blob: d8e56768da53c35a17cb45f662a6751ace977c53 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Daniel Jasperaec2fa32016-12-19 08:22:17 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
Sanjay Patel54656ca2017-02-06 18:26:06 +000023#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000024#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000025#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000026#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000027#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000029#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000030#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000031#include "llvm/IR/GlobalAlias.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/Metadata.h"
37#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000038#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000039#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000040#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000041#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000042#include <algorithm>
43#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000044#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000045using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000046using namespace llvm::PatternMatch;
47
48const unsigned MaxDepth = 6;
49
Philip Reames1c292272015-03-10 22:43:20 +000050// Controls the number of uses of the value searched for possible
51// dominating comparisons.
52static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000053 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000054
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +000055// This optimization is known to cause performance regressions is some cases,
56// keep it under a temporary flag for now.
57static cl::opt<bool>
58DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
59 cl::Hidden, cl::init(true));
60
Sanjay Patelaee84212014-11-04 16:27:42 +000061/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
62/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000063static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000064 if (unsigned BitWidth = Ty->getScalarSizeInBits())
65 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000066
Mehdi Aminia28d91d2015-03-10 02:37:25 +000067 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000068}
Chris Lattner965c7692008-06-02 01:18:21 +000069
Benjamin Kramercfd8d902014-09-12 08:56:53 +000070namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000071// Simplifying using an assume can only be done in a particular control-flow
72// context (the context instruction provides that context). If an assume and
73// the context instruction are not in the same block then the DT helps in
74// figuring out if we can use it.
75struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000076 const DataLayout &DL;
Daniel Jasperaec2fa32016-12-19 08:22:17 +000077 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000078 const Instruction *CxtI;
79 const DominatorTree *DT;
Sanjay Patel54656ca2017-02-06 18:26:06 +000080 // Unlike the other analyses, this may be a nullptr because not all clients
81 // provide it currently.
82 OptimizationRemarkEmitter *ORE;
Hal Finkel60db0582014-09-07 18:57:58 +000083
Matthias Braun37e5d792016-01-28 06:29:33 +000084 /// Set of assumptions that should be excluded from further queries.
85 /// This is because of the potential for mutual recursion to cause
86 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
87 /// classic case of this is assume(x = y), which will attempt to determine
88 /// bits in x from bits in y, which will attempt to determine bits in y from
89 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
90 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
91 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
92 /// on.
Li Huang755f75f2016-10-15 19:00:04 +000093 std::array<const Value *, MaxDepth> Excluded;
Matthias Braun37e5d792016-01-28 06:29:33 +000094 unsigned NumExcluded;
95
Daniel Jasperaec2fa32016-12-19 08:22:17 +000096 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +000097 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
98 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000099
100 Query(const Query &Q, const Value *NewExcl)
Sanjay Patel54656ca2017-02-06 18:26:06 +0000101 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
102 NumExcluded(Q.NumExcluded) {
Matthias Braun37e5d792016-01-28 06:29:33 +0000103 Excluded = Q.Excluded;
104 Excluded[NumExcluded++] = NewExcl;
105 assert(NumExcluded <= Excluded.size());
106 }
107
108 bool isExcluded(const Value *Value) const {
109 if (NumExcluded == 0)
110 return false;
111 auto End = Excluded.begin() + NumExcluded;
112 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000113 }
114};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000115} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000116
Sanjay Patel547e9752014-11-04 16:09:50 +0000117// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000118// the preferred context instruction (if any).
119static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
120 // If we've been provided with a context instruction, then use that (provided
121 // it has been inserted).
122 if (CxtI && CxtI->getParent())
123 return CxtI;
124
125 // If the value is really an already-inserted instruction, then use that.
126 CxtI = dyn_cast<Instruction>(V);
127 if (CxtI && CxtI->getParent())
128 return CxtI;
129
130 return nullptr;
131}
132
Pete Cooper35b00d52016-08-13 01:05:32 +0000133static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000134 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000135
Pete Cooper35b00d52016-08-13 01:05:32 +0000136void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000137 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000138 AssumptionCache *AC, const Instruction *CxtI,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000139 const DominatorTree *DT,
140 OptimizationRemarkEmitter *ORE) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000141 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
Sanjay Patel54656ca2017-02-06 18:26:06 +0000142 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
Hal Finkel60db0582014-09-07 18:57:58 +0000143}
144
Pete Cooper35b00d52016-08-13 01:05:32 +0000145bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
146 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000147 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wuca321902015-05-14 23:53:19 +0000148 const DominatorTree *DT) {
149 assert(LHS->getType() == RHS->getType() &&
150 "LHS and RHS should have the same type");
151 assert(LHS->getType()->isIntOrIntVectorTy() &&
152 "LHS and RHS should be integers");
153 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
154 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
155 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000156 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
157 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
Jingyue Wuca321902015-05-14 23:53:19 +0000158 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
159}
160
Pete Cooper35b00d52016-08-13 01:05:32 +0000161static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000162 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000163
Pete Cooper35b00d52016-08-13 01:05:32 +0000164void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000165 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000166 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000167 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000168 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000169 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000170}
171
Pete Cooper35b00d52016-08-13 01:05:32 +0000172static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000173 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000174
Pete Cooper35b00d52016-08-13 01:05:32 +0000175bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
176 bool OrZero,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000177 unsigned Depth, AssumptionCache *AC,
178 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000179 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000180 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000181 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000182}
183
Pete Cooper35b00d52016-08-13 01:05:32 +0000184static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000185
Pete Cooper35b00d52016-08-13 01:05:32 +0000186bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000187 AssumptionCache *AC, const Instruction *CxtI,
188 const DominatorTree *DT) {
189 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000190}
191
Pete Cooper35b00d52016-08-13 01:05:32 +0000192bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000193 unsigned Depth,
194 AssumptionCache *AC, const Instruction *CxtI,
Jingyue Wu10fcea52015-08-20 18:27:04 +0000195 const DominatorTree *DT) {
196 bool NonNegative, Negative;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000197 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +0000198 return NonNegative;
199}
200
Pete Cooper35b00d52016-08-13 01:05:32 +0000201bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000202 AssumptionCache *AC, const Instruction *CxtI,
203 const DominatorTree *DT) {
Philip Reames8f12eba2016-03-09 21:31:47 +0000204 if (auto *CI = dyn_cast<ConstantInt>(V))
205 return CI->getValue().isStrictlyPositive();
Sanjoy Das6082c1a2016-05-07 02:08:15 +0000206
Philip Reames8f12eba2016-03-09 21:31:47 +0000207 // TODO: We'd doing two recursive queries here. We should factor this such
208 // that only a single query is needed.
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000209 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
210 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
Philip Reames8f12eba2016-03-09 21:31:47 +0000211}
212
Pete Cooper35b00d52016-08-13 01:05:32 +0000213bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000214 AssumptionCache *AC, const Instruction *CxtI,
215 const DominatorTree *DT) {
Nick Lewycky762f8a82016-04-21 00:53:14 +0000216 bool NonNegative, Negative;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000217 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
Nick Lewycky762f8a82016-04-21 00:53:14 +0000218 return Negative;
219}
220
Pete Cooper35b00d52016-08-13 01:05:32 +0000221static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000222
Pete Cooper35b00d52016-08-13 01:05:32 +0000223bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000224 const DataLayout &DL,
225 AssumptionCache *AC, const Instruction *CxtI,
Pete Cooper35b00d52016-08-13 01:05:32 +0000226 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000227 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
228 safeCxtI(V1, safeCxtI(V2, CxtI)),
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000229 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000230}
231
Pete Cooper35b00d52016-08-13 01:05:32 +0000232static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000233 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000234
Pete Cooper35b00d52016-08-13 01:05:32 +0000235bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
236 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000237 unsigned Depth, AssumptionCache *AC,
238 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000239 return ::MaskedValueIsZero(V, Mask, Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000240 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000241}
242
Pete Cooper35b00d52016-08-13 01:05:32 +0000243static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
244 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000245
Pete Cooper35b00d52016-08-13 01:05:32 +0000246unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000247 unsigned Depth, AssumptionCache *AC,
248 const Instruction *CxtI,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000249 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000250 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000251}
252
Pete Cooper35b00d52016-08-13 01:05:32 +0000253static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
254 bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000255 APInt &KnownZero, APInt &KnownOne,
256 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000257 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000258 if (!Add) {
Pete Cooper35b00d52016-08-13 01:05:32 +0000259 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000260 // We know that the top bits of C-X are clear if X contains less bits
261 // than C (i.e. no wrap-around can happen). For example, 20-X is
262 // positive if we can prove that X is >= 0 and < 16.
263 if (!CLHS->getValue().isNegative()) {
264 unsigned BitWidth = KnownZero.getBitWidth();
265 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
266 // NLZ can't be BitWidth with no sign bit
267 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000268 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000269
270 // If all of the MaskV bits are known to be zero, then we know the
271 // output top bits are zero, because we now know that the output is
272 // from [0-C].
273 if ((KnownZero2 & MaskV) == MaskV) {
274 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
275 // Top bits known zero.
276 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
277 }
278 }
279 }
280 }
281
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000282 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000283
David Majnemer97ddca32014-08-22 00:40:43 +0000284 // If an initial sequence of bits in the result is not needed, the
285 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000286 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000287 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
288 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000289
David Majnemer97ddca32014-08-22 00:40:43 +0000290 // Carry in a 1 for a subtract, rather than a 0.
291 APInt CarryIn(BitWidth, 0);
292 if (!Add) {
293 // Sum = LHS + ~RHS + 1
294 std::swap(KnownZero2, KnownOne2);
295 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000296 }
297
David Majnemer97ddca32014-08-22 00:40:43 +0000298 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
299 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
300
301 // Compute known bits of the carry.
302 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
303 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
304
305 // Compute set of known bits (where all three relevant bits are known).
306 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
307 APInt RHSKnown = KnownZero2 | KnownOne2;
308 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
309 APInt Known = LHSKnown & RHSKnown & CarryKnown;
310
311 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
312 "known bits of sum differ");
313
314 // Compute known bits of the result.
315 KnownZero = ~PossibleSumOne & Known;
316 KnownOne = PossibleSumOne & Known;
317
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000318 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000319 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000320 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000321 // Adding two non-negative numbers, or subtracting a negative number from
322 // a non-negative one, can't wrap into negative.
323 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
324 KnownZero |= APInt::getSignBit(BitWidth);
325 // Adding two negative numbers, or subtracting a non-negative number from
326 // a negative one, can't wrap into non-negative.
327 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
328 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000329 }
330 }
331}
332
Pete Cooper35b00d52016-08-13 01:05:32 +0000333static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
Jay Foada0653a32014-05-14 21:14:37 +0000334 APInt &KnownZero, APInt &KnownOne,
335 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000336 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000337 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000338 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
339 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000340
341 bool isKnownNegative = false;
342 bool isKnownNonNegative = false;
343 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000344 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000345 if (Op0 == Op1) {
346 // The product of a number with itself is non-negative.
347 isKnownNonNegative = true;
348 } else {
349 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
350 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
351 bool isKnownNegativeOp1 = KnownOne.isNegative();
352 bool isKnownNegativeOp0 = KnownOne2.isNegative();
353 // The product of two numbers with the same sign is non-negative.
354 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
355 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
356 // The product of a negative number and a non-negative number is either
357 // negative or zero.
358 if (!isKnownNonNegative)
359 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000360 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000361 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000362 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000363 }
364 }
365
366 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000367 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000368 // More trickiness is possible, but this is sufficient for the
369 // interesting case of alignment computation.
370 KnownOne.clearAllBits();
371 unsigned TrailZ = KnownZero.countTrailingOnes() +
372 KnownZero2.countTrailingOnes();
373 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
374 KnownZero2.countLeadingOnes(),
375 BitWidth) - BitWidth;
376
377 TrailZ = std::min(TrailZ, BitWidth);
378 LeadZ = std::min(LeadZ, BitWidth);
379 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
380 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000381
382 // Only make use of no-wrap flags if we failed to compute the sign bit
383 // directly. This matters if the multiplication always overflows, in
384 // which case we prefer to follow the result of the direct computation,
385 // though as the program is invoking undefined behaviour we can choose
386 // whatever we like here.
387 if (isKnownNonNegative && !KnownOne.isNegative())
388 KnownZero.setBit(BitWidth - 1);
389 else if (isKnownNegative && !KnownZero.isNegative())
390 KnownOne.setBit(BitWidth - 1);
391}
392
Jingyue Wu37fcb592014-06-19 16:50:16 +0000393void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000394 APInt &KnownZero,
395 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000396 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000397 unsigned NumRanges = Ranges.getNumOperands() / 2;
398 assert(NumRanges >= 1);
399
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000400 KnownZero.setAllBits();
401 KnownOne.setAllBits();
402
Rafael Espindola53190532012-03-30 15:52:11 +0000403 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000404 ConstantInt *Lower =
405 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
406 ConstantInt *Upper =
407 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000408 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000409
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000410 // The first CommonPrefixBits of all values in Range are equal.
411 unsigned CommonPrefixBits =
412 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
413
414 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
415 KnownOne &= Range.getUnsignedMax() & Mask;
416 KnownZero &= ~Range.getUnsignedMax() & Mask;
417 }
Rafael Espindola53190532012-03-30 15:52:11 +0000418}
Jay Foad5a29c362014-05-15 12:12:55 +0000419
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000420static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
Hal Finkel60db0582014-09-07 18:57:58 +0000421 SmallVector<const Value *, 16> WorkSet(1, I);
422 SmallPtrSet<const Value *, 32> Visited;
423 SmallPtrSet<const Value *, 16> EphValues;
424
Hal Finkelf2199b22015-10-23 20:37:08 +0000425 // The instruction defining an assumption's condition itself is always
426 // considered ephemeral to that assumption (even if it has other
427 // non-ephemeral users). See r246696's test case for an example.
David Majnemer0a16c222016-08-11 21:15:00 +0000428 if (is_contained(I->operands(), E))
Hal Finkelf2199b22015-10-23 20:37:08 +0000429 return true;
430
Hal Finkel60db0582014-09-07 18:57:58 +0000431 while (!WorkSet.empty()) {
432 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000433 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000434 continue;
435
436 // If all uses of this value are ephemeral, then so is this value.
David Majnemer0a16c222016-08-11 21:15:00 +0000437 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000438 if (V == E)
439 return true;
440
441 EphValues.insert(V);
442 if (const User *U = dyn_cast<User>(V))
443 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
444 J != JE; ++J) {
445 if (isSafeToSpeculativelyExecute(*J))
446 WorkSet.push_back(*J);
447 }
448 }
449 }
450
451 return false;
452}
453
454// Is this an intrinsic that cannot be speculated but also cannot trap?
455static bool isAssumeLikeIntrinsic(const Instruction *I) {
456 if (const CallInst *CI = dyn_cast<CallInst>(I))
457 if (Function *F = CI->getCalledFunction())
458 switch (F->getIntrinsicID()) {
459 default: break;
460 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
461 case Intrinsic::assume:
462 case Intrinsic::dbg_declare:
463 case Intrinsic::dbg_value:
464 case Intrinsic::invariant_start:
465 case Intrinsic::invariant_end:
466 case Intrinsic::lifetime_start:
467 case Intrinsic::lifetime_end:
468 case Intrinsic::objectsize:
469 case Intrinsic::ptr_annotation:
470 case Intrinsic::var_annotation:
471 return true;
472 }
473
474 return false;
475}
476
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000477bool llvm::isValidAssumeForContext(const Instruction *Inv,
478 const Instruction *CxtI,
479 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000480
481 // There are two restrictions on the use of an assume:
482 // 1. The assume must dominate the context (or the control flow must
483 // reach the assume whenever it reaches the context).
484 // 2. The context must not be in the assume's set of ephemeral values
485 // (otherwise we will use the assume to prove that the condition
486 // feeding the assume is trivially true, thus causing the removal of
487 // the assume).
488
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000489 if (DT) {
Pete Cooper54a02552016-08-12 01:00:15 +0000490 if (DT->dominates(Inv, CxtI))
Hal Finkel60db0582014-09-07 18:57:58 +0000491 return true;
Pete Cooper54a02552016-08-12 01:00:15 +0000492 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
493 // We don't have a DT, but this trivially dominates.
494 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000495 }
496
Pete Cooper54a02552016-08-12 01:00:15 +0000497 // With or without a DT, the only remaining case we will check is if the
498 // instructions are in the same BB. Give up if that is not the case.
499 if (Inv->getParent() != CxtI->getParent())
500 return false;
501
502 // If we have a dom tree, then we now know that the assume doens't dominate
503 // the other instruction. If we don't have a dom tree then we can check if
504 // the assume is first in the BB.
505 if (!DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000506 // Search forward from the assume until we reach the context (or the end
507 // of the block); the common case is that the assume will come first.
Pete Cooperfa7ae4f2016-08-11 22:23:07 +0000508 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
Hal Finkel60db0582014-09-07 18:57:58 +0000509 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000510 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000511 return true;
Hal Finkel60db0582014-09-07 18:57:58 +0000512 }
513
Pete Cooper54a02552016-08-12 01:00:15 +0000514 // The context comes first, but they're both in the same block. Make sure
515 // there is nothing in between that might interrupt the control flow.
516 for (BasicBlock::const_iterator I =
517 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
518 I != IE; ++I)
519 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
520 return false;
521
522 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000523}
524
Pete Cooper35b00d52016-08-13 01:05:32 +0000525static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000526 APInt &KnownOne, unsigned Depth,
527 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000528 // Use of assumptions is context-sensitive. If we don't have a context, we
529 // cannot use them!
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000530 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000531 return;
532
533 unsigned BitWidth = KnownZero.getBitWidth();
534
Hal Finkel8a9a7832017-01-11 13:24:24 +0000535 // Note that the patterns below need to be kept in sync with the code
536 // in AssumptionCache::updateAffectedValues.
537
538 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000539 if (!AssumeVH)
Chandler Carruth66b31302015-01-04 12:03:27 +0000540 continue;
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000541 CallInst *I = cast<CallInst>(AssumeVH);
542 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
543 "Got assumption for the wrong function!");
544 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000545 continue;
546
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000547 // Warning: This loop can end up being somewhat performance sensetive.
548 // We're running this loop for once for each value queried resulting in a
549 // runtime of ~O(#assumes * #values).
Philip Reames00d3b272014-11-24 23:44:28 +0000550
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000551 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
552 "must be an assume intrinsic");
553
554 Value *Arg = I->getArgOperand(0);
555
556 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000557 assert(BitWidth == 1 && "assume operand is not i1?");
558 KnownZero.clearAllBits();
559 KnownOne.setAllBits();
560 return;
561 }
Sanjay Patel96669962017-01-17 18:15:49 +0000562 if (match(Arg, m_Not(m_Specific(V))) &&
563 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
564 assert(BitWidth == 1 && "assume operand is not i1?");
565 KnownZero.setAllBits();
566 KnownOne.clearAllBits();
567 return;
568 }
Hal Finkel60db0582014-09-07 18:57:58 +0000569
David Majnemer9b609752014-12-12 23:59:29 +0000570 // The remaining tests are all recursive, so bail out if we hit the limit.
571 if (Depth == MaxDepth)
572 continue;
573
Hal Finkel60db0582014-09-07 18:57:58 +0000574 Value *A, *B;
575 auto m_V = m_CombineOr(m_Specific(V),
576 m_CombineOr(m_PtrToInt(m_Specific(V)),
577 m_BitCast(m_Specific(V))));
578
579 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000580 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000581 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000582 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000583 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000584 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000585 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000586 KnownZero |= RHSKnownZero;
587 KnownOne |= RHSKnownOne;
588 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000589 } else if (match(Arg,
590 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000591 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000592 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000593 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000594 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000595 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000596 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000597
598 // For those bits in the mask that are known to be one, we can propagate
599 // known bits from the RHS to V.
600 KnownZero |= RHSKnownZero & MaskKnownOne;
601 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000602 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000603 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
604 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000605 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000606 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000607 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000608 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000609 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000610 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000611
612 // For those bits in the mask that are known to be one, we can propagate
613 // inverted known bits from the RHS to V.
614 KnownZero |= RHSKnownOne & MaskKnownOne;
615 KnownOne |= RHSKnownZero & MaskKnownOne;
616 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000617 } else if (match(Arg,
618 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000619 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000620 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000621 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000622 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000623 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000624 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000625
626 // For those bits in B that are known to be zero, we can propagate known
627 // bits from the RHS to V.
628 KnownZero |= RHSKnownZero & BKnownZero;
629 KnownOne |= RHSKnownOne & BKnownZero;
630 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000631 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
632 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000633 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000634 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000635 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000636 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000637 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000638 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000639
640 // For those bits in B that are known to be zero, we can propagate
641 // inverted known bits from the RHS to V.
642 KnownZero |= RHSKnownOne & BKnownZero;
643 KnownOne |= RHSKnownZero & BKnownZero;
644 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000645 } else if (match(Arg,
646 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000647 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000648 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000649 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000650 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000651 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000652 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000653
654 // For those bits in B that are known to be zero, we can propagate known
655 // bits from the RHS to V. For those bits in B that are known to be one,
656 // we can propagate inverted known bits from the RHS to V.
657 KnownZero |= RHSKnownZero & BKnownZero;
658 KnownOne |= RHSKnownOne & BKnownZero;
659 KnownZero |= RHSKnownOne & BKnownOne;
660 KnownOne |= RHSKnownZero & BKnownOne;
661 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000662 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
663 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000664 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000665 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000666 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000667 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000668 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000669 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000670
671 // For those bits in B that are known to be zero, we can propagate
672 // inverted known bits from the RHS to V. For those bits in B that are
673 // known to be one, we can propagate known bits from the RHS to V.
674 KnownZero |= RHSKnownOne & BKnownZero;
675 KnownOne |= RHSKnownZero & BKnownZero;
676 KnownZero |= RHSKnownZero & BKnownOne;
677 KnownOne |= RHSKnownOne & BKnownOne;
678 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000679 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
680 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000681 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000682 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000683 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000684 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000685 // For those bits in RHS that are known, we can propagate them to known
686 // bits in V shifted to the right by C.
687 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
688 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
689 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000690 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
691 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000692 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000693 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000694 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000695 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000696 // For those bits in RHS that are known, we can propagate them inverted
697 // to known bits in V shifted to the right by C.
698 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
699 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
700 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000701 } else if (match(Arg,
702 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000703 m_AShr(m_V, m_ConstantInt(C))),
704 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000705 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000706 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000707 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000708 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000709 // For those bits in RHS that are known, we can propagate them to known
710 // bits in V shifted to the right by C.
711 KnownZero |= RHSKnownZero << C->getZExtValue();
712 KnownOne |= RHSKnownOne << C->getZExtValue();
713 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000714 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000715 m_LShr(m_V, m_ConstantInt(C)),
716 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000717 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000718 Pred == ICmpInst::ICMP_EQ &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000719 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000720 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000721 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000722 // For those bits in RHS that are known, we can propagate them inverted
723 // to known bits in V shifted to the right by C.
724 KnownZero |= RHSKnownOne << C->getZExtValue();
725 KnownOne |= RHSKnownZero << C->getZExtValue();
726 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000727 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000728 Pred == ICmpInst::ICMP_SGE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000729 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000730 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000731 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000732
733 if (RHSKnownZero.isNegative()) {
734 // We know that the sign bit is zero.
735 KnownZero |= APInt::getSignBit(BitWidth);
736 }
737 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000738 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000739 Pred == ICmpInst::ICMP_SGT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000740 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000741 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000742 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000743
744 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
745 // We know that the sign bit is zero.
746 KnownZero |= APInt::getSignBit(BitWidth);
747 }
748 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000749 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000750 Pred == ICmpInst::ICMP_SLE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000751 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000752 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000753 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000754
755 if (RHSKnownOne.isNegative()) {
756 // We know that the sign bit is one.
757 KnownOne |= APInt::getSignBit(BitWidth);
758 }
759 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000760 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000761 Pred == ICmpInst::ICMP_SLT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000762 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000763 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000764 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000765
766 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
767 // We know that the sign bit is one.
768 KnownOne |= APInt::getSignBit(BitWidth);
769 }
770 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000771 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000772 Pred == ICmpInst::ICMP_ULE &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000774 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000775 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000776
777 // Whatever high bits in c are zero are known to be zero.
778 KnownZero |=
779 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
780 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000781 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000782 Pred == ICmpInst::ICMP_ULT &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000783 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000784 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000785 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000786
787 // Whatever high bits in c are zero are known to be zero (if c is a power
788 // of 2, then one more).
Daniel Jasperaec2fa32016-12-19 08:22:17 +0000789 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000790 KnownZero |=
791 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
792 else
793 KnownZero |=
794 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000795 }
796 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000797
798 // If assumptions conflict with each other or previous known bits, then we
Sanjay Patel54656ca2017-02-06 18:26:06 +0000799 // have a logical fallacy. It's possible that the assumption is not reachable,
800 // so this isn't a real bug. On the other hand, the program may have undefined
801 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
802 // clear out the known bits, try to warn the user, and hope for the best.
Sanjay Patel25f6d712017-02-01 15:41:32 +0000803 if ((KnownZero & KnownOne) != 0) {
804 KnownZero.clearAllBits();
805 KnownOne.clearAllBits();
Sanjay Patel54656ca2017-02-06 18:26:06 +0000806
807 if (Q.ORE) {
808 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
809 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI);
810 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may "
811 "have undefined behavior, or compiler may have "
812 "internal error.");
813 }
Sanjay Patel25f6d712017-02-01 15:41:32 +0000814 }
Hal Finkel60db0582014-09-07 18:57:58 +0000815}
816
Hal Finkelf2199b22015-10-23 20:37:08 +0000817// Compute known bits from a shift operator, including those with a
818// non-constant shift amount. KnownZero and KnownOne are the outputs of this
819// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
820// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
821// functors that, given the known-zero or known-one bits respectively, and a
822// shift amount, compute the implied known-zero or known-one bits of the shift
823// operator's result respectively for that shift amount. The results from calling
824// KZF and KOF are conservatively combined for all permitted shift amounts.
David Majnemer54690dc2016-08-23 20:52:00 +0000825static void computeKnownBitsFromShiftOperator(
826 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2,
827 APInt &KnownOne2, unsigned Depth, const Query &Q,
828 function_ref<APInt(const APInt &, unsigned)> KZF,
829 function_ref<APInt(const APInt &, unsigned)> KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000830 unsigned BitWidth = KnownZero.getBitWidth();
831
832 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
833 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
834
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000835 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000836 KnownZero = KZF(KnownZero, ShiftAmt);
837 KnownOne = KOF(KnownOne, ShiftAmt);
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +0000838 // If there is conflict between KnownZero and KnownOne, this must be an
839 // overflowing left shift, so the shift result is undefined. Clear KnownZero
840 // and KnownOne bits so that other code could propagate this undef.
841 if ((KnownZero & KnownOne) != 0) {
842 KnownZero.clearAllBits();
843 KnownOne.clearAllBits();
844 }
845
Hal Finkelf2199b22015-10-23 20:37:08 +0000846 return;
847 }
848
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000849 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000850
851 // Note: We cannot use KnownZero.getLimitedValue() here, because if
852 // BitWidth > 64 and any upper bits are known, we'll end up returning the
853 // limit value (which implies all bits are known).
854 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
855 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
856
857 // It would be more-clearly correct to use the two temporaries for this
858 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000859 KnownZero.clearAllBits();
860 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000861
James Molloy493e57d2015-10-26 14:10:46 +0000862 // If we know the shifter operand is nonzero, we can sometimes infer more
863 // known bits. However this is expensive to compute, so be lazy about it and
864 // only compute it when absolutely necessary.
865 Optional<bool> ShifterOperandIsNonZero;
866
Hal Finkelf2199b22015-10-23 20:37:08 +0000867 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000868 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
869 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000870 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000871 if (!*ShifterOperandIsNonZero)
872 return;
873 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000874
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000875 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000876
877 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
878 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
879 // Combine the shifted known input bits only for those shift amounts
880 // compatible with its known constraints.
881 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
882 continue;
883 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
884 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000885 // If we know the shifter is nonzero, we may be able to infer more known
886 // bits. This check is sunk down as far as possible to avoid the expensive
887 // call to isKnownNonZero if the cheaper checks above fail.
888 if (ShiftAmt == 0) {
889 if (!ShifterOperandIsNonZero.hasValue())
890 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000891 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000892 if (*ShifterOperandIsNonZero)
893 continue;
894 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000895
896 KnownZero &= KZF(KnownZero2, ShiftAmt);
897 KnownOne &= KOF(KnownOne2, ShiftAmt);
898 }
899
900 // If there are no compatible shift amounts, then we've proven that the shift
901 // amount must be >= the BitWidth, and the result is undefined. We could
902 // return anything we'd like, but we need to make sure the sets of known bits
903 // stay disjoint (it should be better for some other code to actually
904 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000905 if ((KnownZero & KnownOne) != 0) {
906 KnownZero.clearAllBits();
907 KnownOne.clearAllBits();
908 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000909}
910
Pete Cooper35b00d52016-08-13 01:05:32 +0000911static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000912 APInt &KnownOne, unsigned Depth,
913 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000914 unsigned BitWidth = KnownZero.getBitWidth();
915
Chris Lattner965c7692008-06-02 01:18:21 +0000916 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000917 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000918 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000919 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000920 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000921 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000922 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000923 case Instruction::And: {
924 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000925 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
926 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000927
Chris Lattner965c7692008-06-02 01:18:21 +0000928 // Output known-1 bits are only known if set in both the LHS & RHS.
929 KnownOne &= KnownOne2;
930 // Output known-0 are known to be clear if zero in either the LHS | RHS.
931 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000932
933 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
934 // here we handle the more general case of adding any odd number by
935 // matching the form add(x, add(x, y)) where y is odd.
936 // TODO: This could be generalized to clearing any bit set in y where the
937 // following bit is known to be unset in y.
938 Value *Y = nullptr;
939 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
940 m_Value(Y))) ||
941 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
942 m_Value(Y)))) {
943 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000944 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000945 if (KnownOne3.countTrailingOnes() > 0)
946 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
947 }
Jay Foad5a29c362014-05-15 12:12:55 +0000948 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000949 }
950 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000951 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
952 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000953
Chris Lattner965c7692008-06-02 01:18:21 +0000954 // Output known-0 bits are only known if clear in both the LHS & RHS.
955 KnownZero &= KnownZero2;
956 // Output known-1 are known to be set if set in either the LHS | RHS.
957 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000958 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000959 }
960 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000961 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
962 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000963
Chris Lattner965c7692008-06-02 01:18:21 +0000964 // Output known-0 bits are known if clear or set in both the LHS & RHS.
965 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
966 // Output known-1 are known to be set if set in only one of the LHS, RHS.
967 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
968 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000969 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000970 }
971 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000972 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000973 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000974 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000975 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000976 }
977 case Instruction::UDiv: {
978 // For the purposes of computing leading zeros we can conservatively
979 // treat a udiv as a logical right shift by the power of 2 known to
980 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000981 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000982 unsigned LeadZ = KnownZero2.countLeadingOnes();
983
Jay Foad25a5e4c2010-12-01 08:53:58 +0000984 KnownOne2.clearAllBits();
985 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000986 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000987 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
988 if (RHSUnknownLeadingOnes != BitWidth)
989 LeadZ = std::min(BitWidth,
990 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
991
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000992 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000993 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000994 }
David Majnemera19d0f22016-08-06 08:16:00 +0000995 case Instruction::Select: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000996 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
997 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000998
Pete Cooper35b00d52016-08-13 01:05:32 +0000999 const Value *LHS;
1000 const Value *RHS;
David Majnemera19d0f22016-08-06 08:16:00 +00001001 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1002 if (SelectPatternResult::isMinOrMax(SPF)) {
1003 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
1004 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
1005 } else {
1006 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
1007 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1008 }
1009
1010 unsigned MaxHighOnes = 0;
1011 unsigned MaxHighZeros = 0;
1012 if (SPF == SPF_SMAX) {
1013 // If both sides are negative, the result is negative.
1014 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
1015 // We can derive a lower bound on the result by taking the max of the
1016 // leading one bits.
1017 MaxHighOnes =
1018 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1019 // If either side is non-negative, the result is non-negative.
1020 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
1021 MaxHighZeros = 1;
1022 } else if (SPF == SPF_SMIN) {
1023 // If both sides are non-negative, the result is non-negative.
1024 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
1025 // We can derive an upper bound on the result by taking the max of the
1026 // leading zero bits.
1027 MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
1028 KnownZero2.countLeadingOnes());
1029 // If either side is negative, the result is negative.
1030 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
1031 MaxHighOnes = 1;
1032 } else if (SPF == SPF_UMAX) {
1033 // We can derive a lower bound on the result by taking the max of the
1034 // leading one bits.
1035 MaxHighOnes =
1036 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1037 } else if (SPF == SPF_UMIN) {
1038 // We can derive an upper bound on the result by taking the max of the
1039 // leading zero bits.
1040 MaxHighZeros =
1041 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
1042 }
1043
Chris Lattner965c7692008-06-02 01:18:21 +00001044 // Only known if known in both the LHS and RHS.
1045 KnownOne &= KnownOne2;
1046 KnownZero &= KnownZero2;
David Majnemera19d0f22016-08-06 08:16:00 +00001047 if (MaxHighOnes > 0)
1048 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
1049 if (MaxHighZeros > 0)
1050 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
Jay Foad5a29c362014-05-15 12:12:55 +00001051 break;
David Majnemera19d0f22016-08-06 08:16:00 +00001052 }
Chris Lattner965c7692008-06-02 01:18:21 +00001053 case Instruction::FPTrunc:
1054 case Instruction::FPExt:
1055 case Instruction::FPToUI:
1056 case Instruction::FPToSI:
1057 case Instruction::SIToFP:
1058 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001059 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001060 case Instruction::PtrToInt:
1061 case Instruction::IntToPtr:
Justin Bognercd1d5aa2016-08-17 20:30:52 +00001062 // Fall through and handle them the same as zext/trunc.
1063 LLVM_FALLTHROUGH;
Chris Lattner965c7692008-06-02 01:18:21 +00001064 case Instruction::ZExt:
1065 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001066 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001067
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001068 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001069 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1070 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001071 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001072
1073 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001074 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1075 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001076 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001077 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1078 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001079 // Any top bits are known to be zero.
1080 if (BitWidth > SrcBitWidth)
1081 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001082 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001083 }
1084 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001085 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001086 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001087 // TODO: For now, not handling conversions like:
1088 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001089 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001090 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001091 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001092 }
1093 break;
1094 }
1095 case Instruction::SExt: {
1096 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001097 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001098
Jay Foad583abbc2010-12-07 08:25:19 +00001099 KnownZero = KnownZero.trunc(SrcBitWidth);
1100 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001101 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001102 KnownZero = KnownZero.zext(BitWidth);
1103 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001104
1105 // If the sign bit of the input is known set or clear, then we know the
1106 // top bits of the result.
1107 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1108 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1109 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1110 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001111 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001112 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001113 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001114 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001115 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1116 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1117 APInt KZResult =
1118 (KnownZero << ShiftAmt) |
1119 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1120 // If this shift has "nsw" keyword, then the result is either a poison
1121 // value or has the same sign bit as the first operand.
1122 if (NSW && KnownZero.isNegative())
1123 KZResult.setBit(BitWidth - 1);
1124 return KZResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001125 };
1126
Evgeny Stupachenkod7f9c352016-08-24 23:01:33 +00001127 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1128 APInt KOResult = KnownOne << ShiftAmt;
1129 if (NSW && KnownOne.isNegative())
1130 KOResult.setBit(BitWidth - 1);
1131 return KOResult;
Hal Finkelf2199b22015-10-23 20:37:08 +00001132 };
1133
1134 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001135 KnownZero2, KnownOne2, Depth, Q, KZF,
1136 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001137 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001138 }
1139 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001140 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001141 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1142 return APIntOps::lshr(KnownZero, ShiftAmt) |
1143 // High bits known zero.
1144 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1145 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001146
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001147 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Hal Finkelf2199b22015-10-23 20:37:08 +00001148 return APIntOps::lshr(KnownOne, ShiftAmt);
1149 };
1150
1151 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001152 KnownZero2, KnownOne2, Depth, Q, KZF,
1153 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001154 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001155 }
1156 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001157 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001158 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
Hal Finkelf2199b22015-10-23 20:37:08 +00001159 return APIntOps::ashr(KnownZero, ShiftAmt);
1160 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001161
Malcolm Parsons17d266b2017-01-13 17:12:16 +00001162 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
Hal Finkelf2199b22015-10-23 20:37:08 +00001163 return APIntOps::ashr(KnownOne, ShiftAmt);
1164 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001165
Hal Finkelf2199b22015-10-23 20:37:08 +00001166 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001167 KnownZero2, KnownOne2, Depth, Q, KZF,
1168 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001169 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001170 }
Chris Lattner965c7692008-06-02 01:18:21 +00001171 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001172 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001173 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001174 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1175 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001176 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001177 }
Chris Lattner965c7692008-06-02 01:18:21 +00001178 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001179 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001180 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001181 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1182 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001183 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001184 }
1185 case Instruction::SRem:
1186 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001187 APInt RA = Rem->getValue().abs();
1188 if (RA.isPowerOf2()) {
1189 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001190 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001191 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001192
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001193 // The low bits of the first operand are unchanged by the srem.
1194 KnownZero = KnownZero2 & LowBits;
1195 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001196
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001197 // If the first operand is non-negative or has all low bits zero, then
1198 // the upper bits are all zero.
1199 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1200 KnownZero |= ~LowBits;
1201
1202 // If the first operand is negative and not all low bits are zero, then
1203 // the upper bits are all one.
1204 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1205 KnownOne |= ~LowBits;
1206
Craig Topper1bef2c82012-12-22 19:15:35 +00001207 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001208 }
1209 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001210
1211 // The sign bit is the LHS's sign bit, except when the result of the
1212 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001213 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001214 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001215 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1216 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001217 // If it's known zero, our sign bit is also zero.
1218 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001219 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001220 }
1221
Chris Lattner965c7692008-06-02 01:18:21 +00001222 break;
1223 case Instruction::URem: {
1224 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001225 const APInt &RA = Rem->getValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001226 if (RA.isPowerOf2()) {
1227 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001228 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001229 KnownZero |= ~LowBits;
1230 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001231 break;
1232 }
1233 }
1234
1235 // Since the result is less than or equal to either operand, any leading
1236 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001237 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1238 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001239
Chris Lattner4612ae12009-01-20 18:22:57 +00001240 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001241 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001242 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001243 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001244 break;
1245 }
1246
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001247 case Instruction::Alloca: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001248 const AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001249 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001250 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001251 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001252
Chris Lattner965c7692008-06-02 01:18:21 +00001253 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001254 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001255 break;
1256 }
1257 case Instruction::GetElementPtr: {
1258 // Analyze all of the subscripts of this getelementptr instruction
1259 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001260 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001261 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1262 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001263 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1264
1265 gep_type_iterator GTI = gep_type_begin(I);
1266 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1267 Value *Index = I->getOperand(i);
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001268 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001269 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001270
1271 // Handle case when index is vector zeroinitializer
1272 Constant *CIndex = cast<Constant>(Index);
1273 if (CIndex->isZeroValue())
1274 continue;
1275
1276 if (CIndex->getType()->isVectorTy())
1277 Index = CIndex->getSplatValue();
1278
Chris Lattner965c7692008-06-02 01:18:21 +00001279 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001280 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001281 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001282 TrailZ = std::min<unsigned>(TrailZ,
1283 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001284 } else {
1285 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001286 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001287 if (!IndexedTy->isSized()) {
1288 TrailZ = 0;
1289 break;
1290 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001291 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001292 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001293 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001294 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001295 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001296 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001297 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001298 }
1299 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001300
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001301 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001302 break;
1303 }
1304 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00001305 const PHINode *P = cast<PHINode>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001306 // Handle the case of a simple two-predecessor recurrence PHI.
1307 // There's a lot more that could theoretically be done here, but
1308 // this is sufficient to catch some interesting cases.
1309 if (P->getNumIncomingValues() == 2) {
1310 for (unsigned i = 0; i != 2; ++i) {
1311 Value *L = P->getIncomingValue(i);
1312 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001313 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001314 if (!LU)
1315 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001316 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001317 // Check for operations that have the property that if
1318 // both their operands have low zero bits, the result
Artur Pilipenkobc76eca2016-08-22 13:14:07 +00001319 // will have low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001320 if (Opcode == Instruction::Add ||
1321 Opcode == Instruction::Sub ||
1322 Opcode == Instruction::And ||
1323 Opcode == Instruction::Or ||
1324 Opcode == Instruction::Mul) {
1325 Value *LL = LU->getOperand(0);
1326 Value *LR = LU->getOperand(1);
1327 // Find a recurrence.
1328 if (LL == I)
1329 L = LR;
1330 else if (LR == I)
1331 L = LL;
1332 else
1333 break;
1334 // Ok, we have a PHI of the form L op= R. Check for low
1335 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001336 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001337
1338 // We need to take the minimum number of known bits
1339 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001340 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001341
Artur Pilipenkoc6eb6bd2016-10-12 16:18:43 +00001342 KnownZero = APInt::getLowBitsSet(
1343 BitWidth, std::min(KnownZero2.countTrailingOnes(),
1344 KnownZero3.countTrailingOnes()));
1345
1346 if (DontImproveNonNegativePhiBits)
1347 break;
1348
1349 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1350 if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1351 // If initial value of recurrence is nonnegative, and we are adding
1352 // a nonnegative number with nsw, the result can only be nonnegative
1353 // or poison value regardless of the number of times we execute the
1354 // add in phi recurrence. If initial value is negative and we are
1355 // adding a negative number with nsw, the result can only be
1356 // negative or poison value. Similar arguments apply to sub and mul.
1357 //
1358 // (add non-negative, non-negative) --> non-negative
1359 // (add negative, negative) --> negative
1360 if (Opcode == Instruction::Add) {
1361 if (KnownZero2.isNegative() && KnownZero3.isNegative())
1362 KnownZero.setBit(BitWidth - 1);
1363 else if (KnownOne2.isNegative() && KnownOne3.isNegative())
1364 KnownOne.setBit(BitWidth - 1);
1365 }
1366
1367 // (sub nsw non-negative, negative) --> non-negative
1368 // (sub nsw negative, non-negative) --> negative
1369 else if (Opcode == Instruction::Sub && LL == I) {
1370 if (KnownZero2.isNegative() && KnownOne3.isNegative())
1371 KnownZero.setBit(BitWidth - 1);
1372 else if (KnownOne2.isNegative() && KnownZero3.isNegative())
1373 KnownOne.setBit(BitWidth - 1);
1374 }
1375
1376 // (mul nsw non-negative, non-negative) --> non-negative
1377 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() &&
1378 KnownZero3.isNegative())
1379 KnownZero.setBit(BitWidth - 1);
1380 }
1381
Chris Lattner965c7692008-06-02 01:18:21 +00001382 break;
1383 }
1384 }
1385 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001386
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001387 // Unreachable blocks may have zero-operand PHI nodes.
1388 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001389 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001390
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001391 // Otherwise take the unions of the known bit sets of the operands,
1392 // taking conservative care to avoid excessive recursion.
1393 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001394 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001395 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001396 break;
1397
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001398 KnownZero = APInt::getAllOnesValue(BitWidth);
1399 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001400 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001401 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001402 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001403
1404 KnownZero2 = APInt(BitWidth, 0);
1405 KnownOne2 = APInt(BitWidth, 0);
1406 // Recurse, but cap the recursion to one level, because we don't
1407 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001408 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001409 KnownZero &= KnownZero2;
1410 KnownOne &= KnownOne2;
1411 // If all bits have been ruled out, there's no need to check
1412 // more operands.
1413 if (!KnownZero && !KnownOne)
1414 break;
1415 }
1416 }
Chris Lattner965c7692008-06-02 01:18:21 +00001417 break;
1418 }
1419 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001420 case Instruction::Invoke:
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001421 // If range metadata is attached to this call, set known bits from that,
1422 // and then intersect with known bits based on other properties of the
1423 // function.
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001424 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001425 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Pete Cooper35b00d52016-08-13 01:05:32 +00001426 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
Hal Finkel6fd5e1f2016-07-11 02:25:14 +00001427 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1428 KnownZero |= KnownZero2;
1429 KnownOne |= KnownOne2;
1430 }
Pete Cooper35b00d52016-08-13 01:05:32 +00001431 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001432 switch (II->getIntrinsicID()) {
1433 default: break;
Chad Rosier85204292017-01-17 17:23:51 +00001434 case Intrinsic::bitreverse:
1435 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1436 KnownZero = KnownZero2.reverseBits();
1437 KnownOne = KnownOne2.reverseBits();
1438 break;
Philip Reames675418e2015-10-06 20:20:45 +00001439 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001440 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001441 KnownZero |= KnownZero2.byteSwap();
1442 KnownOne |= KnownOne2.byteSwap();
1443 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001444 case Intrinsic::ctlz:
1445 case Intrinsic::cttz: {
1446 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001447 // If this call is undefined for 0, the result will be less than 2^n.
1448 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1449 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001450 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001451 break;
1452 }
1453 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001454 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001455 // We can bound the space the count needs. Also, bits known to be zero
1456 // can't contribute to the population.
1457 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1458 unsigned LeadingZeros =
1459 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001460 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001461 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1462 KnownOne &= ~KnownZero;
1463 // TODO: we could bound KnownOne using the lower bound on the number
1464 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001465 break;
1466 }
Chad Rosierb3628842011-05-26 23:13:19 +00001467 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001468 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001469 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001470 }
1471 }
1472 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00001473 case Instruction::ExtractElement:
1474 // Look through extract element. At the moment we keep this simple and skip
1475 // tracking the specific element. But at least we might find information
1476 // valid for all elements of the vector (for example if vector is sign
1477 // extended, shifted, etc).
1478 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1479 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001480 case Instruction::ExtractValue:
1481 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001482 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001483 if (EVI->getNumIndices() != 1) break;
1484 if (EVI->getIndices()[0] == 0) {
1485 switch (II->getIntrinsicID()) {
1486 default: break;
1487 case Intrinsic::uadd_with_overflow:
1488 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001489 computeKnownBitsAddSub(true, II->getArgOperand(0),
1490 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001491 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001492 break;
1493 case Intrinsic::usub_with_overflow:
1494 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001495 computeKnownBitsAddSub(false, II->getArgOperand(0),
1496 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001497 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001498 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001499 case Intrinsic::umul_with_overflow:
1500 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001501 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001502 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1503 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001504 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001505 }
1506 }
1507 }
Chris Lattner965c7692008-06-02 01:18:21 +00001508 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001509}
1510
1511/// Determine which bits of V are known to be either zero or one and return
1512/// them in the KnownZero/KnownOne bit sets.
1513///
1514/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1515/// we cannot optimize based on the assumption that it is zero without changing
1516/// it to be an explicit zero. If we don't change it to zero, other code could
1517/// optimized based on the contradictory assumption that it is non-zero.
1518/// Because instcombine aggressively folds operations with undef args anyway,
1519/// this won't lose us code quality.
1520///
1521/// This function is defined on values with integer type, values with pointer
1522/// type, and vectors of integers. In the case
1523/// where V is a vector, known zero, and known one values are the
1524/// same width as the vector element, and the bit is set only if it is true
1525/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00001526void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001527 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001528 assert(V && "No Value?");
1529 assert(Depth <= MaxDepth && "Limit Search Depth");
1530 unsigned BitWidth = KnownZero.getBitWidth();
1531
1532 assert((V->getType()->isIntOrIntVectorTy() ||
1533 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Pateldba8b4c2016-06-02 20:01:37 +00001534 "Not integer or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001535 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001536 (!V->getType()->isIntOrIntVectorTy() ||
1537 V->getType()->getScalarSizeInBits() == BitWidth) &&
1538 KnownZero.getBitWidth() == BitWidth &&
1539 KnownOne.getBitWidth() == BitWidth &&
1540 "V, KnownOne and KnownZero should have same BitWidth");
1541
Sanjay Patelc96f6db2016-09-16 21:20:36 +00001542 const APInt *C;
1543 if (match(V, m_APInt(C))) {
1544 // We know all of the bits for a scalar constant or a splat vector constant!
1545 KnownOne = *C;
Jingyue Wu12b0c282015-06-15 05:46:29 +00001546 KnownZero = ~KnownOne;
1547 return;
1548 }
1549 // Null and aggregate-zero are all-zeros.
Sanjay Patele8dc0902016-05-23 17:57:54 +00001550 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001551 KnownOne.clearAllBits();
1552 KnownZero = APInt::getAllOnesValue(BitWidth);
1553 return;
1554 }
1555 // Handle a constant vector by taking the intersection of the known bits of
David Majnemer3918cdd2016-05-04 06:13:33 +00001556 // each element.
Pete Cooper35b00d52016-08-13 01:05:32 +00001557 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001558 // We know that CDS must be a vector of integers. Take the intersection of
1559 // each element.
1560 KnownZero.setAllBits(); KnownOne.setAllBits();
1561 APInt Elt(KnownZero.getBitWidth(), 0);
1562 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1563 Elt = CDS->getElementAsInteger(i);
1564 KnownZero &= ~Elt;
1565 KnownOne &= Elt;
1566 }
1567 return;
1568 }
1569
Pete Cooper35b00d52016-08-13 01:05:32 +00001570 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
David Majnemer3918cdd2016-05-04 06:13:33 +00001571 // We know that CV must be a vector of integers. Take the intersection of
1572 // each element.
1573 KnownZero.setAllBits(); KnownOne.setAllBits();
1574 APInt Elt(KnownZero.getBitWidth(), 0);
1575 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1576 Constant *Element = CV->getAggregateElement(i);
1577 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1578 if (!ElementCI) {
1579 KnownZero.clearAllBits();
1580 KnownOne.clearAllBits();
1581 return;
1582 }
1583 Elt = ElementCI->getValue();
1584 KnownZero &= ~Elt;
1585 KnownOne &= Elt;
1586 }
1587 return;
1588 }
1589
Jingyue Wu12b0c282015-06-15 05:46:29 +00001590 // Start out not knowing anything.
1591 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1592
Duncan P. N. Exon Smithb1b208a2016-09-24 20:42:02 +00001593 // We can't imply anything about undefs.
1594 if (isa<UndefValue>(V))
1595 return;
1596
1597 // There's no point in looking through other users of ConstantData for
1598 // assumptions. Confirm that we've handled them all.
1599 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1600
Jingyue Wu12b0c282015-06-15 05:46:29 +00001601 // Limit search depth.
1602 // All recursive calls that increase depth must come after this.
1603 if (Depth == MaxDepth)
1604 return;
1605
1606 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1607 // the bits of its aliasee.
Pete Cooper35b00d52016-08-13 01:05:32 +00001608 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001609 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001610 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001611 return;
1612 }
1613
Pete Cooper35b00d52016-08-13 01:05:32 +00001614 if (const Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001615 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001616
Artur Pilipenko029d8532015-09-30 11:55:45 +00001617 // Aligned pointers have trailing zeros - refine KnownZero set
1618 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001619 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001620 if (Align)
1621 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1622 }
1623
Philip Reames146307e2016-03-03 19:44:06 +00001624 // computeKnownBitsFromAssume strictly refines KnownZero and
1625 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001626
1627 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001628 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001629
Jay Foad5a29c362014-05-15 12:12:55 +00001630 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001631}
1632
Sanjay Patelaee84212014-11-04 16:27:42 +00001633/// Determine whether the sign bit is known to be zero or one.
1634/// Convenience wrapper around computeKnownBits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001635void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001636 unsigned Depth, const Query &Q) {
1637 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001638 if (!BitWidth) {
1639 KnownZero = false;
1640 KnownOne = false;
1641 return;
1642 }
1643 APInt ZeroBits(BitWidth, 0);
1644 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001645 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001646 KnownOne = OneBits[BitWidth - 1];
1647 KnownZero = ZeroBits[BitWidth - 1];
1648}
1649
Sanjay Patelaee84212014-11-04 16:27:42 +00001650/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001651/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001652/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001653/// types and vectors of integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001654bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001655 const Query &Q) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001656 if (const Constant *C = dyn_cast<Constant>(V)) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001657 if (C->isNullValue())
1658 return OrZero;
Sanjay Patele2e89ef2016-05-22 15:41:53 +00001659
1660 const APInt *ConstIntOrConstSplatInt;
1661 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1662 return ConstIntOrConstSplatInt->isPowerOf2();
Duncan Sandsba286d72011-10-26 20:55:21 +00001663 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001664
1665 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1666 // it is shifted off the end then the result is undefined.
1667 if (match(V, m_Shl(m_One(), m_Value())))
1668 return true;
1669
1670 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1671 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001672 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001673 return true;
1674
1675 // The remaining tests are all recursive, so bail out if we hit the limit.
1676 if (Depth++ == MaxDepth)
1677 return false;
1678
Craig Topper9f008862014-04-15 04:59:12 +00001679 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001680 // A shift left or a logical shift right of a power of two is a power of two
1681 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001682 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001683 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001684 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001685
Pete Cooper35b00d52016-08-13 01:05:32 +00001686 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001687 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001688
Pete Cooper35b00d52016-08-13 01:05:32 +00001689 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001690 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1691 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001692
Duncan Sandsba286d72011-10-26 20:55:21 +00001693 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1694 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001695 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1696 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001697 return true;
1698 // X & (-X) is always a power of two or zero.
1699 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1700 return true;
1701 return false;
1702 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001703
David Majnemerb7d54092013-07-30 21:01:36 +00001704 // Adding a power-of-two or zero to the same power-of-two or zero yields
1705 // either the original power-of-two, a larger power-of-two or zero.
1706 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001707 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
David Majnemerb7d54092013-07-30 21:01:36 +00001708 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1709 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1710 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001711 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001712 return true;
1713 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1714 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001715 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001716 return true;
1717
1718 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1719 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001720 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001721
1722 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001723 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001724 // If i8 V is a power of two or zero:
1725 // ZeroBits: 1 1 1 0 1 1 1 1
1726 // ~ZeroBits: 0 0 0 1 0 0 0 0
1727 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1728 // If OrZero isn't set, we cannot give back a zero result.
1729 // Make sure either the LHS or RHS has a bit set.
1730 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1731 return true;
1732 }
1733 }
David Majnemerbeab5672013-05-18 19:30:37 +00001734
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001735 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001736 // is a power of two only if the first operand is a power of two and not
1737 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001738 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1739 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001740 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001741 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001742 }
1743
Duncan Sandsd3951082011-01-25 09:38:29 +00001744 return false;
1745}
1746
Chandler Carruth80d3e562012-12-07 02:08:58 +00001747/// \brief Test whether a GEP's result is known to be non-null.
1748///
1749/// Uses properties inherent in a GEP to try to determine whether it is known
1750/// to be non-null.
1751///
1752/// Currently this routine does not support vector GEPs.
Pete Cooper35b00d52016-08-13 01:05:32 +00001753static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001754 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001755 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1756 return false;
1757
1758 // FIXME: Support vector-GEPs.
1759 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1760
1761 // If the base pointer is non-null, we cannot walk to a null address with an
1762 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001763 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001764 return true;
1765
Chandler Carruth80d3e562012-12-07 02:08:58 +00001766 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1767 // If so, then the GEP cannot produce a null pointer, as doing so would
1768 // inherently violate the inbounds contract within address space zero.
1769 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1770 GTI != GTE; ++GTI) {
1771 // Struct types are easy -- they must always be indexed by a constant.
Peter Collingbourneab85225b2016-12-02 02:24:42 +00001772 if (StructType *STy = GTI.getStructTypeOrNull()) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001773 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1774 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001775 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001776 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1777 if (ElementOffset > 0)
1778 return true;
1779 continue;
1780 }
1781
1782 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001783 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001784 continue;
1785
1786 // Fast path the constant operand case both for efficiency and so we don't
1787 // increment Depth when just zipping down an all-constant GEP.
1788 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1789 if (!OpC->isZero())
1790 return true;
1791 continue;
1792 }
1793
1794 // We post-increment Depth here because while isKnownNonZero increments it
1795 // as well, when we pop back up that increment won't persist. We don't want
1796 // to recurse 10k times just because we have 10k GEP operands. We don't
1797 // bail completely out because we want to handle constant GEPs regardless
1798 // of depth.
1799 if (Depth++ >= MaxDepth)
1800 continue;
1801
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001802 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001803 return true;
1804 }
1805
1806 return false;
1807}
1808
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001809/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1810/// ensure that the value it's attached to is never Value? 'RangeType' is
1811/// is the type of the value described by the range.
Pete Cooper35b00d52016-08-13 01:05:32 +00001812static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001813 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1814 assert(NumRanges >= 1);
1815 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001816 ConstantInt *Lower =
1817 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1818 ConstantInt *Upper =
1819 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001820 ConstantRange Range(Lower->getValue(), Upper->getValue());
1821 if (Range.contains(Value))
1822 return false;
1823 }
1824 return true;
1825}
1826
Sanjay Patelaee84212014-11-04 16:27:42 +00001827/// Return true if the given value is known to be non-zero when defined.
1828/// For vectors return true if every element is known to be non-zero when
1829/// defined. Supports values with integer or pointer type and vectors of
1830/// integers.
Pete Cooper35b00d52016-08-13 01:05:32 +00001831bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001832 if (auto *C = dyn_cast<Constant>(V)) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001833 if (C->isNullValue())
1834 return false;
1835 if (isa<ConstantInt>(C))
1836 // Must be non-zero due to null test above.
1837 return true;
Sanjay Patel23019d12016-05-24 14:18:49 +00001838
1839 // For constant vectors, check that all elements are undefined or known
1840 // non-zero to determine that the whole vector is known non-zero.
1841 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1842 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1843 Constant *Elt = C->getAggregateElement(i);
1844 if (!Elt || Elt->isNullValue())
1845 return false;
1846 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1847 return false;
1848 }
1849 return true;
1850 }
1851
Duncan Sandsd3951082011-01-25 09:38:29 +00001852 return false;
1853 }
1854
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001855 if (auto *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001856 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001857 // If the possible ranges don't contain zero, then the value is
1858 // definitely non-zero.
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00001859 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001860 const APInt ZeroValue(Ty->getBitWidth(), 0);
1861 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1862 return true;
1863 }
1864 }
1865 }
1866
Duncan Sandsd3951082011-01-25 09:38:29 +00001867 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001868 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001869 return false;
1870
Chandler Carruth80d3e562012-12-07 02:08:58 +00001871 // Check for pointer simplifications.
1872 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001873 if (isKnownNonNull(V))
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001874 return true;
Pete Cooper35b00d52016-08-13 01:05:32 +00001875 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001876 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001877 return true;
1878 }
1879
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001880 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001881
1882 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001883 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001884 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001885 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001886
1887 // ext X != 0 if X != 0.
1888 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001889 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001890
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001891 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001892 // if the lowest bit is shifted off the end.
1893 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001894 // shl nuw can't remove any non-zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001895 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001896 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001897 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001898
Duncan Sandsd3951082011-01-25 09:38:29 +00001899 APInt KnownZero(BitWidth, 0);
1900 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001901 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001902 if (KnownOne[0])
1903 return true;
1904 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001905 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001906 // defined if the sign bit is shifted off the end.
1907 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001908 // shr exact can only shift out zero bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00001909 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001910 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001911 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001912
Duncan Sandsd3951082011-01-25 09:38:29 +00001913 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001914 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001915 if (XKnownNegative)
1916 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001917
1918 // If the shifter operand is a constant, and all of the bits shifted
1919 // out are known to be zero, and X is known non-zero then at least one
1920 // non-zero bit must remain.
1921 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1922 APInt KnownZero(BitWidth, 0);
1923 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001924 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Sanjoy Das6082c1a2016-05-07 02:08:15 +00001925
James Molloyb6be1eb2015-09-24 16:06:32 +00001926 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1927 // Is there a known one in the portion not shifted out?
1928 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1929 return true;
1930 // Are all the bits to be shifted out known zero?
1931 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001932 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001933 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001934 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001935 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001936 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001937 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001938 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001939 // X + Y.
1940 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1941 bool XKnownNonNegative, XKnownNegative;
1942 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001943 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1944 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001945
1946 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001947 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001948 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001949 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001950 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001951
1952 // If X and Y are both negative (as signed values) then their sum is not
1953 // zero unless both X and Y equal INT_MIN.
1954 if (BitWidth && XKnownNegative && YKnownNegative) {
1955 APInt KnownZero(BitWidth, 0);
1956 APInt KnownOne(BitWidth, 0);
1957 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1958 // The sign bit of X is set. If some other bit is set then X is not equal
1959 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001960 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001961 if ((KnownOne & Mask) != 0)
1962 return true;
1963 // The sign bit of Y is set. If some other bit is set then Y is not equal
1964 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001965 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001966 if ((KnownOne & Mask) != 0)
1967 return true;
1968 }
1969
1970 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001971 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001972 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001973 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001974 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001975 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001976 return true;
1977 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001978 // X * Y.
1979 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
Pete Cooper35b00d52016-08-13 01:05:32 +00001980 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Duncan Sands7cb61e52011-10-27 19:16:21 +00001981 // If X and Y are non-zero then so is X * Y as long as the multiplication
1982 // does not overflow.
1983 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001984 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001985 return true;
1986 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001987 // (C ? X : Y) != 0 if X != 0 and Y != 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00001988 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001989 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1990 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001991 return true;
1992 }
James Molloy897048b2015-09-29 14:08:45 +00001993 // PHI
Pete Cooper35b00d52016-08-13 01:05:32 +00001994 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
James Molloy897048b2015-09-29 14:08:45 +00001995 // Try and detect a recurrence that monotonically increases from a
1996 // starting value, as these are common as induction variables.
1997 if (PN->getNumIncomingValues() == 2) {
1998 Value *Start = PN->getIncomingValue(0);
1999 Value *Induction = PN->getIncomingValue(1);
2000 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2001 std::swap(Start, Induction);
2002 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2003 if (!C->isZero() && !C->isNegative()) {
2004 ConstantInt *X;
2005 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2006 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2007 !X->isNegative())
2008 return true;
2009 }
2010 }
2011 }
Jun Bum Limca832662016-02-01 17:03:07 +00002012 // Check if all incoming values are non-zero constant.
2013 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
2014 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
2015 });
2016 if (AllNonZeroConstants)
2017 return true;
James Molloy897048b2015-09-29 14:08:45 +00002018 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002019
2020 if (!BitWidth) return false;
2021 APInt KnownZero(BitWidth, 0);
2022 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002023 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002024 return KnownOne != 0;
2025}
2026
James Molloy1d88d6f2015-10-22 13:18:42 +00002027/// Return true if V2 == V1 + X, where X is known non-zero.
Pete Cooper35b00d52016-08-13 01:05:32 +00002028static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2029 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
James Molloy1d88d6f2015-10-22 13:18:42 +00002030 if (!BO || BO->getOpcode() != Instruction::Add)
2031 return false;
2032 Value *Op = nullptr;
2033 if (V2 == BO->getOperand(0))
2034 Op = BO->getOperand(1);
2035 else if (V2 == BO->getOperand(1))
2036 Op = BO->getOperand(0);
2037 else
2038 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002039 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002040}
2041
2042/// Return true if it is known that V1 != V2.
Pete Cooper35b00d52016-08-13 01:05:32 +00002043static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002044 if (V1->getType()->isVectorTy() || V1 == V2)
2045 return false;
2046 if (V1->getType() != V2->getType())
2047 // We can't look through casts yet.
2048 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002049 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002050 return true;
2051
2052 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2053 // Are any known bits in V1 contradictory to known bits in V2? If V1
2054 // has a known zero where V2 has a known one, they must not be equal.
2055 auto BitWidth = Ty->getBitWidth();
2056 APInt KnownZero1(BitWidth, 0);
2057 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002058 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002059 APInt KnownZero2(BitWidth, 0);
2060 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002061 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002062
2063 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2064 if (OppositeBits.getBoolValue())
2065 return true;
2066 }
2067 return false;
2068}
2069
Sanjay Patelaee84212014-11-04 16:27:42 +00002070/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2071/// simplify operations downstream. Mask is known to be zero for bits that V
2072/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002073///
2074/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002075/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002076/// where V is a vector, the mask, known zero, and known one values are the
2077/// same width as the vector element, and the bit is set only if it is true
2078/// for all of the elements in the vector.
Pete Cooper35b00d52016-08-13 01:05:32 +00002079bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002080 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00002081 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002082 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002083 return (KnownZero & Mask) == Mask;
2084}
2085
Sanjay Patela06d9892016-06-22 19:20:59 +00002086/// For vector constants, loop over the elements and find the constant with the
2087/// minimum number of sign bits. Return 0 if the value is not a vector constant
2088/// or if any element was not analyzed; otherwise, return the count for the
2089/// element with the minimum number of sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002090static unsigned computeNumSignBitsVectorConstant(const Value *V,
2091 unsigned TyBits) {
2092 const auto *CV = dyn_cast<Constant>(V);
Sanjay Patela06d9892016-06-22 19:20:59 +00002093 if (!CV || !CV->getType()->isVectorTy())
2094 return 0;
Chris Lattner965c7692008-06-02 01:18:21 +00002095
Sanjay Patela06d9892016-06-22 19:20:59 +00002096 unsigned MinSignBits = TyBits;
2097 unsigned NumElts = CV->getType()->getVectorNumElements();
2098 for (unsigned i = 0; i != NumElts; ++i) {
2099 // If we find a non-ConstantInt, bail out.
2100 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2101 if (!Elt)
2102 return 0;
2103
2104 // If the sign bit is 1, flip the bits, so we always count leading zeros.
2105 APInt EltVal = Elt->getValue();
2106 if (EltVal.isNegative())
2107 EltVal = ~EltVal;
2108 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2109 }
2110
2111 return MinSignBits;
2112}
Chris Lattner965c7692008-06-02 01:18:21 +00002113
Sanjay Patelaee84212014-11-04 16:27:42 +00002114/// Return the number of times the sign bit of the register is replicated into
2115/// the other bits. We know that at least 1 bit is always equal to the sign bit
2116/// (itself), but other cases can give us information. For example, immediately
2117/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
Sanjay Patela06d9892016-06-22 19:20:59 +00002118/// other, so we return 3. For vectors, return the number of sign bits for the
2119/// vector element with the mininum number of known sign bits.
Pete Cooper35b00d52016-08-13 01:05:32 +00002120unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002121 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002122 unsigned Tmp, Tmp2;
2123 unsigned FirstAnswer = 1;
2124
Jay Foada0653a32014-05-14 21:14:37 +00002125 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002126 // below.
2127
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002128 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +00002129 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002130
Pete Cooper35b00d52016-08-13 01:05:32 +00002131 const Operator *U = dyn_cast<Operator>(V);
Dan Gohman80ca01c2009-07-17 20:47:02 +00002132 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002133 default: break;
2134 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002135 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002136 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002137
Nadav Rotemc99a3872015-03-06 00:23:58 +00002138 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002139 const APInt *Denominator;
2140 // sdiv X, C -> adds log(C) sign bits.
2141 if (match(U->getOperand(1), m_APInt(Denominator))) {
2142
2143 // Ignore non-positive denominator.
2144 if (!Denominator->isStrictlyPositive())
2145 break;
2146
2147 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002148 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002149
2150 // Add floor(log(C)) bits to the numerator bits.
2151 return std::min(TyBits, NumBits + Denominator->logBase2());
2152 }
2153 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002154 }
2155
2156 case Instruction::SRem: {
2157 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002158 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2159 // positive constant. This let us put a lower bound on the number of sign
2160 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002161 if (match(U->getOperand(1), m_APInt(Denominator))) {
2162
2163 // Ignore non-positive denominator.
2164 if (!Denominator->isStrictlyPositive())
2165 break;
2166
2167 // Calculate the incoming numerator bits. SRem by a positive constant
2168 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002169 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002170 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002171
2172 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002173 // denominator. Given that the denominator is positive, there are two
2174 // cases:
2175 //
2176 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2177 // (1 << ceilLogBase2(C)).
2178 //
2179 // 2. the numerator is negative. Then the result range is (-C,0] and
2180 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2181 //
2182 // Thus a lower bound on the number of sign bits is `TyBits -
2183 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002184
Sanjoy Dase561fee2015-03-25 22:33:53 +00002185 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002186 return std::max(NumrBits, ResBits);
2187 }
2188 break;
2189 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002190
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002191 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002192 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002193 // ashr X, C -> adds C sign bits. Vectors too.
2194 const APInt *ShAmt;
2195 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2196 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002197 if (Tmp > TyBits) Tmp = TyBits;
2198 }
2199 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002200 }
2201 case Instruction::Shl: {
2202 const APInt *ShAmt;
2203 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002204 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002205 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002206 Tmp2 = ShAmt->getZExtValue();
2207 if (Tmp2 >= TyBits || // Bad shift.
2208 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2209 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002210 }
2211 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002212 }
Chris Lattner965c7692008-06-02 01:18:21 +00002213 case Instruction::And:
2214 case Instruction::Or:
2215 case Instruction::Xor: // NOT is handled here.
2216 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002217 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002218 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002219 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002220 FirstAnswer = std::min(Tmp, Tmp2);
2221 // We computed what we know about the sign bits as our first
2222 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002223 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002224 }
2225 break;
2226
2227 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002228 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002229 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002230 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002231 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002232
Chris Lattner965c7692008-06-02 01:18:21 +00002233 case Instruction::Add:
2234 // Add can have at most one carry bit. Thus we know that the output
2235 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002236 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002237 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002238
Chris Lattner965c7692008-06-02 01:18:21 +00002239 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002240 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002241 if (CRHS->isAllOnesValue()) {
2242 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002243 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002244
Chris Lattner965c7692008-06-02 01:18:21 +00002245 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2246 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002247 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002248 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002249
Chris Lattner965c7692008-06-02 01:18:21 +00002250 // If we are subtracting one from a positive number, there is no carry
2251 // out of the result.
2252 if (KnownZero.isNegative())
2253 return Tmp;
2254 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002255
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002256 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002257 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002258 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002259
Chris Lattner965c7692008-06-02 01:18:21 +00002260 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002261 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002262 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002263
Chris Lattner965c7692008-06-02 01:18:21 +00002264 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002265 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002266 if (CLHS->isNullValue()) {
2267 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002268 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002269 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2270 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002271 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002272 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002273
Chris Lattner965c7692008-06-02 01:18:21 +00002274 // If the input is known to be positive (the sign bit is known clear),
2275 // the output of the NEG has the same number of sign bits as the input.
2276 if (KnownZero.isNegative())
2277 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002278
Chris Lattner965c7692008-06-02 01:18:21 +00002279 // Otherwise, we treat this like a SUB.
2280 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002281
Chris Lattner965c7692008-06-02 01:18:21 +00002282 // Sub can have at most one carry bit. Thus we know that the output
2283 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002284 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002285 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002286 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002287
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002288 case Instruction::PHI: {
Pete Cooper35b00d52016-08-13 01:05:32 +00002289 const PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002290 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002291 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002292 if (NumIncomingValues > 4) break;
2293 // Unreachable blocks may have zero-operand PHI nodes.
2294 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002295
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002296 // Take the minimum of all incoming values. This can't infinitely loop
2297 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002298 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002299 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002300 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002301 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002302 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002303 }
2304 return Tmp;
2305 }
2306
Chris Lattner965c7692008-06-02 01:18:21 +00002307 case Instruction::Trunc:
2308 // FIXME: it's tricky to do anything useful for this, but it is an important
2309 // case for targets like X86.
2310 break;
Bjorn Pettersson39616032016-10-06 09:56:21 +00002311
2312 case Instruction::ExtractElement:
2313 // Look through extract element. At the moment we keep this simple and skip
2314 // tracking the specific element. But at least we might find information
2315 // valid for all elements of the vector (for example if vector is sign
2316 // extended, shifted, etc).
2317 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002318 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002319
Chris Lattner965c7692008-06-02 01:18:21 +00002320 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2321 // use this information.
Sanjay Patela06d9892016-06-22 19:20:59 +00002322
2323 // If we can examine all elements of a vector constant successfully, we're
2324 // done (we can't do any better than that). If not, keep trying.
2325 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2326 return VecSignBits;
2327
Chris Lattner965c7692008-06-02 01:18:21 +00002328 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002329 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002330
Sanjay Patele0536212016-06-23 17:41:59 +00002331 // If we know that the sign bit is either zero or one, determine the number of
2332 // identical bits in the top of the input value.
2333 if (KnownZero.isNegative())
2334 return std::max(FirstAnswer, KnownZero.countLeadingOnes());
Craig Topper1bef2c82012-12-22 19:15:35 +00002335
Sanjay Patele0536212016-06-23 17:41:59 +00002336 if (KnownOne.isNegative())
2337 return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2338
2339 // computeKnownBits gave us no extra information about the top bits.
2340 return FirstAnswer;
Chris Lattner965c7692008-06-02 01:18:21 +00002341}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002342
Sanjay Patelaee84212014-11-04 16:27:42 +00002343/// This function computes the integer multiple of Base that equals V.
2344/// If successful, it returns true and returns the multiple in
2345/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002346/// through SExt instructions only if LookThroughSExt is true.
2347bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002348 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002349 const unsigned MaxDepth = 6;
2350
Dan Gohman6a976bb2009-11-18 00:58:27 +00002351 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002352 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002353 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002354
Chris Lattner229907c2011-07-18 04:54:35 +00002355 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002356
Dan Gohman6a976bb2009-11-18 00:58:27 +00002357 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002358
2359 if (Base == 0)
2360 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002361
Victor Hernandez47444882009-11-10 08:28:35 +00002362 if (Base == 1) {
2363 Multiple = V;
2364 return true;
2365 }
2366
2367 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2368 Constant *BaseVal = ConstantInt::get(T, Base);
2369 if (CO && CO == BaseVal) {
2370 // Multiple is 1.
2371 Multiple = ConstantInt::get(T, 1);
2372 return true;
2373 }
2374
2375 if (CI && CI->getZExtValue() % Base == 0) {
2376 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002377 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002378 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002379
Victor Hernandez47444882009-11-10 08:28:35 +00002380 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002381
Victor Hernandez47444882009-11-10 08:28:35 +00002382 Operator *I = dyn_cast<Operator>(V);
2383 if (!I) return false;
2384
2385 switch (I->getOpcode()) {
2386 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002387 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002388 if (!LookThroughSExt) return false;
2389 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002390 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002391 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2392 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002393 case Instruction::Shl:
2394 case Instruction::Mul: {
2395 Value *Op0 = I->getOperand(0);
2396 Value *Op1 = I->getOperand(1);
2397
2398 if (I->getOpcode() == Instruction::Shl) {
2399 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2400 if (!Op1CI) return false;
2401 // Turn Op0 << Op1 into Op0 * 2^Op1
2402 APInt Op1Int = Op1CI->getValue();
2403 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002404 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002405 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002406 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002407 }
2408
Craig Topper9f008862014-04-15 04:59:12 +00002409 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002410 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2411 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2412 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002413 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002414 MulC->getType()->getPrimitiveSizeInBits())
2415 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002416 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002417 MulC->getType()->getPrimitiveSizeInBits())
2418 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002419
Chris Lattner72d283c2010-09-05 17:20:46 +00002420 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2421 Multiple = ConstantExpr::getMul(MulC, Op1C);
2422 return true;
2423 }
Victor Hernandez47444882009-11-10 08:28:35 +00002424
2425 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2426 if (Mul0CI->getValue() == 1) {
2427 // V == Base * Op1, so return Op1
2428 Multiple = Op1;
2429 return true;
2430 }
2431 }
2432
Craig Topper9f008862014-04-15 04:59:12 +00002433 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002434 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2435 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2436 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002437 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002438 MulC->getType()->getPrimitiveSizeInBits())
2439 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002440 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002441 MulC->getType()->getPrimitiveSizeInBits())
2442 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002443
Chris Lattner72d283c2010-09-05 17:20:46 +00002444 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2445 Multiple = ConstantExpr::getMul(MulC, Op0C);
2446 return true;
2447 }
Victor Hernandez47444882009-11-10 08:28:35 +00002448
2449 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2450 if (Mul1CI->getValue() == 1) {
2451 // V == Base * Op0, so return Op0
2452 Multiple = Op0;
2453 return true;
2454 }
2455 }
Victor Hernandez47444882009-11-10 08:28:35 +00002456 }
2457 }
2458
2459 // We could not determine if V is a multiple of Base.
2460 return false;
2461}
2462
David Majnemerb4b27232016-04-19 19:10:21 +00002463Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2464 const TargetLibraryInfo *TLI) {
2465 const Function *F = ICS.getCalledFunction();
2466 if (!F)
2467 return Intrinsic::not_intrinsic;
2468
2469 if (F->isIntrinsic())
2470 return F->getIntrinsicID();
2471
2472 if (!TLI)
2473 return Intrinsic::not_intrinsic;
2474
David L. Jonesd21529f2017-01-23 23:16:46 +00002475 LibFunc Func;
David Majnemerb4b27232016-04-19 19:10:21 +00002476 // We're going to make assumptions on the semantics of the functions, check
2477 // that the target knows that it's available in this environment and it does
2478 // not have local linkage.
Ahmed Bougachad765a822016-04-27 19:04:35 +00002479 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2480 return Intrinsic::not_intrinsic;
2481
2482 if (!ICS.onlyReadsMemory())
David Majnemerb4b27232016-04-19 19:10:21 +00002483 return Intrinsic::not_intrinsic;
2484
2485 // Otherwise check if we have a call to a function that can be turned into a
2486 // vector intrinsic.
2487 switch (Func) {
2488 default:
2489 break;
David L. Jonesd21529f2017-01-23 23:16:46 +00002490 case LibFunc_sin:
2491 case LibFunc_sinf:
2492 case LibFunc_sinl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002493 return Intrinsic::sin;
David L. Jonesd21529f2017-01-23 23:16:46 +00002494 case LibFunc_cos:
2495 case LibFunc_cosf:
2496 case LibFunc_cosl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002497 return Intrinsic::cos;
David L. Jonesd21529f2017-01-23 23:16:46 +00002498 case LibFunc_exp:
2499 case LibFunc_expf:
2500 case LibFunc_expl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002501 return Intrinsic::exp;
David L. Jonesd21529f2017-01-23 23:16:46 +00002502 case LibFunc_exp2:
2503 case LibFunc_exp2f:
2504 case LibFunc_exp2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002505 return Intrinsic::exp2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002506 case LibFunc_log:
2507 case LibFunc_logf:
2508 case LibFunc_logl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002509 return Intrinsic::log;
David L. Jonesd21529f2017-01-23 23:16:46 +00002510 case LibFunc_log10:
2511 case LibFunc_log10f:
2512 case LibFunc_log10l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002513 return Intrinsic::log10;
David L. Jonesd21529f2017-01-23 23:16:46 +00002514 case LibFunc_log2:
2515 case LibFunc_log2f:
2516 case LibFunc_log2l:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002517 return Intrinsic::log2;
David L. Jonesd21529f2017-01-23 23:16:46 +00002518 case LibFunc_fabs:
2519 case LibFunc_fabsf:
2520 case LibFunc_fabsl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002521 return Intrinsic::fabs;
David L. Jonesd21529f2017-01-23 23:16:46 +00002522 case LibFunc_fmin:
2523 case LibFunc_fminf:
2524 case LibFunc_fminl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002525 return Intrinsic::minnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002526 case LibFunc_fmax:
2527 case LibFunc_fmaxf:
2528 case LibFunc_fmaxl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002529 return Intrinsic::maxnum;
David L. Jonesd21529f2017-01-23 23:16:46 +00002530 case LibFunc_copysign:
2531 case LibFunc_copysignf:
2532 case LibFunc_copysignl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002533 return Intrinsic::copysign;
David L. Jonesd21529f2017-01-23 23:16:46 +00002534 case LibFunc_floor:
2535 case LibFunc_floorf:
2536 case LibFunc_floorl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002537 return Intrinsic::floor;
David L. Jonesd21529f2017-01-23 23:16:46 +00002538 case LibFunc_ceil:
2539 case LibFunc_ceilf:
2540 case LibFunc_ceill:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002541 return Intrinsic::ceil;
David L. Jonesd21529f2017-01-23 23:16:46 +00002542 case LibFunc_trunc:
2543 case LibFunc_truncf:
2544 case LibFunc_truncl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002545 return Intrinsic::trunc;
David L. Jonesd21529f2017-01-23 23:16:46 +00002546 case LibFunc_rint:
2547 case LibFunc_rintf:
2548 case LibFunc_rintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002549 return Intrinsic::rint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002550 case LibFunc_nearbyint:
2551 case LibFunc_nearbyintf:
2552 case LibFunc_nearbyintl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002553 return Intrinsic::nearbyint;
David L. Jonesd21529f2017-01-23 23:16:46 +00002554 case LibFunc_round:
2555 case LibFunc_roundf:
2556 case LibFunc_roundl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002557 return Intrinsic::round;
David L. Jonesd21529f2017-01-23 23:16:46 +00002558 case LibFunc_pow:
2559 case LibFunc_powf:
2560 case LibFunc_powl:
Ahmed Bougachad765a822016-04-27 19:04:35 +00002561 return Intrinsic::pow;
David L. Jonesd21529f2017-01-23 23:16:46 +00002562 case LibFunc_sqrt:
2563 case LibFunc_sqrtf:
2564 case LibFunc_sqrtl:
David Majnemerb4b27232016-04-19 19:10:21 +00002565 if (ICS->hasNoNaNs())
Ahmed Bougachad765a822016-04-27 19:04:35 +00002566 return Intrinsic::sqrt;
David Majnemerb4b27232016-04-19 19:10:21 +00002567 return Intrinsic::not_intrinsic;
2568 }
2569
2570 return Intrinsic::not_intrinsic;
2571}
2572
Sanjay Patelaee84212014-11-04 16:27:42 +00002573/// Return true if we can prove that the specified FP value is never equal to
2574/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002575///
2576/// NOTE: this function will need to be revisited when we support non-default
2577/// rounding modes!
2578///
David Majnemer3ee5f342016-04-13 06:55:52 +00002579bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2580 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002581 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2582 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002583
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002584 if (Depth == MaxDepth)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002585 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002586
Dan Gohman80ca01c2009-07-17 20:47:02 +00002587 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002588 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002589
2590 // Check if the nsz fast-math flag is set
2591 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2592 if (FPO->hasNoSignedZeros())
2593 return true;
2594
Chris Lattnera12a6de2008-06-02 01:29:46 +00002595 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002596 if (I->getOpcode() == Instruction::FAdd)
2597 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2598 if (CFP->isNullValue())
2599 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002600
Chris Lattnera12a6de2008-06-02 01:29:46 +00002601 // sitofp and uitofp turn into +0.0 for zero.
2602 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2603 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002604
David Majnemer3ee5f342016-04-13 06:55:52 +00002605 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002606 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002607 switch (IID) {
2608 default:
2609 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002610 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002611 case Intrinsic::sqrt:
2612 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2613 // fabs(x) != -0.0
2614 case Intrinsic::fabs:
2615 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002616 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002617 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002618
Chris Lattnera12a6de2008-06-02 01:29:46 +00002619 return false;
2620}
2621
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002622/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2623/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2624/// bit despite comparing equal.
2625static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2626 const TargetLibraryInfo *TLI,
2627 bool SignBitOnly,
2628 unsigned Depth) {
Justin Lebar322c1272017-01-27 00:58:34 +00002629 // TODO: This function does not do the right thing when SignBitOnly is true
2630 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2631 // which flips the sign bits of NaNs. See
2632 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2633
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002634 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2635 return !CFP->getValueAPF().isNegative() ||
2636 (!SignBitOnly && CFP->getValueAPF().isZero());
2637 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002638
Matt Arsenaultcb2a7eb2016-12-20 19:06:15 +00002639 if (Depth == MaxDepth)
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002640 return false; // Limit search depth.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002641
2642 const Operator *I = dyn_cast<Operator>(V);
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002643 if (!I)
2644 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002645
2646 switch (I->getOpcode()) {
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002647 default:
2648 break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002649 // Unsigned integers are always nonnegative.
2650 case Instruction::UIToFP:
2651 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002652 case Instruction::FMul:
2653 // x*x is always non-negative or a NaN.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002654 if (I->getOperand(0) == I->getOperand(1) &&
2655 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002656 return true;
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002657
Justin Bognercd1d5aa2016-08-17 20:30:52 +00002658 LLVM_FALLTHROUGH;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002659 case Instruction::FAdd:
2660 case Instruction::FDiv:
2661 case Instruction::FRem:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002662 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2663 Depth + 1) &&
2664 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2665 Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002666 case Instruction::Select:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002667 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2668 Depth + 1) &&
2669 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2670 Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002671 case Instruction::FPExt:
2672 case Instruction::FPTrunc:
2673 // Widening/narrowing never change sign.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002674 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2675 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002676 case Instruction::Call:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002677 const auto *CI = cast<CallInst>(I);
2678 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002679 switch (IID) {
2680 default:
2681 break;
2682 case Intrinsic::maxnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002683 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2684 Depth + 1) ||
2685 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2686 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002687 case Intrinsic::minnum:
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002688 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2689 Depth + 1) &&
2690 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2691 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002692 case Intrinsic::exp:
2693 case Intrinsic::exp2:
2694 case Intrinsic::fabs:
David Majnemer3ee5f342016-04-13 06:55:52 +00002695 return true;
Justin Lebar7e3184c2017-01-26 00:10:26 +00002696
2697 case Intrinsic::sqrt:
2698 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2699 if (!SignBitOnly)
2700 return true;
2701 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2702 CannotBeNegativeZero(CI->getOperand(0), TLI));
2703
David Majnemer3ee5f342016-04-13 06:55:52 +00002704 case Intrinsic::powi:
Justin Lebar7e3184c2017-01-26 00:10:26 +00002705 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
David Majnemer3ee5f342016-04-13 06:55:52 +00002706 // powi(x,n) is non-negative if n is even.
Justin Lebar7e3184c2017-01-26 00:10:26 +00002707 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
David Majnemer3ee5f342016-04-13 06:55:52 +00002708 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002709 }
Justin Lebar322c1272017-01-27 00:58:34 +00002710 // TODO: This is not correct. Given that exp is an integer, here are the
2711 // ways that pow can return a negative value:
2712 //
2713 // pow(x, exp) --> negative if exp is odd and x is negative.
2714 // pow(-0, exp) --> -inf if exp is negative odd.
2715 // pow(-0, exp) --> -0 if exp is positive odd.
2716 // pow(-inf, exp) --> -0 if exp is negative odd.
2717 // pow(-inf, exp) --> -inf if exp is positive odd.
2718 //
2719 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2720 // but we must return false if x == -0. Unfortunately we do not currently
2721 // have a way of expressing this constraint. See details in
2722 // https://llvm.org/bugs/show_bug.cgi?id=31702.
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002723 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2724 Depth + 1);
Justin Lebar322c1272017-01-27 00:58:34 +00002725
David Majnemer3ee5f342016-04-13 06:55:52 +00002726 case Intrinsic::fma:
2727 case Intrinsic::fmuladd:
2728 // x*x+y is non-negative if y is non-negative.
2729 return I->getOperand(0) == I->getOperand(1) &&
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002730 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2731 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2732 Depth + 1);
David Majnemer3ee5f342016-04-13 06:55:52 +00002733 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002734 break;
2735 }
Sanjoy Das6082c1a2016-05-07 02:08:15 +00002736 return false;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002737}
2738
Matt Arsenault1e0edbf2017-01-11 00:33:24 +00002739bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2740 const TargetLibraryInfo *TLI) {
2741 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2742}
2743
2744bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2745 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2746}
2747
Sanjay Patelaee84212014-11-04 16:27:42 +00002748/// If the specified value can be set by repeating the same byte in memory,
2749/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002750/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2751/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2752/// byte store (e.g. i16 0x1234), return null.
2753Value *llvm::isBytewiseValue(Value *V) {
2754 // All byte-wide stores are splatable, even of arbitrary variables.
2755 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002756
2757 // Handle 'null' ConstantArrayZero etc.
2758 if (Constant *C = dyn_cast<Constant>(V))
2759 if (C->isNullValue())
2760 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002761
Chris Lattner9cb10352010-12-26 20:15:01 +00002762 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002763 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002764 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2765 if (CFP->getType()->isFloatTy())
2766 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2767 if (CFP->getType()->isDoubleTy())
2768 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2769 // Don't handle long double formats, which have strange constraints.
2770 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002771
Benjamin Kramer17d90152015-02-07 19:29:02 +00002772 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002773 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002774 if (CI->getBitWidth() % 8 == 0) {
2775 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002776
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002777 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002778 return nullptr;
2779 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002780 }
2781 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002782
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002783 // A ConstantDataArray/Vector is splatable if all its members are equal and
2784 // also splatable.
2785 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2786 Value *Elt = CA->getElementAsConstant(0);
2787 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002788 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002789 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002790
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002791 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2792 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002793 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002794
Chris Lattner9cb10352010-12-26 20:15:01 +00002795 return Val;
2796 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002797
Chris Lattner9cb10352010-12-26 20:15:01 +00002798 // Conceptually, we could handle things like:
2799 // %a = zext i8 %X to i16
2800 // %b = shl i16 %a, 8
2801 // %c = or i16 %a, %b
2802 // but until there is an example that actually needs this, it doesn't seem
2803 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002804 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002805}
2806
2807
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002808// This is the recursive version of BuildSubAggregate. It takes a few different
2809// arguments. Idxs is the index within the nested struct From that we are
2810// looking at now (which is of type IndexedType). IdxSkip is the number of
2811// indices from Idxs that should be left out when inserting into the resulting
2812// struct. To is the result struct built so far, new insertvalue instructions
2813// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002814static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002815 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002816 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002817 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002818 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002819 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002820 // Save the original To argument so we can modify it
2821 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002822 // General case, the type indexed by Idxs is a struct
2823 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2824 // Process each struct element recursively
2825 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002826 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002827 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002828 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002829 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002830 if (!To) {
2831 // Couldn't find any inserted value for this index? Cleanup
2832 while (PrevTo != OrigTo) {
2833 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2834 PrevTo = Del->getAggregateOperand();
2835 Del->eraseFromParent();
2836 }
2837 // Stop processing elements
2838 break;
2839 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002840 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002841 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002842 if (To)
2843 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002844 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002845 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2846 // the struct's elements had a value that was inserted directly. In the latter
2847 // case, perhaps we can't determine each of the subelements individually, but
2848 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002849
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002850 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002851 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002852
2853 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002854 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002855
2856 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002857 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002858 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002859}
2860
2861// This helper takes a nested struct and extracts a part of it (which is again a
2862// struct) into a new value. For example, given the struct:
2863// { a, { b, { c, d }, e } }
2864// and the indices "1, 1" this returns
2865// { c, d }.
2866//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002867// It does this by inserting an insertvalue for each element in the resulting
2868// struct, as opposed to just inserting a single struct. This will only work if
2869// each of the elements of the substruct are known (ie, inserted into From by an
2870// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002871//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002872// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002873static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002874 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002875 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002876 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002877 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002878 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002879 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002880 unsigned IdxSkip = Idxs.size();
2881
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002882 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002883}
2884
Sanjay Patelaee84212014-11-04 16:27:42 +00002885/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002886/// the scalar value indexed is already around as a register, for example if it
2887/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002888///
2889/// If InsertBefore is not null, this function will duplicate (modified)
2890/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002891Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2892 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002893 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002894 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002895 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002896 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002897 // We have indices, so V should have an indexable type.
2898 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2899 "Not looking at a struct or array?");
2900 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2901 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002902
Chris Lattner67058832012-01-25 06:48:06 +00002903 if (Constant *C = dyn_cast<Constant>(V)) {
2904 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002905 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002906 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2907 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002908
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002909 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002910 // Loop the indices for the insertvalue instruction in parallel with the
2911 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002912 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002913 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2914 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002915 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002916 // We can't handle this without inserting insertvalues
2917 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002918 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002919
2920 // The requested index identifies a part of a nested aggregate. Handle
2921 // this specially. For example,
2922 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2923 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2924 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2925 // This can be changed into
2926 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2927 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2928 // which allows the unused 0,0 element from the nested struct to be
2929 // removed.
2930 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2931 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002932 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002933
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002934 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002935 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002936 // looking for, then.
2937 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002938 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002939 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002940 }
2941 // If we end up here, the indices of the insertvalue match with those
2942 // requested (though possibly only partially). Now we recursively look at
2943 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002944 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002945 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002946 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002947 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002948
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002949 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002950 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002951 // something else, we can extract from that something else directly instead.
2952 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002953
2954 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002955 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002956 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002957 SmallVector<unsigned, 5> Idxs;
2958 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002959 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002960 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002961
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002962 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002963 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002964
Craig Topper1bef2c82012-12-22 19:15:35 +00002965 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002966 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002967
Jay Foad57aa6362011-07-13 10:26:04 +00002968 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002969 }
2970 // Otherwise, we don't know (such as, extracting from a function return value
2971 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002972 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002973}
Evan Chengda3db112008-06-30 07:31:25 +00002974
Sanjay Patelaee84212014-11-04 16:27:42 +00002975/// Analyze the specified pointer to see if it can be expressed as a base
2976/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002977Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002978 const DataLayout &DL) {
2979 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002980 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002981
2982 // We walk up the defs but use a visited set to handle unreachable code. In
2983 // that case, we stop after accumulating the cycle once (not that it
2984 // matters).
2985 SmallPtrSet<Value *, 16> Visited;
2986 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002987 if (Ptr->getType()->isVectorTy())
2988 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002989
Nuno Lopes368c4d02012-12-31 20:48:35 +00002990 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Tom Stellard17eb3412016-10-07 14:23:29 +00002991 // If one of the values we have visited is an addrspacecast, then
2992 // the pointer type of this GEP may be different from the type
2993 // of the Ptr parameter which was passed to this function. This
2994 // means when we construct GEPOffset, we need to use the size
2995 // of GEP's pointer type rather than the size of the original
2996 // pointer type.
2997 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002998 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2999 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003000
Tom Stellard17eb3412016-10-07 14:23:29 +00003001 ByteOffset += GEPOffset.getSExtValue();
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00003002
Nuno Lopes368c4d02012-12-31 20:48:35 +00003003 Ptr = GEP->getPointerOperand();
Tom Stellard17eb3412016-10-07 14:23:29 +00003004 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3005 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003006 Ptr = cast<Operator>(Ptr)->getOperand(0);
3007 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003008 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00003009 break;
3010 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00003011 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00003012 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00003013 }
3014 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00003015 Offset = ByteOffset.getSExtValue();
3016 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00003017}
3018
David L Kreitzer752c1442016-04-13 14:31:06 +00003019bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
3020 // Make sure the GEP has exactly three arguments.
3021 if (GEP->getNumOperands() != 3)
3022 return false;
3023
3024 // Make sure the index-ee is a pointer to array of i8.
3025 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3026 if (!AT || !AT->getElementType()->isIntegerTy(8))
3027 return false;
3028
3029 // Check to make sure that the first operand of the GEP is an integer and
3030 // has value 0 so that we are sure we're indexing into the initializer.
3031 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3032 if (!FirstIdx || !FirstIdx->isZero())
3033 return false;
3034
3035 return true;
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003036}
Chris Lattnere28618d2010-11-30 22:25:26 +00003037
Sanjay Patelaee84212014-11-04 16:27:42 +00003038/// This function computes the length of a null-terminated C string pointed to
3039/// by V. If successful, it returns true and returns the string in Str.
3040/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003041bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3042 uint64_t Offset, bool TrimAtNul) {
3043 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00003044
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003045 // Look through bitcast instructions and geps.
3046 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00003047
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003048 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003049 // offset.
3050 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00003051 // The GEP operator should be based on a pointer to string constant, and is
3052 // indexing into the string constant.
3053 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003054 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003055
Evan Chengda3db112008-06-30 07:31:25 +00003056 // If the second index isn't a ConstantInt, then this is a variable index
3057 // into the array. If this occurs, we can't say anything meaningful about
3058 // the string.
3059 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00003060 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00003061 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003062 else
3063 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00003064 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
3065 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00003066 }
Nick Lewycky46209882011-10-20 00:34:35 +00003067
Evan Chengda3db112008-06-30 07:31:25 +00003068 // The GEP instruction, constant or instruction, must reference a global
3069 // variable that is a constant and is initialized. The referenced constant
3070 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003071 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00003072 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003073 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003074
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003075 // Handle the all-zeros case.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003076 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00003077 // This is a degenerate case. The initializer is constant zero so the
3078 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003079 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003080 return true;
3081 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003082
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003083 // This must be a ConstantDataArray.
3084 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00003085 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003086 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003087
Sanjay Patel8ec7e7c2016-05-22 16:07:20 +00003088 // Get the number of elements in the array.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003089 uint64_t NumElts = Array->getType()->getArrayNumElements();
3090
3091 // Start out with the entire array in the StringRef.
3092 Str = Array->getAsString();
3093
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003094 if (Offset > NumElts)
3095 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00003096
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003097 // Skip over 'offset' bytes.
3098 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00003099
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003100 if (TrimAtNul) {
3101 // Trim off the \0 and anything after it. If the array is not nul
3102 // terminated, we just return the whole end of string. The client may know
3103 // some other way that the string is length-bound.
3104 Str = Str.substr(0, Str.find('\0'));
3105 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00003106 return true;
Evan Chengda3db112008-06-30 07:31:25 +00003107}
Eric Christopher4899cbc2010-03-05 06:58:57 +00003108
3109// These next two are very similar to the above, but also look through PHI
3110// nodes.
3111// TODO: See if we can integrate these two together.
3112
Sanjay Patelaee84212014-11-04 16:27:42 +00003113/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003114/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003115static uint64_t GetStringLengthH(const Value *V,
3116 SmallPtrSetImpl<const PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003117 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003118 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00003119
3120 // If this is a PHI node, there are two cases: either we have already seen it
3121 // or we haven't.
Pete Cooper35b00d52016-08-13 01:05:32 +00003122 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00003123 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00003124 return ~0ULL; // already in the set.
3125
3126 // If it was new, see if all the input strings are the same length.
3127 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00003128 for (Value *IncValue : PN->incoming_values()) {
3129 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00003130 if (Len == 0) return 0; // Unknown length -> unknown.
3131
3132 if (Len == ~0ULL) continue;
3133
3134 if (Len != LenSoFar && LenSoFar != ~0ULL)
3135 return 0; // Disagree -> unknown.
3136 LenSoFar = Len;
3137 }
3138
3139 // Success, all agree.
3140 return LenSoFar;
3141 }
3142
3143 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
Pete Cooper35b00d52016-08-13 01:05:32 +00003144 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003145 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3146 if (Len1 == 0) return 0;
3147 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3148 if (Len2 == 0) return 0;
3149 if (Len1 == ~0ULL) return Len2;
3150 if (Len2 == ~0ULL) return Len1;
3151 if (Len1 != Len2) return 0;
3152 return Len1;
3153 }
Craig Topper1bef2c82012-12-22 19:15:35 +00003154
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003155 // Otherwise, see if we can read the string.
3156 StringRef StrData;
3157 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00003158 return 0;
3159
Chris Lattnercf9e8f62012-02-05 02:29:43 +00003160 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003161}
3162
Sanjay Patelaee84212014-11-04 16:27:42 +00003163/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00003164/// the specified pointer, return 'len+1'. If we can't, return 0.
Pete Cooper35b00d52016-08-13 01:05:32 +00003165uint64_t llvm::GetStringLength(const Value *V) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00003166 if (!V->getType()->isPointerTy()) return 0;
3167
Pete Cooper35b00d52016-08-13 01:05:32 +00003168 SmallPtrSet<const PHINode*, 32> PHIs;
Eric Christopher4899cbc2010-03-05 06:58:57 +00003169 uint64_t Len = GetStringLengthH(V, PHIs);
3170 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3171 // an empty string as a length.
3172 return Len == ~0ULL ? 1 : Len;
3173}
Dan Gohmana4fcd242010-12-15 20:02:24 +00003174
Adam Nemete2b885c2015-04-23 20:09:20 +00003175/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3176/// previous iteration of the loop was referring to the same object as \p PN.
Pete Cooper35b00d52016-08-13 01:05:32 +00003177static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3178 const LoopInfo *LI) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003179 // Find the loop-defined value.
3180 Loop *L = LI->getLoopFor(PN->getParent());
3181 if (PN->getNumIncomingValues() != 2)
3182 return true;
3183
3184 // Find the value from previous iteration.
3185 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3186 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3187 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3188 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3189 return true;
3190
3191 // If a new pointer is loaded in the loop, the pointer references a different
3192 // object in every iteration. E.g.:
3193 // for (i)
3194 // int *p = a[i];
3195 // ...
3196 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3197 if (!L->isLoopInvariant(Load->getPointerOperand()))
3198 return false;
3199 return true;
3200}
3201
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003202Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3203 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003204 if (!V->getType()->isPointerTy())
3205 return V;
3206 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3207 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3208 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003209 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3210 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003211 V = cast<Operator>(V)->getOperand(0);
3212 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00003213 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00003214 return V;
3215 V = GA->getAliasee();
3216 } else {
Hal Finkel5c12d8f2016-07-11 01:32:20 +00003217 if (auto CS = CallSite(V))
3218 if (Value *RV = CS.getReturnedArgOperand()) {
3219 V = RV;
3220 continue;
3221 }
3222
Dan Gohman05b18f12010-12-15 20:49:55 +00003223 // See if InstructionSimplify knows any relevant tricks.
3224 if (Instruction *I = dyn_cast<Instruction>(V))
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003225 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003226 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003227 V = Simplified;
3228 continue;
3229 }
3230
Dan Gohmana4fcd242010-12-15 20:02:24 +00003231 return V;
3232 }
3233 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3234 }
3235 return V;
3236}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003237
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003238void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003239 const DataLayout &DL, LoopInfo *LI,
3240 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003241 SmallPtrSet<Value *, 4> Visited;
3242 SmallVector<Value *, 4> Worklist;
3243 Worklist.push_back(V);
3244 do {
3245 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003246 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003247
David Blaikie70573dc2014-11-19 07:49:26 +00003248 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003249 continue;
3250
3251 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3252 Worklist.push_back(SI->getTrueValue());
3253 Worklist.push_back(SI->getFalseValue());
3254 continue;
3255 }
3256
3257 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003258 // If this PHI changes the underlying object in every iteration of the
3259 // loop, don't look through it. Consider:
3260 // int **A;
3261 // for (i) {
3262 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3263 // Curr = A[i];
3264 // *Prev, *Curr;
3265 //
3266 // Prev is tracking Curr one iteration behind so they refer to different
3267 // underlying objects.
3268 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3269 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003270 for (Value *IncValue : PN->incoming_values())
3271 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003272 continue;
3273 }
3274
3275 Objects.push_back(P);
3276 } while (!Worklist.empty());
3277}
3278
Sanjay Patelaee84212014-11-04 16:27:42 +00003279/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003280bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003281 for (const User *U : V->users()) {
3282 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003283 if (!II) return false;
3284
3285 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3286 II->getIntrinsicID() != Intrinsic::lifetime_end)
3287 return false;
3288 }
3289 return true;
3290}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003291
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003292bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3293 const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003294 const DominatorTree *DT) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003295 const Operator *Inst = dyn_cast<Operator>(V);
3296 if (!Inst)
3297 return false;
3298
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003299 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3300 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3301 if (C->canTrap())
3302 return false;
3303
3304 switch (Inst->getOpcode()) {
3305 default:
3306 return true;
3307 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003308 case Instruction::URem: {
3309 // x / y is undefined if y == 0.
3310 const APInt *V;
3311 if (match(Inst->getOperand(1), m_APInt(V)))
3312 return *V != 0;
3313 return false;
3314 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003315 case Instruction::SDiv:
3316 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003317 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003318 const APInt *Numerator, *Denominator;
3319 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3320 return false;
3321 // We cannot hoist this division if the denominator is 0.
3322 if (*Denominator == 0)
3323 return false;
3324 // It's safe to hoist if the denominator is not 0 or -1.
3325 if (*Denominator != -1)
3326 return true;
3327 // At this point we know that the denominator is -1. It is safe to hoist as
3328 // long we know that the numerator is not INT_MIN.
3329 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3330 return !Numerator->isMinSignedValue();
3331 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003332 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003333 }
3334 case Instruction::Load: {
3335 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003336 if (!LI->isUnordered() ||
3337 // Speculative load may create a race that did not exist in the source.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003338 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003339 // Speculative load may load data from dirty regions.
Sanjoy Dasb66374c2016-07-14 20:19:01 +00003340 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003341 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003342 const DataLayout &DL = LI->getModule()->getDataLayout();
Sean Silva45835e72016-07-02 23:47:27 +00003343 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3344 LI->getAlignment(), DL, CtxI, DT);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003345 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003346 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003347 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3348 switch (II->getIntrinsicID()) {
3349 // These synthetic intrinsics have no side-effects and just mark
3350 // information about their operands.
3351 // FIXME: There are other no-op synthetic instructions that potentially
3352 // should be considered at least *safe* to speculate...
3353 case Intrinsic::dbg_declare:
3354 case Intrinsic::dbg_value:
3355 return true;
3356
Xin Tongc13a8e82017-01-09 17:57:08 +00003357 case Intrinsic::bitreverse:
David Majnemer0a92f862015-08-28 21:13:39 +00003358 case Intrinsic::bswap:
3359 case Intrinsic::ctlz:
3360 case Intrinsic::ctpop:
3361 case Intrinsic::cttz:
3362 case Intrinsic::objectsize:
3363 case Intrinsic::sadd_with_overflow:
3364 case Intrinsic::smul_with_overflow:
3365 case Intrinsic::ssub_with_overflow:
3366 case Intrinsic::uadd_with_overflow:
3367 case Intrinsic::umul_with_overflow:
3368 case Intrinsic::usub_with_overflow:
3369 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003370 // These intrinsics are defined to have the same behavior as libm
3371 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003372 case Intrinsic::sqrt:
3373 case Intrinsic::fma:
3374 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003375 return true;
3376 // These intrinsics are defined to have the same behavior as libm
3377 // functions, and the corresponding libm functions never set errno.
3378 case Intrinsic::trunc:
3379 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003380 case Intrinsic::fabs:
3381 case Intrinsic::minnum:
3382 case Intrinsic::maxnum:
3383 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003384 // These intrinsics are defined to have the same behavior as libm
3385 // functions, which never overflow when operating on the IEEE754 types
3386 // that we support, and never set errno otherwise.
3387 case Intrinsic::ceil:
3388 case Intrinsic::floor:
3389 case Intrinsic::nearbyint:
3390 case Intrinsic::rint:
3391 case Intrinsic::round:
3392 return true;
whitequark16f1e5f2017-01-25 09:32:30 +00003393 // These intrinsics do not correspond to any libm function, and
3394 // do not set errno.
3395 case Intrinsic::powi:
3396 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003397 // TODO: are convert_{from,to}_fp16 safe?
3398 // TODO: can we list target-specific intrinsics here?
3399 default: break;
3400 }
3401 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003402 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003403 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003404 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003405 case Instruction::VAArg:
3406 case Instruction::Alloca:
3407 case Instruction::Invoke:
3408 case Instruction::PHI:
3409 case Instruction::Store:
3410 case Instruction::Ret:
3411 case Instruction::Br:
3412 case Instruction::IndirectBr:
3413 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003414 case Instruction::Unreachable:
3415 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003416 case Instruction::AtomicRMW:
3417 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003418 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003419 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003420 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003421 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003422 case Instruction::CatchRet:
3423 case Instruction::CleanupPad:
3424 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003425 return false; // Misc instructions which have effects
3426 }
3427}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003428
Quentin Colombet6443cce2015-08-06 18:44:34 +00003429bool llvm::mayBeMemoryDependent(const Instruction &I) {
3430 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3431}
3432
Sanjay Patelaee84212014-11-04 16:27:42 +00003433/// Return true if we know that the specified value is never null.
Sean Silva45835e72016-07-02 23:47:27 +00003434bool llvm::isKnownNonNull(const Value *V) {
Chen Li0d043b52015-09-14 18:10:43 +00003435 assert(V->getType()->isPointerTy() && "V must be pointer type");
3436
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003437 // Alloca never returns null, malloc might.
3438 if (isa<AllocaInst>(V)) return true;
3439
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003440 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003441 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003442 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003443
Peter Collingbourne235c2752016-12-08 19:01:00 +00003444 // A global variable in address space 0 is non null unless extern weak
3445 // or an absolute symbol reference. Other address spaces may have null as a
3446 // valid address for a global, so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003447 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Peter Collingbourne235c2752016-12-08 19:01:00 +00003448 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
Pete Cooper6b716212015-08-27 03:16:29 +00003449 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003450
Sanjoy Das5056e192016-05-07 02:08:22 +00003451 // A Load tagged with nonnull metadata is never null.
Philip Reamescdb72f32014-10-20 22:40:55 +00003452 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003453 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003454
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003455 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003456 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003457 return true;
3458
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003459 return false;
3460}
David Majnemer491331a2015-01-02 07:29:43 +00003461
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003462static bool isKnownNonNullFromDominatingCondition(const Value *V,
3463 const Instruction *CtxI,
3464 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003465 assert(V->getType()->isPointerTy() && "V must be pointer type");
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003466 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003467 assert(CtxI && "Context instruction required for analysis");
3468 assert(DT && "Dominator tree required for analysis");
Chen Li0d043b52015-09-14 18:10:43 +00003469
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003470 unsigned NumUsesExplored = 0;
Sanjoy Das987aaa12016-05-07 02:08:24 +00003471 for (auto *U : V->users()) {
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003472 // Avoid massive lists
3473 if (NumUsesExplored >= DomConditionsMaxUses)
3474 break;
3475 NumUsesExplored++;
3476 // Consider only compare instructions uniquely controlling a branch
Sanjoy Das987aaa12016-05-07 02:08:24 +00003477 CmpInst::Predicate Pred;
3478 if (!match(const_cast<User *>(U),
3479 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3480 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003481 continue;
3482
Sanjoy Das987aaa12016-05-07 02:08:24 +00003483 for (auto *CmpU : U->users()) {
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003484 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3485 assert(BI->isConditional() && "uses a comparison!");
Sanjoy Das6082c1a2016-05-07 02:08:15 +00003486
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003487 BasicBlock *NonNullSuccessor =
3488 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3489 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3490 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3491 return true;
3492 } else if (Pred == ICmpInst::ICMP_NE &&
3493 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3494 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
Sanjoy Das987aaa12016-05-07 02:08:24 +00003495 return true;
Sanjoy Das12c91dc2016-05-10 02:35:44 +00003496 }
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003497 }
3498 }
3499
3500 return false;
3501}
3502
3503bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
Sean Silva45835e72016-07-02 23:47:27 +00003504 const DominatorTree *DT) {
Duncan P. N. Exon Smithb4798732016-09-24 19:39:47 +00003505 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3506 return false;
3507
Sean Silva45835e72016-07-02 23:47:27 +00003508 if (isKnownNonNull(V))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003509 return true;
3510
Sanjay Patel7fd779f2016-12-31 17:37:01 +00003511 if (!CtxI || !DT)
3512 return false;
3513
3514 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003515}
3516
Pete Cooper35b00d52016-08-13 01:05:32 +00003517OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3518 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003519 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003520 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003521 const Instruction *CxtI,
3522 const DominatorTree *DT) {
3523 // Multiplying n * m significant bits yields a result of n + m significant
3524 // bits. If the total number of significant bits does not exceed the
3525 // result bit width (minus 1), there is no overflow.
3526 // This means if we have enough leading zero bits in the operands
3527 // we can guarantee that the result does not overflow.
3528 // Ref: "Hacker's Delight" by Henry Warren
3529 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3530 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003531 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003532 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003533 APInt RHSKnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003534 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3535 DT);
3536 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3537 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003538 // Note that underestimating the number of zero bits gives a more
3539 // conservative answer.
3540 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3541 RHSKnownZero.countLeadingOnes();
3542 // First handle the easy case: if we have enough zero bits there's
3543 // definitely no overflow.
3544 if (ZeroBits >= BitWidth)
3545 return OverflowResult::NeverOverflows;
3546
3547 // Get the largest possible values for each operand.
3548 APInt LHSMax = ~LHSKnownZero;
3549 APInt RHSMax = ~RHSKnownZero;
3550
3551 // We know the multiply operation doesn't overflow if the maximum values for
3552 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003553 bool MaxOverflow;
3554 LHSMax.umul_ov(RHSMax, MaxOverflow);
3555 if (!MaxOverflow)
3556 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003557
David Majnemerc8a576b2015-01-02 07:29:47 +00003558 // We know it always overflows if multiplying the smallest possible values for
3559 // the operands also results in overflow.
3560 bool MinOverflow;
3561 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3562 if (MinOverflow)
3563 return OverflowResult::AlwaysOverflows;
3564
3565 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003566}
David Majnemer5310c1e2015-01-07 00:39:50 +00003567
Pete Cooper35b00d52016-08-13 01:05:32 +00003568OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3569 const Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003570 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003571 AssumptionCache *AC,
David Majnemer5310c1e2015-01-07 00:39:50 +00003572 const Instruction *CxtI,
3573 const DominatorTree *DT) {
3574 bool LHSKnownNonNegative, LHSKnownNegative;
3575 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003576 AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003577 if (LHSKnownNonNegative || LHSKnownNegative) {
3578 bool RHSKnownNonNegative, RHSKnownNegative;
3579 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003580 AC, CxtI, DT);
David Majnemer5310c1e2015-01-07 00:39:50 +00003581
3582 if (LHSKnownNegative && RHSKnownNegative) {
3583 // The sign bit is set in both cases: this MUST overflow.
3584 // Create a simple add instruction, and insert it into the struct.
3585 return OverflowResult::AlwaysOverflows;
3586 }
3587
3588 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3589 // The sign bit is clear in both cases: this CANNOT overflow.
3590 // Create a simple add instruction, and insert it into the struct.
3591 return OverflowResult::NeverOverflows;
3592 }
3593 }
3594
3595 return OverflowResult::MayOverflow;
3596}
James Molloy71b91c22015-05-11 14:42:20 +00003597
Pete Cooper35b00d52016-08-13 01:05:32 +00003598static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3599 const Value *RHS,
3600 const AddOperator *Add,
3601 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003602 AssumptionCache *AC,
Pete Cooper35b00d52016-08-13 01:05:32 +00003603 const Instruction *CxtI,
3604 const DominatorTree *DT) {
Jingyue Wu10fcea52015-08-20 18:27:04 +00003605 if (Add && Add->hasNoSignedWrap()) {
3606 return OverflowResult::NeverOverflows;
3607 }
3608
3609 bool LHSKnownNonNegative, LHSKnownNegative;
3610 bool RHSKnownNonNegative, RHSKnownNegative;
3611 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003612 AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003613 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003614 AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003615
3616 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3617 (LHSKnownNegative && RHSKnownNonNegative)) {
3618 // The sign bits are opposite: this CANNOT overflow.
3619 return OverflowResult::NeverOverflows;
3620 }
3621
3622 // The remaining code needs Add to be available. Early returns if not so.
3623 if (!Add)
3624 return OverflowResult::MayOverflow;
3625
3626 // If the sign of Add is the same as at least one of the operands, this add
3627 // CANNOT overflow. This is particularly useful when the sum is
3628 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3629 // operands.
3630 bool LHSOrRHSKnownNonNegative =
3631 (LHSKnownNonNegative || RHSKnownNonNegative);
3632 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3633 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3634 bool AddKnownNonNegative, AddKnownNegative;
3635 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003636 /*Depth=*/0, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003637 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3638 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3639 return OverflowResult::NeverOverflows;
3640 }
3641 }
3642
3643 return OverflowResult::MayOverflow;
3644}
3645
Pete Cooper35b00d52016-08-13 01:05:32 +00003646bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3647 const DominatorTree &DT) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003648#ifndef NDEBUG
3649 auto IID = II->getIntrinsicID();
3650 assert((IID == Intrinsic::sadd_with_overflow ||
3651 IID == Intrinsic::uadd_with_overflow ||
3652 IID == Intrinsic::ssub_with_overflow ||
3653 IID == Intrinsic::usub_with_overflow ||
3654 IID == Intrinsic::smul_with_overflow ||
3655 IID == Intrinsic::umul_with_overflow) &&
3656 "Not an overflow intrinsic!");
3657#endif
3658
Pete Cooper35b00d52016-08-13 01:05:32 +00003659 SmallVector<const BranchInst *, 2> GuardingBranches;
3660 SmallVector<const ExtractValueInst *, 2> Results;
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003661
Pete Cooper35b00d52016-08-13 01:05:32 +00003662 for (const User *U : II->users()) {
3663 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003664 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3665
3666 if (EVI->getIndices()[0] == 0)
3667 Results.push_back(EVI);
3668 else {
3669 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3670
Pete Cooper35b00d52016-08-13 01:05:32 +00003671 for (const auto *U : EVI->users())
3672 if (const auto *B = dyn_cast<BranchInst>(U)) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003673 assert(B->isConditional() && "How else is it using an i1?");
3674 GuardingBranches.push_back(B);
3675 }
3676 }
3677 } else {
3678 // We are using the aggregate directly in a way we don't want to analyze
3679 // here (storing it to a global, say).
3680 return false;
3681 }
3682 }
3683
Pete Cooper35b00d52016-08-13 01:05:32 +00003684 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003685 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3686 if (!NoWrapEdge.isSingleEdge())
3687 return false;
3688
3689 // Check if all users of the add are provably no-wrap.
Pete Cooper35b00d52016-08-13 01:05:32 +00003690 for (const auto *Result : Results) {
Sanjoy Dasf49ca522016-05-29 00:34:42 +00003691 // If the extractvalue itself is not executed on overflow, the we don't
3692 // need to check each use separately, since domination is transitive.
3693 if (DT.dominates(NoWrapEdge, Result->getParent()))
3694 continue;
3695
3696 for (auto &RU : Result->uses())
3697 if (!DT.dominates(NoWrapEdge, RU))
3698 return false;
3699 }
3700
3701 return true;
3702 };
3703
3704 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3705}
3706
3707
Pete Cooper35b00d52016-08-13 01:05:32 +00003708OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003709 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003710 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003711 const Instruction *CxtI,
3712 const DominatorTree *DT) {
3713 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003714 Add, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003715}
3716
Pete Cooper35b00d52016-08-13 01:05:32 +00003717OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3718 const Value *RHS,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003719 const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003720 AssumptionCache *AC,
Jingyue Wu10fcea52015-08-20 18:27:04 +00003721 const Instruction *CxtI,
3722 const DominatorTree *DT) {
Daniel Jasperaec2fa32016-12-19 08:22:17 +00003723 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
Jingyue Wu10fcea52015-08-20 18:27:04 +00003724}
3725
Jingyue Wu42f1d672015-07-28 18:22:40 +00003726bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003727 // A memory operation returns normally if it isn't volatile. A volatile
3728 // operation is allowed to trap.
3729 //
3730 // An atomic operation isn't guaranteed to return in a reasonable amount of
3731 // time because it's possible for another thread to interfere with it for an
3732 // arbitrary length of time, but programs aren't allowed to rely on that.
3733 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3734 return !LI->isVolatile();
3735 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3736 return !SI->isVolatile();
3737 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3738 return !CXI->isVolatile();
3739 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3740 return !RMWI->isVolatile();
3741 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3742 return !MII->isVolatile();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003743
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003744 // If there is no successor, then execution can't transfer to it.
3745 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3746 return !CRI->unwindsToCaller();
3747 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3748 return !CatchSwitch->unwindsToCaller();
3749 if (isa<ResumeInst>(I))
3750 return false;
3751 if (isa<ReturnInst>(I))
3752 return false;
Sanjoy Das9a65cd22016-06-08 17:48:36 +00003753
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003754 // Calls can throw, or contain an infinite loop, or kill the process.
Sanjoy Das09455302016-12-31 22:12:31 +00003755 if (auto CS = ImmutableCallSite(I)) {
Sanjoy Das3bb2dbd2016-12-31 22:12:34 +00003756 // Call sites that throw have implicit non-local control flow.
3757 if (!CS.doesNotThrow())
3758 return false;
3759
3760 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3761 // etc. and thus not return. However, LLVM already assumes that
3762 //
3763 // - Thread exiting actions are modeled as writes to memory invisible to
3764 // the program.
3765 //
3766 // - Loops that don't have side effects (side effects are volatile/atomic
3767 // stores and IO) always terminate (see http://llvm.org/PR965).
3768 // Furthermore IO itself is also modeled as writes to memory invisible to
3769 // the program.
3770 //
3771 // We rely on those assumptions here, and use the memory effects of the call
3772 // target as a proxy for checking that it always returns.
3773
3774 // FIXME: This isn't aggressive enough; a call which only writes to a global
3775 // is guaranteed to return.
Sanjoy Dasd7e82062016-06-14 20:23:16 +00003776 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3777 match(I, m_Intrinsic<Intrinsic::assume>());
Eli Friedmanf1da33e2016-06-11 21:48:25 +00003778 }
3779
3780 // Other instructions return normally.
3781 return true;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003782}
3783
3784bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3785 const Loop *L) {
3786 // The loop header is guaranteed to be executed for every iteration.
3787 //
3788 // FIXME: Relax this constraint to cover all basic blocks that are
3789 // guaranteed to be executed at every iteration.
3790 if (I->getParent() != L->getHeader()) return false;
3791
3792 for (const Instruction &LI : *L->getHeader()) {
3793 if (&LI == I) return true;
3794 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3795 }
3796 llvm_unreachable("Instruction not contained in its own parent basic block.");
3797}
3798
3799bool llvm::propagatesFullPoison(const Instruction *I) {
3800 switch (I->getOpcode()) {
3801 case Instruction::Add:
3802 case Instruction::Sub:
3803 case Instruction::Xor:
3804 case Instruction::Trunc:
3805 case Instruction::BitCast:
3806 case Instruction::AddrSpaceCast:
3807 // These operations all propagate poison unconditionally. Note that poison
3808 // is not any particular value, so xor or subtraction of poison with
3809 // itself still yields poison, not zero.
3810 return true;
3811
3812 case Instruction::AShr:
3813 case Instruction::SExt:
3814 // For these operations, one bit of the input is replicated across
3815 // multiple output bits. A replicated poison bit is still poison.
3816 return true;
3817
3818 case Instruction::Shl: {
3819 // Left shift *by* a poison value is poison. The number of
3820 // positions to shift is unsigned, so no negative values are
3821 // possible there. Left shift by zero places preserves poison. So
3822 // it only remains to consider left shift of poison by a positive
3823 // number of places.
3824 //
3825 // A left shift by a positive number of places leaves the lowest order bit
3826 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3827 // make the poison operand violate that flag, yielding a fresh full-poison
3828 // value.
3829 auto *OBO = cast<OverflowingBinaryOperator>(I);
3830 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3831 }
3832
3833 case Instruction::Mul: {
3834 // A multiplication by zero yields a non-poison zero result, so we need to
3835 // rule out zero as an operand. Conservatively, multiplication by a
3836 // non-zero constant is not multiplication by zero.
3837 //
3838 // Multiplication by a non-zero constant can leave some bits
3839 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3840 // order bit unpoisoned. So we need to consider that.
3841 //
3842 // Multiplication by 1 preserves poison. If the multiplication has a
3843 // no-wrap flag, then we can make the poison operand violate that flag
3844 // when multiplied by any integer other than 0 and 1.
3845 auto *OBO = cast<OverflowingBinaryOperator>(I);
3846 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3847 for (Value *V : OBO->operands()) {
3848 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3849 // A ConstantInt cannot yield poison, so we can assume that it is
3850 // the other operand that is poison.
3851 return !CI->isZero();
3852 }
3853 }
3854 }
3855 return false;
3856 }
3857
Sanjoy Das70c2bbd2016-05-29 00:31:18 +00003858 case Instruction::ICmp:
3859 // Comparing poison with any value yields poison. This is why, for
3860 // instance, x s< (x +nsw 1) can be folded to true.
3861 return true;
3862
Jingyue Wu42f1d672015-07-28 18:22:40 +00003863 case Instruction::GetElementPtr:
3864 // A GEP implicitly represents a sequence of additions, subtractions,
3865 // truncations, sign extensions and multiplications. The multiplications
3866 // are by the non-zero sizes of some set of types, so we do not have to be
3867 // concerned with multiplication by zero. If the GEP is in-bounds, then
3868 // these operations are implicitly no-signed-wrap so poison is propagated
3869 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3870 return cast<GEPOperator>(I)->isInBounds();
3871
3872 default:
3873 return false;
3874 }
3875}
3876
3877const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3878 switch (I->getOpcode()) {
3879 case Instruction::Store:
3880 return cast<StoreInst>(I)->getPointerOperand();
3881
3882 case Instruction::Load:
3883 return cast<LoadInst>(I)->getPointerOperand();
3884
3885 case Instruction::AtomicCmpXchg:
3886 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3887
3888 case Instruction::AtomicRMW:
3889 return cast<AtomicRMWInst>(I)->getPointerOperand();
3890
3891 case Instruction::UDiv:
3892 case Instruction::SDiv:
3893 case Instruction::URem:
3894 case Instruction::SRem:
3895 return I->getOperand(1);
3896
3897 default:
3898 return nullptr;
3899 }
3900}
3901
3902bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3903 // We currently only look for uses of poison values within the same basic
3904 // block, as that makes it easier to guarantee that the uses will be
3905 // executed given that PoisonI is executed.
3906 //
3907 // FIXME: Expand this to consider uses beyond the same basic block. To do
3908 // this, look out for the distinction between post-dominance and strong
3909 // post-dominance.
3910 const BasicBlock *BB = PoisonI->getParent();
3911
3912 // Set of instructions that we have proved will yield poison if PoisonI
3913 // does.
3914 SmallSet<const Value *, 16> YieldsPoison;
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003915 SmallSet<const BasicBlock *, 4> Visited;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003916 YieldsPoison.insert(PoisonI);
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003917 Visited.insert(PoisonI->getParent());
Jingyue Wu42f1d672015-07-28 18:22:40 +00003918
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003919 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
Jingyue Wu42f1d672015-07-28 18:22:40 +00003920
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003921 unsigned Iter = 0;
3922 while (Iter++ < MaxDepth) {
3923 for (auto &I : make_range(Begin, End)) {
3924 if (&I != PoisonI) {
3925 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3926 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3927 return true;
3928 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3929 return false;
3930 }
3931
3932 // Mark poison that propagates from I through uses of I.
3933 if (YieldsPoison.count(&I)) {
3934 for (const User *User : I.users()) {
3935 const Instruction *UserI = cast<Instruction>(User);
3936 if (propagatesFullPoison(UserI))
3937 YieldsPoison.insert(User);
3938 }
Jingyue Wu42f1d672015-07-28 18:22:40 +00003939 }
3940 }
Sanjoy Dasa6155b62016-04-22 17:41:06 +00003941
3942 if (auto *NextBB = BB->getSingleSuccessor()) {
3943 if (Visited.insert(NextBB).second) {
3944 BB = NextBB;
3945 Begin = BB->getFirstNonPHI()->getIterator();
3946 End = BB->end();
3947 continue;
3948 }
3949 }
3950
3951 break;
3952 };
Jingyue Wu42f1d672015-07-28 18:22:40 +00003953 return false;
3954}
3955
Pete Cooper35b00d52016-08-13 01:05:32 +00003956static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
James Molloy134bec22015-08-11 09:12:57 +00003957 if (FMF.noNaNs())
3958 return true;
3959
3960 if (auto *C = dyn_cast<ConstantFP>(V))
3961 return !C->isNaN();
3962 return false;
3963}
3964
Pete Cooper35b00d52016-08-13 01:05:32 +00003965static bool isKnownNonZero(const Value *V) {
James Molloy134bec22015-08-11 09:12:57 +00003966 if (auto *C = dyn_cast<ConstantFP>(V))
3967 return !C->isZero();
3968 return false;
3969}
3970
Sanjay Patel819f0962016-11-13 19:30:19 +00003971/// Match non-obvious integer minimum and maximum sequences.
3972static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
3973 Value *CmpLHS, Value *CmpRHS,
3974 Value *TrueVal, Value *FalseVal,
3975 Value *&LHS, Value *&RHS) {
Sanjay Patel24c6f882017-01-21 17:51:25 +00003976 // Assume success. If there's no match, callers should not use these anyway.
3977 LHS = TrueVal;
3978 RHS = FalseVal;
3979
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003980 // Recognize variations of:
3981 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
3982 const APInt *C1;
3983 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
3984 const APInt *C2;
3985
3986 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
3987 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003988 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003989 return {SPF_SMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003990
3991 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
3992 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003993 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003994 return {SPF_SMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003995
3996 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
3997 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00003998 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00003999 return {SPF_UMAX, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004000
4001 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4002 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004003 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004004 return {SPF_UMIN, SPNB_NA, false};
Sanjay Patel0c1c70a2017-01-20 22:18:47 +00004005 }
4006
Sanjay Patel819f0962016-11-13 19:30:19 +00004007 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
4008 return {SPF_UNKNOWN, SPNB_NA, false};
4009
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004010 // Z = X -nsw Y
4011 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4012 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4013 if (match(TrueVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004014 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004015 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004016
4017 // Z = X -nsw Y
4018 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4019 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4020 if (match(FalseVal, m_Zero()) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004021 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004022 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patelcfcc42b2016-11-13 20:04:52 +00004023
Sanjay Patel819f0962016-11-13 19:30:19 +00004024 if (!match(CmpRHS, m_APInt(C1)))
4025 return {SPF_UNKNOWN, SPNB_NA, false};
4026
4027 // An unsigned min/max can be written with a signed compare.
4028 const APInt *C2;
4029 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4030 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4031 // Is the sign bit set?
4032 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4033 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
Sanjay Patel24c6f882017-01-21 17:51:25 +00004034 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004035 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004036
4037 // Is the sign bit clear?
4038 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4039 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4040 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004041 C2->isMinSignedValue())
Sanjay Patel819f0962016-11-13 19:30:19 +00004042 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004043 }
4044
4045 // Look through 'not' ops to find disguised signed min/max.
4046 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4047 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4048 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004049 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00004050 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004051
4052 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4053 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4054 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
Sanjay Patel24c6f882017-01-21 17:51:25 +00004055 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
Sanjay Patel819f0962016-11-13 19:30:19 +00004056 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
Sanjay Patel819f0962016-11-13 19:30:19 +00004057
4058 return {SPF_UNKNOWN, SPNB_NA, false};
4059}
4060
James Molloy134bec22015-08-11 09:12:57 +00004061static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4062 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00004063 Value *CmpLHS, Value *CmpRHS,
4064 Value *TrueVal, Value *FalseVal,
4065 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004066 LHS = CmpLHS;
4067 RHS = CmpRHS;
4068
James Molloy134bec22015-08-11 09:12:57 +00004069 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
4070 // return inconsistent results between implementations.
4071 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4072 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4073 // Therefore we behave conservatively and only proceed if at least one of the
4074 // operands is known to not be zero, or if we don't care about signed zeroes.
4075 switch (Pred) {
4076 default: break;
4077 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4078 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4079 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4080 !isKnownNonZero(CmpRHS))
4081 return {SPF_UNKNOWN, SPNB_NA, false};
4082 }
4083
4084 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4085 bool Ordered = false;
4086
4087 // When given one NaN and one non-NaN input:
4088 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4089 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4090 // ordered comparison fails), which could be NaN or non-NaN.
4091 // so here we discover exactly what NaN behavior is required/accepted.
4092 if (CmpInst::isFPPredicate(Pred)) {
4093 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4094 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4095
4096 if (LHSSafe && RHSSafe) {
4097 // Both operands are known non-NaN.
4098 NaNBehavior = SPNB_RETURNS_ANY;
4099 } else if (CmpInst::isOrdered(Pred)) {
4100 // An ordered comparison will return false when given a NaN, so it
4101 // returns the RHS.
4102 Ordered = true;
4103 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004104 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004105 NaNBehavior = SPNB_RETURNS_NAN;
4106 else if (RHSSafe)
4107 NaNBehavior = SPNB_RETURNS_OTHER;
4108 else
4109 // Completely unsafe.
4110 return {SPF_UNKNOWN, SPNB_NA, false};
4111 } else {
4112 Ordered = false;
4113 // An unordered comparison will return true when given a NaN, so it
4114 // returns the LHS.
4115 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00004116 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00004117 NaNBehavior = SPNB_RETURNS_OTHER;
4118 else if (RHSSafe)
4119 NaNBehavior = SPNB_RETURNS_NAN;
4120 else
4121 // Completely unsafe.
4122 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004123 }
4124 }
4125
James Molloy71b91c22015-05-11 14:42:20 +00004126 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00004127 std::swap(CmpLHS, CmpRHS);
4128 Pred = CmpInst::getSwappedPredicate(Pred);
4129 if (NaNBehavior == SPNB_RETURNS_NAN)
4130 NaNBehavior = SPNB_RETURNS_OTHER;
4131 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4132 NaNBehavior = SPNB_RETURNS_NAN;
4133 Ordered = !Ordered;
4134 }
4135
4136 // ([if]cmp X, Y) ? X : Y
4137 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00004138 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00004139 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00004140 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00004141 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004142 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00004143 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004144 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00004145 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004146 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00004147 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4148 case FCmpInst::FCMP_UGT:
4149 case FCmpInst::FCMP_UGE:
4150 case FCmpInst::FCMP_OGT:
4151 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4152 case FCmpInst::FCMP_ULT:
4153 case FCmpInst::FCMP_ULE:
4154 case FCmpInst::FCMP_OLT:
4155 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00004156 }
4157 }
4158
Sanjay Patele372aec2016-10-27 15:26:10 +00004159 const APInt *C1;
4160 if (match(CmpRHS, m_APInt(C1))) {
James Molloy71b91c22015-05-11 14:42:20 +00004161 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4162 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4163
4164 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4165 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
Sanjay Patele372aec2016-10-27 15:26:10 +00004166 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
James Molloy134bec22015-08-11 09:12:57 +00004167 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004168 }
4169
4170 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4171 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
Sanjay Patele372aec2016-10-27 15:26:10 +00004172 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
James Molloy134bec22015-08-11 09:12:57 +00004173 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00004174 }
4175 }
James Molloy71b91c22015-05-11 14:42:20 +00004176 }
4177
Sanjay Patel819f0962016-11-13 19:30:19 +00004178 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
James Molloy71b91c22015-05-11 14:42:20 +00004179}
James Molloy270ef8c2015-05-15 16:04:50 +00004180
James Molloy569cea62015-09-02 17:25:25 +00004181static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4182 Instruction::CastOps *CastOp) {
Sanjay Patel14a4b812017-01-29 16:34:57 +00004183 auto *Cast1 = dyn_cast<CastInst>(V1);
4184 if (!Cast1)
James Molloy270ef8c2015-05-15 16:04:50 +00004185 return nullptr;
James Molloy270ef8c2015-05-15 16:04:50 +00004186
Sanjay Patel14a4b812017-01-29 16:34:57 +00004187 *CastOp = Cast1->getOpcode();
4188 Type *SrcTy = Cast1->getSrcTy();
4189 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4190 // If V1 and V2 are both the same cast from the same type, look through V1.
4191 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4192 return Cast2->getOperand(0);
James Molloy569cea62015-09-02 17:25:25 +00004193 return nullptr;
4194 }
4195
Sanjay Patel14a4b812017-01-29 16:34:57 +00004196 auto *C = dyn_cast<Constant>(V2);
4197 if (!C)
4198 return nullptr;
4199
David Majnemerd2a074b2016-04-29 18:40:34 +00004200 Constant *CastedTo = nullptr;
Sanjay Patel14a4b812017-01-29 16:34:57 +00004201 switch (*CastOp) {
4202 case Instruction::ZExt:
4203 if (CmpI->isUnsigned())
4204 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4205 break;
4206 case Instruction::SExt:
4207 if (CmpI->isSigned())
4208 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4209 break;
4210 case Instruction::Trunc:
4211 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4212 break;
4213 case Instruction::FPTrunc:
4214 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4215 break;
4216 case Instruction::FPExt:
4217 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4218 break;
4219 case Instruction::FPToUI:
4220 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4221 break;
4222 case Instruction::FPToSI:
4223 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4224 break;
4225 case Instruction::UIToFP:
4226 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4227 break;
4228 case Instruction::SIToFP:
4229 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4230 break;
4231 default:
4232 break;
4233 }
David Majnemerd2a074b2016-04-29 18:40:34 +00004234
4235 if (!CastedTo)
4236 return nullptr;
4237
David Majnemerd2a074b2016-04-29 18:40:34 +00004238 // Make sure the cast doesn't lose any information.
Sanjay Patel14a4b812017-01-29 16:34:57 +00004239 Constant *CastedBack =
4240 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
David Majnemerd2a074b2016-04-29 18:40:34 +00004241 if (CastedBack != C)
4242 return nullptr;
4243
4244 return CastedTo;
James Molloy270ef8c2015-05-15 16:04:50 +00004245}
4246
Sanjay Patele8dc0902016-05-23 17:57:54 +00004247SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004248 Instruction::CastOps *CastOp) {
4249 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004250 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004251
James Molloy134bec22015-08-11 09:12:57 +00004252 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4253 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004254
James Molloy134bec22015-08-11 09:12:57 +00004255 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004256 Value *CmpLHS = CmpI->getOperand(0);
4257 Value *CmpRHS = CmpI->getOperand(1);
4258 Value *TrueVal = SI->getTrueValue();
4259 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004260 FastMathFlags FMF;
4261 if (isa<FPMathOperator>(CmpI))
4262 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004263
4264 // Bail out early.
4265 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004266 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004267
4268 // Deal with type mismatches.
4269 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004270 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004271 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004272 cast<CastInst>(TrueVal)->getOperand(0), C,
4273 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004274 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004275 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004276 C, cast<CastInst>(FalseVal)->getOperand(0),
4277 LHS, RHS);
4278 }
James Molloy134bec22015-08-11 09:12:57 +00004279 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004280 LHS, RHS);
4281}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004282
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004283/// Return true if "icmp Pred LHS RHS" is always true.
Pete Cooper35b00d52016-08-13 01:05:32 +00004284static bool isTruePredicate(CmpInst::Predicate Pred,
4285 const Value *LHS, const Value *RHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004286 const DataLayout &DL, unsigned Depth,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004287 AssumptionCache *AC, const Instruction *CxtI,
4288 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004289 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004290 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4291 return true;
4292
4293 switch (Pred) {
4294 default:
4295 return false;
4296
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004297 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004298 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004299
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004300 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004301 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004302 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004303 return false;
4304 }
4305
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004306 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004307 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004308
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004309 // LHS u<= LHS +_{nuw} C for any C
4310 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004311 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004312
4313 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
Pete Cooper35b00d52016-08-13 01:05:32 +00004314 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4315 const Value *&X,
Sanjoy Das92568102015-11-10 23:56:20 +00004316 const APInt *&CA, const APInt *&CB) {
4317 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4318 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4319 return true;
4320
4321 // If X & C == 0 then (X | C) == X +_{nuw} C
4322 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4323 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4324 unsigned BitWidth = CA->getBitWidth();
4325 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004326 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
Sanjoy Das92568102015-11-10 23:56:20 +00004327
4328 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4329 return true;
4330 }
4331
4332 return false;
4333 };
4334
Pete Cooper35b00d52016-08-13 01:05:32 +00004335 const Value *X;
Sanjoy Das92568102015-11-10 23:56:20 +00004336 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004337 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4338 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004339
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004340 return false;
4341 }
4342 }
4343}
4344
4345/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00004346/// ALHS ARHS" is true. Otherwise, return None.
4347static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004348isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4349 const Value *ARHS, const Value *BLHS,
4350 const Value *BRHS, const DataLayout &DL,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004351 unsigned Depth, AssumptionCache *AC,
4352 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004353 switch (Pred) {
4354 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00004355 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004356
4357 case CmpInst::ICMP_SLT:
4358 case CmpInst::ICMP_SLE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004359 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004360 DT) &&
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004361 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004362 return true;
4363 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004364
4365 case CmpInst::ICMP_ULT:
4366 case CmpInst::ICMP_ULE:
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004367 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4368 DT) &&
4369 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004370 return true;
4371 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004372 }
4373}
4374
Chad Rosier226a7342016-05-05 17:41:19 +00004375/// Return true if the operands of the two compares match. IsSwappedOps is true
4376/// when the operands match, but are swapped.
Pete Cooper35b00d52016-08-13 01:05:32 +00004377static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4378 const Value *BLHS, const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004379 bool &IsSwappedOps) {
4380
4381 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4382 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4383 return IsMatchingOps || IsSwappedOps;
4384}
4385
Chad Rosier41dd31f2016-04-20 19:15:26 +00004386/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4387/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4388/// BRHS" is false. Otherwise, return None if we can't infer anything.
4389static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004390 const Value *ALHS,
4391 const Value *ARHS,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004392 CmpInst::Predicate BPred,
Pete Cooper35b00d52016-08-13 01:05:32 +00004393 const Value *BLHS,
4394 const Value *BRHS,
Chad Rosier226a7342016-05-05 17:41:19 +00004395 bool IsSwappedOps) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004396 // Canonicalize the operands so they're matching.
4397 if (IsSwappedOps) {
4398 std::swap(BLHS, BRHS);
4399 BPred = ICmpInst::getSwappedPredicate(BPred);
4400 }
Chad Rosier99bc4802016-04-21 16:18:02 +00004401 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004402 return true;
Chad Rosier99bc4802016-04-21 16:18:02 +00004403 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004404 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004405
Chad Rosier41dd31f2016-04-20 19:15:26 +00004406 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004407}
4408
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004409/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4410/// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4411/// C2" is false. Otherwise, return None if we can't infer anything.
4412static Optional<bool>
Pete Cooper35b00d52016-08-13 01:05:32 +00004413isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4414 const ConstantInt *C1,
4415 CmpInst::Predicate BPred,
4416 const Value *BLHS, const ConstantInt *C2) {
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004417 assert(ALHS == BLHS && "LHS operands must match.");
4418 ConstantRange DomCR =
4419 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4420 ConstantRange CR =
4421 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4422 ConstantRange Intersection = DomCR.intersectWith(CR);
4423 ConstantRange Difference = DomCR.difference(CR);
4424 if (Intersection.isEmptySet())
4425 return false;
4426 if (Difference.isEmptySet())
4427 return true;
4428 return None;
4429}
4430
Pete Cooper35b00d52016-08-13 01:05:32 +00004431Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
Chad Rosiere2cbd132016-04-25 17:23:36 +00004432 const DataLayout &DL, bool InvertAPred,
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004433 unsigned Depth, AssumptionCache *AC,
4434 const Instruction *CxtI,
Chad Rosier41dd31f2016-04-20 19:15:26 +00004435 const DominatorTree *DT) {
Chad Rosiercd62bf52016-04-29 21:12:31 +00004436 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4437 if (LHS->getType() != RHS->getType())
4438 return None;
4439
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004440 Type *OpTy = LHS->getType();
4441 assert(OpTy->getScalarType()->isIntegerTy(1));
4442
4443 // LHS ==> RHS by definition
Chad Rosiere2cbd132016-04-25 17:23:36 +00004444 if (!InvertAPred && LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004445 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004446
4447 if (OpTy->isVectorTy())
4448 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004449 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004450 assert(OpTy->isIntegerTy(1) && "implied by above");
4451
4452 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004453 Value *ALHS, *ARHS;
4454 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004455
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004456 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4457 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004458 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004459
Chad Rosiere2cbd132016-04-25 17:23:36 +00004460 if (InvertAPred)
4461 APred = CmpInst::getInversePredicate(APred);
4462
Chad Rosier226a7342016-05-05 17:41:19 +00004463 // Can we infer anything when the two compares have matching operands?
4464 bool IsSwappedOps;
4465 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4466 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4467 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004468 return Implication;
Chad Rosier226a7342016-05-05 17:41:19 +00004469 // No amount of additional analysis will infer the second condition, so
4470 // early exit.
4471 return None;
4472 }
4473
4474 // Can we infer anything when the LHS operands match and the RHS operands are
4475 // constants (not necessarily matching)?
4476 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4477 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4478 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4479 cast<ConstantInt>(BRHS)))
4480 return Implication;
4481 // No amount of additional analysis will infer the second condition, so
4482 // early exit.
4483 return None;
Chad Rosier25cfb7d2016-05-05 15:39:18 +00004484 }
4485
Chad Rosier41dd31f2016-04-20 19:15:26 +00004486 if (APred == BPred)
Daniel Jasperaec2fa32016-12-19 08:22:17 +00004487 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4488 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004489
Chad Rosier41dd31f2016-04-20 19:15:26 +00004490 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004491}