X umax Y --> X, if X is always greater than Y
2241 if (Ops[i] == Ops[i+1] ||
2242 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2243 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2244 --i; --e;
2245 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002246 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2247 --i; --e;
2248 }
2249
2250 if (Ops.size() == 1) return Ops[0];
2251
2252 assert(!Ops.empty() && "Reduced umax down to nothing!");
2253
2254 // Okay, it looks like we really DO need a umax expr. Check to see if we
2255 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002256 FoldingSetNodeID ID;
2257 ID.AddInteger(scUMaxExpr);
Dan Gohman1c343752009-06-27 21:21:31 +00002258 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2259 ID.AddPointer(Ops[i]);
2260 void *IP = 0;
2261 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002262 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2263 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002264 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2265 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002266 UniqueSCEVs.InsertNode(S, IP);
2267 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002268}
2269
Dan Gohman9311ef62009-06-24 14:49:00 +00002270const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2271 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002272 // ~smax(~x, ~y) == smin(x, y).
2273 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2274}
2275
Dan Gohman9311ef62009-06-24 14:49:00 +00002276const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2277 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002278 // ~umax(~x, ~y) == umin(x, y)
2279 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2280}
2281
Dan Gohman4f8eea82010-02-01 18:27:38 +00002282const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002283 // If we have TargetData, we can bypass creating a target-independent
2284 // constant expression and then folding it back into a ConstantInt.
2285 // This is just a compile-time optimization.
2286 if (TD)
2287 return getConstant(TD->getIntPtrType(getContext()),
2288 TD->getTypeAllocSize(AllocTy));
2289
Dan Gohman4f8eea82010-02-01 18:27:38 +00002290 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2291 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002292 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2293 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002294 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2295 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2296}
2297
2298const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2299 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2300 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002301 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2302 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002303 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2304 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2305}
2306
2307const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2308 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002309 // If we have TargetData, we can bypass creating a target-independent
2310 // constant expression and then folding it back into a ConstantInt.
2311 // This is just a compile-time optimization.
2312 if (TD)
2313 return getConstant(TD->getIntPtrType(getContext()),
2314 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2315
Dan Gohman0f5efe52010-01-28 02:15:55 +00002316 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2317 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002318 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2319 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002320 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002321 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002322}
2323
Dan Gohman4f8eea82010-02-01 18:27:38 +00002324const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2325 Constant *FieldNo) {
2326 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002327 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002328 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2329 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002330 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002331 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002332}
2333
Dan Gohman0bba49c2009-07-07 17:06:11 +00002334const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002335 // Don't attempt to do anything other than create a SCEVUnknown object
2336 // here. createSCEV only calls getUnknown after checking for all other
2337 // interesting possibilities, and any other code that calls getUnknown
2338 // is doing so in order to hide a value from SCEV canonicalization.
2339
Dan Gohman1c343752009-06-27 21:21:31 +00002340 FoldingSetNodeID ID;
2341 ID.AddInteger(scUnknown);
2342 ID.AddPointer(V);
2343 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002344 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2345 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2346 "Stale SCEVUnknown in uniquing map!");
2347 return S;
2348 }
2349 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2350 FirstUnknown);
2351 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002352 UniqueSCEVs.InsertNode(S, IP);
2353 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002354}
2355
Chris Lattner53e677a2004-04-02 20:23:17 +00002356//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002357// Basic SCEV Analysis and PHI Idiom Recognition Code
2358//
2359
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002360/// isSCEVable - Test if values of the given type are analyzable within
2361/// the SCEV framework. This primarily includes integer types, and it
2362/// can optionally include pointer types if the ScalarEvolution class
2363/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002364bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002365 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002366 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002367}
2368
2369/// getTypeSizeInBits - Return the size in bits of the specified type,
2370/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002371uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002372 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2373
2374 // If we have a TargetData, use it!
2375 if (TD)
2376 return TD->getTypeSizeInBits(Ty);
2377
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002378 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002379 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002380 return Ty->getPrimitiveSizeInBits();
2381
2382 // The only other support type is pointer. Without TargetData, conservatively
2383 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002384 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002385 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002386}
2387
2388/// getEffectiveSCEVType - Return a type with the same bitwidth as
2389/// the given type and which represents how SCEV will treat the given
2390/// type, for which isSCEVable must return true. For pointer types,
2391/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002392const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002393 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2394
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002395 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002396 return Ty;
2397
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002398 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002399 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002400 if (TD) return TD->getIntPtrType(getContext());
2401
2402 // Without TargetData, conservatively assume pointers are 64-bit.
2403 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002404}
Chris Lattner53e677a2004-04-02 20:23:17 +00002405
Dan Gohman0bba49c2009-07-07 17:06:11 +00002406const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002407 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002408}
2409
Chris Lattner53e677a2004-04-02 20:23:17 +00002410/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2411/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002412const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002413 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002414
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002415 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2416 if (I != ValueExprMap.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002417 const SCEV *S = createSCEV(V);
Dan Gohman619d3322010-08-16 16:31:39 +00002418
2419 // The process of creating a SCEV for V may have caused other SCEVs
2420 // to have been created, so it's necessary to insert the new entry
2421 // from scratch, rather than trying to remember the insert position
2422 // above.
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002423 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002424 return S;
2425}
2426
Dan Gohman2d1be872009-04-16 03:18:22 +00002427/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2428///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002429const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002430 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002431 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002432 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002433
2434 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002435 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002436 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002437 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002438}
2439
2440/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002441const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002442 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002443 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002444 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002445
2446 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002447 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002448 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002449 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002450 return getMinusSCEV(AllOnes, V);
2451}
2452
2453/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2454///
Chris Lattner992efb02011-01-09 22:26:35 +00002455const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2456 bool HasNUW, bool HasNSW) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002457 // Fast path: X - X --> 0.
2458 if (LHS == RHS)
2459 return getConstant(LHS->getType(), 0);
2460
Dan Gohman2d1be872009-04-16 03:18:22 +00002461 // X - Y --> X + -Y
Chris Lattner992efb02011-01-09 22:26:35 +00002462 return getAddExpr(LHS, getNegativeSCEV(RHS), HasNUW, HasNSW);
Dan Gohman2d1be872009-04-16 03:18:22 +00002463}
2464
2465/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2466/// input value to the specified type. If the type must be extended, it is zero
2467/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002468const SCEV *
Chris Lattner992efb02011-01-09 22:26:35 +00002469ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002470 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002471 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2472 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002473 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002474 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002475 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002476 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002477 return getTruncateExpr(V, Ty);
2478 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002479}
2480
2481/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2482/// input value to the specified type. If the type must be extended, it is sign
2483/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002484const SCEV *
2485ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002486 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002487 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002488 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2489 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002490 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002491 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002492 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002493 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002494 return getTruncateExpr(V, Ty);
2495 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002496}
2497
Dan Gohman467c4302009-05-13 03:46:30 +00002498/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2499/// input value to the specified type. If the type must be extended, it is zero
2500/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002501const SCEV *
2502ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002503 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002504 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2505 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002506 "Cannot noop or zero extend with non-integer arguments!");
2507 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2508 "getNoopOrZeroExtend cannot truncate!");
2509 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2510 return V; // No conversion
2511 return getZeroExtendExpr(V, Ty);
2512}
2513
2514/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2515/// input value to the specified type. If the type must be extended, it is sign
2516/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002517const SCEV *
2518ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002519 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002520 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2521 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002522 "Cannot noop or sign extend with non-integer arguments!");
2523 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2524 "getNoopOrSignExtend cannot truncate!");
2525 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2526 return V; // No conversion
2527 return getSignExtendExpr(V, Ty);
2528}
2529
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002530/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2531/// the input value to the specified type. If the type must be extended,
2532/// it is extended with unspecified bits. The conversion must not be
2533/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002534const SCEV *
2535ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002536 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002537 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2538 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002539 "Cannot noop or any extend with non-integer arguments!");
2540 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2541 "getNoopOrAnyExtend cannot truncate!");
2542 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2543 return V; // No conversion
2544 return getAnyExtendExpr(V, Ty);
2545}
2546
Dan Gohman467c4302009-05-13 03:46:30 +00002547/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2548/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002549const SCEV *
2550ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002551 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002552 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2553 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002554 "Cannot truncate or noop with non-integer arguments!");
2555 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2556 "getTruncateOrNoop cannot extend!");
2557 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2558 return V; // No conversion
2559 return getTruncateExpr(V, Ty);
2560}
2561
Dan Gohmana334aa72009-06-22 00:31:57 +00002562/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2563/// the types using zero-extension, and then perform a umax operation
2564/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002565const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2566 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002567 const SCEV *PromotedLHS = LHS;
2568 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002569
2570 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2571 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2572 else
2573 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2574
2575 return getUMaxExpr(PromotedLHS, PromotedRHS);
2576}
2577
Dan Gohmanc9759e82009-06-22 15:03:27 +00002578/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2579/// the types using zero-extension, and then perform a umin operation
2580/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002581const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2582 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002583 const SCEV *PromotedLHS = LHS;
2584 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002585
2586 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2587 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2588 else
2589 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2590
2591 return getUMinExpr(PromotedLHS, PromotedRHS);
2592}
2593
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002594/// PushDefUseChildren - Push users of the given Instruction
2595/// onto the given Worklist.
2596static void
2597PushDefUseChildren(Instruction *I,
2598 SmallVectorImpl<Instruction *> &Worklist) {
2599 // Push the def-use children onto the Worklist stack.
2600 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2601 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002602 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002603}
2604
2605/// ForgetSymbolicValue - This looks up computed SCEV values for all
2606/// instructions that depend on the given instruction and removes them from
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002607/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002608/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002609void
Dan Gohman85669632010-02-25 06:57:05 +00002610ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002611 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002612 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002613
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002614 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002615 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002616 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002617 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002618 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002619
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002620 ValueExprMapType::iterator It =
2621 ValueExprMap.find(static_cast<Value *>(I));
2622 if (It != ValueExprMap.end()) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002623 const SCEV *Old = It->second;
2624
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002625 // Short-circuit the def-use traversal if the symbolic name
2626 // ceases to appear in expressions.
Dan Gohman4ce32db2010-11-17 22:27:42 +00002627 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002628 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002629
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002630 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002631 // structure, it's a PHI that's in the progress of being computed
2632 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2633 // additional loop trip count information isn't going to change anything.
2634 // In the second case, createNodeForPHI will perform the necessary
2635 // updates on its own when it gets to that point. In the third, we do
2636 // want to forget the SCEVUnknown.
2637 if (!isa<PHINode>(I) ||
Dan Gohman6678e7b2010-11-17 02:44:44 +00002638 !isa<SCEVUnknown>(Old) ||
2639 (I != PN && Old == SymName)) {
Dan Gohman56a75682010-11-17 23:28:48 +00002640 forgetMemoizedResults(Old);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002641 ValueExprMap.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002642 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002643 }
2644
2645 PushDefUseChildren(I, Worklist);
2646 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002647}
Chris Lattner53e677a2004-04-02 20:23:17 +00002648
2649/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2650/// a loop header, making it a potential recurrence, or it doesn't.
2651///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002652const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002653 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2654 if (L->getHeader() == PN->getParent()) {
2655 // The loop may have multiple entrances or multiple exits; we can analyze
2656 // this phi as an addrec if it has a unique entry value and a unique
2657 // backedge value.
2658 Value *BEValueV = 0, *StartValueV = 0;
2659 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2660 Value *V = PN->getIncomingValue(i);
2661 if (L->contains(PN->getIncomingBlock(i))) {
2662 if (!BEValueV) {
2663 BEValueV = V;
2664 } else if (BEValueV != V) {
2665 BEValueV = 0;
2666 break;
2667 }
2668 } else if (!StartValueV) {
2669 StartValueV = V;
2670 } else if (StartValueV != V) {
2671 StartValueV = 0;
2672 break;
2673 }
2674 }
2675 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002676 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002677 const SCEV *SymbolicName = getUnknown(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002678 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
Chris Lattner53e677a2004-04-02 20:23:17 +00002679 "PHI node already processed?");
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002680 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002681
2682 // Using this symbolic name for the PHI, analyze the value coming around
2683 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002684 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002685
2686 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2687 // has a special value for the first iteration of the loop.
2688
2689 // If the value coming around the backedge is an add with the symbolic
2690 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002691 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002692 // If there is a single occurrence of the symbolic value, replace it
2693 // with a recurrence.
2694 unsigned FoundIndex = Add->getNumOperands();
2695 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2696 if (Add->getOperand(i) == SymbolicName)
2697 if (FoundIndex == e) {
2698 FoundIndex = i;
2699 break;
2700 }
2701
2702 if (FoundIndex != Add->getNumOperands()) {
2703 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002704 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002705 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2706 if (i != FoundIndex)
2707 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002708 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002709
2710 // This is not a valid addrec if the step amount is varying each
2711 // loop iteration, but is not itself an addrec in this loop.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002712 if (isLoopInvariant(Accum, L) ||
Chris Lattner53e677a2004-04-02 20:23:17 +00002713 (isa<SCEVAddRecExpr>(Accum) &&
2714 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002715 bool HasNUW = false;
2716 bool HasNSW = false;
2717
2718 // If the increment doesn't overflow, then neither the addrec nor
2719 // the post-increment will overflow.
2720 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2721 if (OBO->hasNoUnsignedWrap())
2722 HasNUW = true;
2723 if (OBO->hasNoSignedWrap())
2724 HasNSW = true;
Chris Lattner6d5a2412011-01-09 02:28:48 +00002725 } else if (isa<GEPOperator>(BEValueV)) {
2726 // If the increment is a GEP, then we know it won't perform an
2727 // unsigned overflow, because the address space cannot be
2728 // wrapped around.
2729 HasNUW = true;
Dan Gohmana10756e2010-01-21 02:09:26 +00002730 }
2731
Dan Gohman27dead42010-04-12 07:49:36 +00002732 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002733 const SCEV *PHISCEV =
2734 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002735
Dan Gohmana10756e2010-01-21 02:09:26 +00002736 // Since the no-wrap flags are on the increment, they apply to the
2737 // post-incremented value as well.
Dan Gohman17ead4f2010-11-17 21:23:15 +00002738 if (isLoopInvariant(Accum, L))
Dan Gohmana10756e2010-01-21 02:09:26 +00002739 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2740 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002741
2742 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002743 // to be symbolic. We now need to go back and purge all of the
2744 // entries for the scalars that use the symbolic expression.
2745 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002746 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002747 return PHISCEV;
2748 }
2749 }
Dan Gohman622ed672009-05-04 22:02:23 +00002750 } else if (const SCEVAddRecExpr *AddRec =
2751 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002752 // Otherwise, this could be a loop like this:
2753 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2754 // In this case, j = {1,+,1} and BEValue is j.
2755 // Because the other in-value of i (0) fits the evolution of BEValue
2756 // i really is an addrec evolution.
2757 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002758 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002759
2760 // If StartVal = j.start - j.stride, we can use StartVal as the
2761 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002762 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002763 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002764 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002765 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002766
2767 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002768 // to be symbolic. We now need to go back and purge all of the
2769 // entries for the scalars that use the symbolic expression.
2770 ForgetSymbolicName(PN, SymbolicName);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00002771 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002772 return PHISCEV;
2773 }
2774 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002775 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002776 }
Dan Gohman27dead42010-04-12 07:49:36 +00002777 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002778
Dan Gohman85669632010-02-25 06:57:05 +00002779 // If the PHI has a single incoming value, follow that value, unless the
2780 // PHI's incoming blocks are in a different loop, in which case doing so
2781 // risks breaking LCSSA form. Instcombine would normally zap these, but
2782 // it doesn't have DominatorTree information, so it may miss cases.
Duncan Sandsd0c6f3d2010-11-18 19:59:41 +00002783 if (Value *V = SimplifyInstruction(PN, TD, DT))
2784 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohman85669632010-02-25 06:57:05 +00002785 return getSCEV(V);
Duncan Sands6f8a5dd2010-11-17 20:49:12 +00002786
Chris Lattner53e677a2004-04-02 20:23:17 +00002787 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002788 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002789}
2790
Dan Gohman26466c02009-05-08 20:26:55 +00002791/// createNodeForGEP - Expand GEP instructions into add and multiply
2792/// operations. This allows them to be analyzed by regular SCEV code.
2793///
Dan Gohmand281ed22009-12-18 02:09:29 +00002794const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002795
Dan Gohmanb9f96512010-06-30 07:16:37 +00002796 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2797 // Add expression, because the Instruction may be guarded by control flow
2798 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002799 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002800
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002801 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002802 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002803 // Don't attempt to analyze GEPs over unsized objects.
2804 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2805 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002806 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002807 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002808 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002809 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002810 I != E; ++I) {
2811 Value *Index = *I;
2812 // Compute the (potentially symbolic) offset in bytes for this index.
2813 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2814 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002815 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002816 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2817
Dan Gohmanb9f96512010-06-30 07:16:37 +00002818 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002819 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002820 } else {
2821 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002822 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2823 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002824 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002825 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2826
Dan Gohmanb9f96512010-06-30 07:16:37 +00002827 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002828 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002829
2830 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002831 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002832 }
2833 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002834
2835 // Get the SCEV for the GEP base.
2836 const SCEV *BaseS = getSCEV(Base);
2837
Dan Gohmanb9f96512010-06-30 07:16:37 +00002838 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002839 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002840}
2841
Nick Lewycky83bb0052007-11-22 07:59:40 +00002842/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2843/// guaranteed to end in (at every loop iteration). It is, at the same time,
2844/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2845/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002846uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002847ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002848 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002849 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002850
Dan Gohman622ed672009-05-04 22:02:23 +00002851 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002852 return std::min(GetMinTrailingZeros(T->getOperand()),
2853 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002854
Dan Gohman622ed672009-05-04 22:02:23 +00002855 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002856 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2857 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2858 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002859 }
2860
Dan Gohman622ed672009-05-04 22:02:23 +00002861 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002862 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2863 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2864 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002865 }
2866
Dan Gohman622ed672009-05-04 22:02:23 +00002867 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002868 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002869 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002870 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002871 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002872 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002873 }
2874
Dan Gohman622ed672009-05-04 22:02:23 +00002875 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002876 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002877 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2878 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002879 for (unsigned i = 1, e = M->getNumOperands();
2880 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002881 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002882 BitWidth);
2883 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002884 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002885
Dan Gohman622ed672009-05-04 22:02:23 +00002886 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002887 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002888 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002889 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002890 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002891 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002892 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002893
Dan Gohman622ed672009-05-04 22:02:23 +00002894 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002895 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002896 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002897 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002898 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002899 return MinOpRes;
2900 }
2901
Dan Gohman622ed672009-05-04 22:02:23 +00002902 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002903 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002904 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002905 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002906 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002907 return MinOpRes;
2908 }
2909
Dan Gohman2c364ad2009-06-19 23:29:04 +00002910 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2911 // For a SCEVUnknown, ask ValueTracking.
2912 unsigned BitWidth = getTypeSizeInBits(U->getType());
2913 APInt Mask = APInt::getAllOnesValue(BitWidth);
2914 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2915 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2916 return Zeros.countTrailingOnes();
2917 }
2918
2919 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002920 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002921}
Chris Lattner53e677a2004-04-02 20:23:17 +00002922
Dan Gohman85b05a22009-07-13 21:35:55 +00002923/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2924///
2925ConstantRange
2926ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00002927 // See if we've computed this range already.
2928 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
2929 if (I != UnsignedRanges.end())
2930 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002931
2932 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002933 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman2c364ad2009-06-19 23:29:04 +00002934
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002935 unsigned BitWidth = getTypeSizeInBits(S->getType());
2936 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2937
2938 // If the value has known zeros, the maximum unsigned value will have those
2939 // known zeros as well.
2940 uint32_t TZ = GetMinTrailingZeros(S);
2941 if (TZ != 0)
2942 ConservativeResult =
2943 ConstantRange(APInt::getMinValue(BitWidth),
2944 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2945
Dan Gohman85b05a22009-07-13 21:35:55 +00002946 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2947 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2948 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2949 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002950 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002951 }
2952
2953 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2954 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2955 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2956 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002957 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002958 }
2959
2960 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2961 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2962 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2963 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002964 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002965 }
2966
2967 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2968 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2969 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2970 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002971 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00002972 }
2973
2974 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2975 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2976 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002977 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002978 }
2979
2980 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2981 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002982 return setUnsignedRange(ZExt,
2983 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002984 }
2985
2986 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2987 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002988 return setUnsignedRange(SExt,
2989 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002990 }
2991
2992 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2993 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00002994 return setUnsignedRange(Trunc,
2995 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00002996 }
2997
Dan Gohman85b05a22009-07-13 21:35:55 +00002998 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002999 // If there's no unsigned wrap, the value will never be less than its
3000 // initial value.
3001 if (AddRec->hasNoUnsignedWrap())
3002 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003003 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003004 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003005 ConservativeResult.intersectWith(
3006 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003007
3008 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003009 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003010 const Type *Ty = AddRec->getType();
3011 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003012 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3013 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003014 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3015
3016 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003017 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003018
3019 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003020 ConstantRange StepRange = getSignedRange(Step);
3021 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3022 ConstantRange EndRange =
3023 StartRange.add(MaxBECountRange.multiply(StepRange));
3024
3025 // Check for overflow. This must be done with ConstantRange arithmetic
3026 // because we could be called from within the ScalarEvolution overflow
3027 // checking code.
3028 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3029 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3030 ConstantRange ExtMaxBECountRange =
3031 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3032 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3033 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3034 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003035 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003036
Dan Gohman85b05a22009-07-13 21:35:55 +00003037 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3038 EndRange.getUnsignedMin());
3039 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3040 EndRange.getUnsignedMax());
3041 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003042 return setUnsignedRange(AddRec, ConservativeResult);
3043 return setUnsignedRange(AddRec,
3044 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003045 }
3046 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003047
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003048 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003049 }
3050
3051 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3052 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003053 APInt Mask = APInt::getAllOnesValue(BitWidth);
3054 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3055 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003056 if (Ones == ~Zeros + 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003057 return setUnsignedRange(U, ConservativeResult);
3058 return setUnsignedRange(U,
3059 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003060 }
3061
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003062 return setUnsignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003063}
3064
Dan Gohman85b05a22009-07-13 21:35:55 +00003065/// getSignedRange - Determine the signed range for a particular SCEV.
3066///
3067ConstantRange
3068ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman6678e7b2010-11-17 02:44:44 +00003069 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3070 if (I != SignedRanges.end())
3071 return I->second;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003072
Dan Gohman85b05a22009-07-13 21:35:55 +00003073 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003074 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohman85b05a22009-07-13 21:35:55 +00003075
Dan Gohman52fddd32010-01-26 04:40:18 +00003076 unsigned BitWidth = getTypeSizeInBits(S->getType());
3077 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3078
3079 // If the value has known zeros, the maximum signed value will have those
3080 // known zeros as well.
3081 uint32_t TZ = GetMinTrailingZeros(S);
3082 if (TZ != 0)
3083 ConservativeResult =
3084 ConstantRange(APInt::getSignedMinValue(BitWidth),
3085 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3086
Dan Gohman85b05a22009-07-13 21:35:55 +00003087 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3088 ConstantRange X = getSignedRange(Add->getOperand(0));
3089 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3090 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003091 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003092 }
3093
Dan Gohman85b05a22009-07-13 21:35:55 +00003094 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3095 ConstantRange X = getSignedRange(Mul->getOperand(0));
3096 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3097 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003098 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003099 }
3100
Dan Gohman85b05a22009-07-13 21:35:55 +00003101 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3102 ConstantRange X = getSignedRange(SMax->getOperand(0));
3103 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3104 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003105 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003106 }
Dan Gohman62849c02009-06-24 01:05:09 +00003107
Dan Gohman85b05a22009-07-13 21:35:55 +00003108 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3109 ConstantRange X = getSignedRange(UMax->getOperand(0));
3110 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3111 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003112 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohman85b05a22009-07-13 21:35:55 +00003113 }
Dan Gohman62849c02009-06-24 01:05:09 +00003114
Dan Gohman85b05a22009-07-13 21:35:55 +00003115 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3116 ConstantRange X = getSignedRange(UDiv->getLHS());
3117 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003118 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003119 }
Dan Gohman62849c02009-06-24 01:05:09 +00003120
Dan Gohman85b05a22009-07-13 21:35:55 +00003121 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3122 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003123 return setSignedRange(ZExt,
3124 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003125 }
3126
3127 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3128 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003129 return setSignedRange(SExt,
3130 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003131 }
3132
3133 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3134 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003135 return setSignedRange(Trunc,
3136 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003137 }
3138
Dan Gohman85b05a22009-07-13 21:35:55 +00003139 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003140 // If there's no signed wrap, and all the operands have the same sign or
3141 // zero, the value won't ever change sign.
3142 if (AddRec->hasNoSignedWrap()) {
3143 bool AllNonNeg = true;
3144 bool AllNonPos = true;
3145 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3146 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3147 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3148 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003149 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003150 ConservativeResult = ConservativeResult.intersectWith(
3151 ConstantRange(APInt(BitWidth, 0),
3152 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003153 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003154 ConservativeResult = ConservativeResult.intersectWith(
3155 ConstantRange(APInt::getSignedMinValue(BitWidth),
3156 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003157 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003158
3159 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003160 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003161 const Type *Ty = AddRec->getType();
3162 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003163 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3164 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003165 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3166
3167 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003168 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003169
3170 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003171 ConstantRange StepRange = getSignedRange(Step);
3172 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3173 ConstantRange EndRange =
3174 StartRange.add(MaxBECountRange.multiply(StepRange));
3175
3176 // Check for overflow. This must be done with ConstantRange arithmetic
3177 // because we could be called from within the ScalarEvolution overflow
3178 // checking code.
3179 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3180 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3181 ConstantRange ExtMaxBECountRange =
3182 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3183 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3184 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3185 ExtEndRange)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003186 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman646e0472010-04-12 07:39:33 +00003187
Dan Gohman85b05a22009-07-13 21:35:55 +00003188 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3189 EndRange.getSignedMin());
3190 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3191 EndRange.getSignedMax());
3192 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003193 return setSignedRange(AddRec, ConservativeResult);
3194 return setSignedRange(AddRec,
3195 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohman62849c02009-06-24 01:05:09 +00003196 }
Dan Gohman62849c02009-06-24 01:05:09 +00003197 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003198
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003199 return setSignedRange(AddRec, ConservativeResult);
Dan Gohman62849c02009-06-24 01:05:09 +00003200 }
3201
Dan Gohman2c364ad2009-06-19 23:29:04 +00003202 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3203 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003204 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003205 return setSignedRange(U, ConservativeResult);
Dan Gohman85b05a22009-07-13 21:35:55 +00003206 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3207 if (NS == 1)
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003208 return setSignedRange(U, ConservativeResult);
3209 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003210 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003211 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003212 }
3213
Dan Gohman7c0fd8e2010-11-17 20:23:08 +00003214 return setSignedRange(S, ConservativeResult);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003215}
3216
Chris Lattner53e677a2004-04-02 20:23:17 +00003217/// createSCEV - We know that there is no SCEV for the specified value.
3218/// Analyze the expression.
3219///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003220const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003221 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003222 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003223
Dan Gohman6c459a22008-06-22 19:56:46 +00003224 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003225 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003226 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003227
3228 // Don't attempt to analyze instructions in blocks that aren't
3229 // reachable. Such instructions don't matter, and they aren't required
3230 // to obey basic rules for definitions dominating uses which this
3231 // analysis depends on.
3232 if (!DT->isReachableFromEntry(I->getParent()))
3233 return getUnknown(V);
3234 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003235 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003236 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3237 return getConstant(CI);
3238 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003239 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003240 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3241 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003242 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003243 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003244
Dan Gohmanca178902009-07-17 20:47:02 +00003245 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003246 switch (Opcode) {
Dan Gohmand3f171d2010-08-16 16:03:49 +00003247 case Instruction::Add: {
3248 // The simple thing to do would be to just call getSCEV on both operands
3249 // and call getAddExpr with the result. However if we're looking at a
3250 // bunch of things all added together, this can be quite inefficient,
3251 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3252 // Instead, gather up all the operands and make a single getAddExpr call.
3253 // LLVM IR canonical form means we need only traverse the left operands.
3254 SmallVector<const SCEV *, 4> AddOps;
3255 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman3f19c092010-08-31 22:53:17 +00003256 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3257 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3258 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3259 break;
Dan Gohmand3f171d2010-08-16 16:03:49 +00003260 U = cast<Operator>(Op);
Dan Gohman3f19c092010-08-31 22:53:17 +00003261 const SCEV *Op1 = getSCEV(U->getOperand(1));
3262 if (Opcode == Instruction::Sub)
3263 AddOps.push_back(getNegativeSCEV(Op1));
3264 else
3265 AddOps.push_back(Op1);
Dan Gohmand3f171d2010-08-16 16:03:49 +00003266 }
3267 AddOps.push_back(getSCEV(U->getOperand(0)));
3268 return getAddExpr(AddOps);
3269 }
3270 case Instruction::Mul: {
3271 // See the Add code above.
3272 SmallVector<const SCEV *, 4> MulOps;
3273 MulOps.push_back(getSCEV(U->getOperand(1)));
3274 for (Value *Op = U->getOperand(0);
3275 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3276 Op = U->getOperand(0)) {
3277 U = cast<Operator>(Op);
3278 MulOps.push_back(getSCEV(U->getOperand(1)));
3279 }
3280 MulOps.push_back(getSCEV(U->getOperand(0)));
3281 return getMulExpr(MulOps);
3282 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003283 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003284 return getUDivExpr(getSCEV(U->getOperand(0)),
3285 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003286 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003287 return getMinusSCEV(getSCEV(U->getOperand(0)),
3288 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003289 case Instruction::And:
3290 // For an expression like x&255 that merely masks off the high bits,
3291 // use zext(trunc(x)) as the SCEV expression.
3292 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003293 if (CI->isNullValue())
3294 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003295 if (CI->isAllOnesValue())
3296 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003297 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003298
3299 // Instcombine's ShrinkDemandedConstant may strip bits out of
3300 // constants, obscuring what would otherwise be a low-bits mask.
3301 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3302 // knew about to reconstruct a low-bits mask value.
3303 unsigned LZ = A.countLeadingZeros();
3304 unsigned BitWidth = A.getBitWidth();
3305 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3306 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3307 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3308
3309 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3310
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003311 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003312 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003313 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003314 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003315 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003316 }
3317 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003318
Dan Gohman6c459a22008-06-22 19:56:46 +00003319 case Instruction::Or:
3320 // If the RHS of the Or is a constant, we may have something like:
3321 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3322 // optimizations will transparently handle this case.
3323 //
3324 // In order for this transformation to be safe, the LHS must be of the
3325 // form X*(2^n) and the Or constant must be less than 2^n.
3326 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003327 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003328 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003329 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003330 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3331 // Build a plain add SCEV.
3332 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3333 // If the LHS of the add was an addrec and it has no-wrap flags,
3334 // transfer the no-wrap flags, since an or won't introduce a wrap.
3335 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3336 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3337 if (OldAR->hasNoUnsignedWrap())
3338 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3339 if (OldAR->hasNoSignedWrap())
3340 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3341 }
3342 return S;
3343 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003344 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003345 break;
3346 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003347 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003348 // If the RHS of the xor is a signbit, then this is just an add.
3349 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003350 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003351 return getAddExpr(getSCEV(U->getOperand(0)),
3352 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003353
3354 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003355 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003356 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003357
3358 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3359 // This is a variant of the check for xor with -1, and it handles
3360 // the case where instcombine has trimmed non-demanded bits out
3361 // of an xor with -1.
3362 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3363 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3364 if (BO->getOpcode() == Instruction::And &&
3365 LCI->getValue() == CI->getValue())
3366 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003367 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003368 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003369 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003370 const Type *Z0Ty = Z0->getType();
3371 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3372
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003373 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003374 // mask off the high bits. Complement the operand and
3375 // re-apply the zext.
3376 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3377 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3378
3379 // If C is a single bit, it may be in the sign-bit position
3380 // before the zero-extend. In this case, represent the xor
3381 // using an add, which is equivalent, and re-apply the zext.
Jay Foad40f8f622010-12-07 08:25:19 +00003382 APInt Trunc = CI->getValue().trunc(Z0TySize);
3383 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohman82052832009-06-18 00:00:20 +00003384 Trunc.isSignBit())
3385 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3386 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003387 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003388 }
3389 break;
3390
3391 case Instruction::Shl:
3392 // Turn shift left of a constant amount into a multiply.
3393 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003394 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003395
3396 // If the shift count is not less than the bitwidth, the result of
3397 // the shift is undefined. Don't try to analyze it, because the
3398 // resolution chosen here may differ from the resolution chosen in
3399 // other parts of the compiler.
3400 if (SA->getValue().uge(BitWidth))
3401 break;
3402
Owen Andersoneed707b2009-07-24 23:12:02 +00003403 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003404 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003405 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003406 }
3407 break;
3408
Nick Lewycky01eaf802008-07-07 06:15:49 +00003409 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003410 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003411 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003412 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003413
3414 // If the shift count is not less than the bitwidth, the result of
3415 // the shift is undefined. Don't try to analyze it, because the
3416 // resolution chosen here may differ from the resolution chosen in
3417 // other parts of the compiler.
3418 if (SA->getValue().uge(BitWidth))
3419 break;
3420
Owen Andersoneed707b2009-07-24 23:12:02 +00003421 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003422 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003423 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003424 }
3425 break;
3426
Dan Gohman4ee29af2009-04-21 02:26:00 +00003427 case Instruction::AShr:
3428 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3429 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003430 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003431 if (L->getOpcode() == Instruction::Shl &&
3432 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003433 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3434
3435 // If the shift count is not less than the bitwidth, the result of
3436 // the shift is undefined. Don't try to analyze it, because the
3437 // resolution chosen here may differ from the resolution chosen in
3438 // other parts of the compiler.
3439 if (CI->getValue().uge(BitWidth))
3440 break;
3441
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003442 uint64_t Amt = BitWidth - CI->getZExtValue();
3443 if (Amt == BitWidth)
3444 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003445 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003446 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003447 IntegerType::get(getContext(),
3448 Amt)),
3449 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003450 }
3451 break;
3452
Dan Gohman6c459a22008-06-22 19:56:46 +00003453 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003454 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003455
3456 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003457 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003458
3459 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003460 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003461
3462 case Instruction::BitCast:
3463 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003464 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003465 return getSCEV(U->getOperand(0));
3466 break;
3467
Dan Gohman4f8eea82010-02-01 18:27:38 +00003468 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3469 // lead to pointer expressions which cannot safely be expanded to GEPs,
3470 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3471 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003472
Dan Gohman26466c02009-05-08 20:26:55 +00003473 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003474 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003475
Dan Gohman6c459a22008-06-22 19:56:46 +00003476 case Instruction::PHI:
3477 return createNodeForPHI(cast<PHINode>(U));
3478
3479 case Instruction::Select:
3480 // This could be a smax or umax that was lowered earlier.
3481 // Try to recover it.
3482 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3483 Value *LHS = ICI->getOperand(0);
3484 Value *RHS = ICI->getOperand(1);
3485 switch (ICI->getPredicate()) {
3486 case ICmpInst::ICMP_SLT:
3487 case ICmpInst::ICMP_SLE:
3488 std::swap(LHS, RHS);
3489 // fall through
3490 case ICmpInst::ICMP_SGT:
3491 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003492 // a >s b ? a+x : b+x -> smax(a, b)+x
3493 // a >s b ? b+x : a+x -> smin(a, b)+x
3494 if (LHS->getType() == U->getType()) {
3495 const SCEV *LS = getSCEV(LHS);
3496 const SCEV *RS = getSCEV(RHS);
3497 const SCEV *LA = getSCEV(U->getOperand(1));
3498 const SCEV *RA = getSCEV(U->getOperand(2));
3499 const SCEV *LDiff = getMinusSCEV(LA, LS);
3500 const SCEV *RDiff = getMinusSCEV(RA, RS);
3501 if (LDiff == RDiff)
3502 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3503 LDiff = getMinusSCEV(LA, RS);
3504 RDiff = getMinusSCEV(RA, LS);
3505 if (LDiff == RDiff)
3506 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3507 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003508 break;
3509 case ICmpInst::ICMP_ULT:
3510 case ICmpInst::ICMP_ULE:
3511 std::swap(LHS, RHS);
3512 // fall through
3513 case ICmpInst::ICMP_UGT:
3514 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003515 // a >u b ? a+x : b+x -> umax(a, b)+x
3516 // a >u b ? b+x : a+x -> umin(a, b)+x
3517 if (LHS->getType() == U->getType()) {
3518 const SCEV *LS = getSCEV(LHS);
3519 const SCEV *RS = getSCEV(RHS);
3520 const SCEV *LA = getSCEV(U->getOperand(1));
3521 const SCEV *RA = getSCEV(U->getOperand(2));
3522 const SCEV *LDiff = getMinusSCEV(LA, LS);
3523 const SCEV *RDiff = getMinusSCEV(RA, RS);
3524 if (LDiff == RDiff)
3525 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3526 LDiff = getMinusSCEV(LA, RS);
3527 RDiff = getMinusSCEV(RA, LS);
3528 if (LDiff == RDiff)
3529 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3530 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003531 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003532 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003533 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3534 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003535 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003536 cast<ConstantInt>(RHS)->isZero()) {
3537 const SCEV *One = getConstant(LHS->getType(), 1);
3538 const SCEV *LS = getSCEV(LHS);
3539 const SCEV *LA = getSCEV(U->getOperand(1));
3540 const SCEV *RA = getSCEV(U->getOperand(2));
3541 const SCEV *LDiff = getMinusSCEV(LA, LS);
3542 const SCEV *RDiff = getMinusSCEV(RA, One);
3543 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003544 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003545 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003546 break;
3547 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003548 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3549 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003550 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003551 cast<ConstantInt>(RHS)->isZero()) {
3552 const SCEV *One = getConstant(LHS->getType(), 1);
3553 const SCEV *LS = getSCEV(LHS);
3554 const SCEV *LA = getSCEV(U->getOperand(1));
3555 const SCEV *RA = getSCEV(U->getOperand(2));
3556 const SCEV *LDiff = getMinusSCEV(LA, One);
3557 const SCEV *RDiff = getMinusSCEV(RA, LS);
3558 if (LDiff == RDiff)
Dan Gohman58a85b92010-08-13 20:17:14 +00003559 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohman9f93d302010-04-24 03:09:42 +00003560 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003561 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003562 default:
3563 break;
3564 }
3565 }
3566
3567 default: // We cannot analyze this expression.
3568 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003569 }
3570
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003571 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003572}
3573
3574
3575
3576//===----------------------------------------------------------------------===//
3577// Iteration Count Computation Code
3578//
3579
Dan Gohman46bdfb02009-02-24 18:55:53 +00003580/// getBackedgeTakenCount - If the specified loop has a predictable
3581/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3582/// object. The backedge-taken count is the number of times the loop header
3583/// will be branched to from within the loop. This is one less than the
3584/// trip count of the loop, since it doesn't count the first iteration,
3585/// when the header is branched to from outside the loop.
3586///
3587/// Note that it is not valid to call this method on a loop without a
3588/// loop-invariant backedge-taken count (see
3589/// hasLoopInvariantBackedgeTakenCount).
3590///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003591const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003592 return getBackedgeTakenInfo(L).Exact;
3593}
3594
3595/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3596/// return the least SCEV value that is known never to be less than the
3597/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003598const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003599 return getBackedgeTakenInfo(L).Max;
3600}
3601
Dan Gohman59ae6b92009-07-08 19:23:34 +00003602/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3603/// onto the given Worklist.
3604static void
3605PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3606 BasicBlock *Header = L->getHeader();
3607
3608 // Push all Loop-header PHIs onto the Worklist stack.
3609 for (BasicBlock::iterator I = Header->begin();
3610 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3611 Worklist.push_back(PN);
3612}
3613
Dan Gohmana1af7572009-04-30 20:47:05 +00003614const ScalarEvolution::BackedgeTakenInfo &
3615ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003616 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003617 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003618 // update the value. The temporary CouldNotCompute value tells SCEV
3619 // code elsewhere that it shouldn't attempt to request a new
3620 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003621 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003622 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
Chris Lattnerf1859892011-01-09 02:16:18 +00003623 if (!Pair.second)
3624 return Pair.first->second;
Dan Gohman01ecca22009-04-27 20:16:15 +00003625
Chris Lattnerf1859892011-01-09 02:16:18 +00003626 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3627 if (BECount.Exact != getCouldNotCompute()) {
3628 assert(isLoopInvariant(BECount.Exact, L) &&
3629 isLoopInvariant(BECount.Max, L) &&
3630 "Computed backedge-taken count isn't loop invariant for loop!");
3631 ++NumTripCountsComputed;
3632
3633 // Update the value in the map.
3634 Pair.first->second = BECount;
3635 } else {
3636 if (BECount.Max != getCouldNotCompute())
Dan Gohman01ecca22009-04-27 20:16:15 +00003637 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003638 Pair.first->second = BECount;
Chris Lattnerf1859892011-01-09 02:16:18 +00003639 if (isa<PHINode>(L->getHeader()->begin()))
3640 // Only count loops that have phi nodes as not being computable.
3641 ++NumTripCountsNotComputed;
3642 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003643
Chris Lattnerf1859892011-01-09 02:16:18 +00003644 // Now that we know more about the trip count for this loop, forget any
3645 // existing SCEV values for PHI nodes in this loop since they are only
3646 // conservative estimates made without the benefit of trip count
3647 // information. This is similar to the code in forgetLoop, except that
3648 // it handles SCEVUnknown PHI nodes specially.
3649 if (BECount.hasAnyInfo()) {
3650 SmallVector<Instruction *, 16> Worklist;
3651 PushLoopPHIs(L, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003652
Chris Lattnerf1859892011-01-09 02:16:18 +00003653 SmallPtrSet<Instruction *, 8> Visited;
3654 while (!Worklist.empty()) {
3655 Instruction *I = Worklist.pop_back_val();
3656 if (!Visited.insert(I)) continue;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003657
Chris Lattnerf1859892011-01-09 02:16:18 +00003658 ValueExprMapType::iterator It =
3659 ValueExprMap.find(static_cast<Value *>(I));
3660 if (It != ValueExprMap.end()) {
3661 const SCEV *Old = It->second;
Dan Gohman6678e7b2010-11-17 02:44:44 +00003662
Chris Lattnerf1859892011-01-09 02:16:18 +00003663 // SCEVUnknown for a PHI either means that it has an unrecognized
3664 // structure, or it's a PHI that's in the progress of being computed
3665 // by createNodeForPHI. In the former case, additional loop trip
3666 // count information isn't going to change anything. In the later
3667 // case, createNodeForPHI will perform the necessary updates on its
3668 // own when it gets to that point.
3669 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3670 forgetMemoizedResults(Old);
3671 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003672 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003673 if (PHINode *PN = dyn_cast<PHINode>(I))
3674 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003675 }
Chris Lattnerf1859892011-01-09 02:16:18 +00003676
3677 PushDefUseChildren(I, Worklist);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003678 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003679 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003680 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003681}
3682
Dan Gohman4c7279a2009-10-31 15:04:55 +00003683/// forgetLoop - This method should be called by the client when it has
3684/// changed a loop in a way that may effect ScalarEvolution's ability to
3685/// compute a trip count, or if the loop is deleted.
3686void ScalarEvolution::forgetLoop(const Loop *L) {
3687 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003688 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003689
Dan Gohman4c7279a2009-10-31 15:04:55 +00003690 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003691 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003692 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003693
Dan Gohman59ae6b92009-07-08 19:23:34 +00003694 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003695 while (!Worklist.empty()) {
3696 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003697 if (!Visited.insert(I)) continue;
3698
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003699 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3700 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003701 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003702 ValueExprMap.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003703 if (PHINode *PN = dyn_cast<PHINode>(I))
3704 ConstantEvolutionLoopExitValue.erase(PN);
3705 }
3706
3707 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003708 }
Dan Gohmane60dcb52010-10-29 20:16:10 +00003709
3710 // Forget all contained loops too, to avoid dangling entries in the
3711 // ValuesAtScopes map.
3712 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3713 forgetLoop(*I);
Dan Gohman60f8a632009-02-17 20:49:49 +00003714}
3715
Eric Christophere6cbfa62010-07-29 01:25:38 +00003716/// forgetValue - This method should be called by the client when it has
3717/// changed a value in a way that may effect its value, or which may
3718/// disconnect it from a def-use chain linking it to a loop.
3719void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003720 Instruction *I = dyn_cast<Instruction>(V);
3721 if (!I) return;
3722
3723 // Drop information about expressions based on loop-header PHIs.
3724 SmallVector<Instruction *, 16> Worklist;
3725 Worklist.push_back(I);
3726
3727 SmallPtrSet<Instruction *, 8> Visited;
3728 while (!Worklist.empty()) {
3729 I = Worklist.pop_back_val();
3730 if (!Visited.insert(I)) continue;
3731
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003732 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3733 if (It != ValueExprMap.end()) {
Dan Gohman56a75682010-11-17 23:28:48 +00003734 forgetMemoizedResults(It->second);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00003735 ValueExprMap.erase(It);
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003736 if (PHINode *PN = dyn_cast<PHINode>(I))
3737 ConstantEvolutionLoopExitValue.erase(PN);
3738 }
3739
3740 PushDefUseChildren(I, Worklist);
3741 }
3742}
3743
Dan Gohman46bdfb02009-02-24 18:55:53 +00003744/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3745/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003746ScalarEvolution::BackedgeTakenInfo
3747ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003748 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003749 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003750
Dan Gohmana334aa72009-06-22 00:31:57 +00003751 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003752 const SCEV *BECount = getCouldNotCompute();
3753 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003754 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003755 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3756 BackedgeTakenInfo NewBTI =
3757 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003758
Dan Gohman1c343752009-06-27 21:21:31 +00003759 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003760 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003761 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003762 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003763 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003764 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003765 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003766 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003767 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003768 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003769 }
Dan Gohman1c343752009-06-27 21:21:31 +00003770 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003771 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003772 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003773 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003774 }
3775
3776 return BackedgeTakenInfo(BECount, MaxBECount);
3777}
3778
3779/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3780/// of the specified loop will execute if it exits via the specified block.
3781ScalarEvolution::BackedgeTakenInfo
3782ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3783 BasicBlock *ExitingBlock) {
3784
3785 // Okay, we've chosen an exiting block. See what condition causes us to
3786 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003787 //
3788 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003789 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003790 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003791 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003792
Chris Lattner8b0e3602007-01-07 02:24:26 +00003793 // At this point, we know we have a conditional branch that determines whether
3794 // the loop is exited. However, we don't know if the branch is executed each
3795 // time through the loop. If not, then the execution count of the branch will
3796 // not be equal to the trip count of the loop.
3797 //
3798 // Currently we check for this by checking to see if the Exit branch goes to
3799 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003800 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003801 // loop header. This is common for un-rotated loops.
3802 //
3803 // If both of those tests fail, walk up the unique predecessor chain to the
3804 // header, stopping if there is an edge that doesn't exit the loop. If the
3805 // header is reached, the execution count of the branch will be equal to the
3806 // trip count of the loop.
3807 //
3808 // More extensive analysis could be done to handle more cases here.
3809 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003810 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003811 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003812 ExitBr->getParent() != L->getHeader()) {
3813 // The simple checks failed, try climbing the unique predecessor chain
3814 // up to the header.
3815 bool Ok = false;
3816 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3817 BasicBlock *Pred = BB->getUniquePredecessor();
3818 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003819 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003820 TerminatorInst *PredTerm = Pred->getTerminator();
3821 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3822 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3823 if (PredSucc == BB)
3824 continue;
3825 // If the predecessor has a successor that isn't BB and isn't
3826 // outside the loop, assume the worst.
3827 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003828 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003829 }
3830 if (Pred == L->getHeader()) {
3831 Ok = true;
3832 break;
3833 }
3834 BB = Pred;
3835 }
3836 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003837 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003838 }
3839
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003840 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003841 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3842 ExitBr->getSuccessor(0),
3843 ExitBr->getSuccessor(1));
3844}
3845
3846/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3847/// backedge of the specified loop will execute if its exit condition
3848/// were a conditional branch of ExitCond, TBB, and FBB.
3849ScalarEvolution::BackedgeTakenInfo
3850ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3851 Value *ExitCond,
3852 BasicBlock *TBB,
3853 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003854 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003855 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3856 if (BO->getOpcode() == Instruction::And) {
3857 // Recurse on the operands of the and.
3858 BackedgeTakenInfo BTI0 =
3859 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3860 BackedgeTakenInfo BTI1 =
3861 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003862 const SCEV *BECount = getCouldNotCompute();
3863 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003864 if (L->contains(TBB)) {
3865 // Both conditions must be true for the loop to continue executing.
3866 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003867 if (BTI0.Exact == getCouldNotCompute() ||
3868 BTI1.Exact == getCouldNotCompute())
3869 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003870 else
3871 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003872 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003873 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003874 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003875 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003876 else
3877 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003878 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003879 // Both conditions must be true at the same time for the loop to exit.
3880 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003881 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003882 if (BTI0.Max == BTI1.Max)
3883 MaxBECount = BTI0.Max;
3884 if (BTI0.Exact == BTI1.Exact)
3885 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003886 }
3887
3888 return BackedgeTakenInfo(BECount, MaxBECount);
3889 }
3890 if (BO->getOpcode() == Instruction::Or) {
3891 // Recurse on the operands of the or.
3892 BackedgeTakenInfo BTI0 =
3893 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3894 BackedgeTakenInfo BTI1 =
3895 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003896 const SCEV *BECount = getCouldNotCompute();
3897 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003898 if (L->contains(FBB)) {
3899 // Both conditions must be false for the loop to continue executing.
3900 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003901 if (BTI0.Exact == getCouldNotCompute() ||
3902 BTI1.Exact == getCouldNotCompute())
3903 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003904 else
3905 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003906 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003907 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003908 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003909 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003910 else
3911 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003912 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003913 // Both conditions must be false at the same time for the loop to exit.
3914 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003915 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003916 if (BTI0.Max == BTI1.Max)
3917 MaxBECount = BTI0.Max;
3918 if (BTI0.Exact == BTI1.Exact)
3919 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003920 }
3921
3922 return BackedgeTakenInfo(BECount, MaxBECount);
3923 }
3924 }
3925
3926 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003927 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003928 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3929 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003930
Dan Gohman00cb5b72010-02-19 18:12:07 +00003931 // Check for a constant condition. These are normally stripped out by
3932 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3933 // preserve the CFG and is temporarily leaving constant conditions
3934 // in place.
3935 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3936 if (L->contains(FBB) == !CI->getZExtValue())
3937 // The backedge is always taken.
3938 return getCouldNotCompute();
3939 else
3940 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003941 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003942 }
3943
Eli Friedman361e54d2009-05-09 12:32:42 +00003944 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003945 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3946}
3947
Chris Lattner992efb02011-01-09 22:26:35 +00003948static const SCEVAddRecExpr *
3949isSimpleUnwrappingAddRec(const SCEV *S, const Loop *L) {
3950 const SCEVAddRecExpr *SA = dyn_cast<SCEVAddRecExpr>(S);
3951
3952 // The SCEV must be an addrec of this loop.
3953 if (!SA || SA->getLoop() != L || !SA->isAffine())
3954 return 0;
3955
3956 // The SCEV must be known to not wrap in some way to be interesting.
3957 if (!SA->hasNoUnsignedWrap() && !SA->hasNoSignedWrap())
3958 return 0;
3959
3960 // The stride must be a constant so that we know if it is striding up or down.
3961 if (!isa<SCEVConstant>(SA->getOperand(1)))
3962 return 0;
3963 return SA;
3964}
3965
3966/// getMinusSCEVForExitTest - When considering an exit test for a loop with a
3967/// "x != y" exit test, we turn this into a computation that evaluates x-y != 0,
3968/// and this function returns the expression to use for x-y. We know and take
3969/// advantage of the fact that this subtraction is only being used in a
3970/// comparison by zero context.
3971///
3972static const SCEV *getMinusSCEVForExitTest(const SCEV *LHS, const SCEV *RHS,
3973 const Loop *L, ScalarEvolution &SE) {
3974 // If either LHS or RHS is an AddRec SCEV (of this loop) that is known to not
3975 // wrap (either NSW or NUW), then we know that the value will either become
3976 // the other one (and thus the loop terminates), that the loop will terminate
3977 // through some other exit condition first, or that the loop has undefined
3978 // behavior. This information is useful when the addrec has a stride that is
3979 // != 1 or -1, because it means we can't "miss" the exit value.
3980 //
3981 // In any of these three cases, it is safe to turn the exit condition into a
3982 // "counting down" AddRec (to zero) by subtracting the two inputs as normal,
3983 // but since we know that the "end cannot be missed" we can force the
3984 // resulting AddRec to be a NUW addrec. Since it is counting down, this means
3985 // that the AddRec *cannot* pass zero.
3986
3987 // See if LHS and RHS are addrec's we can handle.
3988 const SCEVAddRecExpr *LHSA = isSimpleUnwrappingAddRec(LHS, L);
3989 const SCEVAddRecExpr *RHSA = isSimpleUnwrappingAddRec(RHS, L);
3990
3991 // If neither addrec is interesting, just return a minus.
3992 if (RHSA == 0 && LHSA == 0)
3993 return SE.getMinusSCEV(LHS, RHS);
3994
3995 // If only one of LHS and RHS are an AddRec of this loop, make sure it is LHS.
3996 if (RHSA && LHSA == 0) {
3997 // Safe because a-b === b-a for comparisons against zero.
3998 std::swap(LHS, RHS);
3999 std::swap(LHSA, RHSA);
4000 }
4001
4002 // Handle the case when only one is advancing in a non-overflowing way.
4003 if (RHSA == 0) {
4004 // If RHS is loop varying, then we can't predict when LHS will cross it.
4005 if (!SE.isLoopInvariant(RHS, L))
4006 return SE.getMinusSCEV(LHS, RHS);
4007
4008 // If LHS has a positive stride, then we compute RHS-LHS, because the loop
4009 // is counting up until it crosses RHS (which must be larger than LHS). If
4010 // it is negative, we compute LHS-RHS because we're counting down to RHS.
4011 const ConstantInt *Stride =
4012 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4013 if (Stride->getValue().isNegative())
4014 std::swap(LHS, RHS);
4015
4016 return SE.getMinusSCEV(RHS, LHS, true /*HasNUW*/);
4017 }
4018
4019 // If both LHS and RHS are interesting, we have something like:
4020 // a+i*4 != b+i*8.
4021 const ConstantInt *LHSStride =
4022 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4023 const ConstantInt *RHSStride =
4024 cast<SCEVConstant>(RHSA->getOperand(1))->getValue();
4025
4026 // If the strides are equal, then this is just a (complex) loop invariant
4027 // comparison of a/b.
4028 if (LHSStride == RHSStride)
4029 return SE.getMinusSCEV(LHSA->getStart(), RHSA->getStart());
4030
4031 // If the signs of the strides differ, then the negative stride is counting
4032 // down to the positive stride.
4033 if (LHSStride->getValue().isNegative() != RHSStride->getValue().isNegative()){
4034 if (RHSStride->getValue().isNegative())
4035 std::swap(LHS, RHS);
4036 } else {
4037 // If LHS's stride is smaller than RHS's stride, then "b" must be less than
4038 // "a" and "b" is RHS is counting up (catching up) to LHS. This is true
4039 // whether the strides are positive or negative.
4040 if (RHSStride->getValue().slt(LHSStride->getValue()))
4041 std::swap(LHS, RHS);
4042 }
4043
4044 return SE.getMinusSCEV(LHS, RHS, true /*HasNUW*/);
4045}
4046
Dan Gohmana334aa72009-06-22 00:31:57 +00004047/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4048/// backedge of the specified loop will execute if its exit condition
4049/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4050ScalarEvolution::BackedgeTakenInfo
4051ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4052 ICmpInst *ExitCond,
4053 BasicBlock *TBB,
4054 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004055
Reid Spencere4d87aa2006-12-23 06:05:41 +00004056 // If the condition was exit on true, convert the condition to exit on false
4057 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00004058 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00004059 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004060 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00004061 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00004062
4063 // Handle common loops like: for (X = "string"; *X; ++X)
4064 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4065 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004066 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004067 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004068 if (ItCnt.hasAnyInfo())
4069 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00004070 }
4071
Dan Gohman0bba49c2009-07-07 17:06:11 +00004072 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4073 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00004074
4075 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00004076 LHS = getSCEVAtScope(LHS, L);
4077 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004078
Dan Gohman64a845e2009-06-24 04:48:43 +00004079 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00004080 // loop the predicate will return true for these inputs.
Dan Gohman17ead4f2010-11-17 21:23:15 +00004081 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohman70ff4cf2008-09-16 18:52:57 +00004082 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00004083 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00004084 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00004085 }
4086
Dan Gohman03557dc2010-05-03 16:35:17 +00004087 // Simplify the operands before analyzing them.
4088 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4089
Chris Lattner53e677a2004-04-02 20:23:17 +00004090 // If we have a comparison of a chrec against a constant, try to use value
4091 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00004092 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4093 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00004094 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00004095 // Form the constant range.
4096 ConstantRange CompRange(
4097 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004098
Dan Gohman0bba49c2009-07-07 17:06:11 +00004099 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00004100 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00004101 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004102
Chris Lattner53e677a2004-04-02 20:23:17 +00004103 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00004104 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00004105 // Convert to: while (X-Y != 0)
Chris Lattner992efb02011-01-09 22:26:35 +00004106 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEVForExitTest(LHS, RHS, L,
4107 *this), L);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004108 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004109 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004110 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004111 case ICmpInst::ICMP_EQ: { // while (X == Y)
4112 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004113 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4114 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00004115 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004116 }
4117 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004118 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4119 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004120 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004121 }
4122 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004123 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4124 getNotSCEV(RHS), L, true);
4125 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004126 break;
4127 }
4128 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004129 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4130 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004131 break;
4132 }
4133 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004134 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4135 getNotSCEV(RHS), L, false);
4136 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004137 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004138 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004139 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004140#if 0
David Greene25e0e872009-12-23 22:18:14 +00004141 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004142 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004143 dbgs() << "[unsigned] ";
4144 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004145 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004146 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004147#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004148 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004149 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004150 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004151 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004152}
4153
Chris Lattner673e02b2004-10-12 01:49:27 +00004154static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004155EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4156 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004157 const SCEV *InVal = SE.getConstant(C);
4158 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004159 assert(isa<SCEVConstant>(Val) &&
4160 "Evaluation of SCEV at constant didn't fold correctly?");
4161 return cast<SCEVConstant>(Val)->getValue();
4162}
4163
4164/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4165/// and a GEP expression (missing the pointer index) indexing into it, return
4166/// the addressed element of the initializer or null if the index expression is
4167/// invalid.
4168static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004169GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004170 const std::vector<ConstantInt*> &Indices) {
4171 Constant *Init = GV->getInitializer();
4172 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004173 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004174 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4175 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4176 Init = cast<Constant>(CS->getOperand(Idx));
4177 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4178 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4179 Init = cast<Constant>(CA->getOperand(Idx));
4180 } else if (isa<ConstantAggregateZero>(Init)) {
4181 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4182 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004183 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004184 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4185 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004186 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004187 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004188 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004189 }
4190 return 0;
4191 } else {
4192 return 0; // Unknown initializer type
4193 }
4194 }
4195 return Init;
4196}
4197
Dan Gohman46bdfb02009-02-24 18:55:53 +00004198/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4199/// 'icmp op load X, cst', try to see if we can compute the backedge
4200/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004201ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004202ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4203 LoadInst *LI,
4204 Constant *RHS,
4205 const Loop *L,
4206 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004207 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004208
4209 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004210 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004211 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004212 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004213
4214 // Make sure that it is really a constant global we are gepping, with an
4215 // initializer, and make sure the first IDX is really 0.
4216 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004217 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004218 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4219 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004220 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004221
4222 // Okay, we allow one non-constant index into the GEP instruction.
4223 Value *VarIdx = 0;
4224 std::vector<ConstantInt*> Indexes;
4225 unsigned VarIdxNum = 0;
4226 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4227 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4228 Indexes.push_back(CI);
4229 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004230 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004231 VarIdx = GEP->getOperand(i);
4232 VarIdxNum = i-2;
4233 Indexes.push_back(0);
4234 }
4235
4236 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4237 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004238 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004239 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004240
4241 // We can only recognize very limited forms of loop index expressions, in
4242 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004243 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohman17ead4f2010-11-17 21:23:15 +00004244 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004245 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4246 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004247 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004248
4249 unsigned MaxSteps = MaxBruteForceIterations;
4250 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004251 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004252 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004253 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004254
4255 // Form the GEP offset.
4256 Indexes[VarIdxNum] = Val;
4257
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004258 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004259 if (Result == 0) break; // Cannot compute!
4260
4261 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004262 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004263 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004264 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004265#if 0
David Greene25e0e872009-12-23 22:18:14 +00004266 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004267 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4268 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004269#endif
4270 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004271 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004272 }
4273 }
Dan Gohman1c343752009-06-27 21:21:31 +00004274 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004275}
4276
4277
Chris Lattner3221ad02004-04-17 22:58:41 +00004278/// CanConstantFold - Return true if we can constant fold an instruction of the
4279/// specified type, assuming that all operands were constants.
4280static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004281 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004282 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4283 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004284
Chris Lattner3221ad02004-04-17 22:58:41 +00004285 if (const CallInst *CI = dyn_cast<CallInst>(I))
4286 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004287 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004288 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004289}
4290
Chris Lattner3221ad02004-04-17 22:58:41 +00004291/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4292/// in the loop that V is derived from. We allow arbitrary operations along the
4293/// way, but the operands of an operation must either be constants or a value
4294/// derived from a constant PHI. If this expression does not fit with these
4295/// constraints, return null.
4296static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4297 // If this is not an instruction, or if this is an instruction outside of the
4298 // loop, it can't be derived from a loop PHI.
4299 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004300 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004301
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004302 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004303 if (L->getHeader() == I->getParent())
4304 return PN;
4305 else
4306 // We don't currently keep track of the control flow needed to evaluate
4307 // PHIs, so we cannot handle PHIs inside of loops.
4308 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004309 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004310
4311 // If we won't be able to constant fold this expression even if the operands
4312 // are constants, return early.
4313 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004314
Chris Lattner3221ad02004-04-17 22:58:41 +00004315 // Otherwise, we can evaluate this instruction if all of its operands are
4316 // constant or derived from a PHI node themselves.
4317 PHINode *PHI = 0;
4318 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004319 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004320 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4321 if (P == 0) return 0; // Not evolving from PHI
4322 if (PHI == 0)
4323 PHI = P;
4324 else if (PHI != P)
4325 return 0; // Evolving from multiple different PHIs.
4326 }
4327
4328 // This is a expression evolving from a constant PHI!
4329 return PHI;
4330}
4331
4332/// EvaluateExpression - Given an expression that passes the
4333/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4334/// in the loop has the value PHIVal. If we can't fold this expression for some
4335/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004336static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4337 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004338 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004339 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004340 Instruction *I = cast<Instruction>(V);
4341
Dan Gohman9d4588f2010-06-22 13:15:46 +00004342 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004343
4344 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004345 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004346 if (Operands[i] == 0) return 0;
4347 }
4348
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004349 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004350 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004351 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004352 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004353 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004354}
4355
4356/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4357/// in the header of its containing loop, we know the loop executes a
4358/// constant number of times, and the PHI node is just a recurrence
4359/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004360Constant *
4361ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004362 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004363 const Loop *L) {
Dan Gohman8d9c7a62010-08-16 16:30:01 +00004364 std::map<PHINode*, Constant*>::const_iterator I =
Chris Lattner3221ad02004-04-17 22:58:41 +00004365 ConstantEvolutionLoopExitValue.find(PN);
4366 if (I != ConstantEvolutionLoopExitValue.end())
4367 return I->second;
4368
Dan Gohmane0567812010-04-08 23:03:40 +00004369 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004370 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4371
4372 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4373
4374 // Since the loop is canonicalized, the PHI node must have two entries. One
4375 // entry must be a constant (coming in from outside of the loop), and the
4376 // second must be derived from the same PHI.
4377 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4378 Constant *StartCST =
4379 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4380 if (StartCST == 0)
4381 return RetVal = 0; // Must be a constant.
4382
4383 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004384 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4385 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004386 return RetVal = 0; // Not derived from same PHI.
4387
4388 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004389 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004390 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004391
Dan Gohman46bdfb02009-02-24 18:55:53 +00004392 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004393 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004394 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4395 if (IterationNum == NumIterations)
4396 return RetVal = PHIVal; // Got exit value!
4397
4398 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004399 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004400 if (NextPHI == PHIVal)
4401 return RetVal = NextPHI; // Stopped evolving!
4402 if (NextPHI == 0)
4403 return 0; // Couldn't evaluate!
4404 PHIVal = NextPHI;
4405 }
4406}
4407
Dan Gohman07ad19b2009-07-27 16:09:48 +00004408/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004409/// constant number of times (the condition evolves only from constants),
4410/// try to evaluate a few iterations of the loop until we get the exit
4411/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004412/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004413const SCEV *
4414ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4415 Value *Cond,
4416 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004417 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004418 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004419
Dan Gohmanb92654d2010-06-19 14:17:24 +00004420 // If the loop is canonicalized, the PHI will have exactly two entries.
4421 // That's the only form we support here.
4422 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4423
4424 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004425 // second must be derived from the same PHI.
4426 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4427 Constant *StartCST =
4428 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004429 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004430
4431 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004432 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4433 !isa<Constant>(BEValue))
4434 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004435
4436 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4437 // the loop symbolically to determine when the condition gets a value of
4438 // "ExitWhen".
4439 unsigned IterationNum = 0;
4440 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4441 for (Constant *PHIVal = StartCST;
4442 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004443 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004444 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004445
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004446 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004447 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004448
Reid Spencere8019bb2007-03-01 07:25:48 +00004449 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004450 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004451 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004452 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004453
Chris Lattner3221ad02004-04-17 22:58:41 +00004454 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004455 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004456 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004457 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004458 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004459 }
4460
4461 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004462 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004463}
4464
Dan Gohmane7125f42009-09-03 15:00:26 +00004465/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004466/// at the specified scope in the program. The L value specifies a loop
4467/// nest to evaluate the expression at, where null is the top-level or a
4468/// specified loop is immediately inside of the loop.
4469///
4470/// This method can be used to compute the exit value for a variable defined
4471/// in a loop by querying what the value will hold in the parent loop.
4472///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004473/// In the case that a relevant loop exit value cannot be computed, the
4474/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004475const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004476 // Check to see if we've folded this expression at this loop before.
4477 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4478 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4479 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4480 if (!Pair.second)
4481 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004482
Dan Gohman42214892009-08-31 21:15:23 +00004483 // Otherwise compute it.
4484 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004485 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004486 return C;
4487}
4488
4489const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004490 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004491
Nick Lewycky3e630762008-02-20 06:48:22 +00004492 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004493 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004494 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004495 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004496 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004497 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4498 if (PHINode *PN = dyn_cast<PHINode>(I))
4499 if (PN->getParent() == LI->getHeader()) {
4500 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004501 // to see if the loop that contains it has a known backedge-taken
4502 // count. If so, we may be able to force computation of the exit
4503 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004504 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004505 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004506 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004507 // Okay, we know how many times the containing loop executes. If
4508 // this is a constant evolving PHI node, get the final value at
4509 // the specified iteration number.
4510 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004511 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004512 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004513 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004514 }
4515 }
4516
Reid Spencer09906f32006-12-04 21:33:23 +00004517 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004518 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004519 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004520 // result. This is particularly useful for computing loop exit values.
4521 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004522 SmallVector<Constant *, 4> Operands;
4523 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004524 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4525 Value *Op = I->getOperand(i);
4526 if (Constant *C = dyn_cast<Constant>(Op)) {
4527 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004528 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004529 }
Dan Gohman11046452010-06-29 23:43:06 +00004530
4531 // If any of the operands is non-constant and if they are
4532 // non-integer and non-pointer, don't even try to analyze them
4533 // with scev techniques.
4534 if (!isSCEVable(Op->getType()))
4535 return V;
4536
4537 const SCEV *OrigV = getSCEV(Op);
4538 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4539 MadeImprovement |= OrigV != OpV;
4540
4541 Constant *C = 0;
4542 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4543 C = SC->getValue();
4544 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4545 C = dyn_cast<Constant>(SU->getValue());
4546 if (!C) return V;
4547 if (C->getType() != Op->getType())
4548 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4549 Op->getType(),
4550 false),
4551 C, Op->getType());
4552 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004553 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004554
Dan Gohman11046452010-06-29 23:43:06 +00004555 // Check to see if getSCEVAtScope actually made an improvement.
4556 if (MadeImprovement) {
4557 Constant *C = 0;
4558 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4559 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4560 Operands[0], Operands[1], TD);
4561 else
4562 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4563 &Operands[0], Operands.size(), TD);
4564 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004565 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004566 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004567 }
4568 }
4569
4570 // This is some other type of SCEVUnknown, just return it.
4571 return V;
4572 }
4573
Dan Gohman622ed672009-05-04 22:02:23 +00004574 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004575 // Avoid performing the look-up in the common case where the specified
4576 // expression has no loop-variant portions.
4577 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004578 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004579 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004580 // Okay, at least one of these operands is loop variant but might be
4581 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004582 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4583 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004584 NewOps.push_back(OpAtScope);
4585
4586 for (++i; i != e; ++i) {
4587 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004588 NewOps.push_back(OpAtScope);
4589 }
4590 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004591 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004592 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004593 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004594 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004595 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004596 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004597 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004598 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004599 }
4600 }
4601 // If we got here, all operands are loop invariant.
4602 return Comm;
4603 }
4604
Dan Gohman622ed672009-05-04 22:02:23 +00004605 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004606 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4607 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004608 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4609 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004610 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004611 }
4612
4613 // If this is a loop recurrence for a loop that does not contain L, then we
4614 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004615 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004616 // First, attempt to evaluate each operand.
4617 // Avoid performing the look-up in the common case where the specified
4618 // expression has no loop-variant portions.
4619 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4620 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4621 if (OpAtScope == AddRec->getOperand(i))
4622 continue;
4623
4624 // Okay, at least one of these operands is loop variant but might be
4625 // foldable. Build a new instance of the folded commutative expression.
4626 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4627 AddRec->op_begin()+i);
4628 NewOps.push_back(OpAtScope);
4629 for (++i; i != e; ++i)
4630 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4631
4632 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4633 break;
4634 }
4635
4636 // If the scope is outside the addrec's loop, evaluate it by using the
4637 // loop exit value of the addrec.
4638 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004639 // To evaluate this recurrence, we need to know how many times the AddRec
4640 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004641 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004642 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004643
Eli Friedmanb42a6262008-08-04 23:49:06 +00004644 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004645 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004646 }
Dan Gohman11046452010-06-29 23:43:06 +00004647
Dan Gohmand594e6f2009-05-24 23:25:42 +00004648 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004649 }
4650
Dan Gohman622ed672009-05-04 22:02:23 +00004651 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004652 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004653 if (Op == Cast->getOperand())
4654 return Cast; // must be loop invariant
4655 return getZeroExtendExpr(Op, Cast->getType());
4656 }
4657
Dan Gohman622ed672009-05-04 22:02:23 +00004658 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004659 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004660 if (Op == Cast->getOperand())
4661 return Cast; // must be loop invariant
4662 return getSignExtendExpr(Op, Cast->getType());
4663 }
4664
Dan Gohman622ed672009-05-04 22:02:23 +00004665 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004666 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004667 if (Op == Cast->getOperand())
4668 return Cast; // must be loop invariant
4669 return getTruncateExpr(Op, Cast->getType());
4670 }
4671
Torok Edwinc23197a2009-07-14 16:55:14 +00004672 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004673 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004674}
4675
Dan Gohman66a7e852009-05-08 20:38:54 +00004676/// getSCEVAtScope - This is a convenience function which does
4677/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004678const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004679 return getSCEVAtScope(getSCEV(V), L);
4680}
4681
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004682/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4683/// following equation:
4684///
4685/// A * X = B (mod N)
4686///
4687/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4688/// A and B isn't important.
4689///
4690/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004691static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004692 ScalarEvolution &SE) {
4693 uint32_t BW = A.getBitWidth();
4694 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4695 assert(A != 0 && "A must be non-zero.");
4696
4697 // 1. D = gcd(A, N)
4698 //
4699 // The gcd of A and N may have only one prime factor: 2. The number of
4700 // trailing zeros in A is its multiplicity
4701 uint32_t Mult2 = A.countTrailingZeros();
4702 // D = 2^Mult2
4703
4704 // 2. Check if B is divisible by D.
4705 //
4706 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4707 // is not less than multiplicity of this prime factor for D.
4708 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004709 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004710
4711 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4712 // modulo (N / D).
4713 //
4714 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4715 // bit width during computations.
4716 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4717 APInt Mod(BW + 1, 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00004718 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004719 APInt I = AD.multiplicativeInverse(Mod);
4720
4721 // 4. Compute the minimum unsigned root of the equation:
4722 // I * (B / D) mod (N / D)
4723 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4724
4725 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4726 // bits.
4727 return SE.getConstant(Result.trunc(BW));
4728}
Chris Lattner53e677a2004-04-02 20:23:17 +00004729
4730/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4731/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4732/// might be the same) or two SCEVCouldNotCompute objects.
4733///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004734static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004735SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004736 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004737 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4738 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4739 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004740
Chris Lattner53e677a2004-04-02 20:23:17 +00004741 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004742 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004743 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004744 return std::make_pair(CNC, CNC);
4745 }
4746
Reid Spencere8019bb2007-03-01 07:25:48 +00004747 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004748 const APInt &L = LC->getValue()->getValue();
4749 const APInt &M = MC->getValue()->getValue();
4750 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004751 APInt Two(BitWidth, 2);
4752 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004753
Dan Gohman64a845e2009-06-24 04:48:43 +00004754 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004755 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004756 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004757 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4758 // The B coefficient is M-N/2
4759 APInt B(M);
4760 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004761
Reid Spencere8019bb2007-03-01 07:25:48 +00004762 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004763 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004764
Reid Spencere8019bb2007-03-01 07:25:48 +00004765 // Compute the B^2-4ac term.
4766 APInt SqrtTerm(B);
4767 SqrtTerm *= B;
4768 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004769
Reid Spencere8019bb2007-03-01 07:25:48 +00004770 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4771 // integer value or else APInt::sqrt() will assert.
4772 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004773
Dan Gohman64a845e2009-06-24 04:48:43 +00004774 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004775 // The divisions must be performed as signed divisions.
4776 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004777 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004778 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004779 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004780 return std::make_pair(CNC, CNC);
4781 }
4782
Owen Andersone922c022009-07-22 00:24:57 +00004783 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004784
4785 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004786 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004787 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004788 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004789
Dan Gohman64a845e2009-06-24 04:48:43 +00004790 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004791 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004792 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004793}
4794
4795/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004796/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004797ScalarEvolution::BackedgeTakenInfo
4798ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004799 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004800 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004801 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004802 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004803 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004804 }
4805
Dan Gohman35738ac2009-05-04 22:30:44 +00004806 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004807 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004808 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004809
Chris Lattner7975e3e2011-01-09 22:39:48 +00004810 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4811 // the quadratic equation to solve it.
4812 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4813 std::pair<const SCEV *,const SCEV *> Roots =
4814 SolveQuadraticEquation(AddRec, *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004815 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4816 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner7975e3e2011-01-09 22:39:48 +00004817 if (R1 && R2) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004818#if 0
David Greene25e0e872009-12-23 22:18:14 +00004819 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004820 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004821#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004822 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004823 if (ConstantInt *CB =
Chris Lattner53e1d452011-01-09 22:58:47 +00004824 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
4825 R1->getValue(),
4826 R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004827 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004828 std::swap(R1, R2); // R1 is the minimum root now.
Chris Lattner7975e3e2011-01-09 22:39:48 +00004829
Chris Lattner53e677a2004-04-02 20:23:17 +00004830 // We can only use this value if the chrec ends up with an exact zero
4831 // value at this index. When solving for "X*X != 5", for example, we
4832 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004833 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004834 if (Val->isZero())
4835 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004836 }
4837 }
Chris Lattner7975e3e2011-01-09 22:39:48 +00004838 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004839 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004840
Chris Lattner7975e3e2011-01-09 22:39:48 +00004841 // Otherwise we can only handle this if it is affine.
4842 if (!AddRec->isAffine())
4843 return getCouldNotCompute();
4844
4845 // If this is an affine expression, the execution count of this branch is
4846 // the minimum unsigned root of the following equation:
4847 //
4848 // Start + Step*N = 0 (mod 2^BW)
4849 //
4850 // equivalent to:
4851 //
4852 // Step*N = -Start (mod 2^BW)
4853 //
4854 // where BW is the common bit width of Start and Step.
4855
4856 // Get the initial value for the loop.
4857 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
4858 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
4859
Chris Lattner53e1d452011-01-09 22:58:47 +00004860 // If the AddRec is NUW, then (in an unsigned sense) it cannot be counting up
4861 // to wrap to 0, it must be counting down to equal 0. Also, while counting
4862 // down, it cannot "miss" 0 (which would cause it to wrap), regardless of what
4863 // the stride is. As such, NUW addrec's will always become zero in
4864 // "start / -stride" steps, and we know that the division is exact.
4865 if (AddRec->hasNoUnsignedWrap())
Chris Lattnerbd9d53c2011-01-09 23:02:10 +00004866 // FIXME: We really want an "isexact" bit for udiv.
Chris Lattner53e1d452011-01-09 22:58:47 +00004867 return getUDivExpr(Start, getNegativeSCEV(Step));
4868
Chris Lattner7975e3e2011-01-09 22:39:48 +00004869 // For now we handle only constant steps.
4870 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
4871 if (StepC == 0)
4872 return getCouldNotCompute();
4873
4874 // First, handle unitary steps.
4875 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
4876 return getNegativeSCEV(Start); // N = -Start (as unsigned)
4877
4878 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4879 return Start; // N = Start (as unsigned)
4880
4881 // Then, try to solve the above equation provided that Start is constant.
4882 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4883 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4884 -StartC->getValue()->getValue(),
4885 *this);
Dan Gohman1c343752009-06-27 21:21:31 +00004886 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004887}
4888
4889/// HowFarToNonZero - Return the number of times a backedge checking the
4890/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004891/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004892ScalarEvolution::BackedgeTakenInfo
4893ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004894 // Loops that look like: while (X == 0) are very strange indeed. We don't
4895 // handle them yet except for the trivial case. This could be expanded in the
4896 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004897
Chris Lattner53e677a2004-04-02 20:23:17 +00004898 // If the value is a constant, check to see if it is known to be non-zero
4899 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004900 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004901 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004902 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004903 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004904 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004905
Chris Lattner53e677a2004-04-02 20:23:17 +00004906 // We could implement others, but I really doubt anyone writes loops like
4907 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004908 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004909}
4910
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004911/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4912/// (which may not be an immediate predecessor) which has exactly one
4913/// successor from which BB is reachable, or null if no such block is
4914/// found.
4915///
Dan Gohman005752b2010-04-15 16:19:08 +00004916std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004917ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004918 // If the block has a unique predecessor, then there is no path from the
4919 // predecessor to the block that does not go through the direct edge
4920 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004921 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004922 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004923
4924 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004925 // If the header has a unique predecessor outside the loop, it must be
4926 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004927 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004928 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004929
Dan Gohman005752b2010-04-15 16:19:08 +00004930 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004931}
4932
Dan Gohman763bad12009-06-20 00:35:32 +00004933/// HasSameValue - SCEV structural equivalence is usually sufficient for
4934/// testing whether two expressions are equal, however for the purposes of
4935/// looking for a condition guarding a loop, it can be useful to be a little
4936/// more general, since a front-end may have replicated the controlling
4937/// expression.
4938///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004939static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004940 // Quick check to see if they are the same SCEV.
4941 if (A == B) return true;
4942
4943 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4944 // two different instructions with the same value. Check for this case.
4945 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4946 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4947 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4948 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004949 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004950 return true;
4951
4952 // Otherwise assume they may have a different value.
4953 return false;
4954}
4955
Dan Gohmane9796502010-04-24 01:28:42 +00004956/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4957/// predicate Pred. Return true iff any changes were made.
4958///
4959bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4960 const SCEV *&LHS, const SCEV *&RHS) {
4961 bool Changed = false;
4962
4963 // Canonicalize a constant to the right side.
4964 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4965 // Check for both operands constant.
4966 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4967 if (ConstantExpr::getICmp(Pred,
4968 LHSC->getValue(),
4969 RHSC->getValue())->isNullValue())
4970 goto trivially_false;
4971 else
4972 goto trivially_true;
4973 }
4974 // Otherwise swap the operands to put the constant on the right.
4975 std::swap(LHS, RHS);
4976 Pred = ICmpInst::getSwappedPredicate(Pred);
4977 Changed = true;
4978 }
4979
4980 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004981 // addrec's loop, put the addrec on the left. Also make a dominance check,
4982 // as both operands could be addrecs loop-invariant in each other's loop.
4983 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4984 const Loop *L = AR->getLoop();
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00004985 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohmane9796502010-04-24 01:28:42 +00004986 std::swap(LHS, RHS);
4987 Pred = ICmpInst::getSwappedPredicate(Pred);
4988 Changed = true;
4989 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004990 }
Dan Gohmane9796502010-04-24 01:28:42 +00004991
4992 // If there's a constant operand, canonicalize comparisons with boundary
4993 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4994 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4995 const APInt &RA = RC->getValue()->getValue();
4996 switch (Pred) {
4997 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4998 case ICmpInst::ICMP_EQ:
4999 case ICmpInst::ICMP_NE:
5000 break;
5001 case ICmpInst::ICMP_UGE:
5002 if ((RA - 1).isMinValue()) {
5003 Pred = ICmpInst::ICMP_NE;
5004 RHS = getConstant(RA - 1);
5005 Changed = true;
5006 break;
5007 }
5008 if (RA.isMaxValue()) {
5009 Pred = ICmpInst::ICMP_EQ;
5010 Changed = true;
5011 break;
5012 }
5013 if (RA.isMinValue()) goto trivially_true;
5014
5015 Pred = ICmpInst::ICMP_UGT;
5016 RHS = getConstant(RA - 1);
5017 Changed = true;
5018 break;
5019 case ICmpInst::ICMP_ULE:
5020 if ((RA + 1).isMaxValue()) {
5021 Pred = ICmpInst::ICMP_NE;
5022 RHS = getConstant(RA + 1);
5023 Changed = true;
5024 break;
5025 }
5026 if (RA.isMinValue()) {
5027 Pred = ICmpInst::ICMP_EQ;
5028 Changed = true;
5029 break;
5030 }
5031 if (RA.isMaxValue()) goto trivially_true;
5032
5033 Pred = ICmpInst::ICMP_ULT;
5034 RHS = getConstant(RA + 1);
5035 Changed = true;
5036 break;
5037 case ICmpInst::ICMP_SGE:
5038 if ((RA - 1).isMinSignedValue()) {
5039 Pred = ICmpInst::ICMP_NE;
5040 RHS = getConstant(RA - 1);
5041 Changed = true;
5042 break;
5043 }
5044 if (RA.isMaxSignedValue()) {
5045 Pred = ICmpInst::ICMP_EQ;
5046 Changed = true;
5047 break;
5048 }
5049 if (RA.isMinSignedValue()) goto trivially_true;
5050
5051 Pred = ICmpInst::ICMP_SGT;
5052 RHS = getConstant(RA - 1);
5053 Changed = true;
5054 break;
5055 case ICmpInst::ICMP_SLE:
5056 if ((RA + 1).isMaxSignedValue()) {
5057 Pred = ICmpInst::ICMP_NE;
5058 RHS = getConstant(RA + 1);
5059 Changed = true;
5060 break;
5061 }
5062 if (RA.isMinSignedValue()) {
5063 Pred = ICmpInst::ICMP_EQ;
5064 Changed = true;
5065 break;
5066 }
5067 if (RA.isMaxSignedValue()) goto trivially_true;
5068
5069 Pred = ICmpInst::ICMP_SLT;
5070 RHS = getConstant(RA + 1);
5071 Changed = true;
5072 break;
5073 case ICmpInst::ICMP_UGT:
5074 if (RA.isMinValue()) {
5075 Pred = ICmpInst::ICMP_NE;
5076 Changed = true;
5077 break;
5078 }
5079 if ((RA + 1).isMaxValue()) {
5080 Pred = ICmpInst::ICMP_EQ;
5081 RHS = getConstant(RA + 1);
5082 Changed = true;
5083 break;
5084 }
5085 if (RA.isMaxValue()) goto trivially_false;
5086 break;
5087 case ICmpInst::ICMP_ULT:
5088 if (RA.isMaxValue()) {
5089 Pred = ICmpInst::ICMP_NE;
5090 Changed = true;
5091 break;
5092 }
5093 if ((RA - 1).isMinValue()) {
5094 Pred = ICmpInst::ICMP_EQ;
5095 RHS = getConstant(RA - 1);
5096 Changed = true;
5097 break;
5098 }
5099 if (RA.isMinValue()) goto trivially_false;
5100 break;
5101 case ICmpInst::ICMP_SGT:
5102 if (RA.isMinSignedValue()) {
5103 Pred = ICmpInst::ICMP_NE;
5104 Changed = true;
5105 break;
5106 }
5107 if ((RA + 1).isMaxSignedValue()) {
5108 Pred = ICmpInst::ICMP_EQ;
5109 RHS = getConstant(RA + 1);
5110 Changed = true;
5111 break;
5112 }
5113 if (RA.isMaxSignedValue()) goto trivially_false;
5114 break;
5115 case ICmpInst::ICMP_SLT:
5116 if (RA.isMaxSignedValue()) {
5117 Pred = ICmpInst::ICMP_NE;
5118 Changed = true;
5119 break;
5120 }
5121 if ((RA - 1).isMinSignedValue()) {
5122 Pred = ICmpInst::ICMP_EQ;
5123 RHS = getConstant(RA - 1);
5124 Changed = true;
5125 break;
5126 }
5127 if (RA.isMinSignedValue()) goto trivially_false;
5128 break;
5129 }
5130 }
5131
5132 // Check for obvious equality.
5133 if (HasSameValue(LHS, RHS)) {
5134 if (ICmpInst::isTrueWhenEqual(Pred))
5135 goto trivially_true;
5136 if (ICmpInst::isFalseWhenEqual(Pred))
5137 goto trivially_false;
5138 }
5139
Dan Gohman03557dc2010-05-03 16:35:17 +00005140 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5141 // adding or subtracting 1 from one of the operands.
5142 switch (Pred) {
5143 case ICmpInst::ICMP_SLE:
5144 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5145 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5146 /*HasNUW=*/false, /*HasNSW=*/true);
5147 Pred = ICmpInst::ICMP_SLT;
5148 Changed = true;
5149 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005150 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005151 /*HasNUW=*/false, /*HasNSW=*/true);
5152 Pred = ICmpInst::ICMP_SLT;
5153 Changed = true;
5154 }
5155 break;
5156 case ICmpInst::ICMP_SGE:
5157 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005158 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005159 /*HasNUW=*/false, /*HasNSW=*/true);
5160 Pred = ICmpInst::ICMP_SGT;
5161 Changed = true;
5162 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5163 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5164 /*HasNUW=*/false, /*HasNSW=*/true);
5165 Pred = ICmpInst::ICMP_SGT;
5166 Changed = true;
5167 }
5168 break;
5169 case ICmpInst::ICMP_ULE:
5170 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005171 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005172 /*HasNUW=*/true, /*HasNSW=*/false);
5173 Pred = ICmpInst::ICMP_ULT;
5174 Changed = true;
5175 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005176 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005177 /*HasNUW=*/true, /*HasNSW=*/false);
5178 Pred = ICmpInst::ICMP_ULT;
5179 Changed = true;
5180 }
5181 break;
5182 case ICmpInst::ICMP_UGE:
5183 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005184 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005185 /*HasNUW=*/true, /*HasNSW=*/false);
5186 Pred = ICmpInst::ICMP_UGT;
5187 Changed = true;
5188 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005189 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005190 /*HasNUW=*/true, /*HasNSW=*/false);
5191 Pred = ICmpInst::ICMP_UGT;
5192 Changed = true;
5193 }
5194 break;
5195 default:
5196 break;
5197 }
5198
Dan Gohmane9796502010-04-24 01:28:42 +00005199 // TODO: More simplifications are possible here.
5200
5201 return Changed;
5202
5203trivially_true:
5204 // Return 0 == 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005205 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005206 Pred = ICmpInst::ICMP_EQ;
5207 return true;
5208
5209trivially_false:
5210 // Return 0 != 0.
Benjamin Kramerf601d6d2010-11-20 18:43:35 +00005211 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohmane9796502010-04-24 01:28:42 +00005212 Pred = ICmpInst::ICMP_NE;
5213 return true;
5214}
5215
Dan Gohman85b05a22009-07-13 21:35:55 +00005216bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5217 return getSignedRange(S).getSignedMax().isNegative();
5218}
5219
5220bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5221 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5222}
5223
5224bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5225 return !getSignedRange(S).getSignedMin().isNegative();
5226}
5227
5228bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5229 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5230}
5231
5232bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5233 return isKnownNegative(S) || isKnownPositive(S);
5234}
5235
5236bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5237 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005238 // Canonicalize the inputs first.
5239 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5240
Dan Gohman53c66ea2010-04-11 22:16:48 +00005241 // If LHS or RHS is an addrec, check to see if the condition is true in
5242 // every iteration of the loop.
5243 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5244 if (isLoopEntryGuardedByCond(
5245 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5246 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005247 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005248 return true;
5249 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5250 if (isLoopEntryGuardedByCond(
5251 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5252 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005253 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005254 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005255
Dan Gohman53c66ea2010-04-11 22:16:48 +00005256 // Otherwise see what can be done with known constant ranges.
5257 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5258}
5259
5260bool
5261ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5262 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005263 if (HasSameValue(LHS, RHS))
5264 return ICmpInst::isTrueWhenEqual(Pred);
5265
Dan Gohman53c66ea2010-04-11 22:16:48 +00005266 // This code is split out from isKnownPredicate because it is called from
5267 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005268 switch (Pred) {
5269 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005270 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005271 break;
5272 case ICmpInst::ICMP_SGT:
5273 Pred = ICmpInst::ICMP_SLT;
5274 std::swap(LHS, RHS);
5275 case ICmpInst::ICMP_SLT: {
5276 ConstantRange LHSRange = getSignedRange(LHS);
5277 ConstantRange RHSRange = getSignedRange(RHS);
5278 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5279 return true;
5280 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5281 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005282 break;
5283 }
5284 case ICmpInst::ICMP_SGE:
5285 Pred = ICmpInst::ICMP_SLE;
5286 std::swap(LHS, RHS);
5287 case ICmpInst::ICMP_SLE: {
5288 ConstantRange LHSRange = getSignedRange(LHS);
5289 ConstantRange RHSRange = getSignedRange(RHS);
5290 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5291 return true;
5292 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5293 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005294 break;
5295 }
5296 case ICmpInst::ICMP_UGT:
5297 Pred = ICmpInst::ICMP_ULT;
5298 std::swap(LHS, RHS);
5299 case ICmpInst::ICMP_ULT: {
5300 ConstantRange LHSRange = getUnsignedRange(LHS);
5301 ConstantRange RHSRange = getUnsignedRange(RHS);
5302 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5303 return true;
5304 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5305 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005306 break;
5307 }
5308 case ICmpInst::ICMP_UGE:
5309 Pred = ICmpInst::ICMP_ULE;
5310 std::swap(LHS, RHS);
5311 case ICmpInst::ICMP_ULE: {
5312 ConstantRange LHSRange = getUnsignedRange(LHS);
5313 ConstantRange RHSRange = getUnsignedRange(RHS);
5314 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5315 return true;
5316 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5317 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005318 break;
5319 }
5320 case ICmpInst::ICMP_NE: {
5321 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5322 return true;
5323 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5324 return true;
5325
5326 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5327 if (isKnownNonZero(Diff))
5328 return true;
5329 break;
5330 }
5331 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005332 // The check at the top of the function catches the case where
5333 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005334 break;
5335 }
5336 return false;
5337}
5338
5339/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5340/// protected by a conditional between LHS and RHS. This is used to
5341/// to eliminate casts.
5342bool
5343ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5344 ICmpInst::Predicate Pred,
5345 const SCEV *LHS, const SCEV *RHS) {
5346 // Interpret a null as meaning no loop, where there is obviously no guard
5347 // (interprocedural conditions notwithstanding).
5348 if (!L) return true;
5349
5350 BasicBlock *Latch = L->getLoopLatch();
5351 if (!Latch)
5352 return false;
5353
5354 BranchInst *LoopContinuePredicate =
5355 dyn_cast<BranchInst>(Latch->getTerminator());
5356 if (!LoopContinuePredicate ||
5357 LoopContinuePredicate->isUnconditional())
5358 return false;
5359
Dan Gohmanaf08a362010-08-10 23:46:30 +00005360 return isImpliedCond(Pred, LHS, RHS,
5361 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005362 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005363}
5364
Dan Gohman3948d0b2010-04-11 19:27:13 +00005365/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005366/// by a conditional between LHS and RHS. This is used to help avoid max
5367/// expressions in loop trip counts, and to eliminate casts.
5368bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005369ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5370 ICmpInst::Predicate Pred,
5371 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005372 // Interpret a null as meaning no loop, where there is obviously no guard
5373 // (interprocedural conditions notwithstanding).
5374 if (!L) return false;
5375
Dan Gohman859b4822009-05-18 15:36:09 +00005376 // Starting at the loop predecessor, climb up the predecessor chain, as long
5377 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005378 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005379 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005380 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005381 Pair.first;
5382 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005383
5384 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005385 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005386 if (!LoopEntryPredicate ||
5387 LoopEntryPredicate->isUnconditional())
5388 continue;
5389
Dan Gohmanaf08a362010-08-10 23:46:30 +00005390 if (isImpliedCond(Pred, LHS, RHS,
5391 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005392 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005393 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005394 }
5395
Dan Gohman38372182008-08-12 20:17:31 +00005396 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005397}
5398
Dan Gohman0f4b2852009-07-21 23:03:19 +00005399/// isImpliedCond - Test whether the condition described by Pred, LHS,
5400/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005401bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005402 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005403 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005404 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005405 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005406 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005407 if (BO->getOpcode() == Instruction::And) {
5408 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005409 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5410 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005411 } else if (BO->getOpcode() == Instruction::Or) {
5412 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005413 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5414 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005415 }
5416 }
5417
Dan Gohmanaf08a362010-08-10 23:46:30 +00005418 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005419 if (!ICI) return false;
5420
Dan Gohman85b05a22009-07-13 21:35:55 +00005421 // Bail if the ICmp's operands' types are wider than the needed type
5422 // before attempting to call getSCEV on them. This avoids infinite
5423 // recursion, since the analysis of widening casts can require loop
5424 // exit condition information for overflow checking, which would
5425 // lead back here.
5426 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005427 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005428 return false;
5429
Dan Gohman0f4b2852009-07-21 23:03:19 +00005430 // Now that we found a conditional branch that dominates the loop, check to
5431 // see if it is the comparison we are looking for.
5432 ICmpInst::Predicate FoundPred;
5433 if (Inverse)
5434 FoundPred = ICI->getInversePredicate();
5435 else
5436 FoundPred = ICI->getPredicate();
5437
5438 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5439 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005440
5441 // Balance the types. The case where FoundLHS' type is wider than
5442 // LHS' type is checked for above.
5443 if (getTypeSizeInBits(LHS->getType()) >
5444 getTypeSizeInBits(FoundLHS->getType())) {
5445 if (CmpInst::isSigned(Pred)) {
5446 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5447 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5448 } else {
5449 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5450 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5451 }
5452 }
5453
Dan Gohman0f4b2852009-07-21 23:03:19 +00005454 // Canonicalize the query to match the way instcombine will have
5455 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005456 if (SimplifyICmpOperands(Pred, LHS, RHS))
5457 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005458 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005459 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5460 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005461 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005462
5463 // Check to see if we can make the LHS or RHS match.
5464 if (LHS == FoundRHS || RHS == FoundLHS) {
5465 if (isa<SCEVConstant>(RHS)) {
5466 std::swap(FoundLHS, FoundRHS);
5467 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5468 } else {
5469 std::swap(LHS, RHS);
5470 Pred = ICmpInst::getSwappedPredicate(Pred);
5471 }
5472 }
5473
5474 // Check whether the found predicate is the same as the desired predicate.
5475 if (FoundPred == Pred)
5476 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5477
5478 // Check whether swapping the found predicate makes it the same as the
5479 // desired predicate.
5480 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5481 if (isa<SCEVConstant>(RHS))
5482 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5483 else
5484 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5485 RHS, LHS, FoundLHS, FoundRHS);
5486 }
5487
5488 // Check whether the actual condition is beyond sufficient.
5489 if (FoundPred == ICmpInst::ICMP_EQ)
5490 if (ICmpInst::isTrueWhenEqual(Pred))
5491 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5492 return true;
5493 if (Pred == ICmpInst::ICMP_NE)
5494 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5495 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5496 return true;
5497
5498 // Otherwise assume the worst.
5499 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005500}
5501
Dan Gohman0f4b2852009-07-21 23:03:19 +00005502/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005503/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005504/// and FoundRHS is true.
5505bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5506 const SCEV *LHS, const SCEV *RHS,
5507 const SCEV *FoundLHS,
5508 const SCEV *FoundRHS) {
5509 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5510 FoundLHS, FoundRHS) ||
5511 // ~x < ~y --> x > y
5512 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5513 getNotSCEV(FoundRHS),
5514 getNotSCEV(FoundLHS));
5515}
5516
5517/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005518/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005519/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005520bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005521ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5522 const SCEV *LHS, const SCEV *RHS,
5523 const SCEV *FoundLHS,
5524 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005525 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005526 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5527 case ICmpInst::ICMP_EQ:
5528 case ICmpInst::ICMP_NE:
5529 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5530 return true;
5531 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005532 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005533 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005534 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5535 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005536 return true;
5537 break;
5538 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005539 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005540 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5541 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005542 return true;
5543 break;
5544 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005545 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005546 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5547 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005548 return true;
5549 break;
5550 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005551 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005552 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5553 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005554 return true;
5555 break;
5556 }
5557
5558 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005559}
5560
Dan Gohman51f53b72009-06-21 23:46:38 +00005561/// getBECount - Subtract the end and start values and divide by the step,
5562/// rounding up, to get the number of times the backedge is executed. Return
5563/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005564const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005565 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005566 const SCEV *Step,
5567 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005568 assert(!isKnownNegative(Step) &&
5569 "This code doesn't handle negative strides yet!");
5570
Dan Gohman51f53b72009-06-21 23:46:38 +00005571 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005572 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005573 const SCEV *Diff = getMinusSCEV(End, Start);
5574 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005575
5576 // Add an adjustment to the difference between End and Start so that
5577 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005578 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005579
Dan Gohman1f96e672009-09-17 18:05:20 +00005580 if (!NoWrap) {
5581 // Check Add for unsigned overflow.
5582 // TODO: More sophisticated things could be done here.
5583 const Type *WideTy = IntegerType::get(getContext(),
5584 getTypeSizeInBits(Ty) + 1);
5585 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5586 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5587 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5588 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5589 return getCouldNotCompute();
5590 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005591
5592 return getUDivExpr(Add, Step);
5593}
5594
Chris Lattnerdb25de42005-08-15 23:33:51 +00005595/// HowManyLessThans - Return the number of times a backedge containing the
5596/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005597/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005598ScalarEvolution::BackedgeTakenInfo
5599ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5600 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005601 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman17ead4f2010-11-17 21:23:15 +00005602 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005603
Dan Gohman35738ac2009-05-04 22:30:44 +00005604 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005605 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005606 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005607
Dan Gohman1f96e672009-09-17 18:05:20 +00005608 // Check to see if we have a flag which makes analysis easy.
5609 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5610 AddRec->hasNoUnsignedWrap();
5611
Chris Lattnerdb25de42005-08-15 23:33:51 +00005612 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005613 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005614 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005615
Dan Gohman52fddd32010-01-26 04:40:18 +00005616 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005617 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005618 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005619 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005620 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005621 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005622 // value and past the maximum value for its type in a single step.
5623 // Note that it's not sufficient to check NoWrap here, because even
5624 // though the value after a wrap is undefined, it's not undefined
5625 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005626 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005627 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005628 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005629 if (isSigned) {
5630 APInt Max = APInt::getSignedMaxValue(BitWidth);
5631 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5632 .slt(getSignedRange(RHS).getSignedMax()))
5633 return getCouldNotCompute();
5634 } else {
5635 APInt Max = APInt::getMaxValue(BitWidth);
5636 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5637 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5638 return getCouldNotCompute();
5639 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005640 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005641 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005642 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005643
Dan Gohmana1af7572009-04-30 20:47:05 +00005644 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5645 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5646 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005647 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005648
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005649 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005650 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005651
Dan Gohmana1af7572009-04-30 20:47:05 +00005652 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005653 const SCEV *MinStart = getConstant(isSigned ?
5654 getSignedRange(Start).getSignedMin() :
5655 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005656
Dan Gohmana1af7572009-04-30 20:47:05 +00005657 // If we know that the condition is true in order to enter the loop,
5658 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005659 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5660 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005661 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005662 if (!isLoopEntryGuardedByCond(L,
5663 isSigned ? ICmpInst::ICMP_SLT :
5664 ICmpInst::ICMP_ULT,
5665 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005666 End = isSigned ? getSMaxExpr(RHS, Start)
5667 : getUMaxExpr(RHS, Start);
5668
5669 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005670 const SCEV *MaxEnd = getConstant(isSigned ?
5671 getSignedRange(End).getSignedMax() :
5672 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005673
Dan Gohman52fddd32010-01-26 04:40:18 +00005674 // If MaxEnd is within a step of the maximum integer value in its type,
5675 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005676 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005677 // compute the correct value.
5678 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005679 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005680 MaxEnd = isSigned ?
5681 getSMinExpr(MaxEnd,
5682 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5683 StepMinusOne)) :
5684 getUMinExpr(MaxEnd,
5685 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5686 StepMinusOne));
5687
Dan Gohmana1af7572009-04-30 20:47:05 +00005688 // Finally, we subtract these two values and divide, rounding up, to get
5689 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005690 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005691
5692 // The maximum backedge count is similar, except using the minimum start
5693 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005694 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005695
5696 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005697 }
5698
Dan Gohman1c343752009-06-27 21:21:31 +00005699 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005700}
5701
Chris Lattner53e677a2004-04-02 20:23:17 +00005702/// getNumIterationsInRange - Return the number of iterations of this loop that
5703/// produce values in the specified constant range. Another way of looking at
5704/// this is that it returns the first iteration number where the value is not in
5705/// the condition, thus computing the exit count. If the iteration count can't
5706/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005707const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005708 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005709 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005710 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005711
5712 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005713 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005714 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005715 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005716 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005717 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005718 if (const SCEVAddRecExpr *ShiftedAddRec =
5719 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005720 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005721 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005722 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005723 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005724 }
5725
5726 // The only time we can solve this is when we have all constant indices.
5727 // Otherwise, we cannot determine the overflow conditions.
5728 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5729 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005730 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005731
5732
5733 // Okay at this point we know that all elements of the chrec are constants and
5734 // that the start element is zero.
5735
5736 // First check to see if the range contains zero. If not, the first
5737 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005738 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005739 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005740 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005741
Chris Lattner53e677a2004-04-02 20:23:17 +00005742 if (isAffine()) {
5743 // If this is an affine expression then we have this situation:
5744 // Solve {0,+,A} in Range === Ax in Range
5745
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005746 // We know that zero is in the range. If A is positive then we know that
5747 // the upper value of the range must be the first possible exit value.
5748 // If A is negative then the lower of the range is the last possible loop
5749 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005750 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005751 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5752 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005753
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005754 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005755 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005756 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005757
5758 // Evaluate at the exit value. If we really did fall out of the valid
5759 // range, then we computed our trip count, otherwise wrap around or other
5760 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005761 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005762 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005763 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005764
5765 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005766 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005767 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005768 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005769 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005770 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005771 } else if (isQuadratic()) {
5772 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5773 // quadratic equation to solve it. To do this, we must frame our problem in
5774 // terms of figuring out when zero is crossed, instead of when
5775 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005776 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005777 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005778 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005779
5780 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005781 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005782 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005783 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5784 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005785 if (R1) {
5786 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005787 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005788 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005789 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005790 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005791 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005792
Chris Lattner53e677a2004-04-02 20:23:17 +00005793 // Make sure the root is not off by one. The returned iteration should
5794 // not be in the range, but the previous one should be. When solving
5795 // for "X*X < 5", for example, we should not return a root of 2.
5796 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005797 R1->getValue(),
5798 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005799 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005800 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005801 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005802 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005803
Dan Gohman246b2562007-10-22 18:31:58 +00005804 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005805 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005806 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005807 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005808 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005809
Chris Lattner53e677a2004-04-02 20:23:17 +00005810 // If R1 was not in the range, then it is a good return value. Make
5811 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005812 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005813 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005814 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005815 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005816 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005817 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005818 }
5819 }
5820 }
5821
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005822 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005823}
5824
5825
5826
5827//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005828// SCEVCallbackVH Class Implementation
5829//===----------------------------------------------------------------------===//
5830
Dan Gohman1959b752009-05-19 19:22:47 +00005831void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005832 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005833 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5834 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005835 SE->ValueExprMap.erase(getValPtr());
Dan Gohman35738ac2009-05-04 22:30:44 +00005836 // this now dangles!
5837}
5838
Dan Gohman81f91212010-07-28 01:09:07 +00005839void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005840 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005841
Dan Gohman35738ac2009-05-04 22:30:44 +00005842 // Forget all the expressions associated with users of the old value,
5843 // so that future queries will recompute the expressions using the new
5844 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005845 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005846 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005847 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005848 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5849 UI != UE; ++UI)
5850 Worklist.push_back(*UI);
5851 while (!Worklist.empty()) {
5852 User *U = Worklist.pop_back_val();
5853 // Deleting the Old value will cause this to dangle. Postpone
5854 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005855 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005856 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005857 if (!Visited.insert(U))
5858 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005859 if (PHINode *PN = dyn_cast<PHINode>(U))
5860 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005861 SE->ValueExprMap.erase(U);
Dan Gohman69fcae92009-07-14 14:34:04 +00005862 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5863 UI != UE; ++UI)
5864 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005865 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005866 // Delete the Old value.
5867 if (PHINode *PN = dyn_cast<PHINode>(Old))
5868 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005869 SE->ValueExprMap.erase(Old);
Dan Gohman59846ac2010-07-28 00:28:25 +00005870 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005871}
5872
Dan Gohman1959b752009-05-19 19:22:47 +00005873ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005874 : CallbackVH(V), SE(se) {}
5875
5876//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005877// ScalarEvolution Class Implementation
5878//===----------------------------------------------------------------------===//
5879
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005880ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005881 : FunctionPass(ID), FirstUnknown(0) {
Owen Anderson081c34b2010-10-19 17:21:58 +00005882 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005883}
5884
Chris Lattner53e677a2004-04-02 20:23:17 +00005885bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005886 this->F = &F;
5887 LI = &getAnalysis<LoopInfo>();
5888 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005889 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005890 return false;
5891}
5892
5893void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005894 // Iterate through all the SCEVUnknown instances and call their
5895 // destructors, so that they release their references to their values.
5896 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5897 U->~SCEVUnknown();
5898 FirstUnknown = 0;
5899
Dan Gohmane8ac3f32010-08-27 18:55:03 +00005900 ValueExprMap.clear();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005901 BackedgeTakenCounts.clear();
5902 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005903 ValuesAtScopes.clear();
Dan Gohman714b5292010-11-17 23:21:44 +00005904 LoopDispositions.clear();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00005905 BlockDispositions.clear();
Dan Gohman6678e7b2010-11-17 02:44:44 +00005906 UnsignedRanges.clear();
5907 SignedRanges.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005908 UniqueSCEVs.clear();
5909 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005910}
5911
5912void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5913 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005914 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005915 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005916}
5917
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005918bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005919 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005920}
5921
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005922static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005923 const Loop *L) {
5924 // Print all inner loops first
5925 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5926 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005927
Dan Gohman30733292010-01-09 18:17:45 +00005928 OS << "Loop ";
5929 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5930 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005931
Dan Gohman5d984912009-12-18 01:14:11 +00005932 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005933 L->getExitBlocks(ExitBlocks);
5934 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005935 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005936
Dan Gohman46bdfb02009-02-24 18:55:53 +00005937 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5938 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005939 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005940 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005941 }
5942
Dan Gohman30733292010-01-09 18:17:45 +00005943 OS << "\n"
5944 "Loop ";
5945 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5946 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005947
5948 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5949 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5950 } else {
5951 OS << "Unpredictable max backedge-taken count. ";
5952 }
5953
5954 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005955}
5956
Dan Gohman5d984912009-12-18 01:14:11 +00005957void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005958 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005959 // out SCEV values of all instructions that are interesting. Doing
5960 // this potentially causes it to create new SCEV objects though,
5961 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005962 // observable from outside the class though, so casting away the
5963 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005964 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005965
Dan Gohman30733292010-01-09 18:17:45 +00005966 OS << "Classifying expressions for: ";
5967 WriteAsOperand(OS, F, /*PrintType=*/false);
5968 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005969 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005970 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005971 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005972 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005973 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005974 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005975
Dan Gohman0c689c52009-06-19 17:49:54 +00005976 const Loop *L = LI->getLoopFor((*I).getParent());
5977
Dan Gohman0bba49c2009-07-07 17:06:11 +00005978 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005979 if (AtUse != SV) {
5980 OS << " --> ";
5981 AtUse->print(OS);
5982 }
5983
5984 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005985 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005986 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +00005987 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005988 OS << "<<Unknown>>";
5989 } else {
5990 OS << *ExitValue;
5991 }
5992 }
5993
Chris Lattner53e677a2004-04-02 20:23:17 +00005994 OS << "\n";
5995 }
5996
Dan Gohman30733292010-01-09 18:17:45 +00005997 OS << "Determining loop execution counts for: ";
5998 WriteAsOperand(OS, F, /*PrintType=*/false);
5999 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00006000 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6001 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00006002}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00006003
Dan Gohman714b5292010-11-17 23:21:44 +00006004ScalarEvolution::LoopDisposition
6005ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6006 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6007 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6008 Values.insert(std::make_pair(L, LoopVariant));
6009 if (!Pair.second)
6010 return Pair.first->second;
6011
6012 LoopDisposition D = computeLoopDisposition(S, L);
6013 return LoopDispositions[S][L] = D;
6014}
6015
6016ScalarEvolution::LoopDisposition
6017ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Dan Gohman17ead4f2010-11-17 21:23:15 +00006018 switch (S->getSCEVType()) {
6019 case scConstant:
Dan Gohman714b5292010-11-17 23:21:44 +00006020 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006021 case scTruncate:
6022 case scZeroExtend:
6023 case scSignExtend:
Dan Gohman714b5292010-11-17 23:21:44 +00006024 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006025 case scAddRecExpr: {
6026 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6027
Dan Gohman714b5292010-11-17 23:21:44 +00006028 // If L is the addrec's loop, it's computable.
6029 if (AR->getLoop() == L)
6030 return LoopComputable;
6031
Dan Gohman17ead4f2010-11-17 21:23:15 +00006032 // Add recurrences are never invariant in the function-body (null loop).
6033 if (!L)
Dan Gohman714b5292010-11-17 23:21:44 +00006034 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006035
6036 // This recurrence is variant w.r.t. L if L contains AR's loop.
6037 if (L->contains(AR->getLoop()))
Dan Gohman714b5292010-11-17 23:21:44 +00006038 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006039
6040 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6041 if (AR->getLoop()->contains(L))
Dan Gohman714b5292010-11-17 23:21:44 +00006042 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006043
6044 // This recurrence is variant w.r.t. L if any of its operands
6045 // are variant.
6046 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6047 I != E; ++I)
6048 if (!isLoopInvariant(*I, L))
Dan Gohman714b5292010-11-17 23:21:44 +00006049 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006050
6051 // Otherwise it's loop-invariant.
Dan Gohman714b5292010-11-17 23:21:44 +00006052 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006053 }
6054 case scAddExpr:
6055 case scMulExpr:
6056 case scUMaxExpr:
6057 case scSMaxExpr: {
6058 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman17ead4f2010-11-17 21:23:15 +00006059 bool HasVarying = false;
6060 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6061 I != E; ++I) {
Dan Gohman714b5292010-11-17 23:21:44 +00006062 LoopDisposition D = getLoopDisposition(*I, L);
6063 if (D == LoopVariant)
6064 return LoopVariant;
6065 if (D == LoopComputable)
6066 HasVarying = true;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006067 }
Dan Gohman714b5292010-11-17 23:21:44 +00006068 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006069 }
6070 case scUDivExpr: {
6071 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman714b5292010-11-17 23:21:44 +00006072 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6073 if (LD == LoopVariant)
6074 return LoopVariant;
6075 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6076 if (RD == LoopVariant)
6077 return LoopVariant;
6078 return (LD == LoopInvariant && RD == LoopInvariant) ?
6079 LoopInvariant : LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006080 }
6081 case scUnknown:
Dan Gohman714b5292010-11-17 23:21:44 +00006082 // All non-instruction values are loop invariant. All instructions are loop
6083 // invariant if they are not contained in the specified loop.
6084 // Instructions are never considered invariant in the function body
6085 // (null loop) because they are defined within the "loop".
6086 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6087 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6088 return LoopInvariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006089 case scCouldNotCompute:
6090 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman714b5292010-11-17 23:21:44 +00006091 return LoopVariant;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006092 default: break;
6093 }
6094 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman714b5292010-11-17 23:21:44 +00006095 return LoopVariant;
6096}
6097
6098bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6099 return getLoopDisposition(S, L) == LoopInvariant;
6100}
6101
6102bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6103 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohman17ead4f2010-11-17 21:23:15 +00006104}
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006105
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006106ScalarEvolution::BlockDisposition
6107ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6108 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6109 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6110 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6111 if (!Pair.second)
6112 return Pair.first->second;
6113
6114 BlockDisposition D = computeBlockDisposition(S, BB);
6115 return BlockDispositions[S][BB] = D;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006116}
6117
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006118ScalarEvolution::BlockDisposition
6119ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006120 switch (S->getSCEVType()) {
6121 case scConstant:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006122 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006123 case scTruncate:
6124 case scZeroExtend:
6125 case scSignExtend:
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006126 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006127 case scAddRecExpr: {
6128 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006129 // to test for proper dominance too, because the instruction which
6130 // produces the addrec's value is a PHI, and a PHI effectively properly
6131 // dominates its entire containing block.
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006132 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6133 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006134 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006135 }
6136 // FALL THROUGH into SCEVNAryExpr handling.
6137 case scAddExpr:
6138 case scMulExpr:
6139 case scUMaxExpr:
6140 case scSMaxExpr: {
6141 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006142 bool Proper = true;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006143 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006144 I != E; ++I) {
6145 BlockDisposition D = getBlockDisposition(*I, BB);
6146 if (D == DoesNotDominateBlock)
6147 return DoesNotDominateBlock;
6148 if (D == DominatesBlock)
6149 Proper = false;
6150 }
6151 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006152 }
6153 case scUDivExpr: {
6154 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006155 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6156 BlockDisposition LD = getBlockDisposition(LHS, BB);
6157 if (LD == DoesNotDominateBlock)
6158 return DoesNotDominateBlock;
6159 BlockDisposition RD = getBlockDisposition(RHS, BB);
6160 if (RD == DoesNotDominateBlock)
6161 return DoesNotDominateBlock;
6162 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6163 ProperlyDominatesBlock : DominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006164 }
6165 case scUnknown:
6166 if (Instruction *I =
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006167 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6168 if (I->getParent() == BB)
6169 return DominatesBlock;
6170 if (DT->properlyDominates(I->getParent(), BB))
6171 return ProperlyDominatesBlock;
6172 return DoesNotDominateBlock;
6173 }
6174 return ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006175 case scCouldNotCompute:
6176 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006177 return DoesNotDominateBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006178 default: break;
6179 }
6180 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006181 return DoesNotDominateBlock;
6182}
6183
6184bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6185 return getBlockDisposition(S, BB) >= DominatesBlock;
6186}
6187
6188bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6189 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohmandc0e8fb2010-11-17 21:41:58 +00006190}
Dan Gohman4ce32db2010-11-17 22:27:42 +00006191
6192bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6193 switch (S->getSCEVType()) {
6194 case scConstant:
6195 return false;
6196 case scTruncate:
6197 case scZeroExtend:
6198 case scSignExtend: {
6199 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6200 const SCEV *CastOp = Cast->getOperand();
6201 return Op == CastOp || hasOperand(CastOp, Op);
6202 }
6203 case scAddRecExpr:
6204 case scAddExpr:
6205 case scMulExpr:
6206 case scUMaxExpr:
6207 case scSMaxExpr: {
6208 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6209 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6210 I != E; ++I) {
6211 const SCEV *NAryOp = *I;
6212 if (NAryOp == Op || hasOperand(NAryOp, Op))
6213 return true;
6214 }
6215 return false;
6216 }
6217 case scUDivExpr: {
6218 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6219 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6220 return LHS == Op || hasOperand(LHS, Op) ||
6221 RHS == Op || hasOperand(RHS, Op);
6222 }
6223 case scUnknown:
6224 return false;
6225 case scCouldNotCompute:
6226 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6227 return false;
6228 default: break;
6229 }
6230 llvm_unreachable("Unknown SCEV kind!");
6231 return false;
6232}
Dan Gohman56a75682010-11-17 23:28:48 +00006233
6234void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6235 ValuesAtScopes.erase(S);
6236 LoopDispositions.erase(S);
Dan Gohman9c9fcfc2010-11-18 00:34:22 +00006237 BlockDispositions.erase(S);
Dan Gohman56a75682010-11-17 23:28:48 +00006238 UnsignedRanges.erase(S);
6239 SignedRanges.erase(S);
6240}